WO2009148022A1 - レーザ加工装置およびレーザ加工方法 - Google Patents

レーザ加工装置およびレーザ加工方法 Download PDF

Info

Publication number
WO2009148022A1
WO2009148022A1 PCT/JP2009/059996 JP2009059996W WO2009148022A1 WO 2009148022 A1 WO2009148022 A1 WO 2009148022A1 JP 2009059996 W JP2009059996 W JP 2009059996W WO 2009148022 A1 WO2009148022 A1 WO 2009148022A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
piercing
workpiece
processing
laser beam
Prior art date
Application number
PCT/JP2009/059996
Other languages
English (en)
French (fr)
Inventor
隆典 宮崎
井上 孝
博幸 村井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US12/996,345 priority Critical patent/US20110147351A1/en
Priority to JP2010515863A priority patent/JP5100833B2/ja
Priority to DE112009001200.0T priority patent/DE112009001200B4/de
Priority to CN2009801208818A priority patent/CN102056703B/zh
Publication of WO2009148022A1 publication Critical patent/WO2009148022A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a laser processing apparatus and a laser processing method in which a workpiece is pierced and then cut.
  • a laser processing apparatus is an apparatus which cuts out a desired workpiece (product) and an unnecessary part from a to-be-processed object by irradiating a laser beam to to-be-processed objects, such as a mild steel.
  • the laser processing apparatus performs piercing processing at the start of processing, and performs cutting processing of the workpiece so that the workpiece to be cut out does not include the piercing hole at the start of processing. For this reason, it is necessary to make a small piercing hole in order to cut off a small unnecessary part or the like from the workpiece.
  • the laser processing apparatus described in Patent Document 1 performs piercing while lowering the focal position of the condensing lens in the processing depth direction of the work when performing piercing processing in order to stably perform piercing processing at high speed. I am processing.
  • the present invention is made in view of the above, and an object of the present invention is to obtain a laser processing apparatus and a laser processing method capable of easily performing piercing processing in a short time.
  • the present invention performs piercing on the workpiece and cutting after the piercing by irradiating the workpiece with laser light.
  • a laser beam irradiator configured to irradiate a laser beam to the workpiece by setting a focal position in the vicinity of the surface in the workpiece at least at the start of the piercing processing;
  • a laser oscillator for pulsing the laser beam at a frequency that generates plasma when the workpiece is irradiated with the laser beam at a focal position set at the start of the piercing.
  • the focal position is set near the surface in the workpiece, and the laser light is pulse emitted at the frequency at which the plasma is generated.
  • FIG. 1 is an explanatory view for explaining the concept of piercing processing according to the first embodiment.
  • FIG. 2 is a view showing a schematic configuration of the laser processing apparatus according to the first embodiment.
  • FIG. 3A is a diagram showing the frequency of laser light used in the conventional piercing process.
  • FIG. 3B is a diagram showing the frequency of a pulse laser used at the time of piercing processing by the laser processing apparatus of the present embodiment.
  • FIG. 4A is a diagram showing a focal position of laser light used in the conventional piercing process.
  • FIG. 4B is a diagram showing the focal point position of the laser beam irradiated at the start of piercing processing by the laser processing apparatus of the present embodiment. In the case of FIG.
  • FIG. 5A is a diagram showing the relationship between the change in curvature of the bend mirror and the change in focal position when the bend mirror is a convex surface.
  • FIG. 5-2 is a diagram showing the relationship between the change in curvature of the bend mirror and the change in focal position when the bend mirror is concave.
  • FIG. 6A is a diagram showing a beam diameter of laser light used at the start of piercing processing.
  • FIG. 6-2 is a diagram showing a beam diameter of a laser beam used after a predetermined time has elapsed since the piercing process was started.
  • FIG. 7-1 is a diagram showing the relationship between the change in curvature of the bend mirror and the change in beam diameter when the bend mirror is a convex surface.
  • FIG. 7-2 is a diagram showing the relationship between the change in curvature of the bend mirror and the change in beam diameter when the bend mirror is concave.
  • FIG. 8-1 is a diagram showing a thick beam diameter laser beam used at the start of piercing.
  • FIG. 8-2 is a diagram showing a laser beam with a thin beam diameter used after a predetermined time has elapsed since piercing processing has been started.
  • FIG. 9 is a diagram showing a change in beam diameter at the time of piercing processing.
  • FIG. 10 is a diagram showing the configuration of the processing head.
  • FIG. 11 is a diagram for explaining a method of detecting reflected light.
  • Piercing in the following description is processing for forming a piercing hole in a workpiece
  • cutting processing is processing for cutting out a workpiece or an unnecessary portion from the workpiece.
  • FIG. 1 is an explanatory view for explaining the concept of piercing processing according to the first embodiment.
  • the laser processing apparatus 100 has a laser oscillator 1 that oscillates a laser beam L as a pulse laser, and a processing lens 7 that condenses the laser beam L to a small spot diameter and irradiates the workpiece W (such as mild steel) .
  • the processing lens 7 adjusts the focal position of the laser light L to be irradiated to the workpiece W by adjusting the height direction (the irradiation direction of the laser light L).
  • the processing lens 7 of the present embodiment sets the focal position near at least the lower surface of the workpiece W (at the lower side of the surface) at least at the start of the piercing processing. Furthermore, the laser oscillator 1 oscillates high-frequency laser light L capable of generating plasma at the processing position of the workpiece W when laser irradiation is performed at this focal position.
  • the high frequency here is, for example, a frequency higher than a frequency (a frequency at which plasma does not occur) used at the time of conventional piercing processing and is a frequency lower than a frequency used at the cutting processing.
  • the laser processing apparatus 100 pierces the workpiece W while generating plasma, and forms the piercing hole P in the workpiece W.
  • FIG. 2 is a view showing a schematic configuration of a laser processing apparatus according to Embodiment 1 of the present invention.
  • the laser processing apparatus 100 includes a laser oscillator 1, a PR (partial reflection) mirror 2, a laser beam irradiation unit 60, and a control device 50.
  • the laser oscillator 1 is a device that oscillates a laser beam (beam beam) L such as a CO 2 laser, and emits a laser beam while changing the oscillation frequency and the laser output at the time of laser processing such as piercing processing or cutting processing. Do.
  • the laser oscillator 1 of the present embodiment changes the frequency of the laser light L to be output according to the type of processing such as piercing processing and cutting processing.
  • the laser beam irradiation unit 60 includes the bend mirror 3, the beam optimization unit 4, the bend mirrors 5 and 6, and the processing head 30.
  • the PR mirror (partial reflection mirror) 2 partially reflects the laser light emitted from the laser oscillator 1 and guides the laser light to the bend mirror 3.
  • the bend mirror (beam angle change mirror) 3 changes the beam angle of the laser beam sent from the PR mirror 2 and guides it to the beam optimization unit 4.
  • the beam optimization unit (beam diameter changing device) 4 adjusts the beam diameter (diameter) of the laser beam sent from the bend mirror 3 and sends it to the bend mirror 5.
  • the bend mirrors 5 and 6 are mirrors for changing the beam angle.
  • the bend mirror 5 horizontally deflects the beam angle of the laser beam sent from the beam optimization unit 4 and sends it to the bend mirror 6.
  • the bend mirror 6 deflects the beam angle of the laser beam sent from the bend mirror 5 vertically downward and sends it to the processing head 30. Between the bend mirror 5 and the bend mirror 6, a mirror (not shown) for changing the polarization is mounted.
  • the processing head 30 has a processing lens 7.
  • the processing lens 7 condenses the laser beam from the bend mirror 6 to a small spot diameter and irradiates the workpiece W with the laser beam.
  • the focal position of the processing lens 7 of the present embodiment is adjusted in accordance with the type of processing such as piercing processing and cutting processing.
  • the processing lens 7 sets the focus position below the surface of the workpiece W at the time of piercing processing and the focus position above the surface of the workpiece W at the cutting processing.
  • the workpiece W is placed on a processing table (not shown), and is laser-processed on the processing table.
  • the control device 50 is connected to the laser oscillator 1 and the laser beam irradiation unit 60, and controls the laser oscillator 1 and the laser beam irradiation unit 60.
  • the laser processing apparatus 100 laser-processes the workpiece W such as mild steel by oxygen cutting using oxygen as an assist gas, for example. At this time, the laser processing apparatus 100 generates a plasma by setting the focal position on the mild steel near the material surface and below the material surface and setting the frequency of the laser light higher than a predetermined value. Let Thereby, the laser processing apparatus 100 pierces mild steel under plasma generation.
  • FIGS. 3A and 3B are diagrams for explaining the frequency of the pulse laser output from the laser oscillator at the time of piercing processing.
  • the graph shown in FIG. 3A is a diagram showing the frequency of the laser beam (pulsed laser) used in the conventional piercing process.
  • the graph shown in FIG. 3B is a diagram showing the frequency of the pulse laser used at the time of piercing processing by the laser processing apparatus 100 of the present embodiment.
  • the pulse laser PL2 used at the time of piercing processing in the present embodiment has a frequency higher than that of the pulse laser PL1. It is a laser beam of frequency.
  • the pulse laser PL2 is a frequency at which plasma is generated when the workpiece W is irradiated with the laser at a focal position (lower side than the surface of the workpiece W) set using the processing lens 7 and at any frequency It may be.
  • the laser processing apparatus 100 may start piercing with a pulse laser having a frequency lower than that of the pulse laser PL2 in order to prevent the occurrence of burning.
  • the laser beam is changed to pulse laser PL2 and piercing processing is continued.
  • the change from the frequency for preventing the occurrence of burning to the pulse laser PL2 is performed, for example, by gradually raising the frequency after a predetermined time has elapsed after the piercing process has been started.
  • FIGS. 4A and 4B are diagrams for explaining the focal position of the laser beam irradiated to the workpiece at the time of piercing.
  • FIG. 4A is a diagram showing a focal position of laser light used in the conventional piercing process.
  • the upper side of the surface of the workpiece W was used as the focal position of the laser beam.
  • FIG. 4B shows the case where the focal position of the laser light is below the surface of the workpiece W.
  • the laser processing apparatus 100 sets the vicinity of the surface of the workpiece W as the focal position of the laser light as shown in FIG. Also let the lower side be the focal position of the laser light.
  • the laser processing apparatus 100 may shift the focal position of the laser light downward as the piercing progresses. In other words, the laser processing apparatus 100 may perform piercing while lowering the focal position of the processing lens 7 in the processing depth direction of the workpiece W when performing piercing. In addition, the laser processing apparatus 100 may perform piercing processing by fixing the focal position of the laser light to the focal position that is initially set.
  • the laser processing apparatus 100 shifts to the cutting process when the piercing process is finished.
  • the laser processing apparatus 100 sets the upper side of the surface of the workpiece W as the focal position of the laser beam.
  • the focal position of the laser beam L irradiated to the workpiece W may be controlled using the bend mirror 6.
  • the bend mirror 6 is configured by a variable curvature mirror (curvature variable reflector).
  • the bend mirror 6 having variable curvature is a means for switching the laser light reflecting member capable of changing the curvature by the fluid pressure of air, water, etc., the reflecting member support, the fluid supply means, and the fluid supply pressure stepwise or continuously. And fluid discharge means.
  • the laser light reflecting member is provided in the light path of the laser light, and is elastically deformed by fluid pressure.
  • the reflecting member supporting portion supports the peripheral portion of the laser beam reflecting member and forms a space on the opposite side of the laser beam reflecting surface together with the laser beam reflecting member.
  • the fluid supply means supplies the fluid to the space of the reflective member support, and the fluid discharge means discharges the fluid from the space of the reflective member support.
  • the space formed by the laser light reflecting member and the reflecting member support portion has a sealed structure except for the fluid supply path and the fluid discharge path. Then, the fluid pressure required to elastically deform the laser beam reflecting member is applied to the opposite side of the laser beam reflecting surface. Due to the change in fluid pressure, the laser light reflecting member of the bend mirror 6 has its surface deformed into a convex surface or a concave surface to change its curvature.
  • FIGS. 5A and 5B are diagrams for explaining the relationship between the change in curvature of the bend mirror and the change in focal position.
  • FIG. 5A shows the case where the bend mirror 6 is a convex surface
  • FIG. 5B shows the case where the bend mirror 6 is a concave surface.
  • the laser beam irradiated to the workpiece W through the convex bend mirror 6 has a longer focal position than when the parallel beam laser light L is irradiated to the workpiece W.
  • the focal position of the laser beam L irradiated to the workpiece W through the concave bend mirror 6 is shorter than that in the case where the parallel beam laser beam L is irradiated to the workpiece W.
  • the laser processing apparatus 100 controls the frequency of the pulse laser as well as controlling the focal position to thereby induce plasma at the time of piercing processing, and performs piercing processing under plasma generation.
  • plasma By generating plasma during the piercing process, it becomes possible to shorten the processing time of the piercing process to about half of the conventional one.
  • the time required to process the workpiece W can be shortened, and the running cost of the laser processing apparatus 100 can be reduced. Further, since the heat input to the workpiece W (base material) can be suppressed to a low level by shortening the piercing time, it is possible to suppress the occurrence of processing defects (burning) caused by the temperature rise of the base material. .
  • the control device 50 and the laser beam irradiation unit 60 are separately configured in the present embodiment, the laser beam irradiation unit 60 may be configured to have the control device 50.
  • the focal position of the laser beam L irradiated to the workpiece W and the frequency of the laser beam L irradiated to the workpiece W plasma is processed at the time of piercing processing. Since it is generated, it becomes possible to perform piercing processing in a short time.
  • Second Embodiment Second Embodiment A second embodiment of the present invention will now be described with reference to FIGS. 6-1 to 9.
  • the beam diameter (beam diameter) of the laser light L is controlled.
  • the laser processing apparatus 100 improves the energy efficiency used for laser processing of the piercing hole P by changing the beam diameter during piercing processing. Specifically, the laser processing apparatus 100 increases the incident beam diameter (first beam diameter) to the processing lens 7 at the start of piercing processing in order to avoid processing defects such as burning, and enters as the piercing processing proceeds. The beam diameter (second beam diameter) is changed to be smaller.
  • FIGS. 6-1 and 6-2 are diagrams for explaining the beam diameter of the laser beam applied to the workpiece at the time of piercing.
  • FIG. 6A is a diagram showing the beam diameter of the laser beam L used at the start of piercing.
  • FIG. 6-2 is a diagram showing the beam diameter of the laser beam L used after a predetermined time has elapsed since the piercing process was started.
  • the laser processing apparatus 100 performs piercing processing with a laser beam having a large beam diameter at the start of piercing processing when performing piercing processing, and thereafter performs piercing processing by reducing the beam diameter.
  • the beam diameter of the laser beam L irradiated to the workpiece W may be controlled using, for example, a bend mirror 6 having a variable curvature.
  • the configuration of the bend mirror 6 having a variable curvature is the same as that of the bend mirror 6 of the first embodiment, so the description thereof is omitted here.
  • FIGS. 7-1 and 7-2 are diagrams for explaining the relationship between the change in curvature of the bend mirror and the change in beam diameter.
  • 7-1 shows the case where the bend mirror 6 is a convex surface
  • FIG. 7-2 shows the case where the bend mirror 6 is a concave surface.
  • the laser beam L irradiated to the workpiece W through the convex bend mirror 6 has a larger beam diameter than the case where the parallel beam laser light L is irradiated to the workpiece W.
  • the laser beam irradiated to the workpiece W via the concave bend mirror 6 has a smaller beam diameter than the case where the parallel beam laser light is irradiated to the workpiece W.
  • the curvature of the bend mirror 6 it is possible to change the beam diameter of the laser light L irradiated to the workpiece W. Since the focal position of the laser beam L irradiated to the workpiece W is shifted by changing the curvature of the bend mirror 6, the shift of the focal position is eliminated by changing the position of the processing lens 7, for example.
  • the deviation of the focal position may be eliminated by changing the position of the bend mirror 6. For example, when the bend mirror 6 is changed to a concave surface in order to make the beam diameter of the laser light L smaller, the focal position changes to the upper side. Therefore, when reducing the beam diameter of the laser beam L, the change of the focal position is eliminated by lowering the processing lens 7 or the bend mirror 6.
  • FIGS. 8-1 and 8-2 are diagrams for explaining the relationship between the laser beam reaching the bottom of the pierced hole and the beam diameter.
  • FIG. 8-1 shows a thick beam laser beam used at the start of piercing
  • FIG. 8-2 shows a thin beam laser used a predetermined time after piercing is started.
  • FIG. 9 is a diagram showing a change in beam diameter at the time of piercing processing.
  • the laser processing apparatus 100 irradiates the workpiece W with the laser beam L having a thick beam diameter r1 when starting piercing processing. Then, when the workpiece W is irradiated with the laser beam L having a thick beam diameter r1 for a predetermined time, the laser processing apparatus 100 generates a laser beam L (a laser beam L having a beam diameter r2) having a beam diameter smaller than the beam diameter r1. The workpiece W is irradiated.
  • the change from the beam diameter r1 to the beam diameter r2 may be performed by gradually reducing the beam diameter (A), or may be performed by switching from the beam diameter r1 to the beam diameter r2 at a predetermined timing ( B). Thereafter, the laser processing apparatus 100 irradiates the workpiece W with the laser beam L having a thin beam diameter r2 until the piercing processing is completed.
  • the timing at which the beam diameter r1 is changed to the beam diameter r2 is, for example, a timing at which no burning occurs even if the workpiece W is laser-processed by the laser beam L having the beam diameter r2.
  • the laser processing apparatus 100 pierces with the laser beam L of the beam diameter r1 until the burning does not occur after the piercing is started, and then performs piercing with the laser beam L of the beam diameter r2. Do.
  • the beam diameter of the laser light L is controlled together with the control of the focal position and the frequency control of the pulse laser, piercing processing is performed in a shorter time than the laser processing apparatus 100 of the first embodiment. It is possible to
  • FIG. 10 when piercing is performed, it is detected whether or not the piercing hole P has penetrated, and transition is made from piercing to cutting based on the detection result.
  • the laser processing apparatus 100 starts piercing processing by the same processing as in the first and second embodiments.
  • the laser processing apparatus 100 detects light generated from the side of the workpiece W at the time of piercing processing, for example, by a sensor (a reflected light detection sensor 20 described later) disposed on a processing head. Then, based on the detected light amount (energy amount) of light, it is determined whether the piercing hole P has penetrated.
  • FIG. 10 is a diagram showing the configuration of the processing head.
  • the processing head 30 has a lens holding cylinder 11, a processing lens 7, a lens holding spacer 13, a processing nozzle 14, and a reflected light detection sensor (light amount detection sensor) 20.
  • the lens holding cylinder 11 is a housing for storing the processing lens 7 and the lens holding spacer 13, and the lens holding cylinder 11 is attached to the main body of the laser processing apparatus 100 so that the optical axis and the cylinder axis are the same.
  • the processing lens 7 has a substantially disc shape, and is installed in the lens holding cylinder 11 so that the main surface thereof is in a direction perpendicular to the optical axis direction (focal depth direction).
  • the processing lens 7 is attached so as to be movable in the cylinder axis direction in the lens holding cylinder 11.
  • the lens holding spacer 13 is disposed between the lens holding cylinder 11 and the processing lens 7, and fixes the processing lens 7 at a predetermined position in the lens holding cylinder 11.
  • the lens holding spacer 13 is disposed to surround the side surface of the processing lens 7.
  • the processing nozzle 14 is disposed on the lower side of the lens holding cylinder 11 and irradiates the workpiece W with the laser beam sent through the processing lens 7.
  • the reflected light detection sensor 20 is a sensor that detects the amount of energy of light used to determine whether or not the piercing hole P has penetrated, and is disposed in the lens holding cylinder 11.
  • the reflected light detection sensor 20 detects the amount of energy of light and plasma light reflected from the workpiece W at the time of piercing.
  • the reflected light detection sensor 20 transmits the detected energy amount as a reflected light (light caused by the irradiation of the laser light L) R to the control device 50 of the laser processing apparatus 100, and the control device 50 generates a laser based on the energy amount.
  • the processing device 100 is controlled.
  • the control device 50 shifts from piercing processing to cutting processing, for example, when the amount of energy of the reflected light R becomes equal to or less than a predetermined value after the piercing processing is started.
  • the control device 50 may shift from piercing processing to cutting processing when the reduction amount of the energy amount becomes a predetermined value or more, or when the reduction rate of the energy amount becomes a predetermined value or more.
  • FIG. 11 is a diagram for explaining a detection method (processing procedure) of the reflected light R.
  • the reflected light R is emitted from the side of the workpiece W (a).
  • the reflected light R includes the reflected light generated when the laser light L is reflected by the workpiece W, and the plasma light generated when the laser light L is irradiated to the workpiece W.
  • the reflected light R is detected by a reflected light detection sensor 20 in the processing head 30.
  • the energy amount (light amount) of the reflected light R detected by the reflected light detection sensor 20 is the energy of the laser light L irradiated from the processing head 30 to the workpiece W (side wall surface and bottom surface of the piercing hole P being processed)
  • the value corresponds to the amount and the shape of the piercing hole P during processing.
  • the laser light L passes from the bottom of the workpiece W to the outside of the workpiece W. Then, the amount of energy of the laser light L irradiated to the side wall surface of the piercing hole P among the laser light L decreases. Further, since the bottom surface of the piercing hole P disappears, the laser light L irradiated to the bottom surface disappears. For this reason, the light reflected by the to-be-processed object W reduces. In addition, the plasma generated between the workpiece W and the processing head 30 is also reduced.
  • the laser processing apparatus 100 determines that piercing has been completed, and shifts to a cutting process of the workpiece W (c).
  • the processing time varies due to the thickness error of the workpiece W and the error of the surface condition. For this reason, there is a case in which the piercing process is switched from the piercing process to the cutting process without being pierced, and burning may occur. In order to prevent the occurrence of burning, a margin is required for the piercing setting time set as the piercing processing time.
  • this method since the piercing process may be continued even after the piercing hole is pierced, an unnecessary time is generated in the piercing process.
  • the laser processing apparatus 100 can switch from piercing processing to cutting processing at an appropriate timing, regardless of errors in plate thickness errors and surface conditions of the workpiece W. Furthermore, since the piercing is switched to the cutting after the piercing P is surely penetrated, the piercing is not switched to the cutting without being penetrated, and as a result, the occurrence of processing defects can be suppressed.
  • the reflected light detection sensor 20 may be disposed in the lens holding cylinder 11. Further, the reflected light detection sensor 20 may be disposed outside the processing head 30.
  • the processing completion timing of the piercing hole P is detected using the reflected light R, and switching from piercing processing to cutting processing is performed based on the detection result. It is possible to perform laser processing efficiently while suppressing the occurrence of
  • the laser processing apparatus and the laser processing method according to the present invention are suitable for piercing processing of a workpiece using laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

 被加工物Wにレーザ光を照射することによって、被加工物Wへのピアス加工とピアス加工の後の切断加工とを行うレーザ加工装置において、少なくともピアス加工の開始時に、被加工物W内の表面近傍に焦点位置を設定して被加工物Wにレーザ光を照射するレーザ光照射部60と、レーザ光照射部60がピアス加工の開始時に設定した焦点位置で被加工物Wにレーザ光を照射した場合にプラズマの発生する周波数でレーザ光をパルス出射するレーザ発振器1と、を備える。

Description

レーザ加工装置およびレーザ加工方法
 本発明は、被加工物をピアス加工した後に切断加工するレーザ加工装置およびレーザ加工方法に関するものである。
 レーザ加工装置は、軟鋼などの被加工物にレーザ光を照射することによって被加工物から所望の加工物(製品)や不要箇所を切り出す装置である。レーザ加工装置は、加工開始時にピアス加工を行なうとともに、切り出す加工物に加工開始時のピアス穴が含まれないように加工物の切断処理を行っている。このため、被加工物から小さな不要箇所などを切り落とすためには、小さなピアス穴をあける必要がある。従来のピアシング技術では、ピアス穴径を小さくするためには、レーザ光の出力を小さくしなければならなかったのでピアス加工に長時間を要していた。レーザ光の出力を大きくしてピアシング時間を短くすると、ピアス穴径が拡大するからである。このように、従来のピアシング技術では、ピアス穴径の小径化とピアス時間の高速化を両立することはできなかった。
 例えば、特許文献1に記載のレーザ加工装置は、ピアス加工を安定して高速で行うために、ピアス加工を行う際に、集光レンズの焦点位置をワークの加工深さ方向へ下降させながらピアス加工を行なっている。
特開平2-160190号公報
 しかしながら、上記従来技術ではピアス加工の高速化が不十分である。また、ピアス加工の進行に応じた位置に集光レンズの焦点位置を移動させなければならないので、焦点位置の制御が複雑になるという問題があった。
 本発明は、上記に鑑みてなされたものであって、ピアス加工を短時間で容易に行なうことができるレーザ加工装置およびレーザ加工方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、被加工物にレーザ光を照射することによって、前記被加工物へのピアス加工と前記ピアス加工の後の切断加工とを行うレーザ加工装置において、少なくとも前記ピアス加工の開始時に、前記被加工物内の表面近傍に焦点位置を設定して前記被加工物にレーザ光を照射するレーザ光照射部と、前記レーザ光照射部が前記ピアス加工の開始時に設定した焦点位置で前記被加工物にレーザ光を照射した場合にプラズマの発生する周波数で前記レーザ光をパルス出射するレーザ発振器と、を備えることを特徴とする。
 この発明によれば、ピアス加工の開始時に、被加工物内の表面近傍に焦点位置を設定しプラズマの発生する周波数でレーザ光をパルス出射するので、ピアス加工を短時間で容易に行なうことができるという効果を奏する。
図1は、実施の形態1に係るピアス加工の概念を説明するための説明図である。 図2は、実施の形態1に係るレーザ加工装置の概略構成を示す図である。 図3-1は、従来のピアス加工時に用いられてきたレーザ光の周波数を示す図である。 図3-2は、本実施の形態のレーザ加工装置がピアス加工時に用いるパルスレーザの周波数を示す図である。 図4-1は、従来のピアス加工で用いられていたレーザ光の焦点位置を示す図である。 図4-2は、本実施の形態のレーザ加工装置がピアス加工開始時に照射するレーザ光の焦点位置を示す図である。とした場合である。 図5-1は、ベンドミラーが凸面である場合のベンドミラーの曲率変化と焦点位置の変化の関係を示す図である。 図5-2は、ベンドミラーが凹面である場合のベンドミラーの曲率変化と焦点位置の変化の関係を示す図である。 図6-1は、ピアス加工の開始時に用いるレーザ光のビーム径を示す図である。 図6-2は、ピアス加工を開始して所定時間が経過した後に用いるレーザ光のビーム径を示す図である。 図7-1は、ベンドミラーが凸面である場合のベンドミラーの曲率変化とビーム径の変化の関係を示す図である。 図7-2は、ベンドミラーが凹面である場合のベンドミラーの曲率変化とビーム径の変化の関係を示す図である。 図8-1は、ピアス加工の開始時に用いる太いビーム径のレーザ光を示す図である。 図8-2は、ピアス加工を開始して所定時間経過後に用いる細いビーム径のレーザ光を示す図である。 図9は、ピアス加工時のビーム径の変移を示す図である。 図10は、加工ヘッドの構成を示す図である。 図11は、反射光の検出方法を説明するための図である。
 以下に、本発明の実施の形態に係るレーザ加工装置およびレーザ加工方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。以下の説明でのピアス加工(ピアシング)は、被加工物にピアス穴をあける処理であり、切断加工は、被加工物から加工物または不要箇所を切り出す処理である。
実施の形態1.
 まず、本実施の形態に係るピアス加工の概念について説明する。図1は、実施の形態1に係るピアス加工の概念を説明するための説明図である。レーザ加工装置100は、レーザ光Lをパルスレーザとして発振させるレーザ発振器1、レーザ光Lを小さなスポット径に集光して被加工物W(軟鋼など)に照射する加工レンズ7を有している。加工レンズ7は、高さ方向(レーザ光Lの照射方向)を調整することによって、被加工物Wへ照射するレーザ光Lの焦点位置を調整する。
 本実施の形態の加工レンズ7は、少なくともピアス加工の加工開始時に被加工物W内の表面近傍(表面よりも下側)に焦点位置を設定する。さらに、レーザ発振器1は、この焦点位置でレーザ照射した場合に、被加工物Wの加工位置でプラズマを発生させることができる高周波数のレーザ光Lを発振する。ここでの高周波は、例えば従来のピアス加工時に用いられてきた周波数(プラズマの発生しない周波数)よりも高い周波数であって、切断加工時に用いられる周波数よりも低い周波数である。これにより、レーザ加工装置100は、プラズマを発生させながら被加工物Wのピアス加工を行なってピアス穴Pを被加工物Wに形成する。
 図2は、本発明の実施の形態1に係るレーザ加工装置の概略構成を示す図である。レーザ加工装置100は、レーザ発振器1、PR(Partial Reflection)ミラー2、レーザ光照射部60、制御装置50を有している。
 レーザ発振器1は、CO2レーザなどのレーザ光(ビーム光)Lを発振させる装置であり、ピアス加工や切断加工などのレーザ加工の際には発振周波数やレーザ出力を種々変化させながらレーザ光を出射する。本実施の形態のレーザ発振器1は、ピアス加工や切断加工などの加工の種類に応じて出力するレーザ光Lの周波数を変更する。レーザ光照射部60は、ベンドミラー3、ビーム最適化ユニット4、ベンドミラー5,6、加工ヘッド30を含んで構成されている。
 PRミラー(部分反射鏡)2は、レーザ発振器1が出射するレーザ光を部分反射させてベンドミラー3へ導く。ベンドミラー(ビーム角度変化用ミラー)3は、PRミラー2から送られてくるレーザ光のビーム角度を変えてビーム最適化ユニット4へ導く。
 ビーム最適化ユニット(ビーム径変更装置)4は、ベンドミラー3から送られてくるレーザ光のビーム径(直径)を調整してベンドミラー5へ送る。ベンドミラー5,6は、ビーム角度変化用のミラーである。ベンドミラー5は、ビーム最適化ユニット4から送られてくるレーザ光のビーム角度を水平方向に偏向してベンドミラー6に送る。ベンドミラー6は、ベンドミラー5から送られてくるレーザ光のビーム角度を垂直下方に偏向して加工ヘッド30に送る。ベンドミラー5とベンドミラー6の間には、偏光を変化させる図示しないミラーが装着される。
 加工ヘッド30は、加工レンズ7を有している。加工レンズ7は、ベンドミラー6からのレーザ光を小さなスポット径に集光して被加工物Wに照射する。本実施の形態の加工レンズ7は、ピアス加工や切断加工などの加工の種類に応じて焦点位置が調整される。加工レンズ7は、例えばピアス加工時に焦点位置を被加工物Wの表面よりも下側にし、切断加工時に焦点位置を被加工物Wの表面よりも上側にする。被加工物Wは、図示しない加工テーブル上に載置されており、この加工テーブル上でレーザ加工される。
 制御装置50は、レーザ発振器1およびレーザ光照射部60に接続されており、レーザ発振器1およびレーザ光照射部60を制御する。レーザ加工装置100は、例えばアシストガスに酸素を用いた酸素切断によって軟鋼などの被加工物Wをレーザ加工する。このとき、レーザ加工装置100は、軟鋼への焦点位置を材料表面の近傍であって材料表面よりも下側に設定するとともに、レーザ光の周波数を所定値よりも高く設定することによってプラズマを発生させる。これにより、レーザ加工装置100は、プラズマ発生下で軟鋼のピアス加工を行なう。
 図3-1および図3-2は、ピアス加工時にレーザ発振器が出力するパルスレーザの周波数を説明するための図である。図3-1に示すグラフが従来のピアス加工時に用いられてきたレーザ光(パルスレーザ)の周波数を示す図である。また、図3-2に示すグラフが本実施の形態のレーザ加工装置100がピアス加工時に用いるパルスレーザの周波数を示す図である。
 従来のピアス加工時に用いられてきたパルスレーザ(プラズマの発生しない周波数のレーザ光)をパルスレーザPL1とすると、本実施の形態のピアス加工時に用いるパルスレーザPL2は、パルスレーザPL1の周波数よりも高い周波数のレーザ光である。
 パルスレーザPL2は、加工レンズ7を用いて設定された焦点位置(被加工物Wの表面より下側)で被加工物Wにレーザ照射した場合にプラズマが発生する周波数であれば何れの周波数であってもよい。
 なお、レーザ加工装置100は、バーニングの発生を防止するためにパルスレーザPL2よりも低い周波数のパルスレーザでピアス加工を開始してもよい。この場合、ピアス加工を開始して所定の時間だけバーニングの発生しない周波数でピアス加工を進行させた後、レーザ光をパルスレーザPL2に変更してピアス加工を継続する。バーニングの発生を防止するための周波数からパルスレーザPL2への変更は、例えば、ピアス加工を開始して所定の時間が経過した後に、少しずつ周波数を上げていくことによって変更する。
 図4-1および図4-2は、ピアス加工時に被加工物に照射されるレーザ光の焦点位置を説明するための図である。図4-1は、従来のピアス加工で用いられていたレーザ光の焦点位置を示す図である。従来のピアス加工時には、被加工物Wの表面よりも上側をレーザ光の焦点位置としていた。図4-2は、被加工物Wの表面よりも下側をレーザ光の焦点位置とした場合である。本実施の形態でのレーザ加工装置100は、ピアス加工開始時には、図4-2に示すように被加工物Wの表面近傍をレーザ光の焦点位置とし、望ましくは、被加工物Wの表面よりも下側をレーザ光の焦点位置とする。
 レーザ加工装置100は、ピアス加工の進行にしたがってレーザ光の焦点位置を下側にずらしてもよい。換言すると、レーザ加工装置100は、ピアス加工を行う際に加工レンズ7の焦点位置を被加工物Wの加工深さ方向へ下降させながらピアス加工を行なってもよい。また、レーザ加工装置100は、レーザ光の焦点位置を最初に設定した焦点位置に固定してピアス加工を行なってもよい。
 レーザ加工装置100は、ピアス加工が終わると切断加工へと移行する。レーザ加工装置100は、被加工物Wの切断加工を行なう際には、被加工物Wの表面よりも上側をレーザ光の焦点位置とする。
 なお、被加工物Wに照射するレーザ光Lの焦点位置は、ベンドミラー6を用いて制御してもよい。この場合、ベンドミラー6を曲率可変なミラー(曲率可変反射鏡)によって構成しておく。ここで曲率可変なベンドミラー6の構成の一例について説明する。曲率可変なベンドミラー6は、例えばエアー、水等の流体圧力により曲率を可変できるレーザ光反射部材と、反射部材支持部と、流体供給手段と、流体供給圧力を段階的又は連続的に切り換える手段と、流体排出手段と、を含んで構成されている。
 レーザ光反射部材は、レーザ光の光路に設けられるとともに、流体圧力によって弾性変形する。反射部材支持部は、レーザ光反射部材の周囲部を支持しレーザ光反射部材とともにレーザ光反射面の反対側に空間を形成する。流体供給手段は、反射部材支持部の空間に流体を供給し、流体排出手段は、反射部材支持部の空間から流体を排出する。
 ベンドミラー6では、レーザ光反射部材と反射部材支持部とによって形成される空間を、流体供給経路と流体排出経路を除いて密閉構造としている。そして、レーザ光反射面の反対側にレーザ光反射部材が弾性変形するのに要する流体圧力がかけられる。この流体圧力の変化によって、ベンドミラー6のレーザ光反射部材は、その表面が凸面または凹面に変形して曲率が変化する。
 ここで、ベンドミラー6の曲率変化と焦点位置の変化の関係について説明する。図5-1および図5-2は、ベンドミラーの曲率変化と焦点位置の変化の関係を説明するための図である。図5-1は、ベンドミラー6が凸面である場合を示し、図5-2は、ベンドミラー6が凹面である場合を示している。
 凸面のベンドミラー6を介して被加工物Wに照射されるレーザ光は、平行光のレーザ光Lが被加工物Wに照射される場合よりも、焦点位置が長くなる。凹面のベンドミラー6を介して被加工物Wに照射されるレーザ光Lは、平行光のレーザ光Lが被加工物Wに照射される場合よりも、焦点位置が短くなる。
 このように、ベンドミラー6の曲率を変化させることによって、加工レンズ7の位置を変化させた場合と同様に、被加工物Wに照射するレーザ光Lの焦点位置を変化させることが可能となる。
 以上のように、レーザ加工装置100は、焦点位置の制御とともにパルスレーザの周波数を制御することによってピアス加工時にプラズマの誘発を図り、プラズマ発生下でピアス加工を行なっている。ピアス加工中にプラズマを発生させることでピアス加工の処理時間を従来の約半分に短縮することが可能となる。また、レーザ光を高出力で出力する必要がないので、小さなピアス穴を被加工物Wに形成することが可能となる。したがって、ピアス穴の高速な貫通処理とピアス穴の小径化を両立することが可能となる。
 これにより、被加工物Wの加工に要する時間を短縮することができ、レーザ加工装置100のランニングコストを低減させることが可能となる。また、ピアス時間の短縮により被加工物W(母材)への入熱を低く抑えることができるので、母材の温度上昇に起因する加工不良(バーニング)の発生を抑制することが可能となる。なお、本実施の形態では、制御装置50とレーザ光照射部60を別々の構成としたが、レーザ光照射部60が制御装置50を有する構成としてもよい。
 このように実施の形態1によれば、被加工物Wに照射するレーザ光Lの焦点位置と、被加工物Wに照射するレーザ光Lの周波数と、を制御することによってピアス加工時にプラズマを発生させているので、短時間でピアス加工を行なうことが可能となる。
実施の形態2.
 つぎに、図6-1~図9を用いてこの発明の実施の形態2について説明する。実施の形態2では、レーザ光Lの焦点位置と周波数の制御に加えて、レーザ光Lのビーム径(光束径)を制御する。
 本実施の形態のレーザ加工装置100は、ピアス加工中にビーム径を変化させることによってピアス穴Pのレーザ加工に使用されるエネルギー効率を高める。具体的には、レーザ加工装置100は、ピアス加工開始時にはバーニングなどの加工不良を回避するため、加工レンズ7への入射ビーム径(第1のビーム径)を大きくし、ピアス加工が進むにつれて入射ビーム径(第2のビーム径)が小さくなるよう変化させる。
 図6-1および図6-2は、ピアス加工時に被加工物に照射されるレーザ光のビーム径を説明するための図である。図6-1は、ピアス加工の開始時に用いるレーザ光Lのビーム径を示す図である。また、図6-2は、ピアス加工を開始して所定時間が経過した後に用いるレーザ光Lのビーム径を示す図である。本実施の形態でのレーザ加工装置100は、ピアス加工を行なう際に、ピアス加工の開始時にはビーム径の大きなレーザ光によってピアス加工し、その後、ビーム径を小さくしてピアス加工を行なう。
 被加工物Wに照射するレーザ光Lのビーム径は、例えば曲率可変なベンドミラー6を用いて制御してもよい。曲率可変なベンドミラー6の構成は、実施の形態1のベンドミラー6と同様の構成を有しているので、ここではその説明を省略する。
 ここで、ベンドミラー6の曲率変化とビーム径の変化の関係について説明する。図7-1および図7-2は、ベンドミラーの曲率変化とビーム径の変化の関係を説明するための図である。図7-1は、ベンドミラー6が凸面である場合を示し、図7-2は、ベンドミラー6が凹面である場合を示している。
 凸面のベンドミラー6を介して被加工物Wに照射されるレーザ光Lは、平行光のレーザ光Lが被加工物Wに照射される場合よりもビーム径が太くなる。凹面のベンドミラー6を介して被加工物Wに照射されるレーザ光は、平行光のレーザ光が被加工物Wに照射される場合よりもビーム径が細くなる。
 このように、ベンドミラー6の曲率を変化させることによって、被加工物Wに照射するレーザ光Lのビーム径を変化させることが可能となる。なお、ベンドミラー6の曲率を変化させることによって被加工物Wに照射するレーザ光Lの焦点位置がずれるので、例えば加工レンズ7の位置を変化させることによって焦点位置のずれを解消する。なお、焦点位置のずれは、ベンドミラー6の位置を変更することによって解消してもよい。例えば、レーザ光Lのビーム径を細くするためにベンドミラー6を凹面に変化させた場合、焦点位置は上側に変化する。したがって、レーザ光Lのビーム径を細くする際には、加工レンズ7またはベンドミラー6を降下させることによって焦点位置の変化を解消する。
 レーザ光Lのビーム径を細くすることによって、ピアス穴Pの底面に到達するレーザ光の割合が多くなる。図8-1および図8-2は、ピアス穴の底面に到達するレーザ光とビーム径の関係を説明するための図である。
 図8-1は、ピアス加工の開始時に用いる太いビーム径のレーザ光を示し、図8-2は、ピアス加工を開始して所定時間経過後に用いる細いビーム径のレーザ光を示している。
 図8-1に示すように、ピアス穴Pに入射するビーム径が太い場合には、ピアス穴Pの側壁面へ照射されるレーザ光Lが多くなり、ピアス穴Pの底面に到達するレーザ光Lが少なくなる。このため、ピアス穴Pの穿孔(底面方向への加工)に用いられるエネルギー効率が低くなる。
 一方、図8-2に示すように、ピアス穴Pに入射するビーム径が細い場合には、ビーム径が太い場合よりもピアス穴Pの側壁面へ照射されるレーザ光Lが少なくなり、ピアス穴Pの底面に到達するレーザ光Lが多くなる。このため、ピアス穴Pの穿孔(底面方向への加工)に用いられるエネルギー効率が高くなる。
 つぎに、ピアス加工時のビーム径の変更タイミングについて説明する。図9は、ピアス加工時のビーム径の変移を示す図である。レーザ加工装置100は、ピアス加工を開始する際には、太いビーム径r1のレーザ光Lを被加工物Wに照射する。そして、太いビーム径r1のレーザ光Lを所定時間だけ被加工物Wに照射すると、レーザ加工装置100は、ビーム径r1よりもビーム径が細いレーザ光L(ビーム径r2のレーザ光L)を被加工物Wに照射する。ビーム径r1からビーム径r2への変更は、少しずつビーム径を小さくすることによって行なってもよいし(A)、所定のタイミングでビーム径r1からビーム径r2へ切り替えることによって行なってもよい(B)。この後、レーザ加工装置100は、ピアス加工が終了するまで、細いビーム径r2のレーザ光Lを被加工物Wに照射する。
 ビーム径r1からビーム径r2へ変更するタイミングは、例えばビーム径r2のレーザ光Lによって被加工物Wをレーザ加工してもバーニングが発生しないタイミングである。換言すると、レーザ加工装置100は、ピアス加工を開始した後、バーニングが発生しなくなるまでの間は、ビーム径r1のレーザ光Lによってピアス加工し、その後、ビーム径r2のレーザ光Lによってピアス加工する。
 このように、ピアス加工の開始時には太いビーム径でレーザ加工を行なうので、ピアス開始時のバーニングを抑えることができる。また、所定時間が経過してバーニングが発生しなくなった後には、細いビーム径でレーザ加工を行なうので、ピアス穴Pの最深部まで効率良くエネルギーを伝達して短時間でピアス加工を行なうことが可能となる。
 このように実施の形態2によれば、焦点位置の制御やパルスレーザの周波数制御とともに、レーザ光Lのビーム径を制御するので、実施の形態1のレーザ加工装置100よりも短時間でピアス加工を行なうことが可能となる。
実施の形態3.
 つぎに、図10および図11を用いてこの発明の実施の形態3について説明する。実施の形態3では、ピアス加工を行なう際にピアス穴Pが貫通したか否かの検出を行なうとともに、検出結果に基づいてピアス加工から切断加工へ移行する。
 本実施の形態のレーザ加工装置100は、実施の形態1,2と同様の処理によってピアス加工を開始する。レーザ加工装置100は、例えば加工ヘッドに配置したセンサ(後述の反射光検出センサ20)によってピアス加工時に被加工物W側から発生する光を検出する。そして、検出した光の光量(エネルギー量)に基づいて、ピアス穴Pが貫通したか否かが判断される。
 図10は、加工ヘッドの構成を示す図である。加工ヘッド30は、レンズ保持筒11、加工レンズ7、レンズ保持スペーサ13、加工ノズル14、反射光検出センサ(光量検知センサ)20を有している。
 レンズ保持筒11は、加工レンズ7、レンズ保持スペーサ13を格納する筐体であり、光軸と筒軸とが同じになるようレンズ保持筒11がレーザ加工装置100の本体に取り付けられる。
 加工レンズ7は、概略円板状をなしており、その主面が光軸方向(焦点深度方向)と垂直な方向となるよう、レンズ保持筒11内に設置される。加工レンズ7は、レンズ保持筒11内で筒軸方向に移動自在なよう取り付けられている。
 レンズ保持スペーサ13は、レンズ保持筒11と加工レンズ7の間に配設されて、レンズ保持筒11内の所定の位置に加工レンズ7を固定する。レンズ保持スペーサ13は、加工レンズ7の側面を囲うよう配設されている。加工ノズル14は、レンズ保持筒11の下部側に配設されており、加工レンズ7を介して送られてくるレーザ光を被加工物W側へ照射する。
 反射光検出センサ20は、ピアス穴Pが貫通したか否かの判断に用いる光のエネルギー量を検出するセンサであり、レンズ保持筒11内に配置されている。反射光検出センサ20は、ピアス加工の際に被加工物Wから反射してくる光やプラズマ光のエネルギー量を検出する。反射光検出センサ20は、検出したエネルギー量を、反射光(レーザ光Lの照射に起因する光)Rとしてレーザ加工装置100の制御装置50に送信し、制御装置50がエネルギー量に基づいてレーザ加工装置100を制御する。
 制御装置50は、ピアス加工を開始した後、例えば反射光Rのエネルギー量が所定値以下となった場合にピアス加工から切断加工へ移行する。制御装置50は、エネルギー量の減少量が所定値以上となった場合やエネルギー量の減少速度が所定値以上となった場合にピアス加工から切断加工へ移行してもよい。
 つぎに、反射光Rの検出方法について説明する。図11は、反射光Rの検出方法(処理手順)を説明するための図である。レーザ加工装置100が、ピアス加工を開始すると被加工物W側から反射光Rが出る(a)。この反射光Rは、レーザ光Lが被加工物Wで反射されることによって生じる反射光とレーザ光Lが被加工物Wに照射されることによって生じるプラズマ光とを含んでいる。反射光Rは、加工ヘッド30内の反射光検出センサ20によって検出される。反射光検出センサ20によって検出される反射光Rのエネルギー量(光量)は、加工ヘッド30から被加工物W(加工中のピアス穴Pの側壁面や底面)へ照射されるレーザ光Lのエネルギー量や加工中のピアス穴Pの形状などに応じた値となる。
 ピアス加工が進んでピアス穴Pが被加工物Wの底面から開口すると(b)、レーザ光Lが被加工物Wの底面から被加工物Wの外側へ通過する。そして、レーザ光Lのうちピアス穴Pの側壁面に照射されるレーザ光Lのエネルギー量が減少する。また、ピアス穴Pの底面が無くなるので底面に照射されるレーザ光Lが無くなる。このため、被加工物Wで反射される光が減少する。また、被加工物Wと加工ヘッド30の間に発生するプラズマも減少する。これにより、反射光Rのエネルギー量が減少し、反射光検出センサ20が検出するエネルギー量も減少する。反射光検出センサ20がエネルギー量の減少を検出すると、レーザ加工装置100は、ピアス加工が完了したと判断し、被加工物Wの切断処理に移行する(c)。
 従来のピアス加工では、被加工物Wの板厚誤差や表面状態の誤差によって、加工処理時間にばらつきが生じていた。このため、ピアス穴が未貫通のままピアス加工から切断加工への切り替えをしてしまい、バーニングが発生する場合があった。バーニングの発生を防止するためには、ピアス加工の処理時間として設定するピアス加工設定時間にマージンが必要となる。しかしながら、この方法では、ピアス穴の貫通後もピアス加工処理を継続する場合があるので、ピアス加工に無駄な時間が発生していた。
 これに対し、本実施の形態では、反射光Rを検知することによってピアス穴Pが貫通したか否かを判断している。そして、ピアス穴Pが貫通した後にピアス加工から切断加工へ移行している。これにより、レーザ加工装置100は、被加工物Wの板厚誤差や表面状態などの誤差に依らず、適切なタイミングでピアス加工から切断加工への切り替えが可能となる。さらに、確実にピアス穴Pが貫通した後に、ピアス加工から切断加工へ切り替わるので、ピアス穴Pが未貫通のまま切断加工に切り替わりことがなく、この結果、加工不良の発生を抑えられる。
 なお、本実施の形態では、反射光検出センサ20をレンズ保持筒11内に配置する場合について説明したが、反射光検出センサ20は加工ノズル14内に配置してもよい。また、反射光検出センサ20は加工ヘッド30の外側に配置してもよい。
 このように実施の形態3によれば、反射光Rを用いてピアス穴Pの加工完了タイミングを検出し、この検出結果に基づいてピアス加工から切断加工への切り替えを行なっているので、加工不良の発生を抑えつつ効率良くレーザ加工を行うことが可能となる。
 以上のように、本発明に係るレーザ加工装置およびレーザ加工方法は、レーザ光を用いた被加工物のピアス加工に適している。
 1 レーザ発振器
 6 ベンドミラー
 7 加工レンズ
 9 被加工物
 20 反射光検出センサ
 30 加工ヘッド
 50 制御装置
 60 レーザ光照射部
 100 レーザ加工装置
 L レーザ光
 P ピアス穴
 R 反射光
 W 被加工物

Claims (4)

  1.  被加工物にレーザ光を照射することによって、前記被加工物へのピアス加工と前記ピアス加工の後の切断加工とを行うレーザ加工装置において、
     少なくとも前記ピアス加工の開始時に、前記被加工物内の表面近傍に焦点位置を設定して前記被加工物にレーザ光を照射するレーザ光照射部と、
     前記レーザ光照射部が前記ピアス加工の開始時に設定した焦点位置で前記被加工物にレーザ光を照射した場合にプラズマの発生する周波数で前記レーザ光をパルス出射するレーザ発振器と、
     を備えることを特徴とするレーザ加工装置。
  2.  前記レーザ光照射部は、前記ピアス加工の開始時には第1のビーム径を有したレーザ光を前記被加工物に照射し、その後、前記第1のビーム径よりも小さなビーム径である第2のビーム径を有したレーザ光を前記被加工物に照射することによって前記ピアス加工を進行させることを特徴とする請求項1に記載のレーザ加工装置。
  3.  前記ピアス加工の際に前記被加工物側から出る光の光量を検知する光量検知センサをさらに備え、
     前記光量検知センサが検知した光量に基づいて前記ピアス加工が完了したと判断された場合に、前記レーザ光照射部は、前記ピアス加工から前記切断加工への切替えを行なうことを特徴とする請求項1または2に記載のレーザ加工装置。
  4.  被加工物にレーザ光を照射することによって、前記被加工物へのピアス加工と前記ピアス加工の後の切断加工とを行うレーザ加工方法において、
     少なくとも前記ピアス加工の開始時に前記被加工物内の表面近傍に焦点位置を設定する焦点位置設定ステップと、
     前記ピアス加工の開始時に設定された焦点位置で前記被加工物にレーザ光を照射した場合にプラズマの発生する周波数で前記レーザ光をパルス出射するレーザ発振ステップと、
     パルス出射されたレーザ光を前記被加工物に照射するレーザ光照射ステップと、
     を含むことを特徴とするレーザ加工方法。
PCT/JP2009/059996 2008-06-04 2009-06-01 レーザ加工装置およびレーザ加工方法 WO2009148022A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/996,345 US20110147351A1 (en) 2008-06-04 2009-06-01 Laser processing apparatus and laser processing method
JP2010515863A JP5100833B2 (ja) 2008-06-04 2009-06-01 レーザ加工装置およびレーザ加工方法
DE112009001200.0T DE112009001200B4 (de) 2008-06-04 2009-06-01 Laserbearbeitungsverfahren und Laserbearbeitungsvorrichtung hierfür
CN2009801208818A CN102056703B (zh) 2008-06-04 2009-06-01 激光加工装置及激光加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-147174 2008-06-04
JP2008147174 2008-06-04

Publications (1)

Publication Number Publication Date
WO2009148022A1 true WO2009148022A1 (ja) 2009-12-10

Family

ID=41398099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059996 WO2009148022A1 (ja) 2008-06-04 2009-06-01 レーザ加工装置およびレーザ加工方法

Country Status (5)

Country Link
US (1) US20110147351A1 (ja)
JP (1) JP5100833B2 (ja)
CN (1) CN102056703B (ja)
DE (1) DE112009001200B4 (ja)
WO (1) WO2009148022A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254426A (zh) * 2013-04-26 2014-12-31 三菱电机株式会社 曲率控制装置及激光加工机
JP2015199113A (ja) * 2014-04-10 2015-11-12 三菱電機株式会社 レーザ加工装置及びレーザ加工方法
JP2015199114A (ja) * 2014-04-10 2015-11-12 三菱電機株式会社 レーザ加工装置及びレーザ加工方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010006047U1 (de) * 2010-04-22 2010-07-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Strahlformungseinheit zur Fokussierung eines Laserstrahls
WO2013014994A1 (ja) * 2011-07-28 2013-01-31 三菱電機株式会社 レーザ加工装置およびレーザ加工制御装置
CN102554479A (zh) * 2012-01-06 2012-07-11 昆山海大数控技术有限公司 一种大功率co2激光多级穿孔控制***装置
JP5885173B2 (ja) * 2012-06-15 2016-03-15 三菱電機株式会社 レーザ加工装置
CN103878494B (zh) * 2014-03-31 2016-08-24 大族激光科技产业集团股份有限公司 激光穿孔方法以及激光切割通孔的方法
JP6416801B2 (ja) * 2016-01-29 2018-10-31 ファナック株式会社 加工ヘッドのアプローチ機能を有するレーザ加工機
KR20180015353A (ko) * 2016-08-03 2018-02-13 주식회사 탑 엔지니어링 레이저 스크라이브 장치
DE102020106734A1 (de) 2020-03-12 2021-09-16 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zum Einstechen in ein Werkstück mittels eines Laserstrahls
CN116719158B (zh) * 2023-06-13 2024-05-07 玖科智造(武汉)科技股份有限公司 一种自适应镜片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281456A (ja) * 1995-04-10 1996-10-29 Nissan Motor Co Ltd レーザ溶接の貫通検知方法およびその装置
JPH11320161A (ja) * 1998-05-13 1999-11-24 Matsushita Electric Ind Co Ltd レーザ加工装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160190A (ja) * 1988-12-13 1990-06-20 Amada Co Ltd レーザ加工機におけるピアス加工方法およびその装置
DE3908187A1 (de) * 1989-03-14 1990-09-20 Jurca Marius Christian Verfahren zur qualitaetssicherung beim laserstrahlschweissen und -schneiden
US5063280A (en) * 1989-07-24 1991-11-05 Canon Kabushiki Kaisha Method and apparatus for forming holes into printed circuit board
DE3934587C2 (de) * 1989-10-17 1998-11-19 Bosch Gmbh Robert Verfahren zum Herstellen von mittels Laserstrahlung erzeugter, hochpräziser Durchgangsbohrungen in Werkstücken
JPH05111783A (ja) * 1991-10-19 1993-05-07 Fanuc Ltd レーザ加工における穴明け加工方法
JP2720744B2 (ja) * 1992-12-28 1998-03-04 三菱電機株式会社 レーザ加工機
JPH07223084A (ja) * 1994-02-10 1995-08-22 Fanuc Ltd レーザ加工装置
US5622540A (en) * 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
US6057525A (en) * 1995-09-05 2000-05-02 United States Enrichment Corporation Method and apparatus for precision laser micromachining
JP3292021B2 (ja) * 1996-01-30 2002-06-17 三菱電機株式会社 レーザ加工方法およびレーザ加工装置
JP4162772B2 (ja) * 1998-09-09 2008-10-08 日酸Tanaka株式会社 レーザピアシング方法およびレーザ切断装置
DE19852302A1 (de) * 1998-11-12 2000-05-25 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Bearbeiten von Werkstücken mit Hochenergiestrahlung
US6562698B2 (en) * 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
JP2001038485A (ja) * 1999-07-26 2001-02-13 Amada Co Ltd レーザ加工方法及びその装置
TW504425B (en) * 2000-03-30 2002-10-01 Electro Scient Ind Inc Laser system and method for single pass micromachining of multilayer workpieces
US6455807B1 (en) * 2000-06-26 2002-09-24 W.A. Whitney Co. Method and apparatus for controlling a laser-equipped machine tool to prevent self-burning
US6864459B2 (en) * 2001-02-08 2005-03-08 The Regents Of The University Of California High precision, rapid laser hole drilling
WO2002076666A2 (en) * 2001-03-22 2002-10-03 Xsil Technology Limited A laser machining system and method
JP2002331377A (ja) * 2001-05-08 2002-11-19 Koike Sanso Kogyo Co Ltd レーザピアシング方法
DE10138866B4 (de) * 2001-08-08 2007-05-16 Bosch Gmbh Robert Verfahren zum Bohren eines Lochs in ein Werkstück mittels Laserstrahls
US6750423B2 (en) * 2001-10-25 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US20050155956A1 (en) * 2002-08-30 2005-07-21 Sumitomo Heavy Industries, Ltd. Laser processing method and processing device
CN1268467C (zh) * 2003-07-30 2006-08-09 贵州大学 激光诱导等离子体法在石英基片上制作微型通道的技术
JP4453407B2 (ja) * 2004-03-15 2010-04-21 三菱電機株式会社 レーザ加工装置
JP4716663B2 (ja) * 2004-03-19 2011-07-06 株式会社リコー レーザ加工装置、レーザ加工方法、及び該加工装置又は加工方法により作製された構造体
JP4182034B2 (ja) * 2004-08-05 2008-11-19 ファナック株式会社 切断加工用レーザ装置
DE102005022095B4 (de) * 2005-05-12 2007-07-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bestimmung einer lateralen Relativbewegung zwischen einem Bearbeitungskopf und einem Werkstück
WO2006132229A1 (ja) * 2005-06-07 2006-12-14 Nissan Tanaka Corporation レーザピアシング方法及び加工装置
FR2891483B1 (fr) * 2005-10-05 2009-05-15 Commissariat Energie Atomique Procede et installation de decoupe/de soudage laser
CN101134263A (zh) * 2006-09-01 2008-03-05 富士迈半导体精密工业(上海)有限公司 激光加工方法及相应的激光加工装置
US8536483B2 (en) * 2007-03-22 2013-09-17 General Lasertronics Corporation Methods for stripping and modifying surfaces with laser-induced ablation
JP5276699B2 (ja) * 2011-07-29 2013-08-28 ファナック株式会社 ピアシングを行うレーザ加工方法及びレーザ加工装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281456A (ja) * 1995-04-10 1996-10-29 Nissan Motor Co Ltd レーザ溶接の貫通検知方法およびその装置
JPH11320161A (ja) * 1998-05-13 1999-11-24 Matsushita Electric Ind Co Ltd レーザ加工装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254426A (zh) * 2013-04-26 2014-12-31 三菱电机株式会社 曲率控制装置及激光加工机
JP2015199113A (ja) * 2014-04-10 2015-11-12 三菱電機株式会社 レーザ加工装置及びレーザ加工方法
JP2015199114A (ja) * 2014-04-10 2015-11-12 三菱電機株式会社 レーザ加工装置及びレーザ加工方法

Also Published As

Publication number Publication date
CN102056703A (zh) 2011-05-11
JPWO2009148022A1 (ja) 2011-10-27
JP5100833B2 (ja) 2012-12-19
DE112009001200B4 (de) 2016-03-10
DE112009001200T5 (de) 2011-04-07
CN102056703B (zh) 2013-07-24
US20110147351A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
WO2009148022A1 (ja) レーザ加工装置およびレーザ加工方法
JP4612733B2 (ja) パルスレーザ加工装置
JP5100827B2 (ja) 加工制御装置およびレーザ加工装置
JP5132726B2 (ja) パルスレーザ加工装置およびパルスレーザ加工方法
JP2007118078A (ja) レーザ溶接方法およびレーザ溶接装置
JP2013144312A (ja) レーザ加工方法、レーザ加工装置及びインクジェットヘッドの製造方法
JP2005179154A (ja) 脆性材料の割断方法およびその装置
CN113039038A (zh) 激光加工装置及激光加工方法
US20190221985A1 (en) Optical processing apparatus, optical processing method, and optically-processed product production method
US20200290151A1 (en) Laser machine and laser machining method
JP2009084089A (ja) ガラス切断装置及び方法
JP2006255769A (ja) ハイブリッドレーザ加工装置
KR20130048007A (ko) 레이저 드릴링 장치 및 레이저 드릴링 방법
CN113056346A (zh) 激光加工装置及激光加工方法
TW202045289A (zh) 雷射鑽孔裝置及方法
JP2007061914A (ja) ハイブリッド加工装置
JP6393555B2 (ja) レーザ加工機及びレーザ切断加工方法
JP2005178288A (ja) 脆性材料の割断方法とその装置
JP6416801B2 (ja) 加工ヘッドのアプローチ機能を有するレーザ加工機
JP7367861B2 (ja) レーザ加工機、レーザ加工方法及び制御プログラム生成装置
JP2007030033A (ja) 透明材料へのマーキング方法およびこれを用いた装置
JP2008073733A (ja) レーザ加工装置
JP2018176355A (ja) 加工方法
JP2005288472A (ja) ハイブリッド加工装置の軸合せ方法及びハイブリッド加工装置
WO2023085160A1 (ja) レーザ加工方法及びレーザ加工機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120881.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515863

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12996345

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001200

Country of ref document: DE

Date of ref document: 20110407

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09758289

Country of ref document: EP

Kind code of ref document: A1