WO2010017762A1 - 一种在无源光网络中时间同步的方法、装置及无源光网络 - Google Patents

一种在无源光网络中时间同步的方法、装置及无源光网络 Download PDF

Info

Publication number
WO2010017762A1
WO2010017762A1 PCT/CN2009/073188 CN2009073188W WO2010017762A1 WO 2010017762 A1 WO2010017762 A1 WO 2010017762A1 CN 2009073188 W CN2009073188 W CN 2009073188W WO 2010017762 A1 WO2010017762 A1 WO 2010017762A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frame
synchronization
onu
ont
Prior art date
Application number
PCT/CN2009/073188
Other languages
English (en)
French (fr)
Inventor
赵峻
李三中
隋猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US12/570,125 priority Critical patent/US8335437B2/en
Publication of WO2010017762A1 publication Critical patent/WO2010017762A1/zh
Priority to US13/561,413 priority patent/US8805201B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0664Clock or time synchronisation among packet nodes using timestamps unidirectional timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0673Clock or time synchronisation among packet nodes using intermediate nodes, e.g. modification of a received timestamp before further transmission to the next packet node, e.g. including internal delay time or residence time into the packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to the field of network communications, and in particular, to a method and a passive optical network for time synchronization in a passive optical network. Background technique
  • Passive Optical Network (PON) technology is a point-to-multipoint optical fiber transmission and access technology.
  • OLTs optical line terminals
  • ONU/ONT optical network terminals
  • the transmission direction is the downlink direction, using Time Division Mulipex ( TDM ) technology; the ONU/ONT to OLT transmission is in the uplink direction, and time division multiple access is used.
  • TDM Time Division Mulipex
  • TDMA Time Division Multiple Access
  • a stable, accurate, and deterministic clock in a network is the primary clock, and a single or multiple other clocks that need to be synchronized with the primary clock are slave clocks.
  • MC master clock
  • SC slave clock
  • the prior art provides a method for time synchronization in a passive optical network.
  • the message sent in the method can be referred to the precise time protocol (Precision Time Protocol). Description of Protocol, PTP).
  • the method is shown in Figure 1, and includes the following steps:
  • Step 11 The master clock sends a synchronization message (PTP_SYNC_MESSAGE) and a follow-up message (PTP-FOLLOWUP-MESSAGE) to the slave clock, and the following message carries the time TM1 when the master clock sends the synchronization message;
  • Step 12 The slave clock receives the synchronization message and the following message, records the time TS 1 of receiving the synchronization message, and obtains the time TM1 from the following message;
  • Step 13 The slave clock sends a delay request to the master clock at TS2.
  • Step 14 After receiving the delay request message, the master clock should reply with a delay.
  • Step 15 After receiving the delayed response message from the clock, obtain the time ⁇ 2, and calculate the delay time from the main clock to the slave clock (DELAY);
  • Td2 is the delay time from the OLT to the OLT
  • Td2 is the delay time from OLT to ONU/ONT
  • Td3 is the delay time from ONU/ONT to OLT
  • Td4 is the delay time from ONU/ONT to the slave clock.
  • Td2+Td3 is equal to the logic loop delay. According to the Gigabit PON (GPON) standard, the logic loop delay is 60 ( ⁇ s, then DELAY can be written as:
  • Step 16 The slave clock performs clock adjustment according to the calculated delay time.
  • the calculation formula of DELAY in the above method can refer to the relevant regulations of IEEE 1588.
  • the method of calculating the delay is to assume that the delay between the master clock and the slave clock is the same as the delay from the clock to the master clock, and in actual situations, The delay from the master clock to the slave clock is not the same as the delay from the clock to the master clock. This makes the calculated delay inaccurate, causing the slave clock to be out of sync with the master clock.
  • embodiments of the present invention provide a method and apparatus for time synchronization in a passive optical network that is capable of synchronizing the time of the master clock and the slave clock.
  • a specific embodiment of the present invention provides a method for time synchronization in a passive optical network, where the passive optical network includes an optical line terminal OLT and a plurality of optical network units/optical network terminals ONU/ONT, and the method includes:
  • the synchronization message carrying a time stamp determined by the OLT to complete the time synchronization TMtli;
  • time synchronization is indicated from the clock.
  • a specific embodiment of the present invention provides a time synchronization device in a passive optical network, the device comprising:
  • a receiving unit configured to receive the synchronization of the optical line terminal OLT of the passive optical network after being synchronized with the main clock, the synchronization message carrying the time stamp TMtli determined by the OLT after completing the time synchronization;
  • An adjusting unit configured to adjust the local clock according to the time stamp to enable the optical network of the passive optical network to be terminated
  • an indicating unit configured to perform time synchronization from the clock after maintaining time synchronization with the OLT.
  • the embodiment of the present invention further provides an optical line terminal OLT, where the OLT includes:
  • a synchronization unit for maintaining time synchronization with the master clock
  • the sending unit is configured to send a synchronization message to the optical network unit/optical network terminal ONU/ONT after the time synchronization is completed, where the synchronization message carries a time stamp TMtl i determined by the OLT to complete the time synchronization.
  • the embodiment of the present invention further provides a passive optical network, where the passive optical network includes: an optical network unit/optical network terminal ONU/ONT, and an optical line terminal OLT;
  • the OLT is configured to keep time synchronization with the master clock, and after completing the time synchronization, send a synchronization message carrying the time stamp TMtli to the optical network unit/optical network terminal, where the time stamp TMtli indicates the frame of the completed frame - the
  • the ONU/ONT is configured to receive the synchronization packet, and adjust the local clock according to the time stamp TMtli carried by the synchronization packet to keep the ONU/ONT synchronized with the OLT, and After the OLT maintains time synchronization, it indicates that the slave clock is time synchronized.
  • the technical solution of the embodiment of the present invention receives the synchronization packet sent by the OLT, adjusts the local clock according to the synchronization packet, and keeps time synchronization with the OLT, indicating The clock is time-synchronized, so that the time between the master clock and the slave clock is not the same as the delay from the clock to the master clock, and the time of the master clock and the slave clock are kept synchronized, thereby achieving the passive optical network pair. Time synchronization requirements.
  • FIG. 1 is a flowchart of a method for time synchronization in a passive optical network according to the prior art
  • FIG. 2 is a flowchart of a method for time synchronization in a passive optical network according to Embodiment 1 of the present invention
  • FIG. 3 is a flow chart of a method for time synchronization in a passive optical network according to Embodiment 2 of the present invention.
  • FIG. 4 is a structural diagram of an apparatus for time synchronization in a passive optical network according to an embodiment of the present invention
  • FIG. 5 is a structural diagram of an optical line terminal according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a system for time synchronization in a passive optical network according to an embodiment of the present invention
  • FIG. 7A is a schematic diagram of a time synchronization method in a passive optical network according to Embodiment 4 of the present invention
  • FIG. 7B is a schematic diagram of adjusting ON local time of an ONU/ONT according to Embodiment 4 of the present invention
  • FIG. 8 is a structural diagram of an apparatus for providing time synchronization according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of an optical line terminal according to an embodiment of the present invention.
  • FIG. 10A and 10B are structural diagrams of a passive optical network according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a method for time synchronization in a passive optical network according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a time synchronization device in a passive optical network according to an embodiment of the present invention.
  • FIG. 13 is a structural diagram of an optical line terminal according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a downlink frame according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides a method for time synchronization in a passive optical network, the method receiving a synchronization message sent by the OLT after being synchronized with the primary clock, the synchronization message carrying a time stamp;
  • the local clock is adjusted and, after being synchronized with the OLT, time synchronization is indicated from the clock.
  • the above method can be completed by the ONU/ONT.
  • the OLT and the ONU/ONT time synchronization are performed after the OLT and the master clock are synchronized with each other, that is, the ONU/ONT and the master clock are equivalent. Perform time synchronization.
  • the ONU/ONT After the ONU/ONT completes the time synchronization, it indicates that the slave clock is time synchronized with the ONU/ONT, so that the delay from the master clock to the slave clock is different from the delay from the clock to the master clock. Next, the time between the master clock and the slave clock is kept synchronized, thereby achieving the time synchronization requirement of the passive optical network.
  • Embodiment 1 provides a method for time synchronization in a passive optical network.
  • the technical scenario in this embodiment is that the passive optical network in this embodiment is a GPON, and the method is as shown in FIG. 2, including The following steps:
  • Step 21 Receive a synchronization packet sent by the OLT after being synchronized with the master clock, the synchronization packet carrying a time stamp TMtli, where the time stamp TMtli is determined after the OLT completes the time synchronization; the OLT and the master clock in the step
  • the specific method for maintaining the time synchronization may be as follows: The OLT maintains time synchronization with the primary clock through the PTP synchronization mechanism.
  • the protocol IEEE 1588 For the specific implementation method of the PTP synchronization mechanism, refer to the protocol IEEE 1588.
  • the specific method for keeping the OLT in synchronization with the master clock in this step may also be: using an external clock source as a master clock, such as a BITS or a GPS clock source directly connected to the OLT, and the OLT synchronizes with the master clock through its own time synchronization circuit. .
  • an external clock source such as a BITS or a GPS clock source directly connected to the OLT
  • the TMtli in this step is different in the way the OLT is generated according to different types of synchronization messages:
  • TMtli TMtl+Tdi; where TMtl is the time at which the synchronization message is sent, and Tdi is the downlink delay of the OLT to the destination ONU/ONT (assumed to be the i-th ONU/ONT).
  • TMtli TMtl.
  • Step 22 Adjust the local clock according to the time stamp TMtli in the synchronization message to keep time synchronization with the OLT;
  • the local clock is the clock of an intermediate node in the route between the OLT and the slave clock.
  • the local clock can be the ONU/ONT clock; when the OLT keeps time synchronization with the master clock, the ONU/ONT performs time with the OLT. Synchronization processing is equivalent to time synchronization processing of the ONU/ONT with the master clock;
  • This step can be completed by the ONU/ONT, and the method for implementing this step can be:
  • Method A ONU/ONT directly adjusts the local clock TSul to TMtli;
  • Method B ONU/ONT adjusts the local clock TSul to TMtli+Tpi, where the above Tpi represents the time when the ONU/ONT processes the synchronization.
  • the local clock is adjusted by method C or method D to keep time synchronization with the OLT;
  • ONU / ONT adjust the local clock TSul to TMtl + (Tlr-Teqdi) / 2;
  • Tlr is the system logic loop delay
  • Teqdi is the compensation delay
  • the optional Tlr is 60 ( ⁇ s, Teqdi is the compensation delay of the OLT through the Ranging-time PLOAM (Ranging Time Physical Layer Operation and Management) message to the ONU/ONT after the ranging is completed.
  • the OLT can send the Tdi to the ONU/ONT through the downlink message, such as the downlink MPCP (Multipoint Control Protocol) message.
  • the downlink message such as the downlink MPCP (Multipoint Control Protocol) message.
  • ONU/ONT adjusts the local clock TSul to TMtl+(Tlr-Teqdi)/2+ Tpi, where Tpi represents the time when the ONU/ONT processes the synchronous message, and (Tlr-Teqdi)/2 represents the OLT to the destination ONU.
  • Tpi the time when the ONU/ONT processes the synchronous message
  • (Tlr-Teqdi)/2 represents the OLT to the destination ONU.
  • Step 23 Instruct the slave clock to perform time synchronization.
  • the implementation of this step may be performed by using a PTP synchronization mechanism for time synchronization.
  • the method provided in the first embodiment receives the synchronization message sent by the OLT, adjusts the local clock according to the synchronization message, and keeps time synchronization with the OLT, and then instructs the slave clock to perform time synchronization, thereby implementing the master clock.
  • the delay from the clock is not the same as the delay from the clock to the master clock, the time between the master clock and the slave clock is kept synchronized, thereby achieving the time synchronization requirement in the passive optical network.
  • Embodiment 2 provides a method for time synchronization in a passive optical network.
  • the technical scenario in this embodiment is that the passive optical network in this embodiment is a GPON, and the synchronization packet is a unicast packet.
  • the structure of the synchronization packet of the foregoing Table 1 is a preferred embodiment of the present invention, wherein the ONU-ID is used to identify the target ONU/ONT of the synchronization packet, and the value of the Message-ID field is used to identify the message/message as SYN-PLOAM message/message, i to i + 5 in Table 1 indicates time stamp.
  • the ONU-ID is used to identify the target ONU/ONT of the synchronization packet
  • the value of the Message-ID field is used to identify the message/message as SYN-PLOAM message/message, i to i + 5 in Table 1 indicates time stamp.
  • Embodiment 2 The method provided in Embodiment 2 is as shown in FIG. 3, and includes the following steps:
  • Step 31 The OLT performs time synchronization with the master clock (not shown in FIG. 3) through the PTP synchronization mechanism.
  • Step 32 The OLT sends a synchronization packet (unicast) to the ONU/ONT, where the synchronization packet carries a time stamp TMtli;
  • Step 33 The ONU/ONT performs local clock adjustment according to the time stamp.
  • the ONU/ONT adjusts to receive the ONU/ONT and the synchronous message by receiving the synchronization message (unicast) sent by the OLT.
  • the OLT maintains time synchronization.
  • the slave clock is synchronized with the local clock of the ONU/ONT through the PTP synchronization mechanism, thereby realizing the delay from the master clock to the slave clock and the slave clock to the master clock.
  • the delays are not the same, the time of the master clock and the slave clock are kept synchronized, thereby achieving the time synchronization requirement in the passive optical network.
  • TMtli Since the calculation of TMtli in this embodiment is performed on the OLT, the calculation amount of the ONU/ONT is reduced, and the ONU/ONT device is simplified, since the number of OLTs in the system is much smaller than the number of ONUs/ONTs, so the number is reduced. The cost of building the system.
  • Embodiment 3 provides a method for time synchronization in a passive optical network.
  • the technical scenario in this embodiment is that the passive optical network in this embodiment is a GPON, and the synchronization packet is a multicast synchronization report.
  • the unicast synchronization message is used, the structure of the synchronization message is as shown in Table 1 above.
  • Table 2 As shown, when synchronizing for multicast or broadcast, the structure of the synchronization is as shown in Table 2:
  • Table 2 differs from Table 1 in that the ONU-ID value is used to identify that the message/message is a specific value sent to all ONUs/ONTs. As shown in Table 2, the specific value is "0", and the value may also be set as needed. As long as it is guaranteed that the value will not be repeated with the unicast mode.
  • Table 2 is only a preferred embodiment of the present embodiment, and in the actual case, there may be other structures. For example, only include the "second" field, or include more time unit fields, etc., and the length of each field can be arbitrarily specified according to actual needs, such as the entire 6 fields as "second" field, etc.; or similar to GPON A similar format for OMCI messages.
  • the local clock is adjusted according to any one of the method and the method D in the first embodiment. The rest of the method is the same as the step of the second embodiment, and details are not described herein again.
  • the ONU/ONT receives the synchronization message (multicast) sent by the OLT.
  • the OLT maintains time synchronization.
  • the slave clock is synchronized with the local clock of the ONU through the PTP synchronization mechanism, thereby realizing the delay from the master clock to the slave clock and the delay from the slave clock to the master clock.
  • the time of the master clock and the slave clock are kept synchronized, thereby achieving the time synchronization requirement in the passive optical network.
  • the embodiment of the present invention further provides a device for time synchronization in a passive optical network.
  • the device as shown in FIG. 4, includes: a receiving unit 41, configured to receive a synchronization report sent by the OLT after being synchronized with the main clock.
  • the adjusting message carries the time stamp TMtli;
  • the adjusting unit 42 is configured to adjust the local clock according to the time stamp in the synchronization message received by the receiving unit 41;
  • the indicating unit 43 is configured to complete the local clock in the adjusting unit 42 After adjustment, it indicates that the slave clock is time synchronized.
  • the adjusting unit 42 in the above apparatus may include:
  • the first time adjustment unit 421 is configured in the synchronization message received by the receiving unit 41.
  • the second time adjustment unit 422 is configured to be used in the synchronization message received by the receiving unit 41.
  • Tpi is the time when the ONU/ONT processes the synchronous message
  • the indicating unit 43 of the above device may also be used to indicate that the slave clock is maintained by the PTP synchronization mechanism. Time synchronization of the local clock.
  • the adjusting unit 42 adjusts the local clock according to the time stamp in the synchronization message to keep the ONU/ONT synchronized with the OLT.
  • the instructing unit 43 instructs the slave clock to maintain time synchronization with the local clock through the PTP synchronization mechanism, thereby realizing that the delay from the master clock to the slave clock is not the same as the delay from the clock to the master clock. In this case, the time between the master clock and the slave clock is kept synchronized, thereby achieving the time synchronization requirement of the passive optical network.
  • the embodiment of the present invention further provides an optical line terminal, as shown in FIG. 5, the device includes: a synchronization unit 51 for maintaining time synchronization with the master clock; and a sending unit 52, configured to perform time synchronization after the synchronization unit 51 completes Sending a synchronization message, the synchronization message carrying a time stamp TMtli.
  • the sending unit 52 sends a synchronization message carrying the time stamp TMtli, thereby supporting the delay of the above method and the device from the master clock to the slave clock.
  • the delay from the clock to the master clock is not the same, the time of the master clock and the slave clock are kept synchronized, thereby achieving the time synchronization requirement in the passive optical network.
  • the embodiment of the present invention further provides a system for time synchronization in a passive optical network.
  • the system includes: a main clock 61, an optical network unit/optical network terminal 62, an optical line terminal 63, and a slave clock. 64;
  • the optical line terminal 63 is configured to keep time synchronization with the master clock, and after the time synchronization is completed, send a synchronization message, where the synchronization message carries a time stamp TMtli;
  • the optical network unit/optical network terminal 63 is configured to receive the synchronization message, adjust the local clock according to the time stamp TMtli, and indicate time synchronization of the slave clock after maintaining time synchronization with the optical line terminal.
  • the master clock 61 may be disposed at the light path terminal 63, and the slave clock 64 may be disposed at the optical network unit/optical network terminal 62.
  • the optical line terminal 63 sends a synchronization message carrying the time stamp TMtli after being synchronized with the main clock 61.
  • the optical network unit/optical network terminal 63 receives the synchronization message.
  • After adjusting the local clock according to the time stamp in the synchronization message, indicating the slave time The clock is time synchronized. Therefore, in the case that the delay from the master clock to the slave clock is different from the delay from the clock to the master clock, the time synchronization between the master clock and the slave clock is maintained, thereby achieving the time synchronization requirement of the passive optical network.
  • Embodiment 4 provides a method for time synchronization in a passive optical network.
  • the technical scenario in this embodiment is GPON, and the synchronization packet is a unicast packet or a multicast/broadcast packet. Multicast/broadcast packets can be used preferentially, taking into account factors such as bandwidth utilization efficiency.
  • the synchronization packet is as shown in Table 3.
  • the synchronization packet in the form of Table 3 includes the terminal identifier ONU-ID and the message identifier Message-ID.
  • the ONU-ID is used to identify each target.
  • the Message-ID is used to identify that the message is a SYNC Physical Layer Operation and Management (SYNC PLOAM) message; when the synchronization is a multicast/broadcast message,
  • SYNC PLOAM SYNC Physical Layer Operation and Management
  • the synchronization message is shown in Table 4.
  • the form of Table 4 is basically the same as Table 3, except that the ONU-ID field is a predetermined value, indicating that the message is provided to all ONUs/ONTs.
  • the structures of the synchronization messages of Tables 3 and 4 above are all preferred embodiments of the present invention. In the actual case, there may be other forms of existence, such as including more time unit fields.
  • the synchronization messages in Tables 3 and 4 above can also be used in a format similar to GPON OMCI messages.
  • Embodiment 4 The method provided in Embodiment 4 is as shown in FIG. 7, and includes the following steps:
  • Step 71 The OLT performs time synchronization with the master clock.
  • the time synchronization method between the OLT and the master clock may be that the OLT maintains time synchronization with the master clock through the PTP synchronization mechanism.
  • the specific method of the PTP synchronization mechanism refer to the protocol IEEE 1588.
  • the method for time synchronization between the OLT and the master clock may be an external clock source as a master clock, such as a BITS or a GPS clock source directly connected to the OLT, and the OLT synchronizes with the master clock through its own time synchronization circuit.
  • a master clock such as a BITS or a GPS clock source directly connected to the OLT
  • Step 72 Generate a synchronization packet, where the synchronization packet carries a time stamp TMtli determined by the OLT and the master clock synchronization time.
  • the OLT obtains the time of the OLT when the frame header of the jth downlink frame is sent, that is, the jth The frame header transmission time of the downlink frame, the OLT generates the synchronization report by using the frame header transmission time of the jth downlink frame or the time calculated according to the frame header transmission time of the jth downlink frame and the delay parameter of the PON as the time stamp TMtli Text.
  • the calculation method of the time stamp TMtli has been described above and will not be described again. It is worth noting that the Tc at this time is a dynamic or static value that is not zero. The specific value method is detailed in the following.
  • the synchronization packet can be a unicast packet, a multicast packet, or a broadcast packet.
  • Step 73 The OLT sends the synchronization packet to the ONU/ONT in the downlink frame, where the synchronization packet carrying the time stamp TMtli corresponding to the jth downlink frame is carried in the j+N downlink frames and sent to the ONU/ ONT, the time stamp TMtli represents the frame header transmission time of the jth downlink frame or the time calculated according to the jth downlink frame and the delay parameter of the PON, where N is an integer greater than or equal to 1, and Tc is 0;
  • the synchronization message of the timestamp TMtli corresponding to the jth downlink frame is sent to the ONU/ONT in the jNth downlink frame, and the timestamp TMtli represents the frame header transmission time of the jth downlink frame or according to the jth downlink frame and
  • the transmission frequency of the synchronization message (the transmission interval of the two adjacent synchronization messages or the frame interval or the length interval) can be configured.
  • the transmission frequency of the synchronization message can be configured by the network element management system to the OLT. It is also possible to configure the method for configuring the transmission frequency of the synchronization message when the chip is shipped from the factory, and is not included in the scope of the present invention, and details are not described herein again.
  • Step 74 The ONU/ONT receives a set of downlink frames, and calculates a time offset Offset between the clock of the OLT and the clock of the ONU/ONT according to the time stamp TMtl i carried in the synchronization message in the j+N or jN downlink frames.
  • the local time is adjusted using the time offset Offset to keep the ONU/ONT in time synchronization with the OLT.
  • the frame header receiving time TMuli of the jth downlink frame, the frame header transmission time TMtli of the frame header of the jth downlink frame, and the downlink delay Tdi of the OLT to the ONU/ONT are calculated to obtain the clock of the OLT and the ONU/ONT
  • the frame header receiving time TMuli of the jth downlink frame may be obtained by detecting the received downlink frame before calculating the time offset Offset between the clock of the OLT and the clock of the ONU/ONT; or detecting the synchronization packet in the downlink frame.
  • the above ONU/ONT can record the frame header receiving time of one or more downlink frames according to the configuration.
  • TMuli can record the frame header reception time of each downlink frame; it can also record the frame header reception time of a specific downlink frame as needed.
  • the ONU/ONT can synchronize with the OLT through the following steps: Synchronization of the text:
  • Step 74-1 The ONU/ONT receives the downlink frame of the OLT and enters a HUNT state.
  • Step 74-2 The ONU/ONT receives the synchronization message of the OLT, and enters the SYNC state;
  • Step 74-3 The ONU/ONT detects, according to the configuration, whether the synchronization message is received again after the Nth frame, and processes the detection result according to the configuration or system requirements.
  • the ONU/ONT can enter the HUNT state when the synchronization message is still not detected after consecutive mxN frames.
  • the ONU/ONT can also ignore whether the synchronization message is periodically detected. It is always in the SYNC state until the system instructs the ONU/ONT to return to the HUNT state through the configuration channel.
  • the ONU/ONT can also be in the SYNC state until it is externally reset.
  • external reset method refer to the existing mode, and details are not described herein again.
  • k is an integer greater than or equal to 1.
  • the ONU/ONT can calculate the kth time between the OLT clock and the ONU/ONT clock by using the time stamp TMtli included in the synchronization message in the j+N or jNth downlink frame and the frame header reception time TMuli of the jth downlink frame.
  • the time offset Offset, the local clock is adjusted using the kth time offset Offset.
  • TMu2i on the right side of the formula is the ONU/ONT local time of the adjustment time
  • TMu2i on the left side of the formula indicates the accurate time after adjustment.
  • the time offset of the calibration can be used to reduce the error and improve the accuracy.
  • An example of a statistically calibrated time offset is shown in steps 74-20 through 74-24 of Figure 7B: k times);
  • Step 74-21 Determine whether the ONU/ONT is the first time adjustment
  • Steps 74-23 If 0NU/0NT is not the first time adjustment, multiple time deviations
  • the Offset is statistically obtained to obtain a statistical value to calibrate the time deviation, that is, the statistical value is obtained by using the time deviation of the kth time and the time deviation of one or more times of the 1st to the kth times, and the statistical value is the time deviation of the calibration;
  • the statistical method can use the average value of the multiple time deviations, the mean square value, etc., such as the average value of the Offset of the ONU/ONT calculation k times (k is an integer greater than 1) Offset_avg.
  • the execution steps of the above method can be adjusted as needed, such as first determining whether it is the first time adjustment, and then calculating the time deviation based on the judgment result.
  • Step 75 Instruct the slave clock of 0NU/0NT to perform time synchronization.
  • Step 76 Synchronize the slave clock with the local clock of 0NU/0NT.
  • the ONU/ONT can perform time synchronization through the PTP mechanism, or indicate the time synchronization of the slave clock device connected to the ONU/ONT, or indicate that the device time required to synchronize the time connected to the ONU/ONT has been synchronized.
  • the method provided in the fourth embodiment implements the delay from the master clock to the slave clock and the slave clock to the master clock.
  • the delays are not the same, the time between the master clock and the slave clock is kept synchronized, thereby achieving the time synchronization requirement.
  • Embodiment 5 provides a method for time synchronization in a passive optical network.
  • the passive optical network in this embodiment is GPON
  • the synchronization packet is unicast or multicast.
  • the definition of Superframe_count can be found in the relevant section of ITU G.984.3.
  • the frame sequence number Fsn is added to the broadcast or broadcast.
  • the frame sequence number Fsn in the synchronization message is processed on the ONU/ONT.
  • the other steps are the same as those in the fourth embodiment, and are not described here.
  • the calculation of the time stamps TMtli and Fsn in the synchronization message has been described above and will not be described again.
  • the ONU/ONT end processes the frame sequence number Fsn in the synchronization message accordingly, and can implement the method by using the method E, or the method F, or the method G, or the method H.
  • Method E includes:
  • Step 74-E1 receiving a group of downlink frames, recording a frame header receiving time TMuli of each downlink frame, extracting and recording a correspondence relationship between a frame sequence number Fsnrl and a frame header receiving time TMuli identifying each downlink frame; wherein, each The correspondence between the frame header reception time TMuli of the downlink frame and the frame sequence number Fsnrl can be stored as an entry in a table.
  • Step 74-E2 receiving a synchronization message carrying a timestamp TMtli and a frame sequence number Fsn;
  • Steps 74-E4 output TMtl i and TMul i.
  • Method F includes: Step 74-F1: Receive a group of downlink frames, record the frame header receiving time TMuli of the specific downlink frame according to the configuration, and extract and record the frame sequence number Fsnrl of the corresponding downlink frame, where the specific downlink frame refers to the downlink frame to be recorded. ;
  • Step 74-F2 receiving a synchronization message in a downlink frame after receiving a specific downlink frame, extracting a time stamp TMtli and a frame sequence number Fsn carried in the synchronization message;
  • Step 74-F3 the frame header receiving time of the downlink frame with the frame sequence number Fsn is TMuli, that is, TMuli when FsnrHFsn;
  • Steps 74-F4 output TMtl i and TMul i.
  • Method G includes:
  • Step 74-G1 receiving a line frame, and recording a frame sequence number Fsnrl identifying the downlink frame;
  • Step 74-G2 receiving the synchronization message in the downlink frame, extracting the time stamps TMtli and Fsn carried in the synchronization message, and recording the time of receiving the synchronization message TMu3i;
  • Step 74-G3 Calculate a frame header of a downlink frame whose frame sequence number is Fsn according to a frame sequence number Fsnrl that identifies the downlink frame, a frame sequence number Fsn carried in the synchronization packet in the downlink frame, and a time TMu3i that receives the synchronization message. Receiving time TMuli;
  • Step 74-G4 output TMtli and TMuli
  • the frame header reception time of the downlink frame whose frame sequence number is Fsn can be calculated by the following method.
  • Offset synpacket is the offset of the synchronization packet in the downlink frame, and the unit is bit; T blt is the time of 1 bit in the downlink frame, and the GPON downlink frame with the downlink rate is 2.488G bit/s, ⁇ is 1/2.488 ns, which is about 0.4 ns.
  • Method H includes:
  • Step 74- ⁇ 1 receiving the line frame, and recording the frame header receiving time TMu3i and the frame sequence number Fsnrl of the downlink frame;
  • Step 74-H2 Receive a synchronization packet in the downlink frame, and extract a time stamp TMtli carried in the synchronization packet. And frame serial number Fsn;
  • Step 74-H3 Calculate the frame header receiving time TMuli of the downlink frame with the frame sequence number Fsn according to the frame header receiving time TMu3i and the frame sequence number Fsnrl of the downlink frame, and the frame sequence number Fsn carried in the synchronization packet in the downlink frame. ;
  • Step 74-H4 output time stamp TMtli and TMuli;
  • the frame header reception time TMul i of the downlink frame whose frame sequence number is Fsn can be calculated by the following method:
  • 125us is the frame period of GPON.
  • the time for calculating TMuli can be performed according to the configuration, that is, it can be performed when receiving the synchronization message, or at the time when the clock adjustment needs to be performed according to the configuration. It is assumed that the time when the clock needs to be adjusted is represented by the local time TMu4i, and the corresponding downlink frame number is Fsnui, and the offset of the time and the corresponding downlink frame is Offset_syn.
  • TMuli TMu4i-(Fsnui-Fsn)*125us-Offset_syn*T blt .
  • the method G and the method H provided in the embodiment 5 can reduce the dependence of the synchronization message transmission time on the strict timing, thereby simplifying the requirement of the time synchronization of the passive optical network.
  • the specific mode of the present invention further provides a device 2 for implementing time synchronization in a passive optical network, which device can be disposed in an optical network terminal device such as an ONU/ONT, and the time synchronization device 2 is coupled with a slave clock, in and with light.
  • the master clock of the line terminal maintains the time synchronization, and the time stamp TMtli carried by the synchronization packet is parsed in the packet received by the receiving unit to adjust the slave clock.
  • the device includes: time acquisition unit 81, And detecting the received one or more downlink frames in the downlink receiving process, and acquiring the frame header receiving time of the jth downlink frame according to the detection result; the time acquiring unit 81 further extracting the j+1N or the jNth downlink frame Time stamp TMtli carried in the middle synchronization message, where j and N are both integers greater than or equal to 1, the time stamp TMtli indicates the time of the OLT when the jth downlink frame is transmitted, or the frame header of the jth downlink frame is sent.
  • the indicating module 83 is configured to indicate that the slave clock is synchronized with the local clock after the adjusting unit 82 adjusts the local clock, for example, indicating that the slave clock is synchronized with the local clock through the PTP synchronization mechanism.
  • the indication time acquisition unit 81 includes: a time stamp acquisition module 812, configured to detect a downlink frame, and extract a time stamp TMtli from the synchronization message of the downlink frame; the frame header reception time acquisition module 810 is configured to detect the downlink frame, and obtain the downlink frame according to the detection result.
  • the frame header reception time of the downlink frame, and the acquired frame header reception time includes the frame header reception time of the jth downlink frame.
  • the time stamp acquisition module 812 and the frame header reception time acquisition module 810 can perform operations independently or under the control of the control module 816, and the time stamp acquisition module 812 can also provide the time stamp TMtli to the frame header reception time acquisition.
  • the frame header reception time determination module 8106 of the module 810 performs the calculation.
  • the module composition of the frame header reception time acquisition module 810 will be further described below in conjunction with the above method.
  • the time synchronized device 2 also includes a storage module (not shown).
  • the function of each module of the frame header receiving time obtaining module 810 may specifically include: the frame header detecting module 8102 detects and records the frame header receiving time TMuli of each downlink frame in the downlink receiving process, and the frame serial number detecting module 8104 detects the synchronization " ⁇ "
  • the frame sequence number Fsn and the frame sequence number Fsnrl of the downlink frame are stored, and the storage module stores the correspondence between the frame sequence number Fsnrl and the frame header receiving time, wherein the correspondence between the Fsnrl and the frame header receiving time of each downlink frame can be used as a
  • the time synchronized device 2 also includes a storage module (not shown).
  • the function of each module of the frame header receiving time obtaining module 810 may specifically include: the frame header detecting module 8102 detects and records the frame header receiving time TMuli of the specific downlink frame according to the configuration, and the frame sequence number detecting module 8104 detects the frame sequence number Fsnrl of the identified downlink frame. And the frame sequence number Fsn in the synchronization message, the storage module stores the correspondence between the frame sequence number Fsnrl and the frame header receiving time of the downlink frame, and the frame header receiving time is determined.
  • each module of the frame header receiving time acquiring module 810 may specifically include: the frame serial number detecting module 8104 detects the frame serial number Fsnrl identifying the downlink frame and the frame serial number carried in the synchronization packet in the downlink frame.
  • the synchronization message receiving time detecting module 8108 detects and records the time TMu3i of the received synchronization message, and the frame header receiving time determining module 8106 carries the frame sequence number Fsnrl of the downlink frame and the synchronization message in the downlink frame.
  • the frame sequence number Fsn and the TMu3i receiving the synchronization message calculate the frame header reception time TMuli of the downlink frame whose frame sequence number is Fsn.
  • each module of the frame header receiving time acquiring module 810 may specifically include: the frame serial number detecting module 8104 detects the frame serial number Fsnrl identifying the downlink frame and the frame serial number carried in the synchronization packet in the downlink frame.
  • the frame header detection module 8102 detects and records the frame header reception time TMu3i of the downlink frame, and the frame header reception time determination module 8106 carries the frame sequence number Fsnrl of the downlink frame and the synchronization packet in the downlink frame.
  • the frame sequence number Fsn and the frame header reception time TMu3i that receives the downlink frame calculate the frame header reception time TMuli of the downlink frame whose frame sequence number is Fsn.
  • the adjusting unit 82 may specifically include:
  • the time deviation calculation module 821 is configured to calculate a time offset between the clock of the OLT and the clock of the ONU/ONT according to the frame header receiving time TMuli and the time stamp TMtli acquired by the time acquiring unit 81;
  • the time deviation calibration module 822 is coupled to the time deviation calculation module 821 for calibrating the time deviation Offset calculated by the time deviation calculation module 821, such as counting the time deviations of the multiple calculations provided by the time deviation calculation module 821.
  • the value is used as the time offset of the calibration;
  • the time adjustment unit 823 is configured to adjust the time offset provided by the time deviation calculation module 821 or the time deviation calibration module 822 to adjust the local clock;
  • the time adjustment unit 823 can directly use the kth time The calculated time offset Offset adjusts the local clock.
  • a specific embodiment of the present invention further provides an optical line terminal, as shown in FIG. 9, the optical line terminal is synchronized with a clock source, and the clock source may be connected to an optical line terminal.
  • the external clock source connected may also be an internal clock source built in the optical line terminal, and the optical line terminal includes:
  • a synchronization unit 91 configured to maintain time synchronization with a clock source
  • the sending unit 93 is configured to send a synchronization message to the optical network unit/optical network terminal ONU/ONT after the completion of the time synchronization (ie, synchronization with the clock source), where the synchronization message carries the completion time synchronization and is determined.
  • the sending unit 93 specifically includes: a time acquiring module 931, a message generating module 932, and a sending module 933; wherein
  • the time obtaining module 931 is configured to: according to the time stamp TMtli determined by the time of the OLT in the downlink sending process after the time synchronization is completed, the time of the OLT according to the downlink sending process includes: the time of the OLT when the synchronous message is sent, Or the time of the OLT when transmitting the frame header of the jth downlink frame, or the time of the OLT when the frame header of the j + N or jNth downlink frame carrying the synchronization message is transmitted, j + N or jN
  • the downlink frames are sent after or before the jth downlink frame, and both j and N are integers greater than or equal to 1;
  • a message generating module 932 configured to generate a synchronization message according to a passive optical network control and/or management protocol, where the synchronization message carries the time stamp TMtli, and sends the synchronization message through the sending unit Give ONU/ONT;
  • the downlink sending module 933 is configured to send the synchronization packet carrying the time stamp TMtli generated by the packet generating module 932 to the ONU/ONT through the optical transmission channel.
  • PON control and / or management protocols include PON OAM protocols, such as GPON's OMCI protocol, PLOAM protocol, or EPON's Multi-Point Control Protocol (MPCP).
  • PON OAM protocols such as GPON's OMCI protocol, PLOAM protocol, or EPON's Multi-Point Control Protocol (MPCP).
  • MPCP Multi-Point Control Protocol
  • the packet generation module 932 may further encapsulate the delay parameter of the PON into a synchronization packet or a delay configuration packet, where the delay parameter of the PON includes a downlink delay of the OLT to the ONU/ONT or between the OLT and the ONU.
  • the delay of the loop as in the format of Table 6, in the synchronization message that the OLT needs to send to the i-th ONU/ONT encapsulates the downlink delay of the OLT to the i-th ONU/ONT, and needs to be sent in the OLT according to the format of Table 7. give The synchronization delay between the OLT and the i-th ONU/ONT is encapsulated in the synchronization message of the i-th ONU/ONT.
  • Time itself or the sum of the time of the OLT when transmitting the synchronization message and the downlink delay of the OLT to the i-th ONU/ONT, or the time of the OLT when transmitting the frame header of the downlink frame (such as the frame header of the jth downlink frame)
  • the j + N or j-Nth downlink frame may be a control frame that does not include data, or may be a data frame that carries data. If the j + N or j-Nth downlink frame carries data, the downlink frame includes a header header portion and a data payload Payload portion for carrying data, and the synchronization message is preferably placed in the header portion of the downlink frame.
  • a specific embodiment of the present invention also provides a passive optical network, such as the optical network terminal ONU/ONT 102, and an optical line terminal OLT 103 connected to a clock source as a master clock.
  • the OLT 103 is configured to keep time synchronization with the primary clock. After completing the time synchronization, send the jth downlink frame and record the frame header transmission time of the jth downlink frame or calculate the calculation when sending the jNth downlink frame.
  • the frame header transmission time of the jth downlink frame generates a synchronization message according to the frame header transmission time of the jth downlink frame, and is in a downlink frame (j+Nth or jNth downlink frame) that needs to send a synchronization message.
  • the synchronization packet is sent, wherein the time stamp TMtli carried by the synchronization packet may be the frame header transmission time of the jth downlink frame, or may be the time calculated according to the frame header transmission time of the jth downlink frame, j , N is an integer greater than or equal to 1;
  • the ONU/ONT 102 is configured to receive a set of downlink frames, where the set of downlink frames includes a jth downlink frame and a j+th downlink frame, according to the jth downlink frame and the j+1th or jNth downlink frame.
  • the frame header reception time of one downlink frame and the time stamp TMtli carried in the synchronization message in the j+N or jNth downlink frame adjust the local time, so that the ONU/ONT 102 and the OLT 103 maintain time synchronization, and are in the OLT 103 Time synchronization is indicated from the clock after the time synchronization is maintained.
  • the primary clock is the external clock source connected to the OLT
  • the secondary clock is the external clock source connected to the ONU/ONT.
  • ONU/ONT 102 includes a slave clock 104' and a time synchronization device 106'
  • the OLT 103' includes a master clock 10A and a time synchronization device 105'.
  • the synchronization function of the time synchronization device 105' is the same as that of the OLT 103 in FIG. 10A.
  • the synchronization function of the time synchronization device 106 is the same as that of the ONU/ONT 102 in FIG. 10A, and details are not described herein.
  • the passive optical network provided by the specific embodiment of the present invention can maintain the time synchronization between the master clock and the slave clock when the delay from the master clock to the slave clock is different from the delay from the clock to the master clock. Meet the requirements of time synchronization.
  • Embodiment 6 provides a method for time synchronization in a passive optical network.
  • the technical scenario in this embodiment is that the passive optical network in this embodiment is an EPON, and the synchronization packet is an MPCP-based control.
  • the packet (the MPCP packet can also be called an MPCP frame).
  • the MPCP synchronization message shown in Table 5 to Table 9 is the structure of the GATE MPCP message. As shown in Table 5 to Table 9, the TS/Dealy field (1 byte long) is added to the GATE message.
  • the MPCP packet carries the time stamp TMtli and the delay Tdi or RTTi.
  • the ONU/ONT When the ONU/ONT receives the synchronous MPCP packet, it can occupy the Pad field according to the TS/Delay field (according to the EPON standard, the field is all 0s)
  • the value of the padding determines whether the message carries the timestamp TMtli and/or the delay Tdi or RTTi to determine whether synchronization is required.
  • the specific meanings of the TS/Delay fields in Table 5 to Table 9 are shown in Table 10, corresponding to MPCP. For the message naming, see also Table 10. About the specific field meanings in Table 5 to Table 10. It will be described in detail in this embodiment and subsequent embodiments, and will not be described again.
  • the structure of the MPCP packet in the foregoing Table 5 is a preferred implementation manner of the present invention without adding an MPCP packet operation code.
  • other forms may exist, such as the Opcode field of the synchronization message.
  • the value can be other values, ie a new opcode Opcode, such as 00-0A.
  • the MPCP packet may be other types of packets, that is, Length/Type is other values, such as 88-09 (EPON OAM message), or 88-88 (example, indicating a new one) Increase Define the value, no fixed value, flexibly defined according to the actual situation) and so on.
  • the synchronous MPCP packet carries a timestamp, that is, the TS/Dealy field is set to "02", and the TMtli field is a timestamp field, and the timestamp TMtli is carried.
  • the method provided in Embodiment 6 can be the same as Embodiment 2, and details are not described herein again.
  • the ONU receives the sent synchronization message through the OLT, and implements according to the implementation.
  • the delay from the master clock to the slave clock is not the same as the delay from the clock to the master clock, the time between the master clock and the slave clock is kept synchronized, thereby achieving the time synchronization requirement.
  • Embodiment 7 provides a method for time synchronization in a passive optical network.
  • the passive optical network in this embodiment is an EPON
  • the synchronization packet is a time stamp TMtli field and a downlink delay Tdi field.
  • the MPCP packet used for the delay configuration that is, the "synchronization & downlink delay configuration MPCP packet”
  • the Tdi field carries the downlink delay Tdi of the OLT to the ONU/ONT.
  • the time stamp TMtli indicates the time of the OLT when the "synchronization & downlink delay configuration MPCP message" is sent.
  • “Synchronization & Downlink Delay Configuration MPCP packets the structure of which is shown in Table 6.
  • the method of the embodiment 7 is different from the method of the embodiment 2 only in the specific method of the step 33.
  • the method C in the embodiment 1 can be referred to.
  • Any one of the methods D performs local clock adjustment, except that the used time and delay information only need to be extracted through the synchronization message.
  • the rest of the steps are the same as in the second embodiment and will not be described again.
  • the ONU receives the synchronization message sent by the OLT, and implements according to the implementation.
  • Embodiment 8 provides a method for time synchronization in a passive optical network.
  • the passive optical network in this embodiment is an EPON
  • the synchronization packet is a "synchronization & loop delay configuration MPCP packet”.
  • the RTTi is obtained in the OLT by the ranging process defined by IEEE 802.3ah. For the specific ranging process, refer to the relevant section of IEEE 802.3ah, and details are not described herein. See Table 7 for the synchronization message.
  • the other parts of the method of the eighth embodiment are the same as those of the embodiment 7, and are not described herein again.
  • the ONU receives the synchronization packet sent by the OLT, adjusts the local clock according to the method provided in Embodiment 7, implements time synchronization between the local clock and the OLT clock, and maintains the step, thereby implementing the master clock.
  • the delay from the clock is not the same as the delay from the clock to the master clock, the time between the master clock and the slave clock is kept synchronized, thereby achieving the time synchronization requirement.
  • Embodiment 9 provides a method for time synchronization in a passive optical network.
  • the passive optical network in this embodiment is an EPON.
  • the time stamp TMtli and the downlink delay Tdi in this embodiment respectively pass the synchronous MPCP report.
  • the method uses the delay configuration message to transmit the downlink delay Tdi from the OLT to the ONU/ONT (i-th). Therefore, the Tdi needs to be extracted through the delay configuration message, and the local clock is adjusted according to the time stamps TMtli and Tdi. The rest were the same as in Example 7.
  • the ONU receives the synchronization packet and the delay configuration packet sent by the OLT, and adjusts the local clock according to the method provided in Embodiment 7, so that the local clock is synchronized with the OLT clock time, and is maintained with the OLT.
  • the slave clock is synchronized with the local clock of the ONU through the PTP synchronization mechanism, so that the master-to-slave clock delay is not the same as the slave clock to the master clock delay, and the master is maintained.
  • the clock is synchronized with the time of the slave clock to implement the time Synchronization requirements.
  • Embodiment 10 provides a method for time synchronization in a passive optical network.
  • the passive optical network in this embodiment is an EPON
  • the delay configuration message is the MPCP message of the loop delay information RTTi, that is, "loop delay configuration MPCP message”.
  • Table 5 For the specific structure of the synchronization packet, see Table 9.
  • the ONU receives the sent synchronization packet and the delay configuration packet through the OLT, and adjusts the local clock according to the method provided in Embodiment 9, and synchronizes the local clock with the OLT clock time, and maintains the OLT with the OLT.
  • the slave clock is synchronized with the local clock of the ONU through the PTP synchronization mechanism, so that the master-to-slave clock delay is not the same as the slave clock to the master clock delay, and the master is maintained.
  • the clock is synchronized with the time of the slave clock to achieve the time synchronization requirement.
  • Embodiment 11 provides a method for time synchronization in a passive optical network.
  • the header portion includes an ID field and a time stamp field.
  • the Header part is the preamble Preamble
  • the time stamp TMtli is determined in the same manner as above, and will not be described again
  • the delay parameter used for transmitting the PON such as the downlink delay of the OLT to the ONU/ONT, the loop delay between the OLT and the ONU/ONT, and the equalization delay of the ONU/ONT, the delay Configure the packet as an MPCP packet.
  • the timestamp TMtli can be carried by an EPON frame.
  • the specific structure of the Preamble is as shown in Table 11, Table 12 or Table 13; it can also be carried by two EPON frames.
  • Table 14 The specific structure of the Preamble is shown in Table 14 and Table 15 shows that Table 14 is the specific structure of the Preamble of the first frame carrying the time stamp TMtli, and Table 14 is the second carrying time stamp.
  • Table 14 The specific structure of the Preamble of the TMtli frame.
  • TS-of-S in Table 11 to Table 15 represents the time stamp TMtli.
  • IEEE 802.3av For the meaning of other fields, see IEEE 802.3av.
  • Table 15 The Preamble structure of the above Tables 11 to 15 is a preferred embodiment of the present invention, and in actual cases, other forms may exist.
  • the Header part refers to the GEM frame header, and the frame header structure of the GEM is detailed in ITU-T G.984.3.
  • the time stamp is carried by modifying the existing GEM frame header structure, and the synchronization message is a PLO AM message (also called a PLOAM frame).
  • Embodiment 11 The method provided in Embodiment 11 is as shown in FIG. 11, and includes the following steps:
  • Step 111 The OLT performs clock synchronization with the main clock (not shown in FIG. 11) through the PTP mechanism.
  • Step 112 The OLT sends a downlink frame to the ONU/ONT, where the Header part of the downlink frame carries
  • the OLT sends the delay configuration packet to the ONU/ONT in the downlink frame.
  • Table 8 Downlink Delay Configuration MPCP Packet
  • Table 9 Loop Delay
  • the time stamp TMtli may be carried in the Header part of the delay configuration message, or may be carried in the Header part of other messages, such as data packets, and the specific method of carrying the time stamp in the Header part has been described above, and is not here. Let me repeat.
  • the delay configuration can be sent only once after the ranging is completed, and the ONU stores the carried Tdi or RTTi therein.
  • the OLT can send delay configuration packets to the ONU/ONT according to the configuration.
  • Step 113 The ONU/ONT performs local clock adjustment according to the time stamp and the delay parameter of the PON (Tdi or RTTi);
  • delay configuration packet carries Tdi, perform local clock adjustment by method G or method H to keep time synchronization with the OLT.
  • ONU/ONT adjusts the local clock TSul to TMtl i+Tdi
  • ONU/ONT adjusts the local clock TSul to TMtl i+Tdi+Tpi. If the delay configuration packet carries the RTTi, the local clock is adjusted by the method I or the method J to keep the time synchronization with the OLT;
  • Method K ONU/ONT adjusts the local clock Tsui to TMtl i+RTTi/2;
  • ONU/ONT adjusts the local clock Tsui to TMtl i+RTTi/2+Tpi.
  • Step 114 The ONU/ONT indicates time synchronization of the slave clock.
  • the implementation of this step may be performed by using a PTP synchronization mechanism for time synchronization.
  • the delay to the master clock is not the same, the time between the master clock and the slave clock is kept synchronized, thereby achieving the time synchronization requirement.
  • the embodiment of the present invention further provides a device for time synchronization in a passive optical network.
  • the device as shown in FIG. 12, includes a receiving unit 121, configured to receive a frame in a downlink frame after the OLT keeps clock synchronization with the master clock.
  • the adjusting unit 122 is configured to adjust the local clock according to the time stamp received by the receiving unit 121 and the delay parameter of the PON.
  • the indicating unit 123 is configured to: after the adjusting unit 122 completes the clock adjustment, instruct the slave clock to perform time synchronization. .
  • the receiving unit 121 can include:
  • a timestamp obtaining module 1211 configured to detect a frame header portion of the downlink frame to obtain a timestamp carried by the frame header portion TMtli;
  • the delay parameter obtaining module 1212 of the PON is configured to parse the downlink frame to obtain a delay parameter of the PON carried in the configuration packet based on the control and/or management protocol in the downlink frame, and the following delay Tdi or loop delay RTTi; After receiving the delay configuration packet, the receiving unit 121 may store the delay parameter of the PON carried in the delay configuration packet on the storage medium of the ONU/ONT.
  • the adjustment unit 122 can include:
  • the first adjusting unit 1221 is configured to: when the delay parameter obtaining module 1212 of the PON in the receiving unit 121 provides the downlink delay Tdi, adjust the local clock according to the time stamps TMtli and Tdi, and specifically, the method G or the method H may be used;
  • the second adjusting unit 1222 when the delay parameter obtaining module 1212 of the PON in the receiving unit 121 provides the loop delay RTTi, adjusts the local clock according to the time stamps TMtli and RTTi, and specifically may use the method I or the method J. .
  • the indicating unit 123 can be configured to instruct the slave clock to maintain time synchronization with the local clock through the PTP synchronization mechanism.
  • the time stamp acquisition module 1211 is a physical layer detection, and does not need to perform protocol processing, and the delay parameter acquisition module 1212 of the PON belongs to the protocol processing, and the time stamp acquisition module 1211 can perform normal downlink data transmission.
  • the time stamp is sent in real time during the process.
  • the delay of the PON is, for example, only sent after the ranging is completed, or when the ONU/ONT is updated, so that the system overhead is small.
  • the embodiment of the present invention further provides an optical line terminal, as shown in FIG. 13, the device includes: a synchronization unit 131 for maintaining time synchronization with the master clock; and a sending unit 132, configured to: after the synchronization unit 131 completes time synchronization And sending the downlink frame carrying the time stamp TMtli in the header portion and the delay configuration packet carrying the delay parameter of the PON, where the delay configuration packet is based on the PON control and/or management protocol, and carries the downlink delay When Tdi or loop delay RTTi.
  • the sending unit 131 may further include:
  • the timestamp sending module 1311 is configured to insert the obtained time stamp TMtli into the frame header portion of the downlink frame.
  • the configuration message sending module 1312 is configured to generate a configuration message of the PON delay parameter, where the configuration message is based on the control. And/or management protocol, wherein the delay parameters of the PON include but are not limited to the downlink Delay Tdi or loop delay RTTi.
  • the sending unit 132 sends a downlink frame carrying the time stamp TMtli in the Header, where the delay configuration packet carrying the delay parameter of the PON is
  • the stamp sending process belongs to the physical layer, and the protocol processing is not required to be faster, and the delay parameter transmission of the PON belongs to the protocol processing, so the implementation can improve the accuracy, and can be transmitted in real time during normal downlink data transmission.
  • the number or frequency of delay parameters for transmitting the PON can be controlled to a small level, for example, the delay parameter of the PON is sent only after the ranging is completed, or when the ONU/ONT is updated, so that the system overhead is small.
  • the embodiment of the present invention further provides a passive optical network, as shown in FIG. 14, the system includes: a main clock 141, an optical network unit/optical network terminal 142, an optical line terminal 143, and a slave clock 144;
  • the optical line terminal 143 is configured to keep time synchronization with the master clock, and after performing time synchronization, send a downlink frame and a delay configuration packet carrying the TMtli in the header, and the delay configuration packet carries the delay of the PON.
  • Parameters such as downlink delay Tdi or loop delay RTTi;
  • the optical network unit/optical network terminal 142 is configured to receive a downlink frame carrying a timestamp in a header portion and a delay configuration message carrying a delay parameter of the PON, and perform a local clock according to the time stamp TMtli and a delay parameter of the PON. Adjusting, and after maintaining time synchronization with the optical line terminal 143, instructing the slave clock to perform time synchronization; wherein, adjusting the local clock according to the time stamp TMtli and the delay parameter of the PON specifically includes: according to the Tdi or RTTi method I, or method, or method K or method L for local clock adjustment.
  • the master clock 141 can be placed at the OLT 143 and the slave clock can be set at the ONU/ONT 142.
  • the OLT 143 provides a downlink frame carrying the time stamp TMtli in the Preamble and a delay configuration packet carrying the delay parameter of the PON, after the OLT 143 maintains the time with the master clock 141.
  • the delay configuration message is a data frame based on a passive optical network control and/or management protocol; the delay of the ONU/ONT 142 receiving the downlink frame carrying the time stamp TMtli in the header portion and the delay parameter carrying the PON After the packet is configured, it is localized according to the timestamp TMtl i and the delay parameter of the PON.
  • the time synchronization is instructed from the clock 144, thereby supporting the above method and the device to maintain the master clock and the slave when the delay from the master clock to the slave clock is not the same as the delay from the clock to the master clock.
  • the time synchronization of the clock in order to achieve the time synchronization requirements.
  • the passive optical network of the embodiment 11 may also be a passive optical network of other protocols, and the specific implementation methods and manners described above still apply.
  • Embodiment 12 The embodiment 11 provides a method for time synchronization in a passive optical network.
  • the technical scenario in this embodiment is that the passive optical network in this embodiment is an EPON, and the synchronization packet is an MPCP packet (or MPCP). Frame), the delay configuration packet is also an MPCP packet.
  • the delay configuration message carries a delay parameter of the PON such as Tdi or RTTi.
  • Tdi or RTTi For the specific structure of the delay configuration message, refer to Embodiment 9 and Embodiment 10.
  • Table 16 For the synchronization, see Table 16, where TMtli (unit is Is) represents TMtli, that is, the transmission time of the jth MPCP message.
  • the synchronization message structure in the above Table 16 is a preferred embodiment of the present invention, and in actual cases, there may be other forms.
  • the method of the embodiment 12 and the embodiment 9 (the delay configuration packet carries the Tdi) and the embodiment 10 (the delay configuration packet carries the RTTi) only adds the TSj in the MPCP synchronization packet, and needs to be performed on the ONU and the ONT.
  • the TSj in the synchronization packet performs the corresponding processing.
  • the other steps are the same as those in the embodiment 9 (the delay configuration packet carries the Tdi) and the embodiment 10 (the delay configuration packet carries the RTTi), and are not described here.
  • the calculation of the time stamps TMtli and TSj of the synchronization message has been described above and will not be described again.
  • TSui — realtime TMtli+ ( TSui-TSj ) + Tdi
  • Tsui — realtime TMtli + ( Tsui-TSj ) +RTTi/2
  • Tdi and RTTi are the downlink delay of the OLT to the ONU/ONT and the loop delay between the OLT and the ONU/ONT, respectively.
  • the passive optical network as a whole is used as a clock node between the master clock and the slave clock.
  • the PTP synchronization mechanism is terminated on the input side of the OLT.
  • the output side of the ONU/ONT starts the PTP.
  • the PON control and/or management protocol is used for time synchronization. Time synchronization of the OLT and the ONU/ONT is implemented, thereby completing time synchronization of the slave clock from the master clock via the passive optical network.
  • Embodiment 13 provides a method for time synchronization in a passive optical network.
  • the technical scenario in this embodiment is that the passive optical network in this embodiment is an EPON, and the synchronization packet is an MPCP packet (or MPCP). frame).
  • the ONU and the ONT need to perform corresponding processing on the TSj in the synchronization packet, and the other steps are the same as those in Embodiment 6, and are not described here.
  • Embodiment 4 For the transmission frequency of the synchronization message, refer to Embodiment 4, and details are not described herein again.
  • the method of processing TSj in the embodiment 13 is similar to the method in the embodiment 12, and the difference mainly lies in that the OLT has already used the method of the step 21 of the embodiment 1 when calculating the TMtli. Therefore, it is necessary to further explain the specific clock adjustment method.
  • the local timestamp TSui when the ONU/ONT receives the MPCP message is the same as the TSj (unit is 16ns) carried by the MPCP message, and the MPCP report is set.
  • Tsui and TSj can be equal or not equal.
  • the ONU/ONT can be adjusted according to the configuration at the time of adjustment.
  • the Tc used by the TMtli calculation is not 0, but is satisfied.
  • the passive optical network as a whole is used as a clock node between the master clock and the slave clock.
  • the PTP synchronization mechanism is terminated on the input side of the OLT.
  • the output side of the ONU/ONT starts the PTP.
  • the PON control and/or management protocol is used for time synchronization. Time synchronization of the OLT and the ONU/ONT is implemented, thereby completing time synchronization of the slave clock from the master clock via the passive optical network.
  • the Superframe Counter of the downlink frame may be used in the downlink frame defined by the ITU-T G.984 series GPON.
  • the value of the frame is regarded as the frame number.
  • the value of the Superframe Counter of the downlink frame can be regarded as the Timestamp carried by the MPCP packet in a certain period. (time stamp). Therefore, the value of the GPON superframe counter and the time stamp in the EPON can be regarded as a frame number or a frame sequence number to some extent.
  • the technical solution provided by the embodiment of the present invention maintains the time synchronization between the master clock and the slave clock in the case where the delay from the master clock to the slave clock is different from the delay from the clock to the master clock.
  • the requirements for time synchronization of the passive optical network are achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

一种在无源光网络中时间同步的方法、 装置及无源光网络 本申请要求于 2008 年 8 月 13 日提交中国专利局、 申请号为 200810118185.0 ,发明名称为 "一种在无源光网络中时间同步的方法及装置,,的 中国专利申请的优先权。 本申请还要求于 2009年 1月 13 日提交中国专利局、 申请号为 200910003640.7 ,发明名称为 "一种在无源光网络中时间同步的方法、 装置及无源光网络" 的中国专利申请的优先权。 本申请还要求于 2009年 2月 28日提交中国专利局、 申请号为 200910126119.2 , 发明名称为"一种在无源光 网络中时间同步的方法、 装置及无源光网络" 的中国专利申请的优先权。 其 全部内容通过引用结合在本申请中。 技术领域
本发明涉及网络通信领域, 尤其涉及一种在无源光网络中时间同步的方 法装置及无源光网络。 背景技术
无源光网络( Passive Optical Network , PON )技术是一种点对多点的光 纤传输和接入技术, 在 PON***中,光线路终端( Optical Line Terminal , OLT ) 到光网络单元 /光网络终端 ( Optical Network Unit/ Optical Network Terminal , ONU/ONT ) 的传输方向为下行方向, 釆用时分复用 ( Time Division Mulipex , TDM )技术; ONU/ONT到 OLT的传输为上行方向, 釆用时分多址(Time Division Multiple Access , TDMA )技术。 在整个网络中, 根据通信关系将时 钟划分为主时钟和从时钟。 通常, 一个网络中稳定性、 精确性和确定性最优 的时钟为主时钟, 而需要与该主时钟同步的单个或多个其它的时钟则为从时 钟。为了使得 PON***中每个设备的时间均同步,所以需要保证主时钟( Master Clock, MC )和从时钟 ( Slave Clock, SC ) 的时间相同。
为了保证上述设备的时间相同, 现有技术提供了一种在无源光网络中时 间同步的方法, 该方法中发送的报文可以参见精确时间协议 ( Precision Time Protocol, PTP ) 的描述。 该方法如图 1所示, 包括如下步骤:
步骤 11、 主时钟向从时钟发送同步报文( PTP— SYNC— MESSAGE )和跟 随报文(PTP— FOLLOWUP— MESSAGE ) , 该跟随报文携带有主时钟发送该同 步才艮文的时间 TM1 ;
步骤 12、 从时钟在接收到该同步报文和跟随报文, 记录收到该同步报文 的时间 TS 1并从跟随报文中获取时间 TM1;
步骤 13、 从时钟在 TS2时向主时钟发送延时请求 4艮文
( PTP— DELAY— REQ— MESSAGE ) ;
步骤 14、 主时钟在接收到延时请求报文后, 回复延时应 艮文
( PTP— DELAY— RESP— MESSAGE ) , 并将接收到延时请求报文的时间 ΤΜ2 携带在延时应答报文内;
步骤 15、 从时钟接收到延时应答报文后, 获取时间 ΤΜ2 , 并计算出主时 钟到从时钟的延时时间 (DELAY ) ;
该步骤中的计算 DELAY的公式可以为, DELAY=[ ( TM2-TS2 ) +
( TS1-TM1 ) ]12= ( Tdl+ Td3+ Td4+ Td4+ Td2+ Tdl ) 12
其中 Tdl为主时钟到 OLT的延时时间 , Td2为 OLT到 ONU/ ONT的延时时 间; Td3为 ONU/ ONT到 OLT的延时时间; Td4为 ONU/ ONT到从时钟的延时时 间。 Td2+Td3等于逻辑环路延时,根据吉比特无源光网络( Gigabit PON, GPON ) 标准, 逻辑环路延时为 60(^s, 则 DELAY可以写成:
DELAY=Tdl+ Td4+30(^s。
步骤 16、 从时钟根据计算出的延时时间进行时钟调整。
上述方法中 DELAY的计算公式均可以参见 IEEE 1588的相关规定。
通过现有技术所提供的方法可知, 计算延时的方法是假设 PTP从主时钟 到从时钟之间的延时与从时钟到主时钟的延时是相同来进行计算的, 而在实 际情况中, 主时钟到从时钟的延时与从时钟到主时钟的延时并不相同, 这样 就使得计算出的延时并不准确, 导致从时钟与主时钟的时间不同步。 发明内容
鉴于上述现有技术所存在的问题, 本发明实施方式提供一种在无源光网 络中时间同步的方法及装置, 所述装置和方法能够使得主时钟和从时钟的时 间同步。
本发明的具体实施方式提供一种在无源光网络中时间同步的方法, 所述 无源光网络包括光线路终端 OLT和多个光网络单元 /光网络终端 ONU/ONT ,该 方法包括:
接收 OLT在与主时钟保持时间同步后发送的同步报文, 所述同步报文携 带有 OLT完成时间同步后确定的时戳 TMtli;
根据所述时戳 TMtl i对本地时钟进行调整以使 ONU/ONT与所述 OLT保持 时间同步;
在与所述 OLT保持时间同步后, 指示从时钟进行时间同步。
本发明的具体实施方式提供一种在无源光网络中时间同步装置, 该装置 包括:
接收单元, 用于接收无源光网络的光线路终端 OLT在与主时钟保持时间 同步后发送的同步 4艮文, 所述同步 4艮文携带有 OLT完成时间同步后确定的时 戳 TMtli;
调整单元, 用于根据所述时戳对本地时钟进行调整以使无源光网络的光 络终^
指示单元, 用于在与所述 OLT保持时间同步后, 指示从时钟进行时间同 步。 本发明实施例还提供了一种光线路终端 OLT , 所述 OLT包括:
同步单元, 用于与主时钟保持时间同步;
发送单元, 用于在完成时间同步后, 向光网络单元 /光网络终端 ONU/ONT 发送同步报文, 所述同步报文携带有 OLT完成时间同步后确定的时戳 TMtl i。
本发明实施例还提供了一种无源光网络, 所述无源光网络包括: 光网络 单元 /光网络终端 ONU/ONT、 光线路终端 OLT; 所述 OLT, 用于与主时钟保持时间同步, 在完成时间同步后, 向光网络 单元 /光网络终端发送携带有时戳 TMtli的同步报文, 所述时戳 TMtli表示完成 帧的帧- 所述 ONU/ONT, 用于接收所述同步报文, 并根据所述同步报文携带的时 戳 TMtli对本地时钟进行调整以使所述 ONU/ONT与所述 OLT保持时间同步, 并在与所述 OLT保持时间同步后, 指示从时钟进行时间同步。
由上述所提供的技术方案可以看出, 本发明实施例的技术方案通过接收 OLT发送的同步报文,并根据该同步报文对本地时钟进行调整, 并保持与 OLT 的时间同步后, 指示从时钟进行时间同步, 从而实现了在主时钟到从时钟的 延时与从时钟到主时钟的延时并不相同的情况下, 保持主时钟与从时钟的时 间同步, 进而达到无源光网络对时间同步的要求。 附图说明
图 1为现有技术提供的一种在无源光网络中时间同步的方法的流程图; 图 2为本发明实施例 1提供的一种在无源光网络中时间同步的方法的流程 图;
图 3为本发明实施例 2提供的一种在无源光网络中时间同步的方法的流程 图;
图 4为本发明具体实施方式提供的一种在无源光网络中时间同步的装置 的结构图;
图 5为本发明具体实施方式提供的一种光线路终端的结构图;
图 6为本发明具体实施方式提供的一种在无源光网络中时间同步的*** 的结构图;
图 7A为本发明实施例 4提供的一种在无源光网络中时间同步方法示意图; 图 7B为本发明实施例 4中 ONU/ONT调整本地时间的示意图;
图 8为本发明一实施例中提供时间同步的装置结构图;
图 9为本发明一实施例中光线路终端结构图; 图 10A、 10B为本发明实施例中无源光网络结构图;
图 11为本发明一实施例中在无源光网络时间同步的方法示意图;
图 12为本发明一实施例中无源光网络中时间同步装置结构图;
图 13为本发明一实施例中光线路终端结构图;
图 14为本发明一实施例中源光网络中时间同步的***;
图 15为本发明实施例的下行帧示意图。 具体实施方式
本发明实施方式提供了一种在无源光网络中时间同步的方法, 该方法通 过接收 OLT在与主时钟保持时间同步后发送的同步报文, 该同步报文携带有 时戳; 根据该时戳对本地时钟进行调整, 并在与该 OLT保持时间同步后, 指 示从时钟进行时间同步。 上述方法可以由 ONU/ ONT完成, 通过上述方法的技 术方案可知,本发明实施例在 OLT与主时钟保持时间同步后,进行 OLT与 ONU/ ONT时间同步,即相当于进行 ONU/ONT与主时钟进行时间同步,在 ONU/ONT 完成时间同步后, 指示从时钟与 ONU/ ONT进行时间同步, 从而实现了在主 时钟到从时钟的延时与从时钟到主时钟的延时并不相同的情况下, 保持主时 钟与从时钟的时间同步, 进而达到无源光网络对时间同步的要求。 具体实施例和附图来进一步说明。
实施例 1 : 本实施例 1提供一种在无源光网络中时间同步的方法, 本实施 例的技术场景为, 本实施例的无源光网络为 GPON, 该方法如图 2所示, 包 括如下步骤:
步骤 21、 接收 OLT在与主时钟保持时间同步后发送的同步报文, 该同步 报文携带有时戳 TMtli, 所述时戳 TMtli是 OLT完成时间同步后确定的; 该步骤中的 OLT 与主时钟保持时间同步的具体方法可以为: OLT 通过 PTP同步机制与主时钟保持时间同步, 该 PTP同步机制的具体实现方法可以 参见协议 IEEE 1588。 该步骤中的 OLT与主时钟保持同步的具体方法还可以为: 以外部时钟源 作为主时钟, 如与 OLT直接连接的 BITS或 GPS时钟源, OLT通过自身的时 间同步电路实现与主时钟的同步。
该步骤中的 TMtli, 根据不同的类型的同步报文, 在 OLT的生成方式有 所不同:
当 OLT发送单播同步报文时, TMtli=TMtl+Tdi; 其中 TMtl为发送该同 步报文的时刻, Tdi为 OLT到目的 ONU/ONT (假设为第 i个 ONU/ONT ) 的 下行延时, 当然在实际情况中, TMtli也可以为 TMtl , 而且 TMtli甚至可以 进一步表示为 TMtli=TMtl+Tdi+Tc,其中 Tc为某个根据实际需要而动态或者 静态设定的补偿值, 可以为 0。
当 OLT发送广播或组播同步才艮文时, TMtli =TMtl。
步骤 22、 根据该同步报文中的时戳 TMtli对本地时钟进行调整, 以保持 与 OLT时间同步;
该本地时钟是 OLT与从时钟的路由中的某一中间节点的时钟, 例如: 该 本地时钟可以是 ONU/ ONT的时钟; 当 OLT与主时钟保持时间同步后, ONU/ ONT进行与 OLT的时间同步处理等效于该 ONU/ ONT与主时钟进行时间同步 处理;
该步骤可以由 ONU/ ONT完成, 实现该步骤的方法可以为,
若 TMtli=TMtl+Tdi时, 通过方法 A或方法 B进行本地时钟调整, 以保 持与 OLT时间同步;
方法 A、 ONU/ ONT直接将本地时钟 TSul调整至 TMtli; 方法 B、 ONU/ ONT将本地时钟 TSul调整至 TMtli+Tpi, 其中, 上述 Tpi表示 ONU/ ONT 对同步 4艮文处理的时间。
若 TMtli=TMtl时,此时不论该同步艮文是组播艮文还是单播艮文,均通 过方法 C或方法 D进行本地时钟调整, 以保持与 OLT时间同步;
方法 C、 ONU/ ONT将本地时钟 TSul调整至 TMtl+(Tlr-Teqdi)/2; 上述 Tlr为***逻辑环路延时, Teqdi 为补偿延时, (Tlr-Teqdi)/2表示 OLT 到目的 ONU/ONT (假设为第 i 个 ONU/ONT ) 的下行延时, 即有 Tdi = (Tlr-Teqdi)/2。 当***为 GPON时, 可选 Tlr为 60(^s, Teqdi为测距完成后, OLT 通过 Ranging-time PLOAM (测距时间物理层操作和管理) 消息配置给 ONU/ ONT的补偿延时。 当***为 EPON***时, OLT可以通过下行 4艮文, 如下行 MPCP (多点控制协议)报文, 将 Tdi发送给 ONU/ONT。
方法 D、 ONU/ ONT将本地时钟 TSul调整至 TMtl+(Tlr-Teqdi)/2+ Tpi, 其中, Tpi表示 ONU/ ONT对同步报文处理的时间, (Tlr-Teqdi)/2表示 OLT到 目的 ONU/ONT (假设为第 i 个 ONU/ONT ) 的下行延时, 即有 Tdi = (Tlr-Teqdi)/2。
步骤 23、 指示从时钟进行时间同步。
该步骤的实现方法可以为, 通过 PTP同步机制进行时间同步。
本实施例 1提供的方法, 通过接收 OLT发送的同步报文, 并根据该同步报 文对本地时钟进行调整, 保持与 OLT的时间同步后, 指示从时钟进行时间同 步, 从而实现了在主时钟到从时钟的延时与从时钟到主时钟的延时并不相同 的情况下, 保持主时钟与从时钟的时间同步, 进而达到无源光网络中时间同 步的要求。
实施例 2: 本实施例 2提供一种在无源光网络中时间同步的方法, 本实施 例的技术场景为, 本实施例的无源光网络为 GPON, 该同步报文为单播报文, 本实施例同步报文携带的时戳为 TMtli=TMtl+Tdi , 该同步报文的结构如表 1 所示: Ocet Content Description
1 ONU-ID Adress to one ONU
2 Message-ID Message ID, identify SYC PLOAM
i ssssssss MSB of seconds, original timestamp i+1 ssssssss LSB of seconds, original timestamp i+2 nnnnnnnn MSB of nanoseconds, original timestamp i+3 nnnnnnnn
i+4 nnnnnnnn
i+5 nnnnnnnn LSB of nanoseconds, original timestamp
… rrrrrrrr reserved
12 rrrrrrrr reserved
表 1
上述表 1的同步报文的结构均是本发明的优选实施方式, 其中, ONU-ID 用于标识同步报文的目标 ONU/ONT , Message-ID字段的值用于标识该消息 / 报文为 SYN— PLOAM消息 /报文, 表 1中 i到 i + 5表示时戳。 在实际情况中, 还可 以有其他的方式存在,如仅仅包含"秒"字段,或者包含更多的时间单位字段等, 而且每个字段的长度可以根据实际需要任意指定, 如将整个 6个字段均作为 "秒"字段等; 或者釆用类似 GPON OMCI的报文格式等。
实施例 2提供的方法如图 3所示, 包括如下步骤:
步骤 31、 OLT通过 PTP同步机制与主时钟(图 3未画出)进行时间同步; 步骤 32、 OLT向 ONU/ONT发送同步报文(单播) , 该同步报文携带时戳 TMtli;
该步骤的 TMtli的计算方法已在上述说明, 这里就不再赘述。
该步骤中的同步报文的具体结构可以参见上述表 1中的描述。
步骤 33、 ONU/ONT根据该时戳进行本地时钟的调整;
实现该步骤的方法可以为, 由于本实施例的 TMtli=TMtl+Tdi, 所以调整
本实施例 2提供的方法, ONU/ONT通过接收 OLT发送的同步报文(单播 ) , 调整以使 ONU/ONT与所述 OLT保持时间同步 , 在保持与 OLT的时间同步后 , 从时钟通过 PTP同步机制与 ONU/ONT的本地时钟保持时间同步, 从而实现了在主时钟到从时钟的延时与 从时钟到主时钟的延时并不相同的情况下, 保持主时钟与从时钟的时间同步, 进而达到无源光网络中时间同步的要求。 由于本实施例 TMtli的计算均是在 OLT上进行的, 所以减少了 ONU/ONT的计算量, 简化了 ONU/ONT设备, 由 于在***中 OLT的数量远远小于 ONU/ONT的数量, 所以减少了***的组建成 本。
实施例 3: 本实施例 3提供一种在无源光网络中时间同步的方法, 本实施 例的技术场景为, 本实施例的无源光网络为 GPON, 同步报文为组播的同步报 文, 该同步报文携带的时戳 TMtli=TMtl , 当然在实际情况中也可以为广播或 单播的同步报文, 当为单播的同步报文时, 该同步报文的结构如上表 1所示, 当为组播或广播的同步"¾文时, 该同步"¾文的结构如表 2所示:
Figure imgf000011_0002
Figure imgf000011_0001
表 2与表 1区别在于 ONU-ID值为用于标识该消息 /报文是发送给所有 ONU/ONT的特定值, 如表 2中该特定值为 "0", 该值也可能根据需要设定, 只 要保证该值不会和单播方式重复即可。 表 2仅为本实施例的优选实施方式, 在 实际情况中, 还可以有其他的结构。 如仅仅包含"秒"字段, 或者包含更多的时 间单位字段等, 而且每个字段的长度可以根据实际需要任意指定, 如将整个 6 个字段均作为 "秒"字段等; 或者釆用类似 GPON OMCI报文类似的格式等。 本实施例 3由于 TMtli=TMtl , 所以根据实施例 1中的方法 、方法 D中的任意一 种方法进行本地时钟调整,其余的均和实施例 2的步骤相同,这里就不再赘述。
本实施例 3提供的方法, ONU/ONT通过接收 OLT发送的同步报文(组播 ) ,
OLT保持时间同步, 在保持与 OLT的时间同步后, 从时钟通过 PTP同步机制与 ONU的本地时钟保持时间同步, 从而实现了在主时钟到从时钟的延时与从时 钟到主时钟的延时并不相同的情况下, 保持主时钟与从时钟的时间同步, 进 而达到无源光网络中时间同步的要求。
本发明具体实施方式还提供一种在无源光网络中时间同步的装置, 该装 置如图 4所示, 包括: 接收单元 41 , 用于接收 OLT在与主时钟保持时间同步后 发送的同步报文, 所述同步报文携带有时戳 TMtli; 调整单元 42, 用于根据接 收单元 41接收的同步报文中的时戳对本地时钟进行调整; 指示单元 43 , 用于 在调整单元 42完成本地时钟调整后, 指示从时钟进行时间同步。
上述装置中的调整单元 42可以包括:
第一时间调整单元 421 , 用于在接收单元 41接收到的同步报文中的
TMtli=TMtl+Tdi时, 将本地时钟调整至 TMtli或 TMtli+ Tpi; 其中 TMtl为发 送所述同步 4艮文的时间, Tdi为 OLT到第 i个光网络单元 /光网络终端 ONU/ONT 的下行延时, Tpi为处理所述同步 ^艮文的处理延时;
第二时间调整单元 422, 用于在接收单元 41接收到的同步报文中的
TMtli=TMtl时, 将本地时钟调整至 TMtl+(Tlr-Teqdi)/2或 TMtl+(Tlr-Teqdi)/2+ Tpi; 其中, Tpi表示 ONU/ ONT对同步报文处理的时间, (Tlr-Teqdi)/2表示 OLT 到 ONU/ONT (假设为第 i个) 的下行延时, 即有 Tdi=(Tlr-Teqdi)/2。 当无源光 网络为 GPON***时, ONU/ONT可以通过 Tdi=(Tlr-Teqdi)/2获取 Tdi , 其中 Tlr 为***逻辑环路延时, Teqdi为补偿延时。
上述装置的指示单元 43还可以用于指示从时钟通过 PTP同步机制保持与 所述本地时钟的时间同步。 本实施方式提供的装置, 接收单元 41接收 OLT发 送的同步报文后, 调整单元 42根据该同步报文中的时戳对本地时钟进行调整 以使 ONU/ONT与所述 OLT保持时间同步, 在保持与 OLT的时间同步后,指示 单元 43指示从时钟通过 PTP同步机制与本地时钟保持时间同步,从而实现了在 主时钟到从时钟的延时与从时钟到主时钟的延时并不相同的情况下, 保持主 时钟与从时钟的时间同步, 进而达到无源光网络对时间同步的要求。
本发明具体实施方式还提供一种光线路终端, 该设备如图 5所示, 包括: 同步单元 51 , 用于与主时钟保持时间同步; 发送单元 52, 用于在同步单元 51 完成时间同步后, 发送同步报文, 所述同步报文携带有时戳 TMtli。
本发明具体实施方式提供的设备, 同步单元 51在与主时钟保持时间同步 后, 发送单元 52发送携带有时戳 TMtli的同步报文, 从而支持了上述方法及装 置在主时钟到从时钟的延时与从时钟到主时钟的延时并不相同的情况下, 保 持主时钟与从时钟的时间同步, 进而达到无源光网络中时间同步的要求。
本发明具体实施方式还提供一种在无源光网络中时间同步的***, 该系 统如图 6所示, 包括: 主时钟 61、 光网络单元 /光网络终端 62、 光线路终端 63 和从时钟 64;
其中, 光线路终端 63 , 用于与所述主时钟保持时间同步, 并完成时间同 步后, 发送同步报文, 所述同步报文携带有时戳 TMtli;
光网络单元 /光网络终端 63用于接收所述同步报文,并根据所述时戳 TMtli对本 地时钟进行调整, 并在与所述光线路终端保持时间同步后, 指示从时钟进行 时间同步。
在本发明的另一个实施例中 (图中未示出) , 主时钟 61可以设置于光线 路终端 63 , 从时钟 64可以设置于光网络单元 /光网络终端 62。
本发明具体实施方式提供的***, 光线路终端 63在与主时钟 61保持时间 同步后,发送携带时戳 TMtli的同步报文, 光网络单元 /光网络终端 63在接收到 该同步报文后, 根据该同步报文中的时戳对本地时钟进行调整后, 指示从时 钟进行时间同步。 从而实现了在主时钟到从时钟的延时与从时钟到主时钟的 延时并不相同的情况下, 保持主时钟与从时钟的时间同步, 进而达到无源光 网络对时间同步的要求。
实施例 4: 实施例 4提供一种在无源光网络中时间同步的方法, 本实施例 的技术场景为 GPON, 同步报文为单播报文或组播 /广播报文。 考虑到带宽利 用效率等因素, 可优先使用组播 /广播报文。 所述的同步报文携带时戳 TMtli=TMtl , 指示上一个下行帧的发送时刻 (准确时间) 。 当同步报文为单 播报文时, 该同步报文如表 3所示, 表 3形式的同步报文中包括终端标识 ONU-ID和消息标识 Message-ID , ONU-ID用于标识每一个目标 ONU/ONT , Message-ID用于标识该消息是用于同步的物理层操作和管理(SYNC Physical Layer Operation and Management, SYNC PLOAM ) 消息; 当同步才艮文为组播 / 广播报文时, 该同步报文如表 4所示, 表 4形式和表 3基本一样, 区别在于 ONU-ID字段为预定值, 表示该消息是提供给所有 ONU/ONT。
Figure imgf000014_0002
Figure imgf000014_0001
Ocet Content Description
1 0 Adress to al l ONU
2 Message-ID Message ID, identify SYNC PLOAM
···
MSB of senconds, timestamp of
i SSSSSSSS
previous downstream loam
i+1 SSSSSSSS
i+2 SSSSSSSS
LSB of seconds, timestamp of
i+3 SSSSSSSS
previous downstream loam
··· rrrrrrrr Reserved
12 rrrrrrrr Reserved
Figure imgf000015_0001
上述表 3和表 4的同步报文的结构均是本发明的优选实施方式, 在实际情 况中, 还可以有其他形式方式的存在, 如包含更多的时间单位字段。 此外, 上述表 3和表 4的同步报文也可以釆用类似 GPON OMCI报文的格式。
实施例 4提供的方法如图 7所示, 包括如下步骤:
步骤 71、 OLT与主时钟进行时间同步;
OLT与主时钟进行时间同步方法可以为, OLT通过 PTP同步机制与主时钟 保持时间同步, 该 PTP同步机制的具体方法可以参见协议 IEEE 1588。
OLT与主时钟进行时间同步的方法还可以为, 以外部时钟源作为主时钟, 如与 OLT直接连接的 BITS或 GPS时钟源, OLT通过自身的时间同步电路实现与 主时钟的同步。
步骤 72、 生成同步报文, 该同步报文携带 OLT与主时钟保持时间同步后 确定的时戳 TMtli; 具体的, OLT获得发送第 j个下行帧的帧头时 OLT的时间, 即第 j个下行帧的帧头发送时间, OLT将第 j个下行帧的帧头发送时间本身或根 据第 j个下行帧的帧头发送时间和 PON的延时参数计算得到的时间作为时戳 TMtli生成同步报文。
时戳 TMtli的计算方法已在上述说明, 不再赘述。 值得注意到是, 此时的 Tc为一个不为零的动态或静态设定的数值, 具体取值方法详见下文的详细说 明。 同步报文可以是单播报文、 或组播报文、 或广播报文。
同步报文的具体结构可以参见表 3或表 4。 实际实施过程中也可以釆用表 1 或表 2中的同步 ^艮文的结构。
步骤 73、 OLT将同步报文承载在下行帧中发送给 ONU/ONT, 其中, 携带 第 j个下行帧对应的时戳 TMtli的同步报文承载在第 j+N个下行帧中发送给 ONU/ONT , 时戳 TMtli表示第 j个下行帧的帧头发送时间或根据第 j个下行帧和 PON的延时参数计算得到的时间, N为大于等于 1的整数, 此时 Tc为 0; 或者携 带第 j个下行帧对应的时戳 TMtli的同步报文承载在第 j-N个下行帧中发送给 ONU/ONT , 时戳 TMtli表示第 j个下行帧的帧头发送时间或根据第 j个下行帧和 PON的延时参数计算得到的时间, N为大于等于 1的整数, 此时 Tc满足 Tc=125us*N, 其中 125us为 GPON的帧周期。
同步"¾文的发送频率 (相邻两个同步 ^艮文的发送时间间隔或帧间隔或长 度间隔)可配置, 具体的, 同步报文的发送频率可以由网元管理***配置到 OLT中, 也可以由芯片出厂时固化在其中, 同步报文的发送频率的配置方法, 不属于本发明的范围, 此处不再赘述。
步骤 74、 ONU/ONT接收一组下行帧,根据第 j + N或者 j-N个下行帧中的同 步报文携带的时戳 TMtl i计算 OLT的时钟和 ONU/ONT的时钟之间的时间偏差 Offset, 利用所述时间偏差 Offset对本地时间进行调整以使 ONU/ONT与所述 OLT保持时间同步。
其中, 利用第 j个下行帧的帧头接收时间 TMuli, 第 j个下行帧的帧头的帧 头发送时间 TMtli以及 OLT到 ONU/ONT的下行延时 Tdi计算得到 OLT的时钟和 ONU/ONT的时钟之间的时间偏差 Offset , 即 Offset= TMtli + Tdi-TMuli。其中, 可以在计算 OLT的时钟和 ONU/ONT的时钟之间的时间偏差 Offset之前通过检 测接收下行帧获得第 j个下行帧的帧头接收时间 TMuli; 也可以通过检测下行 帧中的同步报文获得同步报文的接收时间, 利用同步报文的接收时间、 同步 报文中携带的时戳 TMtli 计算获得第 j个下行帧的帧头接收时间 TMuli; 上述 ONU/ONT可以根据配置, 记录一个或多个下行帧的帧头接收时间
TMuli,如可以记录每个下行帧的帧头接收时间; 也可以根据需要记录特定下 行帧的的帧头接收时间。
ONU/ONT可以通过以下步骤实现与 OLT的同步 ^艮文的同步:
步骤 74-1、 ONU/ONT接收 OLT的下行帧, 进入 HUNT状态;
步骤 74-2、 ONU/ONT接收 OLT的同步报文, 进入 SYNC状态;
步骤 74-3、 ONU/ONT根据配置检测是否在第 N帧后再次接收到同步报文, 并根据配置或***要求对检测结果进行处理;
ONU/ONT可以在连续 mxN帧后仍然检测不到同步报文时, ONU/ONT进 入 HUNT状态。
ONU/ONT还可以不理会是否周期性检测到同步报文, 始终处于 SYNC状 态 , 直到***通过配置通道指示 ONU/ONT重新返回 HUNT状态;
ONU/ONT还可以始终处于 SYNC状态, 直到被外部复位。 其中, 具体的 外部复位方法可以参见现有方式, 此处不再赘述。
下面, 假设 ONU/ONT进行第 k次时间调整, k为大于等于 1的整数。
ONU/ONT可以利用第 j+N或者第 j-N个下行帧中的同步报文包含的时戳 TMtli以及第 j个下行帧的帧头接收时间 TMuli计算 OLT时钟与 ONU/ONT时钟 之间第 k次的时间偏差 Offset, 利用第 k次的时间偏差 Offset对本地时钟进行调 整。
每一次的时间偏差 ( Offset ) 通过如下公式计算: Offset=TMtli + Tdi-TMuli, 其中, Tdi=(Tlr-Teqdi)/2。
利用第 k次的时间偏差 Offset对本地时钟进行调整釆用如下公式: TMu2i=TMu2i+Offset。 其中, 公式右边的 TMu2i为调整时刻的 ONU/ONT本地 时间, 公式左边的 TMu2i表示调整后的准确时间。
在本发明的另一实施例中, ONU/ONT还可以根据配置的策略或规则调整 本地时间, 如果 k = 1 , 可以直接利用第 k次获得的时间偏差对本地时钟进行调 整; 如果 k>l , 利用第 k次的时间偏差和第 1 ~ 1^次中一次或多次的时间偏差进 行统计得到校准的时间偏差, 并利用校准的时间偏差对本地时钟进行调整。 这里釆用校准的时间偏差可以减少误差, 提高精度。 如图 7B的步骤 74-20到步 骤 74-24所示为统计得到校准的时间偏差的一个示例: k次) ;
步骤 74-21、 判断 ONU/ONT是否是第一次进行时间调整;
步骤 74-22、 如果 ONU/ONT是第 1次进行时间调整, 则利用第一次获得的 时间偏差 Offset执行本地时间调整, 即 TMu2i=TMu2i+offset;
步骤 74-23、 如果 0NU/0NT不是第 1次进行时间调整, 对多次时间偏差
Offset进行统计得到统计值以校准时间偏差, 即利用第 k次的时间偏差和第 1 ~ k次中一次或多次的时间偏差进行统计得到统计值, 该统计值为校准的时间偏 差;
统计的方式可以釆用多次时间偏差的平均值、 均方值等, 如 ONU/ONT计 算 k次(k为大于 1的整数) 的 Offset的平均值 Offset— avg。
步骤 74-24、 利用多次时间偏差的统计值, 如 Offset的平均值 Offset— avg调 整本地时间, TMu2i=TMu2i+Offset— avg。
上述步骤 74-20到步骤 74-24 , 是本发明实施例提供的按策略进行调整的
0NU/0NT本地时钟的一个示例, 上述方法的执行步骤可以根据需要调整, 如 先判断是否是第一次进行时间调整, 再根据判断结果计算时间偏差。
步骤 75、 指示 0NU/0NT的从时钟进行时间同步。
步骤 76、 使从时钟与 0NU/0NT的本地时钟保持时间同步。
ONU/ONT可以通过 PTP机制进行时间同步, 或者指示连接于 ONU/ONT 的从时钟设备进行时间同步, 或者指示连接于 ONU/ONT的需要时间同步的设 备时间已经同步。
本实施例 4提供的方法, 实现了主时钟到从时钟的延时与从时钟到主时钟 的延时并不相同的情况下, 保持主时钟与从时钟的时间同步, 进而达到时间 同步的要求。
实施例 5: 本实施例 5提供一种在无源光网络中时间同步的方法, 本实施 例的技术场景为, 本实施例的无源光网络为 GPON , 同步报文为单播或者组播 /广播的同步报文, 该同步报文携带时戳 TMtli=TMtl和帧序列号 Fsn=Superframe_counterj-i 或者 Fsn=superframe— counterj+1 ( j为大于 1的整数 , 1 为大于 1的整数) , 即第 j个下行帧对应同步时戳 TMtli承载在第 j+1个下行帧或 者第 j-1个下行帧中,所述时戳 TMtli指示帧序列号为 Fsn的下行帧的帧头发送时 间。 其中 Superframe— counter的定义参见 ITU G.984.3的有关章节。 播或广播) 中增加了帧序列号 Fsn, 在 ONU/ONT端需要对同步报文中的帧序 列号 Fsn进行相应处理, 其余的步骤的方法均与实施例 4相同, 此处不再赘述。 同步报文中的时戳 TMtli和 Fsn的计算已在上述说明, 不再赘述。
同步报文的发送频率参见实施例 4 , 不再赘述。
下面进一步说明 ONU/ONT端对同步报文中的帧序列号 Fsn进行相应处 理, 可以釆用方法 E、 或方法 F、 或方法 G、 或方法 H实现本步骤。
方法 E包括:
步骤 74-E1、 接收一组下行帧 , 记录每个下行帧的帧头接收时间 TMuli , 提取并记录标识每个下行帧的帧序列号 Fsnrl和帧头接收时间 TMuli的对应关 系; 其中,每个下行帧的帧头接收时间 TMuli和帧序列号 Fsnrl的对应关系可以 作为一个表项存储到一个表中。
步骤 74-E2、 接收携带时戳 TMtli和帧序列号 Fsn的同步报文;
步骤 74-E3、 根据同步报文中的 Fsn搜索记录中帧序列号为 Fsn对应的帧头 接收时间 TMuli, 即 Fsnrl = Fsn时的 TMuli;
步骤 74-E4、 输出 TMtl i和 TMul i。
方法 F包括: 步骤 74-Fl、 接收一组下行帧, 按照配置记录特定下行帧的帧头接收时间 TMuli,提取并记录相应的下行帧的帧序列号 Fsnrl,这里的特定下行帧指的是 需要记录的下行帧;
步骤 74-F2、 接收特定下行帧之后某一下行帧中的同步报文, 提取同步报 文携带的时戳 TMtli和帧序列号 Fsn;
步骤 74-F3、 根据 Fsn搜索记录中帧序列号为 Fsn的下行帧的帧头接收时间 TMuli, 即 FsnrHFsn时的 TMuli;
步骤 74-F4、 输出 TMtl i和 TMul i。
方法 G包括:
步骤 74-G1、 接收一下行帧, 记录标识该下行帧的帧序列号 Fsnrl;
步骤 74-G2、接收该下行帧中的同步报文,提取同步报文携带的时戳 TMtli 和 Fsn, 以及记录接收到同步报文的时间 TMu3i;
步骤 74-G3、 根据标识该下行帧的帧序列号 Fsnrl、 该下行帧中同步报文携 带的帧序列号 Fsn和接收到同步报文的时间 TMu3i计算帧序列号为 Fsn的下行 帧的帧头接收时间 TMuli;
步骤 74-G4、 输出 TMtli和 TMuli;
帧序列号为 Fsn的下行帧的帧头接收时间 TMuli可以通过以下方法进行计 算获取,
TMuli=TMu3i-(Fsnrl-Fsn)* 125 s-Offsetsynpacket*Tbit
其中, Offsetsynpacket为同步报文在下行帧中的偏移, 单位为 bit; Tblt为下行 帧中 1个比特的时间, 对于下行速率为 2.488G bit/s的 GPON下行帧, !^为 1/2.488 ns , 约为 0.4ns。
方法 H包括:
步骤 74-Η1、 接收一下行帧, 并记录该下行帧的帧头接收时间 TMu3i和帧 序列号 Fsnrl;
步骤 74-H2、接收该下行帧中的同步报文,提取同步报文携带的时戳 TMtli 和帧序列号 Fsn;
步骤 74-H3、 根据该下行帧的帧头接收时间 TMu3i和帧序列号 Fsnrl, 以及 该下行帧中同步报文携带的帧序列号 Fsn计算帧序列号为 Fsn的下行帧的帧头 接收时间 TMuli;
步骤 74-H4、 输出时戳 TMtli和 TMuli;
以 GPON***为例, 该步骤中, 帧序列号为 Fsn的下行帧的帧头接收时间 TMul i的可以通过以下方法计算得到:
TMuli=TMu3i-(Fsnrl-Fsn)*125
上述公式中, 125us为 GPON的帧周期。
方法 G和方法 H中, 计算 TMuli的时刻可以根据配置进行, 即既可以在接 收到同步报文时进行, 也可以根据配置在某个需要进行时钟调整的时刻进行。 假设需要调整时钟的时刻用本地时间 TMu4i表示,且此时对应的下行帧的序号 为 Fsnui, 且该时刻与该对应下行帧的偏移为 Offset— syn, 则
TMuli=TMu4i-(Fsnui-Fsn)*125us-Offset_syn*Tblt
本实施例 5提供的方法 G和方法 H可以降低同步报文发送时间对严格时序 的依赖, 从而简化无源光网络实现时间同步的要求。
本发明的具体方式还提供一种在无源光网络中实现时间同步的装置 2 , 该 装置可以设置于 ONU/ONT等光网络终端设备中, 该时间同步的装置 2耦合从 时钟, 在与光线路终端的主时钟保持时间同步后从接收单元接收到的报文中 解析出同步报文携带的时戳 TMtli对从时钟进行调整,该装置如图 8所示,包括: 时间获取单元 81 , 用于在下行接收过程中检测接收到的一个或多个下行 帧, 根据检测结果获取接收到第 j个下行帧的帧头接收时间; 时间获取单元 81 还提取第 j + N或者第 j-N个下行帧中同步报文携带的时戳 TMtli, 其中, j和 N都 为大于等于 1的整数, 所述时戳 TMtli表示发送第 j个下行帧时 OLT的时间, 或 第 j个下行帧的帧头发送时间和 OLT到 ONU/ONT (第 i个) 的下行延时之和; 调整单元 82 , 用于根据时间获取单元 81获取的第 j个下行帧的帧头接收时 间和第 j+N或者第 j-N个下行帧中同步报文携带的时戳 TMtli对本地时钟进行调 整以使 OLT的时钟和 ONU/ONT的时钟保持时间同步;
指示模块 83 , 用于在调整单元 82对本地时钟进行调整后指示从时钟与本 地时钟保持同步, 如指示从时钟通过 PTP同步机制与本地时钟保持同步。 指示 时间获取单元 81包括: 时戳获取模块 812, 用于检测下行帧, 从下行帧的 同步报文中提取时戳 TMtli; 帧头接收时间获取模块 810, 用于检测下行帧, 根 据检测结果获取下行帧的帧头接收时间, 所获取的帧头接收时间包括第 j个下 行帧的帧头接收时间。 时戳获取模块 812和帧头接收时间获取模块 810可以分 别独立执行操作, 也可以在控制模块 816的控制下执行操作, 另外时戳获取模 块 812还可以将时戳 TMtli提供给帧头接收时间获取模块 810的帧头接收时间确 定模块 8106进行计算。 下面结合上述方法对帧头接收时间获取模块 810的模块 组成进一步说明。
如果釆用方法 E, 时间同步的装置 2还包括存储模块(图从未示出) 。 帧 头接收时间获取模块 810的各模块功能具体可以包括: 帧头检测模块 8102在下 行接收过程中检测并记录每一个下行帧的帧头接收时间 TMuli,帧序列号检测 模块 8104检测同步 "^文中的帧序列号 Fsn和标识下行帧的帧序列号 Fsnrl, 存储 模块存储帧序列号 Fsnrl和帧头接收时间的对应关系, 其中, 每一个下行帧的 Fsnrl和帧头接收时间的对应关系可以作为一个表项存储在表中; 帧头接收时 间确定模块 8106根据帧序列号检测模块 8104检测到的 Fsn搜索存储模块中帧 序列号 Fsnrl等于 Fsn (即 Fsnrl = Fsn ) 时的 TMuli。
如果釆用方法 F, 时间同步的装置 2还包括存储模块(图从未示出) 。 帧 头接收时间获取模块 810的各模块功能具体可以包括: 帧头检测模块 8102按照 配置检测并记录特定下行帧的帧头接收时间 TMuli , 帧序列号检测模块 8104 检测标识下行帧的帧序列号 Fsnrl和同步报文中的帧序列号 Fsn, 存储模块存储 所述帧序列号 Fsnrl和下行帧的帧头接收时间的对应关系, 帧头接收时间确定 模块 8106根据所述 Fsn搜索存储模块中帧序列号 Fsnrl等于 Fsn (即 Fsnrl = Fsn ) 时的 TMuli。
如果釆用方法 G,帧头接收时间获取模块 810的各模块功能具体可以包括: 帧序列号检测模块 8104检测标识该下行帧的帧序列号 Fsnrl和该下行帧中同步 报文携带的帧序列号 Fsn, 同步报文接收时间检测模块 8108检测并记录接收到 同步报文的时间 TMu3i,帧头接收时间确定模块 8106根据所述标识该下行帧的 帧序列号 Fsnrl、 该下行帧中同步报文携带的帧序列号 Fsn和所述接收到同步报 文的 TMu3i计算帧序列号为 Fsn的下行帧的帧头接收时间 TMuli。
如果釆用方法 F, 帧头接收时间获取模块 810的各模块功能具体可以包括: 帧序列号检测模块 8104检测标识该下行帧的帧序列号 Fsnrl和该下行帧中同步 报文携带的帧序列号 Fsn; 帧头检测模块 8102检测并记录接收到该下行帧的帧 头接收时间 TMu3i;帧头接收时间确定模块 8106根据所述标识该下行帧的帧序 列号 Fsnrl、 该下行帧中同步报文携带的帧序列号 Fsn和所述接收到该下行帧的 帧头接收时间 TMu3i计算帧序列号为 Fsn的下行帧的帧头接收时间 TMuli。
调整单元 82具体可以包括:
时间偏差计算模块 821 , 用于根据时间获取单元 81获取的下行帧的帧头接 收时间 TMuli和时戳 TMtli计算 OLT的时钟和 ONU/ONT的时钟之间的时间偏 差 Offset;
时间偏差校准模块 822 , 与时间偏差计算模块 821耦接, 用于对时间偏差 计算模块 821计算的时间偏差 Offset进行校准, 如对时间偏差计算模块 821提供 的多次计算的时间偏差进行统计得到统计值, 将统计值作为校准的时间偏差; 时间调整单元 823 , 用于将时间偏差计算模块 821或时间偏差校准模块 822 提供的时间偏差调整本地时钟; 时间调整单元 823可以直接釆用上述第 k次计 算得到的时间偏差 Offset对本地时钟进行调整。
本发明具体的实施方式还提供一种光线路终端, 该光线路终端如图 9所 示, 该光线路终端与时钟源保持时间同步, 该时钟源可以为与光线路终端连 接的外部时钟源, 也可以为内置于光线路终端的内部时钟源, 该光线路终端 包括:
同步单元 91 , 用于与时钟源保持时间同步;
发送单元 93 , 用于在完成时间同步(即与时钟源保持时间同步)后, 向 光网络单元 /光网络终端 ONU/ONT发送同步报文,所述同步报文携带有完成时 间同步后确定的时戳 TMtli。
其中, 发送单元 93具体包括: 时间获取模块 931、 报文生成模块 932和下 行发送模块 933; 其中,
时间获取模块 931 , 用于在完成时间同步后, 根据下行发送过程中 OLT的 时间确定的时戳 TMtli , 所述根据下行发送过程中 OLT的时间包括: 发送所述 同步报文时 OLT的时间, 或发送第 j个下行帧的帧头时 OLT的时间, 或发送承 载有所述同步报文的第 j + N或者第 j-N个下行帧的帧头时 OLT的时间, 第 j + N 或者第 j-N个下行帧在第 j个下行帧之后或之前发送, j和 N都为大于等于 1的整 数;
报文生成模块 932, 用于基于无源光网络控制和 /或管理协议生成同步报 文, 所述同步报文中携带所述时戳 TMtli, 并将所述同步报文通过所述发送单 元发送给 ONU/ONT;
下行发送模块 933 , 用于将报文生成模块 932生成的携带时戳 TMtli的同步 报文通过光传输通道发送给 ONU/ONT。
上述 PON的控制和 /或管理协议包括 PON的 OAM协议, 如 GPON的 OMCI 协议, PLOAM协议, 或者 EPON的多点控制协议 ( Multi-Point Control Protocol, MPCP )等。
报文生成模块 932还可以将 PON的延时参数封装到同步报文或延时配置 报文中, 其中, PON的延时参数包括 OLT到 ONU/ONT的下行延时或 OLT和 ONU之间的环路延时, 如按表 6格式中在 OLT需要发给第 i个 ONU/ONT的同步 报文中封装有 OLT到第 i个 ONU/ONT的下行延时, 按表 7格式在 OLT需要发给 第 i个 ONU/ONT的同步报文中封装有 OLT和第 i个 ONU/ONT之间的环路延时。
的时间本身,或发送同步报文时 OLT的时间与 OLT到第 i个 ONU/ONT的下行延 时之和, 或发送下行帧的帧头时 OLT的时间 (如第 j个下行帧的帧头发送时间 或第 j + N或者第 j-N个下行帧的帧头时 OLT的时间 ) , 或发送下行帧的帧头时 OLT的时间与 OLT到第 i个 ONU/ONT的下行延时之和等等。
上述第 j + N或者第 j-N个下行帧可以是不包含数据的控制帧, 也可以是承 载有数据的数据帧。 如果第 j + N或者第 j-N个下行帧承载有数据, 下行帧包括 帧头 Head部分和用于承载数据的数据净荷 Payload部分, 此时同步报文优选设 置于下行帧的帧头 Head部分。
本发明的具体实施方式还提供一种无源光网络,该无源光网络如图 10A和 光网络终端 ONU/ONT 102、 与作为主时钟的时钟源连接的光线路终端 OLT 103。
其中, OLT 103用于与所述主时钟保持时间同步, 在完成时间同步后, 发 送第 j个下行帧并记录第 j个下行帧的帧头发送时间或者计算在发送第 j-N个下 行帧时计算第 j个下行帧的帧头发送时间, 根据第 j个下行帧的帧头发送时间生 成同步报文,并在一个需要发送同步报文的下行帧(第 j+N个或者第 j-N下行帧) 中发送该同步报文, 其中, 同步报文携带的时戳 TMtli可以为第 j个下行帧的帧 头发送时间, 也可以是根据第 j个下行帧的帧头发送时间计算得到的时间, j、 N为大于等于 1的整数;
ONU/ONT 102用于接收一组下行帧, 这一组下行帧包括第 j个下行帧和第 j+N个下行帧, 根据第 j个下行帧和第 j + N或者第 j-N个下行帧中一个下行帧的 帧头接收时间和第 j+N或者第 j-N个下行帧中同步报文携带的时戳 TMtli对本地 时间进行调整, 使得 ONU/ONT 102与 OLT 103保持时间同步, 并在与 OLT 103 保持时间同步后指示从时钟进行时间同步。
在图 10A中主时钟为连接到 OLT的外部时钟源, 从时钟为连接到 ONU/ONT的外部时钟源。 图 10B和图 10A的区别在于 ONU/ONT 102,包括从时 钟 104'和时间同步装置 106' , OLT 103'包括主时钟 10Γ和时间同步装置 105'。 其中, 时间同步装置 105'和图 10A中 OLT 103的同步功能一致, 时间同步装置 106,和图 10A中 ONU/ONT 102同步功能一致, 在此不再赘述。
本发明具体实施方式提供的无源光网络, 能够实现在主时钟到从时钟的 延时与从时钟到主时钟的延时并不相同的情况下, 保持主时钟与从时钟的时 间同步, 进而达到时间同步的要求。
实施例 6: 本实施例 6提供一种在无源光网络中时间同步的方法, 本实施 例的技术场景为, 本实施例的无源光网络为 EPON, 该同步报文为基于 MPCP 的控制报文(MPCP报文也可叫做 MPCP帧) , 本实施例的同步报文携带时戳 TMtli=TMtl+Tdi,该同步报文釆用 "同步 MPCP报文"(报文相关命名请参见表 如表 5到表 9所示的 MPCP同步报文就是沿用了 GATE MPCP报文的结构。如表 5 到表 9所示, 在 GATE报文的中增加 TS/Dealy字段(1个字节长)指示是否该 MPCP报文是否携带时戳 TMtli和延时 Tdi或者 RTTi。 ONU/ONT接收到该同步 MPCP报文时, 就可以根据 TS/Delay字段, 占用 Pad字段(根据 EPON标准, 该 字段以全 0填充 ) 的取值判断该报文是否携带时戳 TMtli和 /或延时 Tdi或 RTTi, 从而判断是否需要进行同步操作。 表 5到表 9的 TS/Delay字段的具体含义见表 10, 相应 MPCP报文命名也请参见表 10。 关于表 5到表 10中的具体的字段含义 在本实施例以及后续实施例中详细说明, 不再赘述。
Figure imgf000027_0001
表 5 同步 MPCP报文
Figure imgf000027_0002
表 6 同步&下行延时配置 MPCP报文
Figure imgf000027_0003
表 7 同步&环路延时配置 MPCP报文
Figure imgf000028_0001
表 8 下行延时配置 MPCP报文
Figure imgf000028_0002
表 9 环路延时配置 MPCP报文
Figure imgf000028_0003
表 10 字段定义与报文命名
上述表 5的 MPCP报文的结构是本发明在不新增 MPCP报文操作码前提下 的优选实施方式, 在实际情况中, 还可以有其他的形式存在, 如同步 4艮文的 Opcode字段的值可以是其他数值, 即新定义一个操作码 Opcode, 如 00-0A。 此 外, 实际情况中, 所述 MPCP报文还可以是其他类型的报文, 即 Length/Type 为其他数值, 如 88-09 ( EPON OAM报文), 或者 88-88 (示例, 表示某一新增 定义值, 无固定值, 根据实际情况灵活定义)等。
本实施例 6釆用同步 MPCP报文中携带时戳, 即将 TS/Dealy字段设置为 "02", TMtli字段为时戳字段, 携带所述时戳 TMtli。 本实施例 6提供的方法可 以与实施例 2相同, 此处不再赘述。
本实施例 6提供的方法, ONU通过 OLT接收发送的同步报文, 并根据实施
主时钟到从时钟的延时与从时钟到主时钟的延时并不相同的情况下, 保持主 时钟与从时钟的时间同步, 进而实现时间同步的要求。
实施例 7: 本实施例 7提供一种在无源光网络中时间同步的方法, 本实施 例的无源光网络为 EPON, 该同步报文为包括时戳 TMtli字段和下行延时 Tdi字 段的用于延时配置的 MPCP报文, 即"同步&下行延时配置 MPCP报文", 本实 施例用于延时配置的 MPCP报文的时戳 TMtli字段携带时戳 TMtli=TMtl , 下行 延时 Tdi字段携带 OLT到 ONU/ONT的下行延时 Tdi。 所述时戳 TMtli指示发送 "同步 &下行延时配置 MPCP才艮文 "时 OLT的时间。 "同步 &下行延时配置 MPCP 报文,,的结构如表 6所示。
本实施例 7的方法与实施例 2的方法仅在步骤 33的具体方法不一样, 本实 施例 7由于 TMtli=TMtl ,且同时携带下行延时 Tdi, 所以可以参考实施例 1中的 方法 C、 方法 D中的任意一种进行本地时钟调整, 只是所使用的时间以及延时 信息仅仅需要通过所述的同步报文中提取。 其余的步骤均与实施例 2相同, 不 再赘述。
本实施例 7提供的方法, ONU通过接收 OLT发送的同步报文, 并根据实施
在主时钟到从时钟的延时与从时钟到主时钟的延时并不相同的情况下, 保持 主时钟与从时钟的时间同步, 进而实现时间同步的要求。 实施例 8: 本实施例 8提供一种在无源光网络中时间同步的方法, 本实施 例的无源光网络为 EPON, 同步报文为"同步&环路延时配置 MPCP报文", 同 步报文携带时戳 TMtli=TMtl和 OLT到 ONU/ONT (第 i个) 的环路延时 RTTi。 所述的 RTTi通过 IEEE 802.3ah定义的测距过程在 OLT中获得,具体测距过程参 见 IEEE 802.3ah相关章节, 不再赘述。 所述的同步报文参见表 7。
本实施例 8的方法与实施例 7的主要区别下行延时 Tdi需要通过 Tdi=RTTi/2 计算得到。 本实施例 8的方法的其他部分与实施例 7相同, 此处不再赘述。
本实施例 8提供的方法, ONU通过接收 OLT发送的同步报文, 并根据实施 例 7中提供的方法调整本地时钟, 实现本地时钟与 OLT时钟时间同步, 并保持 步, 从而实现了在主时钟到从时钟的延时与从时钟到主时钟的延时并不相同 的情况下, 保持主时钟与从时钟的时间同步, 进而实现时间同步的要求。
实施例 9: 本实施例 9提供一种在无源光网络中时间同步的方法, 本实施 例的无源光网络为 EPON, 本实施例的时戳 TMtli和下行延时 Tdi分别通过同步 MPCP报文(表 5 )和下行延时配置 MPCP报文(表 8 )携带, 其中, 同步报文 为携带时戳 TMtli=TMtl的 MPCP报文, 即"同步 MPCP报文", 延时配置报文为 携带下行延时 Tdi 的 MPCP报文, 即"下行延时配置报文"。 方法由于使用延时配置报文从 OLT传送 OLT到 ONU/ONT (第 i个)的下行延时 Tdi, 所以需要通过延时配置报文提取 Tdi, 并根据时戳 TMtli和 Tdi进行本地时 钟调整, 其余的均和实施例 7相同。
本实施例 9提供的方法, ONU通过接收 OLT发送的同步报文和延时配置报 文, 并根据实施例 7中提供的方法调整本地时钟, 实现本地时钟与 OLT时钟时 间同步,并保持与 OLT的时间同步后,从时钟通过 PTP同步机制与 ONU的本地 时钟保持时间同步, 从而实现了在主时钟到从时钟的延时与从时钟到主时钟 的延时并不相同的情况下, 保持主时钟与从时钟的时间同步, 进而实现时间 同步的要求。
实施例 10: 本实施例 10提供一种在无源光网络中时间同步的方法, 本实 施例的无源光网络为 EPON , 同步报文为携带时戳 TMtl i=TMtl的 MPCP报文, 即"同步 MPCP报文";延时配置报文为环路延时信息 RTTi 的 MPCP报文,即"环 路延时配置 MPCP报文"。 所述的同步报文的具体结构参见表 5 , 所述延时配置 报文的具体结构参见表 9。
本实施例 10的方法与实施例 9的方法基本一致, 仅仅因为本实施例 10的延 时配置报文所携带的是环路延时 RTTi , 所以需要 Tdi=RTTi/2 , 并根据时戳 TMtli和 Tdi进行本地时钟调整, 其余的均和实施例 9相同。
本实施例 10提供的方法, ONU通过 OLT接收发送的同步报文和延时配置 报文, 并根据实施例 9中提供的方法调整本地时钟, 实现本地时钟与 OLT时钟 时间同步, 并保持与 OLT的时间同步后,从时钟通过 PTP同步机制与 ONU的本 地时钟保持时间同步, 从而实现了在主时钟到从时钟的延时与从时钟到主时 钟的延时并不相同的情况下, 保持主时钟与从时钟的时间同步, 进而实现时 间同步的要求。
实施例 11 : 本实施例 11提供一种在无源光网络时间同步的方法, 通过数 据帧的 Header部分携带时戳 TMtl i=TMtl , 如图 15所示的本发明实施例的下行 帧示意图。 所述的 Header部分包含 ID字段和时戳字段。
本实施例 11中的无源光网络如果是 EPON , 则 Header部分为前导码 Preamble, Preamble携带时戳 TMtl i=TMtl , 时戳 TMtli的确定方式与上文相同, 不再赘述; 延时配置报文用于传输 PON的延时参数, 如 OLT到 ONU/ONT的下 行延时、 OLT与 ONU/ONT之间的环路延时、 ONU/ONT的均衡延时中一个或 多个组合, 该延时配置报文为 MPCP报文。所述时戳 TMtli可以通过一个 EPON 帧携带, 此时 Preamble的具体结构如表 11、 表 12或者表 13所示; 还可以通过 2 个 EPON帧携带, 此时 Preamble的具体结构分别如表 14和表 15所示, 其中表 14 为第一个携带时戳 TMtli的帧的 Preamble的具体结构, 表 14为第二个携带时戳 TMtli的帧的 Preamble的具体结构。 表 11到表 15中 TS— of— S表示时戳 TMtli, 其 他字段的含义详见 IEEE 802.3av。
Figure imgf000032_0001
表 11
Figure imgf000032_0002
表 12
Figure imgf000032_0003
表 13
Figure imgf000032_0004
表 14
Figure imgf000032_0005
表 15 上述表 11到表 15的 Preamble结构是本发明的优选实施方式, 在实际情况 中, 还可以有其他的形式存在。
本实施例 11中的无源光网络如果是 GPON , 则 Header部分指的是 GEM帧 头, GEM的帧头结构详见 ITU-T G.984.3。 通过修改现有的 GEM帧头结构承载 时戳, 并且同步报文为 PLO AM报文(也叫 PLOAM帧) 。
实施例 11提供的方法如图 11所示, 包括以下步骤:
步骤 111、 OLT通过 PTP机制与主时钟(图 11未画出 )进行时钟同步; 步骤 112、 OLT向 ONU/ONT发送下行帧, 该下行帧的 Header部分携带
TMtli;
TMtli的携带方法已在上述说明, 这里不再赘述。
EPON帧 Header的具体结构可以参见表 10到表 14的描述。
OLT将延时配置报文承载在下行帧中发送给 ONU/ONT, 同步报文延时配置报 文的具体结构可以参见表 8 (下行延时配置 MPCP报文)和表 9 (环路延时配置 报文)的描述,其中,延时配置报文携带延时 Tdi或者环路延时 RTTi。时戳 TMtli 可以在所述延时配置报文的 Header部分携带,也可以在其他报文,如数据报文, 的 Header部分携带, Header部分携带时戳的具体方法已在上述说明, 此处不再 赘述。
所述延时配置 ^艮文可以在测距完成后仅仅发送一次, ONU将其中的携带 的 Tdi或 RTTi进行存储。
OLT可以根据配置向 ONU/ONT发送延时配置报文。
步骤 113、 ONU/ONT根据该时戳和 PON的延时参数( Tdi或 RTTi )进行本 地时钟调整;
若延时配置报文携带 Tdi,通过方法 G或者方法 H进行本地时钟调整, 以保 持与 OLT时间同步;
方法 I、 ONU/ONT将本地时钟 TSul调整至 TMtl i+Tdi
方法 J、 ONU/ONT将本地时钟 TSul调整至 TMtl i+Tdi+Tpi。 若延时配置报文携带 RTTi,通过方法 I或者方法 J进行本地时钟调整, 以保 持与 OLT时间同步;
方法 K、 ONU/ONT将本地时钟 Tsui调整至 TMtl i+RTTi/2;
方法 L、 ONU/ONT将本地时钟 Tsui调整至 TMtl i+RTTi/2+Tpi。
步骤 114、 ONU/ONT指示从时钟进行时间同步。
该步骤的实现方法可以为, 通过 PTP同步机制进行时间同步。
本实施例 11提供的方法, 通过 OLT在下行帧的 Header部分携带时戳 TMtli=TMtl和延时配置报文, 所述延时配置报文携带 PON的延时参数 ( Tdi 或 RTTi ) , 并根据该时戳以及 PON的延时参数(Tdi或者 RTTi )进行本地时钟 调整, 并保持与 OLT的时间同步后, 指示从时钟进行时间同步, 从而实现了 在主时钟到从时钟的延时与从时钟到主时钟的延时并不相同的情况下, 保持 主时钟与从时钟的时间同步, 进而达到时间同步的要求。
本发明具体实施方式还提供一种在无源光网络中时间同步的装置, 该装 置如图 12所示, 包括接收单元 121 , 用于接收 OLT与主时钟保持时钟同步后发 送在下行帧的帧头部分(Header部分) 中携带时戳 TMtli=TMtl的下行帧和基 于控制和 /或管理协议的延时配置报文, 所述延时配置报文携带 PON的延时参
RTTi; 调整单元 122, 用于根据接收单元 121接收的时戳和 PON的延时参数对 本地时钟进行调整; 指示单元 123 , 用于在调整单元 122完成本时钟调整后, 指示从时钟进行时间同步。
接收单元 121可以包括:
时戳获取模块 1211 , 用于检测下行帧的帧头部分获得帧头部分携带的时 戳 TMtli;
PON的延时参数获取模块 1212 , 用于解析下行帧获得下行帧中基于控制 和 /或管理协议的配置报文中携带的 PON的延时参数,如下行延时 Tdi或环路延 时 RTTi; 上述的接收单元 121接收所述的延时配置报文后, 可以将所述的延时配置 报文携带的 PON的延时参数存储到 ONU/ONT的存储介质上。
调整单元 122可以包括:
第一调整单元 1221 , 用于接收单元 121中 PON的延时参数获取模块 1212提 供下行延时 Tdi时, 根据时戳 TMtli和 Tdi对本地时钟进行调整, 具体可以釆用 方法 G或方法 H;
第二调整单元 1222, 用于接收单元 121中 PON的延时参数获取模块 1212提 供环路延时 RTTi的时,根据时戳 TMtli和 RTTi对本地时钟进行调整,具体可以 釆用方法 I或方法 J。
指示单元 123可以用于指示从时钟通过 PTP同步机制保持与所述本地时钟 的时间同步。
本发明具体实施方式提供的装置, 时戳获取模块 1211是物理层检测, 不 需要进行协议处理, 而 PON的延时参数获取模块 1212属于协议处理, 另外时 戳获取模块 1211可以在正常下行数据传输过程中实时发送时戳, PON的延时 例如仅仅在测距完成后发送 PON的延时参数, 或 ONU/ONT有更新时发送, 这 样可以保证***开销较小。
本发明具体实施方式还提供一种光线路终端, 该设备如图 13所示, 包括: 同步单元 131 , 用于与主时钟保持时间同步; 发送单元 132, 用于在同步单元 131完成时间同步后, 发送所述的在帧头部分携带时戳 TMtli的下行帧和携带 PON的延时参数的延时配置报文, 所述延时配置报文基于 PON的控制和 /或管 理协议, 携带下行延时 Tdi或环路延时 RTTi。
发送单元 131 , 还可以包括:
时戳发送模块 1311 , 用于将获得的时戳 TMtli***到下行帧的帧头部分; 配置报文发送模块 1312, 用于将 PON的延时参数生成配置报文, 所述配 置报文基于控制和 /或管理协议, 其中, PON的延时参数包括但不仅限于下行 延时 Tdi或环路延时 RTTi。
本发明具体实施方式提供的设备, 同步单元 131在与主时钟保持时间后, 发送单元 132发送在 Header携带时戳 TMtli的下行帧, 其中, 携带 PON的延时 参数的延时配置报文, 时戳发送处理属于物理层, 不需要进行协议处理速度 更快, 而 PON的延时参数发送属于协议处理, 因此釆用该实施方式可以提高 精度, 另外, 可以在正常下行数据传输过程中实时发送时戳, 发送 PON的延 时参数的次数或频率可以控制在较少水平, 例如仅仅在测距完成后发送 PON 的延时参数, 或 ONU/ONT有更新时发送, 这样可以保证***开销较小。
本发明具体实施方式还提供一种在无源光网络, 如图 14所示, 该***包 括: 主时钟 141、 光网络单元 /光网络终端 142、 光线路终端 143和从时钟 144;
其中光线路终端 143用于与所述主时钟保持时间同步, 并完成时间同步 后, 发送在 Header中携带 TMtli的下行帧和延时配置报文, 所述延时配置报文 携带 PON的延时参数, 如下行延时 Tdi或环路延时 RTTi;
光网络单元 /光网络终端 142用于接收在帧头部分携带时戳的下行帧和携 带 PON的延时参数的延时配置报文, 并根据时戳 TMtli和 PON的延时参数对本 地时钟进行调整, 并在与所述光线路终端 143保持时间同步后, 指示从时钟进 行时间同步; 其中, 根据时戳 TMtli和 PON的延时参数对本地时钟进行调整具 体包括: 根据 Tdi或者 RTTi釆用方法 I、 或者方法 、 或者方法 K或者方法 L进行 本地时钟调整。
在本发明的另一个实施例中 (图中未画出) , 主时钟 141可以设置于 OLT 143 , 从时钟可以设置于 ONU/ONT 142。
本发明具体实施方式提供的无源光网络或***, OLT 143在与主时钟 141 保持时间后, 发送在 Preamble携带时戳 TMtli的下行帧, 以及携带 PON的延时 参数的延时配置报文, 所述延时配置报文为基于无源光网络控制和 /或管理协 议的数据帧; ONU/ONT 142在接收在帧头部分携带时戳 TMtli的下行帧和携带 PON的延时参数的延时配置报文后, 根据时戳 TMtl i和 PON的延时参数对本地 时钟进行调整后, 指示从时钟 144进行时间同步, 从而支持了上述方法及装置 在主时钟到从时钟的延时与从时钟到主时钟的延时并不相同的情况下, 保持 主时钟与从时钟的时间同步, 进而达到时间同步的要求。
本实施例 11的无源光网络还可以是其他协议的无源光网络, 此时上述的 具体实施方法和方式仍然适用。
实施例 12: 本实施例 11提供一种在无源光网络时间同步的方法, 本实施 例的技术情景为,本实施例的无源光网络为 EPON, 同步报文为 MPCP报文(或 MPCP帧) , 延时配置报文同样为 MPCP报文。 所述同步报文携带时戳 TMtli=TMtl和 TSj , 其中 TMtli为 Timestamp=TSj时的 MPCP报文的发送时间。 所述延时配置报文携带 PON的延时参数如 Tdi或 RTTi。 所述延时配置报文的具 体结构参见实施例 9和实施例 10。 所述同步 ^艮文参见表 16, 其中图中的 TMtli ( unit is Is )代表 TMtli, 即第 j个 MPCP报文的发送时间。
Figure imgf000037_0001
表 16
上述表 16中的同步报文结构是本发明的优选实施方式, 在实际情况中, 可有其他的形式存在。
本实施例 12与实施例 9 (延时配置报文携带 Tdi )和实施例 10 (延时配置报 文携带 RTTi )的方法仅在 MPCP同步报文中增加了 TSj , 在 ONU、 ONT端需要 对同步报文中的 TSj进行相应的处理, 其余步骤均与实施例 9 (延时配置报文 携带 Tdi )和实施例 10 (延时配置报文携带 RTTi )相同, 此处不再赘述。 同步报文的时戳 TMtli和 TSj的计算已经在上述说明, 不再赘述。
同步报文的发送频率参见实施例 4, 不再赘述。 根据 EPON标准 IEEE 802.3ah, MPCP报文携带 Timestamp ( unit is 16ns ) , 并且可以根据配置发送, 因此在 EPON测距结束后, 实际上已经完成了 OLT与 ONU/ONT的时间同步, 即 TSONU=TSOLT。 但是由于 OLT与 ONU/ONT之间的传 输需要时间, 因此实际上 ONU/ONT与 OLT在绝对时钟上存在一个固定的偏移 值 offset=Tdi。 此外由于 Timestamp计数器为 32比特, 其时间表示能力仅仅为 69 秒(232*16*10-9= 68.719476736 秒), 因此 OLT与 ONU虽然已经同步, 但是其 实际的具体时间需要通过本发明的方法进行对准。 故在 OLT与 ONU完全同步 的情况下, ONU/ONT接收到所述 MPCP报文时的本地时戳 TSui与 MPCP报文携 带的 Timestamp ( unit is 16ns )相同, 设 MPCP报文携带的 Timestamp为 TSti, 即 TSui=TSti , 此时的 ONU/ONT本地时钟 TSui— realtime应该进行如下调整
TSui— realtime = TMtli+ ( TSui-TSj ) + Tdi
或者
Tsui— realtime = TMtli + ( Tsui-TSj ) +RTTi/2
其中 Tdi和 RTTi分别为 OLT到 ONU/ONT的下行延时和 OLT与 ONU/ONT 之间的环路延时。 本发明上述实施方式中, 将无源光网络整体作为主时钟与 从时钟之间的一个时钟节点, 特别的, 在本发明优选实施方式中, 在 OLT的 输入侧将 PTP同步机制进行终结, 在 ONU/ONT的输出侧将 PTP进行启动, 在 无源光网络内部即 OLT和 ONU/ONT之间不需要引入新的时间同步协议, 而是 釆用 PON的控制和 /或管理协议进行时间同步,实现 OLT与 ONU/ONT的时间同 步, 从而完成从时钟经由无源光网络与主时钟的时间同步。
实施例 13 : 本实施例 13提供一种在无源光网络时间同步的方法, 本实施 例的技术情景为,本实施例的无源光网络为 EPON, 同步报文为 MPCP报文(或 MPCP帧)。 所述同步报文携带时戳 TMtli, 其计算方法已经在实施例 1中详细 说明, 即 TMtli=TMtl+Tdi或者 TMtli=TMtl+Tdi+Tc, 其中 Tdi=RTTi/2。 所述 同步报文参见表 16。
ONU、 ONT端需要对同步报文中的 TSj进行相应的处理, 其余步骤均与实施例 6相同, 此处不再赘述。
同步报文的时戳 TMtli和 TSj的计算已经在上述说明, 不再赘述。
同步 4艮文的发送频率参见实施例 4, 不再赘述。 本实施例 13处理 TSj的方法与实施例 12中的方法类似, 其差别主要在于 OLT已经在计算 TMtli时釆用实施例 1步骤 21的方法。 因此需要进一步说明具 体的时钟调整方法。
与实施例 12类似, 故在 OLT与 ONU完全同步的情况下, ONU/ONT接收到 所述 MPCP报文时的本地时戳 TSui与 MPCP报文携带的 TSj ( unit is 16ns )相同, 设 MPCP报文携带的 TSj为 TSti , 则 TSui=TSti , 此时的 ONU/ONT本地时钟 TSui realtime应该进行如下调整 TSui realtime = TMtli+ ( TSui-TSj )
其中 Tsui与 TSj可以相等, 也可以在不相等。 如前面所述, ONU/ONT可以 在调整时间的时刻可以根据配置进行。
具体地,
当第 j个 MPCP报文所对应的 TSj和 TMtli在第 j+N个 MPCP报文中承载 , 此 时对应的 Timestamp为 Tsui时, 若 ONU/ONT接收到第 j+N个 MPCP报文时即开 始调整本地时间, Tsui大于 TSj;
当第 j个 MPCP报文所对应的 TSj和 TMtli在第 j-N个 MPCP报文中承载, 此 时 TMtli计算所釆用的 Tc不为 0, 而是满足
Tc=TSj-TSJ-N
或者
Tc=TSj-TS」-N+Offset— cal 其中 Offset— cal为考虑计算 TMtli不是恰好在第 j-N个 MPCP帧发送的时间 偏差, 而且在实际情况中, 上述计算公式可以进行转换或者简化, 不再赘述; 此时, 若 ONU/ONT接收到第 j个 MPCP报文时即开始调整本地时间, Tsui等于 TSj。 即 ONU/ONT接收第 j-N个 MPCP同步报文, 提取 TSj和 TMtli, 并且在接 收到时戳为 TSj的 MPCP同步 ^艮文时将本地时间调整为 TSui— realtime = TMtli。
本发明上述实施方式中, 将无源光网络整体作为主时钟与从时钟之间的 一个时钟节点, 特别的, 在本发明优选实施方式中, 在 OLT的输入侧将 PTP同 步机制进行终结, 在 ONU/ONT的输出侧将 PTP进行启动, 在无源光网络内部 即 OLT和 ONU/ONT之间不需要引入新的时间同步协议, 而是釆用 PON的控制 和 /或管理协议进行时间同步, 实现 OLT与 ONU/ONT的时间同步, 从而完成从 时钟经由无源光网络与主时钟的时间同步。
本发明上述实施例提到的帧序列号或帧序号, 针对其应用的技术范围, 在由 ITU-T G.984系列定义 GPON的下行帧中, 可将该下行帧的 Superframe Counter (超帧计数器) 的值视为帧序号; 在由 802.3ah定义的 EPON的 MPCP 报文中, 在一定周期内, 可将该下行帧的 Superframe Counter (超帧计数器) 的值视为该 MPCP报文携带的 Timestamp (时戳)。 因此, GPON的超帧计数器 的值和 EPON中的时戳在一定程度上均可以视为帧序号或帧序列号。
综上所述, 本发明具体实施方式提供的技术方案, 具有在主时钟到从时 钟的延时与从时钟到主时钟的延时并不相同的情况下, 保持主时钟与从时钟 的时间同步, 进而达到无源光网络对时间同步的要求。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围 内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种在无源光网络中时间同步的方法, 所述无源光网络包括光线路终端 OLT和多个光网络单元 /光网络终端 ONU/ONT , 其特征在于, 所述方法包括: 接收 OLT在与主时钟保持时间同步后发送的同步报文, 所述同步报文携带 有 OLT完成时间同步后确定的时戳 TMtli;
根据所述时戳 TMtl i对本地时钟进行调整以使 ONU/ONT与所述 OLT保持时 间同步;
在与所述 OLT保持时间同步后, 指示从时钟进行时间同步。
2、 根据权利要求 1所述的方法, 其特征在于, 所述同步报文还包括第一下 行帧的帧序列号, 所述时戳 TMtli为发送所述第一下行帧时的 OLT的时间, 所述 第一下行帧的帧序列号是从吉比特无源光网络中 OLT的超帧计数器获得的值或 从以太无源光网络中 OLT的时戳计数器获得的值;
所述根据所述时戳 TMtl i对本地时钟进行调整以使 ONU/ONT与所述 OLT保 持时间同步包括: 根据所述时戳 TMtli和所述第一下行帧的帧序列号确定主时钟 和从时钟的时间偏差; 利用所述时间偏差对本地时钟进行调整以使 ONU/ONT与 所述 OLT保持时间同步。
3、 根据权利要求 2所述的方法, 其特征在于, 在 ONU/ONT上记录下行帧的 帧序列号和接收到下行帧的帧头时 ONU/ONT的时间的对应关系, 包括: 所述第 一下行帧的帧序列号和接收所述第一下行帧的帧头时 ONU/ONT的时间的对应 关系;
所述根据所述时戳 TMtli和所述第一下行帧的帧序列号确定主时钟和从时 钟的时间偏差的步骤包括:
根据同步报文携带的第一下行帧的帧序列号查找记录在本地的下行帧的帧 序列号和接收到下行帧的帧头时 ONU/ONT的时间的对应关系获得与同步报文 携带的第一下行帧的帧序列号匹配的接收所述第一下行帧的帧头时 ONU/ONT 的时间。
4、 根据权利要求 2所述的方法, 其特征在于, 所述接收光线路终端 OLT在 与主时钟保持时间同步后发送的同步报文包括: 从接收的第二下行帧中获得其 中承载的同步报文, 所述第二下行帧中包括该第二下行帧的帧序列号;
则根据所述时戳 TMtli对本地时钟进行调整具体包括:
获取接收所述第二下行帧的帧头时 ONU/ONT的时间, 根据所述第一下行帧 的帧序列号、 所述第二下行帧的帧序列号和接收所述第二下行帧的帧头时 ONU/ONT的时间确定接收所述第一下行帧的帧头时 ONU/ONT的时间, 根据所 述时戳 TMtli和接收所述第一下行帧的帧头时 ONU/ONT的时间计算主时钟和从 时钟之间的时间偏差, 根据计算得到的时间偏差对本地时间进行调整。
5、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 从同步报 文获得其中携带的无源光网络的延时参数或从延时配置报文获得其中携带的无 源光网络的延时参数, 所述延时参数包括: OLT到第 i个 ONU/ONT的下行延时 Tdi, 或 OLT和第 i个 ONU/ONT之间的环路延时 RTTi;
则根据所述时戳 TMtli和所述帧序列号确定主时钟和从时钟的时间偏差具 体包括: 根据所述时戳 TMtli、 所述帧序列号和所述无源光网络的延时参数计算 主时钟与从时钟的时间偏差。
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述时戳 TMtli为: 若所述同步报文为单播报文时, 所述时戳 TMtli为 TMtl或 TMtl+Tdi或
TMtl+Tc;
若所述同步报文为组播报文或广播报文时, 所述时戳 TMtli为 TMtl ; 其中, 步后发送第 j个下行帧的帧头时 OLT的时间, 所述 Tdi为 OLT到第 i个 ONU/ONT的 下行延时, i和 j都为大于等于 1的整数。
7、 根据权利要求 6所述的方法, 其特征在于, 所述根据所述同步报文对本 地时钟进行调整包括: 若所述 TMtli等于 TMtl+Tdi时 , 将本地时钟直接调整至 TMtli或者将本地时 钟调整至 TMtli + Tpi, 其中, 所述 Tpi为处理所述同步 ^艮文的处理延时。
8、 根据权利要求 6所述的方法, 其特征在于, 所述根据所述同步报文对本 地时钟进行调整包括: 若所述 TMtli等于 TMtl时,
将本地时钟调整至 TMtl+(Tlr-Teqdi)/2; 或者
将本地时钟调整至 TMtl+(Tlr-Teqdi)/2+ Tpi; 其中,
所述 Tlr为***逻辑环路延时, 所述 Teqdi为补偿延时。
9、 根据权利要求 1 所述的方法, 其特征在于, 所述同步报文基于无源光网 络的控制和 /或管理协议, 所述无源光网络的控制和 /或管理协议包括: 物理层操 作和管理协议, 或光网络单元管理和控制接口协议, 或以太网无源光网络的多 点控制协议。
10、 根据权利要求 1所述的方法, 其特征在于, 所述下行帧包括帧头部分和 数据净荷部分, 所述同步报文设置在下行帧的帧头部分, 所述下行帧的帧头部
Preamble。
11、 一种在无源光网络中时间同步装置, 其特征在于, 所述装置包括: 接收单元, 用于接收无源光网络的光线路终端 OLT在与主时钟保持时间同 步后发送的同步报文, 所述同步报文携带有 OLT完成时间同步后确定的时戳 TMtli;
调整单元, 用于根据所述时戳对本地时钟进行调整以使无源光网络的光网 指示单元, 用于在与所述 OLT保持时间同步后, 指示从时钟进行时间同步。
12、 根据权利要求 12所述的装置, 其特征在于, 所述调整单元包括: 第一时间调整模块, 用于在所述接收单元接收的 TMtli=TMtl+Tdi时, 将本 地时钟调整至 TMtli或 TMtli+Tpi; 所述 TMtl为发送所述同步报文的时间, 所述 Tdi为 OLT到第 i个 ONU/ONT的下行延时, 所述 Tpi为处理所述同步报文的处理延 时;
第二时间调整模块,用于在所述接收单元接收的 TMtli=TMtl时,将本地时 钟调整至 TMtl+(Tlr-Teqdi)/2或 TMtl+(Tlr-Teqdi)/2+Tpi; 所述 Tlr为***逻辑环路 延时; 所述 Teqdi为补偿延时。
13、 根据权利要求 11或 12所述的装置, 其特征在于, 所述同步报文还包括 第一下行帧的帧序列号, 所述时戳 TMtli为发送所述第一下行帧的帧头时的 OLT 的时间;
所述装置还包括:
时间获取单元, 用于提取所述同步报文中的时戳 TMtli, 以及根据所述第一 下行帧的帧序列号获得接收所述第一下行帧的帧头时 ONU/ONT的时间, 获得接 收所述第一下行帧的帧头时 ONU/ONT的时间的方式包括: 通过检测接收到的下 行帧获得接收承载所述同步报文的第二下行帧的帧头时 ONU/ONT的时间, 利用 接收到第二下行帧的帧头时 ONU/ONT的时间、 第二下行帧的帧序列号、 所述第 一下行帧的帧序列号计算得到接收所述第一下行帧的帧头时 ONU/ONT的时间; 或者根据所述第一下行帧的帧序列号查询记录在存储模块中的下行帧的帧序列 号和接收到下行帧的帧头时 ONU/ONT的时间的对应关系获得接收所述第一下 行帧的帧头时 ONU/ONT的时间, 其中, 所述对应关系包括: 所述第一下行帧的 帧序列号和接收所述第一下行帧的帧头时 ONU/ONT的时间的对应关系;
其中, 所述调整单元, 用于根据时间获取单元获得的接收所述第一下行帧 的帧头时 ONU/ONT的时间和第二下行帧中同步报文携带的时戳 TMtli计算主时 钟和从时钟之间的时间偏差, 利用主时钟和从时钟之间的时间偏差对本地时钟 进行调整以使 ONU/ONT与 OLT保持时间同步。
14、 根据权利要求 11所述的装置, 其特征在于, 所述第一下行帧的帧序列 号是吉比特无源光网络中 OLT的超帧计数器的值或以太无源光网络中 OLT的时 戳计数器的值。
15、 一种光线路终端 OLT, 其特征在于, 所述 OLT包括: 同步单元, 用于与主时钟保持时间同步;
发送单元, 用于在完成时间同步后, 向光网络单元 /光网络终端 ONU/ONT 发送同步报文,所述同步报文携带有 OLT完成时间同步后确定的时戳 TMtli。
16、 根据权利要求 15所述光线路终端 OLT, 其特征在于, 所述发送单元包括:
时间获取模块, 用于在完成时间同步后, 根据下行发送过程中 OLT的时间 确定的时戳 TMtli, 所述根据下行发送过程中 OLT的时间包括: 发送所述同步报 文时 OLT的时间, 或发送第 j个下行帧的帧头时 OLT的时间, 或发送承载有所述 同步报文的第 j + N个下行帧的帧头时 OLT的时间, 第 j + N个下行帧在第 j个下行 帧之后发送, j和 N都为大于等于 1的整数;
报文生成模块, 用于基于无源光网络控制和 /或管理协议生成同步报文, 所 述同步报文中携带所述时戳 TMtli, 并将所述同步报文通过所述发送单元发送给 ONU/ONT;
下行发送模块, 用于将报文生成模块生成的同步报文发送给 ONU/ONT。
17、根据权利要求 15或 16所述光线路终端 OLT, 其特征在于, 所述 OLT还包 括:
计数器, 用于获得吉比特无源光网络的超帧计数值或以太无源光网络的时 戳计数值;
所述发送单元, 还用于将超帧计数值或时戳计数值作为第一下行帧的帧序 列号承载在所述同步报文中, 其中, 所述时戳 TMtli为发送所述第一下行帧的帧 头时 OLT的时间, 所述计数器输出的值用于确定接收下行帧的帧头时 ONU/ONT 的时间。
18、 一种无源光网络, 其特征在于, 所述无源光网络包括: 光网络单元 /光 网络终端 ONU/ONT、 光线路终端 OLT;
所述 OLT, 用于与主时钟保持时间同步, 在完成时间同步后, 向 ONU/ONT 发送携带有时戳 TMtli的同步报文, 所述时戳 TMtli表示完成时间同步后发送同 步 或发送下行帧的帧头时 OLT的时间; 所述 ONU/ONT, 用于接收所述同步报文, 并根据所述同步报文携带的时戳 间同步, 并在与所述 OLT保持时间同步后, 指示从时钟进行时间同步。
19、 根据权利要求 18所述的无源光网络, 其特征在于,
所述 OLT还将吉比特无源光网络的超帧计数值或以太无源光网络的时戳计 数值作为帧序列号承载在所述同步报文中发送给所述 ONU/ONT,所述时戳 TMtli 为发送所述帧序列号对应的第一下行帧的帧头时所述 OLT的时间;
所述 ONU/ONT,根据所述第一下行帧的帧序列号获得接收所述第一下行帧 的帧头时 ONU/ONT的时间, 获得接收所述第一下行帧的帧头时 ONU/ONT的 时间的方式包括: 通过检测接收到的下行帧获得接收承载所述同步报文的第二 下行帧的帧头时 ONU/ONT 的时间, 利用接收所述第二下行帧的帧头时 ONU/ONT的时间、 第二下行帧的帧序列号、 所述第一下行帧的帧序列号计算得 到接收所述第一下行帧的帧头时 ONU/ONT 的时间; 或者根据所述第一下行帧 的帧序列号查询记录在存储模块中的下行帧的帧序列号和接收到下行帧的帧头 时 ONU/ONT 的时间的对应关系获得接收所述第一下行帧的帧头时 ONU/ONT 的时间, 其中, 所述对应关系包括: 所述第一下行帧的帧序列号和接收所述第 一下行帧的帧头时 ONU/ONT的时间的对应关系。
PCT/CN2009/073188 2008-08-13 2009-08-11 一种在无源光网络中时间同步的方法、装置及无源光网络 WO2010017762A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/570,125 US8335437B2 (en) 2008-08-13 2009-09-30 Time synchronization method and device in passive optical network and passive optical network
US13/561,413 US8805201B2 (en) 2008-08-13 2012-07-30 Time synchronization method and device in passive optical network and passive optical network

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200810118185.0 2008-08-13
CN200810118185 2008-08-13
CN200910003640.7 2009-01-13
CN200910003640 2009-01-13
CN200910126119.2 2009-02-28
CN200910126119.2A CN101707505B (zh) 2008-08-13 2009-02-28 一种在无源光网络中时间同步的方法、装置及无源光网络

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/570,125 Continuation US8335437B2 (en) 2008-08-13 2009-09-30 Time synchronization method and device in passive optical network and passive optical network

Publications (1)

Publication Number Publication Date
WO2010017762A1 true WO2010017762A1 (zh) 2010-02-18

Family

ID=41668703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073188 WO2010017762A1 (zh) 2008-08-13 2009-08-11 一种在无源光网络中时间同步的方法、装置及无源光网络

Country Status (3)

Country Link
US (2) US8335437B2 (zh)
CN (1) CN101707505B (zh)
WO (1) WO2010017762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120185A1 (en) * 2010-03-29 2011-10-06 Telefonaktebolaget L M Ericsson (Publ) Methods and arrangements in optical network

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7953324B2 (en) * 2007-11-13 2011-05-31 Huawei Technologies Co., Ltd. System and method for data synchronization in passive optical networks
CN101577600B (zh) 2008-05-09 2013-04-24 华为技术有限公司 无源光网络***时间同步方法、***及光网络设备
CN101795423A (zh) * 2009-02-04 2010-08-04 中兴通讯股份有限公司 无源光网络***的时间同步方法及其同步***
CN101888268B (zh) * 2009-05-14 2013-09-11 中兴通讯股份有限公司 一种在以太无源光网络实现主干光纤保护的方法和装置
US8718482B1 (en) * 2009-11-10 2014-05-06 Calix, Inc. Transparent clock for precision timing distribution
JP5560706B2 (ja) * 2009-12-28 2014-07-30 富士通株式会社 ノード装置
CN102136900B (zh) 2010-01-22 2014-11-05 华为技术有限公司 无源光网络的时间同步方法、装置及***
US8422887B2 (en) * 2010-01-31 2013-04-16 Pmc Sierra Ltd System for redundancy in Ethernet passive optical networks (EPONs)
US9392565B2 (en) * 2010-03-05 2016-07-12 Samsung Electronics Co., Ltd. Method and system for accurate clock synchronization through interaction between communication layers and sub-layers for communication systems
US8582606B2 (en) 2010-05-24 2013-11-12 Cortina Systems, Inc. Network system with synchronization and method of operation thereof
CN101860430B (zh) * 2010-06-24 2014-08-13 中兴通讯股份有限公司 一种实现光网络单元切换时钟源的装置及方法
CN102447510A (zh) * 2010-10-11 2012-05-09 高通创锐讯通讯科技(上海)有限公司 Epon***中上行发送时间窗的调整方法
CN102469377A (zh) * 2010-11-17 2012-05-23 中兴通讯股份有限公司 一种epon***以及***中实现端到端透明时钟的方法
FI124018B (fi) 2010-11-24 2014-02-14 Tellabs Oy Lähetinvastaanotinyksikkö
US8670466B1 (en) 2010-12-22 2014-03-11 Applied Micro Circuits Corporation System and method for residence time calculation
CN102440040B (zh) * 2011-01-26 2015-05-27 华为技术有限公司 一种实现时间同步的方法和***
RU2546198C1 (ru) * 2011-02-15 2015-04-10 Телефонактиеболагет Л М Эрикссон (Пабл) Способы синхронизации времени в сетях связи
US9680567B2 (en) * 2011-03-03 2017-06-13 Acacia Communications, Inc. Fault localization and fiber security in optical transponders
JP5797463B2 (ja) * 2011-06-07 2015-10-21 ラピスセミコンダクタ株式会社 フレーム受信装置、フレーム送信装置、フレーム送受信システム及びフレーム送受信方法
JP5283801B2 (ja) * 2011-06-29 2013-09-04 三菱電機株式会社 加入者側光通信装置、通信システム、制御装置および省電力制御方法
CN102264012B (zh) * 2011-07-29 2017-11-28 中兴通讯股份有限公司 一种pon***的本振同步方法及onu和olt
US8837473B2 (en) * 2011-10-11 2014-09-16 Cisco Technology, Inc. Single timestamp engine for generating timing information for inclusion in packets complying with multiple networking protocols
US9036544B2 (en) * 2011-10-25 2015-05-19 Telefonaktiebolaget L M Ericsson (Publ) Delay compensation during synchronization in a base station in a cellular communication network
CN102742190A (zh) * 2012-02-01 2012-10-17 华为技术有限公司 时间同步方法和设备及***
US9628259B2 (en) 2012-05-24 2017-04-18 Telefonaktiebolaget L M Ericsson (Publ) Distributing clock synchronization information within an optical communications network
US8842994B2 (en) * 2012-05-24 2014-09-23 Telefonaktiebolaget L M Ericsson (Publ) Distributing clock synchronization information within an optical communications network
US8861635B2 (en) 2012-05-29 2014-10-14 Magnolia Broadband Inc. Setting radio frequency (RF) beamformer antenna weights per data-stream in a multiple-input-multiple-output (MIMO) system
US8619927B2 (en) 2012-05-29 2013-12-31 Magnolia Broadband Inc. System and method for discrete gain control in hybrid MIMO/RF beamforming
US8885757B2 (en) 2012-05-29 2014-11-11 Magnolia Broadband Inc. Calibration of MIMO systems with radio distribution networks
US8837650B2 (en) 2012-05-29 2014-09-16 Magnolia Broadband Inc. System and method for discrete gain control in hybrid MIMO RF beamforming for multi layer MIMO base station
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US8649458B2 (en) 2012-05-29 2014-02-11 Magnolia Broadband Inc. Using antenna pooling to enhance a MIMO receiver augmented by RF beamforming
US8811522B2 (en) 2012-05-29 2014-08-19 Magnolia Broadband Inc. Mitigating interferences for a multi-layer MIMO system augmented by radio distribution network
US8644413B2 (en) 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
US8971452B2 (en) 2012-05-29 2015-03-03 Magnolia Broadband Inc. Using 3G/4G baseband signals for tuning beamformers in hybrid MIMO RDN systems
US8842765B2 (en) 2012-05-29 2014-09-23 Magnolia Broadband Inc. Beamformer configurable for connecting a variable number of antennas and radio circuits
US9154204B2 (en) 2012-06-11 2015-10-06 Magnolia Broadband Inc. Implementing transmit RDN architectures in uplink MIMO systems
FI20125742A (fi) 2012-06-28 2013-12-29 Tellabs Oy Menetelmä ja laite kellosignaalilähteen ohjaamiseksi
US20150327197A1 (en) * 2012-08-14 2015-11-12 Nokia Corporation Method and apparatuses for adjusting time, computer-readable storage media and a computer program product
TWI485996B (zh) * 2012-12-17 2015-05-21 Ind Tech Res Inst 致能一被動光網路具備支援時間同步能力的裝置與方法
US9503381B2 (en) * 2013-01-23 2016-11-22 Broadcom Corporation System and method for carrying control data in a preamble
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US9343808B2 (en) 2013-02-08 2016-05-17 Magnotod Llc Multi-beam MIMO time division duplex base station using subset of radios
US8774150B1 (en) 2013-02-13 2014-07-08 Magnolia Broadband Inc. System and method for reducing side-lobe contamination effects in Wi-Fi access points
US20140226740A1 (en) 2013-02-13 2014-08-14 Magnolia Broadband Inc. Multi-beam co-channel wi-fi access point
US8989103B2 (en) 2013-02-13 2015-03-24 Magnolia Broadband Inc. Method and system for selective attenuation of preamble reception in co-located WI FI access points
US9155110B2 (en) * 2013-03-27 2015-10-06 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US9100968B2 (en) 2013-05-09 2015-08-04 Magnolia Broadband Inc. Method and system for digital cancellation scheme with multi-beam
WO2014190495A1 (zh) * 2013-05-28 2014-12-04 华为技术有限公司 一种物理帧边界的调整方法、相关设备及***
CN104219037A (zh) * 2013-05-30 2014-12-17 鼎点视讯科技有限公司 光纤线路终端设备的时间同步方法及装置、***
US9425882B2 (en) 2013-06-28 2016-08-23 Magnolia Broadband Inc. Wi-Fi radio distribution network stations and method of operating Wi-Fi RDN stations
US8995416B2 (en) 2013-07-10 2015-03-31 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points
CN104284258B (zh) * 2013-07-12 2017-10-27 上海贝尔股份有限公司 在pon中配置onu作为ieee1588主时钟的方法和装置
US8824596B1 (en) 2013-07-31 2014-09-02 Magnolia Broadband Inc. System and method for uplink transmissions in time division MIMO RDN architecture
US9497781B2 (en) 2013-08-13 2016-11-15 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US9088898B2 (en) 2013-09-12 2015-07-21 Magnolia Broadband Inc. System and method for cooperative scheduling for co-located access points
US9060362B2 (en) 2013-09-12 2015-06-16 Magnolia Broadband Inc. Method and system for accessing an occupied Wi-Fi channel by a client using a nulling scheme
US9432751B2 (en) * 2013-09-30 2016-08-30 Microsemi Communications, Inc. PTP transparent clock system upgrade solution
US9210488B2 (en) * 2013-10-10 2015-12-08 Futurewei Technologies, Inc. Timestamp adjustment in multi-point control protocol (MPCP) messages for ethernet passive optical network (PON) protocol over coaxial network
US9172454B2 (en) 2013-11-01 2015-10-27 Magnolia Broadband Inc. Method and system for calibrating a transceiver array
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US8929322B1 (en) 2013-11-20 2015-01-06 Magnolia Broadband Inc. System and method for side lobe suppression using controlled signal cancellation
US8942134B1 (en) 2013-11-20 2015-01-27 Magnolia Broadband Inc. System and method for selective registration in a multi-beam system
US9014066B1 (en) 2013-11-26 2015-04-21 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9294177B2 (en) 2013-11-26 2016-03-22 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9042276B1 (en) 2013-12-05 2015-05-26 Magnolia Broadband Inc. Multiple co-located multi-user-MIMO access points
CN104717030B (zh) * 2013-12-17 2017-11-03 ***通信集团公司 时间同步方法及相应设备、***
CN104753701A (zh) * 2013-12-27 2015-07-01 中兴通讯股份有限公司 光网络单元onu数据处理方法、装置及***
JP6395407B2 (ja) * 2014-03-19 2018-09-26 Kddi株式会社 受信装置
US9100154B1 (en) 2014-03-19 2015-08-04 Magnolia Broadband Inc. Method and system for explicit AP-to-AP sounding in an 802.11 network
US9172446B2 (en) 2014-03-19 2015-10-27 Magnolia Broadband Inc. Method and system for supporting sparse explicit sounding by implicit data
US9271176B2 (en) 2014-03-28 2016-02-23 Magnolia Broadband Inc. System and method for backhaul based sounding feedback
CN103905933B (zh) * 2014-04-25 2017-09-22 国家电网公司 以太网无源光网络时间同步方法、***及相关设备
CN105323028B (zh) * 2014-06-20 2019-04-12 中兴通讯股份有限公司 一种时间同步方法、设备及***
US10979279B2 (en) 2014-07-03 2021-04-13 International Business Machines Corporation Clock synchronization in cloud computing
KR20160014157A (ko) * 2014-07-28 2016-02-11 주식회사 오이솔루션 광 트랜시버
US10057867B2 (en) 2014-08-14 2018-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for synchronising a plurality of distributed devices with a network
US11487871B2 (en) * 2015-01-31 2022-11-01 San Diego Gas & Electric Company Methods and systems for detecting and defending against invalid time signals
CN104901844B (zh) * 2015-05-13 2019-01-22 国家计算机网络与信息安全管理中心 基于pcie的高精度时间戳获取方法、装置及网卡
CN106301646B (zh) * 2015-05-21 2019-08-23 中兴通讯股份有限公司 一种时间同步消息发送方法和装置
US10097480B2 (en) 2015-09-29 2018-10-09 Ciena Corporation Time transfer systems and methods over flexible ethernet
EP3713158B1 (en) * 2015-06-30 2022-02-09 Ciena Corporation Time transfer systems and methods over a stream of ethernet blocks
JPWO2017057040A1 (ja) * 2015-09-30 2018-08-16 ソニー株式会社 データ処理装置、及び、データ処理方法
CN105450324B (zh) * 2016-01-07 2018-01-02 烽火通信科技股份有限公司 一种xg‑pon1***的onu端时间同步方法与装置
US10084592B2 (en) 2016-05-06 2018-09-25 Futurewei Technologies, Inc. Skew calculation in channel-bonded passive optical networks (PONs)
US10142094B2 (en) * 2017-01-24 2018-11-27 Futurewei Technologies, Inc. Synchronization error reduction in common public radio interface (CPRI) passive optical networks (PONs)
CN107425882A (zh) * 2017-04-20 2017-12-01 北京智芯微电子科技有限公司 一种宽带电力线通信网络的校时方法及装置
US10623129B2 (en) * 2017-09-15 2020-04-14 Futurewei Technologies, Inc. Control and management of a first PON using a second PON
CN111869138A (zh) 2018-03-14 2020-10-30 瑞典爱立信有限公司 时钟同步的方法和第一设备
CN110324104B (zh) * 2018-03-28 2021-06-22 华为技术有限公司 Pon***中的时间同步方法、olt、onu和pon***
CN109565773A (zh) * 2018-11-05 2019-04-02 深圳市汇顶科技股份有限公司 数据同步方法、设备及存储介质
DE102019202725A1 (de) * 2019-02-28 2020-09-03 Diehl Metering Gmbh Signalisierung einer multicast-nachricht in nicht koordinierten netzen
CN112584260B (zh) * 2019-09-30 2023-06-13 上海诺基亚贝尔股份有限公司 传输时间同步消息的方法、设备、装置和介质
US11005585B1 (en) * 2019-12-31 2021-05-11 Juniper Networks, Inc. Transporting client timing information across a network
US11212068B1 (en) * 2020-08-24 2021-12-28 Ciena Corporation Carrying a timestamp in radio over ethernet
CN111970080B (zh) * 2020-08-28 2023-04-14 石家庄科林电气股份有限公司 一种主从设备的对时方法
WO2022166558A1 (zh) * 2021-02-03 2022-08-11 华为技术有限公司 通信方法及设备
US11843453B2 (en) 2021-04-07 2023-12-12 Cisco Technology, Inc. Time synchronization in passive optical networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040063453A (ko) * 2003-01-07 2004-07-14 삼성전자주식회사 이피오엔 시스템의 알티티 측정 방법
CN1845546A (zh) * 2006-03-15 2006-10-11 重庆邮电学院 面向测量与控制的精确时间同步方法与***
CN101080889A (zh) * 2004-12-16 2007-11-28 西门子公司 同步模块
CN201039198Y (zh) * 2006-09-18 2008-03-19 中兴通讯股份有限公司 以太网方式无源光网络的网络定时分配***
CN101232457A (zh) * 2008-02-22 2008-07-30 浙江大学 一种基于ieee1588协议的高精度实时同步方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470032B2 (en) * 2001-03-20 2002-10-22 Alloptic, Inc. System and method for synchronizing telecom-related clocks in ethernet-based passive optical access network
KR100689469B1 (ko) * 2003-10-14 2007-03-08 삼성전자주식회사 이더넷 네트워크에서의 실시간 멀티미디어 데이터 전송 방법
CN101136703B (zh) * 2006-09-01 2011-04-20 华为技术有限公司 一种数据传输方法、***和装置
CN101145846B (zh) * 2006-09-13 2012-04-18 中兴通讯股份有限公司 光接入网络中传送业务定时与网络定时的装置和方法
US7991296B1 (en) * 2006-11-10 2011-08-02 Marvell International Ltd. Method and apparatus for data frame synchronization and delineation
JP5122890B2 (ja) * 2007-09-06 2013-01-16 株式会社日立製作所 通信システム及びその装置
JP5188170B2 (ja) * 2007-12-21 2013-04-24 株式会社日立製作所 ネットワークシステム及びolt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040063453A (ko) * 2003-01-07 2004-07-14 삼성전자주식회사 이피오엔 시스템의 알티티 측정 방법
CN101080889A (zh) * 2004-12-16 2007-11-28 西门子公司 同步模块
CN1845546A (zh) * 2006-03-15 2006-10-11 重庆邮电学院 面向测量与控制的精确时间同步方法与***
CN201039198Y (zh) * 2006-09-18 2008-03-19 中兴通讯股份有限公司 以太网方式无源光网络的网络定时分配***
CN101232457A (zh) * 2008-02-22 2008-07-30 浙江大学 一种基于ieee1588协议的高精度实时同步方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120185A1 (en) * 2010-03-29 2011-10-06 Telefonaktebolaget L M Ericsson (Publ) Methods and arrangements in optical network

Also Published As

Publication number Publication date
CN101707505B (zh) 2013-08-28
US20120301147A1 (en) 2012-11-29
CN101707505A (zh) 2010-05-12
US8805201B2 (en) 2014-08-12
US20100040369A1 (en) 2010-02-18
US8335437B2 (en) 2012-12-18

Similar Documents

Publication Publication Date Title
WO2010017762A1 (zh) 一种在无源光网络中时间同步的方法、装置及无源光网络
US8953940B2 (en) Method, apparatus, and system for time synchronization on passive optical network
US8208815B1 (en) Bit accurate upstream burst transmission phase method for reducing burst data arrival variation
US8223648B2 (en) Method and apparatus for synchronizing time in a passive optical network
JP5314768B2 (ja) パッシブ光ネットワークシステムの時間同期化方法及びその同期化システム
US8126333B2 (en) Optical transmission system and synchronization method using time reference pulse
US7773880B2 (en) Optical access system
US8385744B2 (en) Delay control method in passive optical network, an optical line terminal and a passive optical network
EP2410672B1 (en) Method and system for transmitting time in passive optical network
US20030133460A1 (en) Method for implementing various functions in gigabit ethernet-passive optical network system and structure of ethernet frame employed in the same
WO2011120262A1 (zh) 时间同步的处理方法及装置
US20150163049A1 (en) Time domains in a pon
WO2012019458A1 (zh) 一种无源光网络中的测距方法及***
WO2016082369A1 (zh) 时钟源属性的同步方法、装置及***
KR100606027B1 (ko) 수동형 광 가입자망을 통한 이더넷 프레임 전송시 왕복시간지연을 보상하는 방법 및 그 수동형 광 가입자망 시스템
KR101987077B1 (ko) 시각 동기화 기능을 구비한 onu sfp 모듈 및 이를 적용한 네트워크 시스템의 시간 동기 방법
WO2018170836A1 (zh) 一种通信配置方法、光线路终端以及光网络单元
RU2777446C2 (ru) Способ синхронизации по времени в pon системе, olt, onu и pon система
JP2011249864A (ja) Ponシステム、加入者側光終端装置、局側光終端装置および時刻同期方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806365

Country of ref document: EP

Kind code of ref document: A1