WO2010041687A1 - Organic photoelectric conversion element, solar cell, and optical sensor array - Google Patents

Organic photoelectric conversion element, solar cell, and optical sensor array Download PDF

Info

Publication number
WO2010041687A1
WO2010041687A1 PCT/JP2009/067493 JP2009067493W WO2010041687A1 WO 2010041687 A1 WO2010041687 A1 WO 2010041687A1 JP 2009067493 W JP2009067493 W JP 2009067493W WO 2010041687 A1 WO2010041687 A1 WO 2010041687A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
group
organic photoelectric
general formula
atom
Prior art date
Application number
PCT/JP2009/067493
Other languages
French (fr)
Japanese (ja)
Inventor
大久保 康
野島 隆彦
伊東 宏明
晃矢子 和地
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010532941A priority Critical patent/JP5655568B2/en
Publication of WO2010041687A1 publication Critical patent/WO2010041687A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3229Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3244Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing only one kind of heteroatoms other than N, O, S
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3245Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3247Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing combinations of different heteroatoms other than nitrogen and oxygen or nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic photoelectric conversion element, a solar cell, and an optical sensor array, and more particularly to a bulk heterojunction type organic photoelectric conversion element, a solar cell using the organic photoelectric conversion element, and an optical sensor array.
  • these bulk heterojunction solar cells are formed by a coating process except for the anode and cathode, it is expected that they can be manufactured at high speed and at low cost, and may solve the above-mentioned problem of power generation cost. . Furthermore, unlike the above Si-based solar cells, compound semiconductor-based solar cells, dye-sensitized solar cells, etc., there is no process at a temperature higher than 160 ° C., so it is expected that it can be formed on a cheap and lightweight plastic substrate. Is done.
  • the power generation cost must be calculated including the power generation efficiency and the durability of the element.
  • Non-Patent Document 1 a long wave that efficiently absorbs the solar spectrum is used. By using organic polymer, conversion efficiency exceeding 5% has been achieved.
  • a p-type semiconductor material with high mobility can be obtained by a method of increasing the ⁇ stack area of the compound by using a condensed polycyclic compound. (See Patent Document 1, Non-Patent Documents 4, 5, etc.).
  • these condensed polycyclic compounds are phen-type condensed rings (series that are not linearly condensed, such as phenanthrene) due to the condensed ring form, and have an absorption wavelength of only around 400 nm, and are for solar cells. Absorption of a wide range of wavelengths required as a material cannot be performed, and even if these are used as they are, an organic thin film solar cell with high conversion efficiency cannot be obtained. It was necessary.
  • the object of the present invention is to achieve a high conversion efficiency, a high durability, a coating process that enables inexpensive manufacturing, and an organic material that does not require heat treatment at a high temperature so that it can be formed on an inexpensive plastic substrate.
  • the object is to provide a thin-film solar cell material.
  • An organic photoelectric conversion element comprising a compound having a bulk heterojunction layer between a transparent electrode and a counter electrode and having a partial structure represented by the following general formula (1).
  • R 1 and R 10 are independently a substituted or unsubstituted nitrogen atom, an oxygen atom, a carbon atom, a sulfur atom, a silicon atom, germanium atom, and represents an atom selected from a selenium atom
  • R 1 ⁇ R 10 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, a halogenated alkyl group, an alkynyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a silyl group, an ether group, or a thioether.
  • the bulk heterojunction layer contains a low-molecular compound having a partial structure represented by the general formula (1) as a p-type semiconductor material and a fullerene derivative as an n-type semiconductor material.
  • the organic photoelectric conversion element as described in 2.
  • R 2 and R 6 in the low molecular compound having a partial structure represented by the general formula (1) is substituted with a substituted or unsubstituted heterocyclic group, The organic photoelectric conversion element of any one of these.
  • R 2 and R 6 in the low molecular compound having the partial structure represented by the general formula (1) is a heterocyclic group represented by any one of the following general formulas (2) to (4). 6.
  • X 3 to X 5 each independently represents an atom selected from a substituted or unsubstituted nitrogen atom, oxygen atom, carbon atom, sulfur atom, silicon atom, germanium atom, and selenium atom;
  • R 11 to R 16 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, Represents a group selected from the group of ring structures bonded to each other.
  • the low molecular compound having a partial structure represented by the general formula (1) is a compound represented by the following general formula (5), and the compound is contained in a bulk heterojunction layer. 7.
  • the organic photoelectric conversion device according to any one of 1 to 6.
  • X 1 and X 2 represent an atom having the same meaning as X 1 and X 2 in the general formula (1)
  • R 1 , R 3 to R 5 , and R 7 to R 10 represent the general formula (1).
  • Q and r are integers of 0 to 8, q + r is an integer of 1 or more, and n is an integer of 1 or more.
  • 8 The organic as described in 6 or 7 above, wherein at least one of the atoms represented by X 3 to X 5 in the heterocyclic groups represented by the general formulas (2) to (4) is a sulfur atom Photoelectric conversion element.
  • a heterocyclic group the heterocyclic group represented by A 1 in the compound represented by the general formula (5) is represented by the general formula (2), and wherein the heterocyclic group represented by A 2 9.
  • any one of A 1 and A 3 is a heterocyclic group represented by the general formulas (2) to (4), and 10.
  • That at least one of the atoms represented by X 1 and X 2 in the compound having the partial structure represented by the general formula (1) or the compound represented by the general formula (5) is a sulfur atom. 12.
  • the bulk heterojunction layer containing a compound having a partial structure represented by the general formula (1) and a fullerene derivative is formed by a solution process, Organic photoelectric conversion element.
  • a solar cell comprising the organic photoelectric conversion device as described in any one of 1 to 13 above.
  • An optical sensor array comprising the organic photoelectric conversion elements according to any one of 1 to 13 arranged in an array.
  • an organic thin film solar that can achieve high conversion efficiency, has high durability, can be applied to a coating process that enables low-cost manufacturing, and is heat-insoluble at high temperatures so that it can be formed on an inexpensive plastic substrate Battery material could be provided.
  • the inventors of the present invention have made extensive studies on the above problems and found that these phene condensed polycyclic compounds have a structure having a specific substituent in the phene condensed polycyclic compound having high mobility. It can absorb even long wavelengths, can improve the utilization rate of sunlight and achieve high conversion efficiency, and can provide organic photoelectric conversion elements with excellent durability due to its rigid and stable structure. I found.
  • FIG. 1 is a cross-sectional view showing a solar cell comprising a bulk heterojunction organic photoelectric conversion element.
  • a bulk heterojunction type organic photoelectric conversion element 10 has a transparent electrode 12, a bulk heterojunction layer photoelectric conversion unit 14, and a counter electrode 13 sequentially stacked on one surface of a substrate 11.
  • the substrate 11 is a member that holds the transparent electrode 12, the photoelectric conversion unit 14, and the counter electrode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member.
  • the substrate 11 for example, a glass substrate or a resin substrate is used.
  • the substrate 11 is not essential.
  • the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the transparent electrode 12 and the counter electrode 13 on both surfaces of the photoelectric conversion unit 14.
  • the transparent electrode 12 is an electrode that can transmit light that is photoelectrically converted in the photoelectric conversion unit 14, and is preferably an electrode that transmits light of 300 to 800 nm.
  • transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , ZnO, metal thin films such as gold, silver, platinum, or nanoparticle / nanowire layers, and conductive polymers are used. be able to.
  • the counter electrode 13 may be made of metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon, or the material of the transparent electrode 12, but is not limited thereto.
  • the photoelectric conversion unit 14 is sandwiched between the transparent electrode 12 and the counter electrode 13, but the pair of comb-like electrodes are arranged on one side of the photoelectric conversion unit 14.
  • the back contact type organic photoelectric conversion element 10 may be configured such that the back contact type organic photoelectric conversion element 10 is disposed.
  • the photoelectric conversion unit 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • the compound of the present invention is used, but a known compound such as a tetrabenzoporphyrin derivative may be used in combination.
  • a fullerene derivative is used, for example.
  • any method such as a vapor deposition method and a coating method (including a casting method and a spin coating method) may be used.
  • a coating method that excels in resistance is preferable.
  • the bulk heterojunction layer of the photoelectric conversion part 14 is annealed at a predetermined temperature during the manufacturing process to be partially crystallized in order to improve the photoelectric conversion rate.
  • the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
  • FIG. 1 light incident from the transparent electrode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the photoelectric conversion unit 14, and electrons move from the electron donor to the electron acceptor.
  • a hole-electron pair charge separation state
  • the generated electric charge is caused by an internal electric field, for example, when the work functions of the transparent electrode 12 and the counter electrode 13 are different, the electrons pass between the electron acceptors due to the potential difference between the transparent electrode 12 and the counter electrode 13, and the holes are , Passed between the electron donors and carried to different electrodes, and photocurrent is detected.
  • the transport direction of electrons and holes can be controlled.
  • the photoelectric conversion unit 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but the mixing ratio of the electron acceptor and the electron donor is changed. You may comprise by the changed multiple layer.
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency.
  • After coating it is preferable to perform heating in order to cause removal of residual solvent, moisture and gas, and improvement of mobility and absorption longwave due to crystallization of the semiconductor material.
  • the bulk heterojunction type organic photoelectric conversion element 10 includes the transparent electrode 12, the bulk heterojunction layer photoelectric conversion unit 14 and the counter electrode 13 which are sequentially stacked on the substrate 11, but is not limited thereto.
  • there are other layers such as a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, or a smoothing layer between the transparent electrode 12 or the counter electrode 13 and the photoelectric conversion unit 14 and bulk hetero
  • the junction type organic photoelectric conversion element 10 may be configured.
  • a hole transport layer 17 is placed between the bulk heterojunction layer and the anode (usually the transparent electrode 12 side), and a cathode (usually the counter electrode 13 side). Since it is possible to more efficiently take out the charges generated in the bulk heterojunction layer by forming the electron transport layer 18, it is preferable to have these layers.
  • FIG. 3 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element including a tandem bulk heterojunction layer.
  • the transparent electrode 12 and the first photoelectric conversion unit 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion unit 16, and then the counter electrode.
  • stacking 13 a tandem configuration can be obtained.
  • the second photoelectric conversion unit 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion unit 14 'or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there.
  • the material of the charge recombination layer 15 is preferably a layer using a compound having both transparency and conductivity, such as transparent metal oxides such as ITO, AZO, FTO, and titanium oxide, Ag, Al, and Au.
  • a very thin metal layer such as PEDOT: PSS or a conductive polymer material such as polyaniline is preferable.
  • the “partial structure” in the low molecular weight compound having the partial structure represented by the general formula (1) or the partial structure represented by the general formula (1) is R in the general formula (1).
  • a part of 1 to R 10 is substituted with a bond to indicate that the compound is further bonded to another chemical structure.
  • X 1 and X 2 each independently represent an atom selected from a substituted or unsubstituted nitrogen atom, oxygen atom, carbon atom, sulfur atom, silicon atom, germanium atom, and selenium atom. Is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a sulfur atom. This is because sulfur atoms tend to be crystallized or have high mobility due to the interaction between sulfur atoms.
  • R 1 to R 10 are each independently a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, halogenated alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether And a group selected from a group, a thioether group, an amino group, a ring structure bonded to each other, and an aromatic ring structure bonded to each other. More preferred are a substituted or unsubstituted alkyl group, a halogenated alkyl group, an aryl group, and a heteroaryl group.
  • R 2 and R 6 are substituted with a substituent selected from a substituted or unsubstituted aryl group or heteroaryl group. This is because substitution at this position with a ⁇ -electron-based substituent increases the ⁇ -conjugated length and improves the short absorption wavelength, which is a disadvantage of the phen-based compound.
  • X 3 to X 5 each independently represents an atom selected from a nitrogen atom, an oxygen atom, a carbon atom, a sulfur atom, a silicon atom, a germanium atom, and a selenium atom, Preferably they are a nitrogen atom, an oxygen atom, and a sulfur atom, More preferably, it is a sulfur atom.
  • R 11 to R 16 are each independently a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, A group selected from an amino group, a group having a ring structure bonded to each other, and a group selected from an aromatic ring structure bonded to each other.
  • a substituted or unsubstituted alkyl group and a halogenated alkyl group are preferable, and an unsubstituted alkyl group and a halogenated alkyl group are more preferable.
  • the compound having a partial structure represented by the general formula (1) is preferably a low molecular compound.
  • the low molecular weight compound means a single molecule having no distribution in the molecular weight of the compound.
  • the polymer compound means an aggregate of compounds having a certain molecular weight distribution by reacting a predetermined monomer.
  • a compound having a molecular weight of 3000 or less is preferably classified as a low molecular compound. More preferably, it is 2000 or less, More preferably, it is 1500 or less.
  • the compound has a molecular weight of 300 or more practically as a compound capable of forming a stable thin film without volatilization.
  • the molecular weight can be measured by mass spectrum or gel permeation chromatography (GPC).
  • the low molecular compound having a partial structure represented by the general formula (1) is a compound represented by the general formula (5).
  • the 5-membered heteroaryl group is more advantageous in terms of longer wave length, but on the other hand, there is a chemically active site in the aromatic ring (for example, the 2,5-position of thiophene).
  • the carrier may deteriorate when it deactivates without reaching the electrode.
  • the stability of the compound can be greatly improved by replacing the terminal of the 5-membered heteroaryl group with a phenyl group which is the most stable aromatic ring. The durability of can be improved.
  • X 1 and X 2 represents X 1 and X 2 synonymous atoms in the general formula (1)
  • R 1 ⁇ R 1 ⁇ R 10 R 10 is the formula in (1)
  • the preferred atoms and groups are the same as the above-described atoms X 1 and X 2 and the groups R 1 to R 10 .
  • p is an integer having the same meaning as p in the general formula (1).
  • n represents an integer of 1 or more.
  • a 1 and A 2 each independently represent a heterocyclic group represented by the general formulas (2) to (4), and preferably A1 represents an electron withdrawing represented by the general formulas (3) and (4).
  • R11 to R15 is preferably substituted with an alkyl group.
  • Substitution with an alkyl group improves the solubility of the compound and makes it easier to form a bulk heterojunction layer by a solution process.
  • crystallinity of the compound is increased by using a so-called fastener effect in which alkyl chains try to pack each other, and higher photoelectric conversion efficiency can be obtained.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, 2-ethylhexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, etc.
  • a C6 to C20 linear alkyl group n-hexyl group, n-octyl group, n-dodecyl group, etc.
  • low molecular weight compound having the partial structure represented by the general formula (1) of the present invention are shown below, but the present invention is not limited to these. These compounds can be synthesized with reference to Non-Patent Documents 4 and 5 described above.
  • the organic photoelectric conversion element of the present invention is preferably applied to a bulk heterojunction layer in which an n-type semiconductor material and a p-type semiconductor material are mixed, and the low molecular compound of the present invention may be used as the p-type semiconductor material.
  • the material is not particularly limited.
  • aromatic carboxylic acid anhydrides such as carboxylic acid anhydrides and perylene tetracarboxylic acid diimides
  • polymer compounds containing the imidized product thereof as a skeleton are examples of aromatic carboxylic acid anhydrides such as carboxylic acid anhydrides and perylene tetracarboxylic acid diimides
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), and the like.
  • PCBM [6,6] -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6] -phenyl C61-buty Rick acid-isobutyl ester
  • PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a dry process such as a vapor deposition method and a solution process such as a coating method (including a cast method and a spin coating method). be able to.
  • the solution process is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency.
  • the solution process is also excellent in production rate.
  • annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
  • the photoelectric conversion part (bulk heterojunction layer) 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, or a plurality of the mixture ratios of the electron acceptor and the electron donor being changed. It may consist of layers.
  • the hole mobility and electron mobility of the organic photoelectric conversion element are p-type material and n-type. Since it also correlates with the mixing ratio of the materials, it is more preferably 2: 1 to 1: 5, and further preferably 5: 4 to 1: 2.
  • the electron transport layer As the electron transport layer, octaazaporphyrin and p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.) can be used.
  • the HOMO level of the p-type semiconductor material used for the photoelectric conversion layer is used.
  • the electron transport layer having the HOMO level deeper than the level is given a hole blocking function having a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side. More preferably, a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer.
  • Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
  • examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • a layer made of a single n-type semiconductor material used for the photoelectric conversion layer can also be used.
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
  • the organic photoelectric conversion element of the present invention has a hole transport layer between the photoelectric conversion layer and the anode, and it is possible to take out charges generated in the photoelectric conversion layer more efficiently. It is preferable.
  • the material constituting these layers include, as the hole transport layer, PEDOT such as Stark Vuitec, trade name BaytronP, polyaniline and its doped material, cyan described in International Publication No. 06/019270, etc. Compounds, etc. can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the photoelectric conversion layer has a rectifying effect that prevents electrons generated in the photoelectric conversion layer from flowing to the anode side. It has an electronic block function.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • triarylamine compounds described in JP-A-5-271166 metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.
  • a layer made of a single p-type semiconductor material used for the photoelectric conversion layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
  • the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the organic photoelectric conversion element of the present invention has at least an anode and a cathode. Moreover, when taking a tandem configuration, the tandem configuration can be achieved by using an intermediate electrode.
  • an electrode through which holes mainly flow is called an anode, and an electrode through which electrons mainly flow is called a cathode.
  • a translucent electrode is referred to as a transparent electrode and a non-translucent electrode is referred to as a counter electrode because of the function of whether or not it has translucency.
  • the anode is a translucent transparent electrode
  • the cathode is a non-translucent counter electrode.
  • the anode of the present invention is preferably an electrode that transmits light of 380 to 800 nm.
  • the material for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires and carbon nanotubes can be used.
  • Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form an anode.
  • the cathode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination.
  • a conductive material for the cathode a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of these metals and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light coming to the cathode side is reflected and reflected to the first electrode side, and this light can be reused and absorbed again by the photoelectric conversion layer. Improved and preferable.
  • the cathode may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticles, nanowires, nanostructures, or a nanowire dispersion. If so, a transparent and highly conductive cathode can be formed by a coating method, which is preferable.
  • a metal for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.
  • the cathode side is made light transmissive, for example, a conductive material suitable for the cathode such as aluminum and aluminum alloy, silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the anode By providing a film of the conductive light-transmitting material mentioned in the description, a light-transmitting cathode can be obtained.
  • a conductive material suitable for the cathode such as aluminum and aluminum alloy
  • silver and silver compound is made thin with a film thickness of about 1 to 20 nm
  • the intermediate electrode material required in the case of the tandem structure as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity.
  • Transparent metal oxides such as ITO, AZO, FTO, titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS, polyaniline, etc. ) Can be used.
  • the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted.
  • a transparent resin film from the viewpoint of light weight and flexibility.
  • the material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given. If the resin film transmittance of 80% or more at 0 ⁇ 800 nm), can be preferably applied to a transparent resin film according to the present invention.
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored.
  • the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • the method and process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
  • the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive.
  • Method, spin coating of organic polymer material with high gas barrier property (polyvinyl alcohol, etc.), inorganic thin film with high gas barrier property (silicon oxide, aluminum oxide, etc.) or organic film (parylene etc.) are deposited under vacuum. Examples thereof include a method and a method of laminating these in a composite manner.
  • optical sensor array Next, an optical sensor array to which the bulk heterojunction type organic photoelectric conversion element 10 described above is applied will be described in detail.
  • the optical sensor array is produced by arranging the photoelectric conversion elements in a fine pixel form by utilizing the fact that the bulk heterojunction type organic photoelectric conversion elements generate a current upon receiving light, and projected onto the optical sensor array.
  • FIG. 4 is a diagram showing the configuration of the optical sensor array. 4A is a top view, and FIG. 4B is a cross-sectional view taken along the line AA ′ in FIG. 4A.
  • the optical sensor array 20 is paired with a transparent electrode 22 as a lower electrode, a photoelectric conversion unit 24 that converts light energy into electric energy, and a transparent electrode 22 on a substrate 21 as a holding member.
  • the counter electrode 23 is sequentially laminated.
  • the photoelectric conversion unit 24 includes two layers, a photoelectric conversion layer 24b having a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed, and a buffer layer 24a. In the example shown in FIG. 4, six bulk heterojunction type organic photoelectric conversion elements are formed.
  • the substrate 21, the transparent electrode 22, the photoelectric conversion layer 24 b, and the counter electrode 23 have the same configuration and role as the transparent electrode 12, the photoelectric conversion unit 14, and the counter electrode 13 in the bulk heterojunction photoelectric conversion element 10 described above. It is.
  • the low-molecular compound 12 of the present invention is used as the p-type semiconductor material of the photoelectric conversion layer 24b, and bis-PCBM is used as the n-type semiconductor material, for example.
  • the hole transport layer 24a is made of PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) conductive polymer (trade name Baytron P4083 manufactured by Starck Vitec).
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • Such an optical sensor array 20 was manufactured as follows.
  • An ITO film was formed on the glass substrate by sputtering and processed into a predetermined pattern shape by photolithography.
  • the thickness of the glass substrate was 0.7 mm
  • the thickness of the ITO film was 200 nm
  • the measurement area (light receiving area) of the ITO film after photolithography was 1 mm ⁇ 1 mm.
  • the thickness of the PEDOT-PSS film after drying was 30 nm.
  • a metal mask having a predetermined pattern opening was used, and a lithium fluoride layer having a thickness of 5 nm and an aluminum layer serving as an upper electrode having a thickness of 100 nm were formed on the bulk heterojunction layer by a vapor deposition method.
  • the optical sensor array 20 was produced as described above.
  • the manufactured photosensor array 20 having 2 rows ⁇ 3 columns of pixels is irradiated with light so that only two pixels in the center column are exposed to light, and the 6 pixels are sequentially placed between ⁇ 0.
  • the current value was read by applying a voltage of 5 V, the current was observed only in the pixels that were exposed to light, and no current flowed in the pixels that were not exposed to light. Therefore, it was confirmed that the optical sensor array 20 operates as an optical sensor.
  • Example 1 Preparation of Comparative Organic Photoelectric Conversion Element 1> An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 110 nm (sheet resistance 13 ⁇ / ⁇ ) is patterned to a width of 2 mm using a normal photolithography technique and hydrochloric acid etching, and transparent An electrode was formed.
  • ITO indium tin oxide
  • the patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • Baytron P4083 manufactured by Starck Vitec, which is a conductive polymer, was spin-coated with a film thickness of 30 nm, and then heat-dried at 140 ° C. for 10 minutes in the air.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 140 ° C. for 3 minutes in a nitrogen atmosphere.
  • a liquid was prepared by dissolving 1.0% by mass of P3HT (Plexcore OS2100 manufactured by Plextronics) as a p-type semiconductor material and 1.0% by mass of bis-PCBM (manufactured by Solenne) as an n-type semiconductor material in chlorobenzene. While being filtered through a 0.45 ⁇ m filter, spin coating was performed at 500 rpm for 60 seconds, then at 2200 rpm for 1 second, and heated at room temperature for 30 minutes.
  • P3HT Pexcore OS2100 manufactured by Plextronics
  • bis-PCBM manufactured by Solenne
  • the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus.
  • the element was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then 5 nm of lithium fluoride and 80 nm of Al were evaporated.
  • the heating for 30 minutes was performed at 120 degreeC, and the comparative organic photoelectric conversion element 1 was obtained.
  • the vapor deposition rate was 2 nm / second for all, and the size was 2 mm square.
  • the obtained organic photoelectric conversion element 1 was sealed with an aluminum cap and a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) in a nitrogen atmosphere, and then taken out into the atmosphere to be a solar simulator.
  • a UV curable resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • voltage-current characteristics were measured, and initial conversion efficiency was measured.
  • the initial conversion efficiency at this time was 100
  • the conversion efficiency after 100 hours of irradiation with 100 mW / cm 2 irradiation intensity with the resistance connected between the anode and the cathode was evaluated, and the relative reduction efficiency was calculated. .
  • the obtained organic photoelectric conversion element 2 was sealed with an aluminum can and a UV curable resin in a nitrogen atmosphere, and then taken out into the atmosphere.
  • the solar simulator (AM1.5G) was irradiated with light of 100 mW / cm 2 . Irradiated with intensity, voltage-current characteristics were measured, and initial conversion efficiency was measured. Furthermore, the initial conversion efficiency at this time was set to 100, and the conversion efficiency after 100 hours of irradiation with an irradiation intensity of 100 mW / cm 2 with the resistance connected between the anode and the cathode was evaluated.
  • the organic photoelectric conversion element of the present invention has high efficiency and durability.

Abstract

Provided is an organic photoelectric conversion element having a high conversion efficiency and a high durability.  The organic photoelectric conversion element has a bulk hetero junction layer between a transparent electrode and a pair of electrodes.  The organic photoelectric conversion element contains a chemical compound having a partial structure expressed by general formula (1) given below.

Description

有機光電変換素子、太陽電池及び光センサアレイOrganic photoelectric conversion element, solar cell, and optical sensor array
 本発明は、有機光電変換素子、太陽電池及び光センサアレイに関し、さらに詳しくは、バルクヘテロジャンクション型の有機光電変換素子、この有機光電変換素子を用いた太陽電池、及び光センサアレイに関する。 The present invention relates to an organic photoelectric conversion element, a solar cell, and an optical sensor array, and more particularly to a bulk heterojunction type organic photoelectric conversion element, a solar cell using the organic photoelectric conversion element, and an optical sensor array.
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS等の化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)等が提案・実用化されている。 Due to the recent rise in fossil energy, there is a demand for a system that can generate power directly from natural energy. Solar cells using single-crystal / polycrystalline / amorphous Si, compound-based solar cells such as GaAs and CIGS, or Dye-sensitized photoelectric conversion elements (Gretzel cells) have been proposed and put into practical use.
 しかしながら、これらの太陽電池で発電するコストは未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。 However, the cost of generating electricity with these solar cells is still higher than the price of electricity generated and transmitted using fossil fuels, which has hindered widespread use. In addition, since heavy glass must be used for the substrate, reinforcement work is required at the time of installation, which is one of the causes that increase the power generation cost.
 このような状況に対し、化石燃料による発電コストよりも低コストな発電コストを達成しうる太陽電池として、透明電極と対電極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合されたバルクヘテロジャンクション層を挟んだバルクヘテロジャンクション型光電変換素子が提案されて(例えば、非特許文献1参照)いる。 In such a situation, as a solar cell that can achieve a power generation cost lower than that of fossil fuel, an electron donor layer (p-type semiconductor layer) and an electron acceptor are provided between the transparent electrode and the counter electrode A bulk heterojunction photoelectric conversion element having a bulk heterojunction layer mixed with a layer (n-type semiconductor layer) has been proposed (see, for example, Non-Patent Document 1).
 これらのバルクヘテロジャンクション型太陽電池においては、陽極・陰極以外は塗布プロセスで形成されているため、高速かつ安価な製造が可能であると期待され、前述の発電コストの課題を解決できる可能性がある。さらに、上記のSi系太陽電池・化合物半導体系太陽電池・色素増感太陽電池等と異なり、160℃より高温のプロセスがないため、安価かつ軽量なプラスチック基板上への形成も可能であると期待される。 Since these bulk heterojunction solar cells are formed by a coating process except for the anode and cathode, it is expected that they can be manufactured at high speed and at low cost, and may solve the above-mentioned problem of power generation cost. . Furthermore, unlike the above Si-based solar cells, compound semiconductor-based solar cells, dye-sensitized solar cells, etc., there is no process at a temperature higher than 160 ° C., so it is expected that it can be formed on a cheap and lightweight plastic substrate. Is done.
 なお発電コストには、初期の製造コスト以外にも発電効率及び素子の耐久性も含めて算出されなければならないが、前記非特許文献1では、太陽光スペクトルを効率よく吸収するような、長波な有機高分子を用いることによって、5%を超える変換効率を達成するにいたっている。 In addition to the initial manufacturing cost, the power generation cost must be calculated including the power generation efficiency and the durability of the element. However, in Non-Patent Document 1, a long wave that efficiently absorbs the solar spectrum is used. By using organic polymer, conversion efficiency exceeding 5% has been achieved.
 効率が向上して来た一方、実用化する上では長期にわたって所定の性能を発揮し続ける必要があり、寿命の向上が必須であるが、前述の非特許文献1と同じ材料を用いてタンデム型有機薄膜太陽電池は、100mW/cmの光を100時間当てた後で効率が約60%に低下したと記載されている(例えば、非特許文献2参照)通り、いまだ十分なものとは言えない。 While the efficiency has been improved, it is necessary to continue to exhibit a predetermined performance for a long period of time for practical use, and it is essential to improve the service life, but the tandem type using the same material as the non-patent document 1 described above is required. The organic thin film solar cell is still sufficient as it is described that the efficiency is reduced to about 60% after 100 mW / cm 2 light is applied for 100 hours (see, for example, Non-Patent Document 2). Absent.
 本発明者らは、従来よく使用されているp型半導体材料であるP3HTとn型半導体材料であるPCBMを比較すると、単体ではPCBMの方が移動度が高いことが報告されている(例えば、非特許文献3参照)ことに注目した。 The present inventors have reported that when P3HT, which is a p-type semiconductor material that has been conventionally used, is compared with PCBM, which is an n-type semiconductor material, PCBM alone has higher mobility (for example, It paid attention to (refer nonpatent literature 3).
 すなわち、バルクヘテロジャンクション層において光吸収によって励起子が発生し、p型半導体層とn型半導体層の界面で等しい量の正孔と電子が発生しているにも係らず、p型半導体の移動度が低いために正孔を効率よく取り出せていないということを意味しており、発生した正孔の多くは陽極に到達する前にp型半導体層内で熱等に変換されて失活していると推定され、このような電流として取り出されないキャリアの存在がバルクヘテロジャンクション型光電変換素子の劣化の原因であると本発明者らは推定した。 That is, exciton is generated by light absorption in the bulk heterojunction layer, and even though the same amount of holes and electrons are generated at the interface between the p-type semiconductor layer and the n-type semiconductor layer, the mobility of the p-type semiconductor is increased. This means that holes cannot be taken out efficiently because of low, and most of the generated holes are converted to heat in the p-type semiconductor layer before reaching the anode and deactivated. The present inventors presume that the existence of carriers that cannot be taken out as such a current is a cause of deterioration of the bulk heterojunction photoelectric conversion element.
 したがって、高耐久性の有機薄膜太陽電池を得るためには、p型半導体材料の移動度をこれまで以上に向上させる必要がある。移動度を向上させるためには、例えば有機薄膜トランジスタの領域等では、縮合多環化合物を用いることで化合物のπスタック面積を増大させると言った手法で、高移動度のp型半導体材料が得られている(特許文献1、非特許文献4、5等参照)。 Therefore, in order to obtain a highly durable organic thin film solar cell, it is necessary to improve the mobility of the p-type semiconductor material more than ever. In order to improve mobility, for example, in a region of an organic thin film transistor, a p-type semiconductor material with high mobility can be obtained by a method of increasing the π stack area of the compound by using a condensed polycyclic compound. (See Patent Document 1, Non-Patent Documents 4, 5, etc.).
 他方で、これらの縮合多環型化合物は縮環の形式からフェン系縮環(フェナントレン等の、直線的に縮環していない系列)であり、吸収波長が400nm前後までしかなく、太陽電池用材料として求められる幅広い波長の吸収を行うことができず、これらをそのまま用いても変換効率の高い有機薄膜太陽電池を得ることはできず、太陽電池用に用いるためには、それに即した改良が必要となっていた。 On the other hand, these condensed polycyclic compounds are phen-type condensed rings (series that are not linearly condensed, such as phenanthrene) due to the condensed ring form, and have an absorption wavelength of only around 400 nm, and are for solar cells. Absorption of a wide range of wavelengths required as a material cannot be performed, and even if these are used as they are, an organic thin film solar cell with high conversion efficiency cannot be obtained. It was necessary.
WO2006092134A1パンフレットWO2006092134A1 brochure
 本発明の目的は、高い変換効率を達成可能で、耐久性が高く、安価な製造を可能とする塗布プロセスに対応でき、安価なプラスチック基板上に形成できるように高温での熱処理が不要な有機薄膜太陽電池材料を提供することにある。 The object of the present invention is to achieve a high conversion efficiency, a high durability, a coating process that enables inexpensive manufacturing, and an organic material that does not require heat treatment at a high temperature so that it can be formed on an inexpensive plastic substrate. The object is to provide a thin-film solar cell material.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.透明電極と対電極の間に、バルクヘテロジャンクション層を有し、かつ、下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする有機光電変換素子。 1. An organic photoelectric conversion element comprising a compound having a bulk heterojunction layer between a transparent electrode and a counter electrode and having a partial structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、X及びXはそれぞれ独立に、置換または無置換の窒素原子、酸素原子、炭素原子、硫黄原子、珪素原子、ゲルマニウム原子、及びセレン原子から選ばれる原子を表し、R~R10はそれぞれ独立に、水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、ハロゲン化アルキル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、互いに結合した環構造の基から選ばれる基を表す。また、pは0または1の整数である。)
 2.前記一般式(1)で表される部分構造を有する化合物がp型半導体材料としてバルクヘテロジャンクション層に含まれることを特徴とする前記1に記載の有機光電変換素子。
(Wherein, X 1 and X 2 are independently a substituted or unsubstituted nitrogen atom, an oxygen atom, a carbon atom, a sulfur atom, a silicon atom, germanium atom, and represents an atom selected from a selenium atom, R 1 ~ R 10 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, a halogenated alkyl group, an alkynyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a silyl group, an ether group, or a thioether. Represents a group selected from a group, an amino group, and a ring structure group bonded to each other, and p is an integer of 0 or 1.)
2. 2. The organic photoelectric conversion device according to 1 above, wherein the compound having a partial structure represented by the general formula (1) is contained in a bulk heterojunction layer as a p-type semiconductor material.
 3.前記バルクヘテロジャンクション層が、p型半導体材料として前記一般式(1)で表される部分構造を有する低分子化合物と、n型半導体材料としてフラーレン誘導体とを含有することを特徴とする前記1または2に記載の有機光電変換素子。 3. The bulk heterojunction layer contains a low-molecular compound having a partial structure represented by the general formula (1) as a p-type semiconductor material and a fullerene derivative as an n-type semiconductor material. The organic photoelectric conversion element as described in 2.
 4.前記一般式(1)で表される部分構造を有する化合物が、分子量300~3000の低分子化合物であることを特徴とする前記1~3のいずれか1項に記載の有機光電変換素子。 4. 4. The organic photoelectric conversion device as described in any one of 1 to 3 above, wherein the compound having a partial structure represented by the general formula (1) is a low molecular compound having a molecular weight of 300 to 3000.
 5.前記一般式(1)で表される部分構造を有する低分子化合物におけるR及びRのいずれかが、置換または無置換の複素環基によって置換されていることを特徴とする前記1~4のいずれか1項に記載の有機光電変換素子。 5). Any one of R 2 and R 6 in the low molecular compound having a partial structure represented by the general formula (1) is substituted with a substituted or unsubstituted heterocyclic group, The organic photoelectric conversion element of any one of these.
 6.前記一般式(1)で表される部分構造を有する低分子化合物におけるR及びRのいずれかが、下記一般式(2)~(4)のいずれかで表される複素環基であることを特徴とする前記1~5のいずれか1項に記載の有機光電変換素子。 6). One of R 2 and R 6 in the low molecular compound having the partial structure represented by the general formula (1) is a heterocyclic group represented by any one of the following general formulas (2) to (4). 6. The organic photoelectric conversion device as described in any one of 1 to 5 above, wherein
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、X~Xはそれぞれ独立に、置換または無置換の窒素原子、酸素原子、炭素原子、硫黄原子、珪素原子、ゲルマニウム原子、及びセレン原子から選ばれる原子を表す。R11~R16はそれぞれ独立に、水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、互いに結合した環構造の基から選ばれる基を表す。)
 7.前記一般式(1)で表される部分構造を有する低分子化合物が下記一般式(5)で表される化合物であって、かつ、該化合物をバルクヘテロジャンクション層に含有することを特徴とする前記1~6のいずれか1項に記載の有機光電変換素子。
(Wherein X 3 to X 5 each independently represents an atom selected from a substituted or unsubstituted nitrogen atom, oxygen atom, carbon atom, sulfur atom, silicon atom, germanium atom, and selenium atom; R 11 to R 16 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, Represents a group selected from the group of ring structures bonded to each other.)
7). The low molecular compound having a partial structure represented by the general formula (1) is a compound represented by the following general formula (5), and the compound is contained in a bulk heterojunction layer. 7. The organic photoelectric conversion device according to any one of 1 to 6.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、X及びXは前記一般式(1)におけるX及びXと同義の原子を表し、R、R~R、R~R10は前記一般式(1)におけるR~R10と同義の基を表す。pは前記一般式(1)のpと同義の整数である。A及びAはそれぞれ独立に、前記一般式(2)~(4)で表される複素環基を表す。q、rは0~8の整数を表すが、q+rは1以上の整数である。nは1以上の整数を表す。)
 8.前記一般式(2)~(4)で表される複素環基におけるX~Xで表される原子の少なくとも1つが、硫黄原子であることを特徴とする前記6または7に記載の有機光電変換素子。
(In the formula, X 1 and X 2 represent an atom having the same meaning as X 1 and X 2 in the general formula (1), and R 1 , R 3 to R 5 , and R 7 to R 10 represent the general formula (1). Represents a group having the same meaning as R 1 to R 10 in which p is an integer having the same meaning as p in formula (1), and A 1 and A 2 are each independently the formulas (2) to (4). (Q and r are integers of 0 to 8, q + r is an integer of 1 or more, and n is an integer of 1 or more.)
8). 8. The organic as described in 6 or 7 above, wherein at least one of the atoms represented by X 3 to X 5 in the heterocyclic groups represented by the general formulas (2) to (4) is a sulfur atom Photoelectric conversion element.
 9.前記一般式(5)で表される化合物におけるAで表される複素環基が前記一般式(2)で表される複素環基であり、かつAで表される複素環基が前記一般式(3)または(4)で表される複素環基であって共に含有することを特徴とする前記7または8に記載の有機光電変換素子。 9. A heterocyclic group the heterocyclic group represented by A 1 in the compound represented by the general formula (5) is represented by the general formula (2), and wherein the heterocyclic group represented by A 2 9. The organic photoelectric conversion device as described in 7 or 8 above, which is a heterocyclic group represented by the general formula (3) or (4) and is contained together.
 10.前記一般式(5)で表される化合物におけるA及びAのいずれかが、前記一般式(2)~(4)で表される複素環基であって、かつ、該複素環基のR11~R15で表される置換基の少なくとも1つが、無置換のアルキル基であることを特徴とする前記7~9のいずれか1項に記載の有機光電変換素子。 10. In the compound represented by the general formula (5), any one of A 1 and A 3 is a heterocyclic group represented by the general formulas (2) to (4), and 10. The organic photoelectric conversion device according to any one of 7 to 9, wherein at least one of the substituents represented by R 11 to R 15 is an unsubstituted alkyl group.
 11.前記一般式(1)で表される部分構造を有する化合物、または一般式(5)で表される化合物におけるpが0であることを特徴とする前記1~10のいずれか1項に記載の有機光電変換素子。 11. 11. The compound according to any one of 1 to 10 above, wherein p in the compound having the partial structure represented by the general formula (1) or the compound represented by the general formula (5) is 0. Organic photoelectric conversion element.
 12.前記一般式(1)で表される部分構造を有する化合物、または一般式(5)で表される化合物におけるX及びXで表される原子の少なくともいずれかが、硫黄原子であることを特徴とする前記1~11のいずれか1項に記載の有機光電変換素子。 12 That at least one of the atoms represented by X 1 and X 2 in the compound having the partial structure represented by the general formula (1) or the compound represented by the general formula (5) is a sulfur atom. 12. The organic photoelectric conversion device according to any one of 1 to 11, which is characterized in that
 13.前記一般式(1)で表される部分構造を有する化合物及びフラーレン誘導体を含有するバルクヘテロジャンクション層が、溶液プロセスによって形成されていることを特徴とする前記3~12のいずれか1項に記載の有機光電変換素子。 13. 13. The bulk heterojunction layer containing a compound having a partial structure represented by the general formula (1) and a fullerene derivative is formed by a solution process, Organic photoelectric conversion element.
 14.前記1~13のいずれか1項に記載の有機光電変換素子からなることを特徴とする太陽電池。 14. 14. A solar cell comprising the organic photoelectric conversion device as described in any one of 1 to 13 above.
 15.前記1~13のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。 15. 14. An optical sensor array comprising the organic photoelectric conversion elements according to any one of 1 to 13 arranged in an array.
 本発明により、高い変換効率を達成可能で、耐久性が高く、安価な製造を可能とする塗布プロセスに対応でき、安価なプラスチック基板上に形成できるように高温での熱処理が不溶な有機薄膜太陽電池材料を提供することができた。 According to the present invention, an organic thin film solar that can achieve high conversion efficiency, has high durability, can be applied to a coating process that enables low-cost manufacturing, and is heat-insoluble at high temperatures so that it can be formed on an inexpensive plastic substrate Battery material could be provided.
バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which consists of a bulk hetero junction type organic photoelectric conversion element. 正孔輸送層及び電子輸送層を有する、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which consists of a bulk heterojunction type organic photoelectric conversion element which has a positive hole transport layer and an electron carrying layer. タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which consists of an organic photoelectric conversion element provided with a tandem-type bulk heterojunction layer. 光センサアレイの構成を示す図である。It is a figure which shows the structure of an optical sensor array.
 本発明者らは、上記課題に対して鋭意検討したところ、高い移動度を有するフェン系縮合多環化合物に特定の置換基を有する構造とすることで、これらのフェン系縮合多環化合物であっても長波長まで吸収可能となり、太陽光の利用率が向上して高い変換効率を達成できること、またその剛直・安定な構造から、耐久性についても優れた有機光電変換素子を提供可能であることを見出した。 The inventors of the present invention have made extensive studies on the above problems and found that these phene condensed polycyclic compounds have a structure having a specific substituent in the phene condensed polycyclic compound having high mobility. It can absorb even long wavelengths, can improve the utilization rate of sunlight and achieve high conversion efficiency, and can provide organic photoelectric conversion elements with excellent durability due to its rigid and stable structure. I found.
 本発明をさらに詳しく説明する。 The present invention will be described in further detail.
 (有機光電変換素子及び太陽電池の構成)
 まず、有機光電変換素子の構造について説明する。
(Configuration of organic photoelectric conversion element and solar cell)
First, the structure of the organic photoelectric conversion element will be described.
 図1は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、透明電極12、バルクヘテロジャンクション層の光電変換部14及び対電極13が順次積層されている。 FIG. 1 is a cross-sectional view showing a solar cell comprising a bulk heterojunction organic photoelectric conversion element. In FIG. 1, a bulk heterojunction type organic photoelectric conversion element 10 has a transparent electrode 12, a bulk heterojunction layer photoelectric conversion unit 14, and a counter electrode 13 sequentially stacked on one surface of a substrate 11.
 基板11は、順次積層された透明電極12、光電変換部14及び対電極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、光電変換部14の両面に透明電極12及び対電極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。 The substrate 11 is a member that holds the transparent electrode 12, the photoelectric conversion unit 14, and the counter electrode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member. As the substrate 11, for example, a glass substrate or a resin substrate is used. The substrate 11 is not essential. For example, the bulk heterojunction type organic photoelectric conversion element 10 may be configured by forming the transparent electrode 12 and the counter electrode 13 on both surfaces of the photoelectric conversion unit 14.
 透明電極12は、光電変換部14において光電変換される光を透過させることが可能な電極であり、好ましくは300~800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、またはナノ粒子・ナノワイヤ層、及び導電性高分子を用いることができる。 The transparent electrode 12 is an electrode that can transmit light that is photoelectrically converted in the photoelectric conversion unit 14, and is preferably an electrode that transmits light of 300 to 800 nm. As materials, for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , ZnO, metal thin films such as gold, silver, platinum, or nanoparticle / nanowire layers, and conductive polymers are used. be able to.
 対電極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素、あるいは透明電極12の材料等を用いることができるが、これに限らない。 The counter electrode 13 may be made of metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon, or the material of the transparent electrode 12, but is not limited thereto.
 なお、図1に示すバルクヘテロジャンクション型の有機光電変換素子10では、光電変換部14が透明電極12と対電極13とでサンドイッチされているが、一対の櫛歯状電極を光電変換部14の片面に配置するといった、バックコンタクト型の有機光電変換素子10が構成されてもよい。 In the bulk heterojunction type organic photoelectric conversion element 10 shown in FIG. 1, the photoelectric conversion unit 14 is sandwiched between the transparent electrode 12 and the counter electrode 13, but the pair of comb-like electrodes are arranged on one side of the photoelectric conversion unit 14. The back contact type organic photoelectric conversion element 10 may be configured such that the back contact type organic photoelectric conversion element 10 is disposed.
 光電変換部14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。 The photoelectric conversion unit 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor). Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
 p型半導体材料としては、本発明の化合物が用いられるが、さらに公知の例えば、テトラベンゾポルフィリン誘導体等を併用してもよい。そして、n型半導体材料としては、比較的高い光電変換効率を実現するために、例えば、フラーレン誘導体が用いられる。 As the p-type semiconductor material, the compound of the present invention is used, but a known compound such as a tetrabenzoporphyrin derivative may be used in combination. And as an n-type semiconductor material, in order to implement | achieve comparatively high photoelectric conversion efficiency, a fullerene derivative is used, for example.
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等のいずれでも良いが、本発明においては、製造速度に優れる塗布法が好ましい。 As a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed, any method such as a vapor deposition method and a coating method (including a casting method and a spin coating method) may be used. A coating method that excels in resistance is preferable.
 そして、光電変換部14のバルクヘテロジャンクション層は、光電変換率を向上すべく、製造工程中において所定の温度でアニール処理され、微視的に一部結晶化されていることが好ましい。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。 And it is preferable that the bulk heterojunction layer of the photoelectric conversion part 14 is annealed at a predetermined temperature during the manufacturing process to be partially crystallized in order to improve the photoelectric conversion rate. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
 図1において、基板11を介して透明電極12から入射された光は、光電変換部14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、透明電極12と対電極13の仕事関数が異なる場合では透明電極12と対電極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、透明電極12の仕事関数が対電極13の仕事関数よりも大きい場合では、電子は、透明電極12へ、正孔は、対電極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、透明電極12と対電極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。 In FIG. 1, light incident from the transparent electrode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the photoelectric conversion unit 14, and electrons move from the electron donor to the electron acceptor. Thus, a hole-electron pair (charge separation state) is formed. The generated electric charge is caused by an internal electric field, for example, when the work functions of the transparent electrode 12 and the counter electrode 13 are different, the electrons pass between the electron acceptors due to the potential difference between the transparent electrode 12 and the counter electrode 13, and the holes are , Passed between the electron donors and carried to different electrodes, and photocurrent is detected. For example, when the work function of the transparent electrode 12 is larger than the work function of the counter electrode 13, electrons are transported to the transparent electrode 12 and holes are transported to the counter electrode 13. If the magnitude of the work function is reversed, electrons and holes are transported in the opposite direction. In addition, by applying a potential between the transparent electrode 12 and the counter electrode 13, the transport direction of electrons and holes can be controlled.
 図1に戻って、なお、光電変換部14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。 Returning to FIG. 1, the photoelectric conversion unit 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but the mixing ratio of the electron acceptor and the electron donor is changed. You may comprise by the changed multiple layer.
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。 Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method). Among these, the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency. After coating, it is preferable to perform heating in order to cause removal of residual solvent, moisture and gas, and improvement of mobility and absorption longwave due to crystallization of the semiconductor material.
 また、上述のバルクヘテロジャンクション型の有機光電変換素子10は、順次に基板11上に積層された透明電極12、バルクヘテロジャンクション層の光電変換部14及び対電極13で構成されたが、これに限られず、例えば透明電極12や対電極13と光電変換部14との間に正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、あるいは平滑化層等の他の層を有してバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。これらの中でも、図2で示されるように、バルクヘテロジャンクション層と陽極(通常、透明電極12側)との中間には正孔輸送層17を、陰極(通常、対電極13側)との中間には電子輸送層18を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。 The bulk heterojunction type organic photoelectric conversion element 10 includes the transparent electrode 12, the bulk heterojunction layer photoelectric conversion unit 14 and the counter electrode 13 which are sequentially stacked on the substrate 11, but is not limited thereto. For example, there are other layers such as a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, or a smoothing layer between the transparent electrode 12 or the counter electrode 13 and the photoelectric conversion unit 14 and bulk hetero The junction type organic photoelectric conversion element 10 may be configured. Among these, as shown in FIG. 2, a hole transport layer 17 is placed between the bulk heterojunction layer and the anode (usually the transparent electrode 12 side), and a cathode (usually the counter electrode 13 side). Since it is possible to more efficiently take out the charges generated in the bulk heterojunction layer by forming the electron transport layer 18, it is preferable to have these layers.
 さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極12、第1の光電変換部14′を積層した後、電荷再結合層15を積層した後、第2の光電変換部16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の光電変換部16は、第1の光電変換部14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また、電荷再結合層15の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等が好ましい。 Furthermore, for the purpose of improving the sunlight utilization rate (photoelectric conversion efficiency), a tandem configuration in which such photoelectric conversion elements are stacked may be employed. FIG. 3 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element including a tandem bulk heterojunction layer. In the case of the tandem configuration, the transparent electrode 12 and the first photoelectric conversion unit 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion unit 16, and then the counter electrode. By stacking 13, a tandem configuration can be obtained. The second photoelectric conversion unit 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion unit 14 'or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there. The material of the charge recombination layer 15 is preferably a layer using a compound having both transparency and conductivity, such as transparent metal oxides such as ITO, AZO, FTO, and titanium oxide, Ag, Al, and Au. A very thin metal layer such as PEDOT: PSS or a conductive polymer material such as polyaniline is preferable.
 以下に、これらの層を構成する材料について述べる。 The materials that make up these layers are described below.
 〔p型半導体材料〕
 まず、一般式(1)で表される部分構造を有する化合物について説明する。
[P-type semiconductor materials]
First, the compound having the partial structure represented by the general formula (1) will be described.
 本発明において、一般式(1)で示される部分構造を有する低分子化合物、あるいは、前記一般式(1)で表される部分構造、における「部分構造」とは、一般式(1)のR~R10の一部を結合手に置換して、さらに他の化学構造と結合されている化合物であるということを表す。 In the present invention, the “partial structure” in the low molecular weight compound having the partial structure represented by the general formula (1) or the partial structure represented by the general formula (1) is R in the general formula (1). A part of 1 to R 10 is substituted with a bond to indicate that the compound is further bonded to another chemical structure.
 前記一般式(1)において、X及びXはそれぞれ独立に、置換または無置換の窒素原子、酸素原子、炭素原子、硫黄原子、珪素原子、ゲルマニウム原子、及びセレン原子から選ばれる原子を表すが、好ましくは窒素原子、酸素原子、硫黄原子であり、より好ましくは硫黄原子である。これは、硫黄原子は硫黄原子同士の相互作用によって結晶化が促進されたり、高い移動度が得られる傾向があるためである。 In the general formula (1), X 1 and X 2 each independently represent an atom selected from a substituted or unsubstituted nitrogen atom, oxygen atom, carbon atom, sulfur atom, silicon atom, germanium atom, and selenium atom. Is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a sulfur atom. This is because sulfur atoms tend to be crystallized or have high mobility due to the interaction between sulfur atoms.
 R~R10はそれぞれ独立に、水素原子、ハロゲン原子、置換または無置換のアルキル基、ハロゲン化アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、互いに結合した環構造、及び、互いに結合した芳香族環構造から選ばれる基を表す。より好ましくは置換または無置換のアルキル基、ハロゲン化アルキル基、アリール基、ヘテロアリール基である。特に好ましくはR及びRのいずれかが、置換または無置換のアリール基またはヘテロアリール基から選ばれる置換基によって置換されている化合物である。これは、この位置でπ電子系置換基で置換されることによってπ共役長が伸び、フェン系化合物のデメリットである吸収波長の短さが改善されるためである。 R 1 to R 10 are each independently a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, halogenated alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether And a group selected from a group, a thioether group, an amino group, a ring structure bonded to each other, and an aromatic ring structure bonded to each other. More preferred are a substituted or unsubstituted alkyl group, a halogenated alkyl group, an aryl group, and a heteroaryl group. Particularly preferred is a compound in which any of R 2 and R 6 is substituted with a substituent selected from a substituted or unsubstituted aryl group or heteroaryl group. This is because substitution at this position with a π-electron-based substituent increases the π-conjugated length and improves the short absorption wavelength, which is a disadvantage of the phen-based compound.
 中でも、一般式(2)~(4)で表されるような、5員環のヘテロアリール基によって置換されていることが好ましい。これは、これらの5員環芳香族環のほうが芳香族環同士の立体障害が小さく、前記一般式(1)で表される部分構造との平面性が高くなり、ひいては長波まで光を吸収し、移動度も高い化合物を得られるためである。また、pは0または1の整数である。 In particular, it is preferably substituted with a 5-membered heteroaryl group represented by the general formulas (2) to (4). This is because these five-membered aromatic rings have less steric hindrance between the aromatic rings, increase the planarity with the partial structure represented by the general formula (1), and absorb light up to long waves. This is because a compound having high mobility can be obtained. P is an integer of 0 or 1.
 一般式(2)~(4)において、X~Xはそれぞれ独立に、窒素原子、酸素原子、炭素原子、硫黄原子、珪素原子、ゲルマニウム原子、及びセレン原子から選ばれる原子を表すが、好ましくは窒素原子、酸素原子、硫黄原子であり、より好ましくは硫黄原子である。 In the general formulas (2) to (4), X 3 to X 5 each independently represents an atom selected from a nitrogen atom, an oxygen atom, a carbon atom, a sulfur atom, a silicon atom, a germanium atom, and a selenium atom, Preferably they are a nitrogen atom, an oxygen atom, and a sulfur atom, More preferably, it is a sulfur atom.
 R11~R16はそれぞれ独立に、水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、互いに結合した環構造の基、及び、互いに結合した芳香族環構造から選ばれる基から選ばれる基を表す。好ましくは置換または無置換のアルキル基、ハロゲン化アルキル基であり、より好ましくは無置換のアルキル基、ハロゲン化アルキル基である。 R 11 to R 16 are each independently a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, A group selected from an amino group, a group having a ring structure bonded to each other, and a group selected from an aromatic ring structure bonded to each other. A substituted or unsubstituted alkyl group and a halogenated alkyl group are preferable, and an unsubstituted alkyl group and a halogenated alkyl group are more preferable.
 また、前記一般式(1)で表される部分構造を有する化合物は、低分子化合物であることが好ましい。なお本発明において低分子化合物とは、化合物の分子量に分布のない、単一分子であることを意味する。他方、高分子化合物とは、所定のモノマーを反応させることによって一定の分子量分布を有する化合物の集合体であることを意味する。しかし、実用上分子量によって定義をする際には、好ましくは分子量が3000以下の化合物を低分子化合物と区分する。より好ましくは2000以下、さらに好ましくは1500以下である。他方下限はないが、揮発せずに安定な薄膜を形成しうる化合物として、実用上300以上の分子量を有していることが好ましい。なお、分子量はマススペクトルやゲルパーミエーションクロマトグラフィー(GPC)等によって測定することができる。このような分子量分布がなく、結晶性の高い低分子化合物を用いることで、より高い移動度を有するバルクヘテロジャンクション層を形成することができる。 The compound having a partial structure represented by the general formula (1) is preferably a low molecular compound. In the present invention, the low molecular weight compound means a single molecule having no distribution in the molecular weight of the compound. On the other hand, the polymer compound means an aggregate of compounds having a certain molecular weight distribution by reacting a predetermined monomer. However, in practical terms, when defining by molecular weight, a compound having a molecular weight of 3000 or less is preferably classified as a low molecular compound. More preferably, it is 2000 or less, More preferably, it is 1500 or less. On the other hand, although there is no lower limit, it is preferable that the compound has a molecular weight of 300 or more practically as a compound capable of forming a stable thin film without volatilization. The molecular weight can be measured by mass spectrum or gel permeation chromatography (GPC). By using such a low molecular weight compound having no molecular weight distribution and high crystallinity, a bulk heterojunction layer having higher mobility can be formed.
 さらに好ましくは、一般式(1)で表される部分構造を有する低分子化合物は、前記一般式(5)で表される化合物である。前述の通り、5員環ヘテロアリール基のほうが長波化の点で優位であるが、他方で芳香族環に化学的に活性な部位が存在し(例えば、チオフェンの2,5位等)、これらが、キャリアが電極に到達せずに失活する際に劣化することがある。このようなことを防ぐため、5員環ヘテロアリール基の末端を、最も安定な芳香族環であるフェニル基によって置換することで、化合物の安定性を大きく向上させることができ、ひいては光電変換素子の耐久性を向上させることができる。 More preferably, the low molecular compound having a partial structure represented by the general formula (1) is a compound represented by the general formula (5). As described above, the 5-membered heteroaryl group is more advantageous in terms of longer wave length, but on the other hand, there is a chemically active site in the aromatic ring (for example, the 2,5-position of thiophene). However, the carrier may deteriorate when it deactivates without reaching the electrode. In order to prevent such a situation, the stability of the compound can be greatly improved by replacing the terminal of the 5-membered heteroaryl group with a phenyl group which is the most stable aromatic ring. The durability of can be improved.
 一般式(5)において、X及びXは前記一般式(1)におけるX及びXと同義の原子を表し、R~R10は前記一般式(1)におけるR~R10と同義の基を表し、好ましい原子及び基も、上述したX及びXの原子と、R~R10の基と同一である。pは前記一般式(1)のpと同義の整数である。nは1以上の整数を表す。 In the general formula (5), X 1 and X 2 represents X 1 and X 2 synonymous atoms in the general formula (1), R 1 ~ R 1 ~ R 10 R 10 is the formula in (1) The preferred atoms and groups are the same as the above-described atoms X 1 and X 2 and the groups R 1 to R 10 . p is an integer having the same meaning as p in the general formula (1). n represents an integer of 1 or more.
 A及びAはそれぞれ独立に、前記一般式(2)~(4)で表される複素環基を表すが、好ましくはA1が一般式(3)、(4)で表される電子吸引性のヘテロアリール基であり、A2が一般式(2)で表される電子供与性のヘテロアリール基である化合物である。前記一般式(1)で表される構造も、通常電子供与性の部分構造であるため、このような構造とすることで電子供与性構造と電子受容性構造が交互に連結され、分子内電荷移動を形成しやすくなり、長波まで吸収可能な化合物となるため、好ましい。 A 1 and A 2 each independently represent a heterocyclic group represented by the general formulas (2) to (4), and preferably A1 represents an electron withdrawing represented by the general formulas (3) and (4). A compound in which A2 is an electron-donating heteroaryl group represented by the general formula (2). Since the structure represented by the general formula (1) is also usually an electron-donating partial structure, the electron-donating structure and the electron-accepting structure are alternately connected by this structure, and the intramolecular charge This is preferable because it is easy to form movement and becomes a compound that can absorb even long waves.
 また、一般式(2)及び(3)で表されるヘテロアリール基は、R11~R15の少なくとも一箇所がアルキル基によって置換されていることが好ましい。アルキル基で置換することで、化合物の溶解性が向上し、溶液プロセスによってバルクヘテロジャンクション層を形成することがより容易となる。また、アルキル鎖同士がパッキングしようとする、いわゆるファスナー効果を用いることによって化合物の結晶性が増大し、より高い光電変換効率が得られるようになるといった効果もある。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられるが、前記のファスナー効果を得るためにはC6~C20の直鎖アルキル基(n-ヘキシル基、n-オクチル基、n-ドデシル基等)を用いることが好ましい。 In addition, in the heteroaryl group represented by the general formulas (2) and (3), at least one of R11 to R15 is preferably substituted with an alkyl group. Substitution with an alkyl group improves the solubility of the compound and makes it easier to form a bulk heterojunction layer by a solution process. Moreover, there is an effect that the crystallinity of the compound is increased by using a so-called fastener effect in which alkyl chains try to pack each other, and higher photoelectric conversion efficiency can be obtained. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, 2-ethylhexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, etc. In order to obtain the above-mentioned fastener effect, it is preferable to use a C6 to C20 linear alkyl group (n-hexyl group, n-octyl group, n-dodecyl group, etc.).
 以下に、本発明の一般式(1)で表される部分構造を有する低分子化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、前述の非特許文献4、5を参考として合成することができる。 Specific examples of the low molecular weight compound having the partial structure represented by the general formula (1) of the present invention are shown below, but the present invention is not limited to these. These compounds can be synthesized with reference to Non-Patent Documents 4 and 5 described above.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 〔n型半導体材料〕
 本発明の有機光電変換素子は、n型半導体材料及びp型半導体材料を混合したバルクヘテロジャンクション層に適用することが好ましく、p型半導体材料として本発明の低分子化合物を用いればよく、n型半導体材料としては特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
[N-type semiconductor materials]
The organic photoelectric conversion element of the present invention is preferably applied to a bulk heterojunction layer in which an n-type semiconductor material and a p-type semiconductor material are mixed, and the low molecular compound of the present invention may be used as the p-type semiconductor material. The material is not particularly limited. For example, fullerene, octaazaporphyrin and the like, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalene tetracarboxylic anhydride, naphthalene tetracarboxylic diimide, perylene tetra Examples thereof include aromatic carboxylic acid anhydrides such as carboxylic acid anhydrides and perylene tetracarboxylic acid diimides, and polymer compounds containing the imidized product thereof as a skeleton.
 しかし、本発明のチオフェン含有縮合環を有する材料をp型半導体材料として用いる場合、効率的な電荷分離を行えるフラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。 However, when the material having a thiophene-containing fused ring of the present invention is used as a p-type semiconductor material, a fullerene derivative capable of efficient charge separation is preferred. Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), and the like. Partially by hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, etc. Examples thereof include substituted fullerene derivatives.
 中でも[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。 Among them, [6,6] -phenyl C61-butyric acid methyl ester (abbreviation PCBM), [6,6] -phenyl C61-butyric acid-n-butyl ester (PCBnB), [6,6] -phenyl C61-buty Rick acid-isobutyl ester (PCBiB), [6,6] -phenyl C61-butyric acid-n-hexyl ester (PCBH), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A 2006-199674, metallocene fullerenes such as JP-A 2008-130889, and cyclics such as US Pat. No. 7,329,709. It is preferable to use a fullerene derivative having a substituent and having improved solubility, such as fullerene having an ether group.
 〔バルクヘテロジャンクション層の形成方法〕
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法のようなドライプロセス、塗布法(キャスト法、スピンコート法を含む)のような溶液プロセス等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、溶液プロセスが好ましい。また溶液プロセスは、製造速度にも優れている。
[Method of forming bulk heterojunction layer]
Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a dry process such as a vapor deposition method and a solution process such as a coating method (including a cast method and a spin coating method). be able to. Among these, the solution process is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency. The solution process is also excellent in production rate.
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。 After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture, and gas, and improvement of mobility and absorption of long wave by crystallization of the semiconductor material. When annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
 光電変換部(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいし、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。なおp型半導体材料とn型半導体材料の混合比は任意であるが、好ましくはp:n=1:10~10:1である。基本的にはp型材料が光を吸収するため、なるべくp型半導体材料の比率が高いことが好ましいが、他方で有機光電変換素子の正孔移動度と電子移動度はp型材料とn型材料の混合比にも相関するため、より好ましくは2:1~1:5、さらに好ましくは5:4~1:2である。 The photoelectric conversion part (bulk heterojunction layer) 14 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, or a plurality of the mixture ratios of the electron acceptor and the electron donor being changed. It may consist of layers. The mixing ratio of the p-type semiconductor material and the n-type semiconductor material is arbitrary, but is preferably p: n = 1: 10 to 10: 1. Basically, since the p-type material absorbs light, it is preferable that the ratio of the p-type semiconductor material is as high as possible. On the other hand, the hole mobility and electron mobility of the organic photoelectric conversion element are p-type material and n-type. Since it also correlates with the mixing ratio of the materials, it is more preferably 2: 1 to 1: 5, and further preferably 5: 4 to 1: 2.
 〔電子輸送層・正孔ブロック層〕
 本発明の有機光電変換素子は、光電変換層と陰極との中間に電子輸送層を形成することで、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
[Electron transport layer / hole blocking layer]
In the organic photoelectric conversion element of the present invention, by forming an electron transport layer between the photoelectric conversion layer and the cathode, it becomes possible to more efficiently take out the charges generated in the photoelectric conversion layer. It is preferable to have.
 電子輸送層としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、光電変換層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。より好ましくは、n型半導体のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。 As the electron transport layer, octaazaporphyrin and p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.) can be used. Similarly, the HOMO level of the p-type semiconductor material used for the photoelectric conversion layer is used. The electron transport layer having the HOMO level deeper than the level is given a hole blocking function having a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side. More preferably, a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer. Moreover, it is preferable to use a compound with high electron mobility from the characteristic of transporting electrons.
 このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用する方が好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、光電変換層に用いたn型半導体材料単体からなる層を用いることもできる。 Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function. Examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide. N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. In addition, a layer made of a single n-type semiconductor material used for the photoelectric conversion layer can also be used.
 これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。 The means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
 〔正孔輸送層・電子ブロック層〕
 本発明の有機光電変換素子は、光電変換層と陽極との中間には正孔輸送層を、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
[Hole Transport Layer / Electron Blocking Layer]
The organic photoelectric conversion element of the present invention has a hole transport layer between the photoelectric conversion layer and the anode, and it is possible to take out charges generated in the photoelectric conversion layer more efficiently. It is preferable.
 これらの層を構成する材料としては、例えば、正孔輸送層としては、スタルクヴイテック製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、国際公開第06/019270号パンフレット等に記載のシアン化合物、などを用いることができる。なお、光電変換層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、光電変換層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用する方が好ましい。 Examples of the material constituting these layers include, as the hole transport layer, PEDOT such as Stark Vuitec, trade name BaytronP, polyaniline and its doped material, cyan described in International Publication No. 06/019270, etc. Compounds, etc. can be used. Note that the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the photoelectric conversion layer has a rectifying effect that prevents electrons generated in the photoelectric conversion layer from flowing to the anode side. It has an electronic block function. Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
 このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、光電変換層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。光電変換層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。 As such materials, triarylamine compounds described in JP-A-5-271166, metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used. A layer made of a single p-type semiconductor material used for the photoelectric conversion layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
 〔その他の層〕
 エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
[Other layers]
For the purpose of improving energy conversion efficiency and improving the lifetime of the element, a structure having various intermediate layers in the element may be employed. Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
 〔電極〕
 本発明の有機光電変換素子においては、少なくとも陽極と陰極とを有する。また、タンデム構成をとる場合には、中間電極を用いることでタンデム構成を達成することができる。なお、本発明においては、主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。
〔electrode〕
The organic photoelectric conversion element of the present invention has at least an anode and a cathode. Moreover, when taking a tandem configuration, the tandem configuration can be achieved by using an intermediate electrode. In the present invention, an electrode through which holes mainly flow is called an anode, and an electrode through which electrons mainly flow is called a cathode.
 また、透光性があるかどうかといった機能から、透光性のある電極を透明電極と呼び、透光性のない電極を対電極を呼び分ける場合がある。通常、陽極は透光性のある透明電極であり、陰極は透光性のない対電極である。 Also, there is a case where a translucent electrode is referred to as a transparent electrode and a non-translucent electrode is referred to as a counter electrode because of the function of whether or not it has translucency. Usually, the anode is a translucent transparent electrode, and the cathode is a non-translucent counter electrode.
 〔陽極〕
 本発明の陽極は、好ましくは380~800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO2、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ用いることができる。
〔anode〕
The anode of the present invention is preferably an electrode that transmits light of 380 to 800 nm. As the material, for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires and carbon nanotubes can be used.
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて陽極とすることもできる。 Also selected from the group consisting of derivatives of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene. Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form an anode.
 〔陰極〕
 陰極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。陰極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
〔cathode〕
The cathode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination. As a conductive material for the cathode, a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 Among these, from the viewpoint of electron extraction performance and durability against oxidation, etc., a mixture of these metals and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 陰極の導電材として金属材料を用いれば、陰極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。 If a metal material is used as the conductive material of the cathode, the light coming to the cathode side is reflected and reflected to the first electrode side, and this light can be reused and absorbed again by the photoelectric conversion layer. Improved and preferable.
 また、陰極は、金属(例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤ、ナノ構造体であってもよく、ナノワイヤの分散物であれば、透明で導電性の高い陰極を塗布法により形成でき好ましい。 The cathode may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticles, nanowires, nanostructures, or a nanowire dispersion. If so, a transparent and highly conductive cathode can be formed by a coating method, which is preferable.
 また、陰極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の陰極に適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記陽極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性陰極とすることができる。 Further, when the cathode side is made light transmissive, for example, a conductive material suitable for the cathode such as aluminum and aluminum alloy, silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the anode By providing a film of the conductive light-transmitting material mentioned in the description, a light-transmitting cathode can be obtained.
 〔中間電極〕
 また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記陽極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
[Intermediate electrode]
The intermediate electrode material required in the case of the tandem structure as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity. Transparent metal oxides such as ITO, AZO, FTO, titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS, polyaniline, etc. ) Can be used.
 なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。 In addition, in the hole transport layer and the electron transport layer described above, there is also a combination that works as an intermediate electrode (charge recombination layer) by appropriately combining and laminating. Is preferable.
 〔基板〕
 基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。
〔substrate〕
When light that is photoelectrically converted enters from the substrate side, the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted. As the substrate, for example, a glass substrate, a resin substrate and the like are preferably mentioned, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
 例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。 For example, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given. If the resin film transmittance of 80% or more at 0 ~ 800 nm), can be preferably applied to a transparent resin film according to the present invention.
 中でも、透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 Among them, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。 Further, for the purpose of suppressing the permeation of oxygen and water vapor, a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
 〔光学機能層〕
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けてもよい。
(Optical function layer)
The organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Various known antireflection layers can be provided as the antireflection layer. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ˜1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 As the condensing layer, for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it is smaller than this, the effect of diffraction is generated and colored.
 また、光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤ等を無色透明なポリマーに分散した層などを挙げることができる。 Examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
 〔パターニング〕
 本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
[Patterning]
The method and process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
 光電変換層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。 If it is a soluble material such as a photoelectric conversion layer and a transport layer, only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc., or patterning is directly performed at the time of coating using a method such as an ink jet method or screen printing. May be.
 電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチングまたはリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。 In the case of an insoluble material such as an electrode material, the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off. Alternatively, the pattern may be formed by transferring a pattern formed on another substrate.
 〔封止〕
 また、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子などで公知の手法によって封止することが好ましい。
[Sealing]
Moreover, since the produced organic photoelectric conversion element is not deteriorated by oxygen, moisture, or the like in the environment, it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method.
 例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化珪素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化珪素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。 For example, a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive. Method, spin coating of organic polymer material with high gas barrier property (polyvinyl alcohol, etc.), inorganic thin film with high gas barrier property (silicon oxide, aluminum oxide, etc.) or organic film (parylene etc.) are deposited under vacuum. Examples thereof include a method and a method of laminating these in a composite manner.
 (光センサアレイ)
 次に、以上説明したバルクヘテロジャンクション型の有機光電変換素子10を応用した光センサアレイについて詳細に説明する。光センサアレイは、前記のバルクヘテロジャンクション型の有機光電変換素子が受光によって電流を発生することを利用して、前記の光電変換素子を細かく画素状に並べて作製し、光センサアレイ上に投影された画像を電気的な信号に変換する効果を有するセンサである。
(Optical sensor array)
Next, an optical sensor array to which the bulk heterojunction type organic photoelectric conversion element 10 described above is applied will be described in detail. The optical sensor array is produced by arranging the photoelectric conversion elements in a fine pixel form by utilizing the fact that the bulk heterojunction type organic photoelectric conversion elements generate a current upon receiving light, and projected onto the optical sensor array. A sensor having an effect of converting an image into an electrical signal.
 図4は、光センサアレイの構成を示す図である。図4(a)は、上面図であり、図4(b)は、図4(a)のA-A′線断面図である。 FIG. 4 is a diagram showing the configuration of the optical sensor array. 4A is a top view, and FIG. 4B is a cross-sectional view taken along the line AA ′ in FIG. 4A.
 図4において、光センサアレイ20は、保持部材としての基板21上に、下部電極としての透明電極22、光エネルギーを電気エネルギーに変換する光電変換部24及び透明電極22と対をなし、上部電極としての対電極23が順次積層されたものである。光電変換部24は、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有してなる光電変換層24bと、バッファ層24aとの2層で構成される。図4に示す例では、6個のバルクヘテロジャンクション型の有機光電変換素子が形成されている。 In FIG. 4, the optical sensor array 20 is paired with a transparent electrode 22 as a lower electrode, a photoelectric conversion unit 24 that converts light energy into electric energy, and a transparent electrode 22 on a substrate 21 as a holding member. The counter electrode 23 is sequentially laminated. The photoelectric conversion unit 24 includes two layers, a photoelectric conversion layer 24b having a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed, and a buffer layer 24a. In the example shown in FIG. 4, six bulk heterojunction type organic photoelectric conversion elements are formed.
 これら基板21、透明電極22、光電変換層24b及び対電極23は、前述したバルクヘテロジャンクション型の光電変換素子10における透明電極12、光電変換部14及び対電極13と同等の構成及び役割を示すものである。 The substrate 21, the transparent electrode 22, the photoelectric conversion layer 24 b, and the counter electrode 23 have the same configuration and role as the transparent electrode 12, the photoelectric conversion unit 14, and the counter electrode 13 in the bulk heterojunction photoelectric conversion element 10 described above. It is.
 基板21には、例えば、ガラスが用いられ、透明電極22には、例えば、ITOが用いられ、対電極23には、例えば、アルミニウムが用いられる。そして、光電変換層24bのp型半導体材料には、本発明の低分子化合物12が用いられ、n型半導体材料には、例えば、bis-PCBMが用いられる。また、正孔輸送層24aには、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)導電性高分子(スタルクヴイテック社製、商品名BaytronP4083)が用いられる。このような光センサアレイ20は、次のようにして製作された。 For example, glass is used for the substrate 21, ITO is used for the transparent electrode 22, and aluminum is used for the counter electrode 23, for example. The low-molecular compound 12 of the present invention is used as the p-type semiconductor material of the photoelectric conversion layer 24b, and bis-PCBM is used as the n-type semiconductor material, for example. The hole transport layer 24a is made of PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) conductive polymer (trade name Baytron P4083 manufactured by Starck Vitec). Such an optical sensor array 20 was manufactured as follows.
 ガラス基板上にスパッタリングによりITO膜を形成し、フォトリソグラフィにより所定のパターン形状に加工した。ガラス基板の厚さは、0.7mm、ITO膜の厚さは、200nm、フォトリソグラフィ後のITO膜における測定部面積(受光面積)は、1mm×1mmであった。次に、このガラス基板21上に、スピンコート法(条件;回転数=1000rpm、フィルター径=1.2μm)によりPEDOT-PSS膜を形成した。その後、該基板を、オーブンで140℃、10分加熱し、乾燥させた。乾燥後のPEDOT-PSS膜の厚さは30nmであった。 An ITO film was formed on the glass substrate by sputtering and processed into a predetermined pattern shape by photolithography. The thickness of the glass substrate was 0.7 mm, the thickness of the ITO film was 200 nm, and the measurement area (light receiving area) of the ITO film after photolithography was 1 mm × 1 mm. Next, a PEDOT-PSS film was formed on the glass substrate 21 by spin coating (conditions: rotational speed = 1000 rpm, filter diameter = 1.2 μm). Thereafter, the substrate was heated in an oven at 140 ° C. for 10 minutes and dried. The thickness of the PEDOT-PSS film after drying was 30 nm.
 次に、上記PEDOT-PSS膜の上に、例示化合物12とBis-PCBMの1:1混合物からなるバルクヘテロジャンクション層を、スピンコート法(条件;回転数=500rpm、フィルター径=0.4μm)により形成した。バルクヘテロジャンクション層の形成後、窒素ガス雰囲気下においてオーブンで140℃、30分加熱しアニール処理を施した。 Next, a bulk heterojunction layer made of a 1: 1 mixture of Exemplified Compound 12 and Bis-PCBM is formed on the PEDOT-PSS film by spin coating (conditions: rotational speed = 500 rpm, filter diameter = 0.4 μm). Formed. After the formation of the bulk heterojunction layer, annealing was performed by heating in an oven at 140 ° C. for 30 minutes in a nitrogen gas atmosphere.
 その後、所定のパターン開口を備えたメタルマスクを用い、バルクヘテロジャンクション層の上に、バッファ層としてフッ化リチウムを5nm、上部電極としてのアルミニウム層を100nm、蒸着法により形成した。 Thereafter, a metal mask having a predetermined pattern opening was used, and a lithium fluoride layer having a thickness of 5 nm and an aluminum layer serving as an upper electrode having a thickness of 100 nm were formed on the bulk heterojunction layer by a vapor deposition method.
 その後、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂を用いて封止を行った。以上により、光センサアレイ20が作製された。 Thereafter, sealing was performed using an aluminum cap and a UV curable resin in a nitrogen atmosphere. The optical sensor array 20 was produced as described above.
 作製された、2行×3列の画素を有する光センサアレイ20に対し、中央の列の2画素のみに光があたる様に光を照射し、6画素に順次陽極・陰極間に-0.5Vの電圧を印加して電流値を読み取ったところ、光のあたっている画素のみで電流が観測され、光のあたっていない画素では電流が流れなかった。したがって、前記光センサアレイ20は、光センサとして動作することを確認できた。 The manufactured photosensor array 20 having 2 rows × 3 columns of pixels is irradiated with light so that only two pixels in the center column are exposed to light, and the 6 pixels are sequentially placed between −0. When the current value was read by applying a voltage of 5 V, the current was observed only in the pixels that were exposed to light, and no current flowed in the pixels that were not exposed to light. Therefore, it was confirmed that the optical sensor array 20 operates as an optical sensor.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 <比較の有機光電変換素子1の作製>
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を110nm堆積したもの(シート抵抗13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて2mm幅にパターニングして、透明電極を形成した。
Example 1
<Preparation of Comparative Organic Photoelectric Conversion Element 1>
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 110 nm (sheet resistance 13 Ω / □) is patterned to a width of 2 mm using a normal photolithography technique and hydrochloric acid etching, and transparent An electrode was formed.
 パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。 The patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
 この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を30nmの膜厚でスピンコートした後、140℃で大気中10分間加熱乾燥した。 On this transparent substrate, Baytron P4083 (manufactured by Starck Vitec), which is a conductive polymer, was spin-coated with a film thickness of 30 nm, and then heat-dried at 140 ° C. for 10 minutes in the air.
 これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。クロロベンゼンにp型半導体材料として、P3HT(プレクストロニクス社製プレックスコアOS2100)を1.0質量%、n型半導体材料としてbis-PCBM(Solenne社製)を1.0質量%溶解した液を作製し、0.45μmのフィルターでろ過をかけながら500rpmで60秒、次いで2200rpmで1秒間のスピンコートを行い、室温で30分加熱した。 After this, the substrate was brought into the glove box and worked in a nitrogen atmosphere. First, the substrate was heat-treated at 140 ° C. for 3 minutes in a nitrogen atmosphere. A liquid was prepared by dissolving 1.0% by mass of P3HT (Plexcore OS2100 manufactured by Plextronics) as a p-type semiconductor material and 1.0% by mass of bis-PCBM (manufactured by Solenne) as an n-type semiconductor material in chlorobenzene. While being filtered through a 0.45 μm filter, spin coating was performed at 500 rpm for 60 seconds, then at 2200 rpm for 1 second, and heated at room temperature for 30 minutes.
 次に、上記一連の有機層を成膜した基板を真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまでに真空蒸着機内を減圧した後、フッ化リチウムを5nm、Alを80nm蒸着した。最後に120℃で30分間の加熱を行い、比較の有機光電変換素子1を得た。なお蒸着速度はいずれも2nm/秒で蒸着し、2mm角のサイズとした。 Next, the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus. The element was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 −3 Pa or less, and then 5 nm of lithium fluoride and 80 nm of Al were evaporated. Finally, the heating for 30 minutes was performed at 120 degreeC, and the comparative organic photoelectric conversion element 1 was obtained. The vapor deposition rate was 2 nm / second for all, and the size was 2 mm square.
 得られた有機光電変換素子1は、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後に大気下に取り出し、ソーラシミュレーターの光を100mW/cm(AM1.5G)の照射強度で照射して、電圧-電流特性を測定し、初期の変換効率を測定した。さらに、この時の初期変換効率を100とし、陽極と陰極の間に抵抗を接続したまま100mW/cmの照射強度で100h照射し続けた後の変換効率を評価し、相対低下効率を算出した。 The obtained organic photoelectric conversion element 1 was sealed with an aluminum cap and a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) in a nitrogen atmosphere, and then taken out into the atmosphere to be a solar simulator. Was irradiated at an irradiation intensity of 100 mW / cm 2 (AM1.5G), voltage-current characteristics were measured, and initial conversion efficiency was measured. Further, assuming that the initial conversion efficiency at this time was 100, the conversion efficiency after 100 hours of irradiation with 100 mW / cm 2 irradiation intensity with the resistance connected between the anode and the cathode was evaluated, and the relative reduction efficiency was calculated. .
 <本発明の有機光電変換素子2~8の作製>
 上記有機光電変換素子1の作製において、p型半導体材料を、P3HT(プレクストロニクス社製プレックスコアOS2100、比較化合物)に代えて、表1に記載した本発明の例示化合物に変更した以外は、比較の有機光電変換素子1と同様にして有機光電変換素子2~8を得た。なお、有機光電変換素子8に使用した高分子材料は、分子量5500であった。
<Production of Organic Photoelectric Conversion Elements 2 to 8 of the Present Invention>
In the production of the organic photoelectric conversion element 1, the p-type semiconductor material was replaced with P3HT (Plextronics Plex Core OS2100, comparative compound), except that the exemplary compounds of the present invention described in Table 1 were changed. Organic photoelectric conversion elements 2 to 8 were obtained in the same manner as the organic photoelectric conversion element 1 of The polymer material used for the organic photoelectric conversion element 8 had a molecular weight of 5500.
 得られた有機光電変換素子2は、窒素雰囲気下でアルミニウム缶とUV硬化樹脂を用いて封止を行った後に大気下に取り出し、ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧-電流特性を測定し、初期の変換効率を測定した。さらに、この時の初期変換効率を100とし、陽極と陰極の間に抵抗を接続したまま100mW/cmの照射強度で100h照射し続けた後の変換効率を評価した。 The obtained organic photoelectric conversion element 2 was sealed with an aluminum can and a UV curable resin in a nitrogen atmosphere, and then taken out into the atmosphere. The solar simulator (AM1.5G) was irradiated with light of 100 mW / cm 2 . Irradiated with intensity, voltage-current characteristics were measured, and initial conversion efficiency was measured. Furthermore, the initial conversion efficiency at this time was set to 100, and the conversion efficiency after 100 hours of irradiation with an irradiation intensity of 100 mW / cm 2 with the resistance connected between the anode and the cathode was evaluated.
 上記の結果を、表1にまとめた。 The above results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1から、本発明の有機光電変換素子が、高い効率及び耐久性を有していることが分かる。 From Table 1, it can be seen that the organic photoelectric conversion element of the present invention has high efficiency and durability.
 10 バルクヘテロジャンクション型の有機光電変換素子
 11、21 基板
 12、22 透明電極
 13、23 対電極
 14、24 光電変換部
 14′ 第1の光電変換部
 15 電荷再結合層
 16 第2の光電変換部
 17 正孔輸送層
 18 電子輸送層
 20 光センサアレイ
DESCRIPTION OF SYMBOLS 10 Bulk heterojunction type organic photoelectric conversion element 11, 21 Substrate 12, 22 Transparent electrode 13, 23 Counter electrode 14, 24 Photoelectric conversion part 14 '1st photoelectric conversion part 15 Charge recombination layer 16 2nd photoelectric conversion part 17 Hole transport layer 18 Electron transport layer 20 Optical sensor array

Claims (15)

  1. 透明電極と対電極の間に、バルクヘテロジャンクション層を有し、かつ、下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

    (式中、X及びXはそれぞれ独立に、置換または無置換の窒素原子、酸素原子、炭素原子、硫黄原子、珪素原子、ゲルマニウム原子、及びセレン原子から選ばれる原子を表し、R~R10はそれぞれ独立に、水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、ハロゲン化アルキル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、互いに結合した環構造の基から選ばれる基を表す。また、pは0または1の整数である。)
    An organic photoelectric conversion element comprising a compound having a bulk heterojunction layer between a transparent electrode and a counter electrode and having a partial structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (Wherein, X 1 and X 2 are independently a substituted or unsubstituted nitrogen atom, an oxygen atom, a carbon atom, a sulfur atom, a silicon atom, germanium atom, and represents an atom selected from a selenium atom, R 1 ~ R 10 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkenyl group, a halogenated alkyl group, an alkynyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a silyl group, an ether group, or a thioether. Represents a group selected from a group, an amino group, and a ring structure group bonded to each other, and p is an integer of 0 or 1.)
  2. 前記一般式(1)で表される部分構造を有する化合物がp型半導体材料としてバルクヘテロジャンクション層に含まれることを特徴とする請求項1に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 1, wherein the compound having a partial structure represented by the general formula (1) is contained in a bulk heterojunction layer as a p-type semiconductor material.
  3. 前記バルクヘテロジャンクション層が、p型半導体材料として前記一般式(1)で表される部分構造を有する低分子化合物と、n型半導体材料としてフラーレン誘導体とを含有することを特徴とする請求項1または2に記載の有機光電変換素子。 The bulk heterojunction layer contains a low-molecular compound having a partial structure represented by the general formula (1) as a p-type semiconductor material and a fullerene derivative as an n-type semiconductor material. 2. The organic photoelectric conversion element according to 2.
  4. 前記一般式(1)で表される部分構造を有する化合物が、分子量300~3000の低分子化合物であることを特徴とする請求項1~3のいずれか1項に記載の有機光電変換素子。 4. The organic photoelectric conversion device according to claim 1, wherein the compound having a partial structure represented by the general formula (1) is a low molecular compound having a molecular weight of 300 to 3000.
  5. 前記一般式(1)で表される部分構造を有する低分子化合物におけるR及びRのいずれかが、置換または無置換の複素環基によって置換されていることを特徴とする請求項1~4のいずれか1項に記載の有機光電変換素子。 Any one of R 2 and R 6 in the low molecular compound having a partial structure represented by the general formula (1) is substituted with a substituted or unsubstituted heterocyclic group, 5. The organic photoelectric conversion element according to any one of 4 above.
  6. 前記一般式(1)で表される部分構造を有する低分子化合物におけるR及びRのいずれかが、下記一般式(2)~(4)のいずれかで表される複素環基であることを特徴とする請求項1~5のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000002

    (式中、X~Xはそれぞれ独立に、置換または無置換の窒素原子、酸素原子、炭素原子、硫黄原子、珪素原子、ゲルマニウム原子、及びセレン原子から選ばれる原子を表す。R11~R16はそれぞれ独立に、水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、互いに結合した環構造の基から選ばれる基を表す。)
    One of R 2 and R 6 in the low molecular compound having the partial structure represented by the general formula (1) is a heterocyclic group represented by any one of the following general formulas (2) to (4). 6. The organic photoelectric conversion device according to claim 1, wherein the organic photoelectric conversion device is an organic photoelectric conversion device.
    Figure JPOXMLDOC01-appb-C000002

    (Wherein X 3 to X 5 each independently represents an atom selected from a substituted or unsubstituted nitrogen atom, oxygen atom, carbon atom, sulfur atom, silicon atom, germanium atom, and selenium atom; R 11 to R 16 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, Represents a group selected from the group of ring structures bonded to each other.)
  7. 前記一般式(1)で表される部分構造を有する低分子化合物が下記一般式(5)で表される化合物であって、かつ、該化合物をバルクヘテロジャンクション層に含有することを特徴とする請求項1~6のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    (式中、X及びXは前記一般式(1)におけるX及びXと同義の原子を表し、R、R~R、R~R10は前記一般式(1)におけるR~R10と同義の基を表す。pは前記一般式(1)のpと同義の整数である。A及びAはそれぞれ独立に、前記一般式(2)~(4)で表される複素環基を表す。q、rは0~8の整数を表すが、q+rは1以上の整数である。nは1以上の整数を表す。)
    The low molecular compound having a partial structure represented by the general formula (1) is a compound represented by the following general formula (5), and the compound is contained in a bulk heterojunction layer. Item 7. The organic photoelectric conversion device according to any one of Items 1 to 6.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, X 1 and X 2 represent an atom having the same meaning as X 1 and X 2 in the general formula (1), and R 1 , R 3 to R 5 , and R 7 to R 10 represent the general formula (1). Represents a group having the same meaning as R 1 to R 10 in which p is an integer having the same meaning as p in formula (1), and A 1 and A 2 are each independently the formulas (2) to (4). (Q and r are integers of 0 to 8, q + r is an integer of 1 or more, and n is an integer of 1 or more.)
  8. 前記一般式(2)~(4)で表される複素環基におけるX~Xで表される原子の少なくとも1つが、硫黄原子であることを特徴とする請求項6または7に記載の有機光電変換素子。 The at least one of the atoms represented by X 3 to X 5 in the heterocyclic groups represented by the general formulas (2) to (4) is a sulfur atom. Organic photoelectric conversion element.
  9. 前記一般式(5)で表される化合物におけるAで表される複素環基が前記一般式(2)で表される複素環基であり、かつAで表される複素環基が前記一般式(3)または(4)で表される複素環基であって共に含有することを特徴とする請求項7または8に記載の有機光電変換素子。 A heterocyclic group the heterocyclic group represented by A 1 in the compound represented by the general formula (5) is represented by the general formula (2), and wherein the heterocyclic group represented by A 2 The organic photoelectric conversion device according to claim 7 or 8, which is a heterocyclic group represented by the general formula (3) or (4) and is contained together.
  10. 前記一般式(5)で表される化合物におけるA及びAのいずれかが、前記一般式(2)~(4)で表される複素環基であって、かつ、該複素環基のR11~R15で表され
    る置換基の少なくとも1つが、無置換のアルキル基であることを特徴とする請求項7~9のいずれか1項に記載の有機光電変換素子。
    In the compound represented by the general formula (5), any one of A 1 and A 3 is a heterocyclic group represented by the general formulas (2) to (4), and The organic photoelectric conversion device according to any one of claims 7 to 9, wherein at least one of the substituents represented by R 11 to R 15 is an unsubstituted alkyl group.
  11. 前記一般式(1)で表される部分構造を有する化合物、または一般式(5)で表される化合物におけるpが0であることを特徴とする請求項1~10のいずれか1項に記載の有機光電変換素子。 11. The compound according to claim 1, wherein p in the compound having the partial structure represented by the general formula (1) or the compound represented by the general formula (5) is 0. Organic photoelectric conversion element.
  12. 前記一般式(1)で表される部分構造を有する化合物、または一般式(5)で表される化合物におけるX及びXで表される原子の少なくともいずれかが、硫黄原子であることを特徴とする請求項1~11のいずれか1項に記載の有機光電変換素子。 That at least one of the atoms represented by X 1 and X 2 in the compound having the partial structure represented by the general formula (1) or the compound represented by the general formula (5) is a sulfur atom. 12. The organic photoelectric conversion device according to claim 1, wherein the organic photoelectric conversion device is characterized in that:
  13. 前記一般式(1)で表される部分構造を有する化合物及びフラーレン誘導体を含有するバルクヘテロジャンクション層が、溶液プロセスによって形成されていることを特徴とする請求項3~12のいずれか1項に記載の有機光電変換素子。 The bulk heterojunction layer containing the compound having the partial structure represented by the general formula (1) and the fullerene derivative is formed by a solution process. Organic photoelectric conversion element.
  14. 請求項1~13のいずれか1項に記載の有機光電変換素子からなることを特徴とする太陽電池。 A solar cell comprising the organic photoelectric conversion device according to any one of claims 1 to 13.
  15. 請求項1~13のいずれか1項に記載の有機光電変換素子がアレイ状に配置されてなることを特徴とする光センサアレイ。 An optical sensor array comprising the organic photoelectric conversion elements according to any one of claims 1 to 13 arranged in an array.
PCT/JP2009/067493 2008-10-09 2009-10-07 Organic photoelectric conversion element, solar cell, and optical sensor array WO2010041687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010532941A JP5655568B2 (en) 2008-10-09 2009-10-07 Organic photoelectric conversion element, solar cell, and optical sensor array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008262508 2008-10-09
JP2008-262508 2008-10-09

Publications (1)

Publication Number Publication Date
WO2010041687A1 true WO2010041687A1 (en) 2010-04-15

Family

ID=42100635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067493 WO2010041687A1 (en) 2008-10-09 2009-10-07 Organic photoelectric conversion element, solar cell, and optical sensor array

Country Status (2)

Country Link
JP (1) JP5655568B2 (en)
WO (1) WO2010041687A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060881A (en) * 2009-09-08 2011-03-24 Toray Ind Inc Material for photovoltaic element and photovoltaic element
WO2012035934A1 (en) * 2010-09-13 2012-03-22 新日鐵化学株式会社 Organic electroluminescent element
WO2012050003A1 (en) * 2010-10-13 2012-04-19 新日鐵化学株式会社 Organic electroluminescent element
AU2010229833B2 (en) * 2009-03-27 2014-03-13 Merck Sharp & Dohme Llc Inhibitors of hepatitis C virus replication
JP2014058516A (en) * 2012-09-17 2014-04-03 Samsung Display Co Ltd Condensed-cyclic compound and organic light-emitting element
WO2015025981A1 (en) * 2013-08-23 2015-02-26 住友化学株式会社 Polymer compound and organic semiconductor element using the same
JP2015054855A (en) * 2013-09-13 2015-03-23 Dic株式会社 Compound, composition, organic semiconductor material, and organic thin film transistor
WO2015154845A1 (en) * 2014-04-10 2015-10-15 Merck Patent Gmbh Organic semiconducting compounds
US9254292B2 (en) 2010-09-29 2016-02-09 Merck Sharp & Dohme Corp. Fused tetracycle derivatives and methods of use thereof for the treatment of viral diseases
US9504690B2 (en) 2011-03-17 2016-11-29 Merck Sharp & Dohme Corp. Tetracyclic xanthene derivatives and methods of use thereof for the treatment of viral diseases
JP2017017166A (en) * 2015-06-30 2017-01-19 富士フイルム株式会社 Photoelectric conversion element and solar battery
US9555038B2 (en) 2013-01-16 2017-01-31 Merck Sharp & Dohme Corp. Heterocycle-substituted tetracyclic compounds and methods of use thereof for the treatment of viral diseases
CN107915661A (en) * 2016-10-05 2018-04-17 默克专利股份有限公司 Organic semiconductor compound
CN109952652A (en) * 2016-11-22 2019-06-28 索尼公司 Image-forming component, stack image-forming component, imaging device and electronic device
US11053243B2 (en) 2009-03-27 2021-07-06 Merck Sharp & Dohme Corp. Inhibitors of hepatitis C virus replication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316451B (en) * 2017-11-17 2023-07-21 富士胶片株式会社 Photoelectric conversion element, photosensor, imaging element, and compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193729A (en) * 2004-12-14 2006-07-27 Xerox Corp Compound containing indolocarbazole residue, electronic device containing the compound, and thin film transistor
JP2007269794A (en) * 2006-03-10 2007-10-18 Kyoto Univ Method for synthesizing benzometalol and new diyne compound
WO2008111461A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Fluorine-containing polycyclic aromatic compound, fluorine-containing polymer, organic thin film and organic thin film device
JP2008537948A (en) * 2005-04-14 2008-10-02 メルク パテント ゲーエムベーハー Compounds for organic electronic devices
WO2008132103A1 (en) * 2007-04-26 2008-11-06 Basf Se Pentaphenylene derivatives as photosensitizers in solar cells
CA2625306A1 (en) * 2008-03-11 2009-09-11 National Research Council Of Canada Electron acceptors-cored regioregular oligothiophenes as building blocks for soluble low band-gap conjugated polymers
WO2009113599A1 (en) * 2008-03-12 2009-09-17 住友化学株式会社 Organic photoelectric conversion device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193729A (en) * 2004-12-14 2006-07-27 Xerox Corp Compound containing indolocarbazole residue, electronic device containing the compound, and thin film transistor
JP2008537948A (en) * 2005-04-14 2008-10-02 メルク パテント ゲーエムベーハー Compounds for organic electronic devices
JP2007269794A (en) * 2006-03-10 2007-10-18 Kyoto Univ Method for synthesizing benzometalol and new diyne compound
WO2008111461A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Fluorine-containing polycyclic aromatic compound, fluorine-containing polymer, organic thin film and organic thin film device
WO2008132103A1 (en) * 2007-04-26 2008-11-06 Basf Se Pentaphenylene derivatives as photosensitizers in solar cells
CA2625306A1 (en) * 2008-03-11 2009-09-11 National Research Council Of Canada Electron acceptors-cored regioregular oligothiophenes as building blocks for soluble low band-gap conjugated polymers
WO2009113599A1 (en) * 2008-03-12 2009-09-17 住友化学株式会社 Organic photoelectric conversion device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUHEE SONG ET AL.: "Stabilized Polymers with Novel Indenoindene Backbone against Photodegradation for LEDs and Solar Cells", MACROMOLECULES, vol. 41, no. 20, 27 September 2008 (2008-09-27), pages 7296 - 7305 *
YUTAKA IE ET AL.: "Synthesis, Properties, and Structures of Difluoromethylene-bridged Coplanar p-Terphenyl and Its Aryl-capped Derivatives for Electron-transporting Materials", CHEMISTRY LETTERS, vol. 36, no. 11, 2007, pages 1326 - 1327 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090661B2 (en) 2009-03-27 2015-07-28 Merck Sharp & Dohme Corp. Inhibitors of hepatitis C virus replication
US11053243B2 (en) 2009-03-27 2021-07-06 Merck Sharp & Dohme Corp. Inhibitors of hepatitis C virus replication
AU2010229833B2 (en) * 2009-03-27 2014-03-13 Merck Sharp & Dohme Llc Inhibitors of hepatitis C virus replication
JP2011060881A (en) * 2009-09-08 2011-03-24 Toray Ind Inc Material for photovoltaic element and photovoltaic element
WO2012035934A1 (en) * 2010-09-13 2012-03-22 新日鐵化学株式会社 Organic electroluminescent element
CN103098253A (en) * 2010-09-13 2013-05-08 新日铁住金化学株式会社 Organic electroluminescent element
KR101771020B1 (en) 2010-09-13 2017-08-24 신닛테츠 수미킨 가가쿠 가부시키가이샤 Organic electroluminescent element
JPWO2012035934A1 (en) * 2010-09-13 2014-02-03 新日鉄住金化学株式会社 Organic electroluminescence device
JP5775520B2 (en) * 2010-09-13 2015-09-09 新日鉄住金化学株式会社 Organic electroluminescence device
US9118028B2 (en) 2010-09-13 2015-08-25 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device
US9254292B2 (en) 2010-09-29 2016-02-09 Merck Sharp & Dohme Corp. Fused tetracycle derivatives and methods of use thereof for the treatment of viral diseases
JP5834015B2 (en) * 2010-10-13 2015-12-16 新日鉄住金化学株式会社 Organic electroluminescence device
WO2012050003A1 (en) * 2010-10-13 2012-04-19 新日鐵化学株式会社 Organic electroluminescent element
CN103155200A (en) * 2010-10-13 2013-06-12 新日铁住金化学株式会社 Organic electroluminescent element
TWI488942B (en) * 2010-10-13 2015-06-21 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
JPWO2012050003A1 (en) * 2010-10-13 2014-02-24 新日鉄住金化学株式会社 Organic electroluminescence device
US9312496B2 (en) 2010-10-13 2016-04-12 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
US9504690B2 (en) 2011-03-17 2016-11-29 Merck Sharp & Dohme Corp. Tetracyclic xanthene derivatives and methods of use thereof for the treatment of viral diseases
JP2014058516A (en) * 2012-09-17 2014-04-03 Samsung Display Co Ltd Condensed-cyclic compound and organic light-emitting element
US9555038B2 (en) 2013-01-16 2017-01-31 Merck Sharp & Dohme Corp. Heterocycle-substituted tetracyclic compounds and methods of use thereof for the treatment of viral diseases
WO2015025981A1 (en) * 2013-08-23 2015-02-26 住友化学株式会社 Polymer compound and organic semiconductor element using the same
US9796811B2 (en) 2013-08-23 2017-10-24 Sumitomo Chemical Company, Limited Polymer compound and organic semiconductor device using the same
JP2015054855A (en) * 2013-09-13 2015-03-23 Dic株式会社 Compound, composition, organic semiconductor material, and organic thin film transistor
TWI675860B (en) * 2014-04-10 2019-11-01 德商馬克專利公司 Organic semiconducting compounds
JP2017513835A (en) * 2014-04-10 2017-06-01 メルク パテント ゲーエムベーハー Organic semiconductor compounds
WO2015154845A1 (en) * 2014-04-10 2015-10-15 Merck Patent Gmbh Organic semiconducting compounds
US10340457B2 (en) 2014-04-10 2019-07-02 Merck Patent Gmbh Organic semiconducting compounds
CN106164127A (en) * 2014-04-10 2016-11-23 默克专利股份有限公司 Organic semiconductor compound
CN106164127B (en) * 2014-04-10 2020-10-16 默克专利股份有限公司 Organic semiconductor compound
JP2017017166A (en) * 2015-06-30 2017-01-19 富士フイルム株式会社 Photoelectric conversion element and solar battery
CN107915661A (en) * 2016-10-05 2018-04-17 默克专利股份有限公司 Organic semiconductor compound
CN107915661B (en) * 2016-10-05 2024-01-23 天光材料科技股份有限公司 Organic semiconductor compound
CN109952652A (en) * 2016-11-22 2019-06-28 索尼公司 Image-forming component, stack image-forming component, imaging device and electronic device
CN109952652B (en) * 2016-11-22 2023-09-19 索尼公司 Imaging element, stacked imaging element, imaging device, and electronic device

Also Published As

Publication number Publication date
JP5655568B2 (en) 2015-01-21
JPWO2010041687A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5655568B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5516153B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5447521B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5494651B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5648641B2 (en) Organic photoelectric conversion element
JP6024776B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5772836B2 (en) Organic photoelectric conversion layer material composition, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
JP5493496B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP2010272619A (en) Organic electronics element, organic photoelectric conversion element, solar cell using the same, optical sensor array, and organic electroluminescent element
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
JP5447513B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2010283003A (en) Organic photoelectric conversion element, solar battery using the same, and photosensor array
JP5691810B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP5652314B2 (en) Organic photoelectric conversion element and manufacturing method thereof
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5440208B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP2011124469A (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same
JP2013026432A (en) Organic photoelectric conversion element, method for manufacturing the same, and organic solar cell using the same
JP2012015390A (en) Organic photoelectric conversion element, solar battery and optical sensor array
JP5445086B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5447089B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5250836B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5245123B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP2011119382A (en) Organic photoelectric conversion element, solar battery using the same, and optical sensor array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532941

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819221

Country of ref document: EP

Kind code of ref document: A1