WO2010034240A1 - 混合动力汽车控制器寿命测试*** - Google Patents

混合动力汽车控制器寿命测试*** Download PDF

Info

Publication number
WO2010034240A1
WO2010034240A1 PCT/CN2009/074174 CN2009074174W WO2010034240A1 WO 2010034240 A1 WO2010034240 A1 WO 2010034240A1 CN 2009074174 W CN2009074174 W CN 2009074174W WO 2010034240 A1 WO2010034240 A1 WO 2010034240A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
power supply
test system
hybrid
central control
Prior art date
Application number
PCT/CN2009/074174
Other languages
English (en)
French (fr)
Inventor
王野
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Priority to BRPI0919035A priority Critical patent/BRPI0919035A2/pt
Publication of WO2010034240A1 publication Critical patent/WO2010034240A1/zh
Priority to EG2011030470A priority patent/EG26281A/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24048Remote test, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24058Remote testing, monitoring independent from normal control by pc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2623Combustion motor

Definitions

  • the invention relates to a hybrid vehicle controller life test system, belonging to the field of automotive controller test technology. Background technique
  • Hybrid Electric Vehicles have attracted more and more attention because of their low emission advantages of electric vehicles and the high specific energy advantages of internal combustion engines. They have become one of the new vehicles developed at this stage.
  • the performance of the hybrid vehicle controller will directly affect the performance and fuel economy of the hybrid vehicle.
  • the life of the hybrid vehicle controller will also directly affect the hybrid vehicle life. Therefore, before the controller is loaded, the potential life of the controller is estimated by means of life test and sampling analysis of the controller, and early detection of potential failures and potential risks is of great practical significance for reducing the risk of hybrid vehicle operation. .
  • the life test method generally used the controller directly on the hybrid prototype to directly test for a long time. In this way, not only the test data cannot be recorded in real time, but also each operation can only be in the electric mode or the power generation mode. As soon as the test is conducted, the test process is cumbersome and the test cost is high. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a hybrid vehicle controller life test system for the deficiencies of the prior art, which can not only record the test data at all times, but also test the two modes of the controller for each test.
  • the test process is simple and the test cost is low.
  • a hybrid vehicle controller life test system comprising a central control computer, the test system further comprising a controller set placed in the environmental chamber and a test bench provided with at least one pair of coaxially mounted hybrid motors, the test bench
  • the frame is provided with an electrical interface box electrically connected with the central control computer, and the central control computer controls the program-controlled power supply to be connected to the controller group through the electrical interface box, and the controller and the hybrid motor are electrically connected and one-to-one correspondence, one of which is a hybrid
  • the motor operates in the power generation mode, and another hybrid motor coaxially connected thereto operates in the electric mode;
  • the central control computer communicates with the controller through a cable and a communication bus, transmits control signals to implement test command transmission and feedback of test status, and monitors system status and collects test results during the test;
  • the central control computer also controls the temperature and humidity in the environmental chamber via the communication bus and controls the various wiring ports in the electrical interface box.
  • the central control computer in the present invention centrally controls and monitors all devices in the test system, and the central control computer realizes the transmission of the test command and the feedback of the test state through various communication buses, and the controller is placed in the temperature and humidity.
  • the supply voltage of the programmable power supply will also fluctuate within a wide range, it provides sufficient test conditions for the controller's test.
  • the hybrid motor Since the hybrid motor is installed in pairs in a coaxial mode, and one works in the electric mode and the other works in the power generation mode, the hybrid motor operating in the electric mode can drive the hybrid motor operating in the power generation mode. Rotating and generating electricity, the invention is simple in construction and saves power source of the test system, saves energy and reduces test costs.
  • Figure 1 is a block diagram showing the structure of the system of the present invention
  • FIG. 2 is a schematic structural view of the back-to-back system of the present invention.
  • Fig. 3 is a schematic structural view of an energy recycling device. detailed description
  • FIG. 1 is a block diagram showing the structure of the system of the present invention. As shown in Fig. 1, two hybrid electric machines 30 are coaxially mounted, and each hybrid electric motor 30 is electrically connected to a corresponding controller 60, and the central control computer passes through the cable and various communication buses and test systems. Each device communicates, sends test instructions and accepts feedback test data to ensure the smooth progress of the test and data analysis of the test results.
  • the coaxially connected hybrid motor 30 is under the control of the controller 60, one of which operates in the electric mode and the other in the power generation mode. This coaxial connection not only allows the controller 60 and the hybrid motor 30 to operate. Both modes of operation can be tested at the same time, thereby speeding up the test.
  • the hybrid motor 30 in the electric mode is also used as the power source of the hybrid motor 30 in the power generation mode, which reduces the test components and saves test energy. Consumption, significantly reducing production and test run costs.
  • the central control computer 10 communicates with the tested hybrid vehicle controller 60 via the CAN bus, and commands and controls the motor in the electric mode and the motor in the power generation mode according to the preset torque-speed.
  • the curve is cycled to provide different motor speed-torque load characteristics for the controller 60 being tested; at the same time, the central control computer 10 cycles through the RS-232 serial bus according to a pre-set temperature/humidity cycle.
  • the characteristic curve controls the temperature and humidity in the environmental chamber 20 to provide necessary temperature and humidity conditions for the test of the controller 60.
  • the central control computer 10 controls the programmable power supply through the GPIB bus to output according to a preset output voltage characteristic curve. The voltage provides the necessary voltage test conditions for the test of controller 60.
  • the programmable power supply includes a high voltage programmable power supply 50a and a low voltage programmable power supply 50b.
  • the high voltage programmable power supply 50a is directly connected to the controller 60 of the coaxially mounted hybrid motor 30 through a common DC bus, and the low voltage programmable power supply. 50b powers the low voltage system of controller 60.
  • An energy recirculation device 100 for unidirectionally supplying the high voltage programmable power supply 50a to the controller group is disposed between the high voltage programmable power supply 50a and the controller group.
  • the controllers 60 are tested in pairs, that is, each of the two controllers 60 is a group, one of which operates in the electric mode and the other operates in the power generation mode.
  • Two coaxially connected hybrid motors 30 on the test rig one operating in the electric mode and the other operating in the generating mode, respectively as the motor load in the different modes of the hybrid vehicle controller 60;
  • the hybrid vehicle controller 60 in the electric mode is connected to the motor 30 in the electric mode on the test rig through a three-phase cable, and the hybrid vehicle controller 60 in the power generation mode passes through the three-phase cable.
  • the motor 30 in the power generation mode on the test rig is connected, as shown in Fig.
  • the DC busbars of the two hybrid vehicle controllers 60 are directly connected and constitute a common DC bus of the two, and the high voltage programmable power supply 50a is energized again.
  • the circulation device 100 is then directly connected to the respective controller 60 of the coaxially mounted hybrid motor 30 via a common DC bus, which constitutes the back-to-back electrical system structure and mechanical system structure in the test system.
  • the so-called back-to-back structure mainly means that two hybrid electric machines 30 are mounted back to back on the same rotating shaft 33, and the two hybrid electric machines 30 are rotated at the same speed at any time, and one end of the rotating shaft 33 is provided with a flywheel. 32.
  • the controller 60 and the hybrid motor 30 in the electric mode and the controller 60 and the hybrid motor 30 in the power generation mode are also electrically back-to-back structures.
  • the central control computer 10 controls the high-voltage programmable power supply 50a to output high-voltage direct current, and supplies power to the common DC bus of the hybrid vehicle controller 60 through the energy recycling device 100. At this time, the central control computer 10 is controlled by the CAN bus.
  • the hybrid vehicle controller 60 in the electric mode drives the electric mode hybrid motor 30 on the test rig according to the preset speed/torque curve characteristic, and the hybrid motor 30 in the electric mode rotates while driving the coaxial
  • the hybrid motor 30 in the power generation mode enters at the same speed In the row rotation, the rotation of the hybrid motor 30 in the power generation mode can be rectified by the hybrid vehicle controller 60 in the power generation mode, and the generated direct current is directly sent to the common DC bus of the two controllers 60, this part
  • the emitted electric energy is directly fed back to the DC bus terminal of the hybrid vehicle controller 60 in the electric mode, and a part of the electric energy is provided for the hybrid vehicle controller 60 in the electric mode and the hybrid motor 30 in the electric mode.
  • a set of energy recycling test systems are provided for the hybrid vehicle controller 60 in the electric mode and the hybrid motor 30 in the electric mode.
  • the energy recirculation device 100 in the system mainly functions to allow the high voltage programmable power supply 50a to supply power to the controller 60 in one direction, and the electric energy from the hybrid motor 30 in the power generation mode is not returned to the high voltage programmable power supply 50a, thereby
  • the high-voltage programmable power supply 50a provides protection while ensuring maximum return of the power from the hybrid motor 30 in the power generation mode to the controller 60 and the hybrid motor 30 in the electric mode, thereby reducing the energy consumption of the entire test system. .
  • the energy recycling device 100 includes a transistor T1 and a capacitor C1.
  • the emitter side of the transistor T1 is connected to the positive electrode of the controller 60, and the other side passes through the negative electrode and the positive electrode of the diode D1.
  • the anode of the high voltage programmable power supply 50a is connected; the base of the transistor T1 is sequentially connected to the anode of the high voltage programmable power supply 50a through the anode and the cathode of the resistor R1 and the diode D2; the collector of the transistor T1 is respectively connected to the cathode of the high voltage programmable power supply 50a through the resistor R2 and The negative pole of the controller 60 is connected; the two ends of the capacitor C1 are respectively connected to the positive and negative terminals of the controller 60.
  • Fig. 3 is a schematic structural view of an energy recycling device.
  • one end of the high-voltage programmable power supply 50a is defined as an input end of the energy recirculation device 100
  • one end of the controller 60 in the power generation mode is an output end of the energy recirculation device 100, as shown in FIG.
  • the unidirectional diode D1 ensures that the current can only flow from the input end to the output end, and the current in the opposite direction is cut off; when the input end and the output are When the voltages between the terminals are equal, no current flows in the energy recirculating device 100; when the voltage at the output terminal is higher than the voltage at the input terminal, the transistor T1 in the energy recirculating device 100 is turned on, so that the voltage at the output terminal is applied to the power resistor. On R2, the branch formed by transistor T1, power resistor R2 and capacitor C1 will act to regulate the output voltage.
  • the energy recirculating device 100 automatically adjusts the voltage at the output terminal to a certain value.
  • a constant value that is close to the voltage at the input of the energy recirculation device 100. Therefore, it is possible to maximize the feedback of the electric energy from the motor 30 in the power generation mode to the controller 60 and the motor 30 in the electric mode, thereby reducing the energy consumption of the entire test system.
  • the controller 60 and the hybrid motor 30 operate in two modes, one for the power generation mode and the other for the power.
  • the dynamic mode is subdivided into a speed mode and a torque mode.
  • the controller 60 and the hybrid motor 30 in the electric mode state can select either the speed mode or the torque mode; after the mode is selected, the controller 60 will follow the preset speed or The torque curve characteristic drives the electric mode motor 30 on the test rig to run and unfold the test.
  • the hybrid electric machine 30 is electrically connected to the controllable load 90 via the controller 60, and the controllable load 90 is electrically connected to the electrical interface box 40.
  • the DC power output by the controller 60 in the power generation mode can be consumed by the controllable load 90 mounted on the test gantry, and the central control computer 10 selects the resistance of the controllable load 90 connected to the DC side of the controller through the electrical interface box 40.
  • the test time of the temperature/humidity/supply voltage/load alternation of the controller 60 in the life test system is at least 1000 hours.
  • test of the above time is equivalent to the normal use of the controller 60 in the vehicle for 9 years, so that the test result of the system can have a benchmark that can be judged, and also makes the whole of the controller 60 during the service life of the automobile.
  • the situation has a clear understanding.
  • a safety protection relay 51 is disposed between the high voltage programmable power supply 50a and the controller group, and the safety protection relay 51 is electrically connected to the electrical interface box 40.
  • the life test system is further provided with a motor cooling system 70 and a controller heat exchange system 80 controlled by the central control computer 10.
  • the motor cooling system 70 and the controller heat exchange system 80 allow the hybrid motor 30 and the controller 60 to operate under better conditions, thereby facilitating the smooth implementation of the test system.
  • the central control computer 10 controls the motor cooling system 70 and the controller heat exchange system 80 via an RS-485 serial bus.
  • the hybrid motor 30 is provided with an overspeed protection device 31, and the overspeed protection device 31 is electrically connected to the safety protection relay 51.
  • the overspeed protection device 31 helps to further protect the stable operation of the hybrid electric machine 30.
  • the central control computer 10 acts as the upper computer of the system, and is responsible for issuing various test commands, and is responsible for detecting and comparing various state parameters of the system.
  • the device 60 is the object to be tested in the system, and is also the lower computer in the system. It mainly executes various operation commands from the central control computer 10, and can feed back the state monitored by itself to the central control computer 10.
  • the central control computer 10 is capable of arbitrarily selecting any number of test stands and matching pairs of controls depending on the state of the system.
  • the device 60 accepts the life test, and can also isolate any one of the faulty test benches and the matched pair of controllers 60 from the test system without affecting the normal test of the other controllers 60 and the test bench.
  • the central control computer 10 not only controls the environmental chamber 20, the controller 60, the hybrid motor 30, the motor cooling system 70, and the controller heat exchange system 80 via cables and various communication buses, providing various external conditions for testing.
  • the central control computer 10 also drives and controls various ports of the controller 60, the high-power controllable load 90, the safety protection relay 51, and the like through the electrical interface box 40.
  • the central control computer 10 monitors various states in the system through various communication interfaces and various signal acquisition units, and collects necessary test data.
  • the above various test conditions are run simultaneously according to certain rules, and can simulate various peripheral conditions of the actual operation of the hybrid vehicle controller 60, and jointly constitute a life test system of the hybrid vehicle controller, realizing the hybrid power The potential life of the vehicle controller is tested.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

混合动力汽车控制器寿命测试***
技术领域
本发明涉及一种混合动力汽车控制器寿命测试***, 属于汽车控制器测试技术领 域。 背景技术
混合动力汽车 (HEV) 因其兼有电动车的低排放优点与内燃机汽车的高比能量优 点而越来越受到关注, 成为现阶段竟相研发的新型车辆之一。 混合动力汽车整车控制 器的性能将直接影响混合动力汽车的性能和燃油经济性, 混合动力汽车整车控制器的 寿命也将直接影响混合动力的整车使用寿命。 因此, 在控制器装车之前, 通过对控制 器的寿命测试和取样分析等手段预估出其潜在工作寿命, 提早发现潜在故障和潜在风 险, 对降低混合动力汽车运行的风险具有重大的现实意义。
以往的寿命测试方式一般采用把控制器直接安装在混合动力样车上直接进行长 时间测试, 这种方式不但测试数据不能实时记录, 而且每次操作只能对电动模式或发 电模式中的其中之一进行测试, 测试过程繁琐且测试成本高。 发明内容
本发明所要解决的技术问题在于, 针对现有技术的不足提供一种混合动力汽车控 制器寿命测试***, 其不但可以时刻记录测试数据, 而且每次测试均可以对控制器的 两种模式进行测试, 测试过程简单且测试成本低。
本发明所要解决的技术问题, 是通过如下技术方案实现的:
一种混合动力汽车控制器寿命测试***, 包括中央控制计算机, 本测试***还包 括置于环境仓中的控制器组以及设置有至少一对同轴安装的混合动力电机的测试台 架, 测试台架上设有与中央控制计算机为电连接的电气接口箱, 中央控制计算机通过 电气接口箱控制程控电源与控制器组相连,控制器与混合动力电机电连接并一一对应, 其中一台混合动力电机工作在发电模式下, 与其同轴相连的另一台混合动力电机工作 在电动模式下;
中央控制计算机通过电缆和通讯总线与所述的控制器进行通讯, 传送控制信号实 现测试指令的发送和测试状态的反馈, 并监测测试过程中***状态和采集测试结果; 中央控制计算机还通过通讯总线控制环境仓内的温度和湿度, 以及控制电气接口 箱中的各种接线端口。
由上述技术方案可知, 本发明中的中央控制计算机集中控制并监测测试***中的 所有设备,中央控制计算机通过各种通讯总线实现测试指令的发送和测试状态的反馈, 控制器置于温、 湿度均可控的环境仓中, 且程控电源的供电电压也将在一个较宽的范 围内波动, 因此为控制器的测试提供了充分的测试条件。 由于混合动力电机为成对的 同轴安装, 且一个工作在电动模式下, 另一个工作在发电模式下, 此时工作在电动模 式下的混合动力电机可以带动工作在发电模式下的混合动力电机转动并发电, 因此本 发明构造简单且节省了测试***的动力源, 还节约了能源, 降低了测试成本。
下面结合附图和具体实施例对本发明的技术方案进行详细地说明。 附图说明
图 1是本发明的***结构框图;
图 2是本发明的背对背的***结构示意图;
图 3是能量再循环装置的结构示意图。 具体实施方式
图 1是本发明的***结构框图。 如图 1所示, 两台混合动力电机 30同轴安装, 每一个混合动力电机 30均和一个与之相对应的控制器 60电连接, 中央控制计算机通 过电缆和各种通讯总线与测试***的每个设备进行通讯, 发送测试指令并接受回馈的 测试数据, 保证测试的顺利进行和进行测试结果的数据分析。
同轴连接的混合动力电机 30在控制器 60的控制下,其中一个运行在电动模式下, 另一个运行在发电模式下,这种同轴连接方式不但可以使得控制器 60和混合动力电机 30的两种运行模式同时可以得到测试, 从而加快了测试速度, 还利用电动模式下的混 合动力电机 30作为发电模式下的混合动力电机 30的动力源, 既减少了测试部件, 又 节省了测试能量的消耗, 显著地降低了生产和测试运行成本。
如图 1所示, 中央控制计算机 10通过 CAN总线与被测试的混合动力整车控制器 60进行通讯, 指令并控制电动模式下的电机和发电模式下的电机按照事先设定好的扭 矩-速度曲线进行循环运行,为被测试的控制器 60提供不同的电机速度-扭矩负载特性; 与此同时, 中央控制计算机 10通过 RS-232串行总线按照事先设定好的温度 /湿度循环 特性曲线控制环境仓 20内的温度和湿度, 为控制器 60的测试提供必要的温度和湿度 条件; 所述的中央控制计算机 10通过 GPIB总线控制程控电源按照事先设定好的输出 电压特性曲线输出电压, 为控制器 60的测试提供必要的电压测试条件。
如图 1所示, 所述的程控电源包括高压程控电源 50a和低压程控电源 50b, 高压 程控电源 50a通过公共直流母线与同轴安装的混合动力电机 30各自的控制器 60直接 相连, 低压程控电源 50b为控制器 60的低压***供电。
所述的高压程控电源 50a与所述的控制器组之间设置有使高压程控电源 50a为控 制器组单向供电的能量再循环装置 100。
在本寿命测试***中, 控制器 60是成对进行测试的, 也即每两个控制器 60为一 组, 其中一个工作在电动模式下, 另外一个工作在发电模式下。 在测试台架上的两个 同轴连接的混合动力电机 30, 一个工作在电动模式下, 另外一个工作在发电模式下, 分别作为混合动力整车控制器 60的不同模式下的电机负载; 在测试过程中, 电动模式 下的混合动力整车控制器 60通过三相电缆与测试台架上的电动模式下的电机 30相联, 发电模式下的混合动力整车控制器 60 通过三相电缆与测试台架上的发电模式下的电 机 30相联, 如图 1所示; 两个混合动力整车控制器 60的直流母线直接相连并构成二 者的公共直流母线, 高压程控电源 50a经能量再循环装置 100后再通过公共直流母线 与同轴安装的混合动力电机 30各自的控制器 60直接相连, 这就构成了本测试***中 的背对背的电气***结构和机械***结构。
图 2是本发明的背对背的***结构示意图。 如图 2所示, 所谓的背对背结构主要 是指两个混合动力电机 30 背对背的安装在同一根转轴 33 上, 两个混合动力电机 30 任何时候都是同速旋转, 转轴 33的一端设置有飞轮 32, 此飞轮 32设置在转轴 33的 端部并旋转时, 不会产生偏心等运动状况, 而且由于飞轮 32具有一定的转动惯量, 有 利于对混合动力电机 30和控制器 60 的测试; 此外***中的电动模式下的控制器 60 及混合动力电机 30和发电模式下的控制器 60及混合动力电机 30从电气上也是一种背 对背结构。
在本测试***工作时,中央控制计算机 10控制高压程控电源 50a输出高压直流电, 通过能量再循环装置 100给混合动力整车控制器 60的公共直流母线供电,此时中央控 制计算机 10通过 CAN总线控制电动模式下的混合动力整车控制器 60按照预先设定好 的速度 /扭矩曲线特性去驱动测试台架上的电动模式混合动力电机 30,电动模式下的混 合动力电机 30旋转同时又带动同轴的发电模式下的混合动力电机 30以相同的速度进 行转动,发电模式下的混合动力电机 30的转动可以通过发电模式下的混合动力整车控 制器 60整流发电, 发出来的直流电会直接送到两个控制器 60的公共直流母线上, 这 部分发出来的电能直接回馈到电动模式下的混合动力整车控制器 60的直流母线端,为 电动模式下的混合动力整车控制器 60和电动模式下的混合动力电机 30提供一部分电 能, 构成了一套能量循环利用的测试***。
***中的能量再循环装置 100, 主要作用是允许高压程控电源 50a单方向为控制 器 60供电, 而发电模式下的混合动力电机 30发出来的电能不会回流到高压程控电源 50a上, 从而对高压程控电源 50a起到保护作用, 同时保证发电模式下的混合动力电 机 30发出来的电能最大限度的回馈到电动模式下的控制器 60和混合动力电机 30上, 从而降低整个测试***的能耗。
作为本发明的优选方案,所述的能量再循环装置 100包括晶体管 T1和电容器 Cl, 晶体管 T1 的发射极一边与所述的控制器 60的正极相连, 另一边依次通过二极管 D1 的负极、 正极与高压程控电源 50a的正极相连; 晶体管 T1的基极依次通过电阻 R1和 二极管 D2的正极、 负极与高压程控电源 50a的正极相连; 晶体管 T1的集电极通过电 阻 R2分别与高压程控电源 50a的负极以及控制器 60的负极相连; 电容器 C1的两端 分别与控制器 60的正极和负极相连。
图 3是能量再循环装置的结构示意图。 本实施例中定义位于高压程控电源 50a的 一端为能量再循环装置 100的输入端,发电模式下的控制器 60的一端为能量再循环装 置 100的输出端, 如图 3所示, 当能量再循环装置 100的输入端的电压比输出端的电 压高时, 所述的单向二级管 D1 保证了电流仅能从输入端流向输出端, 而反方向的电 流则会被截止; 当输入端与输出端之间的电压相等时, 则能量再循环装置 100中没有 电流流动; 当输出端的电压比输入端的电压高时, 能量再循环装置 100中的晶体管 T1 导通, 使得输出端的电压施加在功率电阻 R2上, 晶体管 Tl、 功率电阻 R2 以及电容 器 C1构成的支路将起到调节输出端电压的作用。
由上述可知, 当发电模式下的电机 30 发出来的电压过高时, 且超过能量再循环 装置 100输入端的电压的某一定值时, 能量再循环装置 100会自动把输出端的电压调 节至某一恒定值, 此恒定值接近能量再循环装置 100的输入端的电压。 因此可以实现 发电模式下的电机 30发出来的电能最大限度的回馈到电动模式下的控制器 60和电机 30上, 从而降低整个测试***的能耗。
控制器 60和混合动力电机 30的运行有两种模式, 一种为发电模式, 另一种为电 动模式, 而电动模式又细分为速度模式和扭矩模式。 在本测试***中, 处于电动模式 状态下的控制器 60和混合动力电机 30既可以选择速度模式, 也可以选择扭矩模式; 模式选定以后,控制器 60便会按照预先设定好的速度或扭矩曲线特性去驱动测试台架 上的电动模式电机 30运转并展开测试。
作为本发明进一步的优选方案, 如图 1所示, 所述的混合动力电机 30通过控制 器 60与可控负载 90为电连接, 可控负载 90与电气接口箱 40为电连接。
处于发电模式下的控制器 60 输出的直流电可以通过安装在测试台架上的可控负 载 90消耗掉,中央控制计算机 10通过电气接口箱 40选择连接到控制器直流侧的可控 负载 90的电阻大小, 从而可以控制并测试工作在发电模式下的控制器 60的电气负载 特性。
所述的寿命测试***中控制器 60 的温度 /湿度 /供电电压 /负载交变的测试时间至 少为 1000小时。
上述时间的测试相当于控制器 60在车上正常使用 9年的时间, 从而可以使本系 统的测试结果有一个可以评判的基准,同时也使人们对控制器 60在汽车的使用寿命期 间的整体状况有了清楚的了解。
作为本发明更进一步的优选方案, 所述的高压程控电源 50a与所述的控制器组之 间设置有安全保护继电器 51, 安全保护继电器 51与电气接口箱 40为电连接。
作为本发明的优选方案, 所述的寿命测试***中还设置有受中央控制计算机 10 控制的电机冷却*** 70和控制器热交换*** 80。
上述电机冷却*** 70和控制器热交换*** 80可以使混合动力电机 30 以及控制 器 60运行在较好的状态条件下, 从而有助于本测试***的顺利实施。所述的中央控制 计算机 10通过 RS-485串行总线对电机冷却*** 70和控制器热交换*** 80进行控制。
作为本发明进一步的优选方案, 所述的混合动力电机 30 上设置有超速保护装置 31, 超速保护装置 31与安全保护继电器 51为电连接。
超速保护装置 31有助于进一步保护混合动力电机 30的稳定运行。
综上所述, 在本测试***中, 中央控制计算机 10 担任***的上位机, 负责发出 各种测试指令, 并负责对***种各种状态参数进行检测和对比, 混合动力整车控制器
60在***中是被测试对象, 同时也是***中的下位机, 主要执行来自中央控制计算机 10的各种操作指令, 同时能够把自身监测到的状态反馈给中央控制计算机 10。 中央控 制计算机 10能够根据***的状态,任意选择任何数量的测试台架及相匹配的一对控制 器 60接受寿命测试, 也可以把任意一个有故障的测试台架和相匹配的一对控制器 60 从测试***隔离出来, 不影响其他控制器 60和测试台架进行正常测试。
如前所述, 中央控制计算机 10不仅通过电缆和各种通讯总线控制环境仓 20、 控 制器 60、 混合动力电机 30、 电机冷却*** 70以及控制器热交换*** 80, 为测试提供 各种外部条件, 中央控制计算机 10还通过电气接口箱 40, 对控制器 60、 大功率可控 负载 90、 安全保护继电器 51等装置的各种端口进行驱动控制。 同时中央控制计算机 10通过各种通讯接口和各种信号采集单元, 对***中各种状态进行监测, 并采集纪录 必要的测试数据。 以上各种测试条件按照一定的规律同时运行, 能够模拟混合动力整 车控制器 60实际运行的各种***条件,共同构成了一套混合动力整车控制器的寿命测 试***, 实现对混合动力整车控制器的潜在寿命进行测试。

Claims

权利要求书
1、 一种混合动力汽车控制器寿命测试***, 包括中央控制计算机 (10), 其特征 在于: 本测试***还包括置于环境仓 (20 ) 中的控制器组以及设置有至少一对同轴安 装的混合动力电机 (30 ) 的测试台架, 测试台架上设有与中央控制计算机 (10 ) 为电 连接的电气接口箱 (40 ), 中央控制计算机 (10) 通过电气接口箱 (40 ) 控制程控电源 与控制器组相连, 控制器 (60 ) 与混合动力电机 (30 ) 电连接并一一对应, 其中一台 混合动力电机 (30 ) 工作在发电模式下, 与其同轴相连的另一台混合动力电机 (30) 工作在电动模式下;
中央控制计算机 (10 ) 通过电缆和通讯总线与所述的控制器 (60 ) 进行通讯, 传 送控制信号实现测试指令的发送和测试状态的反馈, 并监测测试过程中***状态和采 集测试结果;
中央控制计算机 (10 ) 还通过通讯总线控制环境仓 (20 ) 内的温度和湿度, 以及 控制电气接口箱 (40 ) 中的各种接线端口。
2、 根据权利要求 1 所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的程控电源包括高压程控电源 (50a) 和低压程控电源 (50b), 高压程控电源 (50a) 通过公共直流母线与同轴安装的混合动力电机 (30) 各自的控制器 (60 ) 直接相连, 低压程控电源 (50b) 为控制器 (60) 的低压***供电。
3、 根据权利要求 1 所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的中央控制计算机(10)通过 CAN总线与所述的控制器(60 )进行通讯,通过 RS-232 总线与环境仓 (20) 进行通讯, 通过 GPIB总线对程控电源进行控制。
4、 根据权利要求 1 所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的寿命测试***中还设置有通过 RS-485总线与中央控制计算机(10)相连接的电机 冷却*** (70) 和控制器热交换*** (80)。
5、 根据权利要求 1 所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的混合动力电机(30)通过控制器(60)与可控负载(90)为电连接, 可控负载(90) 与电气接口箱 (40) 为电连接。
6、 根据权利要求 1 所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的寿命测试***中控制器 (60 ) 的温度 /湿度 /供电电压 /负载交变的测试时间至少为 1000小时。
7、 根据权利要求 2 所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的高压程控电源 (50a) 与所述的控制器组之间设置有使高压程控电源 (50a) 为控 制器组单向供电的能量再循环装置 (100)。
8、 根据权利要求 2 所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的高压程控电源 (50a) 与所述的控制器组之间设置有安全保护继电器 (51 ), 安全 保护继电器 (51 ) 与电气接口箱 (40 ) 为电连接。
9、 根据权利要求 1或 2或 5任一项所述的混合动力汽车控制器寿命测试***, 其特征在于: 所述的混合动力电机 (30 ) 上设置有超速保护装置 (31 ), 超速保护装置
( 31 ) 与安全保护继电器 (51 ) 为电连接。
10、 根据权利要求 7所述的混合动力汽车控制器寿命测试***, 其特征在于: 所 述的能量再循环装置(100 )包括晶体管和电容器, 晶体管的发射极一边与所述的控制 器(60 ) 的正极相连, 另一边依次通过二极管 D1的负极、 正极与高压程控电源(50a) 的正极相连;其基极依次通过电阻 R1和二极管 D2的正极、负极与高压程控电源(50a) 的正极相连;其集电极通过电阻 R2分别与高压程控电源(50a)的负极以及控制器(60 ) 的负极相连; 电容器的两端分别与控制器 (60 ) 的正极和负极相连。
PCT/CN2009/074174 2008-09-29 2009-09-24 混合动力汽车控制器寿命测试*** WO2010034240A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0919035A BRPI0919035A2 (pt) 2008-09-29 2009-09-24 sistema de teste de vida para controladores hev
EG2011030470A EG26281A (en) 2008-09-29 2011-03-27 HEV Control System Lifetime Testing System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810155417XA CN101377682B (zh) 2008-09-29 2008-09-29 一种混合动力汽车控制器寿命测试***
CN200810155417.X 2008-09-29

Publications (1)

Publication Number Publication Date
WO2010034240A1 true WO2010034240A1 (zh) 2010-04-01

Family

ID=40421256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074174 WO2010034240A1 (zh) 2008-09-29 2009-09-24 混合动力汽车控制器寿命测试***

Country Status (4)

Country Link
CN (1) CN101377682B (zh)
BR (1) BRPI0919035A2 (zh)
EG (1) EG26281A (zh)
WO (1) WO2010034240A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149922A (zh) * 2011-12-07 2013-06-12 上海大郡动力控制技术有限公司 纯电动汽车动力***仿真平台
CN105865801A (zh) * 2016-04-05 2016-08-17 无锡锐祺通讯技术有限公司 一种电动车整车参数自动配置和测试***及自动配置和测试方法
CN106655644A (zh) * 2016-11-18 2017-05-10 西华大学 一种基于can总线的电机控制***
CN108279666A (zh) * 2018-04-12 2018-07-13 杭州神驹科技有限公司 一种整车控制器的测试装置
CN109187046A (zh) * 2018-08-28 2019-01-11 阿尔特汽车技术股份有限公司 一种基于电池模拟器的混合动力汽车***测试平台结构
CN110456771A (zh) * 2019-08-10 2019-11-15 苏州科准测控有限公司 基于can总线的车载无线充电模块模拟测试***及设备
CN113049272A (zh) * 2021-04-20 2021-06-29 慧勒智行汽车技术(昆山)有限公司 一种基于车辆智能座舱的测试台架***

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387887B (zh) * 2008-09-29 2011-12-14 奇瑞汽车股份有限公司 一种混合动力电机和控制器测试平台的测试方法
CN101377682B (zh) * 2008-09-29 2011-02-16 奇瑞汽车股份有限公司 一种混合动力汽车控制器寿命测试***
CN102183954A (zh) * 2011-05-27 2011-09-14 奇瑞汽车股份有限公司 一种汽车整车控制器功能检测装置及其检测方法
CN102681534A (zh) * 2012-05-16 2012-09-19 奇瑞汽车股份有限公司 一种电动汽车整车控制器寿命测试***及其测试方法
CN103631247B (zh) * 2012-08-20 2016-08-24 北汽福田汽车股份有限公司 一种汽车的电控产品的寿命测试***
CN103246280B (zh) * 2012-12-04 2016-06-08 奇瑞新能源汽车技术有限公司 一种电动汽车诊断***
CN103809120B (zh) * 2014-03-03 2016-11-02 广东机电职业技术学院 一种弱混合动力汽车动力***电气部件的测试***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623104A (en) * 1995-03-10 1997-04-22 Toyota Jidosha Kabushiki Kaisha Apparatus for testing power performance of electric motor for electric vehicle
JP2000035380A (ja) * 1998-07-15 2000-02-02 Shinko Electric Co Ltd ハイブリッド電気自動車用試験装置
CN101261190A (zh) * 2007-12-27 2008-09-10 奇瑞汽车股份有限公司 一种混合动力汽车控制器寿命测试***及测试方法
CN201193984Y (zh) * 2007-12-27 2009-02-11 奇瑞汽车股份有限公司 一种混合动力汽车控制器寿命测试***
CN101377682A (zh) * 2008-09-29 2009-03-04 奇瑞汽车股份有限公司 一种混合动力汽车控制器寿命测试***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425966C (zh) * 2005-05-18 2008-10-15 奇瑞汽车股份有限公司 一种混合动力汽车动力总成实验装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623104A (en) * 1995-03-10 1997-04-22 Toyota Jidosha Kabushiki Kaisha Apparatus for testing power performance of electric motor for electric vehicle
JP2000035380A (ja) * 1998-07-15 2000-02-02 Shinko Electric Co Ltd ハイブリッド電気自動車用試験装置
CN101261190A (zh) * 2007-12-27 2008-09-10 奇瑞汽车股份有限公司 一种混合动力汽车控制器寿命测试***及测试方法
CN201193984Y (zh) * 2007-12-27 2009-02-11 奇瑞汽车股份有限公司 一种混合动力汽车控制器寿命测试***
CN101377682A (zh) * 2008-09-29 2009-03-04 奇瑞汽车股份有限公司 一种混合动力汽车控制器寿命测试***

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149922A (zh) * 2011-12-07 2013-06-12 上海大郡动力控制技术有限公司 纯电动汽车动力***仿真平台
CN105865801A (zh) * 2016-04-05 2016-08-17 无锡锐祺通讯技术有限公司 一种电动车整车参数自动配置和测试***及自动配置和测试方法
CN106655644A (zh) * 2016-11-18 2017-05-10 西华大学 一种基于can总线的电机控制***
CN106655644B (zh) * 2016-11-18 2023-04-14 广州市信征汽车零件有限公司 一种基于can总线的电机控制***
CN108279666A (zh) * 2018-04-12 2018-07-13 杭州神驹科技有限公司 一种整车控制器的测试装置
CN109187046A (zh) * 2018-08-28 2019-01-11 阿尔特汽车技术股份有限公司 一种基于电池模拟器的混合动力汽车***测试平台结构
CN110456771A (zh) * 2019-08-10 2019-11-15 苏州科准测控有限公司 基于can总线的车载无线充电模块模拟测试***及设备
CN113049272A (zh) * 2021-04-20 2021-06-29 慧勒智行汽车技术(昆山)有限公司 一种基于车辆智能座舱的测试台架***
CN113049272B (zh) * 2021-04-20 2023-06-27 慧勒智行汽车技术(昆山)有限公司 一种基于车辆智能座舱的测试台架***

Also Published As

Publication number Publication date
CN101377682B (zh) 2011-02-16
EG26281A (en) 2013-06-11
BRPI0919035A2 (pt) 2015-12-08
CN101377682A (zh) 2009-03-04

Similar Documents

Publication Publication Date Title
WO2010034240A1 (zh) 混合动力汽车控制器寿命测试***
CN103809120B (zh) 一种弱混合动力汽车动力***电气部件的测试***及方法
CN101587345B (zh) 一种混合动力和电动汽车用控制器的功能测试***
CN100425966C (zh) 一种混合动力汽车动力总成实验装置
CN105459832B (zh) 用于高电压泄漏检测的***和方法
CN101261190B (zh) 一种混合动力汽车控制器寿命测试***及测试方法
CN203732689U (zh) 一种弱混合动力汽车动力***电气部件的测试***
CN207487981U (zh) 一种p2架构混合动力台架试验装置
CN113161649B (zh) 确定对动力电池脉冲加热时的最优脉冲电流参数的方法
CN113552485B (zh) 一种新能源汽车热管理功能测试***及方法
CN202025072U (zh) 汽车交流发电机测试***
CN105547712A (zh) 插电式混合动力车的动力总成测试台架及方法
CN201193984Y (zh) 一种混合动力汽车控制器寿命测试***
CN109507588A (zh) 一种节能型电机带载试验***
CN207081556U (zh) 插电式混合动力汽车动力总成台架***
KR101838470B1 (ko) 배터리 시험 시스템
CN116499757B (zh) 车辆在环测试***及方法
CN104617834A (zh) 一种单片机控制的直流电机控制器及其控制方法
CN106347167B (zh) 一种混动汽车
CN113341259B (zh) 一种新能源汽车整车高低温测试***及方法
CN111009669A (zh) 一种车辆和燃料电池散热***及其集成控制器
CN205352708U (zh) 插电式混合动力车的动力总成测试台架
CN213414261U (zh) 一种锂电池混合动力测试***实验研究***
CN109164384B (zh) 电机定子绝缘老化试验装置及试验方法
CN113960400A (zh) 一种新能源汽车的高压测试***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0919035

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110325