WO2010022683A1 - 一种利用双螺杆挤出机制备聚乳酸及其制品的方法 - Google Patents

一种利用双螺杆挤出机制备聚乳酸及其制品的方法 Download PDF

Info

Publication number
WO2010022683A1
WO2010022683A1 PCT/CN2009/073674 CN2009073674W WO2010022683A1 WO 2010022683 A1 WO2010022683 A1 WO 2010022683A1 CN 2009073674 W CN2009073674 W CN 2009073674W WO 2010022683 A1 WO2010022683 A1 WO 2010022683A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
phenyl
atom
substituted
Prior art date
Application number
PCT/CN2009/073674
Other languages
English (en)
French (fr)
Inventor
李振江
阚苏力
郭畅
王燕芹
盛石川
宋萍
欧阳平凯
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to JP2011524171A priority Critical patent/JP5452598B2/ja
Priority to EP09809268.7A priority patent/EP2327735B1/en
Publication of WO2010022683A1 publication Critical patent/WO2010022683A1/zh
Priority to US13/034,030 priority patent/US8241545B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/875Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/682Barrels or cylinders for twin screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible

Definitions

  • the invention belongs to the technical field of polymer materials, and particularly relates to a method for controllably preparing polylactic acid and its products by using twin-screw extrusion technology. Background technique
  • polylactic acid As a kind of polymer material, polylactic acid has good biocompatibility and degradability, has no pollution to the environment, and has broad application prospects in the fields of medicine, textile and packaging.
  • the catalysts used in the ring opening polymerization process are generally organotin salts, organic salts and organoaluminum salts such as JP0124651, CN1544504 and CN1814644.
  • the organometallic catalyst remaining in the product limits the application of the resulting polylactic acid and cannot be applied to fields such as biomedicine and microelectronics.
  • Eric F. Conner et al. (Eric F. Conner et al. Journal of the American Chemical Society, 2002, 124, 914) first applied a class of high-efficiency organic catalysts, N-heterocyclic carbene, to lactide in 2001. Ring opening polymerization.
  • N-heterocyclic carbene is sensitive to air and water, and its preparation and application are greatly hindered. Therefore, the catalytic lactide ring-opening polymerization can only be limited to the laboratory scale, and it is difficult to scale production.
  • N-heterocyclic carbene To overcome the limitation of N-heterocyclic carbene to air and water, chemists have conducted more research on the storage form of N-heterocyclic carbene.
  • Hung A. Duong et al. Hung A. Duong et al. Chemical Communications, 2004, 112 found that: N-heterocyclic carbenes and CO 2 react to form carbene carbon dioxide adducts. At a certain temperature, the carbene carbon dioxide adduct can remove C0 2 and release the carbene.
  • Adriana T et al. (Adriana T et al. Journal of Organometallic Chemistry, 2006, 691, 5356) suggest that carbene carbon dioxide adducts can be used as a storage form for N-heterocyclic carbene.
  • the application of reactive extrusion technology is also limited: the reaction needs to be completed in one step, there can be no intermediate operation steps; the reaction should be controlled within the time limit of the reaction extrusion technology, generally 5 ⁇ 30 minutes; The reaction is carried out in a molten state at a high temperature.
  • the application of reactive extrusion technology in polylactic acid is mainly focused on the modification of polylactic acid. Due to the limitation of polymerization time, reactive extrusion technology is applied to the polymerization process of polylactic acid, which is mainly prepared from lactic acid, lactide or their derivatives, and then mixed with one or more monomers.
  • the addition or polycondensation reaction is carried out on a screw extruder, such as: JP940215520, JP94009602
  • a screw extruder such as: JP940215520, JP94009602
  • Jacobsen S. The equivalent molecular weight of stannous octoate and triphenylphosphine was used as a catalyst.
  • the molecular weight of the lactide was determined by twin-screw reaction extrusion ring-opening polymerization.
  • polylactic acid is prepared by one-step extrusion of lactide.
  • the obtained polylactic acid contains a metal residue; the terminal structure of the polylactic acid is not clear; the molecular weight of the polylactic acid target cannot be controlled, and these factors limit the application field of the polylactic acid. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method for preparing a polylactic acid and a product thereof by using a twin-screw extruder.
  • the polylactic acid obtained by the method has no metal residue, has a controllable molecular weight and terminal structure, and has a narrow molecular weight distribution.
  • N-heterocyclic carbene is extremely sensitive to water and oxygen, the environment for its preparation, transfer and catalytic reaction requires anhydrous and oxygen-free. This requirement allows the transfer of N-heterocyclic carbene, that is, the addition of N-heterocyclic carbene to the reaction extrusion.
  • the system is inoperable.
  • the present invention employs a carbene carbon dioxide adduct which is stable to water and oxygen and which can form an N-heterocyclic card after removing co 2 at a certain temperature (decarboxylation temperature). Guest.
  • the decarboxylation temperature is determined by the ring-substituting group of the carbene carbon dioxide adduct.
  • the present invention finds a carbene carbon dioxide adduct having a suitable decarboxylation temperature by adjusting a substituent group on the carbene carbon dioxide adduct ring, and is applied to the reaction extrusion of the lactide ring-opening polymerization, that is, the carbene carbon dioxide adduct obtained by screening.
  • the decarboxylation temperature is suitable for both the lactide ring opening polymerization and the reaction extrusion process.
  • the invention adopts the carbene carbon dioxide adduct as a precursor of the organic small molecule catalyst, and is applied to the ring-opening polymerization of lactide to have high catalytic activity, and also solves the problem of metal residue in the obtained polylactic acid.
  • the present invention also considers the reaction time requirement of the reaction extrusion technique in the screening of the carbene carbon dioxide adduct catalyst precursor; the present invention Screening of N-heterocyclic carbene yields a class of carbene carbon dioxide adduct catalyst precursors with higher catalytic activity, which accelerates the reaction rate.
  • the appropriate temperature, the aspect ratio and the rotational speed of the screw can be further selected during the reaction extrusion process, so that the reaction system obtains better dispersibility and further accelerates the reaction, thereby shortening the reaction time.
  • the controllability of the polylactic acid terminal structure and molecular weight, such as the narrow molecular weight distribution, can be solved by adding an active hydrogen-containing compound (R-0-H) as a starter in the ring-opening polymerization reaction, and the polylactic acid end structures are respectively R-0- and -OH.
  • the ratio of the lactide monomer to the starter determines the target molecular weight of the resulting polylactic acid.
  • the N-heterocyclic carbene-catalyzed ring-opening polymerization of lactide is a living polymerization, and the reaction extrusion system has good dispersibility, which allows the obtained polylactic acid to achieve a narrow molecular weight distribution. .
  • the carbene carbon dioxide adduct of the present invention is used as a catalyst precursor mixed with lactide, and the N-heterocyclic carbene is released during the reaction extrusion process by a reaction extrusion technique to catalyze the ring-opening polymerization of lactide.
  • a narrow molecular weight distribution polylactic acid and an article thereof having a controllable molecular weight and terminal structure, and no metal residue can be synthesized in one step.
  • RR 2 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms and substituted by one or more of an atom, a hydroxyl group, a phenyl group and a cyano group, a cycloalkyl group of 3 to 6 carbon atoms, an atom, an adamantyl group, a phenyl group and the same or different groups in a phenyl group substituted by one or more of an atom, a hydroxyl group, an alkyl group and a cyano group; 3 , R 4 is selected from the group consisting of hydrogen, halogen atom, cyano group, hydroxyl group, alkyl group having 1 to 4 carbon atoms, having 1 to 4 carbon atoms and being one of a halogen atom, a hydroxyl group, a phenyl group and a cyano group.
  • RR 2 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms and substituted by one or more of an atom, a hydroxyl group, a phenyl group and a cyano group, a cycloalkyl group of 3 to 6 carbon atoms, an atom, an adamantyl group, a phenyl group and the same or different groups in a phenyl group substituted by one or more of an atom, a hydroxyl group, an alkyl group and a cyano group; 3 , R 4 is selected from the group consisting of hydrogen, halogen atom, cyano group, hydroxyl group, alkyl group having 1 to 4 carbon atoms, having 1 to 4 carbon atoms and being one of a halogen atom, a hydroxyl group, a phenyl group and a cyano group.
  • RR 2 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms and substituted by one or more of an atom, a hydroxyl group, a phenyl group and a cyano group, a cycloalkyl group of 3 to 6 carbon atoms, an atom, an adamantyl group, a phenyl group and the same or different groups in a phenyl group substituted by one or more of an atom, a hydroxyl group, an alkyl group and a cyano group; 3 is selected from the group consisting of hydrogen, a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, having 1 to 4 carbon atoms and being one or more of a halogen atom, a hydroxyl group, a phenyl group and a cyano group.
  • R 2 and R 3 are bonded to form an unsubstituted five or six Element N-heterocyclic.
  • the carbene carbon dioxide adduct and the lactide may be mixed in a molar ratio of 1:5 to 2000, preferably 1 :100 to 1000.
  • the lactide may be L-lactide, D-lactide, meso-lactide or racemic lactide, or L-lactide, D-lactide and Meso-propion. A mixture of esters in any ratio.
  • the twin-screw extruder in the above method is specifically a twin-screw co-injection type extruder, wherein the barrel is heated by a plurality of heating units, and the temperature of each section is independently controlled by circulating cooling water;
  • the temperature can be 50. C ⁇ 300. Any of the same or different temperatures in C, preferably any of the same or different temperatures from 100 ° C to 200 ° C; the gas pressure in the barrel may be 0.5 kPa to 1 kPa; the length to diameter ratio of the screw may be 30 to 70; It can be from 5 rpm to 200 rpm; the feeding speed can be from 0.5 kg/hr to 5 kg/hr.
  • the head of the twin-screw extruder can also be connected to the molding equipment, and the polylactic acid and its products are directly extruded.
  • Figure 1 is a schematic diagram of the barrel section of a twin-screw extruder. Wherein, 1 is the feed section; 2 is the I zone; 3 is the II zone; 4 is the crotch zone; 5 is the IV zone; 6 is the feed hopper; 7 is the vacuum valve.
  • 1 is the feed section; 2 is the I zone; 3 is the II zone; 4 is the crotch zone; 5 is the IV zone; 6 is the feed hopper; 7 is the vacuum valve.
  • the twin-screw extruder was first flushed with argon gas, and the lactide, the initiator (or no) and the carbene carbon dioxide adduct were uniformly mixed and uniformly fed into the extruder.
  • the structural formula and numbering of the carbene carbon dioxide adduct used in the following examples are shown in Table 1.
  • Table 1 List of carbene carbon dioxide adducts used in the examples
  • Figure 1 is a schematic view of the barrel section of the twin-screw extruder.
  • the barrel of the twin-screw extruder in the following examples is divided into 4 zones, and the temperature of each section is independently controlled by circulating cooling water.
  • the method of operation of the twin-screw extruder is prior art in the art, and those skilled in the art can perform the operations in accordance with the parameters of the twin-screw extruder below.
  • the molecular weight and molecular weight distribution of the polylactic acid in the examples were measured by gel permeation chromatography (chloroform was a mobile phase, 35 C, with reference to polystyrene standards).
  • chloroform was a mobile phase, 35 C, with reference to polystyrene standards.
  • the temperature settings of each zone of the barrel are as follows:
  • Zone I 140 °C Zone II: 185 °C Zone III: 200 °C Zone IV: 185 °C L-lactide (672g, 4.67mol) and carbene carbon dioxide adduct a (0.36g,
  • the parameters of the twin-screw extruder are as follows:
  • Zone I 120 °C Zone II: 175 °C Zone III: 180 °C Zone IV: 175 °C D-lactide (2016g, 14mol) and carbene carbon dioxide adduct b (1210.38g,
  • Screw speed 80rpm
  • Vacuum 0.5kPa Length to diameter ratio: 48
  • Screw speed 50rpm
  • Vacuum 0.8kPa Length to diameter ratio: 40
  • the temperature settings of each zone of the barrel are as follows:
  • Zone I 120 °C Zone II: 175 °C Zone III: 180 °C Zone IV: 175 °C racemic lactide (2016g, 14mol), carbene carbon dioxide adduct d ( 15.83g,
  • the parameters of the twin-screw extruder are as follows:
  • Screw speed 80rpm
  • Vacuum 0.5kPa Length to diameter ratio: 40
  • the parameters of the twin-screw extruder are as follows:
  • Zone I 50 °C Zone II: 145 °C Zone III: 200 °CW zone: 185 °C will be meso-lactide (2016g, 14mol), carbene carbon dioxide adduct f ( 4.87g, 0.014 mol) and phenylethyl alcohol (1.71 g, 0.014 mol) were uniformly mixed and uniformly fed into a twin-screw extruder.
  • the extrusion was carried out according to the above operating parameters, and the extruder head was connected to a molding apparatus and directly molded to obtain 1966 g of polylactic acid having a molecular weight of 104,000 and a molecular weight distribution of 1.6.
  • Example 7 Example 7
  • the parameters of the twin-screw extruder are as follows:
  • Zone I 145 °C Zone II: 150 °C Zone III: 170 °C Zone IV: 135 °C L-lactide (2016g, 14mol), carbene carbon dioxide adduct g (1293.49g, 2.8mol) and methanol (224.21 g, 7 mol) was uniformly mixed and fed into the twin-screw extruder at a constant rate.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1905 g of polylactic acid having a molecular weight of 288, and the molecular weight distribution was 1.5.
  • Example 8 Example 8
  • the parameters of the twin-screw extruder are as follows:
  • Screw speed 200rpm
  • Vacuum 0.5kPa Length to diameter ratio: 48
  • the temperature settings of each zone of the barrel are as follows:
  • Zone I 170 °C Zone II: 185 °C Zone III: 200 °C Zone IV: 140 °C D-lactide (2016g, 14mol), carbene carbon dioxide adduct h (119.75g, 0.35mol) and Methanol (5.61 g, 0.175 mol) was uniformly mixed and fed into a twin-screw extruder at a constant rate.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1924 g of polylactic acid having a molecular weight of 11,000, and a molecular weight distribution of 1.7.
  • Example 9 Example 9
  • the parameters of the twin-screw extruder are as follows:
  • the parameters of the twin-screw extruder are as follows:
  • Zone I 145 °C Zone II: 185 °C Zone III: 300 °C Zone IV: 185 °C L-lactide (2016g, 14mol), carbene carbon dioxide adduct j ( 7.22g,
  • the parameters of the twin-screw extruder are as follows:
  • Screw speed lOOrpm
  • Vacuum 0.5kPa Length to diameter ratio: 48
  • Feeding speed 5kg/h
  • the temperature settings of each zone of the barrel are as follows:
  • Zone I 165 °C Zone II: 200 °C Zone III: 300 °C Zone IV: 185 °C L-lactide (2016g, 14mol), carbene carbon dioxide adduct k (5.63g, 0.028mol) and benzene Methanol (3.03 g, 0.028 mol) was uniformly mixed and fed into the twin-screw extruder at a constant rate.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1906 g of a polylactic acid having a molecular weight of 78,000 and a molecular weight distribution of 1.7.
  • Example 12 Example 12:
  • the parameters of the twin-screw extruder are as follows:
  • Screw speed 150rpm
  • Vacuum lkPa Length to diameter ratio: 48
  • Feeding speed 1.0kg/h
  • the temperature settings of each barrel are as follows:
  • Zone I 145 °C Zone II: 185 °C Zone III: 200 °C Zone IV: 165 °C L-lactide (2016g, 14mol), Carbene Carbonate Adduct 1 ( 7.87g, 0.028 mol) and benzyl alcohol (6.05 g, 0.056 mol) were uniformly mixed and uniformly fed into a twin-screw extruder.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1983 g of polylactic acid having a molecular weight of 31,000, and a molecular weight distribution of 1.4.
  • Screw speed 125rpm Vacuum: 0..8kPa Aspect ratio: 48 Feeding speed: 1.5kg/h
  • the temperature settings of each zone of the barrel are as follows:
  • Screw speed 150rpm
  • Vacuum lkPa Length to diameter ratio: 40
  • Feeding speed 1.5kg/h
  • the temperature settings of each barrel are as follows:
  • Zone I 180 °C Zone II: 225 °C Zone III: 300 °C Zone IV: 185 °C L-lactide (2016g, 14mol), carbene carbon dioxide adduct n (5.04g, 0.023mol) and methanol (0.74 g, 0.023 mol) was uniformly mixed and fed into a twin-screw extruder at a constant rate.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1921 g of polylactic acid having a molecular weight of 92,000, and a molecular weight distribution of 1.8.
  • Example 15 Example 15
  • the parameters of the twin-screw extruder are as follows:
  • Screw speed 150 rpm Vacuum: 0.7 kPa Aspect ratio: 48 Feeding speed: 2.5 kg/h
  • the temperature settings of each zone of the barrel are as follows:
  • Screw speed 150rpm
  • Vacuum lkPa Length to diameter ratio: 48
  • Feeding speed 1.5kg/h
  • the temperature settings of each barrel are as follows:
  • Zone I 165 °C Zone II: 185 °C Zone III: 250 °C Zone IV: 185 °C L-lactide (2016g, 14mol), carbene carbon dioxide adduct p (6.56g, 0.023mol) and benzene
  • decyl alcohol 3.78 g, 0.035 mol
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1994 g of polylactic acid having a molecular weight of 58,000 and a molecular weight distribution of 1.5.
  • Screw speed 125rpm
  • Vacuum lkPa Length to diameter ratio: 40
  • Feeding speed 1.5kg/h
  • the temperature settings of each barrel are as follows:
  • Zone I 185 °C Zone II: 225 °C Zone III: 300 °C Zone IV: 165 °C L-lactide (2016g, 14mol), carbene carbon dioxide adduct q ( 4.37g, 0.018mol) and benzene Ethanol ( 2.20 g, 0.018 mol) was uniformly mixed and fed into the twin-screw extruder at a constant rate.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1903 g of polylactic acid having a molecular weight of 109,000, and a molecular weight distribution of 2.0.
  • the parameters of the twin-screw extruder are as follows:
  • Screw speed 150 rpm
  • Vacuum 0.8 kPa
  • Aspect ratio 48
  • the temperature settings of each zone of the barrel are as follows:
  • Zone I 200°C Zone II: 225°C Zone III: 280°C Zone IV: 165°C L-lactide (2016g, 14mol), carbene carbon dioxide adduct r ( 8.14g, 0.023mol) and benzyl alcohol (3.78g, 0.035mol) were uniformly mixed and fed into the twin-screw extruder at a constant rate.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1963 g of polylactic acid having a molecular weight of 56,000 and a molecular weight distribution of 1.8.
  • Example 19 Example 19
  • the parameters of the twin-screw extruder are as follows:
  • Screw speed 125rpm
  • Vacuum 0.5kPa Length to diameter ratio: 48
  • Feeding speed 1.5kg/h
  • the temperature settings of each zone of the barrel are as follows:
  • Zone I 145 °C Zone II: 165 °C Zone III: 250 °C Zone IV: 185 °C L-lactide (2016g, 14mol), carbene carbon dioxide adduct s ( 5.36g, 0.035mol ) and benzene Methanol (7.56 g, 0.07 mol) was uniformly mixed and fed into the twin-screw extruder at a constant rate.
  • the reaction was extruded according to the above operating parameters, and air-cooled to obtain 1935 g of polylactic acid having a molecular weight of 35,000 and a molecular weight distribution of 1.4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

一种利用双螺杆挤出机制备聚乳酸及其制品的方法 技术领域
本发明属于高分子材料技术领域, 具体涉及利用双螺杆挤出技术可控 地制备聚乳酸及其制品的方法。 背景技术
聚乳酸作为一种高分子材料, 具有良好的生物相容性和降解性, 对环 境无污染, 在医药、 纺织和包装等领域都有着广阔的应用前景。
目前, 聚乳酸的合成方法主要有两类, 分别为直接缩聚法和开环聚合 法。 其中, 直接缩聚法的反应条件要求高, 所得聚合物分子量小, 性能差。 因此, 合成高分子量聚乳酸一般采用开环聚合法, 即由丙交酯开环聚合制 备聚乳酸, 其在工业化生产中已有应用, 如专利 DE10020898。 此外, 为 了缩短反应时间, CN1325913公开了一种微波辐射合成聚乳酸的方法, 但 此方法由于设备限制, 无法实现规模化生产。
开环聚合法中所用的催化剂一般为有机锡盐、 有机辞盐及有机铝盐, 如 JP0124651、 CN1544504及 CN1814644。 残留在产物中的有机金属催化 剂使所得聚乳酸的应用受到限制, 无法应用于如生物医学、 微电子等领 域。 随后 , Eric F. Conner等人 ( Eric F. Conner等. Journal of the American Chemical Society, 2002, 124, 914 )于 2001年首先将一类高效有机催化剂一 N-杂环卡宾应用于丙交酯的开环聚合反应。 但是, N-杂环卡宾对空气和水 敏感, 使其制备及应用受到很大阻碍, 因此其催化的丙交酯开环聚合反应 只能局限在实验室规模, 很难规模化生产。
为了克服 N-杂环卡宾对空气和水敏感这一限制, 化学家们对 N-杂环 卡宾的储存形式进行了较多研究。 Hung A. Duong等人( Hung A. Duong等. Chemical Communications, 2004, 112 )发现: N-杂环卡宾和 C02反应可生 成卡宾二氧化碳加合物。 在一定温度下, 卡宾二氧化碳加合物可以脱去 C02, 释放出卡宾。 Adriana T等人 ( Adriana T等. Journal of Organometallic Chemistry, 2006, 691, 5356 )提出卡宾二氧化碳加合物可以作为 N-杂环卡 宾的储存形式。 但已有技术还未能够将卡宾二氧化碳加合物用作开环聚合 反应的催化剂。 目前, 实现丙交酯开环聚合法的生产工艺也十分有限。 传统工艺一般 在反应釜中进行。 反应挤出作为一种新技术, 相对反应釜具有如下优点:
( 1 )原料的计量、 输送、 混合、 反应及熔融产物的加工连成一体, 工艺 流程筒单, 自动化程度高, 可以规模化生产; (2 )在螺杆强烈的剪切捏合 作用下, 反应体系能获得良好的分散性, 未反应物及反应副产物能及时便 利地被排除; (3 )螺杆具有自清洁能力, 物料停留时间短, 产物能直接成 型, 产品成本低, 性能好; (4 )产品的化学结构以及材料的微观形态结构 都可控制, 产品的技术含量高, 利润高; (5 )温度分段控制, 更好地实现 对反应的控制, 同时降低能耗。 但是由于其自身特点, 反应挤出技术的应 用也受到一定的限制: 反应需一步完成, 不能有中间操作步骤; 反应要控 制在反应挤出技术的时间限制内完成, 一般为 5 ~ 30分钟; 反应需在高温 熔融状态下进行。 反应挤出技术在聚乳酸方面的应用主要集中于聚乳酸的 改性。 由于聚合时间的限制, 反应挤出技术应用于聚乳酸的聚合过程, 主 要是由乳酸、 丙交酯或者它们的衍生物先制得预聚体, 再与一种或多种单 体混合, 在双螺杆挤出机上进行加聚或缩聚反应, 如: JP940215520、 JP94009602 这种方法需要两步反应, 特别是第一步预聚体的制备, 操 作复杂, 没有完全利用反应挤出技术的优势。 Jacobsen S. ( Jacobsen S等. Polymer, 2000, 41(9), 3395 ) 以辛酸亚锡与三苯膦等当量混合作为催化剂, 由丙交酯通过双螺杆反应挤出开环聚合制备了分子量为 70,000 ~ 100,000 的聚乳酸, 实现了由丙交酯一步反应挤出制备聚乳酸。 但是, 得到的聚乳 酸中含有金属残留物; 聚乳酸的末端结构不明确; 无法控制聚乳酸目标分 子量, 这些因素限制了聚乳酸的应用领域。 发明内容
本发明所要解决的技术问题是提供一种利用双螺杆挤出机制备聚乳 酸及其制品的方法, 该方法得到的聚乳酸不含金属残留物, 分子量和末端 结构可控, 分子量分布窄。
由于 N-杂环卡宾对水和氧气极其敏感, 其制备、转移和催化反应的环 境需要无水无氧, 这种要求使得 N-杂环卡宾的转移, 即将 N-杂环卡宾加 入反应挤出体系无法操作。 为此, 本发明采用卡宾二氧化碳加合物, 其对 水和氧气稳定, 可以在一定温度(脱羧温度)下脱去 co2后形成 N-杂环卡 宾。 脱羧温度是由卡宾二氧化碳加合物的环上取代基团决定的。 本发明通 过调节卡宾二氧化碳加合物环上的取代基团, 找到脱羧温度适合的卡宾二 氧化碳加合物, 应用于丙交酯开环聚合的反应挤出, 即筛选得到的卡宾二 氧化碳加合物的脱羧温度既要适用于丙交酯开环聚合反应, 也要适用于反 应挤出工艺。 本发明将卡宾二氧化碳加合物作为有机小分子催化剂前体, 应用于丙交酯的开环聚合具有很高的催化活性, 同时也解决了所得聚乳酸 中金属残留物的问题。
为了将反应挤出技术有效地应用于这一反应, 本发明在对卡宾二氧化 碳加合物催化剂前体的筛选中还考虑了反应挤出技术对反应时间的要求; 本发明通过对不同取代结构的 N-杂环卡宾的筛选,得到催化活性较高的一 类卡宾二氧化碳加合物催化剂前体, 其能够加快反应速度。 此外, 在反应 挤出过程中还可以进一步选择合适的温度、 螺杆的长径比和转速, 使得反 应体系获得更优的分散性, 进一步达到加速反应进行的目的, 从而缩短反 应时间。
聚乳酸末端结构和分子量的可控性, 如窄分子量分布可以通过开环聚 合反应中加入含活泼氢化合物 (R-0-H )作为起始剂来解决, 其引发的聚 乳酸末端结构分别为 R-0-和 -OH。 而丙交酯单体与起始剂的比例则决定了 所得聚乳酸的目标分子量。 在起始剂存在的条件下, N-杂环卡宾催化的丙 交酯开环聚合为活性聚合, 同时反应挤出体系具有良好的分散性, 这使得 所得的聚乳酸可以达到较窄的分子量分布。
因此, 以本发明的卡宾二氧化碳加合物作为催化剂前体与丙交酯混 合, 通过反应挤出技术, 在反应挤出过程中释放 N-杂环卡宾, 催化丙交酯 的开环聚合反应, 可以一步合成可控分子量和末端结构、 不含金属残留物 的窄分子量分布的聚乳酸及其制品。
本发明的技术方案如下:
一种利用双螺杆挤出机制备聚乳酸及其制品的方法,其中包括将式( I ) 所示的卡宾二氧化碳加合物与丙交酯混合, 通过双螺杆挤出机反应挤出制 得聚乳酸及其制品,
Figure imgf000006_0001
其中, 虚线代表任选的双键; X1选自 S或 N; X2选自 C或 N; R R2选自氢, 具有 1 ~ 10个碳原子的烷基, 具有 1~10个碳原子并被 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 具有 3 ~ 6 个碳原子的环 烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基和氰基中的一种 或多种取代的苯基中的相同或不同基团; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1 ~ 4个碳原子的烷基, 具有 1~4个碳原子并被 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被 原子、 羟基、 烷基和 氰基中的一种或多种取代的苯基中的相同或不同基团; 或者 R3与 R4连接 形成含有 3~8个碳原子的环烷基或环烯基; 或者 R3与 R4连接形成苯环; 或者 R2与 R3连接形成无取代的五元或者六元 N-杂环。
上述卡宾二氧化碳加合物的具体结构可以如式 (π ) 所示:
Figure imgf000006_0002
其中, R R2选自氢, 具有 1 ~ 10个碳原子的烷基, 具有 1~10个碳 原子并被 原子、羟基、苯基和氰基中的一种或多种取代的烷基,具有 3 ~ 6个碳原子的环烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基 和氰基中的一种或多种取代的苯基中的相同或不同基团; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1 ~ 4个碳原子的烷基, 具有 1 ~ 4个碳原子并 被卤原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被卤原 子、 羟基、 烷基和氰基中的一种或多种取代的苯基中的相同或不同基团; 或者 R3与 R4连接形成含有 3~8个碳原子的环烯基; 或者 R3与 R4连接形 成苯环。
上述卡宾二氧化碳加合物的具体结构可以如式 (ΠΙ ) 所示:
Figure imgf000007_0001
(III)
其中, R R2选自氢, 具有 1~ 10个碳原子的烷基, 具有 1~10个碳 原子并被 原子、羟基、苯基和氰基中的一种或多种取代的烷基,具有 3~ 6个碳原子的环烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基 和氰基中的一种或多种取代的苯基中的相同或不同基团; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1~4个碳原子的烷基, 具有 1~4个碳原子并 被卤原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被卤原 子、 羟基、 烷基和氰基中的一种或多种取代的苯基中的相同或不同基团; 或者 R3与 R4连接形成含有 3~8个碳原子的环烷基。
上述卡宾二氧化碳加合物的具体结构可以如式 (IV) 所示:
Figure imgf000007_0002
(IV)
其中, R1选自氢, 具有 1~ 10个碳原子的烷基, 具有 1~ 10个碳原子 并被 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 具有 3~6 个碳原子的环烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基和 氰基中的一种或多种取代的苯基中的一种; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1~4个碳原子的烷基, 具有 1~4个碳原子并被 原子、羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被 原子、 羟基、 烷基和 氰基中的一种或多种取代的苯基中的相同或不同基团; 或者 R3与 R4连接 形成含有 3~8个碳原子的环烯基; 或者 R3与 R4连接形成苯环。
上述卡宾二氧化碳加合物的具体结构可以如式 (V) 所示:
Figure imgf000007_0003
( V )
其中, R R2选自氢, 具有 1 ~ 10个碳原子的烷基, 具有 1 ~ 10个碳 原子并被 原子、羟基、苯基和氰基中的一种或多种取代的烷基,具有 3 ~ 6个碳原子的环烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基 和氰基中的一种或多种取代的苯基中的相同或不同基团; R3选自氢, 卤原 子, 氰基, 羟基, 具有 1 ~ 4个碳原子的烷基, 具有 1 ~ 4个碳原子并被卤 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被卤原子、 羟基、 烷基和氰基中的一种或多种取代的苯基中的一种; 或者 R2与 R3连 接形成无取代的五元或者六元 N-杂环。
在上述方法中, 卡宾二氧化碳加合物与丙交酯可以按摩尔比 1 : 5 ~ 2000, 优选为 1 : 100 - 1000 混合。 所述的丙交酯可以为左旋丙交酯, 右 旋丙交酯, 内消旋丙交酯或外消旋丙交酯, 或者左旋丙交酯、 右旋丙交酯 和内消旋丙交酯任意比例的混合物。
上述的方法可以采用含羟基的化合物作为起始剂, 优选醇类化合物, 例如苯甲醇或苯乙醇。 起始剂与丙交酯的摩尔比可以为 1/10000 ~ 1/2, 优 选为 1/1000 ~ 1/100。
上述的方法中的双螺杆挤出机具体为双螺杆同向啮合型挤出机, 其机 筒上采用多个加热单元分段加热, 各段温度通过循环冷却水独立控制; 每 个加热单元的温度可以为 50。C ~ 300。C 中任意相同或不同温度, 优选为 100°C ~ 200°C中任意相同或不同温度; 机筒内气压可以为 0.5千帕 ~ 1千 帕; 螺杆长径比可以为 30 ~ 70; 螺杆转速可以为 5转 /分钟〜 200转 /分钟; 喂料速度可以为 0.5千克 /小时〜 5千克 /小时。 双螺杆挤出机的机头还可以 连接成型设备, 聚乳酸及其制品直接挤出成型。
就本发明提供的利用双螺杆挤出机可控地制备聚乳酸的方法而言, 在 反应挤出过程中, 卡宾二氧化碳加合物脱去 C02, 形成 N-杂环卡宾, 催化 丙交酯的开环聚合反应。 脱去的 C02逸出, 残留的催化剂为有机体、 可降 解, 而且用量很小, 不会对聚乳酸的性质造成影响。 此外, 整个聚合过程 为活性聚合, 聚乳酸分子量可控, 分子量分布窄, 且末端基团可精确控制。 本发明的方法为一步反应, 过程迅速, 操作筒单, 经济高效, 可用于规模 化生产。 附图说明
以下, 结合附图来详细说明本发明的实施例, 其中:
图 1 为双螺杆挤出机的机筒分区示意图。 其中, 1 为进料段; 2为 I 区; 3为 II区; 4为 ΠΙ区; 5为 IV区; 6为进料斗; 7为真空阀。 具体实施方式
通过下列实施例可以进一步说明本发明, 实施例是为了说明而非限制 本发明的。 本领域的任何普通技术人员都能够理解这些实施例不以任何方 式限制本发明, 可以对其做出适当的修改和参数变换而不违背本发明的实 质和偏离本发明的范围。
以下实施例中均先采用氩气沖洗双螺杆挤出机, 再将丙交酯、 起始剂 (或不加)和卡宾二氧化碳加合物均匀混合, 匀速加入挤出机内。 以下实 施例中所用的卡宾二氧化碳加合物的结构式与编号见表 1。 表 1 : 实施例中所使用的卡宾二氧化碳加合物一览表
Figure imgf000009_0001
Figure imgf000010_0001
图 1为双螺杆挤出机的机筒分区示意图, 以下实施例中的双螺杆挤出 机的机筒均分为 4区, 各段温度通过循环冷却水独立控制温度。 双螺杆挤 出机的操作方法为所属技术领域的现有技术, 所属技术领域的技术人员按 照以下双螺杆挤出机的参数即可完成操作。 实施例中的聚乳酸分子量和分子量分布是由凝胶渗透色谱测得的(氯 仿为流动相, 35。C, 以聚苯乙烯标准品为参照)。 实施例 1:
双螺杆挤出机参数设置如下:
螺杆转速: 80rpm 真空度: 0.5kPa 长径比: 48 喂料速度: 1.75kg/h
机筒各区温度设置如下:
I区: 140°C II区: 185°C III区: 200°C IV区: 185°C 将左旋丙交酯 ( 672g, 4.67mol ) 和卡宾二氧化碳加合物 a ( 0.36g,
0.002mol )均勾混合, 勾速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 628g分子量为 2.5万的聚乳酸, 分子量分布为 2.1。 实施例 2:
双螺杆挤出机参数设置如下:
螺杆转速: 50rpm 真空度: 0.5kPa 长径比: 48 喂料速度: 0.5kg/h
机筒各区温度设置如下:
I区: 120°C II区: 175°C III区: 180°C IV区: 175°C 将右旋丙交酯(2016g, 14mol )和卡宾二氧化碳加合物 b ( 1210.38g,
2.8mol ) 均勾混合, 勾速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1882g分子量为 0.6万的聚乳酸, 分子量分布为 2.2。 实施例 3:
双螺杆挤出机参数设置如下:
螺杆转速: 80rpm 真空度: 0.5kPa 长径比: 48 喂料速度: 1.25kg/h
机筒各区温度设置如下:
I区: 120°C II区: 175°C III区: 180°C IV区: 175°C 将内消旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 c ( 18.15g,
0.084mol ) 和苯甲醇 (3.03g, 0.028mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 空气冷却, 得 1942g分子量为 6.8万的聚 乳酸, 分子量分布为 1.4。 实施例 4:
双螺杆挤出机参数设置如下:
螺杆转速: 50rpm 真空度: 0.8kPa 长径比: 40 喂料速度: 1.75kg/h
机筒各区温度设置如下:
I区: 120°C II区: 175°C III区: 180°C IV区: 175°C 将外消旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 d ( 15.83g ,
0.07mol )和苯甲醇( 2.49g , 0.023mol )均匀混合, 匀速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1964g分子量为 8.4万的聚乳酸, 分子量分布为 1.7。 实施例 5 :
双螺杆挤出机参数设置如下:
螺杆转速: 80rpm 真空度: 0.5kPa 长径比: 40 喂料速度: 4.5kg/h
机筒各区温度设置如下:
I区: 145°C II区: 185°C III区: 200°C IV区: 185°C 将外消旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 e ( 6.66g , 0.028mol )和甲醇( 0.90g , 0.028mol )均匀混合, 匀速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1975g分子量为 5.9万的聚乳酸, 分子量分布为 1.5。 实施例 6:
双螺杆挤出机参数设置如下:
螺杆转速: 5rpm 真空度: lkPa 长径比: 70 喂料速度: 4.5kg/h 机筒各区温度设置如下:
I区: 50°C II区: 145°C III区: 200°C W区: 185°C 将内消旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 f ( 4.87g , 0.014mol ) 和苯乙醇 ( 1.71g, 0.014mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 挤出机机头与成型设备相连, 直接成型, 得 1966g分子量为 10.4万的聚乳酸, 分子量分布为 1.6。 实施例 7:
双螺杆挤出机参数设置如下:
螺杆转速: 150rpm 真空度: 0.5kPa 长径比: 30 喂料速度: 4.5kg/h
机筒各区温度设置如下:
I区: 145°C II区: 150°C III区: 170°C IV区: 135°C 将左旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 g ( 1293.49g, 2.8mol )和甲醇(224.21g, 7mol )均匀混合, 匀速加入双螺杆挤出机。 按 上述操作参数反应挤出, 空气冷却, 得 1905g分子量为 288的聚乳酸, 分 子量分布为 1.5。 实施例 8:
双螺杆挤出机参数设置如下:
螺杆转速: 200rpm 真空度: 0.5kPa 长径比: 48 喂料速度: 4.5kg/h
机筒各区温度设置如下:
I区: 170°C II区: 185°C III区: 200°C IV区: 140°C 将右旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 h ( 119.75g, 0.35mol )和甲醇 (5.61g, 0.175mol ) 均匀混合, 匀速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1924g分子量为 1.1万的聚乳酸, 分子量分布为 1.7。 实施例 9:
双螺杆挤出机参数设置如下:
螺杆转速: 80rpm 真空度: lkPa 长径比: 48 喂料速度: 4.5kg/h 机筒各区温度设置如下:
I区: 90°C II区: 120°C III区: 150°C IV区: 140°C 将右旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 i ( 1.62g , 0.007mol )和苯乙醇(0.17g, 0.0014mol )均匀混合, 匀速加入双螺杆挤出 机, 机头加成型设备。 按上述操作参数反应挤出成膜, 空气冷却。 实施例 10:
双螺杆挤出机参数设置如下:
螺杆转速: 5rpm 真空度: lkPa 长径比: 40 喂料速度: 4.5kg/h 机筒各区温度设置如下:
I区: 145°C II区: 185°C III区: 300°C IV区: 185°C 将左旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 j ( 7.22g ,
0.023mol )和甲醇( 0.05g, 0.0014mol )均匀混合, 匀速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1953g分子量为 8.5万的聚乳酸, 分子量分布为 2.2。 实施例 11:
双螺杆挤出机参数设置如下:
螺杆转速: lOOrpm 真空度: 0.5kPa 长径比: 48 喂料速度: 5kg/h
机筒各区温度设置如下:
I区: 165°C II区: 200°C III区: 300°C IV区: 185°C 将左旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 k ( 5.63g , 0.028mol ) 和苯甲醇 (3.03g, 0.028mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 空气冷却, 得 1906g分子量为 7.8万的聚 乳酸, 分子量分布为 1.7。 实施例 12:
双螺杆挤出机参数设置如下:
螺杆转速: 150rpm 真空度: lkPa 长径比: 48 喂料速度: 1.0kg/h 机筒各区温度设置如下:
I区: 145°C II区: 185°C III区: 200°C IV区: 165°C 将左旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 1 ( 7.87g , 0.028mol ) 和苯甲醇 (6.05g, 0.056mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 空气冷却, 得 1983g分子量为 3.1万的聚 乳酸, 分子量分布为 1.4。 实施例 13:
双螺杆挤出机参数设置如下:
螺杆转速: 125rpm 真空度: 0..8kPa 长径比: 48 喂料速度: 1.5kg/h
机筒各区温度设置如下:
I区: 165°C II区: 200°C III区: 250°C IV区: 185°C 将左旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 m ( 4.44g, 0.023mol ) 和苯甲醇 (3.78g, 0.035mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 空气冷却, 得 1943g分子量为 5.3万的聚 乳酸, 分子量分布为 1.7。 实施例 14:
双螺杆挤出机参数设置如下:
螺杆转速: 150rpm 真空度: lkPa 长径比: 40 喂料速度: 1.5kg/h 机筒各区温度设置如下:
I区: 180°C II区: 225°C III区: 300°C IV区: 185°C 将左旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 n ( 5.04g , 0.023mol )和甲醇( 0.74g, 0.023mol )均匀混合, 匀速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1921g分子量为 9.2万的聚乳酸, 分子量分布为 1.8。 实施例 15:
双螺杆挤出机参数设置如下:
螺杆转速: 150rpm 真空度: 0.7kPa 长径比: 48 喂料速度: 2.5kg/h
机筒各区温度设置如下:
I区: 200°C II区: 250°C III区: 300°C IV区: 165°C 将左旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 o ( 26.18g, 0.07mol )和苯曱醇(7.56g, 0.07mol )均匀混合, 匀速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1945g分子量为 2.4万的聚乳酸, 分子量分布为 1.4。 实施例 16:
双螺杆挤出机参数设置如下:
螺杆转速: 150rpm 真空度: lkPa 长径比: 48 喂料速度: 1.5kg/h 机筒各区温度设置如下:
I区: 165°C II区: 185°C III区: 250°C IV区: 185°C 将左旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 p ( 6.56g, 0.023mol ) 和苯曱醇 ( 3.78g, 0.035mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 空气冷却, 得 1994g分子量为 5.8万的聚 乳酸, 分子量分布为 1.5。 实施例 17:
双螺杆挤出机参数设置如下:
螺杆转速: 125rpm 真空度: lkPa 长径比:40 喂料速度: 1.5kg/h 机筒各区温度设置如下:
I区: 185°C II区: 225°C III区: 300°C IV区: 165°C 将左旋丙交酯 (2016g, 14mol )、 卡宾二氧化碳加合物 q ( 4.37g, 0.018mol )和苯乙醇 ( 2.20g, 0.018mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 空气冷却, 得 1903g分子量为 10.9万的聚 乳酸, 分子量分布为 2.0。 实施例 18:
双螺杆挤出机参数设置如下:
螺杆转速: 150rpm 真空度: 0.8kPa 长径比: 48 喂料速度: 1.0kg/h
机筒各区温度设置如下:
I区: 200°C II区: 225°C III区: 280°C IV区: 165°C 将左旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 r ( 8.14g , 0.023mol ) 和苯甲醇 (3.78g, 0.035mol ) 均匀混合, 匀速加入双螺杆挤出 机。 按上述操作参数反应挤出, 空气冷却, 得 1963g分子量为 5.6万的聚 乳酸, 分子量分布为 1.8。 实施例 19:
双螺杆挤出机参数设置如下:
螺杆转速: 125rpm 真空度: 0.5kPa 长径比: 48 喂料速度: 1.5kg/h
机筒各区温度设置如下:
I区: 145°C II区: 165°C III区: 250°C IV区: 185°C 将左旋丙交酯 (2016g , 14mol )、 卡宾二氧化碳加合物 s ( 5.36g , 0.035mol )和苯甲醇( 7.56g, 0.07mol )均匀混合, 匀速加入双螺杆挤出机。 按上述操作参数反应挤出, 空气冷却, 得 1935g分子量为 3.5万的聚乳酸, 分子量分布为 1.4。

Claims

WO 2010/022683 . 一 , PCT/CN2009/073674 权 利 要 求
1. 一种利用双螺杆挤出机制备聚乳酸及其制品的方法, 其特征在于: 包括将式(I)所示的卡宾二氧化碳加合物与丙交酯混合, 通过双螺杆挤出 机反应挤出制得聚乳酸及其制品,
Figure imgf000018_0001
(I)
其中, 虚线代表任选的双键; X1选自 S或 Ν; X2选自 C或 N; R R2选自氢, 具有 1 ~ 10个碳原子的烷基, 具有 1~10个碳原子并被 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 具有 3~6 个碳原子的环 烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基和氰基中的一种 或多种取代的苯基中的相同或不同基团; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1 ~4个碳原子的烷基, 具有 1~4个碳原子并被 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被 原子、 羟基、 烷基和 氰基中的一种或多种取代的苯基中的相同或不同基团; 或者 R3与 R4连接 形成含有 3~8个碳原子的环烷基或环烯基; 或者 R3与 R4连接形成苯环; 或者 R2与 R3连接形成无取代的五元或者六元 N-杂环。
2. 根据权利要求 1所述的方法, 其特征在于: 所述的卡宾二氧化碳加 合物的结构如式 (Π) 所示:
Figure imgf000018_0002
(II)
其中, R R2选自氢, 具有 1 ~ 10个碳原子的烷基, 具有 1~10个碳 原子并被 原子、羟基、苯基和氰基中的一种或多种取代的烷基,具有 3~ 6个碳原子的环烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基 和氰基中的一种或多种取代的苯基中的相同或不同基团; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1 ~4个碳原子的烷基, 具有 1 ~4个碳原子并 被卤原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被卤原 iWQ 01p丄 02268 基和氰基中的一种或多种取代的苯基中的 Ρ ;ΓΖςΝ2„7¾24团; 或者 R3与 R4连接形成含有 3~8个碳原子的环烯基; 或者 R3与 R4连接形 成苯环。
3. 根据权利要求 1所述的方法, 其特征在于: 所述的卡宾二氧化碳加 合物的结构如式 (III) 所示:
Figure imgf000019_0001
(III)
其中, R R2选自氢, 具有 1~ 10个碳原子的烷基, 具有 1~10个碳 原子并被 原子、羟基、苯基和氰基中的一种或多种取代的烷基,具有 3~ 6个碳原子的环烷基, 卤原子, 金刚烷基, 苯基和被卤原子、 羟基、 烷基 和氰基中的一种或多种取代的苯基中的相同或不同基团; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1~4个碳原子的烷基, 具有 1~4个碳原子并 被卤原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被卤原 子、 羟基、 烷基和氰基中的一种或多种取代的苯基中的相同或不同基团; 或者 R3与 R4连接形成含有 3~8个碳原子的环烷基。
4. 根据权利要求 1所述的方法, 其特征在于: 所述的卡宾二氧化碳加 合物的结构如式 (IV) 所示:
Figure imgf000019_0002
(IV)
其中, R1选自氢, 具有 1~ 10个碳原子的烷基, 具有 1~ 10个碳原子 并被 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 具有 3~6 个碳原子的环烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基和 氰基中的一种或多种取代的苯基中的一种; R3、 R4选自氢, 卤原子, 氰基, 羟基, 具有 1~4个碳原子的烷基, 具有 1~4个碳原子并被 原子、羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被 原子、 羟基、 烷基和 氰基中的一种或多种取代的苯基中的相同或不同基团; 或者 R3与 R4连接 形成含有 3~8个碳原子的环烯基; 或者 R3与 R4连接形成苯环。
5. 根据权利要求 1所述的方法, 其特征在于: 所述的卡宾二氧化碳加 -^WO 2010/022683 J ^ ( V ) 所示 PCT/CN2009/073674
Figure imgf000020_0001
( V )
其中, R R2选自氢, 具有 1 ~ 10个碳原子的烷基, 具有 1 ~ 10个碳 原子并被 原子、羟基、苯基和氰基中的一种或多种取代的烷基,具有 3 ~ 6个碳原子的环烷基, 原子, 金刚烷基, 苯基和被 原子、 羟基、 烷基 和氰基中的一种或多种取代的苯基中的相同或不同基团; R3选自氢, 卤原 子, 氰基, 羟基, 具有 1 ~ 4个碳原子的烷基, 具有 1 ~ 4个碳原子并被卤 原子、 羟基、 苯基和氰基中的一种或多种取代的烷基, 苯基和被卤原子、 羟基、 烷基和氰基中的一种或多种取代的苯基中的一种; 或者 R2与 R3连 接形成无取代的五元或者六元 N-杂环。
6. 根据权利要求 1至 5中任一项所述的方法, 其特征在于: 所述的卡 宾二氧化碳加合物与丙交酯按摩尔比 1 : 5 - 2000, 优选为 1 : 100 - 1000 混合。
7. 根据权利要求 1至 5中任一项所述的方法, 其特征在于: 所述的丙 交酯为左旋丙交酯, 右旋丙交酯, 内消旋丙交酯或外消旋丙交酯, 或者左 旋丙交酯、 右旋丙交酯和内消旋丙交酯任意比例的混合物。
8. 根据权利要求 1至 5中任一项所述的方法, 其特征在于: 所述的方 法中采用含羟基的化合物作为起始剂, 优选为醇类化合物, 例如苯甲醇或 苯乙醇。
9. 根据权利要求 8所述的方法, 其特征在于: 所述的起始剂与丙交酯 的摩尔比为 1/10000 ~ 1/2, 优选为 1/1000 ~ 1/100。
10. 根据权利要求 1至 5中任一项所述的方法, 其特征在于: 所述的 双螺杆挤出机为双螺杆同向啮合型挤出机, 其机筒上采用多个加热单元分 段加热, 各段温度通过循环冷却水独立控制。
11. 根据权利要求 10所述的方法, 其特征在于: 在反应挤出过程中, 所述的双螺杆挤出机的每个加热单元的温度为 50。C ~ 300。C , 优选为 100。C ~ 200。C中任意相同或不同温度。
12. 根据权利要求 10所述的方法, 其特征在于: 所述的双螺杆挤出机 机筒内气压为 0.5千帕 ~ 1千帕。
WO 2-0jg/0 r26 权利要求 10所述的方法, 其特征在于:
Figure imgf000021_0001
机 的螺杆长径比为 30 ~ 70。
14. 根据权利要求 10所述的方法, 其特征在于: 所述的双螺杆挤出机 的螺杆转速为 5转 /分钟 ~ 200转 /分钟。
15. 根据权利要求 10所述的方法, 其特征在于: 所述的双螺杆挤出机 的喂料速度为 0.5 千克 /小时〜 5 千克 /小时。
16. 根据权利要求 1至 5中任一项所述的方法, 其特征在于: 所述的 双螺杆挤出机的机头连接成型设备, 聚乳酸及其制品直接挤出成型。
PCT/CN2009/073674 2008-09-01 2009-09-01 一种利用双螺杆挤出机制备聚乳酸及其制品的方法 WO2010022683A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011524171A JP5452598B2 (ja) 2008-09-01 2009-09-01 二軸スクリュ式押出機によるポリ乳酸及びその製品の製造方法
EP09809268.7A EP2327735B1 (en) 2008-09-01 2009-09-01 Method for preparing polylactic acid and products thereof using a twin-screw extruder
US13/034,030 US8241545B2 (en) 2008-09-01 2011-02-24 Method of making polylactic acid and its products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810146618.3 2008-09-01
CN2008101466183A CN101665566B (zh) 2008-09-01 2008-09-01 一种利用双螺杆挤出机制备聚乳酸及其制品的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/034,030 Continuation-In-Part US8241545B2 (en) 2008-09-01 2011-02-24 Method of making polylactic acid and its products

Publications (1)

Publication Number Publication Date
WO2010022683A1 true WO2010022683A1 (zh) 2010-03-04

Family

ID=41720853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073674 WO2010022683A1 (zh) 2008-09-01 2009-09-01 一种利用双螺杆挤出机制备聚乳酸及其制品的方法

Country Status (5)

Country Link
US (1) US8241545B2 (zh)
EP (1) EP2327735B1 (zh)
JP (1) JP5452598B2 (zh)
CN (1) CN101665566B (zh)
WO (1) WO2010022683A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110218301A1 (en) * 2010-03-08 2011-09-08 Nemoto Taichi Polymer and method for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6595601B2 (en) * 1999-12-30 2003-07-22 Robert Bosch Gmbh Method and device for regulating braking effect
JP2013224398A (ja) * 2011-08-12 2013-10-31 Ricoh Co Ltd ポリマー生成物、成形体、医療用成形体、トナー、及びポリマー組成物
CN105694017A (zh) * 2014-11-28 2016-06-22 黑龙江鑫达企业集团有限公司 一种双螺杆反应挤出法开环聚合聚乳酸制备方法
CN105218793A (zh) * 2015-11-17 2016-01-06 南京工业大学 一种用卡宾衍生物催化制备聚酯多元醇的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302693A (en) * 1990-06-23 1994-04-12 Boehringer Ingelheim Gmbh Process for preparing poly-D,L-lactide and the use thereof as a carrier for active substances
CN1325913A (zh) 2001-06-29 2001-12-12 武汉大学 一种制备聚乳酸的方法
DE10020898A1 (de) 2000-04-20 2002-01-10 Inventa Fischer Gmbh Verfahren zur Herstellung von Polymilchsäure und Vorrichtung hierzu
CN1544504A (zh) 2003-11-27 2004-11-10 中国科学院长春应用化学研究所 环酯开环聚合催化剂及制备方法
US7053221B2 (en) * 2002-12-26 2006-05-30 International Business Machines Corporation Heteroatom-stabilized carbenes and precursors thereto as depolymerization catalysts
CN1814644A (zh) 2006-03-03 2006-08-09 中国科学院长春应用化学研究所 一种烯醇式丙交酯开环聚合催化剂及制备方法和其用法
CN101186687A (zh) * 2007-12-04 2008-05-28 武汉大学深圳研究院 丙交酯开环聚合反应制备聚乳酸的方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736646A (en) * 1971-10-18 1973-06-05 American Cyanamid Co Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures
US4057537A (en) * 1975-01-28 1977-11-08 Gulf Oil Corporation Copolymers of L-(-)-lactide and epsilon caprolactone
US4045418A (en) * 1975-01-28 1977-08-30 Gulf Oil Corporation Copolymers of D,L-lactide and epsilon caprolactone
DE58909866D1 (de) * 1988-11-01 2000-02-24 Boehringer Ingelheim Pharma Kontinuierliches Verfahren zur Herstellung von resorbierbaren Polyestern und deren Verwendung
US5378801A (en) * 1988-11-01 1995-01-03 Reichert; Dieter Continuous process for the preparation of resorable polyesters and the use thereof
US5235031A (en) * 1992-03-13 1993-08-10 E. I. Du Pont De Nemours And Company Polymerization of lactide
US5357034A (en) * 1992-09-08 1994-10-18 Camelot Technologies Inc. Lactide polymerization
US5310599A (en) * 1993-05-06 1994-05-10 E. I. Du Pont De Nemours And Company Method for making polymers of alpha-hydroxy acids
JP3309502B2 (ja) * 1993-07-12 2002-07-29 大日本インキ化学工業株式会社 生分解性ポリエステル系ポリマーの連続製造法
JP2847617B2 (ja) 1994-05-10 1999-01-20 株式会社日本製鋼所 高分子量ポリ乳酸及びその成形体の製造方法
US5574129A (en) * 1994-05-10 1996-11-12 The Japan Steel Works, Ltd. Process for producing lactic acid polymers and a process for the direct production of shaped articles from lactic acid polymers
JP2850101B2 (ja) 1994-09-09 1999-01-27 株式会社日本製鋼所 ポリ乳酸の製造方法
US5674129A (en) * 1995-06-09 1997-10-07 Case Corporation Adjustable shield for power take-off shaft
JP3482748B2 (ja) * 1995-09-11 2004-01-06 大日本インキ化学工業株式会社 乳酸系ポリエステルの製造方法
US6166169A (en) * 1996-07-15 2000-12-26 Brussels Biotech Aliphatic polyesters and/or copolyesters and a process for the production thereof
US5696219A (en) * 1997-01-21 1997-12-09 Dow Corning Corporation Silyl ester initiators for cyclosiloxane ring opening polymerization
FI107337B (fi) * 1997-02-14 2001-07-13 Fortum Oil & Gas Oy Menetelmä laktidin polymeroimiseksi
EP0882751A3 (en) * 1997-06-03 1999-02-10 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Biodegradable polyester with improved moulding characteristics and its production
JP4048764B2 (ja) 2001-01-31 2008-02-20 トヨタ自動車株式会社 発酵乳酸を原料とするラクチドの製造方法及びポリ乳酸の製造方法
CA2423727C (en) * 2001-01-31 2007-06-05 Toyota Jidosha Kabushiki Kaisha Process for producing lactide and process for producing polylactic acid from fermented lactic acid employed as starting material
DE10113302B4 (de) * 2001-03-19 2009-09-24 Fraunhofer-Gesellschaft für die angewandte Forschung e.V. Verfahren zur Herstellung von Homo- und Copolyestern der Milchsäure
JP4322502B2 (ja) * 2001-12-27 2009-09-02 株式会社クレハ 脂肪族ポリエステル及びその製造方法
BE1015060A3 (fr) * 2002-08-06 2004-09-07 Brussels Biotech Nv Sa Procede de production de polylactide au depart d'une solution d'acide lactique ou d'un de ses derives.
FR2864543B1 (fr) * 2003-12-30 2006-03-03 Rhodia Chimie Sa Procede de preparation de polyorganosiloxanes (pos) par polymerisation par ouverture de cycle(s) et/ou redistribution de pos, en presence de carbene(s) et compositions de pos mises en oeuvre dans ce procede
CN1262570C (zh) * 2004-01-16 2006-07-05 成都新柯力化工科技有限公司 聚乳酸的制备方法
US7514499B2 (en) * 2004-11-09 2009-04-07 E. I. Du Pont De Nemours And Company Ring opening polymerization of cyclic amides using N-heterocyclic carbene catalysts
JP2008519895A (ja) * 2004-11-09 2008-06-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー N−複素環式カルベン触媒を使用する巨大環状ポリエステルオリゴマーの重合
JP4368289B2 (ja) * 2004-11-15 2009-11-18 独立行政法人科学技術振興機構 α−アルキリデン−1,3−ジオキソラン−2−オン類の製造方法
CN1277859C (zh) * 2005-04-15 2006-10-04 浙江大学 一种脂肪族聚酯的制备方法
CN1706878A (zh) * 2005-04-15 2005-12-14 浙江大学 无金属n-杂环卡宾催化剂及其制备方法
ES2646141T3 (es) * 2005-04-22 2017-12-12 Universite De Geneve Composiciones de poliláctido y usos de las mismas
WO2007086563A1 (ja) * 2006-01-30 2007-08-02 Kureha Corporation 脂肪族ポリエステルの製造方法
CN100393771C (zh) 2006-03-03 2008-06-11 中国科学院长春应用化学研究所 用于丙交酯开环聚合的席夫碱铝催化剂及制备方法和用法
DE102006038934A1 (de) * 2006-08-18 2008-02-21 Evonik Degussa Gmbh Herstellung von α-Hydroxyketonen über Carbenkatalysierte Umpolungsreaktion von Aldehyden
CN101007867A (zh) * 2006-09-21 2007-08-01 北京理工大学 一种直接制备高分子量聚乳酸的方法
JP5323312B2 (ja) * 2006-11-09 2013-10-23 帝人株式会社 ポリラクチドの製造方法
US20080146822A1 (en) * 2006-11-28 2008-06-19 Purac Biochem B.V. Stable lactide particles
AT506040B1 (de) * 2007-11-14 2012-03-15 Jungbunzlauer Austria Ag Partikuläre katalysator- und katalysator/stabilisator-systeme zur herstellung hochmolekularer homo- und copolyester von l-, d- oder d,l-milchsäure
CN101665567B (zh) * 2008-09-01 2011-11-23 南京工业大学 卡宾衍生物催化的环状化合物可调控开环聚合方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302693A (en) * 1990-06-23 1994-04-12 Boehringer Ingelheim Gmbh Process for preparing poly-D,L-lactide and the use thereof as a carrier for active substances
DE10020898A1 (de) 2000-04-20 2002-01-10 Inventa Fischer Gmbh Verfahren zur Herstellung von Polymilchsäure und Vorrichtung hierzu
CN1325913A (zh) 2001-06-29 2001-12-12 武汉大学 一种制备聚乳酸的方法
US7053221B2 (en) * 2002-12-26 2006-05-30 International Business Machines Corporation Heteroatom-stabilized carbenes and precursors thereto as depolymerization catalysts
CN1544504A (zh) 2003-11-27 2004-11-10 中国科学院长春应用化学研究所 环酯开环聚合催化剂及制备方法
CN1814644A (zh) 2006-03-03 2006-08-09 中国科学院长春应用化学研究所 一种烯醇式丙交酯开环聚合催化剂及制备方法和其用法
CN101186687A (zh) * 2007-12-04 2008-05-28 武汉大学深圳研究院 丙交酯开环聚合反应制备聚乳酸的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ADRIANA T. ET AL., JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 691, 2006, pages 5356
ERIC F. CONNER ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 124, 2002, pages 914
HUNG A. DUONG ET AL., CHEMICAL COMMUNICATIONS, 2004, pages 112
JACOBSEN, S. ET AL., POLYMER, vol. 41, no. 9, 2000, pages 3395
See also references of EP2327735A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110218301A1 (en) * 2010-03-08 2011-09-08 Nemoto Taichi Polymer and method for producing the same

Also Published As

Publication number Publication date
CN101665566A (zh) 2010-03-10
US20110140307A1 (en) 2011-06-16
CN101665566B (zh) 2012-01-04
EP2327735A1 (en) 2011-06-01
EP2327735B1 (en) 2016-12-21
JP5452598B2 (ja) 2014-03-26
EP2327735A4 (en) 2013-11-20
JP2012501358A (ja) 2012-01-19
US8241545B2 (en) 2012-08-14

Similar Documents

Publication Publication Date Title
WO2010022683A1 (zh) 一种利用双螺杆挤出机制备聚乳酸及其制品的方法
KR101560108B1 (ko) 폴리머의 제조 방법, 폴리머 제조 장치, 복합체 제조 장치 및 폴리머 생성물
KR101292201B1 (ko) 폴리젖산의 제조 방법
JP5373709B2 (ja) ポリマー合成用反応器及びそれが用いられたポリマー合成装置
WO2007086563A1 (ja) 脂肪族ポリエステルの製造方法
JP2014145007A (ja) ポリ乳酸組成物及びその製造方法、並びにポリ乳酸組成物製造装置
JP2009132857A (ja) ポリマーの製造方法及び製造装置
KR20140125804A (ko) 중합체의 제조 방법 및 중합체 생성물
JPWO2004065451A1 (ja) ポリトリメチレンテレフタレート樹脂およびその製造方法
JP4177769B2 (ja) ポリマー合成装置
US9447228B2 (en) Polymer production apparatus and polymer production method
WO2007083780A1 (ja) ポリ乳酸の製造装置およびポリ乳酸の製造方法
WO2024051671A1 (zh) 连续生产有机聚硅氧烷的聚合-终止装置及方法
US20150329668A1 (en) Aliphatic polyester, method of preparing the same, and polymer organizer
CN111607201A (zh) 一种食品包装用无锑绿色pet发泡材料及其制备方法
JP3471112B2 (ja) ポリ乳酸の重合方法及び重合装置
KR20150109390A (ko) 다공체, 그 제조 방법, 및 그 연속 제조 장치
JP4322502B2 (ja) 脂肪族ポリエステル及びその製造方法
CN109280156A (zh) 一种通过双螺杆挤出机制备高分子量聚乳酸的方法
CN106928437B (zh) 一种环酯开环聚合制备高分子量聚酯的装置及工艺
CN108191815A (zh) 利用l-乳酸生产l-丙交酯的方法
CN103342800A (zh) 一种负载型催化剂催化合成药用聚(乳酸 乙醇酸)的方法
JP4816688B2 (ja) ポリマー合成装置
EP3728394B1 (en) Method to prepare branched polymers of lactic acid
CN114161682B (zh) 一种超临界流体辅助双螺杆连续挤出制备医用可吸收聚酯的方法及产品与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011524171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009809268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009809268

Country of ref document: EP