WO2010023834A1 - タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置 - Google Patents

タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置 Download PDF

Info

Publication number
WO2010023834A1
WO2010023834A1 PCT/JP2009/003877 JP2009003877W WO2010023834A1 WO 2010023834 A1 WO2010023834 A1 WO 2010023834A1 JP 2009003877 W JP2009003877 W JP 2009003877W WO 2010023834 A1 WO2010023834 A1 WO 2010023834A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper electrode
touch panel
electrode
lower electrode
voltage
Prior art date
Application number
PCT/JP2009/003877
Other languages
English (en)
French (fr)
Inventor
高井雄一郎
西川和宏
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Publication of WO2010023834A1 publication Critical patent/WO2010023834A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • the present invention relates to a method for detecting an input position of a touch panel that is placed on a display surface of a display (for example, a liquid crystal display device) and performs input with a finger or a stylus pen, and the touch panel device.
  • a display for example, a liquid crystal display device
  • the conventional resistive film matrix (digital detection) type touch panel is formed so that line-shaped electrodes are opposed to each other in the crossing direction, and the position where the opposing surfaces contact each other by pressing is detected as the line intersection.
  • line-shaped electrodes are opposed to each other in the crossing direction, and the position where the opposing surfaces contact each other by pressing is detected as the line intersection.
  • the conventional resistive film analog detection type touch panel has a uniform resistance film on the entire upper and lower electrodes, with one surface extending in the X-axis direction and the other surface extending in the Y-axis direction.
  • the pressing point is detected from the voltage value of the point.
  • the conventional resistive film matrix (digital detection) type touch panel can detect not only one point but also two or more points simultaneously even if two or more points are pressed down simultaneously. However, if the position of the pressing point is to be detected more precisely, the width of the line-shaped electrode must be narrowed, and the number of lines increases, thereby increasing the number of lead lines.
  • the conventional resistive film analog detection type touch panel cannot specify individual pressing points when two or more multi-points are pressed simultaneously.
  • an object of the present invention is to obtain a touch panel position detection method in which multiple points can be detected at the same time, without increasing the number of lines and lead lines, and each pressing point is precisely determined.
  • the present invention provides a touch panel device that solves the same problems as those of the touch panel position detection method described above.
  • a touch panel position detection method includes: A touch panel that detects Xi and Yi that are the coordinate values of the I point and Xj and Yj that are the coordinate values of the J point when the I point and the J point of the touch panel extending in the X-axis and Y-axis directions are pressed down simultaneously.
  • an upper base plate that is a transparent flexible insulating base
  • an upper electrode plate that includes an upper electrode group formed on the lower surface of the upper base, a lower base that is a transparent insulating base, and a lower base
  • It consists of a lower electrode plate including a lower electrode group formed on the upper surface
  • the upper electrode group includes p (p is a positive integer greater than or equal to 2) upper electrodes U1-Up, the upper electrode is rectangular, and the longitudinal direction of the upper electrode is parallel to the X axis
  • the upper electrode consists of a transparent conductive film with bus bars formed at both ends in the longitudinal direction
  • the lower electrode group includes q (q is a positive integer greater than or equal to 2) lower electrodes L1-Lq, the lower electrode is rectangular, and the longitudinal direction of the lower electrode is parallel to the Y axis
  • the electrode consists of a transparent conductive film with bus bars formed at both ends in the longitudinal direction, A touch panel in which the upper electrode plate and the lower electrode plate are superposed with a
  • the position detection method is performed using a touch panel in which an upper electrode and a lower electrode are connected, and includes the following steps. B) While applying a voltage to all of the lower electrodes L1-Lq, scanning is performed to measure the voltage of the bus bar of the upper electrode from U1 to Up, and the upper electrode at the time when the voltage appears is pushed down Is determined as candidate upper electrodes Ua and Ub. (B) While applying a voltage to all of the upper electrodes U1-Up, a scan is performed to measure the voltage of the lower electrode bus bar from L1 to Lq in sequence, and the lower electrode at the time of the scan when the voltage appears is Is determined as candidate lower electrodes La and Lb.
  • E Load the UI with power, measure the amount of electricity appearing in the LI busper, calculate Xi from the amount of electricity depending on the electrical resistance of the conductive film, load the UJ with power, and the amount of electricity appearing in the LJ busper , Xj is calculated from the amount of electricity that depends on the electrical resistance of the conductive film, Load the LI with power, measure the amount of electricity appearing in the UI busper, calculate Yi from the amount of electricity depending on the electrical resistance of the conductive film, load the LJ with power, and calculate the amount of electricity appearing in the UJ busper.
  • a touch panel position detection method includes: A touch panel that detects Xi and Yi that are the coordinate values of the I point and Xj and Yj that are the coordinate values of the J point when the I point and the J point of the touch panel extending in the X-axis and Y-axis directions are pressed down simultaneously.
  • an upper base plate that is a transparent flexible insulating base
  • an upper electrode plate that includes an upper electrode group formed on the lower surface of the upper base, a lower base that is a transparent insulating base, and a lower base
  • It consists of a lower electrode plate including a lower electrode group formed on the upper surface
  • the upper electrode group includes p (p is a positive integer greater than or equal to 2) upper electrodes U1-Up, the upper electrode is rectangular, and the longitudinal direction of the upper electrode is parallel to the X axis
  • the upper electrode consists of a transparent conductive film with bus bars formed at both ends in the longitudinal direction
  • the lower electrode group includes q (q is a positive integer greater than or equal to 2) lower electrodes L1-Lq, the lower electrode is rectangular, and the longitudinal direction of the lower electrode is parallel to the Y axis
  • the electrode consists of a transparent conductive film with bus bars formed at both ends in the longitudinal direction, A touch panel in which the upper electrode plate and the lower electrode plate are superposed with a
  • the position detection method is performed using a touch panel in which an upper electrode and a lower electrode are connected, and includes the following steps.
  • a scan to measure the voltage of the upper electrode busper is performed, and then the same operation is performed up to the lower electrode Lq.
  • the upper electrode UI and the lower electrode at the point where the upper electrode and the lower electrode at the time when the voltage appears are included.
  • the touch panel position detection method is the touch panel position detection method according to the present invention.
  • the electric power in the resistive film analog calculation step may be DC power, and the amount of electricity may be a DC voltage.
  • the process of performing the resistive film analog detection method is performed by adding DC power and measuring DC voltage, which have been most widely used in the past. It can be applied to the invention. Therefore, the touch panel position detection method can be performed more easily and inexpensively.
  • the probability that only one finger enters each matrix region of the p ⁇ q matrix regions where the upper electrode group and the lower electrode group overlap is increased, and multiple inspections by pressing input with a plurality of fingers are performed.
  • the output is further simplified.
  • the upper electrode group and the lower electrode group use a touch panel having an interval S between adjacent electrodes of 0.2 mm or more and 0.5 mm or less. You may do.
  • touch panel input is performed with a finger or stylus pen. Assume a touch panel that uses a stylus pen for input. Since the tip of the stylus pen has a certain size, the input point of the stylus pen can be accurately captured if the distance between the electrodes is set to the above value range.
  • the touch panel device is A touch panel that detects Xi and Yi that are the coordinate values of the I point and Xj and Yj that are the coordinate values of the J point when the I point and the J point of the touch panel extending in the X-axis and Y-axis directions are pressed down simultaneously.
  • the touch panel includes an upper substrate that is a transparent flexible insulating substrate, an upper electrode plate that includes an upper electrode group formed on a lower surface of the upper substrate, a lower substrate that is a transparent insulating substrate, and the It consists of a lower electrode plate including a lower electrode group formed on the upper surface of the lower substrate,
  • the upper electrode group includes p (p is a positive integer greater than or equal to 2) upper electrodes U1-Up, the upper electrode is rectangular, and its longitudinal direction is parallel to the X axis.
  • the lower electrode group includes q (q is a positive integer greater than or equal to 2) lower electrodes L1-Lq, the lower electrode is rectangular, and the longitudinal direction of the lower electrode is parallel to the Y axis,
  • the electrode is made of a transparent conductive film in which bus bars are formed at both ends in the longitudinal direction, and is a touch panel in which the upper electrode plate and the lower electrode plate are overlapped with a spacer interposed between the conductive films.
  • the matrix detection means performs a scan to measure the voltage of the upper electrode buser from U1 to the up sequentially while applying a voltage to all of the lower electrodes L1-Lq, and the upper electrode at the time of scanning when the voltage appears.
  • Is determined as the candidate upper electrodes Ua, Ub including the depressed position, Ua and Ub are stored in the candidate electrode storage unit, While applying a voltage to all of the upper electrodes U1-Up, scanning is performed to measure the bus electrode voltage of the lower electrode from L1 to Lq in sequence, and the lower electrode at the time of scanning when the voltage appears is moved to the pressed position I.
  • the candidate lower electrodes La and Lb that include points are determined, and La and Lb are stored in the candidate electrode storage unit, Subsequently, the matrix detection unit refers to Ua, Ub, La and Lb stored in the candidate electrode storage unit, applies a voltage to the candidate upper electrode Ua, and measures the voltage of the candidate lower electrodes La and Lb.
  • the upper electrode Ua and the lower electrode where the voltage appears are determined to be the upper electrode UI and the lower electrode LI including the pressed position I, and stored in the matrix storage unit, A voltage is applied to the candidate upper electrode Ub, the voltage of the bus bar of the candidate lower electrodes La and Lb is measured, and the upper electrode UJ and the lower electrode including the upper electrode Ub and the lower electrode where the voltage appears includes the pressing point J LJ is determined, stored in the matrix storage unit,
  • the analog detection means refers to the UI, UJ, LI and LJ stored in the matrix storage means, loads power to the UI, measures the amount of electricity appearing in the LI bus bar, and depends on the electrical resistance of the conductive film Xi is calculated from the amount of electricity, electric power is applied to UJ, the amount of electricity appearing in the LJ busper is measured, and Xj is calculated from the amount of electricity depending on the electric resistance of the conductive film, Load the LI with power, measure the amount of electricity appearing in the UI busper, calculate Yi from the amount of electricity
  • a touch panel device that detects Xi and Yi that are the coordinate values of the I point and Xj and Yj that are the coordinate values of the J point when the I point and the J point of the touch panel extending in the X-axis and Y-axis directions are pressed down simultaneously.
  • the touch panel includes an upper substrate that is a transparent flexible insulating substrate, an upper electrode plate that includes an upper electrode group formed on a lower surface of the upper substrate, a lower substrate that is a transparent insulating substrate, and the It consists of a lower electrode plate including a lower electrode group formed on the upper surface of the lower substrate,
  • the upper electrode group includes p (p is a positive integer greater than or equal to 2) upper electrodes U1-Up, the upper electrode is rectangular, and its longitudinal direction is parallel to the X axis.
  • the lower electrode group includes q (q is a positive integer greater than or equal to 2) lower electrodes L1-Lq, the lower electrode is rectangular, and the longitudinal direction of the lower electrode is parallel to the Y axis,
  • the electrode consists of a transparent conductive film with bus bars formed at both ends in the longitudinal direction, A touch panel in which the upper electrode plate and the lower electrode plate are superposed with a spacer interposed between the conductive films, and when the region of the upper electrode plate is pushed down toward the lower electrode plate, the upper electrode plate is positioned in the region.
  • the matrix detection means scans the bus electrode voltage of the upper electrode sequentially from U1 to Up while applying a voltage to the lower electrode L1, and then applies a voltage to the lower electrode L2 from U1.
  • a scan is performed to measure the bus electrode voltage of the upper electrode until it sequentially reaches Up, then the same operation is performed to the lower electrode Lq, and the upper electrode and lower electrode at the point in time when the voltage appears includes the point I where the pressure is depressed.
  • the matrix storage unit determines the upper electrode UI and the lower electrode LI, and determines the upper electrode and the lower electrode at the time of scanning when the voltage appears as the upper electrode UJ and the lower electrode LJ including the pressing position J point.
  • the analog detection means refers to the UI, UJ, LI and LJ stored in the matrix storage means, loads power to the UI, measures the amount of electricity appearing in the LI bus bar, and depends on the electrical resistance of the conductive film
  • Xi is calculated from the amount of electricity, electric power is applied to UJ, the amount of electricity appearing in the LJ busper is measured, and Xj is calculated from the amount of electricity depending on the electric resistance of the conductive film, Load the LI with power, measure the amount of electricity appearing in the UI busper, calculate Yi from the amount of electricity depending on the electrical resistance of the conductive film, load the LJ with power, and calculate the amount of electricity appearing in the UJ busper.
  • the power added by the analog detection means may be DC power, and the amount of electricity to be measured may be DC voltage.
  • the detection performed by the analog detection means is performed by adding the most popular DC power and measuring the DC voltage, so that a part of the conventional analog detection touch panel device is used.
  • the present invention can be applied as it is. Therefore, the touch panel device can be manufactured at a lower cost and can be used stably.
  • a rectangular short side which is a shape of the upper electrode and the lower electrode may be 12 mm or more and 20 mm or less.
  • the probability that only one finger enters each matrix region of the p ⁇ q matrix regions where the upper electrode group and the lower electrode group overlap is increased, and the multipoint pressing position with a plurality of fingers is determined.
  • the touch panel device can be detected more easily.
  • the touch panel device is the touch panel device according to the present invention, wherein the upper electrode group and the lower electrode group have an interval S between adjacent electrodes of 0.2 mm or more and 0.5 mm or less. Also good.
  • touch panel input is performed with a finger or stylus pen. Assume a touch panel that uses a stylus pen for input. Since the tip of the stylus pen has a certain size, the input point of the stylus pen can be accurately captured if the distance between the electrodes is set to the above value range.
  • the touch panel position detection method of the present invention is a method of detecting a precise position by performing a resistance film matrix (digital detection) method, performing a resistance film analog detection method only for an electrode where a pressing point is detected, and performing a multi-inspection.
  • a resistance film matrix digital detection
  • the position can be accurately detected, and a single position detection operation can be performed in a short time. Therefore, the movement tracking of the pressing point can be performed at a minute time interval.
  • the touch panel used in the touch panel position detection method of the present invention can accurately detect the position even if the grid formed by the upper electrode and the lower electrode is rough. Therefore, since there is no need to increase the number of lines, the number of lead lines and the space for routing the lines does not increase. In addition, the number of non-conductive film regions located in the gaps between the meshes is reduced and is not noticeable.
  • the touch panel detection device of the present invention is a device that performs detection by a resistance film matrix (digital detection) method, and performs resistance film analog detection only for an electrode in which a pressing point is detected, and is formed from an upper electrode and a lower electrode. Precise position detection is possible even if the mesh is rough. Therefore, since there is no need to increase the number of lines, the number of lead lines and the space for routing the lines does not increase. In addition, the number of non-conductive film regions located in the gaps between the meshes is reduced and is not noticeable.
  • the position detection method employed enables multipoint detection, precise position detection is performed, and a single position detection operation can be performed in a short time. Therefore, the movement tracking of the pressing point can be performed at a minute time interval.
  • FIG. 1 is a conceptual explanatory diagram of a touch panel device 1.
  • FIG. FIG. 4 is an exploded explanatory view of the touch panel 4. It is explanatory drawing of a position detection method. It is a flowchart of the position detection which a matrix detection means performs. It is a flowchart of the position detection which an analog detection means performs. It is the flowchart of the deformed position detection which a matrix detection means performs.
  • FIG. 1 is a conceptual explanatory diagram of the touch panel device 1
  • FIG. 2 is an exploded explanatory diagram of the touch panel 4.
  • the touch panel device 1 includes a touch panel 4, a matrix detection unit 5, a matrix storage unit 6, a candidate electrode storage unit 8, and an analog detection unit 7.
  • the matrix detection means 5 and the analog detection means 7 include a DC power supply 41 and a voltage measuring device 42.
  • the voltage measuring device 42 measures the voltage of DC electricity.
  • the DC power supply 41 is a power supply means
  • the voltage measuring device 42 is an electricity quantity measuring means.
  • the matrix detection means 5 and the analog detection means 7 may share a single DC power supply 41 and a single voltage measuring device 42.
  • the matrix detection means 5 may include a DC power supply and a voltage measurement device
  • the analog detection means 7 may include another DC power supply and another voltage measurement device.
  • the matrix detection means 5 and the analog detection means 7 can be realized by a program incorporated in a computer, a CPU, a RAM, a ROM, an IC, and the like.
  • the matrix storage unit 6 and the candidate electrode storage unit 8 can be realized by, for example, allocating a certain portion in a computer hard memory.
  • the touch panel 4 includes an upper electrode plate 10 including four upper electrode groups 12 formed on the lower surface of the upper substrate 11 which is a transparent flexible insulating substrate.
  • the touch panel 4 includes a lower electrode plate 20 including four lower electrode groups 22 formed on the upper surface of the lower base 21 that is a transparent insulating base.
  • the upper electrode group 12 is composed of four upper electrodes
  • the lower electrode group 22 is composed of four lower electrodes.
  • the number p of the upper electrode groups and the number q of the lower electrode groups included in a single touch panel can be arbitrarily determined as long as p is a positive integer of 2 or more and q is 2 or more. If it exists, it is included in the technical scope of the present invention.
  • the upper limit values of p and q are not particularly limited.
  • p and q depends on the size of touch panel and control circuit.
  • the touch panel is enlarged, for example, if the length in the X-axis direction is 500 mm and the length in the Y-axis direction is 500 mm, p may be 250 and q may be 250.
  • the upper limit of the total value of p and q can be preferably 50, more preferably 12.
  • the value of p may be an integer value in the range of usually 1/5 to 4/5 of the above total value, preferably an integer value closest to 1/2.
  • the value of q is a value obtained by subtracting p from the total value, and a preferable value is similarly calculated.
  • the upper electrode group 12 includes upper electrodes U1 (121), U2 (122), U3 (123), and U4 (124). Each upper electrode has a rectangular planar shape, and the longitudinal direction of the rectangle is parallel to the X axis. The directions of the X axis and the Y axis are shown in the figure. Each upper electrode is made of a transparent conductive film 14 having bus bars 13 formed at both ends in the longitudinal direction. The bus bar 13 is formed in parallel to the short side of the rectangle and includes or is near the short side.
  • the lower electrode group 22 includes lower electrodes L1 (221), L2 (222), L3 (223), and L4 (224).
  • Each upper electrode has a rectangular plane, and the longitudinal direction of the rectangle is parallel to the Y axis.
  • Each upper electrode is made of a transparent conductive film 24 in which bus bars 23 are formed at both ends in the longitudinal direction.
  • the bus bar 23 is formed in parallel to the short side of the rectangle and includes or is near the short side.
  • the upper electrode plate 10 and the lower electrode plate 20 are overlapped with each other with a spacer 31 interposed between the conductive films 14 and 24, and the peripheral portion is bonded with a double-sided tape 32 to form the touch panel 4.
  • the spacer 31 is disposed on the entire surface of the upper electrode group 12 and the lower electrode group 22, but in FIG. 2, it is shown only on the lower electrode L1 and in the vicinity of the lower electrode L1, and the remaining portions are not shown.
  • the touch panel 4 is divided into 16 matrix regions in which 4 upper electrode groups 12 and 4 lower electrode groups 22 overlap.
  • the touch panel is divided into p ⁇ q matrix regions in which p upper electrode groups and q lower electrode groups overlap.
  • the input area of the touch panel may be divided into p ⁇ q areas even if they intersect at any angle.
  • the intersection angle (the smaller one of the two angles) may be 45 degrees or more and less than 90 degrees.
  • the upper electrode and the lower electrode positioned in the pushed region are electrically connected.
  • the depression may be performed with a finger, a stylus pen, a stick, or the like, for example.
  • the length W of the short side can be set to any value without particular limitation, but is preferably 12 mm or more and 20 mm or less, more preferably 14 mm or more and 18 mm or less. . Assuming the case where input is performed with a finger, it is only necessary for one matrix to correspond to the size of the belly of the finger, and within this range, p ⁇ q where the upper electrode group and the lower electrode group overlap. This is because the probability that only one finger enters each matrix area is increased, and multipoint detection is further simplified.
  • the length W of the short side may be equal to a constant value within the above range for each of the upper electrodes U1, U2, U3, and U4, or may be a different value within the above range. The same applies to each lower electrode. From the viewpoint of simplifying the calculation processing at the time of analog detection, it is preferably equal to a constant value within the above range.
  • the interval S between adjacent electrodes can be set to an arbitrary value without any particular limitation, but is preferably a constant value of 0.2 mm or more and 0.5 mm or less, more preferably What is necessary is just to make it a fixed value of 0.3 mm or more and 0.4 mm or less.
  • touch panel input is performed with a finger or a stylus pen. Assume a touch panel that uses a stylus pen for input. Since the tip of the stylus pen has a certain size, the input point of the stylus pen can be accurately captured if the distance between the electrodes is set to the above value range.
  • the spacing S between the electrodes may be equal to a certain value within the above range with respect to the spacing between the upper electrodes U1 and U2, the spacing between U2 and U3, and U3 and U4, or may be a different value within the above range. Good. The same applies to each lower electrode. Preferably, it is equal to a constant value within the above range.
  • each part of the touch panel 4 and the formation method thereof are the same as those of a conventional resistive film matrix (digital detection) type or resistive film analog detection type touch panel.
  • the touch panel 4 is usually installed so as to cover the display surface of the display, and the display on the display is visually recognized via the touch panel 4.
  • the display includes a flat panel display and a CRT display.
  • the flat panel display means a thin plate display device, and includes a liquid crystal display, FL (electroluminescence), LED (light emitting diode), PDP (plasma display), FED (field emission display) and the like.
  • FIG. 3 is an explanatory diagram of the position detection method
  • FIG. 4 is a flowchart of position detection performed by the matrix detection means
  • FIG. 5 is a flowchart of position detection performed by the analog detection means.
  • S and a 2-digit (or 3-digit) number indicate a step.
  • the matrix detection means 5 applies the DC voltage of the DC power supply 41 to all the electrodes of the lower electrode group. In this example, voltages are applied to the four electrodes of the lower electrodes L1-L4.
  • the matrix detection means 5 measures the voltage of the UA using the voltage measuring device 42.
  • the subscript A starts from 1 and is an integer from 1 to 4. If a voltage is detected, the process proceeds to S03, and if no voltage is detected, the process proceeds to S04.
  • Detecting the voltage means that one of the four cross matrices included in the UA is pushed down and the cross matrix is in an electrically conductive state.
  • the matrix detection means 5 stores the upper electrode UA at that time in the candidate electrode storage unit 8.
  • the matrix detection means 5 applies the DC voltage of the DC power supply 41 to all the electrodes of the upper electrode group. In this example, voltages are applied to the four electrodes of the upper electrodes U1-U4.
  • the matrix detection means 5 measures the voltage of LA using the voltage measuring device 42.
  • the subscript A starts from 1 and is an integer from 1 to 4. If a voltage is detected, the process proceeds to S08, and if no voltage is detected, the process proceeds to S09.
  • the matrix detection means 5 stores the lower electrode LA at that time in the candidate electrode storage unit 8.
  • the matrix detection means 5 calls the upper electrodes Ua and Ub and the lower electrodes La and Lb stored in the candidate electrode storage unit 8.
  • the matrix detection means 5 applies the DC voltage of the DC power supply 41 to Ua.
  • the matrix detection means 5 measures the voltage of La using the voltage measuring device 42.
  • the matrix detecting means 5 measures the voltage of Lb using the voltage measuring device 42.
  • the matrix detection means 5 determines the lower electrode in which the voltage is detected among La and Lb as LI.
  • Ua since the upper electrode paired with LI is Ua, Ua is stored in the matrix storage unit 6 as UI.
  • the LI is also stored in the matrix storage unit 6.
  • the matrix detection means 5 applies the DC voltage of the DC power supply 41 to Ub.
  • the matrix detection unit 5 measures the voltage of La using the voltage measuring device 42.
  • the matrix detection means 5 measures the voltage of Lb using the voltage measuring device 42.
  • the matrix detection means 5 determines LJ as the lower electrode in which voltage is detected among La and Lb.
  • Ub since the upper electrode paired with LJ is Ub, Ub is stored in the matrix storage unit 6 as UJ.
  • the LJ is also stored in the matrix storage unit 6.
  • the detection of the depression matrix by the matrix detection means 5 described above is almost the same as the conventional resistive film matrix (digital) detection method.
  • the operations from S10 to S18 are operations for determining the upper electrode and the lower electrode to be paired, and can be carried out with modification.
  • the voltage applied to the upper electrode may be detected using the electrode to which the voltage is applied as the lower electrode.
  • the voltage is measured in the order of La and Lb. However, even if this operation is performed in the order of Lb and La, the same result is reached.
  • the matrix storage unit 6 stores a set of U2 and L2 and a set of U4 and L4.
  • the analog detection unit 7 reads the pair of electrodes UI and LI stored in the matrix storage unit.
  • the analog detection means 7 loads the DC voltage of the DC power supply 41 to the UC.
  • the analog detection means 7 measures the voltage value appearing on the LC using the voltage measuring device 42.
  • the X coordinate value Xi of the point I is calculated from the voltage value.
  • the analog detection means 7 loads the DC voltage of the DC power supply 41 to the LC.
  • the analog detection means 7 measures the voltage value appearing on the UC using the voltage measuring device 42.
  • the Y coordinate value Yi of the point I is calculated from the voltage value.
  • the analog detection means 7 reads the pair of electrodes UJ and LJ stored in the matrix storage unit.
  • the calculation of the pressed position by the analog detection means 7 described above is the same as the conventional resistive film analog detection method.
  • the calculation formula for converting the measured voltage value to the coordinate point is the same as the conventional resistive film analog detection method.
  • the position detection process (from S01 to S32) may be performed a certain number of times, usually 100 times or more and 200 times or less, more preferably 150 times or more and 200 times or less per second. This is because it is possible to track the movement of the pressing point within the above range.
  • the detection of the pressing matrix by the matrix detection means 5 described above may be performed by a modified operation described below.
  • FIG. 6 is a flowchart of deformed position detection performed by the matrix detection means 5.
  • the matrix detection means 5 applies the DC voltage of the DC power supply 41 to the UA.
  • the subscript A starts from 1 and is an integer from 1 to 4.
  • the matrix detection means 5 measures the voltage of the LB using the voltage measuring device 42.
  • the subscript B starts from 1 and is an integer from 1 to 4. If a voltage is detected, the process proceeds to S103, and if no voltage is detected, the process proceeds to S104.
  • Detecting the voltage means that the crossing matrix of UA and LB is pushed down and is in an electrically conductive state in the matrix region.
  • the matrix detection means 5 stores the upper electrode UA and the lower electrode LB at that time in the matrix storage unit 6.
  • the upper electrode and the lower electrode at the time of voltage detection are determined as a set of UI and LI (or UJ and LJ) representing a single matrix. Therefore, an operation for determining a pair of upper and lower electrodes as described in the flowcharts S10 to S18 in FIG. 4 is unnecessary.
  • FIG. 6 illustrates an embodiment in which a voltage is applied to the upper electrode to measure the voltage of the lower electrode.
  • a voltage is applied to the lower electrode and the voltage of the upper electrode is measured.
  • the two points I and J have been described as being depressed.
  • the simultaneous depressing points are not limited to two points, and may be three or more points. Detection is not impossible.
  • the pressing point when the pressing point is two points or three or more points in the same matrix, the position of the pressing point cannot be detected. In addition, if three or more points are input simultaneously, the situation that the position cannot be detected frequently occurs. However, even if there are two or more pressing points, if the (coordinate) movement of each pressing point is recorded and analyzed to predict the trajectory, it will be in the time zone where the above detection becomes impossible. The (coordinate) position can be interpolated.
  • the touch panel position detection method and touch panel device may be a current detection method in which the above-described analog detection method applies a constant current to the electrodes and measures the current balance to detect the position.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

多点の同時検出ができ、電極の数を増やすことなく、また、個々の押下げ点が精密に定まるタッチパネル装置である。タッチパネル装置1は、短冊型の交差電極を含むタッチパネル4、マトリックス検出手段5、マトリックス記憶手段6、アナログ検出手段7からなり、マトリックス検出手段5がデジタルマトリックス検出を行って押下げ点の交差マトリックスを決定し、当該マトリックスをマトリックス記憶手段6に記憶し、アナログ検出手段7が、マトリックス記憶手段に記憶された交差マトリックスを形成する電極に対して、アナログ検出方式を行うことにより押下げ点の位置を算出する。また、上記タッチパネル装置と同様なタッチパネルの位置検出方法を開示する。

Description

タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置
 本発明は、ディスプレイ(例えば、液晶表示装置)の表示面に重ねて設置され、指やスタイラスペンなどで入力を行うタッチパネルの入力位置検出方法と、当該タッチパネル装置に関する。
 従来の抵抗膜マトリックス(デジタル検出)方式タッチパネルは、ライン状の電極を交差する方向に上下に対向させ形成し、押下げによる向かい合わせの面が接触した位置を、ラインの交差点として検出している。(例えば、特許文献1参照。)。
 また、従来の抵抗膜アナログ検出方式タッチパネルは、上下部電極の全面が均一な抵抗膜となっていて、片面はX軸方向、他方の面はY軸方向に電極を引き出し、押下げにより導通した点の電圧値から押下げ点を検出している。(例えば、特許文献2参照。)。
特開2007-527061号公報
特開平08-241160号公報
 従来の抵抗膜マトリックス(デジタル検出)方式タッチパネルは、1点のみならず2点以上の多点が同時に押下げられても、多点の検出が可能である。しかし、押下げ点の位置をより精密に検出しようとすれば、ライン状電極の幅を狭くせざるを得ず、ラインの数が増え、これにより、引き出し回線の数が増える。
 従来の抵抗膜アナログ検出方式タッチパネルは、原理上、2点以上の多点が同時に押下げられると、個々の押下げ点を特定することができない。
 そこで、本発明は、多点の同時検出ができ、ラインや引き出し線の数を増やすことなく、また、個々の押下げ点が精密に定まるタッチパネルの位置検出方法を得ることを課題とする。
 さらに、本発明は、上述したタッチパネルの位置検出方法の課題と同様な課題を解決するタッチパネル装置を得るものである。
 本発明のその他の課題は、本発明の説明により明らかになる。
 本発明の一の態様において、タッチパネルの位置検出方法は、
 X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネルの位置検出方法において、
 透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
 前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、前記上部電極の長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
 前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、
 前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルを用いて行う位置検出方法であって、以下の工程を含む。
イ 下部電極L1-Lqの全てに電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での上部電極を、押下げ位置が含まれる候補上部電極Ua、Ubと決定する工程。
ロ 上部電極U1-Upの全てに電圧を印加しつつ、L1から順次Lqに至るまで下部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での下部電極を、押下げ位置が含まれる候補下部電極La、Lbと決定する工程。
ハ 候補上部電極Uaに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Uaと電圧が出現した下部電極を押下げ位置I点が含まれる上部電極UIと下部電極LIであると決定する工程。
ニ 候補上部電極Ubに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Ubと電圧が出現した下部電極を押下げ位置J点が含まれる上部電極UJと下部電極LJであると決定する工程。
ホ UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
 LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する抵抗膜アナログ算出工程。
 本発明の他の態様において、タッチパネルの位置検出方法は、
 X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネルの位置検出方法において、
 透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
 前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、前記上部電極の長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
 前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、
 前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルを用いて行う位置検出方法であって、以下の工程を含む。
イ 下部電極L1に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、次に下部電極L2に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、引き続き下部電極Lqまで同じ操作を行ない、電圧が出現した走査時点での上部電極と下部電極を押下げ位置I点が含まれる上部電極UI、下部電極LIと決定し、また、電圧が出現した走査時点での上部電極と下部電極を押下げ位置J点が含まれる上部電極UJ、下部電極LJと決定する工程。
ロ UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
 LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する抵抗膜アナログ算出工程。
 本発明の好ましい実施態様にかかるタッチパネルの位置検出方法は、本発明にかかるタッチパネルの位置検出方法において、
 前記抵抗膜アナログ算出工程における前記電力は直流電力であり、前記電気量は直流電圧であってもよい。
 本好ましい実施態様によれば、抵抗膜アナログ検出方式を行う工程が、従来から最も普及している直流電力の付加、直流電圧の測定により行われるので、従来のタッチパネル部分と検出方法などをそのまま本発明に適用することができる。よって、より一層容易、かつ、安価に行えるタッチパネルの位置検出方法となる。
 本発明の他の好ましい実施態様にかかるタッチパネルの位置検出方法にあっては、
 上部電極と下部電極の形状である長方形の短辺が、12mm以上20mm以下であるタッチパネルを使用するものであってもよい。
 本好ましい実施態様によれば、上部電極群と下部電極群が重なるp×q個のマトリックス領域の個々のマトリックス領域に指が一本だけ入る確率が高まり、複数指での押下げ入力による多点検出がより一層単純化される。
 本発明のその他の好ましい実施態様にかかるタッチパネルの位置検出方法にあっては、上部電極群と下部電極群は、隣り合う電極間の間隔Sが0.2mm以上0.5mm以下であるタッチパネルを使用するものであってもよい。
 通常、タッチパネルの入力は指かスタイラスペンで行う。スタイラスペンにより入力するタッチパネルを想定する。スタイラスペンの先端は一定の大きさがあるので、電極間の間隔を上記の値範囲にすれば、スタイラスペンの入力点を精度よく捕らえることができる。
 本発明のその他の態様にかかるタッチパネル装置は、
 X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネル装置において、
 タッチパネル、マトリックス検出手段、候補電極記憶部、マトリックス記憶部、アナログ検出手段からなり、
 前記タッチパネルは、透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
 前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、その長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
 前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、 前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルであり、
 前記マトリックス検出手段は、下部電極L1-Lqの全てに電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での上部電極を、押下げ位置が含まれる候補上部電極Ua、Ubと決定し、前記候補電極記憶部にUaとUbを記憶し、
 上部電極U1-Upの全てに電圧を印加しつつ、L1から順次Lqに至るまで下部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での下部電極を、押下げ位置I点が含まれる候補下部電極La、Lbと決定し、前記候補電極記憶部にLaとLbを記憶し、
 引き続き、前記マトリックス検出手段は、前記候補電極記憶部に記憶されたUa、Ub、LaとLbを参照し、候補上部電極Uaに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Uaと電圧が出現した下部電極を押下げ位置I点が含まれる上部電極UIと下部電極LIであると決定し、前記マトリックス記憶部に記憶し、
 候補上部電極Ubに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Ubと電圧が出現した下部電極を押下げ位置J点が含まれる上部電極UJと下部電極LJであると決定し、前記マトリックス記憶部に記憶し、
 前記アナログ検出手段は、前記マトリックス記憶手段に記憶されたUI、UJ、LIとLJを参照し、UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
 LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する。
 本発明のさらに他の態様にかかるタッチパネル装置は、
 X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネル装置において、
 タッチパネル、マトリックス検出手段、マトリックス記憶部、アナログ検出手段からなり、
 前記タッチパネルは、透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
 前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、その長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
 前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、
 前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルであり、
 前記マトリックス検出手段は、下部電極L1に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、次に下部電極L2に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、引き続き下部電極Lqまで同じ操作を行ない、電圧が出現した走査時点での上部電極と下部電極を押下げ位置I点が含まれる上部電極UI、下部電極LIと決定し、また、電圧が出現した走査時点での上部電極と下部電極を押下げ位置J点が含まれる上部電極UJ、下部電極LJと決定し、前記マトリックス記憶部に、UI、LI、UJとLJを記憶し、
 前記アナログ検出手段は、前記マトリックス記憶手段に記憶されたUI、UJ、LIとLJを参照し、UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
 LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する。
 本発明の好ましい実施態様にかかるタッチパネル装置は、本発明にかかるタッチパネル装置において、前記アナログ検出手段が付加する前記電力は直流電力であり、測定する電気量は直流電圧であってもよい。
 本好ましい実施態様によれば、アナログ検出手段が行う検出は、従来より、最も普及している直流電力の付加し、直流電圧を測定することにより行われるので、従来のアナログ検出タッチパネル装置の一部分をそのまま本発明に適用することができる。よって、より一層、安価に製造でき、また、安定的に使用できるタッチパネル装置となる。
 本発明の他の好ましい実施態様にかかるタッチパネル装置は、本発明にかかるタッチパネル装置において、上部電極と下部電極の形状である長方形の短辺が12mm以上20mm以下であってもよい。
 本好ましい実施態様によれば、上部電極群と下部電極群が重なるp×q個のマトリックス領域の個々のマトリックス領域に指が一本だけ入る確率が高まり、複数指での多点押下げ位置を、より一層容易に検出できるタッチパネル装置となる。
 本発明のその他の好ましい実施態様にかかるタッチパネル装置は、本発明にかかるタッチパネル装置において、上部電極群と下部電極群は、隣り合う電極間の間隔Sが0.2mm以上0.5mm以下であってもよい。
 通常、タッチパネルの入力は指かスタイラスペンで行う。スタイラスペンにより入力するタッチパネルを想定する。スタイラスペンの先端は一定の大きさがあるので、電極間の間隔を上記の値範囲にすれば、スタイラスペンの入力点を精度よく捕らえることができる。
 以上説明した本発明、本発明の好ましい実施態様、これらに含まれる構成要素は可能な限り組み合わせて実施することができる。
 本発明のタッチパネル位置検出方法は、抵抗膜マトリックス(デジタル検出)方式を行い、押下げ点が検出された電極についてだけ抵抗膜アナログ検出方式を行い、精密な位置を検出する方法であり、多点検出が可能となり、精密な位置検出が行われ、かつ、一回の位置検出操作を短時間で行うことができる。よって、微小な時間間隔で、押下げ点の移動追跡が可能である。
 一方、本発明のタッチパネル位置検出方法に使用するタッチパネルは、上部電極と下部電極から形成される升目が荒い枡目であっても、精密な位置検出が可能となる。よって、ライン数を増やす必要がないので、引き出し回線や、当該回線を引き回すスペースも増えない。また、升目の間隙に位置する非導電膜領域の数が少なくなり、目立たない。
 本発明のタッチパネル検出装置は、抵抗膜マトリックス(デジタル検出)方式による検出を行い、押し圧点が検出された電極についてだけ抵抗膜アナログ検出を行う装置であり、上部電極と下部電極から形成される升目が荒い枡目であっても、精密な位置検出が可能となる。よって、ライン数を増やす必要がないので、引き出し回線や、当該回線を引き回すスペースも増えない。また、升目の間隙に位置する非導電膜領域の数が少なくなり、目立たない。
 一方、採用されている位置検出方法により、多点検出が可能となり、精密な位置検出が行われ、かつ、一回の位置検出操作を短時間で行うことができる。よって、微小な時間間隔で、押下げ点の移動追跡が可能である。
タッチパネル装置1の概念説明図である。 タッチパネル4の分解説明図である。 位置検出方法の説明図である。 マトリックス検出手段が行う位置検出のフローチャートである。 アナログ検出手段が行う位置検出のフローチャートである。 マトリックス検出手段が行う変形された位置検出のフローチャートである。
 以下、図面を参照して本発明の実施例にかかるタッチパネルの位置検出方法とタッチパネル装置をさらに説明する。本発明の実施例に記載した部材や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載のない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。
 図1はタッチパネル装置1の概念説明図であり、図2はタッチパネル4の分解説明図である。
 タッチパネル装置1は、タッチパネル4とマトリックス検出手段5、マトリックス記憶部6、候補電極記憶部8、アナログ検出手段7からなる。マトリックス検出手段5とアナログ検出手段7は、直流電源41と電圧測定器42を含む。電圧測定器42は直流電気の電圧を測定する。直流電源41は電力供給手段であり、電圧測定器42は電気量測定手段である。
 図1に図示したようにマトリックス検出手段5とアナログ検出手段7は、単一の直流電源41と単一の電圧測定器42を共用するものであってもよい。あるいは、マトリックス検出手段5は、直流電源と電圧測定器を備え、アナログ検出手段7は、他の直流電源と他の電圧測定器を備えていてもよい。
 上記のマトリックス検出手段5とアナログ検出手段7は、コンピュータに組み込まれたプログラムとCPU、RAM、ROM、ICなどにより実現できる。上記のマトリックス記憶部6と候補電極記憶部8は、例えば、コンピュータのハードメモリー内の一定部分を割り当てることで実現できる。
 図2を参照して、タッチパネル4は、透明な可撓性絶縁基材である上部基材11の下面に形成された4個の上部電極群12を含んだ上部電極板10を含む。また、タッチパネル4は、透明な絶縁基材である下部基材21の上面に形成された4個の下部電極群22を含んだ下部電極板20を含む。本実施例では、上部電極群12は4個の上部電極からなり、下部電極群22は4個の下部電極からなっている。
 単一のタッチパネルに含まれる上部電極群の数pと下部電極群の数qは、pが2以上、qが2以上の正の整数であれば、任意に定めることができ、これらの範囲であれば、本発明の技術範囲に含まれる。pとqの上限値は特に限定されない。
 そして、pとqの上限値はタッチパネルの大きさと制御回路に依存する。タッチパネルを大きくする場合は、例えばX軸方向の長さ500mm、Y軸方向の長さ500mmであれば、pを250、qを250にすればよい。
妥当な製造コストでかつ処理速度が実用に耐えるという観点からは、pとqの合計値の上限値を好ましくは50、より好ましくは12にすることができる。pの値は、上記合計値の、通常1/5から4/5の範囲の整数値、好ましくは1/2に最も近い整数値にすればよい。qの値は合計値からpを減算した値であり、好ましい値も同様に算出される。
 上部電極群12は上部電極U1(121)、U2(122)、U3(123)、U4(124)からなる。各々の上部電極は平面形状が長方形であって、長方形の長手方向はX軸に平行である。図中にX軸とY軸の方向を図示している。各々の上部電極は長手方向の両端にバスパー13を形成した透明な導電膜14からなる。バスパー13は長方形の短辺に平行に、かつ、短辺を含むかあるいは短辺の近傍に形成されている。
 下部電極群22は下部電極L1(221)、L2(222)、L3(223)、L4(224)からなる。各々の上部電極は平面が長方形であって、長方形の長手方向はY軸に平行である。各々の上部電極は長手方向の両端にバスパー23を形成した透明な導電膜24からなる。バスパー23は長方形の短辺に平行に、かつ、短辺を含むかあるいは短辺の近傍に形成されている。
 上部電極板10と下部電極板20は、導電膜14、24の間にスペーサ31を介在して重ね合わされ、両面テープ32により周縁部が張り合わされて、タッチパネル4となる。スペーサ31は上部電極群12と下部電極群22の全面に配置されるが、図2では下部電極L1上と下部電極L1の近辺にのみ図示し、残余の部分は図示を省略している。
 タッチパネル4は4個の上部電極群12と4個の下部電極群22が重なる16個のマトリックス領域に区分されている。以上を一般化して表現すれば、タッチパネルはp個の上部電極群とq個の下部電極群が重なるp×q個のマトリックス領域に区分されている。
 本発明において、上部電極群と下部電極群が必ずしも、直交状態に交わることは必要ではなく、いかなる角度で交わっていても、タッチパネルの入力領域がp×q個の領域に区分されていればよい。例えば、交角(2つの角の中で数値の小さいほうの角度)が45度以上90度未満の値であってもよい。もっとも、押下げ位置の算出が容易となる90度で交わることが好ましい。
 タッチパネル4において、上部電極板の領域が下部電極板に向かって押下げられると、押下げ領域に位置付けられている上部電極と下部電極が電気的に導通する。押下げは、例えば、指、スタイラスペン、棒などで行えばよい。
 長方形の上部電極と長方形の下部電極において、短辺の長さWは、特に制限なく任意の値に定めることができるが、好ましくは12mm以上20mm以下であり、より好ましくは14mm以上18mm以下である。指による入力を行う場合を想定すれば、一のマトリックスが指の腹の大きさに対応していればよいからであり、当該範囲にすれば、上部電極群と下部電極群が重なるp×q個のマトリックス領域の個々のマトリックス領域に指が一本だけ入る確率が高まり、多点検出がより一層単純化されるからである。
 当該短辺の長さWは、各上部電極U1、U2、U3、U4について上記範囲内の一定値で等しくてもよく、また、上記範囲内で異なる値であってもよい。各下部電極についても同じである。アナログ検出時の計算処理を単純化するなどの観点から、好ましくは、上記範囲内の一定値で等しいことである。
 また、上部電極群と下部電極群において、隣り合う電極間の間隔Sは、特に制限なく任意の値に定めることができるが、好ましくは0.2mm以上0.5mm以下の一定値、より好ましくは0.3mm以上0.4mm以下の一定値にすればよい。通常、タッチパネルの入力は指かスタイラスペンで行う。スタイラスペンにより入力するタッチパネルを想定する。スタイラスペンの先端は一定の大きさがあるので、電極間の間隔を上記の値範囲にすれば、スタイラスペンの入力点を精度よく捕らえることができる。
 当該電極間の間隔Sは、上部電極U1とU2の間隔、U2とU3の間隔、U3とU4について上記範囲内の一定値で等しくてもよく、また、上記範囲内で異なる値であってもよい。各下部電極についても同じである。好ましくは、上記範囲内の一定値で等しいことである。
 タッチパネル4の各部の材料、その形成方法などは従来の抵抗膜マトリックス(デジタル検出)方式あるいは抵抗膜アナログ検出方式のタッチパネルと同様である。
 タッチパネル4は、通常、ディスプレイの表示面を覆うように設置され、タッチパネル4を介してディスプレイの表示が視認される。ディスプレイは、フラットパネルディスプレイやCRTディスプレイを含む。フラットパネルディスプレイは薄板状の表示装置を意味し、液晶ディスプレイ、FL(エレクトロルミネッセンス)、LED(発光ダイオード)、PDP(プラズマディスプレイ)、FED(フィールドエミッションディスプレイ)などを含むものである。
 次に、タッチパネル装置1の位置検出方法を説明する。図3は位置検出方法の説明図であり、図4はマトリックス検出手段が行う位置検出のフローチャートであり、図5はアナログ検出手段が行う位置検出のフローチャートである。
 フローチャートのSと2桁(あるいは3桁)の数字はステップを示している。
 S01で、マトリックス検出手段5は、直流電源41の直流電圧を下部電極群の全ての電極に印加する。本例では下部電極L1-L4の4個の電極に電圧が印加される。S02で、マトリックス検出手段5は、電圧測定器42を用いUAの電圧を測定する。ここで添字Aは1から始まり、1から4のいずれかの整数である。電圧が検知されればS03に移行し、電圧が検知されない場合はS04に移行する。
 電圧が検知されることは、UA中に含まれる4個の交差マトリックスのいずれかが押下げられ当該交差マトリックスが電気導通状態にあることを意味している。S03でマトリックス検出手段5は、その時の上部電極UAを候補電極記憶部8に記憶する。
 S04で、マトリックス検出手段5は下部電極の添字の値Aを判断する。A<4であればS02に移行し、A=4であればS06に移行する。S02からS04を繰り返して行うことにより、引き続く下部電極での電圧測定が行われる。
 S06で、マトリックス検出手段5は、直流電源41の直流電圧を上部電極群の全ての電極に印加する。本例では上部電極U1-U4の4個の電極に電圧が印加される。S07で、マトリックス検出手段5は、電圧測定器42を用いLAの電圧を測定する。ここで添字Aは1から始まり、1から4のいずれかの整数である。電圧が検知されればS08に移行し、電圧が検知されない場合はS09に移行する。
 S08で、マトリックス検出手段5は、その時の下部電極LAを候補電極記憶部8に記憶する。
 引き続き、S07からS09を、S02からS04と同様に繰り返す。
 S10で、マトリックス検出手段5は候補電極記憶部8に記憶された上部電極Ua、Ubと下部電極La、Lbを呼び出す。
 S11でマトリックス検出手段5は、直流電源41の直流電圧をUaに印加する。S12でマトリックス検出手段5は、電圧測定器42を用いLaの電圧を測定する。S13でマトリックス検出手段5は、電圧測定器42を用いLbの電圧を測定する。
 S14でマトリックス検出手段5は、LaとLbの中で、電圧が検知された下部電極をLIと決定する。ここでLIと対になる上部電極はUaであるから、UaをUIとして、マトリックス記憶部6に記憶する。同時にLIもマトリックス記憶部6に記憶する。
 S15でマトリックス検出手段5は、直流電源41の直流電圧をUbに印加する。S16でマトリックス検出手段5は、電圧測定器42を用いLaの電圧を測定する。S17でマトリックス検出手段5は、電圧測定器42を用いLbの電圧を測定する。
 S18でマトリックス検出手段5は、LaとLbの中で、電圧が検知された下部電極をLJと決定する。ここでLJと対になる上部電極はUbであるから、UbをUJとして、マトリックス記憶部6に記憶する。同時にLJもマトリックス記憶部6に記憶する。
以上の操作が終了すれば、S21へ移行する。
 以上説明したマトリックス検出手段5による、押下げマトリックスの検出は、従来の抵抗膜マトリックス(デジタル)検出方式とほぼ同様である。
 S10からS18の操作は、対になる上部電極と下部電極を定める操作であり、変形して実施が可能である。例えば、電圧を印加する電極を下部電極にして、上部電極に現れる電圧を検出してもよい。また、例えば、S12、S13と続く操作で、La、Lbの順に電圧を測定しているが、この操作をLb、Laの順に行っても同じ結果に到達する。
 図3を参照して、本例ではU2とL2が交差したマトリックス内のI点と、U4とL4が交差したマトリックス内のJ点が押下げられている。したがって、マトリックス記憶部6内には、U2とL2の組と、U4とL4の組が記憶される。
 S21以降の位置検出方法を説明する。S21でアナログ検出手段7は、マトリックス記憶部に記憶された一対の電極UI、LIを読み出す。図5のフローチャート中では、説明の簡略化のために、S22で、UI=UC、LI=LCに置換している。
 S23で、アナログ検出手段7は直流電源41の直流電圧をUCに負荷する。S24で、アナログ検出手段7は、電圧測定器42を用いLCに現れる電圧値を測定する。S25で、当該電圧値からI点のX座標値Xiを算出する。
 S26で、アナログ検出手段7は直流電源41の直流電圧をLCに負荷する。S27で、アナログ検出手段7は、電圧測定器42を用いUCに現れる電圧値を測定する。S28で、当該電圧値からI点のY座標値Yiを算出する。
 次に、S29でアナログ検出手段7は、マトリックス記憶部に記憶された一対の電極UJ、LJを読み出す。
 S30で、UJ=UC、LJ=LCに置換している。そして、S23からS28を繰り返し、J点のX座標値XjとY座標値Yjを決定する。
 以上説明したアナログ検出手段7による、押下げ位置の算出は、従来の抵抗膜アナログ検出方式と同様である。測定電圧値から座標点に換算する計算式も従来の抵抗膜アナログ検出方式と同様である。
 複数の押下げ点の全てについて座標値を決定すると、単一回の位置検出過程が終了する。そして、S01に戻り、次回の位置検出過程を繰り返す。
 位置検出過程(S01からS32まで)は、1秒間に通常100回以上200回以下、より好ましくは150回以上200回以下の一定回数おこなえばよい。上記範囲内であれば、押下げ点の移動を追跡することが可能となる等からである。
 以上説明したマトリックス検出手段5による、押下げマトリックスの検出は、以下に説明する変形した操作によるものであってもよい。
 図6はマトリックス検出手段5が行う変形された位置検出のフローチャートである。
 S101で、マトリックス検出手段5は直流電源41の直流電圧をUAに印加する。ここで添字Aは1から始まり、1から4のいずれかの整数である。S102で、マトリックス検出手段5は、電圧測定器42を用いLBの電圧を測定する。ここで添字Bは1から始まり、1から4のいずれかの整数である。電圧が検知されればS103に移行し、電圧が検知されない場合はS104に移行する。
 電圧が検知されることは、UAとLBの交差マトリックスが押し下げられ当該マトリックス領域で電気導通状態にあることを意味している。S103でマトリックス検出手段5は、その時の上部電極UAと下部電極LBをマトリックス記憶部6に記憶する。
 S104で、マトリックス検出手段5は下部電極の添字の値Bを判断する。B<4であればS102に移行し、B=4であればS105に移行する。S102からS104を繰り返して行うことにより、引き続く下部電極での電圧測定が行われる。
 S105で、マトリックス検出手段5は上部電極の添字の値Aを判断する。A<4であればS101に移行し、A=4であればS21に移行する。S101からS105を繰り返して行うことにより、引き続く上部電極電圧印加下における下部電極での電圧測定が行われる。
 以上説明した変形した操作では、電圧検知時の上部電極と下部電極は、単一のマトリックスを表現する一組のUI、LI(あるいはUJ、LJ)として決定される。したがって、図4のフローチャートS10からS18で説明したような一組の上下電極を決定する操作は不必要となる。
 また、図6では、上部電極に電圧を印加して下部電極の電圧を測定する実施例を説明した。しかし、下部電極に電圧を印加して上部電極の電圧を測定する変形した実施例であっても全く同様の結果を得ることが出来る。
 以上、2点であるI点とJ点が押下げられるものとして説明したが、本発明にあっては、同時押下げ点は2点に限られることなく、3点以上の点であっても検出が不可能ではない。
 また、本発明はその原理上、同一マトリックス内に押下げ点が2点あるいは3点以上入ると、押下げ点の位置を検出できない。また、3点以上を同時入力すれば、位置検出不可能になる事態が多発する。しかし、押下げ点が2点あるいは3点以上であっても、個々の押下げ点の(座標)移動を記録し解析して軌跡を予想すれば、上記した検出不可能となる時間帯での(座標)位置を補間することができる。
 本発明のかかるタッチパネルの位置検出方法とタッチパネル装置は、上述のアナログ検出方式が電極に一定電流を流し、電流のバランスを測定して位置を検出する電流検知方式であってもよい。
 1  タッチパネル装置
 4  タッチパネル
 5  マトリックス検出手段
 6  マトリックス記憶部
 7  アナログ検出手段
 8  候補電極記憶部
 10 上部電極板
 11 上部基材
 12 上部電極群
 13 バスパー
 14 導電膜
 20 下部電極板
 21 下部基材
 22 下部電極群
 23 バスパー
 24 導電膜
 31 スペーサ
 32 両面テープ
 41 直流電源
 42 電圧測定器
 121 上部電極 U1
 122 上部電極 U2
 123 上部電極 U3
 124 上部電極 U4
 221 下部電極 L1
 222 下部電極 L2
 223 下部電極 L3
 224 下部電極 L4

Claims (10)

  1.  X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネルの位置検出方法において、
     透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
     前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、前記上部電極の長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
     前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、
     前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルを用いて行う位置検出方法であって、以下の工程を含むタッチパネルの位置検出方法。
    イ 下部電極L1-Lqの全てに電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での上部電極を、押下げ位置が含まれる候補上部電極Ua、Ubと決定する工程。
    ロ 上部電極U1-Upの全てに電圧を印加しつつ、L1から順次Lqに至るまで下部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での下部電極を、押下げ位置が含まれる候補下部電極La、Lbと決定する工程。
    ハ 候補上部電極Uaに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Uaと電圧が出現した下部電極を押下げ位置I点が含まれる上部電極UIと下部電極LIであると決定する工程。
    ニ 候補上部電極Ubに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Ubと電圧が出現した下部電極を押下げ位置J点が含まれる上部電極UJと下部電極LJであると決定する工程。
    ホ UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
     LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する抵抗膜アナログ算出工程。
  2.  X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネルの位置検出方法において、
     透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
     前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、前記上部電極の長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
     前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、
     前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルを用いて行う位置検出方法であって、以下の工程を含むタッチパネルの位置検出方法。
    イ 下部電極L1に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、次に下部電極L2に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、引き続き下部電極Lqまで同じ操作を行ない、電圧が出現した走査時点での上部電極と下部電極を押下げ位置I点が含まれる上部電極UI、下部電極LIと決定し、また、電圧が出現した走査時点での上部電極と下部電極を押下げ位置J点が含まれる上部電極UJ、下部電極LJと決定する工程。
    ロ UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
     LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する抵抗膜アナログ算出工程。
  3.  請求項1乃至2いずれかに記載したタッチパネルの位置検出方法において、
     前記抵抗膜アナログ算出工程における前記電力は直流電力であり、前記電気量は直流電圧であることを特徴とする、タッチパネルの位置検出方法。
  4.  請求項1乃至2いずれかに記載したタッチパネルの位置検出方法において、
    上部電極と下部電極の形状である長方形の短辺が、12mm以上20mm以下であることを特徴とする、タッチパネルの位置検出方法。
  5.  請求項1乃至2いずれかに記載したタッチパネルの位置検出方法において、
    上部電極群と下部電極群は、隣り合う電極間の間隔Sが0.2mm以上0.5mm以下であることを特徴とする、タッチパネルの位置検出方法。
  6.  X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネル装置において、
     タッチパネル、マトリックス検出手段、候補電極記憶部、マトリックス記憶部、アナログ検出手段からなり、
     前記タッチパネルは、透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
     前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、その長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
     前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、
     前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルであり、
     前記マトリックス検出手段は、下部電極L1-Lqの全てに電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での上部電極を、押下げ位置が含まれる候補上部電極Ua、Ubと決定し、前記候補電極記憶部にUaとUbを記憶し、
     上部電極U1-Upの全てに電圧を印加しつつ、L1から順次Lqに至るまで下部電極のバスパーの電圧を測定する走査を行い、電圧が出現した走査時点での下部電極を、押下げ位置I点が含まれる候補下部電極La、Lbと決定し、前記候補電極記憶部にLaとLbを記憶し、
     引き続き、前記マトリックス検出手段は、前記候補電極記憶部に記憶されたUa、Ub、LaとLbを参照し、候補上部電極Uaに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Uaと電圧が出現した下部電極を押下げ位置I点が含まれる上部電極UIと下部電極LIであると決定し、前記マトリックス記憶部に記憶し、
     候補上部電極Ubに電圧を印加し、候補下部電極LaとLbのバスパーの電圧を測定して、上部電極Ubと電圧が出現した下部電極を押下げ位置J点が含まれる上部電極UJと下部電極LJであると決定し、前記マトリックス記憶部に記憶し、
     前記アナログ検出手段は、前記マトリックス記憶手段に記憶されたUI、UJ、LIとLJを参照し、UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
     LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する、タッチパネル装置。
  7.  X軸、Y軸方向に広がるタッチパネルのI点とJ点が同時に押下げられたときに前記I点の座標値であるXi、Yiと前記J点の座標値であるXj、Yjを検出するタッチパネル装置において、
     タッチパネル、マトリックス検出手段、マトリックス記憶部、アナログ検出手段からなり、
     前記タッチパネルは、透明な可撓性絶縁基材である上部基材と前記上部基材の下面に形成された上部電極群を含む上部電極板と、透明な絶縁基材である下部基材と前記下部基材の上面に形成された下部電極群を含む下部電極板からなり、
     前記上部電極群はp個(pは2以上の正の整数)の上部電極U1-Upからなり、前記上部電極は長方形であって、その長手方向はX軸に平行であり、前記上部電極は長手方向の両端にバスパーを形成した透明な導電膜からなり、
     前記下部電極群はq個(qは2以上の正の整数)の下部電極L1-Lqからなり、前記下部電極は長方形であって前記下部電極の長手方向はY軸に平行であり、前記下部電極は長手方向の両端にバスパーを形成した透明な導電膜からなっており、
     前記上部電極板と前記下部電極板を前記導電膜の間にスペーサを介在して重ね合わせたタッチパネルであり、上部電極板の領域が前記下部電極板に向かって押下げられると、前記領域に位置付けられている上部電極と下部電極が導通するタッチパネルであり、
     前記マトリックス検出手段は、下部電極L1に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、次に下部電極L2に電圧を印加しつつ、U1から順次Upに至るまで上部電極のバスパーの電圧を測定する走査を行い、引き続き下部電極Lqまで同じ操作を行ない、電圧が出現した走査時点での上部電極と下部電極を押下げ位置I点が含まれる上部電極UI、下部電極LIと決定し、また、電圧が出現した走査時点での上部電極と下部電極を押下げ位置J点が含まれる上部電極UJ、下部電極LJと決定し、前記マトリックス記憶部に、UI、LI、UJとLJを記憶し、
     前記アナログ検出手段は、前記マトリックス記憶手段に記憶されたUI、UJ、LIとLJを参照し、UIに電力を負荷し、LIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXiを算出し、UJに電力を負荷し、LJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からXjを算出し、
     LIに電力を負荷し、UIのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYiを算出し、LJに電力を負荷し、UJのバスパーに現れる電気量を測定し、導電膜の電気抵抗に依存する前記電気量からYjを算出する、タッチパネル装置。
  8.  請求項6乃至7いずれかに記載したタッチパネル装置において、
     前記アナログ検出手段が付加する前記電力は直流電力であり、測定する電気量は直流電圧であることを特徴とするタッチパネル装置。
  9.  請求項6乃至7いずれかに記載したタッチパネル装置において、
    上部電極と下部電極の形状である長方形の短辺が12mm以上20mm以下であることを特徴とする、タッチパネル装置。
  10.  請求項6乃至7いずれかに記載したタッチパネル装置において、
    上部電極群と下部電極群は、隣り合う電極間の間隔Sが0.2mm以上0.5mm以下であることを特徴とする、タッチパネル装置。
PCT/JP2009/003877 2008-08-29 2009-08-12 タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置 WO2010023834A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008220887A JP2010055453A (ja) 2008-08-29 2008-08-29 タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置
JP2008-220887 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010023834A1 true WO2010023834A1 (ja) 2010-03-04

Family

ID=41721019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003877 WO2010023834A1 (ja) 2008-08-29 2009-08-12 タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置

Country Status (3)

Country Link
JP (1) JP2010055453A (ja)
TW (1) TW201011625A (ja)
WO (1) WO2010023834A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041325A (ja) * 2011-08-11 2013-02-28 Nec Corp 位置入力装置
US8933895B2 (en) 2010-08-23 2015-01-13 Japan Display West Inc. Display device with touch detection function, drive circuit, driving method of display device with touch detection function, and electronic unit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238128B (zh) 2010-12-02 2016-04-06 日东电工株式会社 透明导电性薄膜及触摸面板
CN103443751B (zh) 2011-04-29 2015-12-09 日本写真印刷株式会社 无间隔件输入设备
WO2012153642A1 (ja) 2011-05-09 2012-11-15 日本電気株式会社 位置検出装置
JP5849344B2 (ja) * 2011-08-09 2016-01-27 日本電気株式会社 位置検出装置
JP5904458B2 (ja) * 2013-01-22 2016-04-13 ブラザー工業株式会社 接触検出処理プログラム、接触検出処理方法、及びタッチパネル装置
JP5763803B1 (ja) 2014-02-26 2015-08-12 日本写真印刷株式会社 タッチパネル、タッチパネルの押圧位置検出方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000112642A (ja) * 1998-09-30 2000-04-21 Digital Electronics Corp タッチパネル

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000112642A (ja) * 1998-09-30 2000-04-21 Digital Electronics Corp タッチパネル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933895B2 (en) 2010-08-23 2015-01-13 Japan Display West Inc. Display device with touch detection function, drive circuit, driving method of display device with touch detection function, and electronic unit
TWI492129B (zh) * 2010-08-23 2015-07-11 Japan Display Inc 具有觸控偵測功能之顯示裝置,驅動電路,具有觸控偵測功能之顯示裝置之驅動方法及電子單元
JP2013041325A (ja) * 2011-08-11 2013-02-28 Nec Corp 位置入力装置

Also Published As

Publication number Publication date
JP2010055453A (ja) 2010-03-11
TW201011625A (en) 2010-03-16

Similar Documents

Publication Publication Date Title
WO2010023834A1 (ja) タッチパネルの多点同時検出方法及び多点同時検出タッチパネル装置
CN101833387B (zh) 感压式触控装置
JP5491020B2 (ja) タッチパネル
US8144128B2 (en) Touch panel and coordinates detecting method using touch panel
KR100993907B1 (ko) 터치 제어 장치 및 그 방법
JP2010113717A (ja) 静電容量式タッチパネルの多点検出方法
US20130321290A1 (en) Method and apparatus for sensing touch input
US20150097805A1 (en) Touch screen film, and touch screen using said film, and stylus pen used together with said film
CN101661365A (zh) 图形化电阻性触控式面板
KR102297892B1 (ko) 터치 패널, 터치 패널의 가압 위치 검출 방법
TWI765056B (zh) 位置感測裝置與位置感測方法
US20100141604A1 (en) Resistive multi touch screen
JP4508886B2 (ja) 抵抗膜方式タッチパネル
JP2010092347A (ja) タッチパネル装置
US9727194B2 (en) Touch panel apparatus and position detection method using the touch panel apparatus
US11816276B2 (en) Input device with movable handle on capacitive detection surface and capacitive coupling devices
KR20170060525A (ko) 터치압력 감지 센서
KR20120078168A (ko) 터치 스크린 및 터치 정보 파악 방법
KR101278283B1 (ko) 터치스크린 장치
JP2011076341A (ja) タッチパネル測定治具および測定方法
JP5071338B2 (ja) タッチパネル装置
JP2012014683A (ja) 入力装置
CN103677477A (zh) 一种电阻式触摸屏及其触点定位方法、触控显示装置
JP5401295B2 (ja) タッチパネル及び座標位置検出方法
JP5658073B2 (ja) タッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809491

Country of ref document: EP

Kind code of ref document: A1