WO2010044351A1 - 欠陥検出方法の高感度化 - Google Patents

欠陥検出方法の高感度化 Download PDF

Info

Publication number
WO2010044351A1
WO2010044351A1 PCT/JP2009/067295 JP2009067295W WO2010044351A1 WO 2010044351 A1 WO2010044351 A1 WO 2010044351A1 JP 2009067295 W JP2009067295 W JP 2009067295W WO 2010044351 A1 WO2010044351 A1 WO 2010044351A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
defect
light
scattered light
reflected
Prior art date
Application number
PCT/JP2009/067295
Other languages
English (en)
French (fr)
Inventor
武弘 立▲崎▼
松本 俊一
渡辺 正浩
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US13/123,906 priority Critical patent/US20110194101A1/en
Publication of WO2010044351A1 publication Critical patent/WO2010044351A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an apparatus for inspecting defects on a semiconductor wafer surface or a magnetic disk surface, and particularly suitable for inspecting a surface of a bare wafer without a semiconductor pattern, a wafer with a semiconductor pattern-free film, or a surface of a disk.
  • the present invention relates to a defect inspection apparatus.
  • a defect such as a short circuit or disconnection on the semiconductor substrate (wafer)
  • a defect but including a foreign substance or a pattern defect
  • This may cause a failure such as a short circuit.
  • finer defects also cause breakdown of capacitors and breakdown of gate oxide films. These defects are caused by various causes such as those generated from the moving parts of the transfer device, those generated from the human body, those generated by reaction inside the processing apparatus by the process gas, those mixed in chemicals and materials, etc. Are mixed in various states.
  • the defect inspection apparatus is an optical defect inspection apparatus that illuminates the surface of a semiconductor substrate with a laser and observes scattered light from the defect in a dark field to identify the position of the defect, a lamp, a laser, or an electron beam.
  • Patent Document 3 US Pat. No. 6,407,373
  • Patent Document 4 Japanese Patent Laid-Open No. 2007-71803
  • Patent Document 5 Japanese Patent Laid-Open No. 2007-23023
  • the position on the sample is detected by the optical microscope mounted on the SEM type defect inspection apparatus using the position information of the defect on the sample detected by the other inspection apparatus, and detected by the other inspection apparatus.
  • the spot size of the laser beam for illuminating the semiconductor substrate surface with dark field illumination is increased to increase the inspection throughput. Irradiating by scanning. For this reason, the accuracy of the position coordinates obtained from the position of the laser beam spot that scans the surface of the semiconductor substrate includes a large error component. If the SEM is used to observe the defect in detail based on the position information of the defect including such a large error component, it is in the field of view of the SEM that is observed at a magnification much higher than that of the optical defect inspection apparatus. In some cases, defects that you want to observe do not enter.
  • an object of the present invention is to detect an optical defect inspection apparatus or an optical appearance inspection apparatus when a defect detected by an optical defect inspection apparatus or an optical appearance inspection apparatus is observed in detail using an SEM. It is an object of the present invention to provide a defect observation apparatus that can detect a fine defect with high sensitivity, and can reliably enter the defect within the observation field of SEM, and can reduce the scale of the apparatus.
  • the present invention comprises an optical microscope means, an SEM observation means, and a stage means on which a sample can be placed and moved between the optical microscope means and the SEM observation means.
  • the optical system means darkens using the position information of the defect on the sample detected by the other inspection apparatus.
  • a dark field illumination optical system for detecting defects by field illumination is provided, and this dark field illumination optical system is composed of a polarization illumination unit for illuminating a sample with polarized light, and light reflected and scattered from a sample polarized by the polarization illumination unit.
  • the position of the defect is detected by an optical microscope using the position information of the defect on the sample detected by another inspection apparatus, and the sample is detected by another inspection apparatus.
  • the optical microscope uses the position information of the defect on the sample detected by another inspection apparatus and uses polarized light.
  • Specimens detected by other inspection devices by illuminating the dark field and detecting the polarized light from the reflected and scattered light from the dark field illuminated sample by blocking or reducing the reflected scattered light of the specific polarization component It is characterized by detecting an upper defect.
  • the defect to be observed when a defect detected by an optical defect inspection apparatus is observed in detail with an SEM or the like, the defect to be observed can be reliably placed in an observation field of view such as an SEM.
  • the throughput of the detailed inspection of the used defect can be increased.
  • the apparatus can be configured inexpensively and on a small scale.
  • FIG. 1 is a diagram showing an example of the configuration of the surface inspection apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing details of the dark field illumination unit in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing details of the optical height detection apparatus in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing details of the optical microscope in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing details of a mechanism for switching the distributed polarizing element in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing in detail another example of a mechanism for switching the distributed polarization element in the first embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of the distribution direction of the transmission axis of the distributed polarizing element inserted into the optical microscope pupil plane in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of the shape of the spatial filter inserted into the optical microscope pupil plane in the first embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the scattered light simulation performed to determine the optical characteristics of the distributed polarizing element and the spatial filter in the first embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a scattered light simulation result performed to determine the optical characteristics of the distributed polarizing element and the spatial filter in the first embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an example of the distribution direction of the transmission axis of the distributed polarizing element inserted into the optical microscope pupil plane in the first embodiment of the present invention.
  • FIG. 12 is a diagram showing an example in which the distributed polarizing element and the spatial filter inserted into the optical microscope pupil plane are formed on one substrate in the first embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a defect displacement amount calculation image obtained by dark field observation of an optical microscope in the first embodiment of the present invention.
  • FIG. 14 is a diagram showing a procedure for defect observation in the first embodiment of the present invention.
  • FIG. 15 is a diagram showing a procedure for calculating the Z position in the third and fourth embodiments of the present invention.
  • FIG. 16 is a diagram illustrating details of a second configuration example of the optical microscope in the first embodiment of the present invention.
  • FIG. 17 is a diagram showing details of a third configuration example of the optical microscope in the first embodiment of the present invention.
  • FIG. 18 is a diagram illustrating an example of the configuration of the surface inspection apparatus according to the second embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an example of the configuration of the surface inspection apparatus according to the third embodiment of the present invention.
  • FIG. 20 is a diagram illustrating an example of the configuration of the surface inspection apparatus according to the fourth embodiment of the present invention.
  • Liquid crystal control device 501 Illumination light source 502 ... Optical filter 503 ... Wave plate 507 ... Lens group 701 ... Light source 702 ... Collection Lens 703 ... slit 704 ... projection lens 705 ... light receiving lens 706 ... detector 401 ... filter switching mechanism 402 ... holder 405 ... distributed polarizing element holder
  • FIG. 1 shows an example of the configuration of a defect detection apparatus according to an embodiment of the present invention.
  • the defect detection apparatus according to the present embodiment is an apparatus for observing defects generated during a manufacturing process in a device manufacturing process for forming a circuit pattern on a substrate (wafer) such as a semiconductor device.
  • SEM electron microscope for observing the wafer 1 to be inspected in detail
  • Z sensor Optical height detection system for focusing the electron microscope 5 on the surface of the sample 1
  • the optical microscope 14 includes a dark field illumination unit 101, an epi-illumination mirror 102 for guiding the laser emitted from the dark field illumination unit 101 to the vacuum chamber and controlling the illumination position on the surface of the sample 1, a vacuum sealed window 103, Mirror 104, objective lens 105 for collecting scattered light from sample 1 or performing bright field observation, objective lens height control mechanism 106, vacuum sealing window 107, half for introducing illumination necessary for bright field observation
  • the stage 3, the Z sensors 4 and 7, the SEM 5, the user interface 11, the database 12, the height control mechanism 106, and the solid-state image sensor 111 are connected to the control system 10, and the control system 10 is connected to the host system via the network 13. (Not shown).
  • the optical microscope 14 is configured to detect the position of the defect on the sample 1 detected by the optical defect inspection apparatus (not shown) of the defect detected by the optical defect inspection apparatus.
  • the height control mechanism 106 and the Z sensor 7 have a function as focusing means for performing sample focusing, and the control system 10 has a microscope 14.
  • the SEM 5 has a function of observing a defect whose position information is corrected by the control system 10.
  • the SEM 5 has a function as position correction means for correcting the position information of the defect based on the position information of the defect detected in step S2. ing.
  • the stage 3 places the wafer 1 to be inspected and moves between the optical microscope 14 and the SEM 5 so that defects detected by the optical microscope 14 can be observed with the SEM 5.
  • the objective lens 105 and the height control mechanism 106 are installed in the vacuum chamber 6.
  • As the configuration of the height control mechanism 106 for example, a configuration using a piezo element, or a Z direction along the linear guide using a stepping motor and a ball screw (a direction along the optical axis 115 of the imaging optical system 110). ), Or a configuration of moving in the Z direction along a linear guide using an ultrasonic motor and a ball screw.
  • the epi-illumination mirror 102 is used to guide the light emitted from the illumination light source 101 to the vacuum tube 6 as shown in FIG.
  • the epi-illumination mirror 102 may have a mechanism that rotates around two axes, the axis along the longitudinal direction of the illustrated mirror and the axis perpendicular to the drawing, in order to control the illumination position on the surface of the sample 1. Good. Details of each part will be described below with reference to FIGS. FIG. 2 shows details of the dark field illumination unit 101.
  • the dark field illumination unit 101 includes, for example, an illumination light source 501 that emits a visible light laser, an ultraviolet light laser, or a vacuum ultraviolet light laser, an optical filter 502 that adjusts the intensity of the illumination light, a wavelength plate 503 that adjusts the polarization direction of the illumination light,
  • the lens group 507 is configured to focus the illumination light on the sample 1.
  • the lens group 507 includes a plano-concave lens 504, an achromatic lens 505, and a cylindrical lens 506. This is a mechanism that can control the illumination area on the surface of the sample 1 from the entire field of view of the optical microscope 14 to the diffraction limit by selecting the lens focal length and adjusting the lens interval. Is feasible.
  • the illumination light source 501 is a laser oscillator.
  • the laser oscillator oscillates visible light (400 nm-800 nm) of 405 nm, 488 nm, 532 nm, ultraviolet light of 400 nm or less, or vacuum ultraviolet light of 200 nm or less, and can be used as either a continuous wave laser or a pulsed laser. Is possible. As these selection methods, when a continuous wave laser is used, it is cheap and stable, and a small device can be realized.
  • the wavelength of the illumination light source 501 is not limited to the above wavelength. When sensitivity is required, ultraviolet light is used.
  • the objective lens 105, the vacuum-sealed window 107, the half mirror 108, and the imaging optical system 110 are optical elements corresponding to the ultraviolet region such as synthetic quartz or reflective optical elements.
  • vacuum ultraviolet light is used.
  • the objective lens 105, the vacuum sealing window 107, the half mirror 108, and the imaging optical system 110 are optical elements corresponding to the vacuum ultraviolet region such as fused silica or reflective optics.
  • the entire optical path in the microscope 14 is placed in a vacuum or, for example, in a nitrogen gas atmosphere in order to prevent vacuum ultraviolet rays from being absorbed along with propagation. Since the purpose is to propagate vacuum ultraviolet rays, the gas to be filled is not limited to nitrogen.
  • P-polarized laser light is used for irradiation of the sample 1
  • S-polarized laser light is used when the surface of the sample 1 is covered with a metal thin film.
  • P-polarized light or S-polarized linearly polarized light is used for more efficiently observing scattered light and realizing observation with good S / N. That is, when observing a specular wafer, P-polarized illumination is suitable because S-polarized light has poor scattering ability and the amount of absolute scattered light decreases, resulting in poor efficiency. On the other hand, when observing a metal thin film, etc. If the P-polarized illumination is used, the scattered light from the substrate becomes strong, and minute defects or minute foreign objects cannot be observed, so that the S-polarized illumination is suitable. Further, in order to suppress scattered light from the substrate, illumination is performed at a low elevation angle of about 10 ° with respect to the substrate surface.
  • the mirror 104 has a mechanism (not shown) that moves together with the objective lens so that the objective lens 105 can be illuminated even when the objective lens 105 moves up and down.
  • the mirror 104 may have a mechanism (not shown) that is independently movable so that the illumination position in the field of view of the objective lens 105 can be changed.
  • FIG. 3 shows the Z sensor 4 or 7.
  • the Z sensor 4 or 7 includes a light source 701 that emits height measurement light, a slit 703, a condenser lens 702 that condenses the height measurement light emitted from the illumination 701, and a slit 703 as height measurement light.
  • An imaging lens 704 that forms an image of the transmitted light (image of the slit 703) on the surface of the sample 1, a condensing lens 705 that condenses the height measurement light reflected by the sample 1, and a condensing lens 705. It comprises a detector 706 that detects the emitted height measurement light and converts it into an electrical signal. Information on the height measurement light converted into an electrical signal by the detector 706 is sent to the control system 10 to calculate the height.
  • the detector 706 a two-dimensional CCD or a line sensor, a two-part or four-part position sensor is used.
  • FIG. 4 shows a detailed configuration of the optical microscope 14.
  • the optical microscope 14 includes a dark field illumination unit 101, an epi-illumination mirror 102, a mirror 104, an objective lens 105, a height control mechanism 106, a half mirror 108, a bright field light source 109, an imaging optical system 110, and a solid-state image sensor 111. Composed.
  • the imaging optical system 110 includes a lens 113a that extracts the pupil plane 112a of the objective lens 105, a lens 113b that forms an image, and a filter unit 114 that is inserted into the extracted pupil plane 112b.
  • An example of the filter unit 114 is a distributed polarizing element.
  • a plurality of distributed polarizing elements having different characteristics in the filter unit 114 are held by the holder 401 (four types 114a to 114d in the example shown in FIG. 5) and inserted into the pupil plane 112b. To 114d can be switched. Further, the height control mechanism 106 and the solid-state image sensor 111 are connected to the control system 10.
  • the lens 113 a is used to draw out the pupil plane of the objective lens 105 to the outside and form it in the imaging optical system 110.
  • the lens 113 a drives the holder 402 to place the holder on the pupil plane taken out inside the imaging optical system 110.
  • a distributed polarizing element selected from a plurality of distributed polarizing elements 114a to 114d held at 402 is inserted.
  • the holder 402 may be a spatial polarizing element or a distributed polarizing element formed on the same substrate as the spatial filter.
  • the lens 113 a and the lens 113 b are a pair, and form an image of the sample 1 on the detection surface of the solid-state imaging device 111.
  • the ratio of reflection and transmission of the half mirror 108 may be arbitrary. However, when the light intensity of the bright field light source 109 is sufficiently secured, it is better to adopt a configuration in which more scattered light from the defect is guided to the imaging optical system 110 and the solid-state image sensor 111.
  • the bright field light source 109 can be a lamp or a laser.
  • FIG. 5 shows a mechanism 401 for switching the distributed polarization elements 114 a to 114 d inserted in the pupil plane 112 b of the objective lens 105 on the optical axis 115 of the imaging optical system 110.
  • the mechanism 401 includes a holder 402 for arranging a plurality of distributed polarizing elements 114a to 114d having different characteristics, and a rotation driving unit 403 for rotating the holder 402.
  • the holder 402 is a mechanism for switching to any one of the plurality of distributed polarizing elements 114a to 114d according to the type of micro defect to be detected.
  • the position of the holder 402 is set to a place where the distributed polarizing elements 114a to 114d are not installed in order to avoid disturbing the acquired image.
  • the holder 402 is switched to a place where a parallel plate glass having the same thickness as the distributed polarizing elements 114a to 114d is installed.
  • the parallel flat glass having the same thickness as the distributed polarizing elements 114a to 114d is installed is that when the distributed polarizing elements 114a to 114d are removed, the optical path length changes and the image of the sample 1 is not formed on the solid-state image sensor 111. This is to avoid it.
  • a mechanism for adjusting the position of the lens 113b that forms an image or the solid-state image pickup device 111 and forming the image on the solid-state image sensor 111 without using parallel flat glass may be used. In the embodiment shown in FIG.
  • FIG. 6 shows another embodiment of a mechanism for taking in and out distributed polarizing elements 114a to 114d.
  • the mechanism 410 is a mechanism that slides the distributed polarizing element holder 405 and moves the distributed polarizing element 114e in and out of the optical axis 115 of the imaging optical system 110.
  • FIG. 6 shows the case where there is one distributed polarizing element 114e, there may be a plurality of distributed polarizing elements 114e.
  • a spatial filter may be used instead of the distributed polarizing element 114e.
  • FIGS. 7A and 7B show examples of polarization characteristics of the distributed polarization elements 114a and 114b inserted into the pupil plane 112b inside the imaging optical system 110.
  • FIG. 1002 is the outer periphery of the pupil
  • 9001 is the direction of the transmission polarization axis.
  • the distributed polarizing elements 114a and 114b are sized to cover the entire pupil plane 1002 at least in diameter, and the transmission polarization axis direction 9001 is different at each point of the distributed polarizing elements 114a and 114b.
  • the distributed polarizing elements 114a and 114b in which the transmission polarization axis direction 9001 is distributed in the plane are realized by joining linear polarizers, a photonic crystal, a wire grid polarizer, or a combination of a liquid crystal and a polarizer.
  • the photonic crystal is an optical element having a fine structure having a refractive index different from that of the light wavelength
  • the wire grid polarizer has optical anisotropy by periodically arranging conductive thin wires.
  • FIGS. 8A to 8D show an example in which spatial filters 1000a to 1000d are inserted in the pupil plane instead of the distributed polarization elements 114a to 114d illustrated in FIG.
  • spatial filters 1000a to 1000d having different shapes are installed in the switching mechanism 401 shown in FIG. 5 instead of the plurality of distributed polarizing elements 114a to 114d.
  • reference numeral 1002 denotes an outer periphery of the pupil
  • reference numerals 1003 to 1006 denote light shielding portions.
  • the values of ⁇ and ⁇ of the light shielding unit 1003 in the spatial filter 1000a shown in FIG. 8A and the light shielding unit 1004 in the spatial filter 1000b shown in FIG. 8B are obtained by scattered light simulation or actual measurement. It is determined based on the scattered light intensity distribution.
  • FIGS. 1-10 An example of a method for determining the transmission polarization axis direction 9001 and the values of l or ⁇ and ⁇ of the spatial filter shape will be described with reference to FIGS.
  • the scattered light simulation and terms necessary for determining the transmission polarization axis direction 9001 of the distributed polarization elements 114a to 114d will be described with reference to FIG.
  • the sample 1 is illuminated with a laser as illumination light obliquely from above, and the light scattered from the minute foreign matter or minute defect placed on the sample 1 is the optical element closest to the sample 1 of the imaging optical system.
  • the intensity distribution and the polarization distribution of the scattered light at the surface closest to the sample 1 are calculated.
  • the polarization component parallel to the incident surface is P-polarized light
  • the polarized light perpendicular to the P-polarized light is S-polarized light.
  • the side half of the illumination light incident 700 is referred to as the incident side and the other half is referred to as the exit side in the plane for which the intensity distribution or the polarization distribution is obtained.
  • the scattered light intensity distribution f from a minute defect or a minute foreign matter to be detected with high sensitivity by a scattered light simulation is obtained.
  • s (R, ⁇ ) and the distribution p of the P-polarized component of the scattered light p sp (R, ⁇ ) and S-polarized component distribution p ss (R, ⁇ ), and scattered light intensity distribution f from minute irregularities on the substrate surface f N (R, ⁇ ) and the distribution p of the P-polarized component of the scattered light p Np (R, ⁇ ) and S-polarized component distribution p NS (R, ⁇ ) is obtained.
  • the polarization transmission axis direction distribution h (r, ⁇ ) of the distributed polarization element 114 is the polarization axis distribution that most blocks scattered light from the minute irregularities on the substrate surface, that is, h (r, ⁇ ), or a polarization axis distribution that most transmits scattered light from a minute defect or minute foreign substance, that is, h (r, ⁇ ) that maximizes ⁇ in (Equation 2), or scattered light from minute irregularities on the substrate surface. It is determined as h (r, ⁇ ) that maximizes the polarization axis distribution that blocks and transmits the scattered light from the minute defect or minute foreign substance, that is, ⁇ in (Equation 3).
  • the method of determining the light shielding region g (r, ⁇ ) of the spatial filter is a method of optimizing the light shielding region g (r, ⁇ ) so as to maximize the ⁇ shown in (Equation 4), for example.
  • a spatial filter with a distribution that blocks the area where the scattered light from the micro unevenness on the substrate surface is strong, or a spatial filter that has a distribution that blocks the area where the scattered light from the micro unevenness on the substrate surface is strong is also a method of combining linear polarizers.
  • FIG. 10A to FIG. 10F show an example of the scattered light polarization distribution calculated by the scattered light simulation from the surface irregularities and the microstyrene latex (hereinafter referred to as PSL), which are the fine particles.
  • PSL microstyrene latex
  • Show. 10A shows the distribution of the P-polarized component of the scattered light (illumination wavelength 400 nm) by 30 nm PSL
  • FIG. 10B shows the distribution of the S-polarized component of the scattered light by 30 nm PSL
  • FIG. 10A shows the distribution of the P-polarized component of the scattered light (illumination wavelength 400 nm) by 30 nm PSL
  • FIG. 10B shows the distribution of the S-polarized component of the scattered light by 30 nm PSL
  • FIG. 10C shows the wafer to be inspected.
  • FIG. 10 (d) shows the S-polarized component distribution of the scattered light from the surface unevenness of the wafer 1 to be inspected
  • FIG. 10 (e) shows the scattered light from the PSL.
  • FIG. 10F shows the S-polarized light component distribution of the ratio of the scattered light from the surface irregularities of the wafer 1 to be inspected (hereinafter referred to as S / N)
  • S / N the scattered light by PSL has strong P-polarized light at the outer periphery of the pupil surface on the illumination light incident 700 side and the illumination exit 701 side, and S-polarized light at the outer periphery of the perpendicular pupil surface. I understand that it is strong.
  • the scattered light generated by the surface unevenness of the wafer 1 to be inspected has a strong P-polarized component on the illumination incident 700 side, and the direction of the illumination incident side 700 is ⁇ 45 °. It can be seen that in the direction, P-polarized light and S-polarized light have the same intensity and are 45 ° polarized light.
  • 10C and 10D show that the scattered light generated by the surface irregularities of the wafer 1 to be inspected is weak on the illumination emission 701 side.
  • the S / N calculated from FIGS. 10 (a) to 10 (d) is shown in FIGS. 10 (e) and 10 (f).
  • FIG. 10E shows the S / N of the P-polarized component
  • FIG. 10E shows the S / N of the P-polarized component
  • FIGS. 7A and 7B illustrate the distribution shape of the polarization polarizer 114 in the polarization transmission axis direction 9001, where 1002 indicates the edge of the distribution polarizer, and 9001 indicates the polarization transmission axis direction. ing.
  • the polarization transmission axis direction 9001 for collecting the scattered light from the PSL to the maximum is determined based on the scattered light distribution characteristics shown in FIGS. 10A and 10B. As shown in FIG. 11, the polarization transmission axis direction 9001 is a concentric circle parallel to the outer periphery of the pupil plane.
  • the distribution shape in the polarization transmission axis direction 9001 that transmits a polarized component having a high ratio of the scattered light component from the minute defect or the minute foreign material in the scattered light from the minute unevenness on the surface of the wafer 1 to be inspected is shown in FIG. 10F, for example, a distribution shape in the polarization transmission axis direction 9001 that transmits only the P-polarized light at the outer peripheral portion of the pupil on the illumination emission 701 side.
  • the polarization distribution of the distributed polarizing element inserted into the imaging optical system pupil plane is The distribution shape in the polarization transmission axis direction 9001 shown in FIGS. 7A, 7B and 11 is not limited.
  • An example of the shape of the spatial filters 1000a to 1000d is shown in FIGS. 8 (a) to 8 (d).
  • the diameters d of the spatial filters 1000a to 1000d need only be equal to or larger than the pupil diameter.
  • FIG. 8A shows a spatial filter 1000a having the end of the light shielding portion 1003 in a direction substantially perpendicular to the incident direction 700 of dark field illumination.
  • l ⁇ d / 2 the pupil
  • the spatial filter 1000a shown in FIG. 8A can be used to shield the P-polarized component of the scattered light generated by the minute surface irregularities of the wafer 1 to be inspected shown in FIG.
  • FIG. 8B shows an example of a spatial filter 1000b having a light shielding portion 1004 that shields a fan-shaped region having an azimuth angle ⁇ apex angle ⁇ inside the pupil.
  • the fan-shaped vertex of the light shielding unit 1004 is aligned with the center of the pupil plane (the optical axis 115 of the imaging optical system 110), but the vertex of the light shielding unit 1004 is not necessarily the imaging optical. It does not have to coincide with the optical axis 115 of the system 110.
  • the spatial filter 1000b shown in FIG. 8B is the surface of the wafer to be inspected shown in FIG. It is an example of the spatial filter which light-shields only the P polarization component of the scattered light by a micro unevenness
  • the angle ⁇ is determined by the shape and size of the minute defect or minute foreign object to be observed or the sensitivity required for the measurement, and can be arbitrarily selected between 0 ° ⁇ ⁇ 360 °.
  • a spatial filter 1000c having an island-shaped light shielding portion 1005 in the pupil may be used.
  • a spatial filter 1000d having a light shielding portion 1006 having a shape obtained by combining a plurality of the spatial filters 1000a to 1000c shown in FIGS. 8A to 8C may be used.
  • a light shielding plate such as a metal plate having a black matte surface treatment, a combination of a polarizing element and a liquid crystal, or a digital mirror array Consists of. Any one of the distributed polarization elements 114a to 114d inserted into the pupil plane 112b and any one of the spatial filters 1000a to 1000d may be formed on the same substrate.
  • An example of the composite filter 1200 is shown in FIG. As shown. In the composite filter 1200 shown in FIG.
  • reference numeral 115 denotes an optical axis of the imaging optical system 110
  • 1001 denotes a light shielding portion
  • 9001 denotes a transmission polarization axis direction.
  • any one of the distributed polarizing elements 114a to 114d inserted into the pupil plane 112b and any one of the spatial filters 1000a to 1000d may be used at the same time, and an example thereof is shown as a composite filter 1201 in FIG.
  • reference numeral 115 denotes an optical axis of the imaging optical meter 110
  • 1001 denotes a light shielding portion
  • 9001 denotes a transmission polarization axis direction. Since the intensity distribution of the scattered light differs depending on the optical properties such as the shape, size, refractive index and the like of the minute foreign matter or minute defect to be detected, the light shielding characteristics of the spatial filter inserted into the imaging optical system pupil plane 112b are shown in FIG.
  • the shape is not limited to a) to FIG. 8 (d).
  • the spatial filter only needs to have a shape that shields the scattered light component in accordance with the distribution characteristics of the scattered light due to the minute unevenness of the surface of the wafer 1 to be inspected.
  • the operation in the configuration of the defect observation apparatus shown in FIG. 1 will be described. First, the sample 1 is transferred onto the sample holder 2 in the vacuum chamber 4 through a load lock chamber (not shown). Then, the sample 1 is moved into the field of view of the optical microscope 14 under the control of the stage 3. At this time, there is a possibility that the sample 1 is deviated from the focal position of the optical microscope.
  • the objective lens 105 and the mirror 104 are moved in the Z direction using the height control mechanism 106 so that the sample 1 is set at the focal position of the optical microscope 14. .
  • a method of determining the amount of movement in the Z direction will be described later.
  • wafer alignment for aligning the reference position of the wafer 1 with the reference of the stage 3 must be performed. This wafer alignment is performed using a bright field observation image.
  • illumination light is emitted from the bright field illumination 109, reflected by the half mirror 108, and irradiated onto the sample 1 using the objective lens 105.
  • the reflected light from the sample 1 passes through the imaging optical system 110 and forms an image on the solid-state imaging device 111.
  • the bright field light source 109 is, for example, a lamp.
  • the filter 114 inserted into the imaging optical system 110 is switched to a parallel plate glass having the same thickness.
  • the defect is moved into the field of view of the optical microscope 14 in accordance with the position information of the defect detected by the defect inspection apparatus, and a defect image is acquired by the dark field observation method of the optical microscope 14.
  • a defect image is acquired by the dark field observation method of the optical microscope 14.
  • the dark field observation method will be described.
  • illumination light is emitted from the illumination unit 101.
  • the illumination light may be laser light or lamp light, but it is desirable to use laser light because laser light can increase illuminance.
  • the surface of the sample 1 at the focal position is irradiated.
  • the light scattered by the sample 1 is collected by the objective lens 105, guided to the imaging optical system 110, imaged at the imaging position of the solid-state imaging device 111, converted into an electrical signal by the solid-state imaging device 111, It is sent to the control system 10.
  • the image acquired by the dark field detection method of the optical microscope 14 is accumulated in the control system 10 as a gray image or a color image.
  • the center position of the visual field range 302 of the SEM 5 and the positional shift amounts 304a and 304b of the defect 302 are calculated, and the shift amounts are registered as coordinate correction values.
  • the sample 1 is moved on the stage 3 so that the defect 303 enters the field of view 302 of the SEM 5 using the coordinate correction value, and observed with the SEM 5.
  • the image of the observed defect is transmitted to the control system 10, and processing such as display on the user interface 11, registration in the database 12, and automatic defect classification is performed.
  • the flow of defect observation will be described with reference to FIG.
  • the sample 1 is aligned (6001). This is performed by the method described above by bright field observation with the optical microscope 14.
  • the stage 3 is moved so that the defect to be observed on the sample 1 enters the field of view of the optical microscope 14 using the position information of the defect detected in advance by another defect inspection apparatus (6002).
  • the objective lens 105 is moved by the height control mechanism 106 to perform focusing (6003). If a defect is searched from the image acquired by the optical microscope 14 and the solid-state imaging device 111 (6004) and a defect is detected (6005-YES), the defect detection position by the optical microscope 14 and other defect inspection devices in advance. Using the position information of the defect detected in advance by another defect inspection apparatus, the amount of deviation of the visual field position of the SEM 5 with respect to the defect is calculated from the difference from the position information of the detected defect. (6006).
  • the position information of the defect detected in advance by the other defect inspection apparatus is corrected (6007), and the defect whose position information is corrected is moved to the field of view of the SEM 5 for observation. (6008).
  • the observed information is sent to the control system 10 and registered in the database 11.
  • a representative number of them are extracted and obtained by detecting the extracted defects with the position information detected in advance by another defect inspection apparatus and the optical microscope 14.
  • the amount of deviation between the position of the defect detected in advance by another defect inspection apparatus and the visual field position of the SEM 5 is obtained from the position information of each defect.
  • the positional information obtained by detecting in advance by another defect inspection apparatus is also corrected for defects that are not detected by the optical microscope 14 other than the representative few points.
  • the defect information is not necessary (6009-NO)
  • the observation is ended (60010)
  • the observation is necessary (6009-YES)
  • the defect position information to be observed is acquired, and the above-described optical microscope 14 is obtained.
  • the process proceeds.
  • the defect cannot be detected by the above-described defect detection procedure (6005-NO)
  • it is considered that the defect is outside the field of view of the optical microscope 14, and therefore, even if the periphery of the field of view of the optical microscope 14 is searched. Good.
  • the sample 1 When searching for the peripheral portion (6012-YES), the sample 1 is moved by an amount corresponding to the visual field (6011), and processing is performed from the above-described defect detection procedure. Further, when the vicinity search is not performed (6012-NO), the process proceeds according to the procedure. There is also a method in which the defect position correction amount for each defect is calculated in advance and registered in the database, and after the calculation of the position correction amounts for a plurality of defects or all the defects is completed, inspection is performed by the SEM 5. Next, a method for calculating the Z position will be described with reference to FIG. FIG.
  • the Z sensors 4 and 6 which includes a light source 701, a condenser lens 702, a slit 703, a light projection lens 704, a light reception lens 705, and a detector 706.
  • the illumination light source is, for example, a laser oscillator or a lamp
  • the detector 705 is, for example, a CCD camera or a CCD linear sensor. The operation of the Z sensors 4 and 6 will be described.
  • Light emitted from the illumination light source 701 is applied to the slit 703 by the illumination condenser lens 702 and condensed on the surface of the sample 1 by the light projection lens 704.
  • the light reflected by the sample 1 passes through the light receiving lens 705 and is collected on the detector 706.
  • the Z position calculation method first, the light detection position of the detector 706 when the sample 1 is at the reference height is stored. Next, when the height changes, the position of light detection in the detector 706 changes. Therefore, by measuring the relationship between the amount of movement of the light detection position and the height change of the sample 1 in advance, The height of the sample 1 can be calculated from the change.
  • the case where observation is performed using an SEM is described as an example.
  • other electron microscopes such as STEM, microfabrication equipment using a focused ion beam, and analysis equipment using an X-ray analyzer
  • the present invention can be applied to a method and an apparatus that enable more detailed observation than the optical observation method. Another method for calculating the Z position will be described with reference to FIG. FIG.
  • This method uses an image acquired with an optical microscope.
  • the objective lens is moved to the lowest point (the point where the objective lens is closest to the sample) using the Z control mechanism 105 (1101).
  • an image is acquired by the detector 108 and sent to the control system 10 (1102).
  • the objective lens 104 is moved upward by the Z control mechanism 105 (1103).
  • one stage relates to the resolution of Z position detection, and is desirably 1/2 or less of the focal depth of the objective lens 104.
  • the optical microscope 14 includes a dark field illumination unit 101, an incident mirror 102, a mirror 104, an objective lens 105, a height control mechanism 106, an imaging optical system 110, a solid-state imaging device 111, an objective lens rotation mechanism 117, and a liquid crystal control device 118. It is configured.
  • the imaging optical system 110 includes only the imaging lens 116, and the distributed polarization element 114 is fixed to the pupil plane 112a of the objective lens 105.
  • the lens system for taking out the pupil plane 112a of the objective lens 105 to the outside of the objective lens, the half mirror 108, and the bright field illumination 109 are omitted, and the configuration becomes simple.
  • a mechanism 117 that rotates the objective lens 105 around the central axis of the objective lens 105 may be provided to adjust the angle of the distributed polarization element 114.
  • the rotation mechanism 117 is connected to the control system 10.
  • the optical microscope 14 includes a dark field illumination unit 101, an epi-illumination mirror 102, a mirror 104, an objective lens 105, a height control mechanism 106, an imaging optical system 110, a solid-state imaging device 111, a liquid crystal control device 118, and a polarizing plate 119. ing.
  • the imaging optical system 110 includes an imaging lens 116, and a liquid crystal element is fixed to the pupil plane 112a of the objective lens 105 as the distributed polarization element 114. In this case, as shown in FIG.
  • the transmission polarization axis of the distributed polarizing element can be controlled by a combination of the liquid crystal control device 118 provided outside the objective lens and the polarizing plate 119, and the polarization characteristic of the liquid crystal is made non-polarized.
  • Bright field observation is possible, and there is an advantage that high sensitivity dark field observation is possible by providing polarization characteristics.
  • the liquid crystal control device 118 is connected to the control device 10. In this case, there is an advantage that the objective lens rotating mechanism 117 can be omitted. In order to perform bright field observation, the half mirror 108 and the bright field illumination 109 are used. (Second Embodiment) Next, a second embodiment of the defect inspection apparatus according to the present invention will be described with reference to FIG.
  • the second embodiment is different from the first embodiment in that the half mirror 108 and the bright field illumination 109 are not arranged. Therefore, there exists an advantage which becomes a simple structure shown in FIG.
  • components having the same numbers as those in FIG. 1 have the same functions as those described with reference to FIG. 1.
  • focusing of the optical microscope 14 is performed using the Z sensor 7 or image processing based on the dark field image acquired by the optical microscope 14 described above.
  • the optical microscope 14 may be configured to fix the distributed polarization element 114 to the pupil plane 112a of the objective lens 105 as shown in FIG. (Third embodiment)
  • FIG. (Third embodiment) A third embodiment of the defect inspection apparatus according to the present invention will be described with reference to FIG.
  • the third embodiment is different from the first embodiment in that the Z sensor 7, the half mirror 108, and the bright field illumination 109 of the microscope 14 are not arranged. Therefore, there is an advantage that a simple configuration shown in FIG. 19 is obtained and a space for installing an objective lens having a larger numerical aperture is secured for the objective lens 105.
  • the same reference numerals as those in FIG. 1 have the same functions as those described with reference to FIG.
  • focusing of the optical microscope 14 is performed by using the Z sensor 4 or image processing based on the dark field image acquired by the optical microscope 14 described above.
  • the optical microscope 14 may be configured to fix the distributed polarization element 114 to the pupil plane 112a of the objective lens 105 as shown in FIG.
  • FIG. 20 A fourth embodiment of the defect inspection apparatus according to the present invention will be described with reference to FIG.
  • the fourth embodiment is different from the first embodiment in that the Z sensor 7 of the microscope 14 is not arranged. Therefore, there is an advantage that a simple configuration shown in FIG. 20 is obtained and a space for installing an objective lens having a larger numerical aperture is secured for the objective lens 105.
  • the same reference numerals as those in FIG. 1 have the same functions as those described with reference to FIG.
  • the focusing of the optical microscope 14 is performed by image processing based on the bright field image or dark field image acquired by the optical microscope 14 described above.
  • the optical microscope 14 may be configured to fix the distributed polarization element 114 to the pupil plane 112a of the objective lens 105 as shown in FIG.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 光学式欠陥検査装置または光学式外観検査装置で検出した欠陥を観察する電子顕微鏡5において、欠陥を再検出する光学顕微鏡14を搭載し、この光学顕微鏡14で暗視野観察する際に瞳面に分布偏光素子及び空間フィルタを挿入する構成とする。

Description

欠陥検出方法の高感度化
 本発明は半導体ウェハ表面又は磁気ディスク表面の欠陥を検査する装置に関し、特に、半導体パターン無しベアウェハ、若しくは半導体パターン無し膜付ウェハ等の表面、またはディスクの表面の欠陥等を検査するのに好適な欠陥検査装置に関する。
 例えば、半導体デバイスの製造工程では、半導体基板(ウェハ)上に異物又はショートや断線などのパターン欠陥(以下、欠陥と記述するが異物やパターン欠陥を含むものとする)が存在すると、配線の絶縁不良や短絡などの不良原因になる。また、ウェハ上に形成する回路パターンの微細化に伴い、より微細な欠陥がキャパシタの絶縁不良やゲート酸化膜などの破壊原因にもなる。これらの欠陥は、搬送装置の可動部から発生するものや、人体から発生するもの、プロセスガスによる処理装置の内部で反応生成されたもの、薬品や材料に混入していたものなど、種々の原因により種々の状態で混入される。このため、製造工程中で発生した欠陥を検出し、欠陥の発生源をいち早く突き止め、不良の作り込みを食い止めることが半導体デバイスを量産する上で重要になる。
 従来、欠陥の発生原因を追究する方法には、まず、欠陥検査装置で欠陥位置を特定し、SEM(Scanning Electron Microscope:走査型電子顕微鏡)等で該欠陥を詳細に観察及び分類し、データベースと比較して欠陥の発生原因を推定する方法があった。
 ここで、欠陥検査装置とは、半導体基板の表面をレーザーで照明し、欠陥からの散乱光を暗視野観察して欠陥の位置を特定する光学式欠陥検査装置や、ランプ又はレーザー、または電子線を照射して、半導体基板の明視野光学像を検出して、これを参照情報と比較することにより半導体基板上の欠陥位置を特定する光学式外観検査装置やSEM式検査装置である。この様な観察方法に関しては、特許文献1(特開平7−270144号公報)又は特許文献2(特開2000−352697号公報)に開示されている。
 また、SEMで欠陥を詳細に観察する装置に関しては、特許文献3(米国特許第6407373号公報)、特許文献4(特開2007−71803号公報)及び特許文献5(特開2007−235023号公報)にそれぞれ、他の検査装置で検出した試料上の欠陥の位置情報を用いてSEM式の欠陥検査装置に装着された光学顕微鏡で試料上の位置を検出して他の検査装置で検出して得た欠陥の位置情報を修正した上でSEM式の欠陥観察装置で欠陥を詳細に観察(レビュー)する方法およびその装置、並びにSEM式の欠陥観察装置で欠陥を観察するときに、試料表面の高さを光学的に検出して試料表面をSEMの焦点位置に合わせる事が記載されている。
 光学式の欠陥検査装置を用いて半導体基板表面の欠陥を検出する場合、検査のスループットを上げるために、半導体基板表面を暗視野照明するためのレーザビームのスポットサイズを大きくして半導体基板表面を走査して照射している。このため、半導体基板表面を走査するレーザビームスポットの位置から求める位置座標の精度は、大きな誤差成分を含んでしまう。
 このような大きな誤差成分を含んだ欠陥の位置情報に基づいてSEMを用いて欠陥を詳細に観察しようとすると、光学式の欠陥検査装置よりも遥かに高い倍率で観察するSEMの視野の中に、観察したい欠陥が入らない場合がある。このような場合、SEMの視野内に見たい欠陥の画像を入れるために、SEMの視野内を移動させながら欠陥を探すことになるが、そのための時間がかかってしまい、SEM観察のスループットが低下する原因になってしまう。
 そこで、本発明の目的は、光学式の欠陥検査装置又は光学式外観検査装置で検出した欠陥をSEMを用いて詳細に観察する場合において、光学式の欠陥検査装置又は光学式外観検査装置で検出した微細欠陥を高感度で検出し、確実にSEMの観察視野内に入れることができ、かつ、装置規模を小さくできる欠陥観察装置を提供することにある。
 上記目標を達成する為に、本発明では、光学式顕微鏡手段と、SEM観察手段と、試料を載置して光学式顕微鏡手段とSEM観察手段との間を移動可能なステージ手段とを備えて、他の検査装置で検出した試料上の欠陥の位置情報を用いてこの欠陥を観察する欠陥観察装置において、光学系手段は他の検査装置で検出した試料上の欠陥の位置情報を用いて暗視野照明により欠陥を検出する暗視野照明光学系を備え、この暗視野照明光学系を、試料を偏光照明する偏光照明部と、この偏光照明部により偏光照明された試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させて検出する検出光学系部とを備えて構成した。
 また、上記目標を達成する為に、本発明では、他の検査装置で検出した試料上の欠陥の位置情報を用いて欠陥の位置を光学式顕微鏡で検出して他の検査装置で検出した試料上の欠陥の位置情報を修正し、この位置情報を修正した欠陥をSEMで観察する欠陥観察方法において、光学式顕微鏡は他の検査装置で検出した試料上の欠陥の位置情報を用いて偏光光を暗視野照明し、この偏光光を暗視野照明された試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させて検出することにより他の検査装置で検出した試料上の欠陥を検出することを特徴とする。
 本発明によれば光学式欠陥検査装置で検出した欠陥をSEM等で詳細に観察する場合において、観察対象の欠陥を確実にSEM等の観察視野内に入れることができるようになり、SEM等を用いた欠陥の詳細検査のスループットをあげることができる。また、装置を安価かつ小規模で構成することができる。
 図1は、本発明の第1の実施形態における表面検査装置の構成の一例を示す図である。
 図2は、本発明の第1の実施形態において、暗視野照明ユニットの詳細を示す図である。
 図3は、本発明の第1の実施形態において、光学式高さ検出装置の詳細を示す図である。
 図4は、本発明の第1の実施形態において、光学顕微鏡の詳細を示す図である。
 図5は、本発明の第1の実施形態において、分布偏光素子を切り替える機構の詳細を示す図である。
 図6は、本発明の第1の実施形態において、分布偏光素子を切り替える機構の別の例を詳細に示す図である。
 図7は、本発明の第1の実施形態において、光学顕微鏡瞳面に挿入される分布偏光素子の透過軸の分布方向の例を示した図である。
 図8は、本発明の第1の実施形態において、光学顕微鏡瞳面に挿入される空間フィルタの形状の例を示す図である。
 図9は、本発明の第1の実施形態において、分布偏光素子および空間フィルタの光学特性を決定する為に行った散乱光シミュレーションの説明をする図である。
 図10は、本発明の第1の実施形態において、分布偏光素子および空間フィルタの光学特性を決定する為に行った散乱光シミュレーション結果の例を示す図である。
 図11は、本発明の第1の実施形態において、光学顕微鏡瞳面に挿入される分布偏光素子の透過軸の分布方向の例を示した図である。
 図12は、本発明の第1の実施形態において、光学顕微鏡瞳面に挿入される、分布偏光素子と空間フィルタを一基板上に形成した例を示す図である。
 図13は、本発明の第1の実施形態において、光学顕微鏡の暗視野観察で取得された欠陥の位置ずれ量算出画像を示す図である。
 図14は、本発明の第1の実施形態において、欠陥観察の手順を示す図である。
 図15は、本発明の第3及び第4の実施形態において、Z位置算出の手順を示す図である。
 図16は、本発明の第1の実施形態において、光学顕微鏡の第二の構成例の詳細を示す図である。
 図17は、本発明の第1の実施形態において、光学顕微鏡の第三の構成例の詳細を示す図である。
 図18は、本発明の第2の実施形態における、表面検査装置の構成の一例を示す図である。
 図19は、本発明の第3の実施形態における、表面検査装置の構成の一例を示す図である。
 図20は、本発明の第4の実施形態における、表面検査装置の構成の一例を示す図である。
 1・・・試料
 2・・・試料ホルダ
 3・・・ステージ
 4・・・光学式高さ検出装置
 5・・・電子顕微鏡
 6・・・真空槽
 7・・・光学式高さ検出装置
 10・・・制御システム
 11・・・ユーザーインターフェース
 14・・・光学顕微鏡
 101・・・暗視野照明ユニット
 102・・・落射ミラー
 104・・・ミラー
 105・・・対物レンズ
 106・・・高さ制御機構
 108・・・ハーフミラー
 109・・・明視野照明
 110・・・結像光学系
 111・・・固体撮像素子
 113・・・レンズ群
 114・・・分布偏光素子
 116・・・結像レンズ
 117・・・対物レンズ回転機構
 118・・・液晶制御装置
 501・・・照明光源
 502・・・光学フィルタ
 503・・・波長板
 507・・・レンズ群
 701・・・光源
 702・・・集光レンズ
 703・・・スリット
 704・・・投光レンズ
 705・・・受光レンズ
 706・・・検出器
 401・・・フィルタ切り替え機構
 402・・・ホルダ
 405・・・分布偏光素子ホルダ
 以下、本発明の実施の形態を、図面に基づいて詳細に説明する。
 図1に、本発明の実施の形態における欠陥検出装置の構成の一例を示す。本実施形態の欠陥検出装置は、半導体デバイス等の基板(ウェハ)上に回路パターンを形成するデバイス製造工程において、製造工程中に発生する欠陥を観察する装置であって、被検査対象のウェハ1、この試料を搭載する試料ホルダ2、この試料ホルダ2を移動させて試料1の全面を顕微鏡の下に移動可能なステージ3、被検査ウェハ1を詳細観察する観察する電子顕微鏡(以下SEMと記述)5、電子顕微鏡5の焦点を試料1の表面に合わせる為の光学式高さ検出システム(以下Zセンサと記述)4、試料1の欠陥を光学的に再検出して試料1上の欠陥の詳細位置情報を取得する光学顕微鏡14、光学顕微鏡14の焦点を合わせる為のZセンサ7、電子顕微鏡5と光学顕微鏡14の対物レンズ105を収納する真空漕6、電子顕微鏡5およびZセンサ4およびZセンサ7および高さ制御機構106および固体撮像素子111を制御する制御部10、ユーザーインターフェース11、データベース12、光学式欠陥検査装置等の上位システムへ接続するネットワーク13で構成されている。
 さらに、光学顕微鏡14は、暗視野照明ユニット101、暗視野照明ユニット101より出射されたレーザーを真空槽へ導きかつ試料1表面上での照明位置を制御する落射ミラー102、真空封し窓103、ミラー104、試料1よりの散乱光を採光するまたは明視野観察をする為の対物レンズ105、対物レンズの高さ制御機構106、真空封し窓107、明視野観察に必要な照明を導入するハーフミラー108、明視野光源109、試料1の像を固体撮像素子へ結像させる結像光学系110、固体撮像素子111、分布偏光素子および空間フィルタ切り替え機構401(図5参照)を備えて構成されている。また、ステージ3、Zセンサ4および7、SEM5、ユーザーインターフェース11、データベース12、高さ制御機構106、固体撮像素子111は制御システム10と接続され、制御システム10はネットワーク13を介して上位のシステム(図示せず)と接続されている。
 以上のように構成される欠陥観察装置において、特に、光学顕微鏡14は光学式欠陥検査装置(図示せず)で検出された試料1上の欠陥の位置を光学式欠陥検査装置で検出した欠陥の位置情報を用いて再検出(以下検出と記述)する機能を有し、高さ制御機構106とZセンサ7は試料焦点合わせを行う焦点合わせ手段としての機能を有し、制御システム10は顕微鏡14で検出された欠陥の位置情報に基づいて欠陥の位置情報を補正する位置補正手段としての機能を有し、SEM5は制御システム10で位置情報を補正された欠陥を観察する機能を有する構成となっている。ステージ3は、被検査ウェハ1を載置して、光学顕微鏡14で検出した欠陥がSEM5で観察できるように、光学顕微鏡14とSEM5との間を移動する。
 対物レンズ105及び高さ制御機構106は真空漕6内に設置されている。高さ制御機構106の構成としては、例えばピエゾ素子を用いて移動させる構成、又は、ステッピングモータとボールネジを用いてリニアガイドに沿ってZ方向(結像光学系110の光軸115に沿った方向)へ移動させる構成、又は、超音波モータとボールネジを用いてリニアガイドに沿ってZ方向へ移動させる構成などを用いることが出来る。
 落射ミラー102は、図1に示すように照明光源101より射出された光を真空漕6に導く為に用いる。なお、落射ミラー102は、試料1表面上の照明位置を制御する為に、図示したミラーの長手方向に沿った軸周りと図面に垂直な軸周りの二軸で回転する機構を有してもよい。
 以下、各部の詳細を図2~図20を用いて説明する。
 図2は、暗視野照明ユニット101の詳細を示す。暗視野照明ユニット101は、例えば可視光レーザーや紫外光レーザーや真空紫外光レーザーを出射する照明光源501、照明光の強度を調整する光学フィルタ502、照明光の偏光方向を調整する波長板503、照明光を試料1に絞るレンズ群507で構成されている。レンズ群507は、平凹レンズ504、アクロマートレンズ505、シリンドリカルレンズ506で構成されている。レンズ焦点距離の選択とレンズ間隔の調整により、試料1表面における照明領域を光学顕微鏡視14の視野全域から回折限界まで制御可能な機構であり、シリンドリカルレンズにより斜方照明であるが円形の照射領域が実現可能である。
 照明光源501は、レーザー発振器である。レーザー発振器は例えば405nmや488nm、532nmの可視光(400nm−800nm)、または400nm以下の紫外光、または200nm以下の真空紫外光を発振するものであり、連続発振レーザーやパルス発振レーザーのどちらでも使用可能である。これらの選択方法としては、連続発振レーザーを用いると安価で安定し、小型の装置が実現可能である。照明光源501の波長は上記の波長に限るものではない。感度が必要な場合は紫外光を用い、その場合は対物レンズ105、真空封し窓107、ハーフミラー108、結像光学系110が合成石英等の紫外領域対応光学素子または反射型光学素子となる。さらに感度が必要な場合は真空紫外光を用い、その場合は対物レンズ105、真空封し窓107、ハーフミラー108、結像光学系110が融解石英等の真空紫外領域対応光学素子または反射型光学素子となり、さらに顕微鏡14における光路全体が、真空紫外線が伝播と共に吸収されることを防ぐ為に真空中または例えば窒素ガス雰囲気中に設置される。真空紫外線を伝播させることが目的なので、充満させる気体は窒素に限らない。
 試料1の照射には、試料1が鏡面ウェハである場合はP偏光したレーザー光を用い、試料1の表面が金属薄膜で覆われている場合はS偏光したレーザー光を用いる。P偏光又はS偏光の直線偏光を用いるのは、より散乱光を効率よく観測し、S/Nのよい観測を実現する為である。すなわち、鏡面ウェハを観察する場合にS偏光では散乱能が悪くなり絶対的な散乱光量が減少してしまい効率が悪くなるためにP偏光照明が適しており、一方、金属薄膜等を観測する場合にP偏光照明をすると基板よりの散乱光が強くなり微小欠陥または微小異物を観測できなくなるためにS偏光照明が適している。
 また、基板よりの散乱光を抑制するために、基板表面に対して10°程度の低仰角で照明することとする。ミラー104は対物レンズ105が上下動した際にも対物レンズ105視野内を照明可能なように対物レンズと共に可動する機構(図示せず)を有する。または、ミラー104は対物レンズ105視野内の照明位置を変えられるように独立して可動な機構(図示せず)を有していても良い。
 図3は、Zセンサ4または7を示す。Zセンサ4または7は、高さ測定光を出射する光源701、スリット703、照明701より出射された高さ測定光をスリット703へ集光する集光レンズ702、高さ測定光としてスリット703を透過した光の像(スリット703の像)を試料1の表面に結像させる結像レンズ704、試料1で反射してきた高さ測定光を集光する集光レンズ705、集光レンズ705で集光された高さ測定光を検出して電気信号へ変換する検出器706を備えて構成されている。検出器706で電気信号へ変換された高さ測定光の情報は制御システム10へ送られ高さが算出される。尚、検出器706としては、二次元CCD又はラインセンサ、2分割又は4分割のポジションセンサを用いる。
 図4は、光学顕微鏡14の詳細構成を示す。光学顕微鏡14は、暗視野照明ユニット101、落射ミラー102、ミラー104、対物レンズ105、高さ制御機構106、ハーフミラー108、明視野光源109、結像光学系110、固体撮像素子111を備えて構成される。結像光学系110は、対物レンズ105の瞳面112aを取り出すレンズ113a、像を結像させるレンズ113b、取り出した瞳面112bに挿入するフィルタ部114を備えて構成される。フィルタ部114の例としては分布偏光素子がある。本実施例においては、フィルタ部114に特性の異なるを分布偏光素子をホルダ401で複数保持して(図5に示した例では114aから114dの4種類)瞳面112bに挿入する分布偏光素子114aから114dを切り換えることが可能な構成としている。また、高さ制御機構106、固体撮像素子111は制御システム10と接続されている。
 レンズ113aは対物レンズ105の瞳面を外部へ引き出して結像光学系110の内部に形成する為に用い、ホルダ402を駆動して、結像光学系110の内部に取り出した瞳面上にホルダ402で保持する複数の分布偏光素子114aから114dの中から選択した分布偏光素子を挿入する。ホルダ402は、分布偏光素子114aから114dの代わりに、空間フィルタまたは空間フィルタと同一基板上に形成された分布偏光素子を挿入しても良い。レンズ113a及びレンズ113bは二つ一組で、試料1の像を固体撮像素子111の検出面上へ結像させる。
 ハーフミラー108の反射と透過の比率は任意でよい。ただし、明視野光源109の光強度が十分確保される場合は、欠陥からの散乱光をより多く結像光学系110及び固体撮像素子111へ導く構成とする方がよりよい。
 明視野光源109はランプ、又はレーザーを用いることができる。レーザーを用いる場合はハーフミラー108をダイクロイックミラーへ交換することにより、照明を明るくし、より多くの散乱光を固体撮像素子111へ導くことができる。または、暗視野観察をする際には、ハーフミラー108を結像光学系110及び対物レンズ105の光軸115から外す機構(図示せず)を有してもよい。その場合はより多くの散乱光を固体撮像素子111へ導ける利点がある。
 図5は、対物レンズ105の瞳面112bに挿入された分布偏光素子114aから114dを結像光学系110の光軸115上で切り替える機構401を示す。機構401は特性の異なる複数の分布偏光素子114aから114dを配置するホルダ402、ホルダ402を回転させる軸ための回転駆動部403を備えて構成される。ホルダ402は、検出する微小欠陥の種類に応じて複数の分布偏光素子114aから114dのうちの何れかに切り替える機構である。一方、明視野観察をする場合には、取得画像が乱れることを回避する為にホルダ402の位置を分布偏光素子114aから114dが設置されていない場所に設定して観察する。又は、ホルダ402に分布偏光素子114aから114dと同厚の平行平板ガラスを設置した場所へ切り替える。分布偏光素子114aから114dと同厚の平行平板ガラスを設置するのは、分布偏光素子114aから114dを外すと光路長が変化して固体撮像素子111に試料1の像が結像しなくなることを回避するためである。又は、平行平板ガラスを設置せず、像を結像させるレンズ113b又は固体撮像措置111の位置を調整し、固体撮像素子111に結像させる機構を用いても良い。
 図5に示した実施例では、特性の異なる複数の分布偏光素子114aから114dをホルダ402に設置した場合について説明したが、複数の分布偏光素子114aから114dの代わりに特性の異なる複数の空間フィルタをホルダ402に設置してそれらを切り換えて用いるようにしても良い。空間フィルタをホルダ402に設置する場合で明視野観察する場合には、取得画像が乱れることを回避する為にホルダ402の位置を空間フィルタが設置されていない場所に設定して観察する。又は、ホルダ402に空間フィルタと同厚の平行平板ガラスを設置した場所へ切り替える。又は、又は、平行平板ガラスを設置せず、像を結像させるレンズ113b又は固体撮像措置111の位置を調整し、固体撮像素子111に結像させる機構を用いても良い。
 図6は、分布偏光素子114aから114dを出し入れする機構の別の実施形態を示す。機構410は、分布偏光素子ホルダ405がスライドし分布偏光素子114eを結像光学系110の光軸115より出し入れする機構である。図6では分布偏光素子114eが1つの場合について示しているが、複数であっても良い。また、この実施形態においても分布偏光素子114eの代わりに空間フィルタを用いても良い。また、分布偏光素子114と空間フィルタを組み合わせて用いてもよい。
 図7(a)及び(b)は、結像光学系110内部の瞳面112bに挿入する分布偏光素子114a及び114bの偏光特性の例を示す。1002は瞳外周であり9001は透過偏光軸方向である。分布偏光素子114a及び114bは、その直径が最低でも瞳面1002全体を覆う大きさであり、分布偏光素子114a及び114bの各点で透過偏光軸方向9001が異なっている。
 面内で透過偏光軸方向9001が分布する分布偏光素子114a及び114bは、直線偏光子のつなぎ合わせ、又はフォトニック結晶、又はワイヤーグリッドポラライザ、又は液晶と偏光子の組み合わせによって実現される。ここで、フォトニック結晶とは光の波長以下の周期で屈折率が異なる微細構造よりなる光学素子であり、ワイヤーグリドポラライザとは導電性細線を周期的に配列して光学的異方性を持たせた偏光素子である。
 図8(a)乃至(d)に、フィルタ114として図5に例示した分布偏光素子114a乃至114dの代わりに空間フィルタ1000a乃至1000dを瞳面に挿入する場合の例を示す。この例においては、図5に示した切替機構401に、複数の分布偏光素子114aから114dの代わりに形状の異なる空間フィルタ1000a乃至1000dを設置する。図8(a)乃至(d)において、1002が瞳外周、1003乃至1006が遮光部である。
 図8(a)に示した空間フィルタ1000aにおける遮光部1003の1、及び図8(b)に示した空間フィルタ1000bにおける遮光部1004のθ及びφの値は、散乱光シミュレーションあるいは実測によって求められる散乱光強度分布を基にして決定する。
 透過偏光軸方向9001および空間フィルタ形状のlまたはθ及びφの値の決定方法の一例を、図9及び図10を用いて説明する。
 初めに、分布偏光素子114a乃至114dの透過偏光軸方向9001を決定する上で必要となる散乱光シミュレーションと用語を図9を用いて説明する。散乱光シミュレーションは、試料1に斜め上方より照明光であるレーザーを照明し、試料1上に置かれた微小異物または微小欠陥より散乱された光を結像光学系の試料1に最も近い光学素子の試料1に最も近い表面での、散乱光の強度分布と偏光分布を計算するというものである。散乱光の偏光は、入射面と平行な偏光成分をP偏光とし、P偏光と垂直方向の偏光をS偏光とする。また、以降、強度分布または偏光分布を求めた面の中で、照明光入射700の側半分を入射側、残り半分を射出側と呼ぶ。
 次に分布偏光素子114a乃至114dの偏光透過軸分布h(r,θ)および空間フィルタ1000a乃至1000dの遮光領域g(r,θ)を決定する方法について述べる。
 初めに、散乱光シミュレーションによって高感度で検出したい微小欠陥または微小異物よりの散乱光強度分布f(r,θ)及び散乱光のP偏光成分の分布psp(r,θ)とS偏光成分の分布pss(r,θ)、および基板表面の微小凹凸よりの散乱光強度分布f(r,θ)及び散乱光のP偏光成分の分布pNp(r,θ)とS偏光成分の分布pNS(r,θ)、を求める。
 分布偏光素子114の偏光透過軸方向分布h(r,θ)は、基板表面の微小凹凸よりの散乱光を最も遮断する偏光軸分布、すなわち(数1)のΠを最小化するh(r,θ)、または微小欠陥または微小異物よりの散乱光を最も透過させる偏光軸分布、すなわち(数2)のΛを最大化するh(r,θ)、または基板表面の微小凹凸よりの散乱光を遮断し微小欠陥または微小異物よりの散乱光を透過させる偏光軸分布、すなわち(数3)のΩを最大化するh(r,θ)として決定される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 一方、空間フィルタの遮光領域g(r,θ)を決定する方法は、例えば(数4)に示したΨを最大化するように遮光領域g(r,θ)を最適化するという方法である。
Figure JPOXMLDOC01-appb-M000004
 より簡単に、基板表面の微小凹凸よりの散乱光が強い領域を遮光する分布をもつ空間フィルタとする方法、または基板表面の微小凹凸よりの散乱光が強い領域を遮光する分布をもつ空間フィルタと直線偏光子を組み合わせる方法もある。
 次に分布偏光素子114a乃至114dの偏光透過軸方向分布及び空間フィルタ1000a乃至1000dの遮光特性の決定方法について、散乱光シミュレーション結果の例を挙げて具体的に説明する。
 図10(a)乃至(f)に散乱光シミュレーションによって算出された、被検査ウェハ1の表面の微小凹凸及び微小粒子であるpolystyrene latex(以降、PSLと記述)よりの散乱光偏光分布の一例を示す。
 図10(a)は30nmPSLによる散乱光(照明波長400nm)のP偏光成分の分布を、図10(b)は30nmPSLによる散乱光のS偏光成分の分布を、図10(c)は被検査ウェハ1の表面凹凸よりの散乱光のP偏光成分分布を、図10(d)は被検査ウェハ1の表面凹凸よりの散乱光のS偏光成分分布を、図10(e)はPSLよりの散乱光と被検査ウェハ1の表面凹凸よりの散乱光の比(以降、S/Nと記述)のP偏光成分分布を、図10(f)はS/NのS偏光成分分布を示す。
 図10(a)及び図10(b)より、PSLによる散乱光は照明光入射700側と照明射出701側の瞳面外周部でP偏光が強く、その直角方向瞳面外周部でS偏光が強いことがわかる。一方、図10(c)および図10(d)より、被検査ウェハ1の表面凹凸により発生する散乱光は、照明入射700の側ではP偏光成分が強く、照明入射側700の方向±45°方向ではP偏光とS偏光が同強度であり45°偏光であることがわかる。また、図10(c)および図10(d)より照明射出701側においては被検査ウェハ1の表面凹凸により発生する散乱光は微弱であることがわかる。
 図10(a)ないし図10(d)より算出したS/Nを図10(e)および図10(f)に示す。図10(e)はP偏光成分のS/Nを示し、図10(f)はS偏光成分のS/Nを示す。
 被検査ウェハ1の表面凹凸からの散乱光を遮断する偏光透過軸方向9001の分布を持
つ構成の分布偏光子114は、例えば図10(c)および図10(d)より、図7(a)及び図7(b)に例示したように決定することができる。図7(a)および図7(b)は分布偏光子114の偏光透過軸方向9001の分布形状を例示したものであり、1002が分布偏光子の縁を示し、9001は偏光透過軸方向を示している。照明光の入射面と瞳面の交線上及びその近傍ではS偏光透過であり、照明入射700の方向に対して±45°傾いた方向では、45°偏光透過であり、瞳面の照明出射701の側ではP偏光透過であり、瞳中央部及び照明入射と直角方向の瞳周辺部ではS偏光透過分布となる。また、PSLからの散乱光を最大限に採光するための偏光透過軸方向9001の分布形状は、図10(a)および図10(b)に示した散乱光分布特性に基づいて決定され、例えば、図11に示すような瞳面外周に平行な同心円状の偏光透過軸方向9001となる。
 また、被検査ウェハ1表面の微小凹凸からの散乱光に占める微小欠陥又は微小異物からの散乱光成分の比率が高い偏光成分を透過させる偏光透過軸方向9001の分布形状は、図10(e)および図10(f)より決定することができ、例えば、照明出射701の側の瞳外周部のP偏光のみを透過させるような偏光透過軸方向9001の分布形状となる。
 なお、検出する微小異物または微小欠陥の形状や大きさや屈折率等の光学的性質によって散乱光の強度分布および偏光分布が異なる為、結像光学系瞳面に挿入する分布偏光素子の偏光分布は図7(a)及び図7(b)及び図11に示した偏光透過軸方向9001の分布形状に限るものではない。
 空間フィルタ1000a乃至1000dの形状の一例を図8(a)乃至図8(d)に示す。空間フィルタ1000a乃至1000dの直径dは瞳直径以上であれば良く、空間フィルタ1000a乃至1000dの中心は結像光学系110の光軸115に一致するように配置され、遮光部1003乃至1006が含まれる。図8(a)は暗視野照明の入射方向700に対して略直角方向に遮光部1003の端がある空間フィルタ1000aであり、図8(a)の例ではl<d/2であり、瞳内の入射側一部を遮光する構成である。図8(a)に示した空間フィルタ1000aは、図10(c)に示した被検査ウェハ1の表面微小凹凸により発生した散乱光のP偏光成分を遮光する為に用いることができ、略l=d/2とすることにより被検査ウェハ1の表面微小凹凸により発生する散乱光のP偏光成分およびS偏光成分の両方を遮光する空間フィルタとして機能する。ただし、観測対象である微小欠陥または微小異物の形状や大きさまたは測定で必要とする感度によってはl>d/2とした空間フィルタを用いてもよい。例えば、図10(e)に示したようにS/Nの高い部分を選択的に検出したい場合は、lはほぼ0.8dとなる。
 [0053]
 図8(b)は、瞳内部で方位角φ頂角θの扇形の領域を遮光する遮光部1004を有する空間フィルタ1000bの例を示す。図8(b)の空間フィルタ1000bは、瞳面の中心(結像光学系110の光軸115)に遮光部1004の扇形の頂点を合わせているが、必ずしも遮光部1004の頂点が結像光学系110の光軸115と一致している必要は無い。図8(b)に示した空間フィルタ1000bは、図10(c)に示した被検査ウェハ表面
微小凹凸による散乱光のP偏光成分のみを遮光する空間フィルタの一例である。なお、観測対象である微小欠陥または微小異物の形状や大きさまたは測定で必要とする感度によって角度θは決定され、0°<θ<360°の間で任意に選択可能である。
 また、図8(c)に示すように、瞳内に島状の遮光部分1005を有する空間フィルタ1000cであってもよい。または、図8(a)ないし図8(c)に示した空間フィルタ1000a乃至1000cとを複数組み合わせた形状の遮光部1006を有する空間フィルタ1000dを用いても良い。
 瞳面112bに挿入される空間フィルタ1000a乃至1000dの遮光部分1003乃至1006には、例えば黒色ツヤ消し表面処理を施された金属板等の遮光板、又は偏光素子と液晶の組み合わせ、又はデジタルミラーアレイにより構成される。
 瞳面112bに挿入される分布偏光素子114a乃至114dのうちの何れかと空間フィルタ1000a乃至1000dのうちの何れかを同一基板に形成してもよく、その一例を図12(a)に複合フィルタ1200として示す。図12(a)に示した複合フィルタ1200おいて、115は結像光学系110の光軸、1001は遮光部、9001は透過偏光軸方向を示す。図12(a)に例示した、空間フィルタと分布偏光素子とを同一基板上に形成した複合フィルタ1200は、被検査ウェハ1の表面の微小凹凸よりの散乱光のP偏光成分を遮光し、かつPSLよりの散乱光を選択的に取得する偏光分布を持つ分布偏光素子の組み合わせである。これは(数3)のΩと(数4)のΨを共に最大化させる分布偏光素子の偏光透過軸分布h(r,θ)および空間フィルタの遮光領域g(r,θ)の組み合わせである。分布偏光素子114a乃至114dのうちの何れかと空間フィルタ1000a乃至1000dのうちの何れかを同一基板上に形成する方法としては、フォトニック結晶、又は偏光素子と液晶、または遮光版とワイヤーグリッドポラライザの組み合わせ等が考えられる。
 瞳面112bに挿入される分布偏光素子114a乃至114dのうちの何れかと空間フィルタ1000a乃至1000dのいずれかを同時に組み合わせて用いても良く、その一例を複合フィルタ1201として図12(b)に示す。図12(b)に示した複合フィルタ1201において、115は結像光学計110の光軸、1001は遮光部、9001は透過偏光軸方向を示す。
 なお、検出する微小異物または微小欠陥の形状や大きさや屈折率等の光学的性質によって散乱光の強度分布が異なる為、結像光学系瞳面112bに挿入する空間フィルタの遮光特性は図8(a)ないし図8(d)に示した形状に限るものではない。空間フィルタとしては、被検査ウェハ1の表面微小凹凸による散乱光の分布特性に合せて、この散乱光成分を遮光するような形状であれば良い。
 図1に示した欠陥観察装置の構成における動作を説明する。まず、試料1は、図示されていないロードロック室を介して真空チャンバ4内の試料ホルダ2上へ移送される。そして、試料1は、ステージ3の制御により、光学顕微鏡14の視野内へ移動される。この時点では試料1が光学顕微鏡の焦点位置からずれている可能性がある。試料1の高さが焦点位置からずれている場合は、光学顕微鏡14の焦点位置に試料1が設定されるように高さ制御機構106を用いて対物レンズ105及びミラー104をZ方向に移動する。Z方向の移動量決定方法は後述する。
 他の欠陥検査装置(図示せず)で検出されたウェハ1上の欠陥の位置情報を用いて、図1に示した欠陥観察装置のステージ3に載置したウェハ1上の欠陥を観察するためには、ステージ3の基準にウェハ1の基準位置を合わせるウェハアライメントを行わなければならない。このウェハアライメントは、明視野観察画像を用いて行う。明視野検出時には、明視野照明109より照明光を射出し、ハーフミラー108で反射されて対物レンズ105を用いて試料1へ照射される。試料1からの反射光は、結像光学系110を通り、固体撮像素子111に結像される。ここで、明視野光源109は例えばランプである。本実施形態の明視野観察では、結像光学系110に挿入されるフィルタ114は同厚の平行平板ガラスに切り替えられる。試料1の外形(試料1がウェハであれば例えばオリエンテーションフラットやノッチ)でアライメントを行う場合は、試料1の位置決めポイント及び外形の数点の画像を取得して処理すればよい。
 ウェハアライメントの後、欠陥検査装置で検出された欠陥の位置情報に従って、欠陥を光学顕微鏡14の視野内に移動し、光学顕微鏡14の暗視野観察方法で欠陥画像を取得する。このとき、各欠陥位置において試料1の高さが光学顕微鏡14の焦点位置より外れている場合は、後述する方法によって焦点合わせを行う。
 ここで、暗視野観察方法について説明する。暗視野観察方法は、照明ユニット101より照明光を射出する。照明光はレーザー光でもランプ光でも良いが、レーザー光の方が照度を強くできるため、レーザー光を用いるのが望ましい。
 照明ユニット101より射出された光は、落射ミラー102で反射されZ方向へ向きを変えられ、真空封し窓103を通って真空漕6に導かれ、ミラー104によって方向を変えられて光学顕微鏡14焦点位置にある試料1表面へ照射される。試料1で散乱された光は、対物レンズ105にて集光し、結像光学系110に導かれ、固体撮像素子111撮像位置に結像され、固体撮像素子111にて電気信号へ変換され、制御システム10に送られる。
 [0064]
 上記の光学顕微鏡14の暗視野検出方法で取得された画像は、濃淡画像またはカラー画像として制御システム10に蓄積される。制御システムでは、図13のようにSEM5の視野範囲302の中心位置と欠陥302の位置ずれ量304a及び304bを算出し、該ずれ量を座標補正値として登録する。この後、座標補正値を用いて欠陥303がSEM5の視野302内に入るようにステージ3で試料1を移動し、SEM5にて観察する。観察された欠陥の画像は制御システム10に送信され、ユーザーインターフェース11への表示とデータベース12への登録、自動欠陥分類等の処理を行う。
 欠陥観察の流れを図14で説明する。
 まず、試料1のアライメントを行う(6001)。これは光学顕微鏡14による明視野観察によって前述した方法によって行う。次に、予め他の欠陥検査装置によって検出された欠陥の位置情報を用いて試料1上の観察したい欠陥が光学顕微鏡14の視野に入るようにステージ3を移動させる(6002)。次に高さ制御機構106にて対物レンズ105を移動させて焦点合わせを行う(6003)。
 光学顕微鏡14と固体撮像素子111にて取得した画像より欠陥を探索し(6004)、欠陥を検出したのであれば(6005−YES)、光学顕微鏡14による欠陥検出位置と予め他の欠陥検査装置によって検出された欠陥の位置情報との差から予め他の欠陥検査装置によって検出された欠陥の位置情報を用いてこの欠陥をSEMで観察しようとしたときの欠陥に対するSEM5の視野位置のズレ量を算出する(6006)。この算出したズレ量を基にして前記予め他の欠陥検査装置によって検出された欠陥の位置情報を補正し(6007)、この位置情報が補正された欠陥をSEM5の視野へ移動し、観察を行う(6008)。このとき、観察された情報は制御システム10へ送られ、データベース11に登録される。尚、観察すべき欠陥が多数ある場合には、そのうちの代表的な数点を抽出し、それら抽出した欠陥の予め他の欠陥検査装置によって検出された位置情報と光学顕微鏡14で検出して得たそれぞれの欠陥の位置情報とから、予め他の欠陥検査装置によって検出された欠陥の位置とSEM5の視野位置のずれ量を求める。この求めたずれ量の情報を用いて、代表的な数点以外の光学顕微鏡14で検出しなかった欠陥についても予め他の欠陥検査装置で検出して得た位置情報を補正する。
 次に、欠陥情報が必要でない場合は(6009−NO)、観察終了とし(60010)、観察が必要である場合(6009−YES)は観察したい欠陥位置情報を取得し、上述した光学顕微鏡14へ欠陥を移動する手順へ戻り、処理を進める。なお、上述した欠陥検出手順で欠陥検出できなかった場合(6005−NO)は、欠陥が光学顕微鏡14の視野の外にいることが考えられるため、光学顕微鏡14の視野周辺部を探索してもよい。周辺部を探索する場合(6012−YES)は、視野に相当する分だけ試料1を移動し(6011)、上述した欠陥検出手順から処理を行う。また、周辺探索をしない場合(6012−NO)は、手順に従って処理を進める。
 各欠陥に対して欠陥位置の補正量を予め算出してデータベースに登録しておき、複数の欠陥又は全ての欠陥の位置補正量算出が終了した後に、SEM5にて検察する方法もある。
 次に、Z位置の算出方法を図3で説明する。図3は、Zセンサ4および6の構成を示しており、光源701、集光レンズ702、スリット703、投光レンズ704、受光レンズ705、検出器706で構成される。照明光源は例えばレーザー発振器やランプであり、検出器705は例えばCCDカメラ、CCDリニアセンサである。
 Zセンサ4及び6の動作を説明する。照明光源701より射出された光は照明集光レンズ702にてスリット703へ照射され、投光レンズ704にて試料1表面へ集光される。試料1で反射された光は、受光レンズ705を通って検出器706へ集光される。Z位置算出法としては、まず、試料1が基準高さにある場合の検出器706の光検出位置を記憶しておく。次に、高さが変化すると、検出器706における光検出の位置が変化するため、光検出位置の移動量と試料1の高さ変化の関係を予め測定しておくことにより、光検出位置の変化より試料1の高さを算出することができる。
 本実施形態は、SEMを用いて観察する場合を例にして説明しているが、STEM等の他の電子顕微鏡や、収束イオンビームを用いた微細加工機器、X線分析装置を用いた分析機器等、光学式観察方法よりも詳細な観察を可能とする方法及び機器に適用可能である。
 Z位置を算出する別の方法を図15で説明する。図15は、Z位置算出手順を示している。本方法は、光学顕微鏡で取得した画像を用いる方法である。まず、Z制御機構105を用いて対物レンズを最下点(対物レンズが最も試料に近い点)に移動させる(1101)。次に、検出器108にて画像を取得し、制御システム10に送る(1102)。このとき、視野内に試料のエッジや回路パターンが入っている場合は明視野観察した画像を用いることが望ましく、該パターンが無く、エッジも無い場合は暗視野観察した画像を用いることが望ましい。画像取得後、Z制御機構105にて対物レンズ104を1段階上へ移動させる(1103)。ここで、1段階とはZ位置検出の分解能に係り、対物レンズ104の焦点深度の1/2以下が望ましい。対物レンズ104を移動した後、再び画像取得を行う。該Z移動と画像取得は予め設定した範囲で行われるものであり、設定範囲を超えた場合は画像取得を終了し(1104)、Z位置算出へ進む(1105)。
 Z位置算出処理の一例を説明する。初めに、取得した各画像の最大輝度点を探索し、その輝度と該最大輝度点を取得したZ位置をグラフにプロットする(1106)。次に、グラフ1106における最大輝度を算出する。この際、各計測点を曲線で近似し、最大輝度点を算出することが望ましい。算出された最大輝度点のZ位置が対物レンズ105の焦点が最も合っている位置となる。
 上記Z算出方法を用いる場合は、Zセンサ7を省略することができ、簡潔な構成となる。
 本実施の形態における、光学顕微鏡14の第二の構成例を図16で説明する。光学顕微鏡14は、暗視野照明ユニット101、落射ミラー102、ミラー104、対物レンズ105、高さ制御機構106、結像光学系110、固体撮像素子111、対物レンズ回転機構117、液晶制御装置118より構成されている。結像光学系110は結像レンズ116のみで構成され、分布偏光素子114が対物レンズ105の瞳面112aに固定される構成である。
 この場合、対物レンズ105の瞳面112aを対物レンズ外部へ取り出すレンズ系、ハーフミラー108、明視野照明109を省略し、簡易な構成となる利点がある。
 この場合、分布偏光素子114の角度調整を行う為に対物レンズ105を対物レンズ105中心軸周りで回転させる機構117を備えてもよい。その場合、回転機構117は制御システム10と接続している。
 本実施の形態における、光学顕微鏡14の第三の構成例を図17で説明する。光学顕微鏡14は、暗視野照明ユニット101、落射ミラー102、ミラー104、対物レンズ105、高さ制御機構106、結像光学系110、固体撮像素子111、液晶制御装置118、偏光板119より構成されている。結像光学系110は結像レンズ116で構成され、分布偏光素子114として液晶素子を対物レンズ105の瞳面112aに固定する構成である。この場合、図17に示すように分布偏光素子の透過偏光軸は対物レンズ外部に設けた液晶制御装置118と偏光板119の組み合わせにより制御可能であり、液晶の偏光特性を非偏光とすることで明視野観察が可能となり、偏光特性を持たせることにより高感度暗視野観察が可能となる利点がある。液晶制御装置118は制御装置10と接続されている。この場合、対物レンズ回転機構117を省略できる利点がある。明視野観察を実施するにはハーフミラー108及び明視野照明109を用いる構成とする。
 (第2の実施形態)
 次に、本発明に関る欠陥検査装置の第2の実施形態について図18を用いて説明する。本第2の実施形態において第1の実施形態と相違する点は、ハーフミラー108および明視野照明109を配置しない点である。そのため、図18に示す簡便な構成となる利点がある。図18に示した構成において、図1の構成と同じ番号を付したものは図1を用いて説明したものと同様な機能を有する。
 この場合、光学顕微鏡14の焦点合わせは、Zセンサ7を用いるか、前述した光学顕微鏡14で取得した暗視野画像を基とした画像処理にて行う。
 この場合、光学顕微鏡14を図16に示すように、分布偏光素子114を対物レンズ105の瞳面112aに固定する構成としてもよい。
 (第3の実施形態)
 本発明に関る欠陥検査装置の第3の実施形態について図19を用いて説明する。本第3の実施形態において第1の実施形態と相違する点は、顕微鏡14のZセンサ7、ハーフミラー108、明視野照明109を配置しない点である。そのため、図19に示す簡便な構成となり、また、対物レンズ105をより開口数の大きな対物レンズを設置する空間が確保される利点がある。図19に示した構成において、図1の構成と同じ番号を付したものは図1を用いて説明したものと同様な機能を有する。
 この場合、光学顕微鏡14の焦点合わせは、Zセンサ4を用いるか、前述した光学顕微鏡14で取得した暗視野画像を基とした画像処理にて行う。
 この場合、光学顕微鏡14を図16に示すように、分布偏光素子114を対物レンズ105の瞳面112aに固定する構成としてもよい。
 (第4の実施形態)
 本発明に関る欠陥検査装置の第4の実施形態について図20を用いて説明する。本第4の実施形態において第1の実施形態と相違する点は、顕微鏡14のZセンサ7を配置しない点である。そのため、図20に示す簡便な構成となり、また、対物レンズ105をより開口数の大きな対物レンズを設置する空間が確保される利点がある。図20に示した構成において、図1の構成と同じ番号を付したものは図1を用いて説明したものと同様な機能を有する。
 この場合、光学顕微鏡14の焦点合わせは、前述した光学顕微鏡14で取得した明視野画像または暗視野画像を基とした画像処理にて行う。
 この場合、光学顕微鏡14を図16に示すように、分布偏光素子114を対物レンズ105の瞳面112aに固定する構成としてもよい。

Claims (13)

  1. 光学式顕微鏡手段と、SEM観察手段と、試料を載置して前記光学式顕微鏡手段と前記SEM観察手段との間を移動可能なステージ手段とを備えて、他の検査装置で検出した前記試料上の欠陥の位置情報を用いて該欠陥を観察する欠陥観察装置であって、前記光学系手段は前記他の検査装置で検出した前記試料上の欠陥の位置情報を用いて暗視野照明により欠陥を検出する暗視野照明光学系を備え、該暗視野照明光学系は前記試料を偏光照明する偏光照明部と、該偏光照明部により偏光照明された前記試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させて検出する検出光学系部とを有することを特徴とする欠陥観察装置。
  2. 前記検出光学系部は、前記試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させることにより、前記試料からの散乱光に占める前記試料上の微小欠陥又は微小異物からの散乱光成分の比率が高い偏光成分を透過させることを特徴とするクレーム1記載の欠陥観察装置。
  3. 前記検出光学系部は、透過偏光軸方向が場所により異なる分布偏光素子により、前記試料からの散乱光に占める前記試料上の微小欠陥又は微小異物からの散乱光成分の比率が高い偏光成分を透過させることを特徴とするクレーム2記載の欠陥観察装置。
  4. 前記検出光学系部は、透過偏光軸方向が場所により異なる分布偏光素子により、前記試料表面の微小凹凸から反射散乱した光成分の比率が高い偏光成分の反射散乱光を遮光又は減光させることを特徴とするクレーム2記載の欠陥観察装置。
  5. 前記検出光学系部は、空間フィルタにより前記試料の表面の微小凹凸からの反射散乱光を遮光又は減光させて前記試料表面の欠陥からの反射散乱光を透過させることを特徴とするクレーム2記載の欠陥観察装置。
  6. 前記検出光学系は、透過偏光軸方向が場所により異なる分布偏光素子及び空間フィルタを同時に用いることにより、前記試料からの散乱光に占める前記試料上の微小欠陥又は微小異物からの散乱光成分の比率が高い偏光成分を選択的に透過させ、試料表面の微小凹凸からの反射散乱光を遮光又は減光させることを特徴とするクレーム2記載の欠陥観察装置。
  7. 前記偏光照明部は、偏光させたレーザーを発射し、該偏光させたレーザーで前記試料を暗視野照明することを特徴とするクレーム1記載の欠陥観察装置。
  8. 他の検査装置で検出した試料上の欠陥の位置情報を用いて該欠陥の位置を光学式顕微鏡で検出して前記他の検査装置で検出した試料上の欠陥の位置情報を修正し、該位置情報を修正した欠陥をSEMで観察する欠陥観察方法であって、前記光学式顕微鏡は前記他の検査装置で検出した前記試料上の欠陥の位置情報を用いて偏光光を暗視野照明し、該偏光光を暗視野照明された前記試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させて検出することにより前記他の検査装置で検出した前記試料上の欠陥を検出することを特徴とする欠陥観察方法。
  9. 該偏光光を暗視野照明された前記試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させることにより、前記試料からの散乱光に占める前記試料上の微小欠陥又は微小異物からの散乱光成分の比率が高い偏光成分を透過させて前記試料上の微小欠陥又は微小異物からの散乱光を検出することを特徴とするクレーム8記載の欠陥観察方法。
  10. 前記試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させることを、透過偏光軸方向が場所により異なる分布偏光素子により前記試料表面の微小凹凸から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させることにより行うことを特徴とするクレーム9記載の欠陥観察方法。
  11. 前記試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させることを、空間フィルタにより前記試料の表面からの反射散乱光を遮光又は減光させて前記試料表面の欠陥からの反射散乱光を透過させることにより行うことを特徴とするクレーム9記載の欠陥観察方法。
  12. 前記試料から反射散乱した光のうち特定の偏光成分の反射散乱光を遮光又は減光させることを、透過偏光軸方向が場所により異なる分布偏光素子と空間フィルタを組み合わせて用いることにより、前記試料からの散乱光に占める前記試料上の微小欠陥又は微小異物からの散乱光成分の比率が高い偏光成分を選択的に透過させ、試料表面の微小凹凸からの反射散乱光を遮光又は減光させることを特徴とするクレーム9記載の欠陥観察方法。
  13. 前記偏光光を暗視野照明することを、偏光させたレーザで前記試料を暗視野照明することにより行うことを特徴とするクレーム9記載の欠陥観察方法。
PCT/JP2009/067295 2008-10-15 2009-09-28 欠陥検出方法の高感度化 WO2010044351A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/123,906 US20110194101A1 (en) 2008-10-15 2009-09-28 Supersensitization of defect inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008265877A JP2010096554A (ja) 2008-10-15 2008-10-15 欠陥検出方法の高感度化
JP2008-265877 2008-10-15

Publications (1)

Publication Number Publication Date
WO2010044351A1 true WO2010044351A1 (ja) 2010-04-22

Family

ID=42106516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067295 WO2010044351A1 (ja) 2008-10-15 2009-09-28 欠陥検出方法の高感度化

Country Status (3)

Country Link
US (1) US20110194101A1 (ja)
JP (1) JP2010096554A (ja)
WO (1) WO2010044351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9436990B2 (en) 2012-02-06 2016-09-06 Hitachi High-Technologies Corporation Defect observation method and device therefor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216752B2 (ja) 2009-11-18 2013-06-19 株式会社日立ハイテクノロジーズ 欠陥検出方法及び欠陥検出装置並びにこれを備えた欠陥観察装置
JP5560148B2 (ja) * 2010-09-14 2014-07-23 株式会社日立ハイテクノロジーズ 検査装置、及び位置決め装置
JP5371928B2 (ja) * 2010-10-28 2013-12-18 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
US8908162B2 (en) * 2011-02-24 2014-12-09 Idi Dental, Inc. System for aligning a collimator and an alignment ring
JP2012237566A (ja) * 2011-05-10 2012-12-06 Hitachi High-Technologies Corp 欠陥観察方法及びその装置
JP5956730B2 (ja) * 2011-08-05 2016-07-27 株式会社日立ハイテクサイエンス X線分析装置及び方法
CN103376264A (zh) * 2012-04-24 2013-10-30 镇江华扬信息科技有限公司 一种印刷电路板的表面检查方法
JP2015059776A (ja) * 2013-09-18 2015-03-30 株式会社日立ハイテクノロジーズ 欠陥観察装置およびその方法
JP2016008941A (ja) * 2014-06-26 2016-01-18 株式会社日立ハイテクノロジーズ 欠陥観察方法及びその装置並びに欠陥検出装置
CN104503072B (zh) * 2014-12-23 2017-09-26 成都西图科技有限公司 偏光显微镜的自动偏光装置及其使用方法
US10177048B2 (en) * 2015-03-04 2019-01-08 Applied Materials Israel Ltd. System for inspecting and reviewing a sample
KR102659810B1 (ko) * 2015-09-11 2024-04-23 삼성디스플레이 주식회사 결정화도 측정 장치 및 그 측정 방법
CN107688230B (zh) * 2017-09-26 2021-03-12 京东方科技集团股份有限公司 用于液晶屏不良线标记的显微镜
US11302590B2 (en) * 2019-02-15 2022-04-12 Kla Corporation Delivery of light into a vacuum chamber using an optical fiber
WO2020191121A1 (en) * 2019-03-20 2020-09-24 Carl Zeiss Smt Inc. Method for imaging a region of interest of a sample using a tomographic x-ray microscope, microscope, system and computer program
US11294164B2 (en) 2019-07-26 2022-04-05 Applied Materials Israel Ltd. Integrated system and method
KR20210121322A (ko) 2020-03-26 2021-10-08 삼성전자주식회사 기판 검사 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636443A (ja) * 1986-06-27 1988-01-12 Hitachi Ltd マスク上の異物検査装置およびその方法
JPS636442A (ja) * 1986-06-27 1988-01-12 Hitachi Ltd 異物検査方法及びその装置
JPH07270144A (ja) * 1994-10-17 1995-10-20 Hitachi Ltd 半導体ウエハ上の異物検査方法
JPH08304296A (ja) * 1995-03-08 1996-11-22 Hitachi Ltd 異物等の欠陥検出方法およびそれを実行する装置
JP2007235023A (ja) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp 欠陥観察方法および装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220940A (ja) * 1983-05-20 1985-11-05 Hitachi Ltd 異物自動検査装置
US4922308A (en) * 1986-06-27 1990-05-01 Hitachi, Ltd. Method of and apparatus for detecting foreign substance
US5177559A (en) * 1991-05-17 1993-01-05 International Business Machines Corporation Dark field imaging defect inspection system for repetitive pattern integrated circuits
US5539514A (en) * 1991-06-26 1996-07-23 Hitachi, Ltd. Foreign particle inspection apparatus and method with front and back illumination
US5189481A (en) * 1991-07-26 1993-02-23 Tencor Instruments Particle detector for rough surfaces
US5486919A (en) * 1992-04-27 1996-01-23 Canon Kabushiki Kaisha Inspection method and apparatus for inspecting a particle, if any, on a substrate having a pattern
JP2847458B2 (ja) * 1993-03-26 1999-01-20 三井金属鉱業株式会社 欠陥評価装置
DE19914994A1 (de) * 1998-04-03 1999-10-14 Advantest Corp Verfahren und Vorrichtung zur Oberflächenprüfung
US6407373B1 (en) * 1999-06-15 2002-06-18 Applied Materials, Inc. Apparatus and method for reviewing defects on an object
JP3878107B2 (ja) * 2002-11-06 2007-02-07 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
JP2007071803A (ja) * 2005-09-09 2007-03-22 Hitachi High-Technologies Corp 欠陥観察方法及びその装置
JP5110977B2 (ja) * 2007-06-22 2012-12-26 株式会社日立ハイテクノロジーズ 欠陥観察装置及びその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636443A (ja) * 1986-06-27 1988-01-12 Hitachi Ltd マスク上の異物検査装置およびその方法
JPS636442A (ja) * 1986-06-27 1988-01-12 Hitachi Ltd 異物検査方法及びその装置
JPH07270144A (ja) * 1994-10-17 1995-10-20 Hitachi Ltd 半導体ウエハ上の異物検査方法
JPH08304296A (ja) * 1995-03-08 1996-11-22 Hitachi Ltd 異物等の欠陥検出方法およびそれを実行する装置
JP2007235023A (ja) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp 欠陥観察方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9436990B2 (en) 2012-02-06 2016-09-06 Hitachi High-Technologies Corporation Defect observation method and device therefor

Also Published As

Publication number Publication date
JP2010096554A (ja) 2010-04-30
US20110194101A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
WO2010044351A1 (ja) 欠陥検出方法の高感度化
US9773641B2 (en) Method and apparatus for observing defects
US10267745B2 (en) Defect detection method and defect detection device and defect observation device provided with same
JP3610837B2 (ja) 試料表面の観察方法及びその装置並びに欠陥検査方法及びその装置
JP4979246B2 (ja) 欠陥観察方法および装置
JP5110977B2 (ja) 欠陥観察装置及びその方法
KR101624433B1 (ko) 결함 관찰 방법 및 그 장치
JP5946751B2 (ja) 欠陥検出方法及びその装置並びに欠陥観察方法及びその装置
US8072592B2 (en) Reticle defect inspection apparatus and reticle defect inspection method
JP2007303905A (ja) 表面検査装置
JP7427763B2 (ja) 光学的表面欠陥物質特性評価のための方法およびシステム
US20220291140A1 (en) Defect inspection device and defect inspection method
JP3956942B2 (ja) 欠陥検査方法及びその装置
JP3918840B2 (ja) 欠陥検査方法及びその装置
JP4605089B2 (ja) 表面検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13123906

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820529

Country of ref document: EP

Kind code of ref document: A1