WO2010016168A1 - バーナ - Google Patents

バーナ Download PDF

Info

Publication number
WO2010016168A1
WO2010016168A1 PCT/JP2009/001382 JP2009001382W WO2010016168A1 WO 2010016168 A1 WO2010016168 A1 WO 2010016168A1 JP 2009001382 W JP2009001382 W JP 2009001382W WO 2010016168 A1 WO2010016168 A1 WO 2010016168A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cylindrical space
auxiliary
slide damper
cylindrical
Prior art date
Application number
PCT/JP2009/001382
Other languages
English (en)
French (fr)
Inventor
田村雅人
渡辺真次
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to US13/057,762 priority Critical patent/US8726819B2/en
Priority to DE112009001943T priority patent/DE112009001943B3/de
Publication of WO2010016168A1 publication Critical patent/WO2010016168A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00003Fuel or fuel-air mixtures flow distribution devices upstream of the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/01001Pulverised solid fuel burner with means for swirling the fuel-air mixture

Definitions

  • the present invention relates to a burner that is provided on the wall surface of a boiler furnace and burns fuel such as pulverized coal or petroleum.
  • the wall surface of the boiler furnace is composed of heat transfer tubes, and the wall surface is provided with a number of burners for burning fuel such as pulverized coal and oil in the furnace.
  • FIG. 1 shows an outline of a boiler using pulverized coal as fuel.
  • reference numeral 1 denotes a coal-fired boiler furnace, and a pulverized coal burner group 2 is arranged in a plurality of stages (three stages are shown in FIG. 1) below the furnace 1.
  • Each pulverized coal burner group 2 includes pulverized coal burners 3 arranged in a required number in the horizontal direction along the wall surface.
  • each over air port group 4 is composed of over air ports 5 arranged in a required number in the horizontal direction.
  • Each over air port 5 is disposed so as to be positioned vertically above the corresponding pulverized coal burner 3.
  • the pulverized coal burner group 2 is supplied with combustion air via combustion air supply passages 6 and 7. Further, the air for two-stage combustion is supplied to the over air port group 4 through the over air port air combustion path 8 branched from the combustion air supply path 6.
  • the pulverized coal burner 3 is supplied with pulverized coal together with combustion air from a pulverized coal pulverizer (not shown).
  • pulverized coal is jetted from the pulverized coal burner group 2 and burned together with the first stage combustion air, and further, the second stage combustion air is jetted from the over air port group 4, and the combustion gas is It is mixed with air for stage combustion, NOx is reduced, combustion of solid unburned gas (char) in the combustion gas is promoted, and CO gas is further combusted.
  • dampers 9 and 10 for air volume adjustment are provided in the combustion air supply path 7 connected to the pulverized coal burner 3 and the over air port air combustion path 8 connected to the over air port 5, respectively.
  • 1 indicates a furnace
  • 12 indicates a furnace wall of the furnace 1.
  • a throat 13 is provided on the furnace wall 12, a wind box 14 is attached to the counter-fire furnace 1 side of the furnace wall 12, and a pulverized coal burner 3 is provided concentrically with the throat 13 inside the wind box 14. . Further, the combustion air supply path 7 is connected to the window box 14.
  • the pulverized coal burner 3 includes a nozzle body 16 and a secondary air conditioner 17 provided so as to surround the tip portion (end portion inside the furnace) of the nozzle body 16.
  • the nozzle body 16 includes an outer cylinder nozzle 18, an inner cylinder nozzle 19, and an oil burner 20 disposed on the center line of the inner cylinder nozzle 19 provided concentrically.
  • the outer cylinder nozzle 18 and the inner cylinder nozzle 19 each have a circular cross section, and a fuel in which the furnace 1 side end is opened in a hollow cylindrical space between the outer cylinder nozzle 18 and the inner cylinder nozzle 19.
  • a conductive space 21 is formed.
  • a primary air introduction pipe 22 communicates with the outer cylinder nozzle 18 in a tangential direction at a base portion (an end portion on the counter-fired furnace 1 side) of the outer cylinder nozzle 18, and the primary air introduction pipe 22 is a pulverized coal machine. (Not shown).
  • the primary air 24 and the pulverized coal transported to the primary air 24 through the primary air introduction pipe 22 flow into the fuel conduction space 21 from the tangential direction, and turn inside the fuel conduction space 21 while turning inside the fuel conduction space 21. It is ejected from the tip of the fuel conduction space 21.
  • a tertiary air introduction pipe 23 opens at the base of the inner cylinder nozzle 19, and the other end of the tertiary air introduction pipe 23 opens into the wind box 14 and is fed to the wind box 14.
  • Combustion air is taken in and led to the inner cylinder nozzle 19 as combustion auxiliary air, that is, tertiary combustion air.
  • the secondary air adjustment device 17 includes an auxiliary air adjustment mechanism 25 that houses the tip of the nozzle body 16, and a main air adjustment mechanism 26 that is provided concentrically outside the auxiliary air adjustment mechanism 25. Yes.
  • the auxiliary air adjusting mechanism 25 includes a first air guide duct 28 that is reduced in diameter toward the tip and inner air vanes 29 that are rotatably provided.
  • the inner air vane 29 is a link mechanism (not shown). ), And the tilt angle with respect to the air flow can be changed.
  • the main air adjustment mechanism 26 includes a second air guide duct 32 that is reduced in diameter toward the tip, and a plurality of outer air vanes 33 that are rotatably provided at equal circumferential intervals. Can be rotated synchronously via a link mechanism (not shown) in the same manner as the inner air vane 29, and the inclination angle with respect to the air flow can be changed.
  • the distal end of the second air guide duct 32 is continuous with the throat 13, and the distal end of the first air guide duct 28 is in a position retracted from the inner wall surface of the furnace wall 12, and the outer cylinder nozzle 18, The tip of the inner cylinder nozzle 19 is in a position further retracted from the tip of the first air guide duct 28.
  • the pulverized coal together with the primary air 24 is supplied from the primary air introduction pipe 22 to the base of the fuel conduction space 21.
  • the primary air 24 flows toward the furnace 1 while turning in the fuel conduction space 21, is contracted in the process of passing through the fuel conduction space 21, and is ejected from the tip of the outer cylinder nozzle 18.
  • the secondary air 34 as auxiliary combustion air is heated to a required temperature and supplied to the window box 14.
  • the secondary air 34 is swirled by the outer air vane 33 and is jetted to the furnace 1 together with the primary air 24 and the pulverized coal through the second air guide duct 32.
  • the pulverized coal is made uniform by swirling in the fuel conduction space 21 in the process of being ejected into the furnace 1, is heated by the secondary air 34, and further receives radiant heat from the furnace 1. Heated. By heating, the volatile matter is released from the pulverized coal, the volatile matter is ignited, and the flame is continuously maintained.
  • a part of the secondary air 34 taken into the second air guide duct 32 is taken into the first air guide duct 28 via the inner air vane 29 and is ejected as secondary auxiliary air. Is done.
  • the inner air vane 29 is inclined with respect to the air flow, and gives a swirling flow to a part of the taken-in secondary air 34.
  • the supply flow state of the secondary air 34 changes, and the combustion state of pulverized coal is adjusted.
  • a part of the secondary air 34 is guided as the tertiary air 35 to the inner cylinder nozzle 19 through the tertiary air introduction pipe 23 and is ejected from the inner cylinder nozzle 19.
  • the combustion state of pulverized coal is adjusted by ejecting the tertiary air 35. Therefore, the combustion state of the pulverized coal is adjusted to be optimum by adjusting the secondary air 34 and the tertiary air 35.
  • the present invention simplifies the structure to reduce the manufacturing cost and prevents the air vane angle from changing over time, so that a stable swirling flow is obtained, stable combustion is achieved, and maintenance costs are reduced. The reduction is intended.
  • the present invention is a burner provided on the center axis of a burner throat provided on a furnace wall and provided with a secondary air adjusting device at the tip of a nozzle body housed in a wind box, wherein the secondary air adjustment
  • the apparatus includes an end plate that forms a cylindrical space with a peripheral surface opened between a core side surface of the wind box, a slide damper that surrounds the cylindrical space and is slidable in an axial direction
  • the present invention relates to a burner provided with an air vane that is provided at predetermined intervals along the circumference of a cylindrical space and that turns secondary air, and a driving means that slides the slide damper.
  • the present invention also provides a partition plate for partitioning the cylindrical space in the axial direction, and at least one of the partitioned small cylindrical spaces provided at predetermined intervals along the circumferential direction to swirl the secondary air.
  • the present invention relates to a burner provided with the air vane.
  • the present invention also relates to a burner in which pressure loss adjusting means is provided in a small cylindrical space in which the air vanes are not provided in the small cylindrical space.
  • the present invention relates to the burner in which the axial length of the slide damper is at least a length that closes the small cylindrical space where the air vane is not provided.
  • the slide damper is composed of a plurality of cylindrical bodies provided in a concentric multiple circle shape, and each cylindrical body relates to a burner that can slide independently.
  • the present invention also relates to a burner in which the slide damper can close the cylindrical space with the plurality of cylindrical bodies.
  • the slide damper is composed of at least three cylindrical bodies, and each cylindrical body can slide independently, and the cylindrical space can be opened at an arbitrary position and at an arbitrary width. It concerns the burner.
  • the cylindrical space is divided into three or more small cylindrical spaces by a plurality of partition plates, and the air vanes are respectively provided in the small cylindrical spaces except one, and the air vanes are small cylinders.
  • This relates to a burner having a different inclination angle for each shape space.
  • the present invention also relates to a burner in which the air vane is provided between the core side surface of the windbox and the end plate, and the air vane has a tilt angle changed along the axial direction. It is.
  • an auxiliary air introduction path is formed around the nozzle body at the center of the cylindrical space, and an auxiliary cylindrical space is formed adjacent to the cylindrical space.
  • a burner that communicates with the auxiliary air introduction path and has an outer peripheral surface that opens to the wind box, and auxiliary air vanes are provided in the auxiliary cylindrical space at predetermined intervals along the circumference of the auxiliary cylindrical space. Is.
  • the present invention relates to a burner that surrounds the auxiliary cylindrical space and is provided with a slidable auxiliary slide damper, and the opening of the auxiliary cylindrical space can be adjusted by the auxiliary slide damper.
  • a burner provided on a central axis of a burner throat provided on a furnace wall and provided with a secondary air adjusting device at a tip end portion of a nozzle body housed in a wind box.
  • the air conditioner includes an end plate that forms a cylindrical space having a peripheral surface opened between a side surface of the core of the windbox and a slide damper that surrounds the cylindrical space and is slidable in an axial direction.
  • the air vane is provided in a fixed manner along the circumference of the cylindrical space, and includes air vanes for turning the secondary air and driving means for sliding the slide damper.
  • At least one of the partition plate for partitioning the cylindrical space in the axial direction and the partitioned small cylindrical space is provided at predetermined intervals along the circumferential direction and swirls into the secondary air. Since the air vane is provided to adjust the strength of the swirl flow by adjusting the air volume of the swirled secondary air and the non-swirling secondary air, the structure is simple. It is possible by operation.
  • the pressure loss adjusting means is provided in the small cylindrical space in which the air vane is not provided in the small cylindrical space, the secondary air is swirled and the swirl is not swirled.
  • the difference in pressure loss can be eliminated, and air volume adjustment can be simplified.
  • the axial length of the slide damper has a length that at least closes the small cylindrical space where the air vane is not provided. Adjustment is possible.
  • the slide damper is composed of a plurality of cylindrical bodies provided in a concentric multi-circular shape, and each cylindrical body can be slid independently. And various air adjustments are possible.
  • the slide damper can close the cylindrical space by the plurality of cylindrical bodies, the secondary air can be stopped and the damper of the secondary air supply system can be omitted. Can do.
  • the slide damper is composed of at least three cylindrical bodies, and each cylindrical body can slide independently, and the cylindrical space can be opened at an arbitrary position and at an arbitrary width. As a result, various air adjustments are possible.
  • the cylindrical space is divided into three or more small cylindrical spaces by a plurality of partition plates, and the air vanes are respectively provided in the small cylindrical spaces except for one, Since the inclination angle is different for each small cylindrical space, the air volume and swirl strength of the secondary air can be adjusted by opening the cylindrical space at an arbitrary position and with an arbitrary width.
  • the air vane is provided across the core side surface of the windbox and the end plate, and the inclination angle of the air vane is changed along the axial direction.
  • an auxiliary air introduction path is formed around the nozzle body at the center of the cylindrical space, and an auxiliary cylindrical space is formed adjacent to the cylindrical space. Since the space communicates with the auxiliary air introduction path, the outer peripheral surface opens to the wind box, and auxiliary air vanes are provided at predetermined intervals along the circumference of the auxiliary cylindrical space in the auxiliary cylindrical space. Auxiliary air can be supplied to the center of the secondary air, and combustion control with high accuracy is possible.
  • an auxiliary slide damper that surrounds the auxiliary cylindrical space and is slidable is provided, and the opening of the auxiliary cylindrical space can be adjusted by the auxiliary slide damper. This makes it possible to achieve excellent effects such as higher-precision combustion control.
  • FIG. 4 is a view taken along arrow AA in FIG. 3. It is a schematic sectional drawing which shows the burner for pulverized coal based on the 2nd Example of this invention. It is a schematic sectional drawing which shows the burner for pulverized coal based on the 3rd Example of this invention. It is operation
  • FIG. 10 is an explanatory view showing the operation in the third embodiment and the same operation as in the first embodiment.
  • FIG. 10 is an explanatory view showing the operation in the third embodiment and the same operation as in the first embodiment.
  • It is a schematic sectional drawing which shows the burner for pulverized coal based on the 4th Example of this invention. It is operation
  • FIG. 3 shows a first embodiment and shows a case where the present invention is applied to a pulverized coal burner.
  • the pulverized coal burner 15 is accommodated in the wind box 14 and an air conditioner 36 is provided so as to accommodate the tip of the nozzle body 16.
  • Secondary air 34 is taken from the periphery of the air conditioner 36 through the wind box 14, and the secondary air 34 is swirled by the air conditioner 36 and flows out toward the throat 13.
  • the end plate 37 is attached to the outer cylinder nozzle 18 at a position away from the furnace wall outer surface (or the core side surface of the wind box 14) 39 of the furnace wall 12 by a required distance.
  • the end plate 37 is orthogonal to the center line of the nozzle body 16 and has a disk shape concentric with the nozzle body 16.
  • a ring-shaped partition plate 38 is provided between the furnace wall outer surface 39 and the end plate 37, and the outer diameter of the partition plate 38 is the same as the end plate 37.
  • Air vanes 41 are provided at predetermined intervals in the circumferential direction between the partition plate 38 and the furnace wall outer surface 39, and the inner end of the air vane 41 matches the inner peripheral circle of the partition plate 38 or is required. Retracted to the outer circumference by the dimension.
  • the air vane 41 is equally divided into the circumference and corresponds to the scale of the pulverized coal burner 15, and is provided in the range of about 10 to 40 sheets.
  • the inclination angle ⁇ is set in a range of 25 ° ⁇ 10 °.
  • the air vane 41 may be provided between the end plate 37 and the partition plate 38.
  • the end plate 37 forms a cylindrical space 42 concentric with the outer cylinder nozzle 18 between the outer wall surface 39 of the furnace wall, and the cylindrical space 42 has an outer peripheral surface open and communicates with the inside of the wind box 14.
  • the outer periphery of the cylindrical space 42 is partitioned by the partition plate 38 into a furnace inside air introduction chamber 46 and a furnace outside air introduction chamber 47, and the furnace inside air introduction chamber 46 and the furnace outside air introduction chamber 47 are separated from each other. It communicates with the inner circumference.
  • a short cylindrical slide damper 43 that is concentric with the cylindrical space 42 and surrounds the cylindrical space 42 is provided.
  • the width (axial length) of the slide damper 43 is at least equal to or greater than the distance between the partition plate 38 and the end plate 37, and is fitted to the end plate 37 and the partition plate 38 to be slidable. .
  • An actuator 44 such as a hydraulic cylinder is provided on the outer surface of the window box 14.
  • the actuator 44 is connected to the slide damper 43 via a rod 45, and the slide damper 43 is slid by driving of the actuator 44. It is supposed to do.
  • the actuator 44 and the rod 45 constitute driving means for sliding the slide damper 43.
  • the slide damper 43 When the secondary air 34 is swirled and used for combustion, the slide damper 43 is moved backward (moved to the counter-core side) by the actuator 44 to close the space between the end plate 37 and the partition plate 38.
  • the secondary air 34 passes through the air vane 41, and in the process of passing through the air vane 41, swirling is given and flows out to the throat 13 as a swirling flow. In this state, the turning strength is maximized.
  • the actuator 44 advances the slide damper 43, and the slide damper 43 closes the partition plate 38 and the furnace wall outer surface 39.
  • the secondary air 34 is prevented from flowing into the air vane 41, and flows out to the throat 13 without being swirled through the furnace outside air introduction chamber 47 and the cylindrical space 42.
  • the slide damper 43 When the swirl strength of the secondary air 34 is adjusted, the slide damper 43 is set at an intermediate position as shown in FIG. 3, and the furnace inner air introduction chamber 46 and the furnace outer air introduction chamber 47 are partially set. Open to.
  • the secondary air 34 flowing into the furnace inner air introduction chamber 46 is given a swirl flow by the air vane 41, and the secondary air 34 flowing into the furnace outer air introduction chamber 47 is not given a swirl flow and is It merges with the secondary air 34 flowing out from the furnace inner air introduction chamber 46.
  • the secondary air 34 without the swirling flow can be supplied from the maximum swirling flow, and the combustion state of the pulverized coal burner 15 can be adjusted.
  • the air vane 41 is fixedly provided, and the inclination angle of the air vane 41 does not change with time. Further, there is no movable part at the connection point between the slide damper 43 and the rod 45, and there is no increase in play over time, and the displacement given by the actuator 44 is accurately transmitted to the slide damper 43, and the slide By adjusting the position of the damper 43, the accuracy does not decrease over time.
  • the furnace outside air introduction chamber 47 is omitted, the air vane 41 is provided between the end plate 37 and the furnace wall outer surface 39, and the axial length of the slide damper 43 is set to be the same as that described above.
  • the axial length of the furnace inner air introduction chamber 46 may be made equal, the opening amount may be adjusted by the movement of the slide damper 43, and the supply air amount of the secondary air 34 may be adjusted.
  • FIG. 5 shows a second embodiment.
  • the same components as those shown in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
  • a porous member 48 such as a punching metal or a net is provided on the peripheral surface where the furnace outside air introduction chamber 47 opens.
  • the secondary air 34 that has flowed into the furnace inner air introduction chamber 46 has a pressure loss due to passing through the air vane 41, and has flowed into the furnace outer air introduction chamber 47. Since the secondary air 34 is non-resistance, there is no pressure loss. For this reason, the supply air volume varies between when the furnace inner air introduction chamber 46 is closed and when the furnace outer air introduction chamber 47 is closed. For this reason, it is necessary to adjust the air flow rate on the supply side of the primary air 24 in accordance with the air adjustment by the slide damper 43. Alternatively, it is necessary to adjust the air volume and pressure by an adjustment damper (not shown) provided on the supply side of the secondary air 34 (corresponding to the damper 9 shown in FIG. 1).
  • the air is fed from the air adjusting device 36 regardless of the position of the slide damper 43.
  • the air flow rate can be maintained at a predetermined value.
  • FIG. 6 shows a third embodiment.
  • the same components as those shown in FIG. 6 are identical to those shown in FIG. 6;
  • the slide damper 43 is divided into a plurality of cylindrical bodies, and the air adjustment of the air adjustment device 36 is diversified. In the figure, the case of two divisions is shown.
  • the slide damper 43 is composed of a first slide damper 43a and a second slide damper 43b, and the first slide damper 43a and the second slide damper 43b are provided in a multi-circular shape so that they do not interfere with each other. Can be slid.
  • the first slide damper 43a and the second slide damper 43b are connected to the first actuator 44a and the second actuator 44b, respectively, and can be driven independently by the first actuator 44a and the second actuator 44b. Is.
  • first slide damper 43a and the second slide damper 43b are superposed, the first slide damper 43a and the second slide damper 43b are synchronized, and moved together, the same as in the first embodiment (See FIGS. 8 and 9).
  • first slide damper 43a and the second slide damper 43b are partially overlapped, and further the polymerization allowance is adjusted, whereby the respective openings inside the furnace inner air introduction chamber 46 and the furnace outer air introduction chamber 47 are opened.
  • the area can be adjusted, and the turning strength and supply air volume can be adjusted together.
  • FIG. 10 shows a fourth embodiment. 10 that are the same as those shown in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted.
  • the illustration of the actuator 44 that drives the slide damper 43 is omitted.
  • the air adjustment function of the air adjustment device 36 is further diversified.
  • partition plates 38a, 38b, 38c are provided in the cylindrical space 42, the cylindrical space 42 is divided into four equal parts in the axial direction, and the furnace inner air introduction chamber 46a. 46b, 46c and the furnace outside air introduction chamber 47 are formed (see FIGS. 11 to 17).
  • air vanes 41a, 41b, 41c are provided in the furnace inner air introduction chambers 46a, 46b, 46c, respectively, and the inclination angles ⁇ a, ⁇ b, ⁇ c of the air vanes 41a, 41b, 41c are set to ⁇ a ⁇ b ⁇ c. And the inclination angle gradually increases toward the outside of the furnace (the turning strength decreases).
  • the slide damper 43 has a three-part structure, and includes slide dampers 43a and 43b having a quarter axial length of the cylindrical space 42, and a slide damper 43c having a half axial length of the cylindrical space 42. ing.
  • the slide dampers 43a, 43b, 43c have a circumferential multi-circular structure, and can slide freely without interfering with each other.
  • the slide dampers 43a, 43b, and 43c are individually connected to actuators (not shown), and can be slid independently by driving the individual actuators.
  • FIG. 11 shows a fully opened state of the air conditioner 36, in which the slide dampers 43a, 43b, 43c are all retracted from the opening of the air conditioner 36.
  • FIG. 12 shows a fully closed state of the air conditioner 36.
  • the furnace inner air introduction chambers 46a, 46b are closed by the slide dampers 43a, 43b, and the furnace inner air introduction chamber 46c, The furnace outside air introduction chamber 47 is closed.
  • the slide dampers 43a and 43b are moved integrally to the inside of the furnace while being superposed on the slide damper 43c, the furnace inside air introduction chambers 46a and 46b are closed, the furnace outside air introduction chamber 47, the furnace inside When the air introduction chamber 46 c is opened, the secondary air 34 that does not swirl through the furnace outside air introduction chamber 47 and the secondary air 34 that is swirled weakly by the air vane 41 c merge to be introduced into the throat 13. Is done.
  • the slide damper 43b is advanced from the state of FIG. 15, the furnace inner air introduction chamber 46b is closed, the slide damper 43c is retracted, and the furnace inner air introduction chamber 46c is opened. To do.
  • the secondary air 34 flows into the furnace inner air introduction chamber 46c, is supplied with a turning force by the air vane 41c, and is supplied to the throat 13.
  • the turning force applied is the smallest.
  • the opening width W increases.
  • the secondary air 34 that has passed through a part of the furnace inner air introduction chamber 46c, the furnace inner air introduction chamber 46b, and the furnace outer air introduction chamber 47 is supplied, and the supply air volume increases.
  • the secondary air 34 that has flowed into the furnace outside air introduction chamber 47 is supplied to the throat 13 without being swirled.
  • the slide damper 43c is advanced to open a part of the furnace inner air introduction chamber 46c.
  • Part of the secondary air 34 passes through the furnace inner air introduction chamber 46 c, swirled by the air vane 41 c, and merges with the secondary air 34 that has passed through the furnace outer air introduction chamber 47.
  • the partition plates 38a, 38b, and 38c are removed, and a continuous air vane 41 is provided between the end plate 37 and the furnace wall outer surface 39, and the air vane 41 is provided in the core.
  • the angle may be gradually increased as the angle of inclination decreases backward on the side, and the angle of inclination may be 90 ° on the counter-core side.
  • the structure of the slide damper 43 is the same.
  • the secondary air 34 passes through portions of different inclination angles of the air vane 41, and the secondary air is changed by changing the opening position of the air conditioner 36.
  • the turning strength of 34 can be adjusted.
  • the slide damper 43 is divided into three equal parts, but may be divided into four equal parts or more.
  • FIG. 18 shows a fifth embodiment.
  • the same components as those shown in FIG. 18 are identical to those shown in FIG. 18;
  • an auxiliary air adjusting device 51 is added to the above-described embodiment.
  • the auxiliary air adjusting device 51 will be described.
  • An auxiliary air guide duct 52 is provided concentrically with the outer cylinder nozzle 18 at the tip of the outer cylinder nozzle 18, and the rear end of the auxiliary air guide duct 52 is attached to the end plate 37.
  • the auxiliary air guide duct 52 is a central portion of the cylindrical space 42 and forms a cylindrical auxiliary air introduction path 56 around the outer cylinder nozzle 18.
  • An auxiliary air adjusting end plate 53 is provided opposite to the end plate 37, and an auxiliary cylindrical space adjacent to the cylindrical space 42 is provided between the auxiliary air adjusting end plate 53 and the end plate 37. 54 is defined, and the outer peripheral surface of the auxiliary cylindrical space 54 is opened and communicated with the inside of the wind box 14.
  • An auxiliary slide damper 55 that opens and closes the auxiliary cylindrical space 54 is slidably fitted to the auxiliary air adjusting end plate 53.
  • An actuator 59 such as a hydraulic cylinder is provided on the outer surface of the window box 14. The actuator 59 is connected to the auxiliary slide damper 55 via a rod 57, and the auxiliary slide damper 55 is driven by the actuator 59. Slides to open and close the auxiliary cylindrical space 54.
  • Auxiliary air vanes 58 are provided at predetermined intervals in the circumferential direction across the end plate 37 and the auxiliary air adjusting end plate 53.
  • the auxiliary air vane 58 is equally divided in the circumference and corresponds to the size of the pulverized coal burner 15, and is provided in the range of about 10 to 40 sheets. Is inclined at an inclination angle ⁇ with respect to the tangent line of the circle passing through, and the inclination angle ⁇ is set in a range of 25 ° ⁇ 10 ° (see FIG. 4).
  • the state shown in FIG. 19 is a state in which the combustion air is swirled and supplied from both the air adjustment device 36 and the auxiliary air adjustment device 51, and the slide damper 43 is retracted and the furnace outside air introduction chamber 47.
  • the auxiliary slide damper 55 is also retracted, and the auxiliary cylindrical space 54 is open.
  • the secondary air 34 that has flowed into the furnace inner air introduction chamber 46 is swirled by passing through the air vane 41, and is sent to the throat 13 as a swirling flow.
  • the secondary air 34 flows into the auxiliary cylindrical space 54, swirled by the auxiliary air vane 58, and supplied by the air conditioner 36 through the auxiliary air introduction path 56. 34 is ejected as secondary auxiliary air from the inside.
  • the opening width of the auxiliary cylindrical space 54 can be adjusted by the position of the auxiliary slide damper 55, and the air volume of the secondary air 34 to be taken in, that is, the supply amount of the secondary auxiliary air can be adjusted.
  • the auxiliary slide damper 55 may be omitted.
  • the auxiliary slide damper 55 is fixedly provided, and the connecting portion between the rod 57 and the auxiliary slide damper 55 has no movable part, and the backlash increases with time. Without displacement, the displacement given by the actuator 59 is accurately transmitted to the auxiliary slide damper 55.
  • the present invention is not limited to the pulverized coal burner but can be applied to a burner that burns fuel such as petroleum.
  • the burner of the present invention can be applied to the wall surfaces of various boiler furnaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

 炉壁12に設けられるバーナスロート13の中心軸心上に設けられると共にウインドボックス14に収納されるノズル本体16の先端部に2次空気調整装置36が設けられるバーナであって、前記2次空気調整装置は、前記ウインドボックスの炉心側側面との間に、周面が開口する円筒状空間42を形成する端板37と、前記円筒状空間を囲繞し、軸心方向にスライド可能なスライドダンパ43と、前記円筒状空間の円周に沿って所定の間隔で設けられ2次空気に旋回を与える空気ベーン41と、前記スライドダンパをスライドさせる駆動手段44,45を具備する。

Description

バーナ
 本発明はボイラ火炉の壁面に設けられ、微粉炭、石油等の燃料を燃焼させるバーナに関するものである。
 ボイラ火炉の壁面は伝熱管によって構成され、又壁面には炉内で微粉炭、石油等の燃料を燃焼させるバーナが多数設けられている。
 図1では、微粉炭を燃料とするボイラの概略を示している。
 図中、1は石炭焚きボイラの火炉を示し、該火炉1の下部には複数段(図1では3段を示している)に微粉炭バーナ群2が配設されている。各微粉炭バーナ群2は壁面に沿って水平方向に所要数配設された微粉炭バーナ3を具備している。
 前記微粉炭バーナ群2の上方(下流側)には所要段(図示では1段)のオーバエアポート群4が設けられている。各オーバエアポート群4は、水平方向に所要数配設されたオーバエアポート5によって構成される。各オーバエアポート5は対応する前記微粉炭バーナ3の鉛直上方に位置する様に配設されている。
 前記微粉炭バーナ群2には、燃焼用空気供給路6,7を介し燃焼用空気が供給される様になっている。更に、前記オーバエアポート群4には、前記燃焼用空気供給路6から分岐したオーバエアポート用空気燃焼路8を介して2段燃焼用の空気が前記オーバエアポート群4に供給される。又、前記微粉炭バーナ3には、微粉炭粉砕機(図示せず)から微粉炭が燃焼用空気と共に供給される様になっている。
 前記火炉1に於いて、微粉炭が1段燃焼用空気と共に前記微粉炭バーナ群2より噴出され燃焼し、更に、前記オーバエアポート群4から2段燃焼用空気が噴出され、燃焼ガスが前記2段燃焼用空気と混合され、NOxが還元されると共に燃焼ガス中の固形未燃分(チャー)の燃焼が促進され、更にCOガスが燃焼する様になっている。
 又、前記微粉炭バーナ3に接続された燃焼用空気供給路7、前記オーバエアポート5に接続されたオーバエアポート用空気燃焼路8には、それぞれ風量調整用のダンパ9,10が設けられている。
 次に、図2に於いて従来のバーナの一例を微粉炭バーナ3に於いて説明する。
 図2中、1は火炉、12は該火炉1の炉壁を示している。
 該炉壁12にスロート13が設けられ、前記炉壁12の反火炉1側にウインドボックス14が取付けられ、該ウインドボックス14の内部に微粉炭バーナ3が前記スロート13と同心に設けられている。又、前記ウインドボックス14には前記燃焼用空気供給路7が接続されている。
 前記微粉炭バーナ3は、ノズル本体16と該ノズル本体16の先端部(炉内側の端部)を囲む様に設けられた2次空気調整装置17とを具備している。
 前記ノズル本体16は、同心に設けられた外筒ノズル18、内筒ノズル19、該内筒ノズル19の中心線上に配設されたオイルバーナ20を具備している。前記外筒ノズル18、前記内筒ノズル19の断面形状はそれぞれ円形であり、前記外筒ノズル18と前記内筒ノズル19間には中空筒状の空間で前記火炉1側端が開放された燃料導通空間21が形成される。
 前記外筒ノズル18の基部(前記反火炉1側の端部)には1次空気導入管22が、前記外筒ノズル18に接線方向から連通され、前記1次空気導入管22は微粉炭機(図示せず)に接続されている。1次空気導入管22を介して1次空気24及び該1次空気24に運搬された微粉炭が、前記燃料導通空間21に接線方向から流入し、該燃料導通空間21内部を旋回しながら該燃料導通空間21の先端から噴出される。
 又、前記内筒ノズル19の基部には3次空気導入管23の一端が開口し、該3次空気導入管23の他端は前記ウインドボックス14に開口し、該ウインドボックス14に送給される燃焼用空気を取入れ、燃焼用補助空気即ち3次燃焼用空気として前記内筒ノズル19に導いている。
 前記2次空気調整装置17は、前記ノズル本体16の先端部を収納する補助空気調整機構25と、該補助空気調整機構25の外側に同心多重に設けられた主空気調整機構26から構成されている。
 前記補助空気調整機構25は、先端に向って縮径する第1空気ガイドダクト28と回転自在に多数設けられたインナ空気ベーン29とを有し、該インナ空気ベーン29はリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。又、前記主空気調整機構26は先端に向って縮径する第2空気ガイドダクト32と、円周等間隔で回転可能に多数設けられたアウタ空気ベーン33とを有し、該アウタ空気ベーン33は、前記インナ空気ベーン29と同様にリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。
 尚、前記第2空気ガイドダクト32の先端は、前記スロート13に連続し、前記第1空気ガイドダクト28の先端は前記炉壁12の内壁面から後退した位置にあり、前記外筒ノズル18、前記内筒ノズル19の先端は前記第1空気ガイドダクト28の先端より更に後退した位置となっている。
 上記微粉炭バーナ3での燃焼について略述すると、前記1次空気24と共に微粉炭が前記1次空気導入管22より前記燃料導通空間21の基部に供給される。前記1次空気24は、前記燃料導通空間21を旋回しながら前記火炉1に向って流動し、又前記燃料導通空間21を通過する過程で縮流され、前記外筒ノズル18の先端より噴出される。前記ウインドボックス14には燃焼用補助空気である2次空気34が所要温度に昇温されて送給される。該2次空気34は前記アウタ空気ベーン33により旋回流が与えられ、前記第2空気ガイドダクト32を介して前記1次空気24、前記微粉炭と共に前記火炉1に噴出される。
 前記微粉炭は、前記火炉1に噴出される過程で、前記燃料導通空間21で旋回することで均一化され、前記2次空気34により昇温され、更に前記火炉1内からの輻射熱を受けて加熱される。加熱によって、微粉炭から揮発分が放出され、該揮発分に着火して、火炎が連続的に維持される。
 尚、前記第2空気ガイドダクト32に取込まれた前記2次空気34の一部は前記インナ空気ベーン29を介して前記第1空気ガイドダクト28内部に取込まれ、2次補助空気として噴出される。又、前記インナ空気ベーン29は、空気流れに対して傾斜しており、取込んだ一部の2次空気34に旋回流を与える。
 前記アウタ空気ベーン33の風量調整、前記インナ空気ベーン29による旋回流の強さの調整、風量調整で前記2次空気34の供給量流れの状態が変化し、微粉炭の燃焼状態が調整される。
 又、前記2次空気34の一部は3次空気35として前記3次空気導入管23を介して前記内筒ノズル19に導かれ、該内筒ノズル19より噴出される。前記3次空気35が噴出されることで、微粉炭の燃焼状態が調整される。従って、前記2次空気34の調整、前記3次空気35の調整等により微粉炭の燃焼状態が最適となる様に調整される。
 上記した従来の微粉炭バーナ3では、前記アウタ空気ベーン33、前記インナ空気ベーン29はそれぞれリンク機構で連結されているので、ガタツキなく、精度よく組立てるには部品の高い加工精度、更に熟練工による微妙な組立て調整が必要である。この為、製作コストが掛り、コストの低減が難しい。
 更に、リンク機構では経時的にガタが大きくなることが避けられず、前記インナ空気ベーン29、前記アウタ空気ベーン33の傾斜角が設定当初に対して変化し、旋回強度が大きく異ってしまう。又、風量、旋回流の強さを変更する為インナ空気ベーン29、アウタ空気ベーン33の角度を変更する場合に、入力した角度と実際の変更量とが対応しない、或はベーンの角度変更にタイムラグを生じる等の問題があった。この為、高精度に燃焼制御を行うことが難しくなることも考えられる。
 尚、バーナの一般的技術水準を示すものとしては、例えば特開昭58-127005号公報にとりあげられている。
 本発明は斯かる実情に鑑み、構造を簡素化して製作コストの低減を図ると共に空気ベーン角度の経時的変化を防止し、安定した旋回流が得られ、安定した燃焼を実現すると共に保守コストの低減を図るものである。
 本発明は、炉壁に設けられるバーナスロートの中心軸心上に設けられると共にウインドボックスに収納されるノズル本体の先端部に2次空気調整装置が設けられるバーナであって、前記2次空気調整装置は、前記ウインドボックスの炉心側側面との間に、周面が開口する円筒状空間を形成する端板と、前記円筒状空間を囲繞し、軸心方向にスライド可能なスライドダンパと、前記円筒状空間の円周に沿って所定の間隔で設けられ2次空気に旋回を与える空気ベーンと、前記スライドダンパをスライドさせる駆動手段を具備するバーナに係るものである。
 又本発明は、前記円筒状空間を軸心方向に仕切る仕切り板と、仕切られた小円筒状空間の少なくとも1つに円周方向に沿って所定の間隔で設けられ2次空気に旋回を与える前記空気ベーンとを設けたバーナに係るものである。
 又本発明は、前記小円筒状空間の内、前記空気ベーンが設けられていない小円筒状空間に圧損調整手段を設けたバーナに係るものである。
 又本発明は、前記スライドダンパの軸長は、少なくとも前記空気ベーンが設けられていない小円筒状空間を閉塞する長さを有しているバーナに係るものである。
 又本発明は、前記スライドダンパは、同心多重円状に設けられた複数の円筒体から構成され、該各円筒体は独立してスライド可能であるバーナに係るものである。
 又本発明は、前記スライドダンパは、前記複数の円筒体により前記円筒状空間を閉塞可能であるバーナに係るものである。
 又本発明は、前記スライドダンパは、少なくとも3の円筒体から構成され、該各円筒体は独立してスライド可能であり、前記円筒状空間を任意の位置で、任意の幅で開口可能としたバーナに係るものである。
 又本発明は、前記円筒状空間は複数の仕切り板により、3以上の小円筒状空間に分割され、1つを除く小円筒状空間にそれぞれ前記空気ベーンが設けられ、該空気ベーンは小円筒状空間毎に傾斜角が異なるバーナに係るものである。
 又本発明は、前記ウインドボックスの炉心側側面と前記端板との間に掛渡って前記空気ベーンが設けられ、該空気ベーンは軸心方向に沿って傾斜角が変更されたバーナに係るものである。
 又本発明は、前記円筒状空間の中心部で前記ノズル本体の周囲に補助空気導入路が形成されると共に前記円筒状空間に隣接して補助円筒状空間が形成され、該補助円筒状空間は前記補助空気導入路に連通すると共に外周面が前記ウインドボックスに開口し、前記補助円筒状空間に該補助円筒状空間の円周に沿って所定の間隔で補助空気ベーンが設けられたバーナに係るものである。
 更に又本発明は、前記補助円筒状空間を囲繞し、スライド可能な補助スライドダンパを設け、該補助スライドダンパによって前記補助円筒状空間の開口を調整可能としたバーナに係るものである。
 本発明によれば、炉壁に設けられるバーナスロートの中心軸心上に設けられると共にウインドボックスに収納されるノズル本体の先端部に2次空気調整装置が設けられるバーナであって、前記2次空気調整装置は、前記ウインドボックスの炉心側側面との間に、周面が開口する円筒状空間を形成する端板と、前記円筒状空間を囲繞し、軸心方向にスライド可能なスライドダンパと、前記円筒状空間の円周に沿って所定の間隔で設けられ2次空気に旋回を与える空気ベーンと、前記スライドダンパをスライドさせる駆動手段を具備するので、空気ベーンは固定的に設けられ、構造が簡単であり、又経時的なガタの発生がなく、製作コストの低減を図れると共に安定した旋回流が得られ、安定した燃焼が実現可能である。
 又本発明によれば、前記円筒状空間を軸心方向に仕切る仕切り板と、仕切られた小円筒状空間の少なくとも1つに円周方向に沿って所定の間隔で設けられ2次空気に旋回を与える前記空気ベーンとを設けたので、旋回を与えた2次空気と旋回のない2次空気の風量を調整して混合させることで、旋回流の強さの調整が簡単な構造、簡単な作動により可能である。
 又本発明によれば、前記小円筒状空間の内、前記空気ベーンが設けられていない小円筒状空間に圧損調整手段を設けたので、2次空気に旋回を与えた場合と旋回のない場合とでの圧損の差をなくすことができ、風量調整を簡素化できる。
 又本発明によれば、前記スライドダンパの軸長は、少なくとも前記空気ベーンが設けられていない小円筒状空間を閉塞する長さを有しているので、供給する2次空気の旋回強さの調整が可能となる。
 又本発明によれば、前記スライドダンパは、同心多重円状に設けられた複数の円筒体から構成され、該各円筒体は独立してスライド可能であるので、円筒状空間の開口状態の多様化が図れ、多様な空気調整が可能となる。
 又本発明によれば、前記スライドダンパは、前記複数の円筒体により前記円筒状空間を閉塞可能であるので、2次空気の停止が可能であり、2次空気供給系のダンパを省略することができる。
 又本発明によれば、前記スライドダンパは、少なくとも3の円筒体から構成され、該各円筒体は独立してスライド可能であり、前記円筒状空間を任意の位置で、任意の幅で開口可能としたので、多様な空気調整が可能となる。
 又本発明によれば、前記円筒状空間は複数の仕切り板により、3以上の小円筒状空間に分割され、1つを除く小円筒状空間にそれぞれ前記空気ベーンが設けられ、該空気ベーンは小円筒状空間毎に傾斜角が異なるので、前記円筒状空間を任意の位置で、任意の幅で開口することで、2次空気の風量、旋回強さの調整が可能である。
 又本発明によれば、前記ウインドボックスの炉心側側面と前記端板との間に掛渡って前記空気ベーンが設けられ、該空気ベーンは軸心方向に沿って傾斜角が変更されたので、前記円筒状空間を任意の位置で、任意の幅で開口することで、2次空気の風量、旋回強さの調整が可能である。
 又本発明によれば、前記円筒状空間の中心部で前記ノズル本体の周囲に補助空気導入路が形成されると共に前記円筒状空間に隣接して補助円筒状空間が形成され、該補助円筒状空間は前記補助空気導入路に連通すると共に外周面が前記ウインドボックスに開口し、前記補助円筒状空間に該補助円筒状空間の円周に沿って所定の間隔で補助空気ベーンが設けられたので、2次空気の中心部に補助空気の供給が可能となり、精度の高い燃焼制御が可能となる。
 更に又本発明によれば、前記補助円筒状空間を囲繞し、スライド可能な補助スライドダンパを設け、該補助スライドダンパによって前記補助円筒状空間の開口を調整可能としたので、補助空気量の調整が可能となり、より高精度の燃焼制御が可能となる等の優れた効果を発揮する。
石炭焚きボイラの概略説明図である。 従来の微粉炭用バーナを示す概略断面図である。 本発明の第1の実施例に係る微粉炭用バーナを示す概略断面図である。 図3のA-A矢視図である。 本発明の第2の実施例に係る微粉炭用バーナを示す概略断面図である。 本発明の第3の実施例に係る微粉炭用バーナを示す概略断面図である。 該第3の実施例に於ける作動であって空気調整装置の全閉状態を示す説明図である。 該第3の実施例に於ける作動であって第1の実施例と同様な作動を示す説明図である。 該第3の実施例に於ける作動であって第1の実施例と同様な作動を示す説明図である。 本発明の第4の実施例に係る微粉炭用バーナを示す概略断面図である。 該第4の実施例に於ける作動であって空気調整装置の全開状態を示す説明図である。 該第4の実施例に於ける作動であって空気調整装置の全閉状態を示す説明図である。 該第4の実施例に於ける作動であって炉内側空気導入室の一部を開口した状態を示す説明図である。 該第4の実施例に於ける作動であって炉内側空気導入室の他の一部を開口した状態を示す説明図である。 該第4の実施例に於ける作動であって炉内側空気導入室の更に他の一部を開口した状態を示す説明図である。 該第4の実施例に於ける作動であって炉内側空気導入室の別の一部を開口した状態を示す説明図である。 該第4の実施例に於ける作動であって炉外側空気導入室を開口した状態を示す説明図である。 本発明の第5の実施例に係る微粉炭用バーナを示す概略断面図である。 該第5の実施例に於ける作動を示す説明図である。
符号の説明
    1       火炉
    12      炉壁
    14      ウインドボックス
    15      微粉炭バーナ
    16      ノズル本体
    18      外筒ノズル
    34      2次空気
    36      空気調整装置
    37      端板
    38      仕切り板
    39      炉壁外面
    41      空気ベーン
    42      円筒状空間
    43      スライドダンパ
    44      アクチュエータ
    46      炉内側空気導入室
    47      炉外側空気導入室
    48      多孔部材
    51      補助空気調整装置
    53      補助空気調整用端板
    54      補助円筒状空間
    55      補助スライドダンパ
    56      補助空気導入路
 以下、図面を参照しつつ本発明の実施例を説明する。
 図3は第1の実施例を示し、本発明を微粉炭バーナに実施した場合を示している。
 尚、図中、図2中で示したものと同等のものには同符号を付し、その説明の詳細を省略する。
 微粉炭バーナ15はウインドボックス14に収納され、又ノズル本体16の先端部を収納する様に空気調整装置36が設けられる。前記ウインドボックス14を経て前記空気調整装置36の周囲から2次空気34が取込まれ、該2次空気34は前記空気調整装置36によって旋回流が与えられ、スロート13に向って流出する。
 次に、図4を参照して前記空気調整装置36について説明する。
 炉壁12の炉壁外面(又はウインドボックス14の炉心側側面)39から所要距離離れた位置に、端板37を外筒ノズル18に取付ける。前記端板37は、前記ノズル本体16の中心線と直交し、又該ノズル本体16と同心の円板形状をしている。
 前記炉壁外面39と前記端板37との間にリング状の仕切り板38が設けられ、該仕切り板38の外径は前記端板37と同径となっている。前記仕切り板38と前記炉壁外面39との間に空気ベーン41が円周方向所定間隔で設けられ、該空気ベーン41の内端は前記仕切り板38の内周円に合致するか、又は所要寸法だけ外周側に後退している。
 前記空気ベーン41は、円周等分割で且つ前記微粉炭バーナ15の規模に対応し、10枚~40枚程度の範囲で設けられ、前記空気ベーン41の内端を通過する円の接線に対して傾斜角αで傾斜しており、傾斜角αは25°±10°の範囲で設定される。
 尚、前記空気ベーン41は、前記端板37と前記仕切り板38との間に設けられてもよい。
 前記端板37は、前記炉壁外面39との間に前記外筒ノズル18と同心の円筒状空間42を形成し、該円筒状空間42は外周面が開放され、前記ウインドボックス14内部と連通し、前記円筒状空間42の外周部は前記仕切り板38によって炉内側空気導入室46と炉外側空気導入室47に仕切られ、前記炉内側空気導入室46と前記炉外側空気導入室47とは内周部で連通する。
 前記円筒状空間42と同心であり、該円筒状空間42を囲繞する様に短円筒状のスライドダンパ43が設けられる。該スライドダンパ43の幅(軸長)は、少なくとも前記仕切り板38と前記端板37間の距離以上であり、該端板37、前記仕切り板38に嵌合し、摺動自在となっている。
 前記ウインドボックス14の外側面には、油圧シリンダ等のアクチュエータ44が設けられ、該アクチュエータ44はロッド45を介して前記スライドダンパ43に連結され、前記アクチュエータ44の駆動により、前記スライドダンパ43がスライドする様になっている。前記アクチュエータ44、前記ロッド45は、前記スライドダンパ43をスライドさせる為の駆動手段を構成する。
 次に、第1の実施例の作動について説明する。
 前記2次空気34に旋回を与えて燃焼に供する場合は、前記アクチュエータ44により、前記スライドダンパ43を後退(反炉心側に移動)させ、前記端板37と前記仕切り板38間を閉塞する。前記2次空気34は、前記空気ベーン41を通過し、該空気ベーン41を通過する過程で、旋回が与えられ、旋回流として前記スロート13に流出する。この状態では旋回強さは、最大となる。
 前記2次空気34に旋回流を与えない場合は、前記アクチュエータ44により前記スライドダンパ43を前進させ、該スライドダンパ43により前記仕切り板38と前記炉壁外面39間を閉塞する。前記2次空気34は、前記空気ベーン41への流入が阻止され、前記炉外側空気導入室47、前記円筒状空間42を経て旋回が与えられない状態で、前記スロート13に流出する。
 前記2次空気34の旋回強さを調整する場合は、前記スライドダンパ43を図3に示す様に、中間位置とし、前記炉内側空気導入室46及び前記炉外側空気導入室47それぞれを部分的に開口する。
 前記2次空気34の一部は前記炉内側空気導入室46に流入し、残部は前記炉外側空気導入室47に流入する。前記炉内側空気導入室46に流入した2次空気34は、前記空気ベーン41によって旋回流が与えられ、前記炉外側空気導入室47に流入した2次空気34は旋回流が与えられずに前記炉内側空気導入室46から流出する2次空気34と合流する。
 旋回流のない2次空気34が合流することで、前記炉内側空気導入室46からの2次空気34の旋回流の強さが相殺され、前記スロート13へは旋回強さが弱められた旋回流が供給される。
 而して、前記スライドダンパ43の位置を調整することで、旋回流最大から旋回流なしの2次空気34を供給することができ、前記微粉炭バーナ15の燃焼状態を調整することができる。
 又、上記した微粉炭バーナ15に於いて、前記空気ベーン41は固定的に設けられており、該空気ベーン41の傾斜角が経時的に変化することはない。更に、前記スライドダンパ43と前記ロッド45との連結箇所で可動部分はなく、経時的にガタが増大することもなく、前記アクチュエータ44が与える変位は正確に前記スライドダンパ43に伝達され、該スライドダンパ43の位置調整で、経時的に精度が低下することもない。
 尚、上記第1の実施例に於いて、前記炉外側空気導入室47を省略し、前記空気ベーン41を端板37と前記炉壁外面39間に設け、前記スライドダンパ43の軸長を前記炉内側空気導入室46の軸長と等しくし、前記スライドダンパ43の移動により開口量を調整し、2次空気34の供給風量を調整する様にしてもよい。
 図5は、第2の実施例を示している。尚、図5中、図3中で示したものと同等のものには同符号を付し、説明を省略する。
 第2の実施例では、前記炉外側空気導入室47が開口する周面に、パンチングメタル、網等の多孔部材48を設けたものである。
 該多孔部材48を設けていない状態では、前記炉内側空気導入室46に流入した2次空気34は前記空気ベーン41を通過することで圧力損失があり、前記炉外側空気導入室47に流入した2次空気34は無抵抗であるので、圧力損失はない。この為、前記炉内側空気導入室46を閉塞した場合と、前記炉外側空気導入室47を閉塞した場合とでは、供給風量が変化する。この為、スライドダンパ43による空気調整に合わせて、1次空気24の供給側で、送風流量の調整を行う必要がある。又は、2次空気34の供給側に設けた図示しない調整ダンパ(図1に示したダンパ9に相当)により、風量や圧力を調整する必要がある。
 圧損調整手段である前記多孔部材48を設け、該多孔部材48による圧損を前記空気ベーン41による圧損と同等とすることで、前記スライドダンパ43の位置に関わらず、空気調整装置36から送出される空気流量を所定の値に維持できる。
 図6は、第3の実施例を示している。尚、図6中、図3中で示したものと同等のものには同符号を付し、説明を省略する。
 第3の実施例では、前記スライドダンパ43を複数の円筒体で構成される分割構造とし、空気調整装置36の空気調整の多様化を図ったものである。尚、図示では2分割の場合を示している。
 前記スライドダンパ43は、第1スライドダンパ43aと第2スライドダンパ43bによって構成され、前記第1スライドダンパ43aと前記第2スライドダンパ43bとは多重円状に設けられ、相互に干渉することなく自在にスライド可能としたものである。又、前記第1スライドダンパ43a、前記第2スライドダンパ43bは、それぞれ第1アクチュエータ44a、第2アクチュエータ44bに連結され、前記第1アクチュエータ44a、前記第2アクチュエータ44bによって独立して駆動可能としたものである。
 次に、図7~図9により第3の実施例の作動態様を説明する。
 前記第1スライドダンパ43aと前記第2スライドダンパ43bとを重合させ、前記第1スライドダンパ43aと前記第2スライドダンパ43bとを同期させ、一体に移動させれば、第1の実施例と同様な作動が得られる(図8、図9参照)。
 次に、前記第1スライドダンパ43aにより炉内側空気導入室46を閉塞し、前記第2スライドダンパ43bにより炉外側空気導入室47を閉塞することで、前記空気調整装置36を全閉状態とすることができる(図7参照)。
 これは、該当する微粉炭バーナ15による燃焼を停止させた場合であり、前記空気調整装置36によって2次空気34の供給を停止することができる。
 前記空気調整装置36が2次空気供給停止機能を持つことで、図1で示したダンパ9を省略することができ、設備の簡略化、制御系の簡素化が図れる。
 又、前記第1スライドダンパ43aと前記第2スライドダンパ43bとを部分的に重合させ、更に重合代を調整することで、前記炉内側空気導入室46、前記炉外側空気導入室47それぞれの開口面積の調整が行え、旋回強さの調整と供給風量の調整を合わせて行うことができる。
 図10は、第4の実施例を示している。尚、図10中、図3中で示したものと同等のものには同符号を付し、説明を省略する。又、スライドダンパ43を駆動するアクチュエータ44については図示を省略する。
 第4の実施例では、空気調整装置36の空気調整機能を更に多様化したものである。
 第4の実施例に係る前記空気調整装置36では、円筒状空間42に仕切り板38a,38b,38cを設け、前記円筒状空間42を軸心方向に4等分し、炉内側空気導入室46a,46b,46c及び炉外側空気導入室47を形成したものである(図11~図17参照)。
 又、前記炉内側空気導入室46a,46b,46cにはそれぞれ空気ベーン41a,41b,41cを設け、該各空気ベーン41a,41b,41cの傾斜角αa,αb,αcを、αa<αb<αcとし、炉外側に向って漸次傾斜角が大きく(旋回強さが小さく)なる様に設定したものである。
 又、前記スライドダンパ43は3分割構造とし、前記円筒状空間42の1/4の軸長のスライドダンパ43a,43b、前記円筒状空間42の1/2の軸長のスライドダンパ43cから構成されている。
 又、前記スライドダンパ43a,43b,43cは円周多重円構造で、相互に干渉することなく自在にスライド可能となっている。又、該スライドダンパ43a,43b,43cは、それぞれ個別にアクチュエータ(図示せず)に連結され、個々のアクチュエータの駆動により、独立してスライド可能としたものである。
 図11は空気調整装置36の全開状態を示し、前記スライドダンパ43a,43b,43cを全て前記空気調整装置36の開口部から後退させたものである。
 又、図12は該空気調整装置36の全閉状態を示し、前記スライドダンパ43a,43bにより前記炉内側空気導入室46a,46bを閉塞し、前記スライドダンパ43cにより前記炉内側空気導入室46c、前記炉外側空気導入室47を閉塞したものである。
 図13に示される様に、前記スライドダンパ43a,43bを前記スライドダンパ43cに重合させると、前記炉内側空気導入室46a,46bが開口され、前記空気ベーン41a,41bにより旋回が与えられた2次空気34がスロート13に導入される。前記空気ベーン41a,41bとは傾斜角度が異なるので、該空気ベーン41a,41bによって与えられる2つの旋回強さの中間的な旋回強さを持つ2次空気34が前記スロート13に導入される。
 又、前記スライドダンパ43a,43bを前記スライドダンパ43cに重合させたまま一体に炉内側に移動させ、前記炉内側空気導入室46a,46bを閉塞し、前記炉外側空気導入室47、前記炉内側空気導入室46cを開口すると、前記炉外側空気導入室47を経て旋回のない2次空気34と前記空気ベーン41cで弱く旋回が与えられた2次空気34とが合流して前記スロート13に導入される。
 図14に示される様に、図13の状態から前記スライドダンパ43a,43bの何れか一方(図示ではスライドダンパ43a)で、前記炉内側空気導入室46bを閉塞すると、前記炉内側空気導入室46aのみが開口され、前記空気ベーン41aで最大の旋回が与えられた2次空気34が前記スロート13に供給される。
 図14の状態で、前記スライドダンパ43aのみを後退させると、開口幅Wが拡大し、供給風量が増大する。
 図15に示される様に、図14の状態から前記スライドダンパ43aを前進させ、前記炉内側空気導入室46aを閉塞すると、前記炉内側空気導入室46bのみが開口され、前記空気ベーン41bで2番目に強い旋回が与えられた2次空気34が前記スロート13に供給される。
 図15の状態で、前記スライドダンパ43b,43cを一体に後退させると、開口幅Wが拡大し、前記炉内側空気導入室46b、及び前記炉内側空気導入室46cの一部を通過した2次空気34が供給され、供給風量が増大する。
 図16に示される様に、図15の状態から前記スライドダンパ43bを前進させ、前記炉内側空気導入室46bを閉塞し、前記スライドダンパ43cを後退させて、前記炉内側空気導入室46cを開口する。
 2次空気34は前記炉内側空気導入室46cに流入し、前記空気ベーン41cにより旋回力が与えられて前記スロート13に供給される。この場合、前記空気ベーン41cの傾斜角は前記空気ベーン41a,41bの傾斜角に比べ大きい為、与えられる旋回力は最も小さい。
 図16の状態で、前記スライドダンパ43cを後退させ、或は前記スライドダンパ43bを前進させると、或は、前記スライドダンパ43cを後退させると共に前記スライドダンパ43bを前進させると開口幅Wが拡大し、前記炉内側空気導入室46c、及び前記炉内側空気導入室46b、前記炉外側空気導入室47の一部を通過した2次空気34が供給され、供給風量が増大する。
 図17に示される様に、図16の状態から前記スライドダンパ43cを前進させ、該スライドダンパ43cにより、前記炉内側空気導入室46c,46bを閉塞する様にすれば、前記炉外側空気導入室47が開口する。
 該炉外側空気導入室47に流入した2次空気34は旋回を与えられることなく、前記スロート13に供給される。
 この場合、供給風量を増大させたい場合は、前記スライドダンパ43cを前進させ、前記炉内側空気導入室46cの一部を開口する。一部の2次空気34が前記炉内側空気導入室46cを通過し、前記空気ベーン41cにより旋回を与えられ、前記炉外側空気導入室47を通過した2次空気34に合流する。
 尚、第4の実施例に於いて、前記仕切り板38a,38b,38cを取除き、端板37と炉壁外面39間に連続した空気ベーン41を掛渡して設け、該空気ベーン41を炉心側で傾斜角を小さく後退するに従って漸次角度を大きく、反炉心側で傾斜角が90°になる様に形成してもよい。又、前記スライドダンパ43の構造は、同一とする。
 前記空気調整装置36の開口位置が異なることで、2次空気34は空気ベーン41の異なる傾斜角の部分を通過することになり、前記空気調整装置36の開口位置を変えることで、2次空気34の旋回強さを調整することができる。
 又、第4の実施例では前記スライドダンパ43を3等分したが、4等分以上としてもよい。
 図18は、第5の実施例を示している。尚、図18中、図3中で示したものと同等のものには同符号を付し、説明を省略する。
 第5の実施例は、上記した実施例に補助空気調整装置51を追加したものである。該補助空気調整装置51について説明する。
 外筒ノズル18の先端部に、該外筒ノズル18と同心に補助空気ガイドダクト52が設けられ、該補助空気ガイドダクト52の後端は端板37に取付けられている。前記補助空気ガイドダクト52は、円筒状空間42の中心部であり、前記外筒ノズル18の周囲に円筒状の補助空気導入路56を形成する。
 前記端板37に対向して補助空気調整用端板53が設けられ、該補助空気調整用端板53と前記端板37との間には、前記円筒状空間42に隣接する補助円筒状空間54が画成され、該補助円筒状空間54の外周面は開口され、ウインドボックス14内部に連通している。
 前記補助円筒状空間54を開閉する補助スライドダンパ55が、前記補助空気調整用端板53に摺動自在に嵌合されている。前記ウインドボックス14の外側面には、油圧シリンダ等のアクチュエータ59が設けられ、該アクチュエータ59はロッド57を介して前記補助スライドダンパ55に連結され、前記アクチュエータ59の駆動により、前記補助スライドダンパ55がスライドして前記補助円筒状空間54が開閉される様になっている。
 前記端板37と前記補助空気調整用端板53に掛渡って補助空気ベーン58が円周方向所定間隔で設けられる。該補助空気ベーン58は、前記空気ベーン41と同様、円周等分割で且つ微粉炭バーナ15の規模に対応し、10枚~40枚程度の範囲で設けられ、前記補助空気ベーン58の内端を通過する円の接線に対して傾斜角αで傾斜しており、傾斜角αは25°±10°の範囲で設定される(図4参照)。
 次に、第5の実施例の作動について図19を参照して説明する。
 図19が示す状態は、空気調整装置36、前記補助空気調整装置51の両方から燃焼用空気に旋回が与えられて供給される状態であり、スライドダンパ43は後退されて炉外側空気導入室47を閉塞し、前記補助スライドダンパ55も後退され、前記補助円筒状空間54が開口された状態となっている。
 炉内側空気導入室46に流入した2次空気34は前記空気ベーン41を通過することで旋回を与えられ、旋回流として、スロート13に送給される。
 ここで、前記スライドダンパ43の位置を前進させることで、前記炉内側空気導入室46の一部が閉塞され、前記炉外側空気導入室47の一部が開放される。この状態では、無旋回流が前記炉内側空気導入室46からの旋回流に合流するので、旋回流が弱められる。
 2次空気34の空気は、前記補助円筒状空間54に流入し、前記補助空気ベーン58により旋回が与えられ、前記補助空気導入路56を経て前記空気調整装置36によって送給される2次空気34の内側から2次補助空気として噴出される。
 ここで、前記補助スライドダンパ55の位置により、前記補助円筒状空間54の開口幅を調整でき、取込む2次空気34の風量、即ち2次補助空気の供給量を調整することができる。
 尚、前記2次補助空気の供給量を調整する必要がない場合は、前記補助スライドダンパ55を省略してもよい。
 前記補助空気調整装置51に於いても、前記補助スライドダンパ55は固定して設けられ、前記ロッド57と前記補助スライドダンパ55との連結部には、可動部分がなく、経時的にガタが増大することもなく、前記アクチュエータ59が与える変位は正確に前記補助スライドダンパ55に伝達される。
 尚、本発明は、微粉炭バーナに限らず、石油等の燃料を燃焼させるバーナにも実施可能であることは言う迄もない。
 本発明のバーナは様々なボイラ火炉の壁面に適用できる。

Claims (14)

  1.  炉壁に設けられるバーナスロートの中心軸心上に設けられると共にウインドボックスに収納されるノズル本体の先端部に2次空気調整装置が設けられるバーナであって、前記2次空気調整装置は、前記ウインドボックスの炉心側側面との間に、周面が開口する円筒状空間を形成する端板と、前記円筒状空間を囲繞し、軸心方向にスライド可能なスライドダンパと、前記円筒状空間の円周に沿って所定の間隔で設けられ2次空気に旋回を与える空気ベーンと、前記スライドダンパをスライドさせる駆動手段を具備するバーナ。
  2.  前記円筒状空間を軸心方向に仕切る仕切り板と、仕切られた小円筒状空間の少なくとも1つに円周方向に沿って所定の間隔で設けられ2次空気に旋回を与える前記空気ベーンとを設けた請求項1のバーナ。
  3.  前記小円筒状空間の内、前記空気ベーンが設けられていない小円筒状空間に圧損調整手段を設けた請求項2のバーナ。
  4.  前記スライドダンパの軸長は、少なくとも前記空気ベーンが設けられていない小円筒状空間を閉塞する長さを有している請求項2のバーナ。
  5.  前記スライドダンパは、同心多重円状に設けられた複数の円筒体から構成され、該各円筒体は独立してスライド可能である請求項1のバーナ。
  6.  前記スライドダンパは、同心多重円状に設けられた複数の円筒体から構成され、該各円筒体は独立してスライド可能である請求項4のバーナ。
  7.  前記スライドダンパは、前記複数の円筒体により前記円筒状空間を閉塞可能である請求項5のバーナ。
  8.  前記スライドダンパは、前記複数の円筒体により前記円筒状空間を閉塞可能である請求項6のバーナ。
  9.  前記スライドダンパは、少なくとも3の円筒体から構成され、該各円筒体は独立してスライド可能であり、前記円筒状空間を任意の位置で、任意の幅で開口可能とした請求項4又は請求項5又は請求項6又は請求項7又は請求項8のバーナ。
  10.  前記円筒状空間は複数の仕切り板により、3以上の小円筒状空間に分割され、1つを除く小円筒状空間にそれぞれ前記空気ベーンが設けられ、該空気ベーンは小円筒状空間毎に傾斜角が異なる請求項1又は請求項2のバーナ。
  11.  前記ウインドボックスの炉心側側面と前記端板との間に掛渡って前記空気ベーンが設けられ、該空気ベーンは軸心方向に沿って傾斜角が変更された請求項1のバーナ。
  12.  前記ウインドボックスの炉心側側面と前記端板との間に掛渡って前記空気ベーンが設けられ、該空気ベーンは軸心方向に沿って傾斜角が変更された請求項10のバーナ。
  13.  前記円筒状空間の中心部で前記ノズル本体の周囲に補助空気導入路が形成されると共に前記円筒状空間に隣接して補助円筒状空間が形成され、該補助円筒状空間は前記補助空気導入路に連通すると共に外周面が前記ウインドボックスに開口し、前記補助円筒状空間に該補助円筒状空間の円周に沿って所定の間隔で補助空気ベーンが設けられた請求項1又は請求項2のバーナ。
  14.  前記補助円筒状空間を囲繞し、スライド可能な補助スライドダンパを設け、該補助スライドダンパによって前記補助円筒状空間の開口を調整可能とした請求項12のバーナ。
PCT/JP2009/001382 2008-08-08 2009-03-27 バーナ WO2010016168A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/057,762 US8726819B2 (en) 2008-08-08 2009-03-27 Burner
DE112009001943T DE112009001943B3 (de) 2008-08-08 2009-03-27 Brenner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008205735A JP5332389B2 (ja) 2008-08-08 2008-08-08 バーナ
JP2008-205735 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016168A1 true WO2010016168A1 (ja) 2010-02-11

Family

ID=41663397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001382 WO2010016168A1 (ja) 2008-08-08 2009-03-27 バーナ

Country Status (4)

Country Link
US (1) US8726819B2 (ja)
JP (1) JP5332389B2 (ja)
DE (1) DE112009001943B3 (ja)
WO (1) WO2010016168A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901089A (zh) * 2012-09-20 2013-01-30 上海工业锅炉研究所 一种工业锅炉的煤粉掺烧***
CN105927977A (zh) * 2016-06-28 2016-09-07 山东圣威新能源有限公司 一种新型微煤脱硫低氮涡轮燃烧器
CN113277760A (zh) * 2021-06-30 2021-08-20 崇左南方水泥有限公司 一种水泥窑协同处置电解锰渣的方法及其***

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960219B (zh) * 2008-03-06 2013-01-02 株式会社Ihi 氧燃烧锅炉的煤粉燃烧器
JP5369899B2 (ja) 2009-05-27 2013-12-18 株式会社Ihi バーナ
US20140157790A1 (en) * 2012-12-10 2014-06-12 Zilkha Biomass Power Llc Combustor assembly and methods of using same
GB2516868B (en) * 2013-08-02 2017-01-18 Kiln Flame Systems Ltd Swirl Burner for Burning Solid Fuel and Method of using same
DE102014103813A1 (de) * 2014-03-20 2015-09-24 Webasto SE Verdampferbrenneranordnung für ein mobiles, mit flüssigem Brennstoff betriebenes Heizgerät
JP6632226B2 (ja) 2015-06-12 2020-01-22 三菱日立パワーシステムズ株式会社 バーナ、燃焼装置、ボイラ及びバーナの制御方法
KR101721057B1 (ko) * 2015-06-18 2017-03-29 한국생산기술연구원 버너 선회류 강도 조절장치 및 그 강도 조절방법
US11512850B2 (en) * 2018-11-03 2022-11-29 Alireza Fazlollahi Ghomshi Double swirl burner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252412A (ja) * 1985-05-01 1986-11-10 Babcock Hitachi Kk 旋回流発生装置
JPS61272512A (ja) * 1985-05-25 1986-12-02 Babcock Hitachi Kk 保炎力を高めた微粉炭燃焼装置
JPH0814510A (ja) * 1994-06-30 1996-01-19 Hitachi Ltd 微粉炭バーナ及びその使用方法
JP2005273973A (ja) * 2004-03-24 2005-10-06 Hitachi Ltd バーナと燃料燃焼方法及びボイラの改造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127005A (ja) * 1982-01-22 1983-07-28 Hitachi Ltd 微粉炭用低NOxバ−ナ
US4924784A (en) * 1984-02-27 1990-05-15 International Coal Refining Company Firing of pulverized solvent refined coal
EP0343767B1 (en) * 1988-03-04 1994-01-19 Northern Engineering Industries Plc Burner for the combustion of pulverised fuel
JPH08145320A (ja) * 1994-11-18 1996-06-07 Ishikawajima Harima Heavy Ind Co Ltd 微粉炭バーナ
US6145450A (en) * 1996-02-06 2000-11-14 Foster Wheeler Corporation Burner assembly with air stabilizer vane
DK0836049T3 (da) * 1996-10-08 2002-04-08 Enel Spa Injektionsdyse til pulveriseret kul
JP3643461B2 (ja) 1997-03-31 2005-04-27 バブコック日立株式会社 微粉炭燃焼バーナおよびその燃焼方法
JP3344694B2 (ja) 1997-07-24 2002-11-11 株式会社日立製作所 微粉炭燃焼バーナ
AU2005229668B2 (en) * 2004-11-04 2008-03-06 Babcock-Hitachi K.K. Overfiring air port, method for manufacturing air port, boiler, boiler facility, method for operating boiler facility and method for improving boiler facility
JP2008202836A (ja) * 2007-02-19 2008-09-04 Ihi Corp 微粉炭バーナ
WO2009009945A1 (fr) * 2007-07-18 2009-01-22 Harbin Institute Of Technology Brûleur de charbon pulvérisé à turbulence à faible nox
JP2009216281A (ja) * 2008-03-10 2009-09-24 Ihi Corp 微粉燃料用バーナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252412A (ja) * 1985-05-01 1986-11-10 Babcock Hitachi Kk 旋回流発生装置
JPS61272512A (ja) * 1985-05-25 1986-12-02 Babcock Hitachi Kk 保炎力を高めた微粉炭燃焼装置
JPH0814510A (ja) * 1994-06-30 1996-01-19 Hitachi Ltd 微粉炭バーナ及びその使用方法
JP2005273973A (ja) * 2004-03-24 2005-10-06 Hitachi Ltd バーナと燃料燃焼方法及びボイラの改造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901089A (zh) * 2012-09-20 2013-01-30 上海工业锅炉研究所 一种工业锅炉的煤粉掺烧***
CN105927977A (zh) * 2016-06-28 2016-09-07 山东圣威新能源有限公司 一种新型微煤脱硫低氮涡轮燃烧器
CN113277760A (zh) * 2021-06-30 2021-08-20 崇左南方水泥有限公司 一种水泥窑协同处置电解锰渣的方法及其***
CN113277760B (zh) * 2021-06-30 2023-08-15 崇左南方水泥有限公司 一种水泥窑协同处置电解锰渣的方法及其***

Also Published As

Publication number Publication date
JP2010038519A (ja) 2010-02-18
JP5332389B2 (ja) 2013-11-06
DE112009001943B3 (de) 2012-12-06
US8726819B2 (en) 2014-05-20
US20110139048A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5332389B2 (ja) バーナ
JP5369899B2 (ja) バーナ
US4348170A (en) Dual register, split stream burner assembly with divider cone
US7665458B2 (en) Overfire air tube damper for boiler and method for regulating overfire air
US5011400A (en) Controlled flow split steam burner assembly with sorbent injection
JP5786516B2 (ja) バーナ
JP5743115B2 (ja) 燃焼装置
JP2010249362A (ja) バーナ
EP0163423B1 (en) Controlled flow, split stream burner assembly with sorbent injection
EP0945678B1 (en) Low NOx burner for liquid and gaseous fuels
EP2501994B1 (en) Flow control device
EP1913306B1 (en) Industrial burner and method for operating an industrial burner
EP3180567B1 (en) Dual outlet burner and method
AU2011332718B2 (en) Pulverized fuel fired boiler equipment
JP2011052871A (ja) 燃焼装置
GB2079925A (en) Dual register, split stream burner assembly
JP2693211B2 (ja) 微粉燃料バーナ
CA1204342A (en) Dual register, split stream burner assembly
CA1282314C (en) Radiant tube burner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13057762

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

Effective date: 20110209

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase

Ref document number: 09804655

Country of ref document: EP

Kind code of ref document: A1