WO2010016108A1 - Vehicle travel controller - Google Patents

Vehicle travel controller Download PDF

Info

Publication number
WO2010016108A1
WO2010016108A1 PCT/JP2008/064036 JP2008064036W WO2010016108A1 WO 2010016108 A1 WO2010016108 A1 WO 2010016108A1 JP 2008064036 W JP2008064036 W JP 2008064036W WO 2010016108 A1 WO2010016108 A1 WO 2010016108A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
trajectory
future
point
ambient environment
Prior art date
Application number
PCT/JP2008/064036
Other languages
French (fr)
Japanese (ja)
Inventor
田口康治
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/064036 priority Critical patent/WO2010016108A1/en
Publication of WO2010016108A1 publication Critical patent/WO2010016108A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences

Definitions

  • the present invention relates to travel control of a vehicle such as an automobile, and more particularly to a travel control device that automatically controls the travel / motion state of the vehicle to provide driving assistance to the driver of the vehicle.
  • the vehicle driving support control using the intelligence technology and information technology of the vehicle as described above the vehicle's running / motion of the vehicle against disturbances such as obstacle avoidance and crosswinds. Correction is performed automatically.
  • various types of vehicle motion control technologies such as VSC (Vehicle Stabilization Control), brake assist control, automatic steering control or VDIM (Vehicle Dynamics Integrated Management) control are executed.
  • VSC Vehicle Stabilization Control
  • brake assist control automatic steering control
  • VDIM Vehicle Dynamics Integrated Management
  • the driver of the vehicle controls the vehicle by recognizing the direction or shape of the travel route ahead of the host vehicle (“road alignment”) and the environment surrounding the host vehicle.
  • the driver pays attention to a certain point ahead in the direction of travel of the vehicle, and the traveling state of the vehicle (vehicle speed, (Yaw angle, etc.) ⁇ Steering or accelerating / decelerating the vehicle so that the running position becomes the intended state / position (turning the steering wheel, stepping on the accelerator / brake pedal, etc.)
  • steering or “steering input” .
  • the conventional vehicle motion control technology (especially one that automatically adjusts the rudder angle, yaw moment, acceleration / deceleration, etc.) sufficiently reflects the maneuvering according to the reference of the driver's forward gazing point.
  • the control is not executed in the above manner.
  • the conventional vehicle motion control what is executed independently, or what is used as part of vehicle driving support control using intelligent technology or information technology, the current state of the vehicle Referring to only (vehicle speed, yaw rate, or understeer / oversteer state index value), each part of the vehicle is automatically controlled to lead the vehicle state to a safe state or a target state from moment to moment Has been.
  • the stability or safety of the running state of the vehicle at the moment when the control is executed is ensured, but the contribution of the driver's steering to the movement of the vehicle before the control is performed. Is reduced or surpassed by the action of automatic control.
  • the driving state or position of the vehicle several seconds after the driver's steering input is determined based on the driver's forward gaze reference immediately before the steering input. May not match the driving state or position that the person intended. That is, when considering driving assistance for the driver in the vehicle motion control, the driver's intention of steering should preferably be reflected in the driving state or driving position of the vehicle.
  • the motion control method cannot always provide driving support that matches the driver's intention.
  • one object of the present invention is not to correct the vehicle motion state from time to time with reference to the current state as in the prior art, but also to consider the driver's maneuvering input. It is an object of the present invention to provide a vehicle travel control device that performs motion control so that a future travel state or position matches a driver's intention, and realizes driving support of the vehicle in a more preferable mode than before.
  • Another object of the present invention is a vehicle travel control device that realizes driving support for a vehicle as described above, which is a vehicle driving support control that uses vehicle intelligence technology and information technology. It is to provide a travel control device.
  • a travel control device for a vehicle that performs driving support for a vehicle according to the present invention includes an ambient environment detection unit that detects an ambient environment of the vehicle, a future trajectory estimation unit that estimates a future trajectory of the vehicle, A traveling locus control unit that controls the traveling locus of the vehicle based on the surrounding environment information detected by the surrounding environment detection unit and the future locus is included.
  • the travel trajectory control unit includes a motion control unit that controls the motion of the vehicle so that the actual trajectory of the vehicle matches a point on the future trajectory where the change of the steering input to the vehicle by the driver of the vehicle is executed.
  • the future trajectory of the vehicle is a route that is estimated to be followed by the vehicle when the current running / driving state of the vehicle continues.
  • the future trajectory is typically estimated by an arbitrary method based on the driver's steering input, but is estimated by a control input by another automatic cruise control device mounted on the vehicle or a control input by remote operation. Also good.
  • the “point” on the future trajectory where the driver of the vehicle executes the change of the steering input to the vehicle is the vehicle traveling / motion from the driver or from any control device (from other than this control device). This corresponds to the limit of the route for which the current request is valid, that is, the last point where the currently estimated future trajectory is valid.
  • the future trajectory is determined based on the driver's steering input
  • the future trajectory calculated based on the driver's steering input up to now is an effective point, and the driver's steering input
  • a new future trajectory will be calculated.
  • changes in the vehicle running state quantity such as vehicle speed and yaw rate at that time are also estimated, and changes in the actual vehicle running state quantity are estimated changes. It may be controlled to follow.
  • the actual trajectory of the vehicle is determined based on, for example, car navigation information (for example, vehicle position / traveling direction information captured by GPS) included in information detected by the ambient environment information detection unit. It's okay. (In this specification, information extracted from car navigation information (such as the vehicle position) is also described as being included in the ambient environment information.)
  • the future trajectory estimated by the future trajectory estimation unit is estimated according to the control amount required for the vehicle. Travel along the trajectory in the future. However, if there is a change in the movement of the vehicle due to a disturbance such as a crosswind or a sudden change in the frictional condition of the road surface, it is currently effective rather than correcting the disturbance of the vehicle's behavior or movement due to the disturbance. At the end point of the future trajectory (the point where the change of the steering input to the vehicle by the driver of the vehicle is executed), the actual trajectory of the vehicle is controlled to match.
  • the device of the present invention enables driving support for driving the vehicle along the trajectory intended by the driver.
  • the “point” at which the driver changes the steering input to the vehicle is estimated in advance based on the road alignment of the vehicle during normal vehicle travel. (However, if information that cannot be traveled along the road alignment can be acquired by an arbitrary method, the “point” may be determined according to the information.) Therefore, the “point” may be estimated by superimposing road alignment on the future trajectory. In that case, typically, as already mentioned, the driver gives a corresponding steering input to the vehicle in order to drive the vehicle with an arbitrary forward gazing point, and the input is updated. A point, that is, a position where the future trajectory and the road alignment start to shift may be determined as such a “point”.
  • the position where both start to be separated by a predetermined distance or more may be determined as the “point”.
  • the “point” where the driver is supposed to change the steering input to the vehicle can be determined based on the road alignment if the vehicle travels along the road alignment. Therefore, regardless of the separation distance between the future trajectory and the road alignment, the driver may change the steering input to the vehicle at the exit of the curved road in the road alignment and the point where the curvature of the road alignment changes. It may be selected as an inferred “point”.
  • the future trajectory is estimated, and after overlaying the road alignment, the position of the obstacle, the preceding vehicle, the road width or the change of the slope, etc.
  • the position of the identified obstacle, road state change, or the like may be estimated as a “point” at which the driver changes the steering input to the vehicle.
  • the position of the road alignment, obstacles, road condition changes, etc. can be obtained by any known established method in the field of vehicle intelligence technology / information technology using the surrounding environment detection unit. Is possible.
  • the road alignment may typically be obtained from car navigation system information. It is understood that in the apparatus of the present invention, information from the car navigation system may be converted so as to conform to the control of the present invention, and road linear information (coordinates, etc.) may be extracted or calculated. Should be. Positions such as obstacles and changes in road conditions may be detected by using car navigation system information or an in-vehicle video camera / radar device.
  • the driver changes the steering input to the vehicle at the final point where the future locus estimated at a certain position or time is valid.
  • the point where the control is intended is that the actual trajectory / running state of the vehicle is in line with the driver's wishes during normal driving of the vehicle.
  • the vehicle's trajectory / running state at the point where the vehicle passes a few seconds after the present, ahead of the current vehicle position, should be in line with the driver's wishes. It is to control the movement of the vehicle. Therefore, the vehicle motion control only needs to be in a state where the trajectory of the vehicle when a certain amount of time has elapsed from the present time is scheduled.
  • the vehicle travel control apparatus includes a surrounding environment detection unit that detects a surrounding environment of the vehicle, and a first vehicle operation based on the steering input of the driver of the vehicle.
  • a future trajectory estimating unit that estimates a future trajectory of the first and a second future trajectory after the first future trajectory, ambient environment information detected by the ambient environment detecting unit, and first and second future trajectories
  • a movement locus control unit for controlling the vehicle movement locus based on the movement locus control portion, and the movement control portion for controlling the movement of the vehicle included in the movement locus control portion matches the actual locus of the vehicle with the second future locus.
  • the movement of the vehicle may be controlled using the ambient environment information detected by the ambient environment detection unit.
  • the first future trajectory is a trajectory of the vehicle from the current position estimated based on the steering input of the driver of the vehicle up to the present to a certain distance
  • the second future The trajectory corresponds to a target trajectory of the vehicle to be finally achieved by the operation of the travel control device of the present invention.
  • the second future trajectory may be determined based on the driving input of the driver of the vehicle, or may be determined based on external information such as road alignment.
  • the travel control device of the present invention is, if necessary, the vehicle trajectory and travel state (vehicle speed, yaw rate, etc.) after the current time point, typically a few seconds later. It can be said that the movement of the vehicle is controlled in accordance with the driver's desire.
  • conventional vehicle motion control technology is designed to maintain the running stability of the vehicle from moment to moment, so disturbances such as crosswinds occur over a long period (several seconds). In such a case, the action of correcting the traveling track of the vehicle is not obtained, and sufficient driving support is not given to the driver (in the case of LKA, the traveling of the vehicle along the road alignment is realized).
  • driving assistance that corrects the track of the vehicle is not provided except when the road has a recognizable white line and travels along the white line.
  • the vehicle is controlled to be in the planned or planned state at the target point, and the vehicle trajectory correction is automatically performed. Become. Therefore, with the control device of the present invention, driving assistance that reduces the driver's handling burden on the vehicle to achieve the state intended by the driver (even with a conventional device) is achieved.
  • the traveling control device of the present invention can be advantageously used as a part of a vehicle traveling control plan generation system as exemplified in the aforementioned Japanese Patent Application No. 2006-313258.
  • the travel of the vehicle is controlled based on the control target of the automatic operation of the vehicle determined based on the surrounding environment and the long-term desire of the driver.
  • the apparatus of the present invention is incorporated in the motion control part of such a system, not only the driver's long-term desire but also the driver's short-term desire, that is, automatic driving control of the vehicle in consideration of the steering input is achieved. It will be possible.
  • the road alignment used in the travel control of the present invention may be determined based on the travel route by the vehicle travel control plan generation system (for example, when the road is branched).
  • FIG. 1 is a schematic diagram of a vehicle equipped with a travel control apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 shows the internal configuration of the travel control apparatus according to the preferred embodiment of the present invention in the form of control blocks.
  • FIG. 3A shows the flow of the process in the future trajectory estimation unit in the form of a flowchart, and
  • FIG. 3B shows the process in step 50-60 of FIG. The flow is shown in detail.
  • FIG. 4A shows a coordinate system used when estimating the future trajectory and comparing the future trajectory (actual curve) and the road alignment (dashed line) in the travel control device of the present invention. is there.
  • FIG. 4B is a diagram showing the relationship between the GPS coordinate system and the coordinate system of FIG. FIG.
  • the solid line is the future trajectory estimated based on the steering input
  • the dotted line is the trajectory when the feedback control based on the future trajectory is not executed after receiving the lateral wind disturbance (conventional technology)
  • the solid line is subjected to the lateral wind disturbance
  • a trajectory (the present invention) when feedback control based on the future trajectory is executed is shown.
  • FIG. 1 schematically shows a vehicle configuration in which a preferred embodiment of a vehicle travel control apparatus according to the present invention is incorporated.
  • a vehicle 10 having left and right front wheels 12FL and 12FR and left and right rear wheels 12RL and 12RR is provided with each wheel (in the illustrated example, a rear wheel drive vehicle) according to depression of an accelerator pedal 14. Therefore, a power unit 20 that generates braking / driving force on only the rear wheels, a steering device 30, and a braking unit 40 that generates braking force on each wheel are mounted.
  • the power unit 20 is configured such that the rotational braking / driving force output from the engine 22 via the torque converter 24, the automatic transmission 26, the differential gear unit 28, and the like is transmitted to the rear wheels 12RL and 12RR.
  • the braking / driving force generated by the power unit 20 is appropriately adjusted by an electronic control unit 60 described later when the traveling control of the present invention is executed.
  • Steering device 30 steers front wheels 12FL and 10FR via tie rods 34L and R in response to rotation of steering wheel 32 operated by a driver.
  • the steering device 30 is preferably an “active steering device” that can change the steering angle of the front wheels independently of the driver's steering, and a turning angle varying device 36 is provided in the middle of the steering shaft.
  • the steered angle varying device 36 includes a drive motor therein, and the motor is configured to steer the front wheel steered angle ⁇ w regardless of the rotation of the steering wheel 32 under the control of the electronic control device 60 described later.
  • Steering wheel steering angle ⁇ h and wheel steering angle ⁇ w are detected by steering angle sensors 32a and 36a, respectively.
  • a rear wheel steering device that steers the rear wheels under the control of the same electronic control device 60 may be provided on the rear wheels.
  • the braking device 40 is a hydraulic braking device that can individually generate the braking force of each wheel, and includes an oil reservoir, an oil pump, various valves, etc. (not shown), and a wheel cylinder equipped on each wheel. 42FL, 42FR, 42RL, 42RR, and a hydraulic circuit 48 including a master cylinder 46 that is actuated in response to depression of the brake pedal 44 by the driver, and the brake pressure in each wheel cylinder, that is, each wheel Normally, the braking force is adjusted by the hydraulic circuit 48 in response to the master cylinder pressure.
  • the acceleration / deceleration control, VSC or other yaw moment generation control is controlled all at once or individually.
  • the braking device may be of any type (for example, an electromagnetic type) as long as the braking force of each wheel can be adjusted individually.
  • the electronic control unit 60 for controlling the engine output, the brake pressure of each wheel, that is, the braking force and the wheel steering angle, has a CPU, a ROM, a RAM, and a CPU connected to each other by a bidirectional common bus.
  • a microcomputer having an input / output port device and a driving circuit may be included.
  • Engine operation information Er or the like is input.
  • a detector (video camera, radar device) 70 for recognizing an obstacle / preceding vehicle in front of the vehicle, a lane shape, etc. as means for acquiring surrounding environment information of the vehicle;
  • a car navigation system 72 is provided that communicates with a GPS satellite to obtain various information.
  • Detection data of the video camera or radar device 70 is transmitted to a data analysis device IP (image processing device or the like) in the electronic control device 60, and the presence or absence of an obstacle in front of the vehicle and its position (self Relative distance / relative speed and direction from the vehicle) and information on the shape of the traveling road surface.
  • IP image processing device or the like
  • the car navigation system generates data such as the position (latitude, longitude) of the host vehicle, the direction of the vehicle body, the road alignment of the traveling road, and transmits the information to the electronic control unit 60.
  • a device for estimating the road surface friction coefficient ⁇ (preferably for each wheel) is incorporated in the electronic control device 60 by any known method, and the road surface friction coefficient ⁇ (Estimation, determination of feedback control command amount, etc.).
  • parameters necessary for control may be arbitrarily detected and input to the electronic control unit 60 by various sensors.
  • the travel control device basically controls the vehicle according to the driver's steering input, that is, the accelerator pedal depression amount ⁇ a, the brake pedal depression amount ⁇ b, and the steering wheel steering angle ⁇ h.
  • the operation of each of the power unit 20, the steering device 30, and the braking device 40 is controlled in a known manner, and the running state of the vehicle is disturbed or disturbed by the influence of a disturbance or the like.
  • the movement of the vehicle is controlled to compensate for the influence of the disturbance.
  • the driver when driving a normal vehicle, the driver recognizes the road alignment of the driving route ahead of the host vehicle and the environment surrounding the host vehicle, Maneuvering input is given to the vehicle so that the host vehicle is in a desired trajectory / running state on the forward travel path. Therefore, in the motion control in the present invention, not only simply stabilizing the running state of the vehicle, but also using various vehicle state quantities, surrounding environment information, etc., the trajectory of the vehicle after the current time point, The movement of the vehicle is controlled so that the vehicle speed and the yaw rate match the trajectory, the vehicle speed, and the yaw rate corresponding to the driver's steering input.
  • FIG. 2 shows an outline of the configuration of a preferred embodiment of the travel control device of the present invention in the form of a control block diagram.
  • the blocks and adders denoted by reference numerals 60a to 61i and 61a to 61c are realized by an arithmetic processing operation in accordance with an internal configuration of the electronic control device 60 and a program stored in the internal storage device. .
  • the main signal flow is shown.
  • the driver's required acceleration / deceleration ⁇ t is based on the accelerator depression amount ⁇ a and the brake depression amount ⁇ b, as in the normal traveling control device.
  • Acceleration / deceleration control command determining unit 60a for determining the required braking / driving force Fat generated by the power unit 20 in response to the required acceleration / deceleration ⁇ t (the power unit can generate a braking force by engine braking or regenerative braking) or A braking / driving force control command unit 60b that determines a required braking force Fbti generated in each wheel by the braking device 40, and a wheel steering angle control command that determines a target turning angle ⁇ wt of the wheel based on the steering angle ⁇ h of the steering wheel. And a determination unit 60c.
  • the required braking / driving force Fat, the required braking force Fbti of each wheel, and the target turning angle ⁇ wt are transmitted to the drive control device 60d, the braking control device 60e, and the steering control device 60f, respectively, and the control devices 60d to 60f are respectively In any control manner known in the field, the corresponding required value or target value (the braking force Fbti of each wheel may be individually controlled by any control method) is achieved. 20, the braking device 40 and the steering device 30 are operated. Although not shown, the control devices 60d to 60f perform servo control so that the required value or target value matches the actual value inside.
  • the actual vehicle trajectory, vehicle speed, and yaw rate correspond to the driver's steering input.
  • a control block for matching the locus, vehicle speed, and yaw rate is configured. Specifically, as shown in FIG. 2, a future trajectory estimation unit 60g that estimates the future trajectory of the host vehicle and feedback control of the vehicle motion so that the actual trajectory of the vehicle follows the future trajectory.
  • the future trajectory estimation unit 60g uses the steering input up to the present time of the driver, that is, the requested acceleration / deceleration ⁇ t and the target turning angle ⁇ wt, so that the driver Vehicle's future trajectory until a correct steering input is made (coordinate S * of the vehicle's travel trajectory immediately after the vehicle's control input is made, vehicle speed V * and yaw rate ⁇ * when the vehicle travels on the travel trajectory) Is estimated.
  • the feedback control command determination unit 60h compares the actual vehicle trajectory (vehicle position coordinates, vehicle speed, yaw rate) with the estimated future trajectory, and reduces or minimizes the deviation between the two.
  • a compensation amount ⁇ t of the required acceleration / deceleration ⁇ t, a compensation yaw moment Mt for compensating the locus and the yaw rate are generated.
  • the compensation yaw moment Mt is transmitted to the behavior control device 60i, and the compensation amount ⁇ wt of the target turning angle ⁇ wt and / or the compensation amount ⁇ Fbi of the required braking force Fbi to each wheel is generated.
  • the compensation amounts ⁇ t, ⁇ Fbi, and ⁇ wt thus generated are added to ⁇ t, Fbi, and ⁇ wt in the adders 61a to 61c, respectively, and ⁇ t, Fbi, and ⁇ wt are corrected, and the vehicle motion is corrected. Compensated.
  • FIG. 3 shows the processing in the future trajectory estimation unit 60g in the form of a flowchart. The control process shown in the figure may be always executed during driving of the vehicle, but may be executed only when the driver requests the traveling control of the present invention.
  • an estimated value of a future valid trajectory (coordinate value S * of the future trajectory, V * , yaw rate value). It is determined whether or not ⁇ * ) is present and the feedback control command determination unit is set to a state where the value can be used (step 10). Since the future locus is not set immediately after the operation of the future locus estimator is started, in this case, the future locus is estimated (step 40).
  • the vehicle speed value V * ( ⁇ ) is typically calculated using vehicle engine output characteristics, power equipment performance specifications, braking system performance specifications, reference vehicle weight, etc. It may be given according to a dynamic calculation method.
  • the yaw rate value ⁇ * ( ⁇ ) may be given using ⁇ wt, V * ( ⁇ ), etc. according to a general vehicle yaw direction motion model or a steady or quasi-steady turning motion model.
  • the coordinate value S * ( ⁇ ) of the vehicle trajectory is in accordance with a yaw motion model of any vehicle in a coordinate system fixed on the ground (for example, Ackerman model or other vehicle trajectory simulation method). Typically, it is given as a coordinate value of the locus of the center of gravity of the vehicle by the estimation calculation.
  • a coordinate system fixed on the ground for example, an XY orthogonal coordinate system as illustrated in FIG. 4A may be used.
  • the center of gravity of the vehicle at the time of trajectory estimation is set to the origin of the coordinate system, and the direction of the velocity vector of the center of gravity of the vehicle at that time is set to the X axis (therefore, the vehicle
  • the magnitude of the vehicle yaw angle ⁇ angle to the longitudinal axis as seen from the X axis of the coordinate system matches the magnitude of the vehicle slip angle ⁇ at that time To do.
  • the slip angle ⁇ is a function of the yaw rate ⁇ * and the vehicle speed V * . Therefore, V * ( ⁇ ), ⁇ * ( ⁇ ), and X * ( ⁇ ) at each time ⁇ are sequentially calculated by an arbitrary vehicle motion model, and then correspond to X * at each time ⁇ .
  • ⁇ (X), ⁇ (X) [Expression (3)] is calculated, and then Y * is given as a function of X * by Expression (2).
  • any coordinate system other than those described above may be used to represent the trajectory. What is important is that, when superimposing on the road alignment and calculating the feedback control command value, one of the coordinate values of the trajectory (Y * in the above example), the vehicle speed value V * , and the yaw rate ⁇ * The value can be referred to as a function of the other coordinate value (X * ) of the locus.
  • Each of the estimated values may be given by numerical calculation, and may be configured as a map using the coordinate value X * as a parameter.
  • FIG. 3B shows the processing in step 50-60 in more detail in the form of a flowchart.
  • step 50-60 first, road linear coordinate values (Lx GPS , Ly GPS ) are converted into values in the coordinate system of FIG. 4A (step 51). ).
  • the future trajectory Y * (X * ) estimated in step 40 is expressed in a coordinate system with the center of gravity of the (current) vehicle illustrated in FIG. 4A as the origin.
  • the road linear coordinates (Lx GPS , Ly GPS ) are represented by a GPS coordinate system (X GPS- Y GPS coordinate system) (FIG. 4B).
  • the road linear coordinate values (Lx, Ly) and the future trajectory Y * (X * ) are sequentially compared along the X direction.
  • a search is made for a point where the driver gives a new steering input, that is, a valid final point of the currently estimated future trajectory.
  • a point where the future trajectory begins to deviate from the road alignment (i) a point where the curvature of the road alignment is large, (iii) a point where there is information on the curve exit in the road alignment, (iv) A point where it is determined that there is a preceding vehicle or an obstacle by observation of an in-vehicle video camera / radar device or a point where a state such as a road width or a road gradient is determined is searched.
  • step 52 it is determined whether or not the deviation between the future trajectory Y * (X * ) and Ly (X * ) is a predetermined value or more (step 52).
  • the threshold value Ymax may be determined based on a deviation between the locus estimated by the driver to change the steering angle by a predetermined amount or more and the road alignment, and the value of the threshold value Ymax is determined experimentally or theoretically in advance. It's okay.
  • > Cmax (6) It may be determined whether or not is established (step 53).
  • Cmax is a threshold value that is arbitrarily set.
  • ⁇ (X * ), C (X * ), and ⁇ C (X * ) are arbitrary methods known in the field of digital arithmetic using data points adjacent to X * to be examined. May be calculated by: If the change in curvature C (X * ) of the road alignment Ly (X * ) is large, the driver is likely to change the steering input (even if the future trajectory is generally aligned with the road alignment). Therefore, when Expression (6) is satisfied, the point is set as an effective final point (Xe * , Ye * ) of the currently estimated future locus (step 60).
  • Step 54 it is determined whether or not there is information indicating that the vehicle is exiting at Ly (X * ) (step 54).
  • the driver is likely to change the steering input.
  • the point is set as a valid final point (Xe * , Ye * ) of the currently estimated future trajectory. (Step 60).
  • step 55a and 55b there is a point on the future trajectory Y * (X * ) where there is a preceding vehicle or obstacle determined by observation with an in-vehicle video camera or radar device, or where the road width or road gradient changes. It is determined whether or not to perform (steps 55a and 55b).
  • the position of the preceding vehicle / obstacle, etc., and the position of the road condition change such as road width / road gradient are usually specified by the on-board video camera / radar device based on the relative position / direction from the host vehicle. It may be specified using the information.
  • step 55a the position of the location where the preceding vehicle, obstacle, road width, road gradient, etc. observed in the estimation of the future trajectory are changed.
  • step 55b the conditional expressions of steps 55a and 55b are both established, there are places where the preceding vehicle, obstacles, road width, road gradient, etc. will change on the future trajectory as shown by the star in FIG.
  • the point is set as an effective final point (Xe * , Ye * ) of the currently estimated future trajectory (step 60).
  • the position of the obstacle or the road condition change is preferably determined by whether the driver changes the steering angle by a predetermined angle or more, the acceleration / deceleration or the amount of depression of the accelerator pedal or the brake pedal. May be determined based on whether or not the value is changed by a predetermined amount or more.
  • the driver changes the steering angle by more than a predetermined angle when the vehicle approaches the obstacle based on the size of the obstacle, the size of the vehicle, and the relative distance, speed, and direction of the obstacle.
  • the relative distance estimated to change the acceleration / deceleration or the depression amount of the accelerator pedal or the brake pedal by a predetermined amount or more is specified as the threshold value ( ⁇ Obx, ⁇ Oby) used in step 55a-b.
  • the road width or road gradient is considered in step 55a-b when it is estimated that the driver changes the acceleration / deceleration or the amount of depression of the accelerator pedal or the brake pedal by a predetermined amount or more in response to the change.
  • the threshold values ( ⁇ Obx, ⁇ Oby) may be determined in consideration of the response time of the vehicle).
  • the driver changes the steering angle by more than a predetermined angle (estimated) and changes the distance and direction between the obstacle and the vehicle and the acceleration / deceleration or the amount of depression of the accelerator pedal or brake pedal by a predetermined amount or more
  • the amount of change in road conditions may be determined experimentally or theoretically in advance. Further, in FIG. 3B, only the determination of one position (Obx, Oby) is described, but when there are a plurality of objects that become (Obx, Oby), are each present on the future trajectory? It is determined whether or not.
  • step 50-60 When the final point of the future trajectory is determined in step 50-60, the coordinates Y * (X * ), vehicle speed value V * (X * ), and yaw rate value ⁇ * (X * ) of the future trajectory are set with X as a parameter. Then, it is stored and set so that it can be used as appropriate when calculating the feedback control command amount described later.
  • the cycle of FIG. 3A is repeated while the vehicle is running.
  • step 20-when there is a change in steering input step 30-the future in which the vehicle is estimated It is maintained until the last point (Xe * , Ye * ) of the trajectory is reached (the vehicle is running).
  • Whether the vehicle has reached the final point (Xe * , Ye * ) of the estimated future trajectory is expressed by the following equation (4) with respect to the current position (Xa GPS , Ya GPS ) of the vehicle from the car navigation information.
  • the same coordinate conversion is performed, and the X coordinate Xa of the current position after the coordinate conversion is
  • step 20 or step 30 when either step 20 or step 30 is established, a new future locus estimation calculation is executed as described above in step 40-60.
  • the vehicle trajectory, vehicle speed, and yaw rate are determined based on the future trajectory determined based on the driver's steering input and the corresponding vehicle speed / yaw rate.
  • the movement of the vehicle is feedback controlled to match.
  • Such feedback control is performed by a feedback control command determination unit 60h and a behavior control device 60i, as shown in FIG.
  • the coordinate value (Xa GPS , Ya GPS ) of the current position of the vehicle is converted into the value (Xa, Ya) of the coordinate system of the future trajectory currently set by Expression (4).
  • any calculation method known in this field such as PID control or LQI control (optimum regulator) for reducing or minimizing the deviation may be used.
  • PID control optimum regulator
  • LQI control optimum regulator
  • the current acceleration / deceleration, yaw moment, and road surface friction coefficient are used in the calculation of the feedback control amount, the detected value Gxa of the G sensor, the time differential value of the yaw rate ⁇ a, and the road surface friction coefficient estimating device The estimated value may be used as appropriate.
  • ⁇ t with respect to the required acceleration / deceleration is added to the required acceleration / deceleration ⁇ t from the acceleration / deceleration control command determination unit in the adder 61a ( ⁇ t may be a negative value). .), And is reflected in a command to the drive control device or the brake control device via the braking / driving force control command unit 60b.
  • the compensation yaw moment Mt is transmitted to the behavior control device 60i, where the compensation amount ⁇ wt for the target turning angle ⁇ wt and the compensation amount ⁇ Fbti for the required braking force of each wheel using Mt and other parameters. Is calculated.
  • the calculation of the compensation amounts ⁇ wt and ⁇ Fbti may be performed according to any VSC technique or VDIM control technique known in the art.
  • the calculated compensation amounts ⁇ wt and ⁇ Fbti are added to the respective target values ⁇ wt and Fbti so as to be reflected in the control commands to the steering control device 60f and the braking control device 60e, respectively.
  • the above time ⁇ may be set experimentally or theoretically in consideration of response characteristics with respect to the steering input or control input of the vehicle.
  • it is finally possible to perform control so that the vehicle trajectory / running state matches the future trajectory at the final point (Xe * , Ye * ) of the current future trajectory. Since it is a target, the time ⁇ may be a point in time when X ( ⁇ ) Xe * .
  • Example Figure 5 travel locus of the feedback control when the vehicle based on the future trajectory shows an example of the travel path of the vehicle when the feedback control based on the future trajectory by the running control device of the present invention was performed is there.
  • the future trajectory estimation unit 60g estimates and calculates the future trajectory (solid thin line) according to the steering input at that time. And when a vehicle does not receive any disturbance, it will drive
  • a side wind disturbance or the like acts on the vehicle while traveling on a curved road as shown in the figure, the trajectory of the vehicle swells outward from the turn (solid thick line).
  • the future trajectory that is, the trajectory desired by the driver remains swollen outward as shown by the dotted line.
  • the vehicle will continue to run.
  • feedback control based on the future trajectory is executed, the deviation between the actual trajectory and the future trajectory is reduced or minimized, so that the actual trajectory is returned to the future trajectory as shown by the bold line. It will be.
  • the final point (Xe * , Ye * ) is set according to road alignment and other conditions, but the final point (Xe * , Ye * ) is always set as the future locus.
  • the last point (Xmax * , Ymax * ) may be used.
  • the trajectory up to the last point of the future trajectory in this case is the first future trajectory described in the column of disclosure of the invention, and the last point (Xmax * , Ymax * ) corresponds to the second future trajectory.
  • the processing of step 50-60 is omitted, and when the future trajectory estimation is executed for a long time, the estimation and setting of the future trajectory is actually executed when there is a change in the steering input. Is done.
  • the trajectory coordinate value, the vehicle speed value, and the yaw rate value are controlled to match the future trajectory.
  • the future trajectory of the trajectory coordinate value and the slip angle or yaw angle is estimated, and the actual trajectory.
  • the feedback control may be executed so as to match the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A vehicle travel controller for performing a motion control so that the future traveling state or traveling position of a vehicle is matched to the intension of the driver on the basis of the steering input of the driver is provided. The vehicle travel controller includes an ambient environment detecting section for detecting the ambient environment of a vehicle, a future locus estimating section for estimating the future locus of the vehicle, and a traveling locus control unit for controlling the traveling locus of the vehicle on the basis of the ambient environment information and the future locus. The traveling locus control unit has a motion control section for controlling the motion of the vehicle so that the actual locus of the vehicle is matched to the point on the future locus at which the steering input is changed by the driver on the basis of the ambient environment information.

Description

車両の走行制御装置Vehicle travel control device
 本発明は、自動車等の車両の走行制御に係り、より詳細には、車両の運転者の運転支援を行うべく車両の走行・運動状態を自動的に制御する走行制御装置に係る。 The present invention relates to travel control of a vehicle such as an automobile, and more particularly to a travel control device that automatically controls the travel / motion state of the vehicle to provide driving assistance to the driver of the vehicle.
 近年、自動車等の車両の知能化技術、情報化技術の進歩により、車両の運転・走行を支援する車両の制御技術は、従前に比して高度に発展し、車両の運転者の操縦負担は軽減され、車両の安全性が向上されている。例えば、車載レーダー、車車間通信技術等を用いて、自車の進行方向に存在する先行車両や障害物を自動的に発見し、それらを適切に回避し又は適正な車間距離を維持するよう運転者に警告を発し或いは自車の走行・運動を制御する技術(ACC。例えば、特許文献1、2参照)や、車両のフロントガラス上部に備えられたビデオカメラを用いて車両の走行路面上の左右の白線を認識し、車両が車線を逸脱しそうになると、運転者に対し警告を発し(例えば、警告音、警告灯、操舵トルクの増大など)、或いは、自動操舵を実行して、車両が車線内にて走行するよう制御する技術(LKA。例えば、特許文献3参照)などが提案されている。また、GPS(Global Positioning System)によるカーナビゲーションシステムを用いることにより、自車両の現在位置の情報や周辺の道路状況に関する情報を取得し、それらの情報と運転者の長期希望(目的地、到着時刻など)とを参照して車両の走行制御を計画的に実行する技術(例えば、本願出願人による特願2006-313258)、或いは、上記の如き外部環境の情報と共に運転者の視覚から感じる刺激量に基づいて車両の走行制御指令を出力し、運転者の不快感を解消するといった技術が提案されている(特許文献4)。 In recent years, with the advancement of intelligence technology and information technology of vehicles such as automobiles, vehicle control technology that supports driving and traveling of vehicles has been developed to a higher degree than before, and the driving burden on the driver of the vehicle has been reduced. Reduced and improved vehicle safety. For example, using on-vehicle radar, inter-vehicle communication technology, etc., automatically discovers leading vehicles and obstacles that exist in the traveling direction of the vehicle, and appropriately avoids them or maintains a proper inter-vehicle distance. On the road surface of the vehicle using a technique (ACC, for example, see Patent Documents 1 and 2) for issuing a warning to the person or controlling the running / motion of the own vehicle When the left and right white lines are recognized and the vehicle is about to depart from the lane, a warning is issued to the driver (for example, a warning sound, a warning light, an increase in steering torque, etc.), or automatic steering is performed, Techniques for controlling the vehicle to travel in a lane (LKA, see, for example, Patent Document 3) have been proposed. In addition, by using a GPS (Global Positioning System) car navigation system, information on the current location of the vehicle and information on the surrounding road conditions are acquired, and the information and the driver's long-term hope (destination, arrival time) Etc.) (for example, Japanese Patent Application No. 2006-313258 by the applicant of the present application) or a stimulus amount sensed from the driver's vision together with information on the external environment as described above. Based on the above, a technique has been proposed in which a vehicle travel control command is output to eliminate driver discomfort (Patent Document 4).
 上記の如き車両の知能化技術、情報化技術を利用した車両の運転支援制御のいくつかに於いては、既に触れたように、障害物の回避や横風等の外乱に対する車両の走行・運動の修正が自動的に実行される。かかる自動制御に於いては、種々の形式の車両運動制御技術、例えば、VSC(車両安定化制御)、ブレーキアシスト制御、自動ステアリング制御又はVDIM(Vehicle Dynamics Integrated Management)制御が実行され、車両に於いて、障害物の回避、走行状態の変更を行うべく、ヨーモーメント又は制駆動力の発生又は調節が自動的に為される。
特開2003-341501 特開2005-100336 特開2002-67998 特開2007-22117
As described above, in some of the vehicle driving support control using the intelligence technology and information technology of the vehicle as described above, the vehicle's running / motion of the vehicle against disturbances such as obstacle avoidance and crosswinds. Correction is performed automatically. In such automatic control, various types of vehicle motion control technologies such as VSC (Vehicle Stabilization Control), brake assist control, automatic steering control or VDIM (Vehicle Dynamics Integrated Management) control are executed. In order to avoid obstacles and change running conditions, generation or adjustment of yaw moment or braking / driving force is automatically performed.
JP2003-341501 JP2005-100300 JP2002-67998A JP2007-22117
 ところで、通常、車両の運転者は、自車の前方の走行経路の方向又は形状(「道路線形」)や自車周囲環境を認識して、車両を操縦する。典型的には、運転者は、車両の進行方向前方の或る点を注視して、自車が(例えば、数秒後に)その前方の注視点に到達したときの自車の走行状態(車速、ヨー角など)・走行位置が意図した状態・位置となるよう車両の操舵又は加減速を行う(ハンドルを切る、又はアクセル・ブレーキペダルを踏むなど。以下、「操縦」又は「操縦入力」と称する。)。 By the way, normally, the driver of the vehicle controls the vehicle by recognizing the direction or shape of the travel route ahead of the host vehicle (“road alignment”) and the environment surrounding the host vehicle. Typically, the driver pays attention to a certain point ahead in the direction of travel of the vehicle, and the traveling state of the vehicle (vehicle speed, (Yaw angle, etc.) ・ Steering or accelerating / decelerating the vehicle so that the running position becomes the intended state / position (turning the steering wheel, stepping on the accelerator / brake pedal, etc.) Hereinafter referred to as “steering” or “steering input” .)
 しかしながら、従前の車両運動制御技術(特に、舵角、ヨーモーメント、加減速度などを自動的に調節するもの)に於いては、運転者の前方注視点の参照に応じた操縦が十分に反映された態様にて制御が実行されていない。従前の車両運動制御では、独立的に実行されるものも、或いは、知能化技術、情報化技術を利用した車両の運転支援制御の一部として利用されるものも、自車両の現在時点の状態(車速、ヨーレート又はアンダーステア・オーバーステア状態の指標値)のみを参照して、時々刻々に車両の状態を安全な状態又は目標とされる状態に導くよう車両の各部を自動的に制御するよう構成されている。従って、かかる制御手法の場合、その制御が実行される瞬間の車両の走行状態の安定性又は安全性が確保されることにはなるが、かかる制御前の車両の運動に対する運転者の操縦の寄与が低減され、或いは、自動制御の作用により凌駕されることとなる。そして、上記の如き運動制御が実行された場合には、運転者の操縦入力時から数秒後の車両の走行状態又は位置は、その操縦入力直前の運転者の前方注視点の参照に基づいて運転者が意図したところの走行状態又は位置と合致しなくなる場合がある。即ち、車両の運動制御に於いて運転者に対する運転支援を考えるとき、好ましくは、前記の如き運転者の操縦の意図が車両の走行状態又は走行位置に反映されているべきであるが、従前の運動制御手法では、そのような運転者の意図に合致した運転支援が必ずしも提供できるわけではない。 However, the conventional vehicle motion control technology (especially one that automatically adjusts the rudder angle, yaw moment, acceleration / deceleration, etc.) sufficiently reflects the maneuvering according to the reference of the driver's forward gazing point. The control is not executed in the above manner. In the conventional vehicle motion control, what is executed independently, or what is used as part of vehicle driving support control using intelligent technology or information technology, the current state of the vehicle Referring to only (vehicle speed, yaw rate, or understeer / oversteer state index value), each part of the vehicle is automatically controlled to lead the vehicle state to a safe state or a target state from moment to moment Has been. Therefore, in the case of such a control method, the stability or safety of the running state of the vehicle at the moment when the control is executed is ensured, but the contribution of the driver's steering to the movement of the vehicle before the control is performed. Is reduced or surpassed by the action of automatic control. When the motion control as described above is executed, the driving state or position of the vehicle several seconds after the driver's steering input is determined based on the driver's forward gaze reference immediately before the steering input. May not match the driving state or position that the person intended. That is, when considering driving assistance for the driver in the vehicle motion control, the driver's intention of steering should preferably be reflected in the driving state or driving position of the vehicle. The motion control method cannot always provide driving support that matches the driver's intention.
 かくして、本発明の一つの課題は、従来の技術の如く車両の運動状態を現在のその状態を参照して時々刻々に修正するのではなく、運転者の操縦入力をも考慮して、車両の将来の走行状態又は位置が運転者の意図に合致するよう運動制御を行い、従前に比して、より好ましい態様にて車両の運転支援を実現する車両の走行制御装置を提供することである。 Thus, one object of the present invention is not to correct the vehicle motion state from time to time with reference to the current state as in the prior art, but also to consider the driver's maneuvering input. It is an object of the present invention to provide a vehicle travel control device that performs motion control so that a future travel state or position matches a driver's intention, and realizes driving support of the vehicle in a more preferable mode than before.
 また、本発明の一つの課題は、上記の如き車両の運転支援を実現する車両の走行制御装置であって、車両の知能化技術、情報化技術を利用した車両の運転支援制御を行う車両の走行制御装置を提供することである。 Another object of the present invention is a vehicle travel control device that realizes driving support for a vehicle as described above, which is a vehicle driving support control that uses vehicle intelligence technology and information technology. It is to provide a travel control device.
 本発明の車両の運転支援を実行する車両の走行制御装置は、一つの態様に於いて、車両の周囲環境を検知する周囲環境検知部と、車両の将来軌跡を推定する将来軌跡推定部と、周囲環境検知部により検知される周囲環境情報と将来軌跡とに基づいて車両の走行軌跡を制御する走行軌跡制御部とを含んでいる。走行軌跡制御部は、車両の実際の軌跡が、車両の運転者による車両に対する操縦入力の変更が実行される将来軌跡上の地点に合致するよう車両の運動を制御する運動制御部を含む。上記の構成に於いて、車両の将来軌跡とは、現在の車両の走行・運転状態が継続した場合に車両が辿ると推定される経路である。将来軌跡は、典型的には、運転者の操縦入力に基づいて任意の手法により推定されるが、車両に搭載される別の自動走行制御装置による制御入力又は遠隔操作による制御入力により推定されてもよい。また、車両の運転者が車両に対する操縦入力の変更を実行する将来軌跡上の「地点」とは、運転者から又は(本制御装置以外からの)任意の制御装置からの車両の走行・運動に対する現在の要求が有効である経路の限界、即ち、現在推定されている将来軌跡が有効である最終地点に相当する。従って、将来軌跡が、運転者の操縦入力に基づいて決定される場合には、現在までの運転者による操縦入力に基づいて算定される将来軌跡が有効な地点ということとなり、運転者による操縦入力が新たに与えられると、新たな将来軌跡が算定されることとなる。なお、「将来軌跡」に於ける車両の経路と伴に、その際の車速・ヨーレート等の車両の走行状態量の変化も推定され、実際の車両の走行状態量の変化が推定された変化に追従するよう制御されてよい。車両の実際の軌跡は、例えば、周囲環境情報検知部の検出する情報に含まれるカーナビゲーション情報(例えば、GPSにより捕捉される車両の位置・進行方向情報)に基づいて決定されるようになっていてよい。(本明細書に於いては、カーナビゲーション情報から抽出される情報(自車両位置など)も周囲環境情報に含まれるものとして記載する。) In one aspect, a travel control device for a vehicle that performs driving support for a vehicle according to the present invention includes an ambient environment detection unit that detects an ambient environment of the vehicle, a future trajectory estimation unit that estimates a future trajectory of the vehicle, A traveling locus control unit that controls the traveling locus of the vehicle based on the surrounding environment information detected by the surrounding environment detection unit and the future locus is included. The travel trajectory control unit includes a motion control unit that controls the motion of the vehicle so that the actual trajectory of the vehicle matches a point on the future trajectory where the change of the steering input to the vehicle by the driver of the vehicle is executed. In the above configuration, the future trajectory of the vehicle is a route that is estimated to be followed by the vehicle when the current running / driving state of the vehicle continues. The future trajectory is typically estimated by an arbitrary method based on the driver's steering input, but is estimated by a control input by another automatic cruise control device mounted on the vehicle or a control input by remote operation. Also good. In addition, the “point” on the future trajectory where the driver of the vehicle executes the change of the steering input to the vehicle is the vehicle traveling / motion from the driver or from any control device (from other than this control device). This corresponds to the limit of the route for which the current request is valid, that is, the last point where the currently estimated future trajectory is valid. Therefore, when the future trajectory is determined based on the driver's steering input, the future trajectory calculated based on the driver's steering input up to now is an effective point, and the driver's steering input If a new is given, a new future trajectory will be calculated. Along with the vehicle path in the “future trajectory”, changes in the vehicle running state quantity such as vehicle speed and yaw rate at that time are also estimated, and changes in the actual vehicle running state quantity are estimated changes. It may be controlled to follow. The actual trajectory of the vehicle is determined based on, for example, car navigation information (for example, vehicle position / traveling direction information captured by GPS) included in information detected by the ambient environment information detection unit. It's okay. (In this specification, information extracted from car navigation information (such as the vehicle position) is also described as being included in the ambient environment information.)
 上記の本発明の走行制御装置の作動に於いて、将来軌跡推定部により推定された将来軌跡は、車両に要求されている制御量に従って推定されるものであるので、車両は、基本的には、将来軌跡に沿うよう走行する。しかしながら、例えば、横風や路面の摩擦状態の急激な変化等の外乱により、車両の運動に変化があった場合には、その外乱による車両の挙動・運動の乱れを修正するというよりは、現在有効な将来軌跡の終点(車両の運転者による車両に対する操縦入力の変更が実行される地点)に於いて、実際の車両の軌跡が合致するよう制御される。これにより、外乱等により車両の運動が乱れた場合であっても、車両は、自動的に予定した軌跡(つまり、将来軌跡)に戻ることが期待され、運転者に於ける自車の軌道修正の負担が大幅に低減される。即ち、本発明の装置により、運転者の意図した軌跡に沿って車両を走行するための運転の支援が可能となる。 In the operation of the travel control device of the present invention described above, the future trajectory estimated by the future trajectory estimation unit is estimated according to the control amount required for the vehicle. Travel along the trajectory in the future. However, if there is a change in the movement of the vehicle due to a disturbance such as a crosswind or a sudden change in the frictional condition of the road surface, it is currently effective rather than correcting the disturbance of the vehicle's behavior or movement due to the disturbance. At the end point of the future trajectory (the point where the change of the steering input to the vehicle by the driver of the vehicle is executed), the actual trajectory of the vehicle is controlled to match. As a result, even if the movement of the vehicle is disturbed due to disturbance or the like, the vehicle is expected to automatically return to the planned trajectory (that is, the future trajectory), and the driver's own trajectory correction is performed. Is greatly reduced. In other words, the device of the present invention enables driving support for driving the vehicle along the trajectory intended by the driver.
 上記の本発明の構成に於いて、運転者が車両に対する操縦入力の変更を実行する「地点」は、通常の車両の走行に於いては、車両の道路線形によって予め推定されるようになっていてよい(もっとも、道路線形に沿って走行できない情報が任意の方法で取得可能な場合は、その情報に従って「地点」が決定されてよい。)。従って、かかる「地点」は、将来軌跡に道路線形を重ね合わせることによって推定されるようになっていてよい。その場合、典型的には、運転者は、既に触れたように、任意の前方注視点を目掛けて車両を走行するべく、それに対応した操縦入力を車両へ与えるので、その入力が更新される地点、即ち、将来軌跡と道路線形とがずれ始める位置がかかる「地点」として決定されてよい。なお、実際には、道路線形の検出結果と将来軌跡の推定結果は誤差を有するので、両者が所定距離以上離隔し始める位置がかかる「地点」として決定されてよい。また、運転者が車両に対する操縦入力の変更を実行することが推測される「地点」は、車両が道路線形に沿って走行するものとすれば、道路線形に基づいて決定できる。従って、将来軌跡と道路線形との隔離距離によらず、道路線形に於けるカーブ路の出口、道路線形の曲率が変化する地点が、運転者が車両に対する操縦入力の変更が実行されることが推測される「地点」として選択されてよい。更に、将来軌跡が推定され、道路線形とを重ね合わせた上で、将来軌跡上に車両の進行方向に障害物・先行車・道路幅若しくは勾配の変化等の位置が検出され、かかる障害物・道路状態変化等の存在によって運転者が操舵角を所定角度以上変更するか、加減速度を所定量以上変更するか若しくはアクセルペダル又はブレーキペダルの踏込量を所定量以上変更することが推定される場合には、特定された障害物・道路状態変化等の位置が、運転者が車両に対する操縦入力の変更が実行される「地点」として推定されてもよい。 In the above-described configuration of the present invention, the “point” at which the driver changes the steering input to the vehicle is estimated in advance based on the road alignment of the vehicle during normal vehicle travel. (However, if information that cannot be traveled along the road alignment can be acquired by an arbitrary method, the “point” may be determined according to the information.) Therefore, the “point” may be estimated by superimposing road alignment on the future trajectory. In that case, typically, as already mentioned, the driver gives a corresponding steering input to the vehicle in order to drive the vehicle with an arbitrary forward gazing point, and the input is updated. A point, that is, a position where the future trajectory and the road alignment start to shift may be determined as such a “point”. Actually, since the road alignment detection result and the future trajectory estimation result have errors, the position where both start to be separated by a predetermined distance or more may be determined as the “point”. Further, the “point” where the driver is supposed to change the steering input to the vehicle can be determined based on the road alignment if the vehicle travels along the road alignment. Therefore, regardless of the separation distance between the future trajectory and the road alignment, the driver may change the steering input to the vehicle at the exit of the curved road in the road alignment and the point where the curvature of the road alignment changes. It may be selected as an inferred “point”. In addition, the future trajectory is estimated, and after overlaying the road alignment, the position of the obstacle, the preceding vehicle, the road width or the change of the slope, etc. is detected on the future trajectory in the traveling direction of the vehicle. When it is estimated that the driver changes the steering angle by a predetermined angle or more, changes the acceleration / deceleration by a predetermined amount or changes the amount of depression of the accelerator pedal or the brake pedal by a predetermined amount or more due to the presence of a road condition change, etc. Alternatively, the position of the identified obstacle, road state change, or the like may be estimated as a “point” at which the driver changes the steering input to the vehicle.
 上記の道路線形・障害物・道路状態変化等の位置は、周囲環境検知部を用いて車両の知能化技術・情報化技術の分野に於いて公知の確立された任意の手法により取得することが可能である。道路線形は、典型的には、カーナビゲーションシステム情報から取得されるようになっていてよい。なお、本発明の装置に於いて、カーナビゲーションシステムからの情報を本発明の制御に適合するよう変換し、道路線形情報(座標等)を抽出又は算出するようになっていてよいことは理解されるべきである。障害物・道路状態変化等の位置は、カーナビゲーションシステム情報や車載のビデオカメラ・レーダー装置を用いて検出されるようになっていてよい。 The position of the road alignment, obstacles, road condition changes, etc. can be obtained by any known established method in the field of vehicle intelligence technology / information technology using the surrounding environment detection unit. Is possible. The road alignment may typically be obtained from car navigation system information. It is understood that in the apparatus of the present invention, information from the car navigation system may be converted so as to conform to the control of the present invention, and road linear information (coordinates, etc.) may be extracted or calculated. Should be. Positions such as obstacles and changes in road conditions may be detected by using car navigation system information or an in-vehicle video camera / radar device.
 ところで、上記の本発明の走行制御装置の一つの態様に於いては、或る位置又は時点で推定された将来軌跡が有効である最終地点は、運転者による車両に対する操縦入力の変更が実行される地点又はそのことが推測される地点として決定するようになっているところ、その制御の意図するところは、実際の車両の軌跡・走行状態を車両の通常走行時の運転者の希望に沿ったものとする、換言すれば、現在の車両の位置よりも前方の、現在から数秒後に於いて車両が通過する地点に於ける車両の軌跡・走行状態を運転者の希望に沿ったものとするよう車両の運動を制御するということである。従って、車両の運動制御は、現在より或る程度時間が経過した際の車両の軌跡が予定された状態になっていればよいということになる。 By the way, in one aspect of the travel control device of the present invention described above, the driver changes the steering input to the vehicle at the final point where the future locus estimated at a certain position or time is valid. The point where the control is intended is that the actual trajectory / running state of the vehicle is in line with the driver's wishes during normal driving of the vehicle. In other words, the vehicle's trajectory / running state at the point where the vehicle passes a few seconds after the present, ahead of the current vehicle position, should be in line with the driver's wishes. It is to control the movement of the vehicle. Therefore, the vehicle motion control only needs to be in a state where the trajectory of the vehicle when a certain amount of time has elapsed from the present time is scheduled.
 かくして、本発明のもう一つの態様によれば、本発明の車両の走行制御装置は、車両の周囲環境を検知する周囲環境検知部と、車両の運転者の操縦入力に基づいて車両の第一の将来軌跡と該第一の将来軌跡よりも後の第二の将来軌跡とを推定する将来軌跡推定部と、周囲環境検知部により検知される周囲環境情報と第一及び第二の将来軌跡とに基づいて車両の走行軌跡を制御する走行軌跡制御部とを含み、走行軌跡制御部に含まれる車両の運動を制御する運動制御部が、第二の将来軌跡に車両の実際の軌跡が合致するよう、典型的には、周囲環境検知部により検知される周囲環境情報を利用して、車両の運動を制御するになっていてよい。ここで、第一の将来軌跡とは、現在までの車両の運転者の操縦入力に基づいて推定される現在位置から或る程度の距離までの位置に至る車両の軌跡であり、第二の将来軌跡とは、最終的に本発明の走行制御装置の作動により達成されるべき車両の目標軌跡に相当する。なお、第二の将来軌跡は、車両の運転者の操縦入力に基づいて決定されるものであってもよく、或いは、道路線形等の外部情報に基づいて決定されるものであってもよい。 Thus, according to another aspect of the present invention, the vehicle travel control apparatus according to the present invention includes a surrounding environment detection unit that detects a surrounding environment of the vehicle, and a first vehicle operation based on the steering input of the driver of the vehicle. A future trajectory estimating unit that estimates a future trajectory of the first and a second future trajectory after the first future trajectory, ambient environment information detected by the ambient environment detecting unit, and first and second future trajectories A movement locus control unit for controlling the vehicle movement locus based on the movement locus control portion, and the movement control portion for controlling the movement of the vehicle included in the movement locus control portion matches the actual locus of the vehicle with the second future locus. As described above, typically, the movement of the vehicle may be controlled using the ambient environment information detected by the ambient environment detection unit. Here, the first future trajectory is a trajectory of the vehicle from the current position estimated based on the steering input of the driver of the vehicle up to the present to a certain distance, and the second future The trajectory corresponds to a target trajectory of the vehicle to be finally achieved by the operation of the travel control device of the present invention. Note that the second future trajectory may be determined based on the driving input of the driver of the vehicle, or may be determined based on external information such as road alignment.
 上記の説明から理解される如く、本発明の走行制御装置は、要すれば、現在の時点よりも後の、典型的には、数秒後の車両の軌跡・走行状態(車速、ヨーレートなど)が運転者の希望に沿うように車両の運動を制御するものであるということができる。既に述べた如く、従前の車両運動制御技術では、時々刻々の車両の走行安定性を維持することを目的として構成されているため、横風などの外乱が長時間(数秒間)に亙って発生した場合には、車両の走行軌道を修正する作用は得られず、運転者に対して十分な運転支援が与えられなかった(LKAの場合には、道路線形に沿う車両の走行が実現されるが、認識可能な白線の在る道路であり、且つ、白線に沿った走行以外では、車両の軌道を修正する運転支援が与えられない。)。しかしながら、上記の本発明の構成によれば、車両が現在の時点よりも後の目標とされる地点に達する間に車両の運動が外乱により乱れたとしても、車両の運動は、単に、その瞬間の車両の走行安定性を維持するだけでなく、車両が目標とされる地点に於いて予定された又は計画された状態となるよう制御され、自動的に車両の軌道修正が実行されることとなる。従って、本発明の制御装置では、運転者の、自ら意図した状態を達成するための車両の操縦負担を(従前の装置によりも)軽減する運転支援が達成されることとなる。 As will be understood from the above description, the travel control device of the present invention is, if necessary, the vehicle trajectory and travel state (vehicle speed, yaw rate, etc.) after the current time point, typically a few seconds later. It can be said that the movement of the vehicle is controlled in accordance with the driver's desire. As already mentioned, conventional vehicle motion control technology is designed to maintain the running stability of the vehicle from moment to moment, so disturbances such as crosswinds occur over a long period (several seconds). In such a case, the action of correcting the traveling track of the vehicle is not obtained, and sufficient driving support is not given to the driver (in the case of LKA, the traveling of the vehicle along the road alignment is realized). However, driving assistance that corrects the track of the vehicle is not provided except when the road has a recognizable white line and travels along the white line. However, according to the above-described configuration of the present invention, even if the movement of the vehicle is disturbed by a disturbance while the vehicle reaches a target point after the current time point, the movement of the vehicle is simply performed at that moment. In addition to maintaining the running stability of the vehicle, the vehicle is controlled to be in the planned or planned state at the target point, and the vehicle trajectory correction is automatically performed. Become. Therefore, with the control device of the present invention, driving assistance that reduces the driver's handling burden on the vehicle to achieve the state intended by the driver (even with a conventional device) is achieved.
 本発明の走行制御装置は、前記の特願2006-313258の例示されている如き、車両の走行制御計画生成システムの一部として有利に用いることができる。車両の走行制御計画生成システムでは、既に触れたように、周辺環境状況と運転者の長期希望等に基づいて決定された車両の自動運転の制御目標により車両の走行が制御される。かかるシステムに於ける運動制御の部分に、本発明の装置が組み込まれれば、運転者の長期希望だけではなく、運転者の短期の希望、即ち、操縦入力を考慮した車両の自動運転制御が達成できることとなる。本発明の走行制御で用いられる道路線形は、車両の走行制御計画生成システムによる走行経路に基づいて決定されてよい(例えば、道路が分岐している場合など)。 The traveling control device of the present invention can be advantageously used as a part of a vehicle traveling control plan generation system as exemplified in the aforementioned Japanese Patent Application No. 2006-313258. In the vehicle travel control plan generation system, as already mentioned, the travel of the vehicle is controlled based on the control target of the automatic operation of the vehicle determined based on the surrounding environment and the long-term desire of the driver. If the apparatus of the present invention is incorporated in the motion control part of such a system, not only the driver's long-term desire but also the driver's short-term desire, that is, automatic driving control of the vehicle in consideration of the steering input is achieved. It will be possible. The road alignment used in the travel control of the present invention may be determined based on the travel route by the vehicle travel control plan generation system (for example, when the road is branched).
 本発明のその他の目的及び利点は、以下に於いて、部分的に明らかになり、指摘される。 Other objects and advantages of the present invention will be in part apparent and pointed out below.
図1は、本発明の好ましい実施形態である走行制御装置が搭載される車両の模式図である。FIG. 1 is a schematic diagram of a vehicle equipped with a travel control apparatus according to a preferred embodiment of the present invention. 図2は、本発明の好ましい実施形態に於ける走行制御装置の内部構成を制御ブロックの形式で表したものである。FIG. 2 shows the internal configuration of the travel control apparatus according to the preferred embodiment of the present invention in the form of control blocks. 図3(A)は、将来軌跡推定部に於ける処理を過程の流れをフローチャートの形式で表したものであり、図3(B)は、(A)のステップ50-60に於ける処理の流れを詳細に示したものである。FIG. 3A shows the flow of the process in the future trajectory estimation unit in the form of a flowchart, and FIG. 3B shows the process in step 50-60 of FIG. The flow is shown in detail. 図4(A)は、本発明の走行制御装置に於ける将来軌跡の推定、将来軌跡(実曲線)と道路線形(一点鎖線)との比較を行う際に用いられる座標系を示したものである。図4(B)は、GPS座標系と図4(A)の座標系との関係を表した図である。FIG. 4A shows a coordinate system used when estimating the future trajectory and comparing the future trajectory (actual curve) and the road alignment (dashed line) in the travel control device of the present invention. is there. FIG. 4B is a diagram showing the relationship between the GPS coordinate system and the coordinate system of FIG. 図5は、旋回走行中に横風外乱を受けたときの車両の軌跡の例を示したものである。実細線は、操縦入力に基づいて推定される将来軌跡、点線は、横風外乱を受けた後、将来軌跡に基づくフィードバック制御を実行しない場合の軌跡(従来技術)、実太線は、横風外乱を受けた後、将来軌跡に基づくフィードバック制御を実行した場合の軌跡(本発明)を示している。FIG. 5 shows an example of the trajectory of the vehicle when subjected to a crosswind disturbance during turning. The solid line is the future trajectory estimated based on the steering input, the dotted line is the trajectory when the feedback control based on the future trajectory is not executed after receiving the lateral wind disturbance (conventional technology), and the solid line is subjected to the lateral wind disturbance After that, a trajectory (the present invention) when feedback control based on the future trajectory is executed is shown.
車両の構成
 図1は、本発明による車両の走行制御装置の好ましい実施形態が組み込まれた車両の構成を模式的に示している。同図を参照して、左右前輪12FL、12FRと、左右後輪12RL、12RRを有する車両10には、運転者によるアクセルペダル14の踏込みに応じて各輪(図示の例では、後輪駆動車であるから、後輪のみ)に制駆動力を発生する動力装置20と、ステアリング装置30と、各輪に制動力を発生する制動装置40とが搭載される。動力装置20は、図示の例では、エンジン22からトルクコンバータ24、自動変速機26、差動歯車装置28等を介して出力される回転制駆動力が後輪12RL、12RRへ伝達されるよう構成されている(エンジン22に代えて電動機が用いられる電気式、或いは、エンジンと電動機との双方を有するハイブリッド式の駆動系装置であってもよい。)。動力装置20の発生する制駆動力は、本発明の走行制御の実行時には、後述の電子制御装置60により適宜調節される。
Vehicle Configuration FIG. 1 schematically shows a vehicle configuration in which a preferred embodiment of a vehicle travel control apparatus according to the present invention is incorporated. Referring to the figure, a vehicle 10 having left and right front wheels 12FL and 12FR and left and right rear wheels 12RL and 12RR is provided with each wheel (in the illustrated example, a rear wheel drive vehicle) according to depression of an accelerator pedal 14. Therefore, a power unit 20 that generates braking / driving force on only the rear wheels, a steering device 30, and a braking unit 40 that generates braking force on each wheel are mounted. In the illustrated example, the power unit 20 is configured such that the rotational braking / driving force output from the engine 22 via the torque converter 24, the automatic transmission 26, the differential gear unit 28, and the like is transmitted to the rear wheels 12RL and 12RR. (It may be an electric type in which an electric motor is used instead of the engine 22 or a hybrid type driving system device having both an engine and an electric motor). The braking / driving force generated by the power unit 20 is appropriately adjusted by an electronic control unit 60 described later when the traveling control of the present invention is executed.
 ステアリング装置30は、運転者によって作動されるステアリングホイール32の回転に応答してタイロッド34L、Rを介して前輪12FL、10FRを転舵する。かかるステアリング装置30は、好ましくは、運転者の操舵とは独立に前輪の舵角を変えることができる「アクティブステアリング装置」であり、ステアリングシャフトの途中に転舵角可変装置36が設けられる。転舵角可変装置36は、内部に駆動用電動機を含み、該電動機は、後述の電子制御装置60の制御下、前輪舵角δwを、ステアリングホイール32の回転によらず、転舵できるよう構成されている。ステアリングホイールの操舵角δh及び車輪舵角δwは、それぞれ、舵角センサ32a、36aにより検出される。なお、図示していないが、後輪にも同様の電子制御装置60の制御下、後輪を転舵する後輪操舵装置が設けられていてもよい。 Steering device 30 steers front wheels 12FL and 10FR via tie rods 34L and R in response to rotation of steering wheel 32 operated by a driver. The steering device 30 is preferably an “active steering device” that can change the steering angle of the front wheels independently of the driver's steering, and a turning angle varying device 36 is provided in the middle of the steering shaft. The steered angle varying device 36 includes a drive motor therein, and the motor is configured to steer the front wheel steered angle δw regardless of the rotation of the steering wheel 32 under the control of the electronic control device 60 described later. Has been. Steering wheel steering angle δh and wheel steering angle δw are detected by steering angle sensors 32a and 36a, respectively. Although not shown, a rear wheel steering device that steers the rear wheels under the control of the same electronic control device 60 may be provided on the rear wheels.
 制動装置40は、各車輪の制動力を個別に発生することのできる油圧式制動装置であり、オイルリザーバ、オイルポンプ、種々の弁等(図示せず)、各輪に装備をされたホイールシリンダ42FL、42FR、42RL、42RR、及び、運転者によりブレーキペダル44の踏込みに応答して作動されるマスタシリンダ46を含む油圧回路48を有し、各ホイールシリンダ内のブレーキ圧、即ち、各輪に於ける制動力は、通常は、マスタシリンダ圧力に応答して油圧回路48によって調節されるところ、本発明の走行制御の実行時に於いては、以下に述べる如く、電子制御装置60の制御下、加減速制御、VSC又はその他のヨーモーメント生成を行う制御に応じて一斉又は個別に制御されるようになっている。また、ブレーキ圧を制御するために、圧力センサ(図示せず)が、それぞれ、マスタシリンダ圧力、ホイールシリンダ42FL-42RRの各圧力を検出するために設けられている。なお、制動装置は、各車輪の制動力を個別に調節できるものであれば、任意の形式(例えば、電磁式など)のものであってよい。 The braking device 40 is a hydraulic braking device that can individually generate the braking force of each wheel, and includes an oil reservoir, an oil pump, various valves, etc. (not shown), and a wheel cylinder equipped on each wheel. 42FL, 42FR, 42RL, 42RR, and a hydraulic circuit 48 including a master cylinder 46 that is actuated in response to depression of the brake pedal 44 by the driver, and the brake pressure in each wheel cylinder, that is, each wheel Normally, the braking force is adjusted by the hydraulic circuit 48 in response to the master cylinder pressure. However, when the traveling control of the present invention is executed, as described below, under the control of the electronic control unit 60, The acceleration / deceleration control, VSC or other yaw moment generation control is controlled all at once or individually. In order to control the brake pressure, pressure sensors (not shown) are provided for detecting the master cylinder pressure and the pressures of the wheel cylinders 42FL-42RR, respectively. The braking device may be of any type (for example, an electromagnetic type) as long as the braking force of each wheel can be adjusted individually.
 エンジンの駆動出力、各輪のブレーキ圧、即ち、制動力、車輪舵角を制御する電子制御装置60は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するマイクロコンピュータ及び駆動回路を含んでいてよい。制御装置60へは、本発明の制御を実施するために、アクセルペダルセンサ(図示せず)からのアクセルペダル踏込量θa、ブレーキペダルセンサ(図示せず)からのブレーキペダル踏込量θb、ステアリングホイール(ハンドル)舵角δh、各輪の備えられた車輪速センサ(図示せず)からの車輪速Vwi、各輪のホイールシリンダ42FL-42RR内の圧力Pbi(i=FL、FR、RL、RR)、前輪舵角δw、前後加速度センサ64により検出される前後加速度Gx、横方向加速度センサ66により検出される横加速度Gy、ヨーレートセンサ68により検出されるヨーレートγ、エンジン回転数・吸入空気量等のエンジン動作情報Er等が入力される。 The electronic control unit 60 for controlling the engine output, the brake pressure of each wheel, that is, the braking force and the wheel steering angle, has a CPU, a ROM, a RAM, and a CPU connected to each other by a bidirectional common bus. A microcomputer having an input / output port device and a driving circuit may be included. In order to carry out the control of the present invention to the control device 60, an accelerator pedal depression amount θa from an accelerator pedal sensor (not shown), a brake pedal depression amount θb from a brake pedal sensor (not shown), a steering wheel (Handle) Steering angle δh, wheel speed Vwi from a wheel speed sensor (not shown) provided for each wheel, pressure Pbi in wheel cylinder 42FL-42RR of each wheel (i = FL, FR, RL, RR) , Front wheel steering angle δw, longitudinal acceleration Gx detected by the longitudinal acceleration sensor 64, lateral acceleration Gy detected by the lateral acceleration sensor 66, yaw rate γ detected by the yaw rate sensor 68, engine speed, intake air amount, etc. Engine operation information Er or the like is input.
 また、図示の車両に於いては、車両の周辺環境情報を取得する手段として、車両の前方の障害物・先行車両、レーン形状等を認識するための検出器(ビデオカメラ、レーダー装置)70と、GPS人工衛星と通信して種々の情報を取得するカーナビゲーションシステム72が設けられている。ビデオカメラ又はレーダー装置70の検出データは、電子制御装置60内のデータ解析装置IP(画像処理装置等)へ送信され、任意の公知の手法にて車両前方の障害物の有無とその位置(自車両からの相対距離・相対速度と方向)や、走行路面の形状に関する情報を生成するために用いられる。一方、カーナビゲーションシステムは、自車両の位置(緯度、経度)・車体の向き、走行路の道路線形等のデータを生成し、それらの情報を電子制御装置60へ送信する。更に、電子制御装置60の内部に於いて、公知の任意の方式により(好ましくは各輪の)路面摩擦係数μを推定する装置が組み込まれ、路面摩擦係数μが本発明の制御(将来軌跡の推定、フィードバック制御指令量の決定など)に於いて適宜利用される。なお、その他、任意に、制御に必要なパラメータが各種センサにより電子制御装置60へ検出され入力されてよい。 In the illustrated vehicle, a detector (video camera, radar device) 70 for recognizing an obstacle / preceding vehicle in front of the vehicle, a lane shape, etc. as means for acquiring surrounding environment information of the vehicle; A car navigation system 72 is provided that communicates with a GPS satellite to obtain various information. Detection data of the video camera or radar device 70 is transmitted to a data analysis device IP (image processing device or the like) in the electronic control device 60, and the presence or absence of an obstacle in front of the vehicle and its position (self Relative distance / relative speed and direction from the vehicle) and information on the shape of the traveling road surface. On the other hand, the car navigation system generates data such as the position (latitude, longitude) of the host vehicle, the direction of the vehicle body, the road alignment of the traveling road, and transmits the information to the electronic control unit 60. Furthermore, a device for estimating the road surface friction coefficient μ (preferably for each wheel) is incorporated in the electronic control device 60 by any known method, and the road surface friction coefficient μ (Estimation, determination of feedback control command amount, etc.). In addition, parameters necessary for control may be arbitrarily detected and input to the electronic control unit 60 by various sensors.
走行制御装置の構成及び作動の概要
 本実施形態の走行制御装置は、基本的には、運転者の操縦入力、即ち、アクセル踏込量θa、ブレーキ踏込量θb、ハンドル操舵角δhに従って、車両の制駆動力、旋回方向を制御するべく、動力装置20、ステアリング装置30、制動装置40のそれぞれの作動を公知の態様にて制御し、車両の走行状態が外乱等の影響によって乱れたとき又は乱れるおそれがあるとき、その外乱の影響を補償するよう車両の運動が制御される。この点に関し、既に述べた如く(「発明の開示」の欄参照)、通常の車両の走行時には、運転者は、自車の前方の走行経路の道路線形や自車周囲環境を認識して、前方の走行路に於いて自車両が所望の軌跡・走行状態となるように、車両に対して操縦入力を与える。そこで、本発明に於ける運動制御では、単に車両の走行状態を安定化させるだけではなく、種々の車両の状態量、周辺環境情報等を用いて、現在の時点よりも後の車両の軌跡、車速、ヨーレートが、運転者の操縦入力に対応した軌跡、車速、ヨーレートと合致するように車両の運動が制御される。
Overview of Configuration and Operation of Travel Control Device The travel control device according to the present embodiment basically controls the vehicle according to the driver's steering input, that is, the accelerator pedal depression amount θa, the brake pedal depression amount θb, and the steering wheel steering angle δh. In order to control the driving force and the turning direction, the operation of each of the power unit 20, the steering device 30, and the braking device 40 is controlled in a known manner, and the running state of the vehicle is disturbed or disturbed by the influence of a disturbance or the like. When there is, the movement of the vehicle is controlled to compensate for the influence of the disturbance. In this regard, as already described (see the “Disclosure of the Invention” section), when driving a normal vehicle, the driver recognizes the road alignment of the driving route ahead of the host vehicle and the environment surrounding the host vehicle, Maneuvering input is given to the vehicle so that the host vehicle is in a desired trajectory / running state on the forward travel path. Therefore, in the motion control in the present invention, not only simply stabilizing the running state of the vehicle, but also using various vehicle state quantities, surrounding environment information, etc., the trajectory of the vehicle after the current time point, The movement of the vehicle is controlled so that the vehicle speed and the yaw rate match the trajectory, the vehicle speed, and the yaw rate corresponding to the driver's steering input.
 図2は、本発明の走行制御装置の好ましい実施形態の構成の概略を制御ブロック図の形式で表したものである。図中、符号60a~i、61a~cが付されているブロック及び加算器は、電子制御装置60の内部構成及びその内部の記憶装置に記憶されたプログラムに従った演算処理作動により実現される。なお、同図に於いて、信号の流れについては、簡単のため、主要な信号の流れのみが記載されている。 FIG. 2 shows an outline of the configuration of a preferred embodiment of the travel control device of the present invention in the form of a control block diagram. In the figure, the blocks and adders denoted by reference numerals 60a to 61i and 61a to 61c are realized by an arithmetic processing operation in accordance with an internal configuration of the electronic control device 60 and a program stored in the internal storage device. . In the figure, for the sake of simplicity, only the main signal flow is shown.
 図2を参照して、本発明の走行制御装置の好ましい実施形態は、まず、通常の走行制御装置と同様に、アクセル踏込量θaとブレーキ踏込量θbとに基づいて運転者の要求加減速度αtを決定する加減速度制御指令決定部60aと、要求加減速度αtに応答して動力装置20により発生させる要求制駆動力Fat(動力装置は、エンジンブレーキ又は回生制動により制動力を発生し得る)又は制動装置40により各輪に於いて発生させる要求制動力Fbtiとを決定する制駆動力制御司令部60bと、ハンドル操舵角δhに基づいて車輪の目標転舵角δwtを決定する車輪舵角制御指令決定部60cとを含む。要求制駆動力Fat、各輪の要求制動力Fbti、目標転舵角δwtは、それぞれ、駆動制御装置60d、制動制御装置60e、操舵制御装置60fへ送信され、制御装置60d~fは、それぞれ、この分野に於いて公知の任意の制御態様にて、対応する要求値又は目標値(各輪の制動力Fbtiは、任意の制御手法により個別に制御されてよい。)が達成されるよう動力装置20、制動装置40、ステアリング装置30を作動する。なお、図示していないが、制御装置60d~fは、内部に於いて、それぞれの要求値又は目標値と実際値が一致するようサーボ制御が実行される。 Referring to FIG. 2, in the preferred embodiment of the traveling control device of the present invention, first, the driver's required acceleration / deceleration αt is based on the accelerator depression amount θa and the brake depression amount θb, as in the normal traveling control device. Acceleration / deceleration control command determining unit 60a for determining the required braking / driving force Fat generated by the power unit 20 in response to the required acceleration / deceleration αt (the power unit can generate a braking force by engine braking or regenerative braking) or A braking / driving force control command unit 60b that determines a required braking force Fbti generated in each wheel by the braking device 40, and a wheel steering angle control command that determines a target turning angle δwt of the wheel based on the steering angle δh of the steering wheel. And a determination unit 60c. The required braking / driving force Fat, the required braking force Fbti of each wheel, and the target turning angle δwt are transmitted to the drive control device 60d, the braking control device 60e, and the steering control device 60f, respectively, and the control devices 60d to 60f are respectively In any control manner known in the field, the corresponding required value or target value (the braking force Fbti of each wheel may be individually controlled by any control method) is achieved. 20, the braking device 40 and the steering device 30 are operated. Although not shown, the control devices 60d to 60f perform servo control so that the required value or target value matches the actual value inside.
 更に、本発明の走行制御装置に於いては、上記の通常の構成に加えて、車両に対して外乱が作用したときでも、実際の車両の軌跡・車速・ヨーレートが運転者の操縦入力に対応する軌跡・車速・ヨーレートに合致させるための制御ブロックが構成される。具体的には、図2に示されている如く、自車両の将来の軌跡を推定する将来軌跡推定部60gと、かかる将来軌跡に実際の車両の軌跡が追従するよう車両の運動をフィードバック制御するためのフィードバック制御指令量又はフィードバック補償量を決定するフィードバック制御指令決定部60hと、前記のフィードバック制御指令量に応答して車両の挙動を制御する挙動制御装置60iと、要求加減速度αt、各輪の要求制動力Fbti及び目標転舵角δwtの各々に於いてフィードバック制御指令量を反映させるための加算器61a~61cとが設けられる。 Further, in the travel control device of the present invention, in addition to the above-described normal configuration, even when a disturbance is applied to the vehicle, the actual vehicle trajectory, vehicle speed, and yaw rate correspond to the driver's steering input. A control block for matching the locus, vehicle speed, and yaw rate is configured. Specifically, as shown in FIG. 2, a future trajectory estimation unit 60g that estimates the future trajectory of the host vehicle and feedback control of the vehicle motion so that the actual trajectory of the vehicle follows the future trajectory. A feedback control command determining unit 60h for determining a feedback control command amount or a feedback compensation amount, a behavior control device 60i for controlling the behavior of the vehicle in response to the feedback control command amount, a requested acceleration / deceleration αt, each wheel Adders 61a to 61c for reflecting the feedback control command amount at each of the required braking force Fbti and the target turning angle δwt are provided.
 概して述べれば、将来軌跡推定部60gでは、後で説明される如く、運転者の現在までの操縦入力、即ち、要求加減速度αtと目標転舵角δwtとを用いて、運転者が現在から新たな操縦入力を行うまでの車両の将来軌跡(車両の操縦入力が為された直後からの車両の走行軌道の座標S、その走行軌道を車両が走行するときの車速V及びヨーレートγ)が推定される。また、フィードバック制御指令決定部60hでは、実際の車両の軌跡(車両の位置座標、車速、ヨーレート)と上記の推定された将来軌跡とが比較され、両者の偏差を低減又は最小化するフィードバック制御指令量として、要求加減速度αtの補償量Δαtと軌跡とヨーレートとを補償するための補償ヨーモーメントMtが生成される。補償ヨーモーメントMtは、挙動制御装置60iへ送信され、目標転舵角δwtの補償量Δδwt及び/又は各輪への要求制動力Fbiの補償量ΔFbiが生成される。そして、かくして生成された補償量Δαt、ΔFbi、Δδwtは、それぞれ、加算器61a~cに於いて、αt、Fbi、δwtに対して加算され、αt、Fbi、δwtが修正されて車両の運動が補償される。 Generally speaking, as will be described later, the future trajectory estimation unit 60g uses the steering input up to the present time of the driver, that is, the requested acceleration / deceleration αt and the target turning angle δwt, so that the driver Vehicle's future trajectory until a correct steering input is made (coordinate S * of the vehicle's travel trajectory immediately after the vehicle's control input is made, vehicle speed V * and yaw rate γ * when the vehicle travels on the travel trajectory) Is estimated. The feedback control command determination unit 60h compares the actual vehicle trajectory (vehicle position coordinates, vehicle speed, yaw rate) with the estimated future trajectory, and reduces or minimizes the deviation between the two. As a quantity, a compensation amount Δαt of the required acceleration / deceleration αt, a compensation yaw moment Mt for compensating the locus and the yaw rate are generated. The compensation yaw moment Mt is transmitted to the behavior control device 60i, and the compensation amount Δδwt of the target turning angle δwt and / or the compensation amount ΔFbi of the required braking force Fbi to each wheel is generated. The compensation amounts Δαt, ΔFbi, and Δδwt thus generated are added to αt, Fbi, and δwt in the adders 61a to 61c, respectively, and αt, Fbi, and δwt are corrected, and the vehicle motion is corrected. Compensated.
将来軌跡推定部の作動
 上記の将来軌跡推定部60gでは、より詳細に述べれば、
(i)要求加減速度αtと目標転舵角δwtとを用いた車両の将来軌跡の座標・車速・ヨーレートの推定、
(ii)将来軌跡と、カーナビゲーションシステムによりGPSから取得される道路線形との重ね合わせ、
(iii)運転者が現在から新たな操縦入力を行うと推定される地点、現在の将来軌跡終点の決定
が実行され、推定された将来軌跡の座標・車速・ヨーレートは、フィードバック制御指令決定部に於いて適宜使用される。図3は、将来軌跡推定部60gに於ける処理をフローチャートの形式にて表したものである。同図の制御処理は、車両の運転中、常に実行されていてよいが、運転者が本発明の走行制御を要求する場合のみ実行されるようになっていてもよい。
Operation of Future Trajectory Estimation Unit In the above-described future trajectory estimation unit 60g, more specifically,
(I) Estimating coordinates, vehicle speed, and yaw rate of the future trajectory of the vehicle using the requested acceleration / deceleration αt and the target turning angle δwt.
(ii) Superimposition of future trajectory and road alignment acquired from GPS by the car navigation system,
(iii) The point where the driver is estimated to make a new maneuvering input from now and the current future trajectory end point are determined, and the coordinates, vehicle speed, and yaw rate of the estimated future trajectory are sent to the feedback control command determination unit. It is used as appropriate. FIG. 3 shows the processing in the future trajectory estimation unit 60g in the form of a flowchart. The control process shown in the figure may be always executed during driving of the vehicle, but may be executed only when the driver requests the traveling control of the present invention.
 まず、図3(A)を参照して、将来軌跡推定部の動作が開始されると、まず、現在有効な将来軌跡の推定値(将来軌跡の座標値S・車速値V・ヨーレート値γ)が存在し、フィードバック制御指令決定部がその値を利用できる状態に設定されているか否かが判定される(ステップ10)。将来軌跡推定部が動作開始された直後は将来軌跡設定されていないので、その場合には、将来軌跡の推定が実行される(ステップ40)。 First, referring to FIG. 3A, when the operation of the future trajectory estimation unit is started, first, an estimated value of a future valid trajectory (coordinate value S * of the future trajectory, V * , yaw rate value). It is determined whether or not γ * ) is present and the feedback control command determination unit is set to a state where the value can be used (step 10). Since the future locus is not set immediately after the operation of the future locus estimator is started, in this case, the future locus is estimated (step 40).
 ステップ40の将来軌跡の推定に於いては、既に述べた如く、そのときの操縦入力である要求加減速度αtと目標転舵角δwtとが参照され、これらの値及び路面摩擦係数推定装置からの推定摩擦係数等のパラメータに基づいて任意の車両の運動モデルを用いて、そのときの時間(τ=0)から任意の時間(τ=τmax)が経過するまでの車両の軌跡の座標S(τ)と、車速値V(τ)と、ヨーレート値γ(τ)とが推定される(は、将来軌跡に於ける推定値を表す。以下同様)。これらの値の推定演算のうち、車速値V(τ)は、典型的には、車両のエンジンの出力特性・動力装置の性能仕様・制動装置の性能仕様・基準車重などを用いて一般的な力学的な算出方法に従って与えられてよい。ヨーレート値γ(τ)は、一般的な車両のヨー方向運動モデル又は定常若しくは準定常旋回運動モデルに従って、δwt、V(τ)等を用いて与えられてよい。 In the estimation of the future trajectory of step 40, as already described, the requested acceleration / deceleration αt and the target turning angle δwt, which are the steering inputs at that time, are referred to, and these values and the road surface friction coefficient estimation device using motion model of any vehicle on the basis of parameters such as the estimated friction coefficient, then the time (τ = 0) at any time from (tau = .tau.max) coordinates of the trajectory of the vehicle until after the S * ( (τ), a vehicle speed value V * (τ), and a yaw rate value γ * (τ) are estimated ( * represents an estimated value in a future trajectory, and so on). Of these values, the vehicle speed value V * (τ) is typically calculated using vehicle engine output characteristics, power equipment performance specifications, braking system performance specifications, reference vehicle weight, etc. It may be given according to a dynamic calculation method. The yaw rate value γ * (τ) may be given using δwt, V * (τ), etc. according to a general vehicle yaw direction motion model or a steady or quasi-steady turning motion model.
 車両の軌跡の座標値S(τ)は、地上に固定した座標系に於ける任意の車両のヨー方向運動モデル(例えば、アッカーマンモデル・その他の任意の車両の走行軌跡シミュレーション法)に従った推定演算により、典型的には、車両の重心の軌跡の座標値として与えられる。地上に固定した座標系としては、例えば、図4(A)に例示されている如きX-Y直交座標系が用いられてよい。同図の座標系が用いられる場合、まず、軌跡推定時の車両の重心が座標系の原点に設定され、そのときの車両の重心の速度ベクトルの方向がX軸に設定される(従って、車両の重心が座標系の原点にあるときには、座標系のX軸から図った車両のヨー角θ(前後方向軸までの角度)の大きさは、そのときの車両のスリップ角βの大きさに一致する。)。ここで、X軸と重心軌跡上の任意の地点Qに於ける軌跡の接線方向(速度ベクトル)との為す角をΨ(X)とすると、Ψ(X)は、
  Ψ(X)=θ(X)-|β(X)|   …(1)
により与えられ、重心軌跡の任意のXに於けるY座標は、
  Y(X)=∫tanΨ(χ)dχ   …(2)
[積分区間は、0~X]
Xの関数として表される。座標系のX軸から図った車両のヨー角θ(X)は、
  θ(t)=β(0)+∫γ(τ)dτ   …(3)
[積分区間は、0~t]
により与えられ、スリップ角βは、ヨーレートγと車速Vとの関数である。従って、任意の車両運動モデルによって、各時刻τに於けるV(τ)、γ(τ)、X(τ)を逐次的に算出した後、各時刻τに於けるXに対応して、β(X)、θ(X)[式(3)]を算出し、しかる後に、式(2)により、Yが、Xの関数として与えられる。なお、上記以外の任意の座標系が軌跡を表すために用いられてよい。重要なことは、後の道路線形との重ね合わせ、フィードバック制御指令値の算出の際に、軌跡の座標値の一方(上記の例ではY)、車速値V、ヨーレートγが、それぞれ、軌跡の他方の座標値(X)の関数として値が参照できるようになっていることである。また、上記の推定値の各々は、数値演算により与えられてよく、座標値Xをパラメータとするマップとして構成されてよい。
The coordinate value S * (τ) of the vehicle trajectory is in accordance with a yaw motion model of any vehicle in a coordinate system fixed on the ground (for example, Ackerman model or other vehicle trajectory simulation method). Typically, it is given as a coordinate value of the locus of the center of gravity of the vehicle by the estimation calculation. As the coordinate system fixed on the ground, for example, an XY orthogonal coordinate system as illustrated in FIG. 4A may be used. When the coordinate system of the figure is used, first, the center of gravity of the vehicle at the time of trajectory estimation is set to the origin of the coordinate system, and the direction of the velocity vector of the center of gravity of the vehicle at that time is set to the X axis (therefore, the vehicle When the center of gravity of the vehicle is at the origin of the coordinate system, the magnitude of the vehicle yaw angle θ (angle to the longitudinal axis) as seen from the X axis of the coordinate system matches the magnitude of the vehicle slip angle β at that time To do.) Here, if the angle between the X axis and the tangential direction (velocity vector) of the trajectory at an arbitrary point Q on the barycentric trajectory is Ψ (X), Ψ (X) is
Ψ (X) = θ (X) − | β (X) | (1)
The Y coordinate at any X of the centroid trajectory is given by
Y (X) = ∫tanΨ (χ) dχ (2)
[Integral interval is 0 to X]
Expressed as a function of X. The yaw angle θ (X) of the vehicle as viewed from the X axis of the coordinate system is
θ (t) = β (0) + ∫γ * (τ) dτ (3)
[Integration interval is 0 to t]
The slip angle β is a function of the yaw rate γ * and the vehicle speed V * . Therefore, V * (τ), γ * (τ), and X * (τ) at each time τ are sequentially calculated by an arbitrary vehicle motion model, and then correspond to X * at each time τ. Β (X), θ (X) [Expression (3)] is calculated, and then Y * is given as a function of X * by Expression (2). Note that any coordinate system other than those described above may be used to represent the trajectory. What is important is that, when superimposing on the road alignment and calculating the feedback control command value, one of the coordinate values of the trajectory (Y * in the above example), the vehicle speed value V * , and the yaw rate γ * The value can be referred to as a function of the other coordinate value (X * ) of the locus. Each of the estimated values may be given by numerical calculation, and may be configured as a map using the coordinate value X * as a parameter.
 かくして、τ=0~τmaxの間の将来軌跡の座標Y(X)、車速値V(X)、ヨーレート値γ(X)が決定されると、カーナビゲーションシステム72から取得されるGPS座標系に於ける現在の車両の重心位置座標(XaGPS,YaGPS)、車速ベクトルの方向ξ及び車両の走行路の道路線形の座標(LxGPS,LyGPS)を用いて、ステップ40で推定された将来軌跡Y(X)が有効であると推定される最終地点、即ち、新たな操縦入力が為される地点の推定が為される(ステップ50,60)。 Thus, when the coordinates Y * (X * ), vehicle speed value V * (X * ), and yaw rate value γ * (X * ) of the future locus between τ = 0 and τmax are determined, they are acquired from the car navigation system 72. Using the current vehicle center-of-gravity position coordinates (Xa GPS , Ya GPS ), the direction of the vehicle speed vector ξ, and the road linear coordinates (Lx GPS , Ly GPS ) A final point where the future trajectory Y * (X * ) estimated at 40 is estimated to be valid, that is, a point where a new steering input is made is estimated (steps 50 and 60).
 図3(B)は、ステップ50-60に於ける処理をより詳細にフローチャートの形式にて表したものである。同図を参照して、ステップ50-60に於いては、まず、道路線形の座標値(LxGPS,LyGPS)が、図4(A)の座標系での値に変換される(ステップ51)。上記の記載から理解される如く、ステップ40で推定された将来軌跡Y(X)は、図4(A)に例示の(現在の)車両の重心を原点とする座標系で表されているのに対し、道路線形座標(LxGPS,LyGPS)は、GPS座標系(XGPS-YGPS座標系)により表されている(図4(B))。そこで、ステップ51に於いては、
  (LxGPS,LyGPS)→(Lx,Ly)   …(4)
   (ここで、
     Lx=cosξ・LxGPS+sinξ・LyGPS-XaGPS
     Ly=-sinξ・Lx+cosξ・Ly-YaGPS
なる座標変換が実行され、これにより、将来軌跡Y(X)と道路線形との座標値を同一の座標系に表し、両者が、これらの座標値を用いて、両者の幾何学的な関係が比較可能な状態に重ね合わせられた状態とされる。
FIG. 3B shows the processing in step 50-60 in more detail in the form of a flowchart. Referring to FIG. 4, in step 50-60, first, road linear coordinate values (Lx GPS , Ly GPS ) are converted into values in the coordinate system of FIG. 4A (step 51). ). As will be understood from the above description, the future trajectory Y * (X * ) estimated in step 40 is expressed in a coordinate system with the center of gravity of the (current) vehicle illustrated in FIG. 4A as the origin. On the other hand, the road linear coordinates (Lx GPS , Ly GPS ) are represented by a GPS coordinate system (X GPS- Y GPS coordinate system) (FIG. 4B). Therefore, in step 51,
(Lx GPS , Ly GPS ) → (Lx, Ly) (4)
(here,
Lx = cosξ · Lx GPS + sinξ · Ly GPS -Xa GPS
Ly = −sinξ · Lx + cosξ · Ly−Ya GPS )
Thus, the coordinate values of the future trajectory Y * (X * ) and the road alignment are represented in the same coordinate system, and both use these coordinate values to express the geometrical relationship between them. The relationship is overlaid in a state where the relationship can be compared.
 しかる後、図3(B)のチャートから理解される如く、X方向に沿って、逐次的に、道路線形座標値(Lx,Ly)と将来軌跡Y(X)とが逐次的比較され、運転者が新たな操縦入力を与える地点、即ち、現在推定されている将来軌跡の有効な最終地点の探索が実行される。 Thereafter, as understood from the chart of FIG. 3B, the road linear coordinate values (Lx, Ly) and the future trajectory Y * (X * ) are sequentially compared along the X direction. A search is made for a point where the driver gives a new steering input, that is, a valid final point of the currently estimated future trajectory.
 かかる探索に於いては、(i)将来軌跡と道路線形とがずれ始める地点、(ii)道路線形の曲率の大きい地点、(iii)道路線形に於いてカーブ出口である情報が在る地点、(iv)車載のビデオカメラ・レーダー装置の観測により先行車・障害物が存在すると判定された地点又は道路幅・道路勾配等の状態が変化すると判定された地点が探索される。 In such a search, (i) a point where the future trajectory begins to deviate from the road alignment, (ii) a point where the curvature of the road alignment is large, (iii) a point where there is information on the curve exit in the road alignment, (iv) A point where it is determined that there is a preceding vehicle or an obstacle by observation of an in-vehicle video camera / radar device or a point where a state such as a road width or a road gradient is determined is searched.
 具体的には、まず、将来軌跡Y(X)とLy(X)との偏差が所定値以上であるか否かが判定される(ステップ52)。なお、Ly(X)は、Lx=XのときのLyを表している。将来軌跡Yと道路線形Lyとが離隔し、ずれ始める場合には、運転者は、当然に自車両を道路線形に合わせるべく、操縦入力を変更すると推定される。従って、
  |Y(X)-Ly(X)|>Ymax   …(5)
(Ymaxは、任意に設定される定数又は車速依存の関数であってよい。)
が成立するときには、その地点が、現在推定されている将来軌跡の有効な最終地点(Xe,Ye)として設定される(ステップ60)。なお、閾値Ymaxは、運転者が操舵角を所定量以上変更すると推定される軌跡と道路線形との偏差に基づいて決定されてよく、閾値Ymaxの値は、実験的又は理論的に予め決定されてよい。
Specifically, first, it is determined whether or not the deviation between the future trajectory Y * (X * ) and Ly (X * ) is a predetermined value or more (step 52). Note that Ly (X * ) represents Ly when Lx = X * . If the future trajectory Y * and the road alignment Ly are separated from each other and start to shift, it is estimated that the driver naturally changes the steering input in order to adjust the vehicle to the road alignment. Therefore,
| Y * (X * ) − Ly (X * ) |> Ymax (5)
(Ymax may be an arbitrarily set constant or a vehicle speed-dependent function.)
Is established, the point is set as an effective final point (Xe * , Ye * ) of the currently estimated future trajectory (step 60). The threshold value Ymax may be determined based on a deviation between the locus estimated by the driver to change the steering angle by a predetermined amount or more and the road alignment, and the value of the threshold value Ymax is determined experimentally or theoretically in advance. It's okay.
 次いで、道路線形Ly(X)の曲率C(X)について、その変化ΔC(X)に於いて、
  |ΔC(X)|>Cmax   …(6)
が成立するか否かが判定されるようになっていてよい(ステップ53)。ここで、Cmaxは、任意に設定される閾値である。曲率C(X)は、図4(A)の座標系に於いては、
  C(X)=cosΨ(X)・dΨ(X)/dx   …(6)
により与えられる。従って、ΔC(X)は、C(X)を更にXについて微分した値により与えられる。実際の演算処理では、検査されるXに隣接するデータ点を用いて、Ψ(X)、C(X)、ΔC(X)がディジタル演算の分野に於いて公知の任意の手法により算出されてよい。道路線形Ly(X)の曲率C(X)の変化が大きい場合には、(将来軌跡が道路線形に概ね整合していても)運転者が操縦入力を変更する可能性が高い。そこで、式(6)が成立するときには、その地点が、現在推定されている将来軌跡の有効な最終地点(Xe,Ye)として設定される(ステップ60)。
Next, regarding the curvature C (X * ) of the road alignment Ly (X * ), in the change ΔC (X * ),
| ΔC (X * ) |> Cmax (6)
It may be determined whether or not is established (step 53). Here, Cmax is a threshold value that is arbitrarily set. Curvature C (X * ) is in the coordinate system of FIG.
C (X * ) = cos [Psi] (X * ). D [Psi] (X * ) / dx (6)
Given by. Therefore, ΔC (X * ) is given by a value obtained by differentiating C (X * ) with respect to X. In actual arithmetic processing, Ψ (X * ), C (X * ), and ΔC (X * ) are arbitrary methods known in the field of digital arithmetic using data points adjacent to X * to be examined. May be calculated by: If the change in curvature C (X * ) of the road alignment Ly (X * ) is large, the driver is likely to change the steering input (even if the future trajectory is generally aligned with the road alignment). Therefore, when Expression (6) is satisfied, the point is set as an effective final point (Xe * , Ye * ) of the currently estimated future locus (step 60).
 更に、Ly(X)に於いてカーブ出口である旨の情報があるか否かが判定される(ステップ54)。カーブ出口では、運転者が操縦入力を変更する可能性が高いので、その場合には、その地点が、現在推定されている将来軌跡の有効な最終地点(Xe,Ye)として設定される(ステップ60)。 Further, it is determined whether or not there is information indicating that the vehicle is exiting at Ly (X * ) (step 54). At the curve exit, the driver is likely to change the steering input. In this case, the point is set as a valid final point (Xe * , Ye * ) of the currently estimated future trajectory. (Step 60).
 次いで、車載のビデオカメラ・レーダー装置の観測により判定された先行車・障害物が存在する地点又は道路幅・道路勾配等の状態が変化する地点が、将来軌跡Y(X)上に存在するか否かが判定される(ステップ55a、55b)。先行車・障害物等の位置、道路幅・道路勾配等の道路状態変化の位置は、通常、車載のビデオカメラ・レーダー装置により自車両からの相対位置・方向により特定されるが、カーナビゲーションシステムの情報を用いて特定されてもよい。 Next, there is a point on the future trajectory Y * (X * ) where there is a preceding vehicle or obstacle determined by observation with an in-vehicle video camera or radar device, or where the road width or road gradient changes. It is determined whether or not to perform (steps 55a and 55b). The position of the preceding vehicle / obstacle, etc., and the position of the road condition change such as road width / road gradient are usually specified by the on-board video camera / radar device based on the relative position / direction from the host vehicle. It may be specified using the information.
 図3(B)に例示の処理に於いては、まず、将来軌跡の推定時に於いて観測される先行車・障害物・道路幅・道路勾配等の変化する個所の位置が、図4(A)の座標系に於いて、(Obx,Oby)と表される。そして、X方向について、逐次的にObxとXとの偏差が検査され(ステップ55a)、偏差が閾値ΔObxより小さいときには、更に、ObyとYとの偏差が閾値ΔObyにより小さいか否かが検査される(ステップ55b)。かくして、ステップ55a、55bの条件式が共に成立するときは、図4(A)中の星印の如く、将来軌跡上に先行車・障害物・道路幅・道路勾配等の変化する個所が存在すると判定することができる。車両の走行中、先行車・障害物・道路幅・道路勾配等の変化する個所に遭遇すると、運転者が操縦入力を変更する可能性が高い。従って、その地点が、現在推定されている将来軌跡の有効な最終地点(Xe,Ye)として設定される(ステップ60)。 In the process illustrated in FIG. 3 (B), first, the position of the location where the preceding vehicle, obstacle, road width, road gradient, etc. observed in the estimation of the future trajectory are changed is shown in FIG. ) In the coordinate system (Obx, Oby). Then, the deviation between Obx and X * is sequentially checked in the X direction (step 55a). When the deviation is smaller than the threshold value ΔObx, it is further determined whether or not the deviation between Oby and Y * is smaller than the threshold value ΔOby. Inspected (step 55b). Thus, when the conditional expressions of steps 55a and 55b are both established, there are places where the preceding vehicle, obstacles, road width, road gradient, etc. will change on the future trajectory as shown by the star in FIG. Then it can be determined. When the vehicle encounters a changing part such as a preceding vehicle, an obstacle, a road width, or a road slope, the driver is likely to change the steering input. Therefore, the point is set as an effective final point (Xe * , Ye * ) of the currently estimated future trajectory (step 60).
 なお、上記の障害物等又は道路状態変化の位置(Obx,Oby)は、好適には、運転者が操舵角を所定角度以上変更するか否か、加減速度若しくはアクセルペダル又はブレーキペダルの踏込量を所定量以上変更するか否かにより決定されてよい。障害物等に関しては、障害物の大きさ、自車両の大きさ、障害物の相対距離・速度・方向に基づいて、車両が障害物に近接したときに運転者が操舵角を所定角度以上変更するか又は加減速度若しくはアクセルペダル又はブレーキペダルの踏込量を所定量以上変更すると推定される相対距離が、ステップ55a-bに於いて用いられる閾値(ΔObx,ΔOby)として特定される。また、道路幅又は道路勾配については、その変化に対応して、運転者が加減速度若しくはアクセルペダル又はブレーキペダルの踏込量を所定量以上変更すると推定される場合にステップ55a-bに於いて考慮される位置(Obx,Oby)として認定される(閾値(ΔObx,ΔOby)は、車両の応答時間を考慮して決定されてよい。)。運転者が操舵角を所定角度以上変更する(と推定される)障害物等と自車両との距離・方向及び加減速度若しくはアクセルペダル又はブレーキペダルの踏込量を所定量以上変更する(と推定される)道路状態の変化量は、実験的に又は理論的に予め決定されていてよい。また、図3(B)では、一つの位置(Obx,Oby)の判定のみ記載されているが、(Obx,Oby)となる対象が複数あるときには、それぞれについて、将来軌跡上に存在しているか否かが判定される。 The position of the obstacle or the road condition change (Obx, Oby) is preferably determined by whether the driver changes the steering angle by a predetermined angle or more, the acceleration / deceleration or the amount of depression of the accelerator pedal or the brake pedal. May be determined based on whether or not the value is changed by a predetermined amount or more. For obstacles, the driver changes the steering angle by more than a predetermined angle when the vehicle approaches the obstacle based on the size of the obstacle, the size of the vehicle, and the relative distance, speed, and direction of the obstacle. Or the relative distance estimated to change the acceleration / deceleration or the depression amount of the accelerator pedal or the brake pedal by a predetermined amount or more is specified as the threshold value (ΔObx, ΔOby) used in step 55a-b. In addition, the road width or road gradient is considered in step 55a-b when it is estimated that the driver changes the acceleration / deceleration or the amount of depression of the accelerator pedal or the brake pedal by a predetermined amount or more in response to the change. (The threshold values (ΔObx, ΔOby) may be determined in consideration of the response time of the vehicle). The driver changes the steering angle by more than a predetermined angle (estimated) and changes the distance and direction between the obstacle and the vehicle and the acceleration / deceleration or the amount of depression of the accelerator pedal or brake pedal by a predetermined amount or more The amount of change in road conditions may be determined experimentally or theoretically in advance. Further, in FIG. 3B, only the determination of one position (Obx, Oby) is described, but when there are a plurality of objects that become (Obx, Oby), are each present on the future trajectory? It is determined whether or not.
 かくして、図3(B)のサイクルが繰り返すうち、一度も上記の判定により、運転者が操縦入力を行うと推定される地点が検出されずに、X=Xmax(τ=τmaxのときのX)に到達した場合には、推定された将来軌跡の最後の(X,Y)が、最終地点(Xe,Ye)として設定される(ステップ60)。 Thus, while the cycle of FIG. 3B is repeated, the point where the driver is assumed to perform the steering input is not detected by the above determination, and X * = X * max (τ = τmax). (X * ), the last (X * , Y * ) of the estimated future trajectory is set as the final point (Xe * , Ye * ) (step 60).
 ステップ50-60により将来軌跡の最終地点が決定されると、将来軌跡の座標Y(X)、車速値V(X)、ヨーレート値γ(X)が、Xをパラメータとして、後に説明するフィードバック制御指令量の算出の際に適宜利用できるよう記憶され設定される。そして、図3(A)のサイクルは、車両の走行中繰り返されるが、将来軌跡は、一旦、設定されると、ステップ20-操縦入力変化があったとき、ステップ30-車両が推定された将来軌跡の最終地点(Xe,Ye)に到達したとき(車両は走行中である。)まで維持される。 When the final point of the future trajectory is determined in step 50-60, the coordinates Y * (X * ), vehicle speed value V * (X * ), and yaw rate value γ * (X * ) of the future trajectory are set with X as a parameter. Then, it is stored and set so that it can be used as appropriate when calculating the feedback control command amount described later. The cycle of FIG. 3A is repeated while the vehicle is running. Once the future trajectory is set, step 20-when there is a change in steering input, step 30-the future in which the vehicle is estimated It is maintained until the last point (Xe * , Ye * ) of the trajectory is reached (the vehicle is running).
 ステップ20の操縦入力の変化については、要求加減速度αtと目標転舵角δwtのいずれが将来軌跡の推定時の値よりも所定値以上変化したとき、即ち、
  |αt-αt(推定時)|>αo   …(7a)
又は
  |δwt-δwt(推定時)|>δo   …(7b)
のいずれか成立したときに、操縦入力に変化があったと判定されてよい。(αo、
δoは、任意に設定される閾値である。)。
Regarding the change of the steering input in step 20, when either the required acceleration / deceleration αt or the target turning angle δwt has changed by a predetermined value or more than the value at the time of estimating the future trajectory, that is,
| Αt−αt (when estimated) |> αo (7a)
Or | δwt−δwt (when estimated) |> δo (7b)
When any one of the above is established, it may be determined that the steering input has changed. (Αo,
δo is an arbitrarily set threshold value. ).
 車両が推定された将来軌跡の最終地点(Xe,Ye)に到達したか否かは、カーナビゲーション情報からの車両の現在位置(XaGPS,YaGPS)に対して、式(4)と同様の座標変換を行い、その座標変換後の現在位置のX座標Xaについて、
  |Xa|>|Xe|   …(8)
が成立したときに(絶対値で比較するのは、Xは、負の値も取り得るため)、車両が推定された将来軌跡の最終地点に到達した判定されてよい。
Whether the vehicle has reached the final point (Xe * , Ye * ) of the estimated future trajectory is expressed by the following equation (4) with respect to the current position (Xa GPS , Ya GPS ) of the vehicle from the car navigation information. The same coordinate conversion is performed, and the X coordinate Xa of the current position after the coordinate conversion is
| Xa |> | Xe * | (8)
Is established (the absolute value is compared because X can be a negative value), it may be determined that the vehicle has reached the final point of the estimated future trajectory.
 かくして、ステップ20又はステップ30のいずれかが成立したときには、ステップ40-60に於いて、上記の如く新たな将来軌跡の推定演算が実行される。 Thus, when either step 20 or step 30 is established, a new future locus estimation calculation is executed as described above in step 40-60.
将来軌跡に基づくフィードバック制御
 既に述べた如く、本発明の走行制御装置では、車両の軌跡・車速・ヨーレートが、運転者の操縦入力に基づいて決定される将来軌跡とこれに対応する車速・ヨーレートに合致するように、車両の運動がフィードバック制御される。かかるフィードバック制御は、図2に示されている如く、フィードバック制御指令決定部60hと挙動制御装置60iにより為される。
Feedback Control Based on Future Trajectory As already described, in the travel control device of the present invention, the vehicle trajectory, vehicle speed, and yaw rate are determined based on the future trajectory determined based on the driver's steering input and the corresponding vehicle speed / yaw rate. The movement of the vehicle is feedback controlled to match. Such feedback control is performed by a feedback control command determination unit 60h and a behavior control device 60i, as shown in FIG.
 フィードバック制御指令決定部60hに於いては、まず、カーナビゲーションシステム72からの車両の現在位置(XaGPS,YaGPS)、車輪速センサからの車輪速値から任意の方法により算出される現在の車速Va、ヨーレートセンサからのヨーレートγaが取得される。車両の現在位置の座標値(XaGPS,YaGPS)は、式(4)により、現在設定されている将来軌跡の座標系の値(Xa,Ya)に変換される。そして、現在の車両の重心位置のX座標の値Xaをパラメータとして、X=Xaのときの将来軌跡の座標Y(X)、車速値V(X)、ヨーレート値γ(X)を(将来軌跡推定部60gから)呼び出し、各々対応する偏差:
  Y座標:|Y(X)-Ya|
  車速値:|V(X)-Va|          …(9)
  ヨーレート値:|γ(X)-γa|
が低減又は最小化する要求加減速度αtと目標転舵角δwtに対するフィードバック補償量Δαtと補償ヨーモーメントMtとが算出される。かかるΔαtとMtの算出には、上記の偏差を低減又は最小化するPID制御又はLQI制御(最適レギュレータ)等のこの分野に公知の任意の演算方法が用いられてよい。なお、フィードバック制御量の演算に於いて、現在の加減速度、ヨーモーメント、路面摩擦係数が使用される場合には、Gセンサの検出値Gxa、ヨーレートγaの時間微分値、路面摩擦係数推定装置からの推定値が適宜用いられるようになっていてよい。
In the feedback control command determination unit 60h, first, the current vehicle speed calculated by an arbitrary method from the current position (Xa GPS , Ya GPS ) of the vehicle from the car navigation system 72 and the wheel speed value from the wheel speed sensor. Va and yaw rate γa from the yaw rate sensor are acquired. The coordinate value (Xa GPS , Ya GPS ) of the current position of the vehicle is converted into the value (Xa, Ya) of the coordinate system of the future trajectory currently set by Expression (4). Then, using the X coordinate value Xa of the current center of gravity position of the vehicle as parameters, the coordinate Y * (X * ) of the future locus when X * = Xa, the vehicle speed value V * (X * ), and the yaw rate value γ * ( X * ) (from the future trajectory estimation unit 60g), and corresponding deviations:
Y coordinate: | Y * (X * ) − Ya |
Vehicle speed value: | V * (X * ) − Va | (9)
Yaw rate value: | γ * (X * ) − γa |
The required acceleration / deceleration αt that reduces or minimizes the feedback compensation amount Δαt and the compensation yaw moment Mt with respect to the target turning angle δwt are calculated. For the calculation of Δαt and Mt, any calculation method known in this field such as PID control or LQI control (optimum regulator) for reducing or minimizing the deviation may be used. When the current acceleration / deceleration, yaw moment, and road surface friction coefficient are used in the calculation of the feedback control amount, the detected value Gxa of the G sensor, the time differential value of the yaw rate γa, and the road surface friction coefficient estimating device The estimated value may be used as appropriate.
 かくして、算出されたフィードバック補償量のうち、要求加減速度に対するΔαtは、加算器61aに於いて加減速度制御指令決定部からの要求加減速度αtに対して加算され(Δαtは、負値で在り得る。)、制駆動力制御指令部60bを介して駆動制御装置又は制動制御装置への指令に反映される。一方、補償ヨーモーメントMtは、挙動制御装置60iに送信され、ここに於いて、Mt及びその他のパラメータを用いて目標転舵角δwtに対する補償量Δδwtと各輪の要求制動力に対する補償量ΔFbtiとが算定される。かかる補償量Δδwt、ΔFbtiの算定は、この分野に於いて公知の任意のVSC技術又はVDIM制御技術に従って実行されてよい。かくして、算定された補償量Δδwt、ΔFbtiは、それぞれ、操舵制御装置60f、制動制御装置60eへの制御指令に於いて反映されるべく、それぞれの目標値δwt、Fbtiに対して加算される。 Thus, of the calculated feedback compensation amount, Δαt with respect to the required acceleration / deceleration is added to the required acceleration / deceleration αt from the acceleration / deceleration control command determination unit in the adder 61a (Δαt may be a negative value). .), And is reflected in a command to the drive control device or the brake control device via the braking / driving force control command unit 60b. On the other hand, the compensation yaw moment Mt is transmitted to the behavior control device 60i, where the compensation amount Δδwt for the target turning angle δwt and the compensation amount ΔFbti for the required braking force of each wheel using Mt and other parameters. Is calculated. The calculation of the compensation amounts Δδwt and ΔFbti may be performed according to any VSC technique or VDIM control technique known in the art. Thus, the calculated compensation amounts Δδwt and ΔFbti are added to the respective target values δwt and Fbti so as to be reflected in the control commands to the steering control device 60f and the braking control device 60e, respectively.
 ところで、実際の車両に於いては、車両の各部の制御装置又は駆動装置に操縦入力又は制御入力に応じた指令を与えた場合、その指令に対して種々の遅れをもって応答することとなる。また、既に説明したように、通常の車両の運転に於いて、運転者は、現在の車両の位置・走行状態ではなく、車両の前方の、典型的には、数秒後の車両の位置・走行状態が所望のものとなることを想定して操縦を実行する。そこで、これらの事情を考慮して、本発明のフィードバック制御に於いては、現在の車両の位置・走行状態と推定された将来軌跡に於ける位置・走行状態の偏差ではなく、現在よりも後の時点の車両の位置・走行状態と将来軌跡に於ける位置・走行状態との偏差が低減され又は最小化されるようフィードバック制御が実行されるようになっていてよい。 By the way, in an actual vehicle, when a command corresponding to a steering input or a control input is given to a control device or a drive device of each part of the vehicle, it responds to the command with various delays. Further, as described above, in normal vehicle driving, the driver is not in the current position / running state of the vehicle, but in front of the vehicle, typically the position / running of the vehicle several seconds later. Maneuvering is performed assuming that the state is as desired. Therefore, in consideration of these circumstances, in the feedback control of the present invention, it is not the deviation of the current position / running state of the vehicle and the position / running state in the estimated future trajectory. The feedback control may be executed so that the deviation between the position / running state of the vehicle at the time point and the position / running state in the future trajectory is reduced or minimized.
 現在よりも後の時点での車両の位置・走行状態に於ける実際値と推定された将来軌跡の各値との偏差によりフィードバック制御を実行する場合には、まず、現在の車両位置(Xa,Ya)、加減速度値(Gセンサ値)Gxa、ヨーレートγa、車輪舵角センサ値δwa、車速値Va等を用いて、将来軌跡推定部60gの場合と同様の任意の運動モデルを従って、現在の車両の走行状態がそのまま任意の時間ν経過した後の車両の軌跡に於けるX座標値X(ν)、車速V(ν)、ヨーレートγ(ν)が推定され、式(2)により、時間ν後の車両の重心のY座標値Y(ν)が決定される。そして、X=X(ν)のときの将来軌跡の座標Y(X)、車速値V(X)、ヨーレート値γ(X)を(将来軌跡推定部60gから)呼び出し、式(9)の場合と同様に各々対応する偏差:
  Y座標:|Y(X)-Y(ν)|
  車速値:|V(X)-V(ν) |          …(9a)
  ヨーレート値:|γ(X)-γ(ν)|
が決定され、かかる式(9a)の偏差が低減され又は最小化されるよう、PID制御又はLQI制御に従ってフィードバック制御量が実行され、制御装置60d~fの補償量として利用される。
When feedback control is executed by the deviation between the actual value in the vehicle position / running state at the time later than the present time and each value of the estimated future trajectory, first, the current vehicle position (Xa, Ya), acceleration / deceleration value (G sensor value) Gxa, yaw rate γa, wheel rudder angle sensor value δwa, vehicle speed value Va, etc. The X coordinate value X (ν), vehicle speed V (ν), and yaw rate γ (ν) on the trajectory of the vehicle after an arbitrary time ν has passed as it is as the running state of the vehicle is estimated. The Y coordinate value Y (ν) of the center of gravity of the vehicle after ν is determined. Then, the future locus coordinates Y * (X * ), vehicle speed value V * (X * ), and yaw rate value γ * (X * ) when X * = X (ν) are called (from the future locus estimation unit 60g). , As in the case of equation (9), the corresponding deviations:
Y coordinate: | Y * (X * ) − Y (ν) |
Vehicle speed value: | V * (X * ) − V (ν) | (9a)
Yaw rate value: | γ * (X * ) − γ (ν) |
Is determined, and the feedback control amount is executed according to PID control or LQI control so that the deviation of the equation (9a) is reduced or minimized, and is used as the compensation amount of the control devices 60d to 60f.
 上記の時間νは、車両の操縦入力又は制御入力に対する応答特性を考慮して、実験的に又は理論的に設定されてよい。この点に関し、本発明の制御では、最終的には、現在の将来軌跡の最終地点(Xe,Ye)に於いて、車両の軌跡・走行状態が将来軌跡に合致するよう制御することが目標とされているので、時間νは、X(ν)=Xeとなる時点であってもよい。 The above time ν may be set experimentally or theoretically in consideration of response characteristics with respect to the steering input or control input of the vehicle. In this regard, in the control of the present invention, it is finally possible to perform control so that the vehicle trajectory / running state matches the future trajectory at the final point (Xe * , Ye * ) of the current future trajectory. Since it is a target, the time ν may be a point in time when X (ν) = Xe * .
将来軌跡に基づくフィードバック制御時の車両の走行軌跡の例
 図5は、上記の本発明の走行制御装置による将来軌跡に基づくフィードバック制御が実行された場合の車両の走行軌跡の例を示したものである。同図を参照して、車両がカーブ路に進入したとき(左下)、将来軌跡推定部60gにより、そのときの操縦入力に従って将来軌跡(実細線)が推定演算される。そして、車両は、何ら外乱を受けない場合には、その将来軌跡に沿って走行することとなる。しかしながら、カーブ路の走行中に、車両に対して、図示の如く、横風外乱等が作用すると、車両の軌跡は、旋回外方へ膨らむ(実太線)。かかる状態に於いて、本発明による将来軌跡に基づくフィードバック制御が実行されない場合には、点線で示されている如く、将来軌跡、即ち、運転者の希望する軌跡よりも旋回外方へ膨らんだまま、車両は走行を続けることとなる。一方、将来軌跡に基づくフィードバック制御が実行される場合には、実軌跡と将来軌跡との偏差が低減又は最小化されることとなるので、実太線の如く、実軌跡は将来軌跡へ復帰されることとなる。
Example Figure 5 travel locus of the feedback control when the vehicle based on the future trajectory shows an example of the travel path of the vehicle when the feedback control based on the future trajectory by the running control device of the present invention was performed is there. With reference to the figure, when the vehicle enters a curved road (lower left), the future trajectory estimation unit 60g estimates and calculates the future trajectory (solid thin line) according to the steering input at that time. And when a vehicle does not receive any disturbance, it will drive | work along the future locus | trajectory. However, when a side wind disturbance or the like acts on the vehicle while traveling on a curved road as shown in the figure, the trajectory of the vehicle swells outward from the turn (solid thick line). In this state, when the feedback control based on the future trajectory according to the present invention is not executed, the future trajectory, that is, the trajectory desired by the driver remains swollen outward as shown by the dotted line. The vehicle will continue to run. On the other hand, when feedback control based on the future trajectory is executed, the deviation between the actual trajectory and the future trajectory is reduced or minimized, so that the actual trajectory is returned to the future trajectory as shown by the bold line. It will be.
 以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。 Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.
 例えば、上記の将来軌跡の推定処理に於いては、最終地点(Xe,Ye)を道路線形その他の条件により設定しているが、最終地点(Xe,Ye)を、常に将来軌跡の最後の点(Xmax,Ymax)としてもよい。この場合の将来軌跡の最後の点までの軌跡が、発明の開示の欄で記載した第一の将来軌跡であり、最後の点(Xmax,Ymax)が第二の将来軌跡に相当する。また、この場合、ステップ50-60の処理は省略され、将来軌跡推定を長めに実行する場合には、実質的には、操縦入力の変化があったときに、将来軌跡の推定及び設定が実行される。フィードバック制御に於いては、X(ν)=Xmaxとなる実軌跡の推定がなされ、そのときのY座標値Y(ν)、車速値V(ν)、ヨーレート値γ(ν)が、Y(Xmax)、車速値V(Xmax)、ヨーレート値γ(Xmax)に一致するよう制御が実行されてよい。 For example, in the above-described future locus estimation process, the final point (Xe * , Ye * ) is set according to road alignment and other conditions, but the final point (Xe * , Ye * ) is always set as the future locus. The last point (Xmax * , Ymax * ) may be used. The trajectory up to the last point of the future trajectory in this case is the first future trajectory described in the column of disclosure of the invention, and the last point (Xmax * , Ymax * ) corresponds to the second future trajectory. Further, in this case, the processing of step 50-60 is omitted, and when the future trajectory estimation is executed for a long time, the estimation and setting of the future trajectory is actually executed when there is a change in the steering input. Is done. In the feedback control, an actual locus of X (ν) = Xmax * is estimated, and the Y coordinate value Y (ν), vehicle speed value V (ν), and yaw rate value γ (ν) at that time are expressed as Y Control may be executed so as to coincide with * (Xmax * ), vehicle speed value V * (Xmax * ), and yaw rate value γ * (Xmax * ).
 また、上記実施形態に於いては、軌跡座標値、車速値、ヨーレート値が将来軌跡に合致するよう制御されているが、軌跡座標値とスリップ角又はヨー角の将来軌跡が推定され、実軌跡がそれに合致するようフィードバック制御が実行されてもよい。 In the above embodiment, the trajectory coordinate value, the vehicle speed value, and the yaw rate value are controlled to match the future trajectory. However, the future trajectory of the trajectory coordinate value and the slip angle or yaw angle is estimated, and the actual trajectory. The feedback control may be executed so as to match the above.

Claims (12)

  1.  車両の走行制御装置であって、前記車両の周囲環境を検知する周囲環境検知部と、前記車両の将来軌跡を推定する将来軌跡推定部と、前記周囲環境検知部により検知される周囲環境情報と前記将来軌跡とに基づいて前記車両の走行軌跡を制御する走行軌跡制御部とを含み、前記走行軌跡制御部が、前記車両の実際の軌跡が前記車両の運転者による前記車両に対する操縦入力の変更が実行される前記将来軌跡上の地点に合致するよう前記車両の運動を制御する運動制御部を含んでいる装置。 A travel control device for a vehicle, an ambient environment detection unit that detects the ambient environment of the vehicle, a future trajectory estimation unit that estimates a future trajectory of the vehicle, and ambient environment information detected by the ambient environment detection unit A travel trajectory control unit that controls a travel trajectory of the vehicle based on the future trajectory, wherein the travel trajectory control unit changes the steering input to the vehicle by the driver of the vehicle when the actual trajectory of the vehicle is A device including a motion control unit that controls the motion of the vehicle so as to coincide with a point on the future trajectory on which is executed.
  2.  請求項1の装置であって、前記将来軌跡推定部が前記運転者の操縦入力に基づいて前記将来軌跡を推定する装置。 2. The apparatus according to claim 1, wherein the future trajectory estimation unit estimates the future trajectory based on the driving input of the driver.
  3.  請求項1の装置であって、前記周囲環境検知部により検知される周囲環境情報が前記車両の走行する道路の道路線形を含み、前記地点が前記将来軌跡に前記道路線形を重ね合わせることによって推定される装置。 The apparatus according to claim 1, wherein the ambient environment information detected by the ambient environment detection unit includes a road alignment of a road on which the vehicle travels, and the point is estimated by superimposing the road alignment on the future locus. Equipment.
  4.  請求項3の装置であって、前記地点が前記将来軌跡と前記道路線形とが所定距離以上離隔し始める地点である装置。 4. The apparatus according to claim 3, wherein the point is a point where the future trajectory and the road alignment start to be separated from each other by a predetermined distance or more.
  5.  請求項3の装置であって、前記操縦入力が前記車両の操舵角を含み、前記地点が前記将来軌跡と前記道路線形とを重ね合わせたときに、前記操舵角が所定角度以上変更されると推定される地点である装置。 4. The apparatus according to claim 3, wherein the steering input includes a steering angle of the vehicle, and the steering angle is changed by a predetermined angle or more when the point overlaps the future locus and the road alignment. A device that is an estimated point.
  6.  請求項3の装置であって、前記操縦入力が前記車両の加減速度を含み、前記地点が前記将来軌跡と前記道路線形とを重ね合わせたときに、前記加減速度が所定量以上変更されると推定される地点である装置。 4. The apparatus according to claim 3, wherein when the steering input includes an acceleration / deceleration of the vehicle and the point overlaps the future locus and the road alignment, the acceleration / deceleration is changed by a predetermined amount or more. A device that is an estimated point.
  7.  請求項3の装置であって、前記操縦入力が前記車両のアクセルペダル又はブレーキペダルの踏込量を含み、前記地点が前記将来軌跡と前記道路線形とを重ね合わせたときに、前記アクセルペダル又はブレーキペダルの踏込量が所定量以上変更されると推定される地点である装置。 4. The apparatus according to claim 3, wherein the steering input includes an amount of depression of an accelerator pedal or a brake pedal of the vehicle, and the accelerator pedal or the brake when the point overlaps the future locus and the road alignment. A device that is a point where the pedal depression amount is estimated to be changed by a predetermined amount or more.
  8.  請求項3の装置であって、前記周囲環境情報がカーナビゲーションシステム情報を含み、前記道路線形が前記カーナビゲーションシステム情報から取得される装置。 4. The apparatus according to claim 3, wherein the ambient environment information includes car navigation system information, and the road alignment is acquired from the car navigation system information.
  9.  請求項3の装置であって、前記地点がカーブ路の出口である装置。 4. The apparatus according to claim 3, wherein the point is an exit of a curved road.
  10.  請求項3の装置であって、前記地点が前記車両の道路線形の曲率が変化する地点である装置。 4. The apparatus according to claim 3, wherein the point is a point where a road linear curvature of the vehicle changes.
  11.  請求項1の装置であって、前記周囲環境情報がカーナビゲーションシステム情報を含み、前記車両の実際の軌跡が前記カーナビゲーションシステム情報に基づいて決定される装置。 2. The apparatus according to claim 1, wherein the ambient environment information includes car navigation system information, and an actual trajectory of the vehicle is determined based on the car navigation system information.
  12.  車両の走行制御装置であって、前記車両の周囲環境を検知する周囲環境検知部と、前記車両の運転者の操縦入力に基づいて前記車両の第一の将来軌跡と該第一の将来軌跡よりも後の第二の将来軌跡とを推定する将来軌跡推定部と、前記周囲環境検知部により検知される周囲環境情報と前記第一及び第二の将来軌跡とに基づいて前記車両の走行軌跡を制御する走行軌跡制御部とを含み、前記走行軌跡制御部が、前記第二の将来軌跡に前記車両の実際の軌跡が合致するよう前記車両の運動を制御する運動制御部を含んでいる装置。 A travel control device for a vehicle, comprising: an ambient environment detection unit that detects an ambient environment of the vehicle; and a first future locus of the vehicle and a first future locus based on a steering input of a driver of the vehicle A future trajectory estimation unit for estimating a second future trajectory after the vehicle, and a travel trajectory of the vehicle based on the ambient environment information detected by the ambient environment detection unit and the first and second future trajectories. A travel trajectory control unit that controls, and the travel trajectory control unit includes a motion control unit that controls the motion of the vehicle so that the actual trajectory of the vehicle matches the second future trajectory.
PCT/JP2008/064036 2008-08-05 2008-08-05 Vehicle travel controller WO2010016108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064036 WO2010016108A1 (en) 2008-08-05 2008-08-05 Vehicle travel controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064036 WO2010016108A1 (en) 2008-08-05 2008-08-05 Vehicle travel controller

Publications (1)

Publication Number Publication Date
WO2010016108A1 true WO2010016108A1 (en) 2010-02-11

Family

ID=41663338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064036 WO2010016108A1 (en) 2008-08-05 2008-08-05 Vehicle travel controller

Country Status (1)

Country Link
WO (1) WO2010016108A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149501A1 (en) * 2017-02-17 2018-08-23 Thyssenkrupp Presta Ag Vehicle lateral motion control
GB2570683A (en) * 2018-02-02 2019-08-07 Jaguar Land Rover Ltd A Controller and Method for Controlling the Driving Direction of a Vehicle
WO2021147070A1 (en) * 2020-01-23 2021-07-29 Baidu.Com Times Technology (Beijing) Co., Ltd. A feedback based real time steering calibration system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247332A (en) * 1993-02-25 1994-09-06 Toyota Motor Corp Vehicle control device
JPH08202991A (en) * 1995-01-21 1996-08-09 Mitsubishi Motors Corp Controller for dealing with front road status of automobile
JP2004270718A (en) * 2003-03-05 2004-09-30 Nissan Motor Co Ltd Driving force control device for vehicle
JP2005186831A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Integrated control system of vehicle
JP2005297855A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Deceleration control device of vehicle
JP2007001475A (en) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd Automatic steering control device
JP2007125959A (en) * 2005-11-02 2007-05-24 Nissan Motor Co Ltd Steering device for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247332A (en) * 1993-02-25 1994-09-06 Toyota Motor Corp Vehicle control device
JPH08202991A (en) * 1995-01-21 1996-08-09 Mitsubishi Motors Corp Controller for dealing with front road status of automobile
JP2004270718A (en) * 2003-03-05 2004-09-30 Nissan Motor Co Ltd Driving force control device for vehicle
JP2005186831A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Integrated control system of vehicle
JP2005297855A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Deceleration control device of vehicle
JP2007001475A (en) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd Automatic steering control device
JP2007125959A (en) * 2005-11-02 2007-05-24 Nissan Motor Co Ltd Steering device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149501A1 (en) * 2017-02-17 2018-08-23 Thyssenkrupp Presta Ag Vehicle lateral motion control
CN110300694A (en) * 2017-02-17 2019-10-01 蒂森克虏伯普利斯坦股份公司 Lateral direction of car motion control
GB2570683A (en) * 2018-02-02 2019-08-07 Jaguar Land Rover Ltd A Controller and Method for Controlling the Driving Direction of a Vehicle
GB2570683B (en) * 2018-02-02 2020-06-10 Jaguar Land Rover Ltd A Controller and Method for Controlling the Driving Direction of a Vehicle
US11345343B2 (en) 2018-02-02 2022-05-31 Jaguar Land Rover Limited Controller and method for controlling the driving direction of a vehicle
WO2021147070A1 (en) * 2020-01-23 2021-07-29 Baidu.Com Times Technology (Beijing) Co., Ltd. A feedback based real time steering calibration system

Similar Documents

Publication Publication Date Title
JP4752819B2 (en) Vehicle travel control device
JP6355167B2 (en) Vehicle driving support control device
JP6179820B2 (en) Vehicle driving support control device
US10266174B2 (en) Travel control device for vehicle
JP6341137B2 (en) Vehicle driving support control device
JP6269557B2 (en) Vehicle driving support control device
US9145165B2 (en) Drive controlling apparatus for a vehicle
CN101674965B (en) Vehicle behavior controller
US6675096B2 (en) Vehicle controlling apparatus and method
JP5257923B2 (en) Vehicle motion control device
EP3808623B1 (en) Vehicle control device and vehicle control method
JP5120049B2 (en) Vehicle travel control device
JP7487994B2 (en) Vehicle driving assistance device.
JP5224918B2 (en) Driving assistance device
JP5341469B2 (en) Vehicle control device
US9902394B2 (en) Vehicle behavior information acquisition device and vehicle travel control device
WO2010016108A1 (en) Vehicle travel controller
CN108860137B (en) Control method and device for unstable vehicle and intelligent vehicle
JP5045108B2 (en) Driving support device
JP2569591B2 (en) Vehicle driving assist device
JP5122307B2 (en) Vehicle motion control device
JP5119691B2 (en) Steering control device
CN116674556B (en) Vehicle drift control method and device, vehicle and medium
JP2022118550A (en) Vehicle drive assist device
Holzmann et al. Integrated Longitudinal and Lateral Controls on Drive-By-Wire Platform to Improve the Road Safety

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08808687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08808687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP