WO2010024446A1 - 光電流による被検物質の特定的検出に用いられる電極部材 - Google Patents

光電流による被検物質の特定的検出に用いられる電極部材 Download PDF

Info

Publication number
WO2010024446A1
WO2010024446A1 PCT/JP2009/065246 JP2009065246W WO2010024446A1 WO 2010024446 A1 WO2010024446 A1 WO 2010024446A1 JP 2009065246 W JP2009065246 W JP 2009065246W WO 2010024446 A1 WO2010024446 A1 WO 2010024446A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
electrode
electrode member
semiconductor
layer
Prior art date
Application number
PCT/JP2009/065246
Other languages
English (en)
French (fr)
Inventor
雅子 中村
允 戸次
純也 成田
修司 曾根▲崎▼
仁 大原
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to US13/061,244 priority Critical patent/US20110193187A1/en
Priority to JP2010526817A priority patent/JPWO2010024446A1/ja
Priority to EP09810090A priority patent/EP2327979A1/en
Priority to CN2009801433233A priority patent/CN102203596A/zh
Publication of WO2010024446A1 publication Critical patent/WO2010024446A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode member used for specific detection of a test substance having specific binding properties such as a nucleic acid, an exogenous endocrine disrupting substance, and an antigen using a photocurrent, and a method for producing the same.
  • the photocurrent generated by photoexcitation of the sensitizing dye can be used to detect test substances (biomolecules such as DNA and proteins).
  • test substances biomolecules such as DNA and proteins.
  • Proposals for use have been made (see, for example, Japanese Patent Application Laid-Open No. 2002-181777 (Patent Document 1), Japanese Patent Application Laid-Open No. 2005-251426 (Patent Document 2), and Japanese Patent Application Publication No. 2006-507491 (Patent Document 3).
  • a current generated by irradiating excitation light to a dye immobilized on an electrode is measured, and the amount of dye bonded from the detected amount of current is measured. Therefore, compared with the conventional method of detecting fluorescence as an image, the apparatus can be miniaturized, and the test substance can be detected to some extent simply.
  • Nucleic acids, exogenous endocrine disruptors, antigens and other substances are generally present in low concentrations in the sample.
  • an electrode used for detection of a test substance by photocurrent is ideally high in light transmittance, biomolecule loading and photoelectron conversion efficiency.
  • simply using a working electrode having such characteristics does not necessarily provide a sufficient measured value in the measurement of a test substance in a low concentration range. There wasn't.
  • the present inventors have recently used a semiconductor and a test substance having specific binding properties with higher sensitivity by using a semiconductor and another kind of substance on the surface of the semiconductor as an electron accepting substance in the electrode member. It was detected that it was possible to quantitate with higher accuracy.
  • the present invention is based on such knowledge.
  • an object of the present invention is to provide an electrode member that can detect a test substance having specific binding properties with higher sensitivity and quantify it with higher accuracy.
  • the electrode member according to the present invention is an electrode member used for specific detection of a test substance by photocurrent, and has at least a conductive base material and an electron accepting substance on the conductive base material.
  • the electron-accepting material is a first material layer made of a semiconductor, and a second material made of a semiconductor or a metal or metal oxide of a different type from the semiconductor, supported on the surface of the first material layer. And at least.
  • the detection sensitivity of a test substance at a low concentration can be improved, and the measurement accuracy can be improved.
  • FIG. 4 is a diagram showing photocurrent values obtained in Example 1.
  • 6 is a diagram showing photocurrent values obtained in Example 2.
  • FIG. FIG. 6 is a diagram showing photocurrent values obtained in Example 4.
  • FIG. 10 is a diagram showing photocurrent values obtained in Example 5.
  • 4 is a TEM analysis photograph of the ZnO sputter electrode obtained in Example 6 at a magnification of 450,000 times.
  • 7 is a TEM analysis photograph of the ZnO sputter electrode obtained in Example 6 at a magnification of 1.8 million.
  • 7 is a TEM analysis photograph of the ZnO nitric acid-treated electrode obtained in Example 6 at a magnification of 450,000 times.
  • 4 is a TEM analysis photograph of the ZnO nitric acid treated electrode obtained in Example 6 at a magnification of 1.8 million.
  • a specific detection method of a test substance using a photocurrent includes a sample liquid containing a test substance and a probe substance that can bind directly or indirectly to the test substance.
  • a working electrode provided on the surface and a counter electrode are prepared, and in the presence of a sensitizing dye, the sample liquid is brought into contact with the working electrode, and the test substance is directly or indirectly specific to the probe substance. Bonding, fixing the sensitizing dye to the working electrode, bringing the working electrode and the counter electrode into contact with an electrolyte medium, and irradiating the working electrode with light to irradiate the working electrode and the counter electrode Detecting photocurrent flowing between the electrodes.
  • Electrode Member The electrode member according to the present invention is used as a working electrode by immobilizing a test substance on the electrode surface in the above-described specific detection method of the test substance by photocurrent.
  • Conductive substrate As the conductive substrate constituting the electrode member according to the present invention, not only a conductive material but also a conductive material is supported on the surface of a non-conductive support such as glass or plastic. It is also possible to have a configuration that ensures conductivity.
  • conductive materials include metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium; conductive ceramics such as carbon, carbide, and nitride; fluorine on indium and indium-tin tin composite oxides and tin oxide Conductive metal oxides such as those doped, tin oxide doped antimony, zinc oxide doped gallium, or zinc oxide doped aluminum, more preferably indium-tin It is a composite oxide (I T O) and a metal oxide (F T O) in which tin oxide is doped with fluorine.
  • metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium
  • conductive ceramics such as carbon, carbide, and nitride
  • Conductive metal oxides such as those doped, tin oxide doped antimony, zinc oxide doped gallium, or zinc oxide doped aluminum, more preferably in
  • the electron accepting substance itself also functions as a conductive base material
  • the conductive base material includes a thin film-like or spot-like shape having no strength as a support itself.
  • the conductive substrate is substantially transparent, specifically, the light transmittance is preferably 10% or more, more preferably 50% or more, and still more preferably. 70% or more.
  • the cell is configured such that light is irradiated from the back side of the working electrode (ie, the conductive substrate), and the light transmitted through the working electrode (ie, the conductive substrate and the electron accepting layer) excites the sensitizing dye. can do.
  • the thickness of the conductive equipment is preferably about 0.02 to 10 ⁇ m.
  • the surface resistance of an electroconductive base material is 100 ohm / cm ⁇ 2 > or less, More preferably, it is 40 ohm / cm ⁇ 2 > or less.
  • the lower limit of the surface resistance of the conductive substrate is not particularly limited, but will usually be about 0.1 ⁇ / cm 2 .
  • Electron-accepting material comprises an electron-accepting material placed on the conductive substrate, the electron-accepting material comprising a layer of a first material made of a semiconductor and a layer of the first material. It is comprised at least from the semiconductor of the kind different from the said semiconductor supported on the surface of the layer, or the 2nd substance which consists of a metal or a metal oxide.
  • the first substance is a semiconductor, more preferably an oxide semiconductor, still more preferably a metal oxide semiconductor, and most preferably an n-type metal oxide semiconductor.
  • the semiconductor may have a structure such as a porous body or an uneven surface shape, whereby a working electrode having a large surface area can be produced, and the amount of immobilized probes is increased. The advantage of being able to be made is obtained.
  • the electron acceptor in the present invention comprises an electron acceptor capable of accepting electrons emitted by a sensitizing dye fixed via a probe substance in response to photoexcitation. That is, the electron-accepting substance is a substance that can take an energy level at which electrons can be injected from the photoexcited labeling dye.
  • the energy level (A) capable of injecting electrons from the photoexcited labeling dye means, for example, a conduction band (conduction band: CB) when a semiconductor is used as the electron-accepting material.
  • CB conduction band
  • a metal is used as the electron-accepting material, it means the Fermi level.
  • the level of A is a level that is lower than the energy level of the lowest unoccupied molecular orbital (LUMO) of the sensitizing dye, in other words, Any material having an energy level lower than the LUMO energy level of the sensitizing dye may be used.
  • LUMO lowest unoccupied molecular orbital
  • Preferred examples of the electron accepting material include simple semiconductors such as silicon and germanium; oxides such as titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, and tantalum.
  • Perovskite type semiconductors such as strontium titanate, calcium titanate, sodium titanate, barium titanate, potassium niobate; sulfide semiconductors of cadmium, zinc, lead, silver, antimony, bismuth; cadmium, lead selenide semiconductors Cadmium telluride semiconductors; phosphide semiconductors such as zinc, gallium, indium and cadmium; gallium arsenide, copper-indium selenide, copper-indium-sulfide compound semiconductors, and more preferably silicon Emissions, TiO 2, SnO 2, Fe 2 O 3, WO 3, ZnO, Nb 2 O 5, strontium titanate, indium oxide, CdS, ZnS, PbS, Bi 2 S 3, CdSe, CdTe, GaP, InP, GaAs CuInS 2 , CuInSe, C60, more preferably TiO 2 , ZnO, SnO 2 , Fe 2 O 3 , WO
  • the potential of the conduction band of the semiconductor is preferably lower than the LUMO potential of the sensitizing dye, more preferably the LUMO of the sensitizing dye> the conduction band of the semiconductor> the redox of the electrolyte.
  • ITO indium-tin composite oxide
  • FTO fluorine-doped tin oxide
  • ITO and FTO have the property of functioning not only as an electron accepting substance but also as a conductive base material. Therefore, when these materials are used, it is possible to constitute a conductive electron accepting layer. Yes, it can be used without introducing a conductive substrate.
  • the second substance constituting the electron-accepting material of the electrode member according to the present invention comprises a semiconductor of a different type from the semiconductor of the first substance, or a metal or metal oxide.
  • Specific examples of the semiconductor constituting the second substance include those exemplified as the semiconductor of the first substance.
  • Examples of the metal include gold, platinum, silver, copper, aluminum, rhodium, indium and nickel.
  • the metal includes not only a so-called narrow metal having a metal bond but also a “metal element”.
  • Non-semiconductor oxides such as titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, and tantalum are used as the metal oxide constituting the second substance. Is mentioned.
  • This second substance is supported on the surface of the first substance layer.
  • “supported on the surface” is not particularly limited as long as the layer of the first substance and the second substance exist in electrical or physical contact with each other. It may be in a form that is formed, or may be placed on a part of the surface of the layer of the first substance so as to partially cover the surface. In the latter case, the second substance may be formed by applying it to the surface of the layer of the first substance and then removing it partially. Furthermore, the present invention includes a presence form in which the second substance is localized on the surface of the layer of the first substance in the form of particles.
  • the surface element ratio (substance ratio) of the metal element constituting the second substance to the metal element constituting the first substance is more than 0 and less than 1, more preferably this The surface element ratio is more than 0 and less than 0.27, more preferably more than 0 and less than 0.15, and most preferably more than 0 and less than 0.10.
  • the measurement of the surface existing element ratio can be obtained by analysis using X-ray photoelectron analysis.
  • the coating thickness of the second substance is preferably more than 0 and less than 2 nm.
  • a mode in which the first substance is detected in a region having a certain depth from the surface of the layer of one substance is also included.
  • the second substance is preferably present in a region having a depth of 4 nm inward from the surface of the first substance, and more preferably in a region of 2 nm or less.
  • the semiconductor or metal or metal oxide as the electron accepting substance may be either single crystal or polycrystalline.
  • Manufacturing method of electrode member As a preferable method of forming an electron accepting material on a conductive substrate, a dispersion or colloidal solution of an electron accepting material is applied on a conductive support, and a precursor of semiconductor fine particles is made conductive. Examples of the method include a method of obtaining a fine particle film by applying on a support and hydrolyzing with moisture in the air (sol-gel method), a sputtering method, a CVD method, a PVD method, and a vapor deposition method.
  • a method of preparing a dispersion of semiconductor fine particles as an electron accepting material includes a method of grinding with a mortar, a method of dispersing while grinding using a mill, or a method of synthesizing a semiconductor. Examples thereof include a method in which it is precipitated as fine particles in a solvent and used as it is.
  • the dispersion medium include water or various organic solvents (for example, methanol, ethanol, isopropyl alcohol, dichloromethane, acetone, acetonitrile, ethyl acetate, etc.).
  • a polymer, a surfactant, an acid, a chelating agent, or the like may be used as a dispersion aid as necessary.
  • Preferred examples of the application method of the electron acceptor dispersion or colloidal solution include the roller method as the application system, the dip method, the air knife method as the metering system, the blade method, etc., and the application and metering in the same part.
  • the thickness of the semiconductor of the first material is preferably 0.1 to 200 ⁇ m, more preferably 0.8. It is 1 to 100 ⁇ m, more preferably 1 to 30 ⁇ m, and most preferably 2 to 25 ⁇ m.
  • the electron accepting material comprises indium-tin composite oxide (ITO) or metal oxide (FTO) in which tin oxide is doped with fluorine (FTO)
  • the thickness of the electron accepting material layer Is preferably 1 nm or more, more preferably 10 nm to 1 ⁇ m.
  • the method of supporting the second substance on the surface of the layer of the first substance may be appropriately determined according to the method for forming the first substance, and for example, a vapor deposition method can be used.
  • the electrode member according to another preferred embodiment of the present invention is manufactured by removing a part of the second material deposited on the surface of the first material layer.
  • Examples of the method for removing the second metal or metal oxide include physical removal and chemical removal.
  • the physical removal method is a method using heat, ultrasonic waves, electrochemical removal, removal by a seal or the like.
  • the chemical removal is removal using dissolution with an acid, an alkaline solution or a chemical.
  • the second substance is zinc oxide
  • an acidic solution for example, nitric acid, hydrochloric acid, acetic acid, hydrogen peroxide solution, sulfuric acid, organic sulfonic acid, citric acid solution, etc., and buffers adjusted to a pH of less than 2.9 such as succinic acid buffer and acetic acid buffer are also used. I can do it.
  • it is possible to shorten the treatment time by preferably setting the pH of the acidic solution to less than 2.9, more preferably 2.5 or less. At this time, the immersion time of the electrode in the acidic solution may be 1 minute or longer.
  • Test substance The test substance in the present invention is not particularly limited as long as it is a substance having specific binding properties with the probe substance.
  • a probe substance capable of specifically binding directly or indirectly to a test substance is supported on the surface of the electrode member, preferably an electron accepting substance, so that the test substance is probed. It becomes possible to detect by binding specifically to a substance directly or indirectly.
  • the electrode member used in the present invention is preferably an electrode having on its surface a probe material that can be directly or indirectly bonded to the test substance.
  • Suitable probe substances include biomolecules. That is, the probe substance specifically binds not only to a substance that directly binds specifically to the test substance, but also to a conjugate obtained by specifically binding the test substance to a mediator such as a receptor protein molecule. It may be a possible substance.
  • the sample solution is brought into contact with the working electrode in the presence of the sensitizing dye, and the test substance is directly or indirectly specifically bound to the probe substance, and the sensitizing dye is fixed to the working electrode by this binding.
  • the sensitizing dye is a substance that can emit electrons to the working electrode in response to photoexcitation.
  • the probe substance is the primary antibody and the sensitizing dye is the secondary antibody.
  • the sensitizing dye is labeled with a second test substance that can specifically bind to the probe substance.
  • the test substance and the probe substance that can specifically bind to each other can be selected. That is, according to a preferred embodiment of the present invention, it is preferable that a substance having specific binding properties be a test substance and a substance that specifically binds to the test substance be carried on the working electrode as a probe substance. As a result, the test substance can be directly bound and detected on the working electrode.
  • preferred examples of the combination of the test substance and the probe substance include a single-stranded nucleic acid and a single-stranded nucleic acid combination complementary to the nucleic acid, an antigen and an antibody, and a receptor protein and a ligand. The combination of these is mentioned.
  • the test substance and the probe substance may indirectly and specifically bind. That is, according to another preferred embodiment of the present invention, a substance having specific binding properties is used as a test substance, a substance that specifically binds to the test substance is used as a mediator, and It is preferable to carry a substance capable of binding to the working electrode as a probe substance. As a result, even a substance that cannot specifically bind to the probe substance can be detected by specifically binding indirectly to the working electrode via the mediator substance.
  • preferred examples of the combination of the test substance, the mediator, and the probe substance include a ligand, a receptor protein molecule that can accept the ligand, and two molecules that can specifically bind to the receptor protein molecule.
  • a combination of nucleic acids in a strand is mentioned.
  • the ligand include exogenous endocrine disrupting substances (environmental hormones).
  • An exogenous endocrine disrupting substance is a substance that binds to DNA or a peptide through a receptor protein molecule and produces a toxicity by affecting its gene expression. According to the method of the present invention, It is possible to easily monitor the binding of a protein such as a receptor to DNA or peptide.
  • the loading of the probe substance on the electrode member can be performed according to a known method.
  • a single-stranded nucleic acid when used as a probe substance, it can be carried out by binding a nucleic acid probe directly or indirectly to the working electrode surface.
  • the nucleic acid probe into which the functional group has been introduced can be immobilized on the carrier as it is by an immobilization reaction.
  • Introduction of a functional group at the end of a nucleic acid can be performed using an enzymatic reaction or a DNA synthesizer.
  • an amino group, a carboxyl group, a thiol group, a hydroxyl group, a phosphate group, or a diol group can be suitably used as a functional group for immobilizing the probe substance to the working electrode.
  • a material that crosslinks between the working electrode and the probe substance can also be used in order to firmly fix the probe substance to the working electrode.
  • a crosslinking material include silane coupling agents, titanate coupling agents, and conductive polymers such as polythiophene, polyacetylene, polypyrrole, and polyaniline.
  • the probe substance can be immobilized efficiently by a simple operation called physical adsorption.
  • the physical adsorption of the probe substance on the electrode surface can be performed, for example, as follows. First, the electrode surface is cleaned with ultrapure water and acetone using an ultrasonic cleaner. Thereafter, a buffer solution containing the probe substance is dropped on the electrode, and after standing, the probe substance is adsorbed on the electrode surface by washing.
  • the detection apparatus basically has the configuration shown in FIG. That is, the counter electrode 2 was fixed to the opposing member 1, and the electrode member according to the present invention was placed as the working electrode 4 through the electrolyte pad 3. Further, light was applied to the working electrode by the light source 5, and laser was applied to each spot on the electrode by the electrode unit 6 to obtain a photocurrent.
  • Example 1 Specific detection of proteins by photocurrent using different working electrodes
  • Fluorine-doped tin oxide (F-SnO 2 : FTO) coated glass manufactured by AI Special Glass Co., Ltd., U film, sheet resistance: 12 ⁇ / cm 2 , shape: 50 mm ⁇ 26 mm
  • ZnO / FTO electrode ZnO is 0.44 nm (sputtering time 20 seconds, 50 W, sputter rate 1.3 nm / min), 1.08 nm (sputtering time 50 seconds, 50 W, sputter rate 1) on the above FTO electrode by sputtering. 3 nm / min)
  • ZnO / FTO * electrode An electrode was prepared by depositing ZnO to a thickness of 50 nm (200 W, sputtering time: 8 minutes, sputtering rate: 6.25 nm / min) on the above FTO electrode by sputtering. Approximate). This electrode was subjected to ultrasonic cleaning for 1 minute in order of acetone, ultrapure water, and acetone, immersed in a 1M nitric acid solution (pH 0.2), and shaken for 5 minutes. Thereafter, it was sufficiently rinsed with ultrapure water to make this electrode ZnO / FTO * .
  • the working electrode prepared by immobilizing the probe protein was subjected to ultrasonic cleaning for 1 minute each in the order of acetone, ultrapure water, and acetone. Thereafter, an adhesive seal (thickness: 0.5 mm) in which an opening having a diameter of 3 mm was formed was placed and adhered.
  • a goat-derived antibody (anti-luciferase polyclonal antibody: manufactured by Promega) was prepared at 10 ⁇ g / ml.
  • the solvent used was a 10 mM phosphate buffer (pH 7) containing 250 mM NaCl and 0.05% Tween20. 5 ⁇ l each of this protein solution was dropped into the opening by the seal on the electrode and incubated at 37 ° C. for 30 minutes. Thereafter, the electrode was washed by shaking in ultrapure water for 10 minutes.
  • Binding reaction dye-labeled antigen of test protein (Cy5-anti-goat antibody (rabbit): manufactured by Chemicon) was prepared at 100 ng / ml. At this time, as a solvent, a 10 mM phosphate buffer (pH 7) containing 250 mM NaCl and 0.05% Tween 20 was used. 5 ⁇ l of the prepared antigen solution was dropped into the seal opening on the working electrode on which the probe protein had previously been immobilized, and incubated at 37 ° C. for 1 hour. Thereafter, the seal on the electrode was peeled off, and the surface was washed with ultrapure water.
  • test substance binding working electrode prepared by the above-described method and a counter electrode formed by depositing platinum on a glass plate were prepared.
  • An electrolyte sheet containing an electrolytic solution (0.4M tetrapropylammonium iodide) was sandwiched between both electrodes and adhered.
  • the surface of the working electrode on which the protein was immobilized and the platinum deposition surface of the counter electrode were arranged to face each other.
  • the working electrode was irradiated with a laser light source (output 120 mW, diameter of the irradiated region 1 mm, wavelength 650 nm red laser), and the current value observed at that time was recorded. The result was as shown in FIG.
  • Example 2 Partial removal by nitric acid treatment Production of electrode As a substrate for working electrode, fluorine-doped tin oxide (F-SnO2: FTO) coated glass (manufactured by AI Special Glass Co., Ltd., U film, sheet resistance: 12 ⁇ / cm 2 , shape: 50 mm ⁇ 26 mm) Prepared.
  • An electrode (ZnO / FTO) in which ZnO was sputtered to a thickness of 50 nm was prepared by the method described in Example 1. The electrode was subjected to ultrasonic cleaning for 1 minute in order of acetone, ultrapure water, and acetone, and then immersed in a nitric acid solution adjusted to each concentration.
  • Nitric acid was prepared to the following 8 pH (concentration). Table 1 shows the immersion time of the prepared nitric acid solution and the electrode. After dipping in each solution, the electrode was thoroughly rinsed and washed with ultrapure water.
  • An adhesive seal (thickness: 0.5 mm) having an opening with a diameter of 3 mm was placed on and brought into close contact with the electrode produced by immunoassay .
  • Cy5-labeled anti-goat antibody prepared in 10 ng / ml, 100 ng / ml, 1 ⁇ g / ml (10 mM phosphate buffer, 0.05% Tween 20, 250 mM NaCl) was added dropwise to the seal opening at 60 ° C. at 60 ° C. Incubation was performed for a minute.
  • Example 3 Surface elemental analysis of electrode ZnO / FTO electrode (ZnO film thickness 0.44 nm, 1.03 nm, 50 nm) prepared in Example 1 and ZnO / FTO * electrode (nitric acid treatment concentration: 1 M, 5 mM, 3.2 mM) 2 mM, 0.1 mM) and a total of nine types of FTO electrodes were subjected to surface elemental analysis using X-ray photoelectron analysis. The analysis was performed using a PHI1800 type X-ray photoelectron spectrometer manufactured by ULVAC-PHI under the conditions of an X-ray source MgK ⁇ (100 w) analysis region of 0.8 ⁇ 2.0 mm. The results were as shown in Table 2.
  • Example 4 Specific detection of protein by photocurrent using nitric acid-treated electrodes on various sputter surfaces Production of working electrode Fluorine-doped tin oxide (F-SnO 2 : FTO) coated glass as a substrate for FTO electrode working electrode (manufactured by AI Special Glass Co., Ltd., U film, sheet resistance: 12 ⁇ / cm 2 , shape: 50 mm ⁇ 26 mm) Prepared.
  • F-SnO 2 Fluorine-doped tin oxide
  • FTO Fluorine-doped tin oxide
  • ITO / FTO electrode An electrode (thickness was estimated from the sputtering rate) was prepared by depositing ITO on the FTO electrode to a thickness of 50 nm (sputtering time 8 minutes, 100 W, sputtering rate 6.25 nm / min) by sputtering.
  • WO 3 / FTO electrode Prepare an electrode (film thickness is estimated from the sputtering rate) by depositing WO 3 to 50 nm (sputtering time 8 minutes, 100 W, sputtering rate 6.25 nm / min) on the above FTO electrode by sputtering. did.
  • SrTiO 3 / FTO electrode An electrode (the film thickness is estimated from the sputtering rate) on which the SrTiO 3 film is deposited to 50 nm (sputtering time 8 minutes, 100 W, sputtering rate 6.25 nm / min) on the above FTO electrode by sputtering. did.
  • ITO / FTO, WO 3 / FTO, and SrTiO 3 / FTO electrodes were each ultrasonically cleaned in the order of acetone, ultrapure water, and acetone for 1 minute each to give a 1M nitric acid solution (pH 0.2). And was shaken for 15 minutes. Sufficiently rinsed with subsequent ultra-pure water, the electrode respectively ITO / FTO *, WO 3 / FTO *, and the SrTiO 3 / FTO *.
  • the working electrode prepared by immobilizing the probe protein was subjected to ultrasonic cleaning for 1 minute each in the order of acetone, ultrapure water, and acetone. Thereafter, an adhesive seal (thickness: 0.5 mm) in which an opening having a diameter of 3 mm was formed was placed and adhered.
  • a goat-derived antibody (anti-luciferase polyclonal antibody: manufactured by Promega) was prepared at 10 ⁇ g / ml.
  • the solvent used was a 10 mM phosphate buffer (pH 7) containing 250 mM NaCl and 0.05% Tween20. 5 ⁇ l each of this protein solution was dropped into the opening by the seal on the electrode and incubated at 37 ° C. for 30 minutes. Thereafter, the electrode was washed by shaking in ultrapure water for 10 minutes.
  • Binding reaction dye-labeled antigen of test protein (Cy5-anti-goat antibody (rabbit): manufactured by Chemicon) was prepared at 100 ng / ml. At this time, as a solvent, a 10 mM phosphate buffer (pH 7) containing 250 mM NaCl and 0.05% Tween 20 was used. 5 ⁇ l of the prepared antigen solution was dropped into the seal opening on the working electrode on which the probe protein had previously been immobilized, and incubated at 37 ° C. for 1 hour. Thereafter, the seal on the electrode was peeled off, and the surface was washed with ultrapure water.
  • test substance binding working electrode prepared by the above-described method and a counter electrode formed by depositing platinum on a glass plate were prepared.
  • An electrolyte sheet containing an electrolytic solution (0.4M tetrapropylammonium iodide) was sandwiched between both electrodes and adhered.
  • the surface of the working electrode on which the protein was immobilized and the platinum deposition surface of the counter electrode were arranged to face each other.
  • the working electrode was irradiated with a laser light source (output 120 mW, diameter of the irradiated region 1 mm, wavelength 650 nm red laser), and the current value observed at that time was recorded. The result was as shown in FIG. From these results, it was shown that even when ITO, WO 3 , or SrTiO 3 was used as the second substance, specific detection of the test protein by photocurrent was possible after the nitric acid treatment.
  • Example 5 Specific detection of a test substance by sandwich immunoassay using a prepared electrode Production of working electrode Fluorine-doped tin oxide (F-SnO 2 : FTO) coated glass as a substrate for FTO electrode working electrode (manufactured by AI Special Glass Co., Ltd., U film, sheet resistance: 12 ⁇ / cm 2 , shape: 50 mm ⁇ 26 mm) Prepared.
  • F-SnO 2 Fluorine-doped tin oxide
  • FTO Fluorine-doped tin oxide
  • ZnO / FTO electrode An electrode (thickness was estimated from the sputtering rate) was prepared by depositing ZnO at a thickness of 50 nm (sputtering time 8 minutes, 100 W, sputtering rate 6.25 nm / min) on the FTO electrode.
  • the above ZnO / FTO electrode was subjected to ultrasonic cleaning for 1 minute each in the order of acetone, ultrapure water, and acetone, immersed in 1M nitric acid solution (pH 0.2) and shaken for 15 minutes. Thereafter, it was sufficiently rinsed with ultrapure water to make this electrode ZnO / FTO * .
  • the working electrode prepared by immobilizing the probe protein was subjected to ultrasonic cleaning for 1 minute each in the order of acetone, ultrapure water, and acetone. Thereafter, an adhesive seal (thickness: 0.5 mm) in which an opening having a diameter of 3 mm was formed was placed and adhered.
  • Anti-Prostate Specific antigen antibody (Fitzgerald) was prepared at 15 ⁇ g / ml. At this time, 10 mM phosphate buffer (pH 7.4) was used as a solvent. 5 ⁇ l each of the antibody solution was dropped into the opening by the electrode field seal and incubated at 37 ° C. for 10 minutes. Thereafter, the electrode was washed by shaking in 10 mM phosphate buffer for 10 minutes.
  • Test Protein Binding Reaction Cy5-labeled anti-Prostate Specific Antigen antibody (manufactured by Biodesign) was prepared at 5 ⁇ g / ml. At this time, 10 mM phosphate buffer (pH 7), 150 mM NaCl, 0.05% Tween 20 was used as the solvent. Antigen (Prostate Specific Antigen) is added to the prepared antigen solution at each concentration, and after sufficient agitation by pipetting, 5 ⁇ l is added dropwise at 37 ° C. to the seal opening on the working electrode to which the probe protein has been immobilized previously. Incubation was for 10 minutes. Thereafter, the seal on the electrode was removed, and the surface was washed with a buffer solution and ultrapure water.
  • test substance binding working electrode prepared by the above-described method and a counter electrode formed by depositing platinum on a glass plate were prepared.
  • An electrolyte sheet containing an electrolytic solution (0.4M tetrapropylammonium iodide) was sandwiched between both electrodes and adhered.
  • the surface of the working electrode on which the protein was immobilized and the platinum deposition surface of the counter electrode were arranged to face each other.
  • the working electrode was irradiated with a laser light source (output 120 mW, diameter of the irradiated region 1 mm, wavelength 650 nm red laser), and the current value observed at that time was recorded. The result was as shown in FIG. From this result, it was shown that a test substance can be detected using a sandwich immunoassay by photocurrent.
  • Example 6 Analysis of ZnO nitric acid-treated electrode by TEM
  • the TEM and EDS analysis of the ZnO sputter electrode and the ZnO nitric acid-treated electrode prepared by the method shown in Example 1 were performed.
  • TEM analysis a JEM-2010F field emission type transmission electron microscope manufactured by JEOL Ltd. was used, and measurement was performed at an acceleration voltage of 200 kV.
  • EDS analysis a Nolan UTW type Si (Li) semiconductor detector was used, and an analysis region of 1 nm was analyzed.
  • the TEM observation photograph of the ZnO sputter electrode was as shown in FIG. 6 and FIG.
  • ZnO / FTO a ZnO layer of about 50 nm was observed on the FTO layer.
  • Zn was observed on the FTO layer side (spots 3, 4, 7) of the ZnO layer / FTO layer interface.
  • spot 5 is considered to be a Zn concentration near the detection limit of EDS, which is difficult to discuss, but a slight Zn-L peak is observed and Zn may exist.
  • Zn was not observed within about 10 nm from the interface (spot 6).
  • a TEM observation photograph of the ZnO nitric acid treated electrode was taken. It was as shown in FIG. 8 and FIG. No special layers such as the remainder of the ZnO layer were observed on the FTO layer surface. From the EDS spectrum, Zn may exist on the surface (spots 1 and 4) of the FTO layer. Zn was not observed inside the approximately 2 nm FTO layer (spot 2). Similarly, there is a possibility that Zn exists in the grain boundary (spot 5), and no Zn was observed inside the approximately 10 nm FTO layer (spot 6).
  • the Zn concentration is below the detection limit (% order) of EDS. From the above analysis, it is considered that Zn is diffused by about 4 nm to the FTO layer side of the ZnO layer / FTO layer interface at the ZnO sputter electrode. It is done. On the other hand, in the nitric acid-treated electrode, there is a possibility that Zn exists in the portion of the surface of the FTO layer less than 2 nm. From this, it is presumed that the Zn diffusion portion on the surface of the FTO layer is removed together with the ZnO layer of about 50 nm by the nitric acid treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 光電流による被検物質の特異的検出に用いられる電極部材が開示されている。この電極部材は、導電性基材と、該導電性基材上の電子受容物質とを少なくとも有してなり、前記電子受容物質が、半導体からなる第一物質の層と、該第一物質の層の表面に担持された、前記半導体とは異なる種類の半導体または金属もしくは金属酸化物からなる第二物質とから少なくともなるものである。この電極部材によれば、光電流を用いた被検物質の特異的検出を行う際、低濃度における被検物質の検出感度の向上と、測定精度の向上が実現される。

Description

光電流による被検物質の特定的検出に用いられる電極部材 関連出願
 本出願は、2008年9月1日に出願された日本国特許出願2008-223350号の優先権を主張するものであり、この日本出願の明細書は引用することにより本明細書の開示の一部とされる。
 本発明は光電流を用いた、核酸、外因性内分泌攪乱物質、抗原等の特異的結合性を有する被検物質の特異的な検出に用いられる電極部材およびその製造方法に関するものである。
 近年、人の疾病の病症および進度に対する予測を可能にするホルモン、タンパク質を簡便で安価に検出できる検査システムの考案が試みられている。また、ダイオキシンを始めとする外因性内分泌撹乱物質(環境ホルモン)の生殖系および神経系等への障害が社会問題化しており、その簡便な検出方法が望まれている。
 例えば、増感色素を用いて光から電気エネルギーを発生させる太陽電池の原理を利用して、増感色素の光励起により生じる光電流を、披検物質(DNA、蛋白などの生体分子)の検出に利用する提案がなされている(例えば、特開2002-181777号公報(特許文献1)、特開2005-251426号公報(特許文献2)、および特表2006-507491号公報(特許文献3)参照)。この方法は、電極に固定化された色素に励起光を照射することで生じた電流を測定し、検出された電流量から結合した色素量を測定するものである。したがって、従来の蛍光を画像として検出する方法と比較して、装置の小型化が可能となり、被検物質をある程度簡便に検出することができる。
 また、増感色素の光励起により生じる光電流を用いて被検物質(DNA、蛋白などの生体分子)を特異的に検出する方法も提案されている(例えば、中村他「光電変換による新しいDNA二本鎖検出方法」日本化学会講演予稿集Vol. 81st. No.1(2002) 第947項(非特許文献1)参照)。
 さらに、本発明者らの一部は先に、増感色素が結合した被検物質がプローブ物質を介して固定された作用電極を用いた検出方法を提案している(WO2007/037341号公報(特許文献4)。この公報の開示内容は引用することにより、本明細書の開示の一部とされる)。
 核酸、外因性内分泌攪乱物質、抗原等の物質は一般に試料中に存在する濃度が低い。光電流による被検物質の検出に用いる電極は、理論的には、光透過性、生体分子担持量及び光電子変換効率が高いことが理想的である。しかしながら、本発明者らが得た知見によれば、単にそのような特性を有する作用電極を用いただけでは、低濃度域の被検物質の測定においては、必ずしも十分な測定値が得られるものではなかった。
特開2002-181777号公報 特開2005-251426号公報 特表2006-507491号公報 WO2007/037341号公報
中村他「光電変換による新しいDNA二本鎖検出方法」日本化学会講演予稿集Vol. 81st. No.1(2002) 第947項
 本発明者らは今般、電極部材における電子受容物質として、半導体と、その半導体の表面にさらにもう一種の物質を存在させて用いることにより、特異的結合性を有する被検物質を、より高感度に検出し、より高精度に定量することができる、との知見を得た。本発明はかかる知見に基づくものである。
 従って、本発明は、特異的結合性を有する被検物質を、より高感度に検出し、より高精度に定量することを可能にする電極部材の提供をその目的としている。
 そして、本発明による電極部材は、光電流による被検物質の特異的検出に用いられる電極部材であって、導電性基材と、該導電性基材上の電子受容物質とを少なくとも有してなり、前記電子受容物質が、半導体からなる第一物質の層と、該第一物質の層の表面に担持された、前記半導体とは異なる種類の半導体または金属もしくは金属酸化物からなる第二物質とから少なくともなるものである。
 本発明によれば、低濃度における被検物質の検出感度を向上させ、かつ、測定精度を向上させることができる。
光電流検出の際に使用する電極ユニットの一例を示す断面図である。 例1において得られた光電流値を示す図である。 例2において得られた光電流値を示す図である。 例4において得られた光電流値を示す図である。 例5において得られた光電流値を示す図である。 例6において得られたZnOスパッタ電極の倍率45万倍のTEM分析写真である。 例6において得られたZnOスパッタ電極の倍率180万倍のTEM分析写真である。 例6において得られたZnO硝酸処理電極の倍率45万倍のTEM分析写真である。 例6において得られたZnO硝酸処理電極の倍率180万倍のTEM分析写真である。
 光電流による被検物質の特異的検出方法
 光電流を用いた被検物質の特異的検出方法は、被検物質を含む試料液と該被検物質と直接または間接的に結合可能なプローブ物質を表面に備えた作用電極と、対極とを用意し、増感色素の共存下、前記試料液を前記作用電極に接触させて、前記プローブ物質に前記被検物質を直接又は間接的に特異的に結合させ、該結合により前記増感色素を前記作用電極に固定させ、前記作用電極と前記対電極とを電解質媒体に接触させ、そして、前記作用電極に光を照射して前記作用電極と前記対電極との間に流れる光電流を検出することを含んでなるものである。
 電極部材
 本発明による電極部材は上記光電流による被検物質の特異的検出法において、被検物質を電極表面に固定化することで、作用電極として用いられる。
 導電性基材
 本発明による電極部材を構成する導電性基材としては、導電性を有する材料のみならず、ガラス、プラスチックのような非導電性の支持体の表面に導電性を有する材料を担持させ導電性を確保した構成のものであってもよい。
 導電性を有する材料としては、白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属; 炭素、炭化物、窒化物等の導電性セラミックス; およびインジウム- スズ複合酸化物、酸化スズにフッ素をドープしたもの、酸化スズにアンチモンをドープしたもの、酸化亜鉛にガリウムをドープしたもの、または酸化亜鉛にアルミニウムをドープしたもの等の導電性の金属酸化物が挙げられ、より好ましくは、インジウム-スズ複合酸化物(I T O ) 、酸化スズにフッ素をドープした金属酸化物( F T O ) である。なお、電子受容物質自体が導電性基材としても機能する場合にあっては、導電性基材をこれとは別に設ける必要はなく、導電性を有した電子受容物質として使用することが出来る。また、本発明において、導電性基材は、それ自体では支持体としての強度を有しない薄膜状またはスポット状の形状のものも包含するものとする。
 本発明の好ましい態様によれば、導電性基材が実質的に透明、具体的には、光の透過率が10%以上であるのが好ましく、より好ましくは50%以上であり、さらに好ましくは70%以上である。これにより、作用電極の裏側(すなわち導電性基材) から光を照射させて、作用電極(すなわち導電性基材および電子受容層) を透過した光が増感色素を励起するようにセルを構成することができる。また、本発明の好ましい態様によれば、導電性機材の厚みは、0.02~10μm程度であるのが好ましい。さらに、本発明の好ましい態様によれば、導電性基材の表面抵抗が1 0 0Ω/cm以下であり、さらに好ましくは40Ω/cm以下であるのが好ましい。導電性基材の表面抵抗の下限は特に限定されないが、通常0.1Ω/cm程度であろう。
 電子受容物質
 本発明による電極部材は、上記導電性基材上に置かれた電子受容物質を有してなり、この電子受容物質は、半導体からなる第一物質の層と、この第一物質の層の表面に担持された、前記半導体とは異なる種類の半導体または金属もしくは金属酸化物からなる第二物質とから少なくとも構成される。
 上記第一物質は半導体であり、より好ましくは酸化物半導体であり、さらに好ましくは金属酸化物半導体であり、最も好ましくはn型金属酸化物半導体である。半導体のバンドギャップの利用により、色素から効率良く電子を取り出すことができる。また、本発明の好ましい態様によれば、半導体は多孔体あるいは表面の凹凸形状といった構造を有するものであってよく、これにより表面積の大きい作用電極を作製することができ、プローブ固定化量を増加させることができるとの利点が得られる。
 本発明における電子受容物質とは、プローブ物質を介して固定された増感色素が光励起に応じて放出する電子を受容可能な電子受容物質を含んでなる。すなわち、電子受容物質は、光励起された標識色素からの電子注入が可能なエネルギー準位を取り得る物質である。ここで、光励起された標識色素からの電子注入が可能なエネルギー準位(A)とは、例えば、電子受容性材料として半導体を用いる場合には、伝導帯(コンダクションバンド:CB)を意味し、電子受容性材料として金属を用いる場合には、フェルミ準位を意味する。すなわち、本発明に用いる電子受容物質は、このAの準位が、増感色素の最低非占有分子軌道(Lowest Unoccupied Molecular Orbital:LUMO)のエネルギー準位よりも卑な準位、換言すれば、増感色素のLUMOのエネルギー準位よりも低いエネルギー準位を有するものであればよい。
 電子受容物質の好ましい例としては、シリコン、ゲルマニウムなどの単体半導体;チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、タンタル等の酸化物半導体;チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等のペロブスカイト型半導体;カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物半導体;カドミウム、鉛のセレン化物半導体;カドミウムのテルル化物半導体;亜鉛、ガリウム、インジウム、カドミウム等のリン化物半導体;ガリウムヒ素、銅-インジウム-セレン化物、銅-インジウム-硫化物の化合物半導体が挙げられ、より好ましくは、シリコン、TiO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5、チタン酸ストロンチウム、酸化インジウム、CdS、ZnS、PbS、Bi2S3、CdSe、CdTe、GaP、InP、GaAs、CuInS2、CuInSe、C60であり、さらに好ましくは、TiO2、ZnO、SnO2、Fe2O3、WO3、Nb2O5、チタン酸ストロンチウム、CdS、PbS、CdSe、InP、GaAs、CuInS2、CuInSe2であり、最も好ましくはTiO2である。なお、上記の列挙した半導体は、真性半導体および不純物半導体のいずれであってもよい。
 本発明の好ましい態様によれば、半導体の伝導帯の電位は、増感色素のLUMOの電位よりも低いことが好ましく、より好ましくは、増感色素のLUMO>半導体の伝導帯>電解質の酸化還元電位>増感色素のHOMOの関係を満たす電位である。このような関係にあることで、効率良く電子を取出すことが可能となる。
 また、本発明の別の好ましい態様によれば、電子受容物質として、インジウム-スズ複合酸化物(ITO)またはフッ素がドープされた酸化スズ(FTO)を用いることができる。ITOおよびFTOは電子受容物質のみならず導電性基材としても機能する性質を有しているため、これらの材料を使用する場合は、導電性を有した電子受容層を構成することが可能であり、導電性基材を導入することなく使用することが可能である。
 本発明による電極部材の電子受容物質を構成する第二物質は、第一物質の半導体と異なる種類の半導体または金属もしくは金属酸化物からなる。第二物質を構成する半導体の具体例としては、上述の第一物質の半導体として例示した物が挙げられる。また金属としては、金、白金、銀、銅、アルミニウム、ロジウム、インジウム、ニッケル等を挙げることが出来る。上記金属は、金属結合を有する、いわゆる狭義の金属のみならず、「金属元素」をも包含するものである。また第二物質を構成する金属酸化物としては、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、タンタル等の非半導体性の酸化物が挙げられる。
 この第二物質は、第一物質の層の表面に担持される。ここで、「表面に担持される」とは、第一物質の層と、第二物質とが電気的にまたは物理的に接触して存在している限り特に限定されず、例えば、層状に積層された形態であっても、また第一物質の層の表面の一部に、その表面を部分的に被覆する形態で置かれたものであってもよい。後者の場合、第二物質を、前記第一物質の層の表面に被着させた後、それを一部除去する工程に付して形成してよい。さらに本発明には、第二物質が粒子のような形で第一物質の層の表面に局在する存在形態も包含される。
 本発明の好ましい態様によれば、第一物質を構成する金属元素に対する、第二物質を構成する金属元素の表面存在元素比(物質量比)が0超過、1未満であり、より好ましくはこの表面存在元素比が0超過0.27未満であり、さらに好ましくは0超過0.15以下であり、最も好ましくは0超過0.10以下である。ここで、表面存在元素比の測定は、X線光電子分析法を用いた分析によって求めることができる。
 また、第二物質が、第一物質の表面を部分的に被覆してなる態様において、第二物質の被覆膜厚は好ましくは0超過、2nm未満である。
 また、「第二物質が、第一物質の層の表面に担持される」とは、第二物質が、界面を介して第一物質の層の表面と接触している態様のみならず、第一物質の層の表面から一定の深さの領域に、第一物質が検出される態様も含むものとする。本発明の好ましい態様によれば、第二物質は、好ましくは第一物質の表面から内部へ4nmの深さの領域に存在し、より好ましくは2nm以下の領域に存在する。
 電子受容物質としての半導体または金属もしくは金属酸化物は、単結晶、多結晶のいずれであってもよい。
 電極部材の製造方法
 導電性基材上への電子受容物質の好ましい形成方法としては、電子受容物質の分散液またはコロイド溶液を導電性支持体上に塗布する方法、半導体微粒子の前駆体を導電性支持体上に塗布し空気中の水分によって加水分解して微粒子膜を得る方法(ゾル-ゲル法)、スパッタリング法、CVD法、PVD法、蒸着法などが挙げられる。電子受容物質としての半導体微粒子の分散液を作製する方法としては、前述のゾル-ゲル法の他、乳鉢ですり潰す方法、ミルを使って粉砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法等が挙げられる。このときの分散媒としては水または各種の有機溶媒(例えばメタノール、エタノール、イソプロピルアルコール、ジクロロメタン、アセトン、アセトニトリル、酢酸エチル等)が挙げられる。分散の際、必要に応じてポリマー、界面活性剤、酸、もしくはキレート剤などを分散助剤として使用してもよい。
 電子受容物質の分散液またはコロイド溶液の塗布方法の好ましい例としては、アプリケーション系としてローラ法、ディップ法、メータリング系としてエアーナイフ法、ブレード法等、またアプリケーションとメータリングを同一部分でできるものとして、特公昭58-4589号公報に開示されているワイヤーバー法、米国特許2681294号、同2761419号、同2761791号等に記載のスライドホッパ法、エクストルージョン法、カーテン法、スピン法、スプレー法が挙げられる。
 本発明の好ましい態様によれば、導電性基材の上面に被着する電子受容物質において、第一物質の半導体の膜厚は、0.1~200μmであるのが好ましく、より好ましくは0.1~100μmであり、さらに好ましくは1~30μm、最も好ましくは2~25μmである。これにより、単位投影面積当たりのプローブ物質および固定される増感色素量を増加して光電流が多くなるとともに、電荷再結合による生成した電子の損失をも低減することができる。
 本発明の好ましい態様によれば、電子受容物質がインジウム-スズ複合酸化物(ITO)または酸化スズにフッ素をドープした金属酸化物(FTO)を含んでなる場合、電子受容物質の層の膜厚が1nm以上であるのが好ましく、より好ましくは10nm~1μmである。
 第二物質の第一物質の層の表面への担持の手法は上記第一物質の形成方法に準じて適宜決定されてよいが、例えば、蒸着法を用いることができる。
 本発明の好ましい他の態様による電極部材は、第一物質の層の表面に被着した第二物質の一部を除去して製造される。第二の金属もしくは金属酸化物の除去方法として、物理的除去、化学的除去が挙げられる。物理的除去方法とは、熱、超音波、電気化学的除去、シールによる除去などを用いた方法である。また、化学的除去とは、酸、アルカリ溶液や薬品による溶解を用いた除去である。
 さらに、第二物質が酸化亜鉛である場合、酸性溶液によって被着物質の一部の除去を行うことが好ましい。例えば、硝酸、塩酸、酢酸、過酸化水素水、硫酸、有機スルホン酸、クエン酸溶液等であり、pHを2.9未満に調製した緩衝液、例えばコハク酸緩衝液、酢酸緩衝液なども使用することが出来る。ここで、好ましくは酸性溶液のpHを2.9未満、より好ましくは2.5以下にすることで、処理時間を短縮することが可能である。この時酸性溶液への電極の浸漬時間は1分以上あればよい。
 被検物質
 本発明における被検物質としては、プローブ物質と特異的な結合性を有する物質であれば特に限定はない。本発明による電極部材にあっては、被検物質と直接または間接的に特異的に結合可能なプローブ物質を電極部材表面、好ましくは電子受容物質に担持させておくことにより、被検物質をプローブ物質に直接または間接的に特異的に結合させて検出することが可能となる。
 プローブ物質
 本発明に用いる電極部材は、被検物質と直接または間接的に結合が可能なプローブ物質を表面に備えた電極とされることが好ましい。好適なプローブ物質としては生体分子が挙げられる。すなわち、プローブ物質は、被検物質と直接、特異的に結合する物質のみならず、被検物質を受容体蛋白質分子等の媒介物質に特異的に結合させて得られる結合体と特異的に結合可能な物質であってよい。ついで、増感色素の共存下、試料液を作用電極に接触させて、プローブ物質に被検物質を直接または間接的に特異的に結合させ、この結合により増感色素を作用電極に固定させる。増感色素は、光励起に応じて作用電極に電子を放出可能な物質であり、被検物質の特異的結合法がサンドイッチ法である場合、プローブ物質は1次抗体で、増感色素は2次抗体に標識されてなり、被検物質の特異的検出法が競合法である場合、増感色素はプローブ物質に特異的に結合可能な第二の被検物質に標識される。
 本発明にあっては、被検物質およびプローブ物質として互いに特異的に結合可能なものを選択することができる。すなわち、本発明の好ましい態様によれば、特異的な結合性を有する物質を被検物質とし、被検物質と特異的に結合する物質をプローブ物質として作用電極に担持させるのが好ましい。これにより、作用電極上に被検物質を直接、特異的に結合させて検出することができる。この態様における、被検物質およびプローブ物質の組合せの好ましい例としては、一本鎖の核酸および核酸に対して相補性を有する一本鎖の核酸の組合せ、ならびに抗原および抗体、およびレセプター蛋白質とリガンドの組合せが挙げられる。
 本発明にあっては、被検物質とプローブ物質が間接的に特異的に結合するものであってもよい。すなわち、本発明の別の好ましい態様によれば、特異的な結合性を有する物質を被検物質とし、この被検物質と特異的に結合する物質を媒介物質として共存させ、この媒介物質と特異的に結合可能な物質をプローブ物質として作用電極に担持させるのが好ましい。これにより、プローブ物質に特異的に結合できない物質であっても、媒介物質を介して作用電極上に間接的に特異的に結合させて検出することができる。この態様における、被検物質、媒介物質、およびプローブ物質の組合せの好ましい例としては、リガンド、このリガンドを受容可能な受容体蛋白質分子、およびこの受容体蛋白質分子と特異的に結合可能な二本鎖の核酸の組合せが挙げられる。リガンドの好ましい例としては、外因性内分泌攪乱物質(環境ホルモン)が挙げられる。外因性内分泌撹乱物質とは、受容体蛋白質分子を介してDNAもしくはペプチドなどに結合し、その遺伝子発現に影響して毒性を生じる物質であるが、本発明の方法によれば、被検物質によりもたらされる受容体等のタンパク質のDNA、ペプチドなどに対する結合性を簡便にモニタリングすることができる。
 電極部材上へのプローブ物質の担持は公知の方法に従い行う事ができる。本発明の好ましい態様によれば、プローブ物質として一本鎖の核酸を用いる場合には、作用電極表面に直接もしくは間接的に核酸プローブを結合させることにより行うことができる。これにより官能基が導入された核酸プローブはそのまま固定化反応により担体上に固定化されることができる。核酸末端への官能基の導入は、酵素反応もしくはDNA合成機を用いて行う事ができる。
 本発明の好ましい態様によれば、プローブ物質の作用電極への固定化のための官能基として、アミノ基、カルボキシル基、チオール基、水酸基、リン酸基、ジオール基が好適に使用できる。また、本発明の好ましい態様によれば、プローブ物質を作用電極に強固に固定化するためには、作用電極とプローブ物質の間を架橋する材料を用いることもできる。そのような架橋材料の好ましい例としては、シランカップリング剤、チタネートカップリング剤や、ポリチオフェン、ポリアセチレン、ポリピロール、ポリアニリン等の導電性ポリマーが挙げられる。
 本発明の好ましい態様によれば、プローブ物質の固定化を物理吸着という、より簡単な操作で効率よく行うことも可能である。電極表面へのプローブ物質の物理吸着は、例えば、以下のように行うことができる。まず、電極表面を、超音波洗浄機を用いて超純水、アセトンで洗浄する。その後、電極上へプローブ物質を含有する緩衝液を滴下し、静置後、洗浄することによりプローブ物質を電極表面へ吸着させる。
 以下の実施例によって本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。また、検出の装置は、基本的に図1に示される構成とした。すなわち、対向部材1に対電極2を固定し、電解質パット3を介して本発明による電極部材を作用電極4として置いた。さらに、光源5により作用電極に光を照射し、電極ユニット6により電極上の各スポットへレーザーを照射し、光電流を得た。
例1:異なる作用電極を用いたタンパク質の光電流による特異的検出
作用電極の作製
FTO電極
 作用電極用の基材として、フッ素をドープした酸化スズ(F-SnO2:FTO)コートガラス(エイアイ特殊硝子社製、U膜、シート抵抗:12Ω/cm、形状:50mm×26mm)を用意した。
ZnO/FTO電極
 上記のFTO電極上にスパッタ法によってZnOを0.44nm(スパッタ時間20秒、50W、スパッタレート1.3nm/min)、1.08nm(スパッタ時間50秒、50W、スパッタレート1.3nm/min)50nm(スパッタ時間8分、100W、スパッタレート6.25nm/min)に成膜した電極(膜厚はスパッタレートから概算)を用意した。
ZnO/FTO 電極
 上記のFTO電極上にスパッタ法によってZnOを厚さ50nm(200W、スパッタ時間8分、スパッタレート6.25nm/min)に成膜した電極を用意した(膜厚はスパッタレートから概算)。この電極をアセトン、超純水、アセトンの順に1分間ずつ超音波洗浄を行い、1M硝酸溶液(pH0.2)に浸漬し5分間振盪を行った。その後超純水で十分すすぎ、この電極をZnO/FTOとした。
プローブタンパク質の固定化
 作製した作用電極をそれぞれアセトン、超純水、アセトンの順に1分ずつ超音波洗浄を行った。その後、直径3mmの大きさの開口部が形成された粘着性シール(厚さ:0.5mm)を載置して密着させた。ヤギ由来抗体(抗ルシフェラーゼ ポリクローナル抗体 : Promega社製)を10μg/mlになるように調製した。この時溶媒は250mM NaCl、0.05%Tween20含有 10mMリン酸緩衝液(pH7)を用いた。このタンパク質溶液を、電極上のシールによる開口部にそれぞれ5μlずつ滴下し、37℃で30分間インキュベートを行った。その後、電極を超純水中で10分間振盪し、洗浄を行った。
被検タンパク質の結合反応
 色素標識抗原(Cy5-抗ヤギ抗体(ウサギ): chemicon製)を100ng/mlに調製した。この時溶媒は、250mM NaCl、0.05%Tween20含有10mMリン酸緩衝液(pH7)を用いた。調製した抗原溶液を、先にプローブタンパク質を固定化した作用電極上のシール開口部に5μlずつ滴下し、37℃で1時間インキュベートを行った。その後電極上のシールを剥がし、超純水で表面を流し洗浄した。
光電流による被検タンパク質の特異的検出
 上述の方法で作製した、被検物質結合作用電極と、ガラス板上に白金が蒸着されてなる対電極とを用意した。両電極間に電解液(0.4Mテトラプロピルアンモニウムヨージド)を含有した電解質シートを挟み、密着させた。この時、作用電極のタンパク質が固定化された面と対電極の白金蒸着面とが対向するように配置した。両電極を電気化学アナライザーに接続した状態で、作用電極にレーザー光源(出力120mW、照射領域の直径1mm 波長650nm赤色レーザー)を照射し、そのときに観察される電流値を記録した。結果は図2に示されるとおりであった。
FTO電極と比較し、ZnO/FTO(0.44nm、1.08nm)、ZnO/FTO電極では、検出精度が向上することが明らかとなった。
例2:硝酸処理による一部除去 
電極の作製
 作用電極用の基材として、フッ素をドープした酸化スズ(F-SnO2:FTO)コートガラス(エイアイ特殊硝子社製、U膜、シート抵抗:12Ω/cm、形状:50mm×26mm)を用意した。この電極に膜厚50nmでZnOをスパッタした電極(ZnO/FTO)を例1に記載した方法で作製した。この電極をアセトン、超純水、アセトンの順に1分間ずつ超音波洗浄した後、各濃度に調製した硝酸溶液に浸漬した。硝酸を次の8つのpH(濃度)に調製した。調製した硝酸溶液と電極の浸漬時間を表1に示した。各溶液に浸漬後、電極を超純水十分濯ぎ洗浄を行った。
Figure JPOXMLDOC01-appb-T000001
イムノアッセイ
 作製した電極に直径3mmの大きさの開口部が形成された粘着性シール(厚さ:0.5mm)を載置して密着させた。この開口部に10μg/ml(10mMリン酸緩衝液[pH7] 0.05% Tween20、250mM NaCl)に調製したヤギ由来抗体溶液を5μlずつ滴下し、37℃で30分間インキュベートした。その後、超純水中で10分間振盪し洗浄した。その後10ng/ml、100ng/ml、1μg/ml(10mMリン酸緩衝液、0.05%Tween20、250mM NaCl)に調製したCy5標識抗ヤギ抗体をシール開口部に5μlずつ滴下し、37℃で60分間インキュベートを行った。
光電流測定
 例1に記載した条件を用い、光電流の測定を行った。その結果は、図3に示されるとおりであった。この結果より、硝酸のpHに依存し作製された電極の特性が変化することが判った。
例3:電極の表面元素分析
 例1で作製したZnO/FTO電極(ZnO膜厚0.44nm、1.03nm、50nm)と、ZnO/FTO電極(硝酸処理濃度:1M、5mM、3.2mM、2mM、0.1mM)、さらにFTO電極の計9種類の電極をX線光電子分析法を用いて表面元素分析を行った。分析はアルバック・ファイ製PHI1800型 X線光電子分光装置を用い、X線源 MgKα(100w) 分析領域 0.8×2.0mmの条件で行った。その結果は表2に示されるとおりであった。
 表2より、亜鉛のスパッタ時間および、硝酸溶液のpHによって亜鉛の電極表面の残存量は、変化することが明らかとなった。
Figure JPOXMLDOC01-appb-T000002
例4:各種スパッタ表面へ硝酸処理を行った電極を用いたタンパク質の光電流による特異的検出
作用電極の作製
FTO電極
 作用電極用の基材として、フッ素をドープした酸化スズ(F-SnO2:FTO)コートガラス(エイアイ特殊硝子社製、U膜、シート抵抗:12Ω/ cm2、形状:50mm×26mm)を用意した。
ITO/FTO電極
 上記のFTO電極上にスパッタ法によってITOを50nm(スパッタ時間8分、100W、スパッタレート6.25nm/min)に成膜した電極(膜厚はスパッタレートから概算)を用意した。
WO /FTO電極
 上記のFTO電極上にスパッタ法によってWOを50nm(スパッタ時間8分、100W、スパッタレート6.25nm/min)に成膜した電極(膜厚はスパッタレートから概算)を用意した。
SrTiO /FTO電極
 上記のFTO電極上にスパッタ法によってSrTiOを50nm(スパッタ時間8分、100W、スパッタレート6.25nm/min)に成膜した電極(膜厚はスパッタレートから概算)を用意した。
硝酸処理電極の作製
 上記のITO/FTO、WO/FTO、SrTiO/FTO電極をそれぞれ、アセトン、超純水、アセトンの順に1分間ずつ超音波洗浄を行い、1M硝酸溶液(pH0.2)に浸漬し15分間振盪を行った。その後超純水で十分すすぎ、この電極をそれぞれITO/FTO、WO/FTO、SrTiO/FTOとした。
プローブタンパク質の固定化
 作製した作用電極をそれぞれアセトン、超純水、アセトンの順に1分ずつ超音波洗浄を行った。その後、直径3mmの大きさの開口部が形成された粘着性シール(厚さ:0.5mm)を載置して密着させた。ヤギ由来抗体(抗ルシフェラーゼ ポリクローナル抗体 : Promega社製)を10μg/mlになるように調製した。この時溶媒は250mM NaCl、0.05%Tween20含有 10mMリン酸緩衝液(pH7)を用いた。このタンパク質溶液を、電極上のシールによる開口部にそれぞれ5μlずつ滴下し、37℃で30分間インキュベートを行った。その後、電極を超純水中で10分間振盪し、洗浄を行った。
被検タンパク質の結合反応
 色素標識抗原(Cy5-抗ヤギ抗体(ウサギ): chemicon製)を100ng/mlに調製した。この時溶媒は、250mM NaCl、0.05%Tween20含有 10mMリン酸緩衝液(pH7)を用いた。調製した抗原溶液を、先にプローブタンパク質を固定化した作用電極上のシール開口部に5μlずつ滴下し、37℃で1時間インキュベートを行った。その後電極上のシールを剥がし、超純水で表面を流し洗浄した。
光電流による被検タンパク質の特異的検出
 上述の方法で作製した、被検物質結合作用電極と、ガラス板上に白金が蒸着されてなる対電極とを用意した。両電極間に電解液(0.4Mテトラプロピルアンモニウムヨージド)を含有した電解質シートを挟み、密着させた。この時、作用電極のタンパク質が固定化された面と対電極の白金蒸着面とが対向するように配置した。両電極を電気化学アナライザーに接続した状態で、作用電極にレーザー光源(出力120mW、照射領域の直径1mm 波長650nm赤色レーザー)を照射し、そのときに観察される電流値を記録した。結果は図4に示されるとおりであった。この結果より、第二物質として、ITO、WO、SrTiOを用いた場合においても、硝酸処理を行った後に、光電流による被検タンパク質の特異的検出が可能であることが示された。
例5:作製電極を用いた、サンドイッチイムノアッセイによる被検物質の特異的検出
作用電極の作製
FTO電極
 作用電極用の基材として、フッ素をドープした酸化スズ(F-SnO2:FTO)コートガラス(エイアイ特殊硝子社製、U膜、シート抵抗:12Ω/ cm2、形状:50mm×26mm)を用意した。
ZnO/FTO電極
 上記のFTO電極上にスパッタ法によってZnOを50nm(スパッタ時間8分、100W、スパッタレート6.25nm/min)に成膜した電極(膜厚はスパッタレートから概算)を用意した。
硝酸処理電極の作製
 上記のZnO/FTO電極を、アセトン、超純水、アセトンの順に1分間ずつ超音波洗浄を行い、1M硝酸溶液(pH0.2)に浸漬し15分間振盪を行った。その後超純水で十分すすぎ、この電極をZnO/FTOとした。
プローブタンパク質の固定化
 作製した作用電極をそれぞれアセトン、超純水、アセトンの順に1分ずつ超音波洗浄を行った。その後、直径3mmの大きさの開口部が形成された粘着性シール(厚さ:0.5mm)を載置して密着させた。抗Prostate Specific antigen抗体(Fitzgerald社製)を15μg/mlになるように調製した。この時溶媒には、10mMリン酸緩衝液(pH7.4)を用いた。抗体溶液を電極場のシールによる開口部にそれぞれ5μlずつ滴下し、37℃で10分間インキュベートを行った。その後、電極を10mM リン酸緩衝液中で10分間振盪し、洗浄を行った。
被検タンパク質の結合反応
 Cy5標識抗Prostate Specific Antigen抗体(Biodesign社製)を5μg/mlに調製した。この時溶媒は、10mMリン酸緩衝液(pH7)、150mM NaCl、0.05%Tween20を用いた。調製した抗原溶液に抗原(Prostate Specific Antigen)を各濃度で添加し、ピペッテイングによって十分撹拌したのちに、先にプローブタンパク質を固定化した作用電極上のシール開口部に5μlずつ滴下し、37℃で10分間インキュベートを行った。その後電極上のシールを剥がし、緩衝液と超純水で表面を流し洗浄した。
光電流による被検タンパク質の特異的検出
 上述の方法で作製した、被検物質結合作用電極と、ガラス板上に白金が蒸着されてなる対電極とを用意した。両電極間に電解液(0.4Mテトラプロピルアンモニウムヨージド)を含有した電解質シートを挟み、密着させた。この時、作用電極のタンパク質が固定化された面と対電極の白金蒸着面とが対向するように配置した。両電極を電気化学アナライザーに接続した状態で、作用電極にレーザー光源(出力120mW、照射領域の直径1mm 波長650nm赤色レーザー)を照射し、そのときに観察される電流値を記録した。結果は図5に示されるとおりであった。この結果より、光電流によるサンドイッチイムノアッセイを用いた被検物質の検出が可能であることが示された。
例6:ZnO硝酸処理電極のTEMによる分析
 例1に示した方法で作製した、ZnOスパッタ電極と、ZnO硝酸処理電極のTEMおよび、EDS分析を実施した。TEM分析には日本電子製 JEM-2010F型 電界放射型透過電子顕微鏡を用い、加速電圧200kVで測定を行った。またEDS分析にはノーラン製 UTW型Si(Li)半導体検出器を用い分析領域1nmの分析を実施した。
 ZnOスパッタ電極のTEM観察写真は図6および図7に示される通りであった。ZnO/FTOではFTO層上に約50nmのZnO層が観察された。EDSスペクトルより、ZnO層/FTO層界面のFTO層側(スポット3、4、7)にZnが認められた。同界面より約4nmFTO層内部(スポット5)ではEDSの検出下限付近のZn濃度と考えられ議論が困難であるが、Zn-Lピークがわずかに認められ、Znが存在する可能性がある。界面より約10nm内部(スポット6)ではZnは認められなかった。同様に、FTO層の粒界(スポット8)にもZnが認められ、約10nmFTO層内部(スポット9)ではピークは明確に認められないが、Znが存在する可能性があり、約20nm内部(スポット10)ではZnは認められなかった。
 ZnO硝酸処理電極のTEM観察写真を撮影した。それは図8および図9に示されるとおりであった。FTO層表面にZnO層の残り等、特別な層は観察されなかった。EDSスペクトルより、FTO層の表面(スポット1、4)にZnが存在する可能性がある。約2nmFTO層内部(スポット2)ではZnは認められなかった。同様に、粒界(スポット5)にもZnが存在する可能性があり、約10nmFTO層内部(スポット6)ではZnは認められなかった。
 多くの分析点でZn濃度がEDSの検出下限(%オーダー)以下であるが、以上の分析よりZnOスパッタ電極ではZnO層/FTO層界面のFTO層側に4nm程度Znが拡散していると考えられる。一方、硝酸処理電極ではFTO層の表面2nm未満の部分にZnが存在する可能性がある。このことから、硝酸処理により約50nmのZnO層と共に、FTO層表面のZn拡散部分が取り除かれていると推察される。

Claims (13)

  1.  光電流による被検物質の特異的検出に用いられる電極部材であって、
     導電性基材と、該導電性基材上の電子受容物質とを少なくとも有してなり、
     前記電子受容物質が、半導体からなる第一物質の層と、該第一物質の層の表面に担持された、前記半導体とは異なる種類の半導体または金属もしくは金属酸化物からなる第二物質とから少なくともなる、電極部材。
  2.  前記第二物質が、前記第一物質の層の表面に被着された後、それを一部除去する工程に付されてなるものである、請求項1に記載の電極部材。
  3.  前記第一物質を構成する金属元素に対する、前記第二物質を構成する金属元素の表面存在元素比(物質量比)が0超過、1未満である、請求項1に記載の電極部材。
  4.  前記表面存在元素比が、0.27未満である、請求項3に記載の電極部材。
  5.  前記第二物質が、前記第一物質の表面を部分的に被覆してなり、かつ第二物質の被覆膜厚が0超過、2nm未満である、請求項1に記載の電極部材。
  6.  前記第二物質が、前記第一物質の表面から内部へ4nmの深さの領域に存在する、請求項1に記載の電極部材。
  7.  前記第一物質が、インジウム-スズ複合酸化物またはフッ素がドープされた酸化スズである、請求項1に記載の電極部材。
  8.  前記第二物質が、酸化亜鉛、インジウム-スズ複合酸化物、酸化タングステン、またはチタン酸ストロンチウムである、請求項1に記載の電極部材。
  9.  前記電子受容物質にプローブ物質がさらに担持されてなる、請求項1に記載の電極部材。
  10.  請求項1に記載の電極部材の製造方法であって、
     導電性基材上に、半導体を含んでなる層を形成して、前記第一物質の層を形成する工程と、
     前記層の表面に前記半導体とは異なる半導体または金属もしくは金属酸化物を被着させ、前記第二物質を被着させる工程とを少なくとも含んでなる、方法。
  11.  前記第二物質を被着させた後、それを一部除去する工程に付する、請求項10に記載の方法。
  12.  前記除去が、第二物質を酸性水溶液と接触させることにより行われる、請求項11に記載の方法。
  13.  前記酸性水溶液のpHが2.9未満のものである、請求項12に記載の方法。
PCT/JP2009/065246 2008-09-01 2009-09-01 光電流による被検物質の特定的検出に用いられる電極部材 WO2010024446A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/061,244 US20110193187A1 (en) 2008-09-01 2009-09-01 Electrode member for specific detection of analyte using photocurrent
JP2010526817A JPWO2010024446A1 (ja) 2008-09-01 2009-09-01 光電流による被検物質の特定的検出に用いられる電極部材
EP09810090A EP2327979A1 (en) 2008-09-01 2009-09-01 Electrode member for specific detection of test substance using photocurrent
CN2009801433233A CN102203596A (zh) 2008-09-01 2009-09-01 用于利用光电流对分析物进行特异性检测的电极构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-223350 2008-09-01
JP2008223350 2008-09-01

Publications (1)

Publication Number Publication Date
WO2010024446A1 true WO2010024446A1 (ja) 2010-03-04

Family

ID=41721605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065246 WO2010024446A1 (ja) 2008-09-01 2009-09-01 光電流による被検物質の特定的検出に用いられる電極部材

Country Status (5)

Country Link
US (1) US20110193187A1 (ja)
EP (1) EP2327979A1 (ja)
JP (2) JPWO2010024446A1 (ja)
CN (1) CN102203596A (ja)
WO (1) WO2010024446A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225885A (ja) * 2011-04-22 2012-11-15 Nara Institute Of Science & Technology 被検物質の電気化学的検出方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515112B1 (en) 2011-04-22 2015-08-12 Sysmex Corporation Method for electrochemically detecting analyte
TWI583947B (zh) * 2013-12-16 2017-05-21 聖高拜塑膠製品公司 電極及製造電極的方法
US10468528B2 (en) * 2014-04-16 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device with high-k metal gate stack
US9721955B2 (en) 2014-04-25 2017-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for SRAM FinFET device having an oxide feature
US9224736B1 (en) 2014-06-27 2015-12-29 Taiwan Semicondcutor Manufacturing Company, Ltd. Structure and method for SRAM FinFET device
CN110088609A (zh) 2016-11-30 2019-08-02 美国圣戈班性能塑料公司 电极及电极制造方法
CN113533473B (zh) * 2021-06-22 2024-02-06 武汉纺织大学 含有金属-有机骨架的工作电极及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681294A (en) 1951-08-23 1954-06-15 Eastman Kodak Co Method of coating strip material
US2761791A (en) 1955-02-23 1956-09-04 Eastman Kodak Co Method of multiple coating
JPS584589A (ja) 1981-07-01 1983-01-11 川嶋工業株式会社 ナイフ等の鞘
JP2002181777A (ja) 2000-12-11 2002-06-26 Hitachi Software Eng Co Ltd スキャナー装置
JP2004177384A (ja) * 2002-11-29 2004-06-24 Uchiya Thermostat Kk 味覚センサ、その製造方法、及びその使用方法
JP2005251426A (ja) 2004-03-01 2005-09-15 Wako Pure Chem Ind Ltd 光電変換素子を用いた色素量の測定方法
JP2006507491A (ja) 2002-11-21 2006-03-02 キャピタル バイオチップ カンパニー リミテッド 光電気化学的標識を用いて分析物をアッセイするための装置および方法
JP2006090893A (ja) * 2004-09-24 2006-04-06 Toto Ltd 増感色素の光励起により生じる光電流を用いた被検物質の特異的検出に用いられる作用電極との接触下で使用される緩衝溶液
JP2006119111A (ja) * 2004-03-26 2006-05-11 Toto Ltd 光電流を用いた被検物質の特異的検出方法、それに用いられる電極、測定用セル、および測定装置
JP2006523301A (ja) * 2003-04-04 2006-10-12 アクア・ダイアグノスティック・プロプライエタリー・リミテッド 化学的酸素要求量の光電気化学的決定法
WO2007037341A1 (ja) 2005-09-29 2007-04-05 Toto Ltd. 光電流を用いた被検物質の特異的検出方法、それに用いられる電極、測定用セルおよび測定装置
JP2007093622A (ja) * 2006-12-25 2007-04-12 Kyocera Corp 核酸センサ用基板
JP2008223350A (ja) 2007-03-13 2008-09-25 Ohbayashi Corp 鋼材の挿入孔の形成方法、壁体の構築方法、壁体、柱梁架構の構築方法、柱梁架構、型枠の支持部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677572A (en) * 1996-07-29 1997-10-14 Eastman Kodak Company Bilayer electrode on a n-type semiconductor
EP1455985A1 (en) * 2001-12-21 2004-09-15 iFire Technology Inc. Method of laser ablation for patterning thin film layers for electroluminescent displays
DE102006014881A1 (de) * 2005-03-30 2006-11-02 Dai Nippon Printing Co., Ltd. Oxidhalbleiterelektrode, farbstoffsensibilisierte Solarzelle und Verfahren zu deren Herstellung

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681294A (en) 1951-08-23 1954-06-15 Eastman Kodak Co Method of coating strip material
US2761791A (en) 1955-02-23 1956-09-04 Eastman Kodak Co Method of multiple coating
US2761419A (en) 1955-02-23 1956-09-04 Eastman Kodak Co Multiple coating apparatus
JPS584589A (ja) 1981-07-01 1983-01-11 川嶋工業株式会社 ナイフ等の鞘
JP2002181777A (ja) 2000-12-11 2002-06-26 Hitachi Software Eng Co Ltd スキャナー装置
JP2006507491A (ja) 2002-11-21 2006-03-02 キャピタル バイオチップ カンパニー リミテッド 光電気化学的標識を用いて分析物をアッセイするための装置および方法
JP2004177384A (ja) * 2002-11-29 2004-06-24 Uchiya Thermostat Kk 味覚センサ、その製造方法、及びその使用方法
JP2006523301A (ja) * 2003-04-04 2006-10-12 アクア・ダイアグノスティック・プロプライエタリー・リミテッド 化学的酸素要求量の光電気化学的決定法
JP2005251426A (ja) 2004-03-01 2005-09-15 Wako Pure Chem Ind Ltd 光電変換素子を用いた色素量の測定方法
JP2006119111A (ja) * 2004-03-26 2006-05-11 Toto Ltd 光電流を用いた被検物質の特異的検出方法、それに用いられる電極、測定用セル、および測定装置
JP2006090893A (ja) * 2004-09-24 2006-04-06 Toto Ltd 増感色素の光励起により生じる光電流を用いた被検物質の特異的検出に用いられる作用電極との接触下で使用される緩衝溶液
WO2007037341A1 (ja) 2005-09-29 2007-04-05 Toto Ltd. 光電流を用いた被検物質の特異的検出方法、それに用いられる電極、測定用セルおよび測定装置
JP2007093622A (ja) * 2006-12-25 2007-04-12 Kyocera Corp 核酸センサ用基板
JP2008223350A (ja) 2007-03-13 2008-09-25 Ohbayashi Corp 鋼材の挿入孔の形成方法、壁体の構築方法、壁体、柱梁架構の構築方法、柱梁架構、型枠の支持部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMURA ET AL.: "Koden Henkan Niyoru Atarashii DNA Nihonsa Kenshutu Hoho (Novel method for detecting DNA duplex by photoelectric conversion)", PROCEEDINGS OF MEETING OF THE CHEMICAL SOCIETY OF JAPAN, vol. 81, no. 1, 2002, pages 947

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225885A (ja) * 2011-04-22 2012-11-15 Nara Institute Of Science & Technology 被検物質の電気化学的検出方法

Also Published As

Publication number Publication date
JP2013068624A (ja) 2013-04-18
CN102203596A (zh) 2011-09-28
JP5344079B2 (ja) 2013-11-20
EP2327979A1 (en) 2011-06-01
US20110193187A1 (en) 2011-08-11
JPWO2010024446A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5344079B2 (ja) 光電流による被検物質の特定的検出に用いられる電極部材
EP1947452B1 (en) Method for specifically detecting a test substance using photocurrent
Yang et al. Interfacial electrical properties of DNA-modified diamond thin films: intrinsic response and hybridization-induced field effects
Hu et al. Highly sensitive and selective photoelectrochemical aptasensors for cancer biomarkers based on MoS2/Au/GaN photoelectrodes
Liu et al. A novel electrochemiluminescent immunosensor based on CdS-coated ZnO nanorod arrays for HepG2 cell detection
US20090205979A1 (en) Electrolyte-Containing Sheet For Use In Specific Detection Of Analyte Using Photocurrent
JP2006119111A (ja) 光電流を用いた被検物質の特異的検出方法、それに用いられる電極、測定用セル、および測定装置
US8501492B2 (en) Measurement device used for specifically detecting substance to be examined using photocurrent, sensor unit used for same, and method for specifically detecting substance to be examined using photocurrent
JP4873219B2 (ja) 増感色素の光励起により生じる光電流を用いた被検物質の特異的検出に用いられる電極ユニット、ならびにそれを用いたセンサセルおよび測定装置
WO2009088082A1 (ja) 光電流を用いた披検物質の特異的検出方法、それに用いられるセンサユニットおよび測定装置
WO2005093418A1 (ja) 光電流を用いた被検物質の特異的検出方法、それに用いられる電極、測定用セル、測定装置、および緩衝溶液
JP4735860B2 (ja) 光電流を用いた被検物質の特異的検出方法、それに用いられる電極、測定用セルおよび測定装置
JP2008020205A (ja) 光電流を用いた被検物質の特異的検出に用いられるゲルシート、それを用いた検出方法、センサユニット、および測定装置
JP4919101B2 (ja) 増感色素の光励起により生じる光電流を用いた被検物質の特異的検出に用いられるセンサセルおよび測定装置
JP2006284413A (ja) 色素増感型バイオセンサ用ブロッキング剤
Jin et al. Reduced heterogeneity of electron transfer into polycrystalline TiO2 films: site specific kinetics revealed by single-particle spectroscopy
JP4831524B2 (ja) 増感色素の光励起により生じる光電流を用いた被検物質の特異的検出に用いられるセンサセルおよび測定装置
CN113984684A (zh) 一种检测阿尔茨海默症标志物的光电免疫传感器及其制备方法与应用
Toyoda et al. Crystal Growth, Exponential Optical Absorption Edge, and Ground State Energy Level of PbS Quantum Dots Adsorbed on the (001),(110), and (111) Surfaces of Rutile-TiO2
JP2008202995A (ja) 光電流を用いた披検物質の特異的検出方法、それに用いられるパッド、センサユニット、および測定装置
JP2008157916A (ja) 光電流を用いた被検物質の特異的検出に用いられる吸水性シート、それを用いた検出方法、センサユニット、および測定装置
JP2006090893A (ja) 増感色素の光励起により生じる光電流を用いた被検物質の特異的検出に用いられる作用電極との接触下で使用される緩衝溶液
JP2009186453A (ja) 光電流を用いた被検物質の特異的検出に用いられるセンサユニットおよびそれを用いた測定装置
JP2009186454A (ja) 光電流を用いた被検物質の特異的検出に用いられるセンサユニットおよびそれを用いた測定装置
Muñoz et al. Fundamental Aspects of Electrodeposition for the Realization of Plasmonic Nanostructures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143323.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526817

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009810090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13061244

Country of ref document: US