WO2010016246A1 - 弾性波素子とこれを用いた電子機器 - Google Patents

弾性波素子とこれを用いた電子機器 Download PDF

Info

Publication number
WO2010016246A1
WO2010016246A1 PCT/JP2009/003734 JP2009003734W WO2010016246A1 WO 2010016246 A1 WO2010016246 A1 WO 2010016246A1 JP 2009003734 W JP2009003734 W JP 2009003734W WO 2010016246 A1 WO2010016246 A1 WO 2010016246A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric body
wave
idt electrode
dielectric layer
angle
Prior art date
Application number
PCT/JP2009/003734
Other languages
English (en)
French (fr)
Inventor
後藤令
中西秀和
中村弘幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010523760A priority Critical patent/JPWO2010016246A1/ja
Priority to US13/056,813 priority patent/US20110133858A1/en
Publication of WO2010016246A1 publication Critical patent/WO2010016246A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode

Definitions

  • the present invention relates to an acoustic wave device and an electronic device using the same.
  • FIGS. 9A and 9B A conventional acoustic wave device will be described with reference to FIGS. 9A and 9B.
  • FIG. 9A is a schematic cross-sectional view of a conventional acoustic wave device.
  • FIG. 9B is a diagram showing a range in which the electromechanical coupling coefficient of the Rayleigh wave becomes equal to or less than a predetermined value when the substrate cut angle of the piezoelectric body in the conventional elastic wave device is changed.
  • the conventional elastic wave device 1 includes a piezoelectric body 2 made of lithium niobate and an IDT electrode 3 disposed on the piezoelectric body 2.
  • the first dielectric layer 6 formed of a silicon oxide film is formed to have the same thickness as the IDT electrode 3 in the remaining area except the area where the IDT electrode 3 is formed on the piezoelectric body 2.
  • the second dielectric layer 7 made of a silicon oxide film formed to cover the IDT electrode 3 and the first dielectric layer 6.
  • the normalized film thickness of the second dielectric layer 7 is in the range of 0.15 ⁇ to 0.40 ⁇ , and the wedge of the substrate cut angle (0 ° ⁇ 5 °, ⁇ , ⁇ ) of the piezoelectric body 2 is 10 ° to 30.
  • the film thickness of the IDT electrode is, for example, 0.06 ⁇ , ⁇ and ⁇ ⁇ are within the range of the hatched area shown in FIG. 9B.
  • Such a conventional elastic wave device 1 sets the substrate cut angle of the piezoelectric body 2, the film thickness of the IDT electrode 3, the film thickness of the second dielectric layer 7, etc. By reducing the electromechanical coupling coefficient, the spurious due to the Rayleigh wave was suppressed.
  • this conventional elastic wave device 1 is a boundary wave device that confines a main wave inside the device, conditions such that the film thickness of the IDT electrode 3 and the film thickness of the dielectric layer can suppress Stoneley waves due to manufacturing variations. Frequent departure from Due to this manufacturing variation, the spurious due to the Stoneley wave is generated and the device characteristics are degraded.
  • the present invention provides an acoustic wave device in which degradation of device characteristics is suppressed even if manufacturing variations occur.
  • the elastic wave device of the present invention comprises a piezoelectric body, an IDT electrode disposed on the piezoelectric body, a first dielectric layer disposed on the piezoelectric body so as to cover the IDT electrode, and a first dielectric layer. And a second dielectric layer provided on top of the body layer for propagating a shear wave faster than the velocity of the shear wave propagating through the first dielectric layer.
  • the substrate cut angle of the piezoelectric body can be displayed in Euler's angle ( ⁇ , ⁇ , ⁇ When ⁇ ), ⁇ ⁇ 0 °, ⁇ 0 ⁇ ⁇ , ⁇ ⁇ 0 ⁇ ⁇ ⁇ .
  • the power flow angle of the Stoneley wave is not less than a predetermined value while the power flow angle of the SH wave which is the main wave is not more than a predetermined value by shifting the substrate cut angle ⁇ of the piezoelectric material from 0 °.
  • the film thickness of the IDT electrode, the film thickness of the dielectric layer, etc. deviate from the conditions that can suppress Stoneley waves, and the power flow angle of Stoneley waves becomes slightly smaller than a predetermined value. Even in this case, the deterioration of the element characteristics can be suppressed to an acceptable level.
  • FIG. 1 is a schematic cross-sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 9A is a schematic cross-sectional view of a conventional acoustic wave device.
  • FIG. 9B is a diagram showing the range of the electromechanical coupling coefficient of the Rayleigh wave in the conventional elastic wave device.
  • Embodiment 1 The acoustic wave device according to the first embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a schematic cross-sectional view of elastic wave element 8 in accordance with the first exemplary embodiment.
  • the elastic wave element 8 is disposed on the piezoelectric body 9, an IDT (Inter-Digital Transducer) electrode 10 disposed on the piezoelectric body 9, and the piezoelectric body 9 so as to cover the IDT electrode 10.
  • a second dielectric layer 12 provided on top of the first dielectric layer 11.
  • the piezoelectric body 9 is formed of, for example, lithium niobate, lithium tantalate, or potassium niobate.
  • the substrate cut angle of the piezoelectric body 9 is ⁇ ⁇ 0 °, ⁇ ⁇ 0 °, ⁇ ⁇ 0 ° when ( ⁇ , ⁇ , ⁇ ) in Euler angle display.
  • the substrate cut angle of the piezoelectric body 9 is 1.3 ° ⁇ ⁇ 5.5 ° and ⁇ 70 ° ⁇ ⁇ 60 ° and ⁇ 3.4 ° ⁇ ⁇ 0 °.
  • the IDT electrode 10 is formed of, for example, a single metal made of aluminum, copper, silver, gold, titanium, tungsten, platinum, or chromium, or an alloy containing any of these metals as a main component.
  • the first dielectric layer 11 is made of, for example, silicon oxide, but any medium may be used as long as it has a frequency temperature characteristic reverse to that of the piezoelectric body 9. Thereby, frequency temperature characteristics can be improved.
  • the second dielectric layer 12 is formed of a medium in which a shear wave having a speed higher than the velocity of the shear wave propagating through the first dielectric layer 11 is propagated.
  • a shear wave having a speed higher than the velocity of the shear wave propagating through the first dielectric layer 11 is propagated.
  • diamond, silicon, silicon nitride, aluminum nitride or aluminum oxide is used.
  • the film thickness of the second dielectric layer 12 is 0.8 or more times the wavelength ⁇ of the SH wave which is the main wave. Thereby, the main wave can be confined in the elastic wave element 8.
  • the film thickness of the second dielectric layer 12 is desirably equal to or more than the wavelength ⁇ of the SH wave which is the main wave.
  • the power flow angle of the Stoney wave is set to a predetermined value or more while the power flow angle of the SH wave as the main wave is set to a predetermined value or less.
  • the power flow angle is an angle formed by the direction of the phase velocity propagating and the direction of the group velocity when a wave is excited by the IDT electrode 10.
  • the film thickness of the IDT electrode 10 the film thickness of the dielectric layer, etc. are out of the conditions that can suppress Stoneley waves, and the power flow angle of Stoneley waves is slightly smaller than a predetermined value. Even if it becomes, deterioration of the element characteristics can be suppressed to an acceptable level. This is explained below.
  • FIG. 2 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention.
  • the vertical axis indicates PFA (power flow angle) (unit: deg) of SH wave which is a main wave or PFA (power flow angle) (unit: deg) of a Stoneley wave which is an unnecessary wave.
  • PFA power flow angle
  • unit: deg of SH wave which is a main wave
  • PFA power flow angle
  • Stoneley wave which is an unnecessary wave.
  • lithium niobate is used as the piezoelectric body 9
  • copper having a normalized film thickness of 0.09 ⁇ ( ⁇ is the wavelength of the SH wave) is used as the IDT electrode 10
  • the first dielectric layer 11 is used.
  • silicon nitride having a normalized film thickness ⁇ is used as the second dielectric layer 12.
  • the SH wave which is the main wave it is understood that by changing ⁇ , the PFA of the SH wave which is the main wave changes from 0 ° until 0 °.
  • a wedge that makes the PFA of the SH wave that is the main wave be 0 ° it is possible to suppress the Q value deterioration of the SH wave that is the main wave.
  • Q value degradation is suppressed because the absolute value of the power flow angle of SH wave excited by the IDT electrode 10 is less than 0.3 °.
  • elastic wave element 8 uses a wedge whose PFA of SH wave which is the main wave is 0 ° by setting substrate cut angle ⁇ of piezoelectric body 9 to a value other than 0 °. It is possible to shift the PFA of the Stoneley wave, which is an unnecessary wave, from 0 °.
  • the absolute value of the power flow angle of the SH wave excited to the IDT electrode 10 is less than 0.3 °, and the power flow angle of the Stoneley wave excited to the IDT electrode 10
  • the range of the substrate cut angle of the piezoelectric body 9 in which the absolute value is 0.3 ° or more will be described with reference to FIGS.
  • FIGS. 3 to 6 are explanatory views of the features of the acoustic wave device according to the first embodiment of the present invention.
  • the substrate cut angle of the piezoelectric body 9 in which the absolute value of the power flow angle of the SH wave is less than 0.3 ° and the absolute value of the power flow angle of the Stoneley wave is 0.3 ° or more Indicate the range.
  • the substrate cut angle of the piezoelectric body 9 is represented by ( ⁇ , ⁇ , ⁇ ) in Euler angle display
  • FIG. 3 is ⁇ of ⁇ 75 °
  • FIG. 4 is ⁇ of ⁇ 70 °
  • FIG. 6 the possible ranges of ⁇ and ⁇ are shown by oblique lines when the angle ⁇ is set to ⁇ 60 °.
  • lithium niobate is used as the piezoelectric body 9
  • copper having a normalized film thickness of 0.09 ⁇ ( ⁇ is the wavelength of the SH wave) is used as the IDT electrode 10
  • a normalized film is used as the first dielectric layer 11.
  • Silicon oxide having a thickness of 0.2 ⁇ was used, and silicon nitride having a normalized film thickness ⁇ was used as the second dielectric layer 12.
  • the absolute value of the power flow angle of the SH wave excited by the IDT electrode 10 is less than 0.3 °, Also, the absolute value of the power flow angle of the Stoneley wave excited to the IDT electrode 10 is 0.3 ° or more.
  • the substrate cut angle of the piezoelectric body 9 of the elastic wave element 8 satisfies the following conditions.
  • FIG. 7 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention. That is, when the normalized film thickness of the IDT electrode 10 is 0.08 ⁇ ( ⁇ is the wavelength of the SH wave) and 0.12 ⁇ , the absolute value of the power flow angle of the SH wave is less than 0.3 °, and The range of the substrate cut angle of the piezoelectric body 9 in which the absolute value of the power flow angle of the Stoneley wave is 0.3 ° or more is shown.
  • FIG. 7 a region between two broken lines connecting triangles indicates a case where the film thickness of the IDT electrode 10 is 0.08 ⁇ , and a region between two broken lines connecting circles is a film of the IDT electrode 10. The case where the thickness is 0.12 ⁇ is shown.
  • the elastic wave element 8 shown in FIG. 7 has the same configuration as the elastic wave element 8 shown in FIG. 5 except for the film thickness of the IDT electrode 10.
  • FIG. 8 is an explanatory view of the feature of the acoustic wave device according to the first embodiment of the present invention. That is, the absolute value of the power flow angle of the SH wave is 0.3 ° when the normalized film thickness of the first dielectric layer 11 is 0.1 ⁇ ( ⁇ is the wavelength of the SH wave) and 0.4 ⁇ . The range of the substrate cut angle of the piezoelectric body 9 where the absolute value of the power flow angle of the Stoneley wave is less than 0.3 ° is shown.
  • FIG. 8 a region between two broken lines connecting triangles indicates the case where the film thickness of the first dielectric layer 11 is 0.4 ⁇ , and a region between two broken lines connecting circles is the first. The case where the film thickness of the first dielectric layer 11 is 0.1 ⁇ is shown.
  • the elastic wave element 8 shown in FIG. 8 has the same configuration as the elastic wave element 8 shown in FIG. 5 except for the thickness of the first dielectric layer 11.
  • the piezoelectric body 9 in which the absolute value of the power flow angle of the SH wave is less than 0.3 ° and the absolute value of the power flow angle of the Stoneley wave is 0.3 ° or more
  • the range of the substrate cut angle also depends on the film thickness and density of the IDT electrode 10 and the film thickness of the first dielectric layer 11.
  • F1 represents a correction function of the upper limit of ⁇ satisfying the above condition with respect to ⁇
  • F2 represents a correction function of the lower limit of ⁇ satisfying the above condition with respect to ⁇ .
  • the elastic wave element before correction is the same as the elastic wave element 8 as described above, that is, the standard of the IDT electrode 10 made of copper and having a normalized film thickness of 0.2 ⁇ for the first dielectric layer 11 made of silicon oxide. It is the elastic wave element 8 having a thickness of 0.09 ⁇ .
  • the film thickness of the IDT electrode 10 is h
  • the ratio of the density of the IDT electrode 10 to the density of copper is a
  • the film thickness of the first dielectric layer 11 is H.
  • g1 ( ⁇ ), g2 ( ⁇ ), h1 ( ⁇ ) and h2 ( ⁇ ) are represented by the following (formula 3), (formula 4), (formula 5) and (formula 6).
  • the above g1 ( ⁇ ) and g2 ( ⁇ ) are correction functions showing the dependence on the film thickness and density of the IDT electrode 10
  • the above h1 ( ⁇ ) and h2 ( ⁇ ) are the first dielectric It is a correction function showing the dependency on the film thickness of the layer 11.
  • the elastic wave element 8 according to the first embodiment may be applied to a resonator (not shown), or may be applied to a filter (not shown) such as a ladder type filter or a DMS filter.
  • a filter such as a ladder type filter or a DMS filter.
  • an electronic apparatus comprising the acoustic wave device 8, the filter, a semiconductor integrated circuit device (not shown) connected to the filter, and a reproduction device connected to the semiconductor integrated circuit device (not shown) You may apply. This can improve the communication quality in the resonator, the filter, and the electronic device.
  • the elastic wave device according to the present invention has a feature of suppressing deterioration of device characteristics, and is applicable to electronic devices such as mobile phones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 本発明の弾性波素子(8)は、圧電体(9)と、圧電体(9)の上に配置されたIDT電極(10)と、圧電体(9)の上にIDT電極(10)を覆うように配置された第1の誘電体層(11)と、第1の誘電体層(11)の上部に設けられて第1の誘電体層(11)を伝搬する横波の速度よりも速い横波が伝搬する第2の誘電体層(12)と、を備える。第2の誘電体層(12)の膜厚がIDT電極(10)で励振される主要波の波長より大きい場合に、圧電体(9)の基板カット角をオイラー角表示で(φ,θ,ψ)としたとき、φ≠0°,θ≠0°,ψ≠0°として、素子特性の劣化を抑制する。

Description

弾性波素子とこれを用いた電子機器
 本発明は、弾性波素子と、これを用いた電子機器に関するものである。
 従来の弾性波素子について図9A、図9Bを用いて説明する。
 図9Aは従来の弾性波素子の断面模式図である。図9Bは従来の弾性波素子における圧電体の基板カット角を変化させた場合のレイリー波の電気機械結合係数が所定値以下となる範囲を示す図である。
 図9A、図9Bにおいて、従来の弾性波素子1は、ニオブ酸リチウムからなる圧電体2と、圧電体2の上に配置されたIDT電極3と、を備える。また、圧電体2の上にIDT電極3が形成されている領域を除いた残りの領域において、IDT電極3と等しい厚みとなるように形成されて酸化ケイ素膜からなる第1の誘電体層6を備える、さらに、IDT電極3及び第1の誘電体層6を被覆するように形成された酸化ケイ素膜からなる第2の誘電体層7を備える。
 第2の誘電体層7の規格化膜厚が0.15λ~0.40λの範囲にあり、圧電体2の基板カット角(0°±5°,θ,ψ)のψが10°~30°の範囲にあり、かつ、IDT電極の膜厚が例えば0.06λの場合において、θ及びψが図9Bにハッチングを付して示した領域の範囲内にある。
 これにより、主要波でないレイリー波の電気機械結合係数を小さくし、レイリー波によるスプリアスを抑制していた。また、このような従来の弾性波素子1は、圧電体2の基板カット角、IDT電極3の膜厚、及び第2の誘電体層7の膜厚等を設定し、主要波でないレイリー波の電気機械結合係数を小さくすることにより、レイリー波によるスプリアスを抑制していた。
 しかしながら、この従来の弾性波素子1を、主要波を素子内部で閉じ込める境界波素子とした場合、製造ばらつきにより、IDT電極3の膜厚、誘電体層の膜厚等がストンリー波を抑制できる条件から外れることが頻繁に発生する。この製造ばらつきにより、ストンリー波によるスプリアスが発生し、素子特性が劣化する。
特開2007-251710号公報
 本発明は、たとえ製造ばらつきが生じたとしても、素子特性劣化を抑制した弾性波素子を提供する。
 本発明の弾性波素子は、圧電体と、圧電体の上に配置されたIDT電極と、圧電体の上にIDT電極を覆うように配置された第1の誘電体層と、第1の誘電体層の上部に設けられて第1の誘電体層を伝搬する横波の速度よりも速い横波が伝搬する第2の誘電体層と、を備える。そして、第2の誘電体層の膜厚がIDT電極で励振される主要波の波長λの0.8倍より大きい場合に、圧電体の基板カット角をオイラー角表示で(φ,θ,ψ)としたとき、φ≠0°,θ≠0°,ψ≠0°としている。
 本発明の弾性波素子において、圧電体の基板カット角φを0°からずらすことにより、主要波であるSH波のパワーフロー角を所定値以下としつつ、ストンリー波のパワーフロー角を所定値以上としている。すなわち、製造ばらつきが頻繁に発生する境界波素子において、IDT電極の膜厚、誘電体層の膜厚等がストンリー波を抑制できる条件から外れ、ストンリー波のパワーフロー角が所定値より多少小さくなったとしても、素子特性の劣化を許容レベルに抑制することができる。
図1は本発明の実施の形態1における弾性波素子の断面模式図である。 図2は本発明の実施の形態1における弾性波素子の特徴の説明図である。 図3は本発明の実施の形態1における弾性波素子の特徴の説明図である。 図4は本発明の実施の形態1における弾性波素子の特徴の説明図である。 図5は本発明の実施の形態1における弾性波素子の特徴の説明図である。 図6は本発明の実施の形態1における弾性波素子の特徴の説明図である。 図7は本発明の実施の形態1における弾性波素子の特徴の説明図である。 図8は本発明の実施の形態1における弾性波素子の特徴の説明図である。 図9Aは従来の弾性波素子の断面模式図である。 図9Bは従来の弾性波素子におけるレイリー波の電気機械結合係数の範囲を示す図である。
 (実施の形態1)
 以下、本発明の実施の形態1における弾性波素子について図面を参照しながら説明する。
 図1は、実施の形態1における弾性波素子8の断面模式図である。図1において、弾性波素子8は、圧電体9と、圧電体9の上に配置されたIDT(Inter-Digital Transducer)電極10と、圧電体9の上にIDT電極10を覆うように配置された第1の誘電体層11と、第1の誘電体層11の上部に設けられた第2の誘電体層12と、を備える。
 圧電体9は、例えば、ニオブ酸リチウム、タンタル酸リチウム、又はニオブ酸カリウムで形成されている。この圧電体9の基板カット角は、オイラー角表示で(φ,θ,ψ)としたとき、φ≠0°,θ≠0°,ψ≠0°である。例えば、圧電体9の基板カット角は、1.3°<φ<5.5°かつ-70°<θ<-60°かつ-3.4°<ψ<0°である。
 IDT電極10は、例えば、アルミニウム、銅、銀、金、チタン、タングステン、白金、又はクロムからなる単体金属、又はこれらを主成分とする合金で形成されている。
 第1の誘電体層11は、例えば、酸化ケイ素からなるが、圧電体9とは逆の周波数温度特性を有する媒質であれば何でも構わない。これにより、周波数温度特性を向上することができる。
 第2の誘電体層12は、第1の誘電体層11を伝搬する横波の速度よりも速い横波が伝搬する媒質で形成されている。例えば、ダイアモンド、シリコン、窒化シリコン、窒化アルミニウム、または酸化アルミニウムが用いられる。また、この第2の誘電体層12の膜厚は主要波であるSH波の波長λの0.8倍以上である。これにより、主要波を、弾性波素子8の中に閉じ込めることができる。主要波を弾性波素子8の中にほぼ完全に閉じ込めるために、第2の誘電体層12の膜厚は主要波であるSH波の波長λ以上であることが望ましい。
 上記構成のように、圧電体9の基板カット角φを0°からずらすことにより、主要波であるSH波のパワーフロー角を所定値以下としつつ、ストンリー波のパワーフロー角を所定値以上としている。なお、パワーフロー角とは、IDT電極10によって波が励振されたときに、伝搬する位相速度の方向と群速度の方向のなす角度である。
 よって、製造ばらつきが頻繁に発生する境界波素子において、IDT電極10の膜厚、誘電体層の膜厚等がストンリー波を抑制できる条件から外れ、ストンリー波のパワーフロー角が所定値より多少小さくなったとしても、素子特性の劣化を許容レベルに抑制することができる。以下に、このことについて説明する。
 図2は本発明の実施の形態1における弾性波素子の特徴の説明図である。図2において、縦軸は、主要波であるSH波のPFA(パワーフロー角)(単位:deg)若しくは不要波であるストンリー波のPFA(パワーフロー角)(単位:deg)を示す。また、圧電体9基板カット角が、θ=-65°かつ、φ=0°、1°、2°、3°、4°、5°の場合を示す。
 弾性波素子8において、圧電体9としてニオブ酸リチウムが用いられ、IDT電極10として、規格化膜厚0.09λ(λはSH波の波長)の銅が用いられ、第1の誘電体層11として、規格化膜厚0.2λの酸化ケイ素が用いられ、第2の誘電体層12として、規格化膜厚λの窒化ケイ素が用いられている。
 図2において、主要波であるSH波について見ると、φを変化させることで主要波であるSH波のPFAが0°となるψが0°から変化していることがわかる。主要波であるSH波のPFAが0°となるψを用いることにより、主要波であるSH波のQ値劣化を抑えることができる。なお、IDT電極10に励振されるSH波のパワーフロー角の絶対値が0.3°未満となることでQ値劣化が抑制される。
 また、不要波であるストンリー波について見ると、圧電体9の基板カット角φが0°の場合は、主要波であるSH波のPFAを0°とするψを用いたときに、不要波であるストンリー波のPFAもまた0°となることがわかる。そこで、実施の形態1における弾性波素子8は、圧電体9の基板カット角φを0°以外の値とすることにより、主要波であるSH波のPFAが0°となるψを用いたときに不要波であるストンリー波のPFAを、0°からずらすことができる。
 以上の結果より、圧電体9の基板カット角φを0°から変化させることにより、不要応答であるストンリー波のQ値を小さくし、スプリアス応答を選択的に抑制することができる。
 次に、上記弾性波素子8において、IDT電極10に励振されるSH波のパワーフロー角の絶対値が0.3°未満となり、かつ、IDT電極10に励振されるストンリー波のパワーフロー角の絶対値が0.3°以上となる圧電体9の基板カット角の範囲を、図3~図6を用いて説明する。
 図3~図6は本発明の実施の形態1における弾性波素子の特徴の説明図である。図3~図6において、SH波のパワーフロー角の絶対値が0.3°未満、かつ、ストンリー波のパワーフロー角の絶対値が0.3°以上となる圧電体9の基板カット角の範囲を示す。ここで、圧電体9の基板カット角をオイラー角表示で(φ,θ,ψ)としたとき、図3はθを-75°、図4はθを-70°、図5はθを-65°、図6はθを-60°とした場合の、それぞれφとψの取り得る範囲を斜線で示している。
 ここで、圧電体9としてニオブ酸リチウムを用い、IDT電極10として、規格化膜厚0.09λ(λはSH波の波長)の銅を用い、第1の誘電体層11として、規格化膜厚0.2λの酸化ケイ素を用い、第2の誘電体層12として、規格化膜厚λの窒化ケイ素を用いた。
 図3~図6に示すように、圧電体9の基板カット角が以下の条件を満たす場合に、IDT電極10に励振されるSH波のパワーフロー角の絶対値が0.3°未満となり、かつ、IDT電極10に励振されるストンリー波のパワーフロー角の絶対値が0.3°以上となる。
 即ち、弾性波素子8の圧電体9の基板カット角は、以下の条件を満たす。
 i)-77.5°≦θ<-72.5°の場合
 -0.5°≦φ<0.5°かつ -2.2°≦ψ<-1.4°
または
 0.5°≦φ<1.5°かつ -2.4°≦ψ<-0.8°
または
 1.5°≦φ<2.5°かつ -2.6°≦ψ<-0.2°
または
 2.5°≦φ<3.5°かつ -2.8°≦ψ<0.3°
または
 3.5°≦φ<4.5°かつ -3.1°≦ψ<0.8°
または
 4.5°≦φ<5.5°かつ -3.3°≦ψ<1.3°
 ii)-72.5°≦θ<-67.5°の場合
 -0.5°≦φ<0.5°かつ -2.5°≦ψ<-1.7°
または
 0.5°≦φ<1.5°かつ -2.6°≦ψ<-0.9°
または
 1.5°≦φ<2.5°かつ -2.7°≦ψ<-0.1°
または
 2.5°≦φ<3.5°かつ -2.7°≦ψ<0.7°
または
 3.5°≦φ<4.5°かつ -2.9°≦ψ<1.3°
または
 4.5°≦φ<5.5°かつ -3°≦ψ<2°
 iii)-67.5°≦θ<-62.5°の場合
 -0.5°≦φ<0.5°かつ -3.2°≦ψ<-2.2°
または
 0.5°≦φ<1.5°かつ -3°≦ψ<-0.9°
または
 1.5°≦φ<2.5°かつ -2.7°≦ψ<0.4°
または
 2.5°≦φ<3.5°かつ -2.5°≦ψ<1.5°
または
 3.5°≦φ<4.5°かつ -2.4°≦ψ<2.6°
または
 4.5°≦φ<5.5°かつ -2.4°≦ψ<3.3°
 iv)-62.5°≦θ<-57.5°の場合
 -0.5°≦φ<0.5°かつ -5.2°≦ψ<-4.1°
または
 0.5°≦φ<1.5°かつ -4°≦ψ<-0.8°
または
 1.5°≦φ<2.5°かつ -2.8°≦ψ<2.1°
または
 2.5°≦φ<3.5°かつ -1.8°≦ψ<4.1°
または
 3.5°≦φ<4.5°かつ -1.1°≦ψ<5.5°
または
 4.5°≦φ<5.5°かつ -0.9°≦ψ<6.2°
 上記の条件を満たすとき、主要波であるSH波のパワーフロー角の絶対値が0.3°未満となり、かつ、ストンリー波のパワーフロー角の絶対値が0.3°以上となり、SH波の伝搬ロスを低減することができると共に、ストンリー波のスプリアスを抑制できる。
 図7は本発明の実施の形態1における弾性波素子の特徴の説明図である。すなわち、IDT電極10の規格化膜厚が0.08λ(λはSH波の波長)の場合と0.12λの場合の、SH波のパワーフロー角の絶対値が0.3°未満、かつ、ストンリー波のパワーフロー角の絶対値が0.3°以上となる圧電体9の基板カット角の範囲を示す。
 図7において、三角をつなぐ2本の折れ線の間の領域は、IDT電極10の膜厚が0.08λの場合を示し、丸をつなぐ2本の折れ線の間の領域は、IDT電極10の膜厚が0.12λの場合を示す。なお、この図7に示す弾性波素子8は、IDT電極10の膜厚以外は、図5に示す弾性波素子8と同様の構成である。
 図8は本発明の実施の形態1における弾性波素子の特徴の説明図である。すなわち、第1の誘電体層11の規格化膜厚が0.1λ(λはSH波の波長)の場合と0.4λの場合の、SH波のパワーフロー角の絶対値が0.3°未満、かつ、ストンリー波のパワーフロー角の絶対値が0.3°以上となる圧電体9の基板カット角の範囲を示す。
 図8において、三角をつなぐ2本の折れ線の間の領域は、第1の誘電体層11の膜厚が0.4λの場合を示し、丸をつなぐ2本の折れ線の間の領域は、第1の誘電体層11の膜厚が0.1λの場合を示す。なお、この図8に示す弾性波素子8は、第1の誘電体層11の膜厚以外は、図5に示す弾性波素子8と同様の構成である。
 これら図7、図8にも示すように、SH波のパワーフロー角の絶対値が0.3°未満、かつ、ストンリー波のパワーフロー角の絶対値が0.3°以上となる圧電体9の基板カット角の範囲は、IDT電極10の膜厚と密度、第1の誘電体層11の膜厚にも依存する。
 ここで、IDT電極10の膜厚と密度、及び第1の誘電体層11の膜厚が変化した場合の上記条件を満たす圧電体9の基板カット角ψの補正関数F1、F2をそれぞれ(式1)、(式2)に示す。
 F1は、φに対する上記条件を満たすψの上限の補正関数を示し、F2は、φに対する上記条件を満たすψの下限の補正関数を示す。なお、補正前の弾性波素子は、上記と同様の弾性波素子8、即ち、酸化ケイ素からなる第1の誘電体層11の規格化膜厚が0.2λ、銅からなるIDT電極10の規格化膜厚が0.09λである弾性波素子8である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、IDT電極10の膜厚をh、IDT電極10の密度の銅の密度に対する比をa、第1の誘電体層11の膜厚をHとしている。
 ただし、上記g1(φ)、g2(φ)、h1(φ)、h2(φ)は、下記(式3)、(式4)、(式5)、(式6)で示される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここで、上記g1(φ)、g2(φ)は、IDT電極10の膜厚及び密度に対する依存性を示す補正関数であり、上記h1(φ)、h2(φ)は、第1の誘電体層11の膜厚に対する依存性を示す補正関数である。
 すなわち、補正関数F1,F2を上記(式1)、(式2)で表現するとき、弾性波素子8の圧電体9の基板カット角は、以下の条件を満たす。
 i)-77.5°≦θ<-72.5°の場合
 -0.5°≦φ<0.5°かつ -2.2°+F2≦ψ<-1.4°+F1
または
 0.5°≦φ<1.5°かつ -2.4°+F2≦ψ<-0.8°+F1
または
 1.5°≦φ<2.5°かつ -2.6°+F2≦ψ<-0.2°+F1
または
 2.5°≦φ<3.5°かつ -2.8°+F2≦ψ<0.3°+F1
または
 3.5°≦φ<4.5°かつ -3.1°+F2≦ψ<0.8°+F1
または
 4.5°≦φ<5.5°かつ -3.3°+F2≦ψ<1.3°+F1
 ii)-72.5°≦θ<-67.5°の場合
 -0.5°≦φ<0.5°かつ -2.5°+F2≦ψ<-1.7°+F1
または
 0.5°≦φ<1.5°かつ -2.6°+F2≦ψ<-0.9°+F1
または
 1.5°≦φ<2.5°かつ -2.7°+F2≦ψ<-0.1°+F1
または
 2.5°≦φ<3.5°かつ -2.7°+F2≦ψ<0.7°+F1
または
 3.5°≦φ<4.5°かつ -2.9°+F2≦ψ<1.3°+F1
または
 4.5°≦φ<5.5°かつ -3°+F2≦ψ<2°+F1
 iii)-67.5°≦θ<-62.5°の場合
 -0.5°≦φ<0.5°かつ -3.2°+F2≦ψ<-2.2°+F1
または
 0.5°≦φ<1.5°かつ -3°+F2≦ψ<-0.9°+F1
または
 1.5°≦φ<2.5°かつ -2.7°+F2≦ψ<0.4°+F1
または
 2.5°≦φ<3.5°かつ -2.5°+F2≦ψ<1.5°+F1
または
 3.5°≦φ<4.5°かつ -2.4°+F2≦ψ<2.6°+F1
または
 4.5°≦φ<5.5°かつ -2.4°+F2≦ψ<3.3°+F1
 iv)-62.5°≦θ<-57.5°の場合
 -0.5°≦φ<0.5°かつ -5.2°+F2≦ψ<-4.1°+F1
または
 0.5°≦φ<1.5°かつ -4°+F2≦ψ<-0.8°+F1
または
 1.5°≦φ<2.5°かつ -2.8°+F2≦ψ<2.1°+F1
または
 2.5°≦φ<3.5°かつ -1.8°+F2≦ψ<4.1°+F1
または
 3.5°≦φ<4.5°かつ -1.1°+F2≦ψ<5.5°+F1
または
 4.5°≦φ<5.5°かつ -0.9°+F2≦ψ<6.2°+F1
 上記の条件を満たすとき、主要波であるSH波のパワーフロー角の絶対値が0.3°未満となり、かつ、ストンリー波のパワーフロー角の絶対値が0.3°以上となり、SH波の伝搬ロスを低減することができると共に、ストンリー波のスプリアスを抑制できる。
 なお、本実施の形態1の弾性波素子8を共振器(図示せず)に適用しても構わないし、ラダー型フィルタもしくはDMSフィルタ等のフィルタ(図示せず)に適用しても構わない。さらに、弾性波素子8を、このフィルタと、フィルタに接続された半導体集積回路素子(図示せず)と、半導体集積回路素子(図示せず)に接続された再生装置とを備えた電子機器に適用しても良い。これにより、共振器、フィルタ、及び電子機器における通信品質を向上することができる。
 本発明に係る弾性波素子は、素子特性劣化を抑制するという特徴を有し、携帯電話等の電子機器に適用可能である。
8  弾性波素子
9  圧電体
10  IDT電極
11  第1の誘電体層
12  第2の誘電体層

Claims (6)

  1. 圧電体と、
    前記圧電体の上に配置されたIDT電極と、
    前記圧電体の上に前記IDT電極を覆うように配置された第1の誘電体層と、
    前記第1の誘電体層の上部に設けられて第1の誘電体層を伝搬する横波の速度よりも速く横波が伝搬する第2の誘電体層と、を備え、
    前記第2の誘電体層の膜厚は前記IDT電極で励振されるSH波の波長λの0.8倍より大きく、
    前記圧電体の基板カット角をオイラー角表示で(φ,θ,ψ)としたとき、
    φ≠0°,θ≠0°,ψ≠0°である
    弾性波素子。
  2. 前記圧電体の基板カット角は、前記IDT電極に励振されるSH波のパワーフロー角の絶対値が0.3°未満となり、かつ、前記IDT電極に励振されるストンリー波のパワーフロー角の絶対値が0.3°以上となる値である
    請求項1に記載の弾性波素子。
  3. 前記圧電体は、ニオブ酸リチウムから形成され、
    前記圧電体の基板カット角をオイラー角表示で(φ,θ,ψ)としたとき、
    -0.5°≦φ<5.5°
    かつ
    -77.5°≦θ<-57.5°
    かつ
    -5.2°≦ψ<6.2°
    を満たす
    請求項1に記載の弾性波素子。
  4. 前記圧電体は、ニオブ酸リチウムから形成され、
    前記圧電体の基板カット角をオイラー角表示で(φ,θ,ψ)としたとき、
     i)-77.5°≦θ<-72.5°の場合
     -0.5°≦φ<0.5°かつ -2.2°≦ψ<-1.4°
    または
     0.5°≦φ<1.5°かつ -2.4°≦ψ<-0.8°
    または
     1.5°≦φ<2.5°かつ -2.6°≦ψ<-0.2°
    または
     2.5°≦φ<3.5°かつ -2.8°≦ψ<0.3°
    または
     3.5°≦φ<4.5°かつ -3.1°≦ψ<0.8°
    または
     4.5°≦φ<5.5°かつ -3.3°≦ψ<1.3°
     ii)-72.5°≦θ<-67.5°の場合
     -0.5°≦φ<0.5°かつ -2.5°≦ψ<-1.7°
    または
     0.5°≦φ<1.5°かつ -2.6°≦ψ<-0.9°
    または
     1.5°≦φ<2.5°かつ -2.7°≦ψ<-0.1°
    または
     2.5°≦φ<3.5°かつ -2.7°≦ψ<0.7°
    または
     3.5°≦φ<4.5°かつ -2.9°≦ψ<1.3°
    または
     4.5°≦φ<5.5°かつ -3°≦ψ<2°
     iii)-67.5°≦θ<-62.5°の場合
     -0.5°≦φ<0.5°かつ -3.2°≦ψ<-2.2°
    または
     0.5°≦φ<1.5°かつ -3°≦ψ<-0.9°
    または
     1.5°≦φ<2.5°かつ -2.7°≦ψ<0.4°
    または
     2.5°≦φ<3.5°かつ -2.5°≦ψ<1.5°
    または
     3.5°≦φ<4.5°かつ -2.4°≦ψ<2.6°
    または
     4.5°≦φ<5.5°かつ -2.4°≦ψ<3.3°
     iv)-62.5°≦θ<-57.5°の場合
     -0.5°≦φ<0.5°かつ -5.2°≦ψ<-4.1°
    または
     0.5°≦φ<1.5°かつ -4°≦ψ<-0.8°
    または
     1.5°≦φ<2.5°かつ -2.8°≦ψ<2.1°
    または
     2.5°≦φ<3.5°かつ -1.8°≦ψ<4.1°
    または
     3.5°≦φ<4.5°かつ -1.1°≦ψ<5.5°
    または
     4.5°≦φ<5.5°かつ -0.9°≦ψ<6.2°
    を満たす請求項1に記載の弾性波素子。
  5. 前記圧電体は、ニオブ酸リチウムから形成され、
    前記圧電体の基板カット角をオイラー角表示で(φ,θ,ψ)とし、
    前記IDT電極の膜厚をh、前記IDT電極の密度の銅の密度に対する比をa、前記第1の誘電体層11の膜厚をHとし、
    補正関数F1,F2を
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    とし、
    前記g1(φ)、前記g2(φ)、前記h1(φ)、前記h2(φ)を
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
    Figure JPOXMLDOC01-appb-M000011
    Figure JPOXMLDOC01-appb-M000012
    としたとき、
     i)-77.5°≦θ<-72.5°の場合
     -0.5°≦φ<0.5°かつ -2.2°+F2≦ψ<-1.4°+F1
    または
     0.5°≦φ<1.5°かつ -2.4°+F2≦ψ<-0.8°+F1
    または
     1.5°≦φ<2.5°かつ -2.6°+F2≦ψ<-0.2°+F1
    または
     2.5°≦φ<3.5°かつ -2.8°+F2≦ψ<0.3°+F1
    または
     3.5°≦φ<4.5°かつ -3.1°+F2≦ψ<0.8°+F1
    または
     4.5°≦φ<5.5°かつ -3.3°+F2≦ψ<1.3°+F1
     ii)-72.5°≦θ<-67.5°の場合
     -0.5°≦φ<0.5°かつ -2.5°+F2≦ψ<-1.7°+F1
    または
     0.5°≦φ<1.5°かつ -2.6°+F2≦ψ<-0.9°+F1
    または
     1.5°≦φ<2.5°かつ -2.7°+F2≦ψ<-0.1°+F1
    または
     2.5°≦φ<3.5°かつ -2.7°+F2≦ψ<0.7°+F1
    または
     3.5°≦φ<4.5°かつ -2.9°+F2≦ψ<1.3°+F1
    または
     4.5°≦φ<5.5°かつ -3°+F2≦ψ<2°F1
     iii)-67.5°≦θ<-62.5°の場合
     -0.5°≦φ<0.5°かつ -3.2°+F2≦ψ<-2.2°+F1
    または
     0.5°≦φ<1.5°かつ -3°+F2≦ψ<-0.9°+F1
    または
     1.5°≦φ<2.5°かつ -2.7°+F2≦ψ<0.4°+F1
    または
     2.5°≦φ<3.5°かつ -2.5°+F2≦ψ<1.5°+F1
    または
     3.5°≦φ<4.5°かつ -2.4°+F2≦ψ<2.6°+F1
    または
     4.5°≦φ<5.5°かつ -2.4°+F2≦ψ<3.3°+F1
     iv)-62.5°≦θ<-57.5°の場合
     -0.5°≦φ<0.5°かつ -5.2°+F2≦ψ<-4.1°+F1
    または
     0.5°≦φ<1.5°かつ -4°+F2≦ψ<-0.8°+F1
    または
     1.5°≦φ<2.5°かつ -2.8°+F2≦ψ<2.1°+F1
    または
     2.5°≦φ<3.5°かつ -1.8°+F2≦ψ<4.1°+F1
    または
     3.5°≦φ<4.5°かつ -1.1°+F2≦ψ<5.5°+F1
    または
     4.5°≦φ<5.5°かつ -0.9°+F2≦ψ<6.2°+F1
    を満たす
    請求項1に記載の弾性波素子。
  6. 請求項1に記載の弾性波素子と、
    前記弾性波素子に接続された半導体集積回路素子と、を備えた
    電子機器。
PCT/JP2009/003734 2008-08-07 2009-08-05 弾性波素子とこれを用いた電子機器 WO2010016246A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010523760A JPWO2010016246A1 (ja) 2008-08-07 2009-08-05 弾性波素子とこれを用いた電子機器
US13/056,813 US20110133858A1 (en) 2008-08-07 2009-08-05 Elastic wave element and electronic device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-203979 2008-08-07
JP2008203979 2008-08-07
JP2008-294122 2008-11-18
JP2008294122 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010016246A1 true WO2010016246A1 (ja) 2010-02-11

Family

ID=41663474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003734 WO2010016246A1 (ja) 2008-08-07 2009-08-05 弾性波素子とこれを用いた電子機器

Country Status (3)

Country Link
US (1) US20110133858A1 (ja)
JP (1) JPWO2010016246A1 (ja)
WO (1) WO2010016246A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
WO2001029964A1 (fr) * 1999-10-15 2001-04-26 Pierre Tournois Filtre a ondes acoustiques d'interface notamment pour les liaisons sans fil
WO2005060094A1 (ja) * 2003-12-16 2005-06-30 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2006114930A1 (ja) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2008078481A1 (ja) * 2006-12-25 2008-07-03 Murata Manufacturing Co., Ltd. 弾性境界波装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002857B1 (ko) * 2003-09-16 2010-12-21 삼성전자주식회사 이동통신 시스템에서 이동단말의 속도 추정 방법 및 장치
US20060114930A1 (en) * 2004-11-17 2006-06-01 International Business Machines (Ibm) Corporation In-band control of indicators to identify devices distributed on the same domain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
WO2001029964A1 (fr) * 1999-10-15 2001-04-26 Pierre Tournois Filtre a ondes acoustiques d'interface notamment pour les liaisons sans fil
WO2005060094A1 (ja) * 2003-12-16 2005-06-30 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2006114930A1 (ja) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2008078481A1 (ja) * 2006-12-25 2008-07-03 Murata Manufacturing Co., Ltd. 弾性境界波装置

Also Published As

Publication number Publication date
JPWO2010016246A1 (ja) 2012-01-19
US20110133858A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
US11863156B2 (en) Acoustic wave device including multi-layer interdigital transducer electrodes
JP7377920B2 (ja) 弾性表面波素子
WO2011158445A1 (ja) 弾性波素子
JP4636179B2 (ja) 弾性表面波装置
TW201826580A (zh) 彈性波裝置
JP5163748B2 (ja) 弾性波素子と、これを用いた電子機器
JP5617936B2 (ja) 弾性表面波装置
WO2010137279A1 (ja) 弾性波共振器と、これを用いたアンテナ共用器
JP5187444B2 (ja) 弾性表面波装置
JP5213708B2 (ja) 弾性表面波装置の製造方法
JP4636178B2 (ja) 弾性表面波装置
JP5891198B2 (ja) アンテナ共用器およびこれを用いた電子機器
WO2010116783A1 (ja) 弾性波装置
JPWO2007145057A1 (ja) 弾性表面波装置
JP4947055B2 (ja) 弾性境界波装置
JP2010088109A (ja) 弾性波素子と、これを用いた電子機器
JP5163805B2 (ja) 弾性表面波素子とその製造方法
JP2014175885A (ja) 弾性波素子とこれを用いた電子機器
JP4967393B2 (ja) 弾性表面波装置
JP2007036344A (ja) 弾性境界波装置
WO2010016246A1 (ja) 弾性波素子とこれを用いた電子機器
JP6198536B2 (ja) 弾性波素子とこれを用いた電子機器
JP2012227626A (ja) 弾性表面波素子
JP2004260793A (ja) 弾性表面波フィルタ
JP2006042225A (ja) 弾性表面波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523760

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13056813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804733

Country of ref document: EP

Kind code of ref document: A1