WO2009132535A1 - 光学镜头 - Google Patents

光学镜头 Download PDF

Info

Publication number
WO2009132535A1
WO2009132535A1 PCT/CN2009/070855 CN2009070855W WO2009132535A1 WO 2009132535 A1 WO2009132535 A1 WO 2009132535A1 CN 2009070855 W CN2009070855 W CN 2009070855W WO 2009132535 A1 WO2009132535 A1 WO 2009132535A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
positive
meniscus
lenses
Prior art date
Application number
PCT/CN2009/070855
Other languages
English (en)
French (fr)
Inventor
高云峰
李家英
鲍瑞武
孙博
周朝明
Original Assignee
深圳市大族激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to JP2011506554A priority Critical patent/JP2011519067A/ja
Publication of WO2009132535A1 publication Critical patent/WO2009132535A1/zh
Priority to US12/914,576 priority patent/US8331044B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • the invention belongs to the field of laser processing, and in particular to an optical lens
  • the laser-scanned flat-field optical lens is called the F-theta ( ⁇ ) lens.
  • This lens enables the laser beam to scan at a constant angular velocity.
  • the focus of the beam passing through the lens on the image plane is also moving at equal speed.
  • the fe lens is a photographic objective with a large field of view, medium and small aperture, and medium and long focal length. From the parameters it has to bear, it is more appropriate to use a "three-piece" type photographic objective.
  • the laser galvanometer marking machine was realized because of the fe lens.
  • Figure 1 shows a typical fe lens optics.
  • the beam is reflected by a mirror that scans at an angular velocity that rotates at a constant speed, and is then focused on the image plane by a fe lens.
  • the incident angle of a certain engraved light with respect to the fe lens
  • the focal length of the fe lens, which is a fixed value for a particular lens
  • the scanning angle of the galvanometer (in radians).
  • the beam is sequentially passed through two galvanometers 1 and 2 rotating around the X-axis and the y-axis, and finally focused on the image plane 4 by the ⁇ lens 3.
  • the image is formed by scanning with a galvanometer.
  • the fe lens 3 is a flat field focusing mirror.
  • f is the focal length of fe lens 3 and ⁇ is the scanning angle of the galvanometer (in radians).
  • the image height ⁇ and the lens focal length f and the beam angle ⁇ are as follows: Tp tge
  • the general imaging system has certain distortions. It is assumed that the distortion ⁇ is intentionally introduced in the aberration correction of the optical design, so that the relationship shown in the following formula is satisfied: k*f*e, you can achieve fe lens The image relationship is a linear relationship. Therefore, f (t g ek*e) , ⁇ ⁇ is a positive value, fe lens is a negative distortion optical system. Therefore, at larger angles, the system is required to have a larger negative distortion.
  • the lens of the fe lens is outside the lens and is a typical asymmetric optical system. Designed in existing products to consider the balance of vertical aberrations, it is generally designed with Pitzval's symmetrical structure to correct for vertical aberrations. However, in this asymmetric system, P is designed with Pitzval's symmetrical structure, but it is difficult to correct vertical aberrations.
  • the technical problem to be solved by the present invention is to provide a laser application optical lens which is uniformly imaged over a full field of view without vignetting.
  • the technical solution adopted by the present invention is to provide an optical lens including a lens group and an aperture, the aperture is located in front of the lens group, and the lens group includes three lenses, which are respectively The second lens and the third lens are sequentially arranged as a negative-positive-positive-powered power system, wherein the first lens is a meniscus-type negative lens, and the second lens is a meniscus-type positive lens.
  • the third lens is a biconvex or meniscus type positive lens, and all curved surfaces of the first lens and the second lens are bent toward the pupil direction, and the focal length of the entire optical system is f, first
  • the focal lengths of the second and third lenses are respectively fl, f2, and f3, and the focal length of each lens and the focal length f of the entire optical system satisfy the following requirements:
  • the optical lens provided by the embodiment of the present invention uses a lens group composed of a meniscus type negative lens, a meniscus type positive lens, a biconvex type or a meniscus type positive lens which are sequentially arranged to make the spherical aberration of the system, Aberration and field music
  • the imaging effect is good and the imaging is uniform on the entire image surface, and the structure is applied to the miniaturization of the large-caliber incident lens to obtain a better effect, and the incident beam diameter in the system is large, ⁇
  • the different structural forms used in the general optical system allow the product of the system to be interchanged with products of a generally small incident beam size to achieve a miniaturized design.
  • FIG. 1 is a schematic diagram of a typical fe lens optical system provided by the prior art
  • FIG. 2 is a schematic structural diagram of an optical lens according to an embodiment of the present invention.
  • FIG. 3 is a ray tracing diagram of an optical lens according to a first embodiment of the present invention
  • FIG. 4 is a diagram showing astigmatism, curvature of field, and distortion distribution of an optical lens according to a first embodiment of the present invention
  • FIG. 5 is a distribution diagram of a linearity difference curve of an optical lens according to a first embodiment of the present invention
  • FIG. 6 is a distribution diagram of optical path difference curves of optical fields of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ of the optical lens according to the first embodiment of the present invention
  • FIG. 7 is a distribution diagram of an optical transfer function MTF of an optical lens according to a second embodiment of the present invention.
  • FIG. 8 is a ray tracing diagram of an optical lens according to a second embodiment of the present invention.
  • FIG. 9 is a diagram showing astigmatism, curvature of field, and distortion distribution of an optical lens according to a second embodiment of the present invention.
  • FIG. 10 is a distribution diagram of a linearity difference curve of an optical lens according to a second embodiment of the present invention.
  • FIG. 11 is a diagram showing an optical path difference curve distribution of optical fields of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ of an optical lens according to a second embodiment of the present invention.
  • FIG. 12 is a diagram showing an optical transfer function MTF distribution of an optical lens according to a second embodiment of the present invention.
  • the f8 lens is a photographic objective with a large field of view, medium and small aperture, and medium and long focal length. From the parameters it has to bear, it is more appropriate to use a "three-piece" type photographic objective.
  • it is a large field of view photographic objective, like the photographic objective, it is a "flat field” objective.
  • the optical lens of the present invention is designed with a three-piece "negative_positive_positive” power distribution, including a lens group and a diaphragm (galvanometer), and an aperture (galvanometer) 1 is located in the lens.
  • the lens group includes three lenses, which are first, second, and third lenses L1, L2, and L3, respectively, wherein the power 1/fl of the first lens L1 is negative, and the optical focus of the second lens L2
  • the degrees l/f2 and the power L/f3 of the third lens L3 are both positive, wherein the ratio of the focal length of each lens to the focal length f of the entire optical system satisfies the following requirements:
  • the focal length of the entire optical system is f
  • the focal lengths of the first, second, and third lenses L1, L2, and L3 are fl, f2, and f3, respectively.
  • the distance L0 of the lens L1 from the aperture (galvanometer) 1 is 25-60 mm
  • the lens L1 is a negative lens
  • the focal length is fl
  • the radii of the two optical surfaces are rl l, rl2, respectively, used by the lens
  • the optical material has a refractive index of n1 and a dispersion coefficient of v1
  • the shape of the first lens L1 is a negative lens that is curved toward the pupil (galvanometer) 1 and is a meniscus type, that is, the lens shape is curved toward the incident light.
  • the above lens group constitutes an actual system, an optical window formed by adding parallel plates at any position in the direction in which the lens group is emitted for the purpose of protecting the exposed lens or for any other purpose.
  • This patent covers the addition of an optical window under the above parameters.
  • Asymmetric structure is used to achieve large distortion, and the distortion of the symmetrical structure is overcome, so that the design can easily meet the linearity requirement of the object relationship.
  • Using a separate lens system no glued surface is used, avoiding the aging of silicone in the optical path of strong laser applications Or the impact of laser damage, improve the stability and service life of the lens.
  • the use of three separate lenses makes the aberrations that affect the imaging quality better corrected, greatly reducing the cost of the lens.
  • the system consists of three lenses L1, L2, L3, L1 consists of two curved surfaces S1, S2 with radius of curvature Rl, R2, respectively, the center thickness dl, material optical parameters It is Ndl: Vdl; L2 is composed of two curved surfaces S3 and S4 with radius of curvature R3 and R4, respectively.
  • the center thickness is d3, the optical parameters of the material are Nd3:Vd3; L3 are respectively composed of two curved surfaces S5 with radius of curvature R5 and R6.
  • the S6 is composed of a center thickness d5, and the material optical parameter is Nd5: Vd5; the interval between the first lens L1 and the second lens L2 is d2, and the interval between the second lens L2 and the third lens L3 is d4.
  • the present invention designs two lenses, the specific parameters of which are as follows:
  • the material is Ndl: Vdl is about 1.52/64;
  • the material is Nd3:Vd3 is about 1.8/25.4;
  • the list is as follows:
  • FIG. 3 is a ray tracing diagram of the embodiment 1, illustrating the lens layout of the product of the embodiment
  • FIG. 4 is an astigmatism, field curvature and distortion distribution diagram (A is an astigmatism and field curvature distribution diagram, and B is distortion) Distribution map), it can be seen from the figure that the system astigmatism and field curvature of this embodiment are well corrected
  • Figure 5 is a linearity difference curve diagram, the linear error of the system is within ⁇ 0.5%, preferably The image relationship of the F-theta lens is realized.
  • Figure 6 shows the optical path difference maps of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ , respectively. The optical path difference does not exceed ⁇ 0.15 ⁇ at the maximum.
  • the aberration of the system of the embodiment is better corrected;
  • FIG. 7 is an optical transfer function MTF diagram, from which it can be seen that the MTF values of the respective fields of view are relatively uniform, indicating that the imaging is uniform over the full field of view.
  • FIG. 8 is a ray tracing diagram of Embodiment 2, illustrating a lens layout of the product of the embodiment;
  • Figure 9 is an astigmatism, field curvature, and distortion distribution map (A is an astigmatism and field curvature distribution diagram, and B is a distortion Distribution map), it can be seen from the figure that the system astigmatism and field curvature of this embodiment are well corrected;
  • Figure 10 is a linearity difference curve diagram, the linear error of the system is within ⁇ 0.5%, which is better achieved.
  • Figure 11 is the optical path difference of 0, 0.3, 0.5, 0.7, 0.85, and 1.0 ⁇ , and the optical path difference is not more than ⁇ 0.
  • Figure 12 is the optical transfer function MTF diagram, which is illustrated by the above figures: The astigmatism and field curvature of the system are well corrected, and the optical path difference is not exceeded at most. 0.2 ⁇ , and from the optical transfer function MTF diagram, the MTF values of each field of view are relatively consistent, indicating that the imaging is uniform on the full field of view, there is no vignetting, and the incident beam diameter in the system is large. Different from the general ⁇ optical system, making the system's products Generally small enough to be interchangeable with the incident beam diameter of the product to achieve compact design.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

技术领域
[1] 本发明属于激光加工领域, 尤其涉及一种光学镜头
背景技术
[2] 目前,激光应用已深入到我们现代生活的各个方面, 在激光应用中便离不开为了 符合各种工艺要求的各种应用光学***。 在目前市场上激光打标机, 以其速度 快, 灵活性强, 无耗材, 标记永久性等特点, 已逐渐地替代各种印字机, 丝印 机等。
[3] 激光扫描的平场光学镜头称为 F-theta (ίθ) 镜头, 此镜头实现了在激光束以匀 速的角速度扫描吋, 通过该镜头的光束在像平面上的聚焦点也是等速度移动的
, 这决定了光束扫描角度与像平面上的聚焦点的像高应成线性关系。 fe镜头是一 种大视场、 中小孔径、 中长焦距的照相物镜, 从它要负担的参数来说, 选用"三 片"型的照相物镜, 应该是较为合适的。 激光振镜打标机是因为有了 fe镜头才得 以实现。
[4] 图 1是一种典型的 fe镜头光学***, 光束通过以匀速转动的角速度扫描的反射 镜反射, 再通过 fe镜头聚焦在像平面上。 假设在某一吋刻光相对 fe镜头的入射角 为 Θ , 所成的像相对中心点像高为 η, 则它们之间应成线性关系, 即: =k*f*e。 其中, k为常数; f为 fe镜头的焦距,对特定的镜头为定值; Θ为振镜的扫描角度 ( 单位为弧度) 。
光束顺次经两块绕 X轴和 y轴转动的振镜 1、 2, 最后通过 ίθ镜头 3聚焦在像面 4上
, 由振镜扫描形成图像。 fe镜头 3是一种平像场的聚焦镜, 在打标吋, 要求在成 像面上像高 η与 X振镜 1和 Y振镜 2的扫描角度 Θ成线性关系, 即: η=ΡΘ (Sr) 。 其 中, f为 fe镜头 3的焦距, Θ为振镜的扫描角度 (单位为弧度) 。
由高斯光学成像理论知, 像高 η与镜头焦距 f和光束转角 Θ为下列关系: Tp tge
。 但一般成像***均有一定的畸变存在, 假设在光学设计吋的象差校正中, 有 意引入畸变 Δη, 使得满足下式所示关系:
Figure imgf000003_0001
k*f*e, 便可实现 fe镜头 的物像关系为线性关系的要求。 由此可得,
Figure imgf000004_0001
f (tge-k*e) , Δη 为正值, fe镜头为负畸变的光学***。 因此, 在角度较大吋, 要求***有较大的 负畸变。
[7] 同吋, fe镜头的光阑在镜头之外, 是一种典型的非对称光学***。 在现有产品 中设计吋考虑垂直像差的平衡问题, 一般釆用 Pitzval的对称结构进行设计, 实现 对垂直像差的校正。 但在这种非对称***中, 釆用 Pitzval的对称结构进行设计吋 反而很难将垂直像差校正得很好。
[8] 另外, fe镜头的另一个特点是要求所有在成像范围内的聚焦点, 应有相似的聚 焦质量, 且不允许有渐晕, 以保证所有像点都相一致。 在激光应用光路中使用 , 有吋激光能量密度很大, 为了提高镜头的使用寿命, 要求不釆用胶合镜头。 对发明的公开
技术问题
[9] 本发明所欲解决的技术问题在于提供一种在全视场上成像均匀、 没有渐晕存在 的激光应用光学镜头。
技术解决方案
[10] 本发明所釆用的技术方案是提供一种光学镜头, 包括透镜组和光阑, 所述光阑 位于所述透镜组的前方, 所述透镜组包括三个透镜,分别为第一、 第二、 第三透 镜, 依次排列为"负一正一正"分离的光焦度***, 其中, 所述第一透镜为弯月型 负透镜, 所述第二透镜为弯月型正透镜, 所述第三透镜为双凸型或弯月型正透 镜, 所述第一透镜与所述第二透镜所有的曲面均向着所述光阑方向弯曲, 且整 个光学***的焦距为 f, 第一、 第二、 第三透镜的焦距分别为 fl、 f2、 f3, 各透镜 的焦距与整个光学***的焦距 f比率满足以下要求:
[11] -0.6<fl/f<-0.4
[12] 0.5<f2/f<0.8
Figure imgf000004_0002
有益效果
[14] 本发明实施例提供的光学镜头釆用由依次排列的弯月型负透镜、 弯月型正透镜 、 双凸型或弯月型正透镜组合成的透镜组使得***的的球差、 像差与场曲都达 到较好的平衡, 使得成像效果良好且在整个像面上成像均匀, 且该结构应用于 大口径入射的 fe镜头的小型化取得较好的效果, 且在***的入射光束口径较大, 釆用的与一般的^光学***不同的结构形式, 使得该***的产品能够与一般小入 射光束口径的产品进行互换, 达到小型化设计。
附图说明
[15] 图 1是现有技术提供的一种典型的 fe镜头光学***示意图;
[16] 图 2是本发明实施例提供的光学镜头的结构示意图;
[17] 图 3为本发明第一实施例提供的光学镜头的光线追迹图;
[18] 图 4为本发明第一实施例提供的光学镜头的像散、 场曲及畸变分布图;
[19] 图 5为本发明第一实施例提供的光学镜头的线性度差曲线分布图;
[20] 图 6为本发明第一实施例提供的光学镜头的视场分别为 0、 0.3、 0.5、 0.7、 0.85 以及 1.0吋的光路差程曲线分布图;
[21] 图 7为本发明第二实施例提供的光学镜头的光学传递函数 MTF分布图;
[22] 图 8为本发明第二实施例提供的光学镜头的光线追迹图;
[23] 图 9为本发明第二实施例提供的光学镜头的像散、 场曲及畸变分布图;
[24] 图 10为本发明第二实施例提供的光学镜头的线性度差曲线分布图;
[25] 图 11为本发明第二实施例提供的光学镜头的视场分别为 0、 0.3、 0.5、 0.7、 0.85 以及 1.0吋的光路差程曲线分布图;
[26] 图 12为本发明第二实施例提供的光学镜头的光学传递函数 MTF分布图。
本发明的最佳实施方式
[27]
本发明的实施方式
[28] 下面结合附图和具体实施例对本发明作进一步说明。
[29] f8镜头是一种大视场、 中小孔径、 中长焦距的照相物镜, 从它要负担的参数来 说, 选用"三片"型的照相物镜, 应该是较为合适的。 我们釆用"负 _正_正"分离 的光焦度***进行设计, 其入瞳在镜头外产生的畸变, 正好也是 fe镜所需要的, 此畸变很容易达到 fe镜要求, 是一种 "无变形"的打标。 同吋, 它是一个大视场的 照相物镜, 与照相物镜一样, 它是一个"平像场 "的物镜。 [30] 如图 2, 本发明光学镜头釆用三片式 "负 _正_正"的光焦度分布进行设计, 包 括透镜组和光阑 (振镜) , 光阑 (振镜) 1位于透镜组的前方, 透镜组包括三个 透镜,分别为第一、 第二、 第三透镜 Ll、 L2、 L3, 其中第一透镜 L1的光焦度 1/fl 为负, 第二透镜 L2的光焦度 l/f2与第三透镜 L3的光焦度 l/f3均为正, 其中各透镜 的焦距与整个光学***的焦距 f的比率满足以下要求:
[31] fl<0, -0.6<fl/f<-0.4, rl<0, Irll<lr2l
[32] f2>0, 0.5<f2/f<0.8 , r3≤0, r4<0, Ir3l>lr4l
[33] f3>0, 0.9<f3/f<1.2, r6<0, Ir5l>lr6l
[34] nl<n2, nl<n3
[35] 其中, 整个光学***的焦距为 f, 第一、 第二、 第三透镜 Ll、 L2、 L3的焦距分 别为 fl、 f2、 f3。
[36] 其中, 透镜 L1距光阑 (振镜) 1的距离 d0为 25-60mm, 透镜 L1为负透镜, 焦距 为 fl,前后两个光学面的半径分别为 rl l、 rl2, 透镜所使用的光学材料的折射率为 nl、 色散系数为 vl, 第一透镜 L1的形状为向光阑 (振镜) 1方向弯曲且为弯月型 的负透镜, 即: 透镜形状为向入射光方向弯曲的弯月型负透镜; 透镜 L2为正透 镜, 焦距为 f2,前后两个光学面的半径分别为 r21、 r22、 , 透镜所使用的光学材料 折射率为 n2、 色散系数为 v2, 透镜形状为向光阑 (振镜) 1方向弯曲的弯月型正 透镜, 即: 透镜形状为向入射光方向弯曲的弯月型正透镜; 透镜 L3为正透镜, 焦距为 f3,前后两个光学面的半径分别为 r31、 r32, 透镜所使用的光学材料折射率 为 n3、 色散系数为 v3, 透镜的形状可用平凸或向光阑 (振镜) 1方向弯曲的弯月 型正透镜, 即: 透镜的形状可用平凸或向入射光方向弯曲的弯月型正透镜, 第 三透镜 L3到焦平面 4的距离为 d6。
[37] 以上透镜组构成实际***吋, 有吋为了保护裸露在外的透镜或为了其它任何目 的而在透镜组出光方向上任何位置增加平行平板构成的光学窗。 本专利涵盖增 加在以上参数条件下增加光学窗口。
[38] 釆用以上设计的有益效果是: 利用非对称的结构实现较大的畸变, 克服了对称 结构中畸变较小的制约, 使得设计很容易满足物像关系为线性的要求。 使用分 离的透镜***, 没有釆用胶合面, 避免了在强激光应用光路中使用吋胶的老化 或被激光破坏吋带来的影响, 提高镜头的稳定性与使用寿命。 同吋, 釆用三片 分离透镜便使各种影响成像质量的像差得到较好的校正, 大大降低了镜头的成 本。
[39] 它们的具体结构及参数表述为:***由 Ll、 L2、 L3三个透镜构成, L1分别由曲 率半径为 Rl、 R2的两个曲面 Sl、 S2构成, 其中心厚度 dl, 材料光学参数为 Ndl: Vdl ; L2分别由曲率半径为 R3、 R4的两个曲面 S3、 S4构成, 其中心厚度 d3, 材 料光学参数为 Nd3:Vd3; L3分别由曲率半径为 R5、 R6的两个曲面 S5、 S6构成, 其中心厚度 d5, 材料光学参数为 Nd5:Vd5; 第一透镜 L1与第二透镜 L2的间隔为 d2 , 第二透镜 L2与第三透镜 L3的间隔为 d4。
[40] 结合以上的参数, 本发明设计了两个镜头, 其具体参数分别如下所示:
[41] 实例 1 :
[42] 第一透镜 L1分别由曲率半径为 Rl=-38.973mm、 R2=-85.54mm的两个曲面 Sl、 S 2构成, 其光轴上的中心厚度 dl=4.4
mm, 材料为 Ndl:Vdl约为 1.52/64; 第二透镜 L2分别由曲率半径为 R3=-85.54mm 、 R4=-50.275mm的两个曲面 S3、 S4构成, 其光轴上的中心厚度 d3=9mm, 材料 为 Nd3:Vd3约为 1.8/25.4; 第三透镜 L3分别由曲率半径为 R5=∞、 R6=-162.62mm 的两个曲面 S5、 S6构成, 其光轴上的中心厚度 d5=6mm, 材料为 Nd5:Vd5约为 1.8 /25.4; 第一透镜 L1与第二透镜 L2在光轴上的间隔为 d2=2.5mm, 第二透镜 L2与第 三透镜 L3在光轴上的间隔为 d4=0.5mm, 第三透镜 L3与成象面在光轴上的距离为 d6=235mm。 并列表如下:
[43]
Figure imgf000008_0001
[44] 根据上表, 可得出数据如下:
[45] f=203.6mm D/f=l:10
Figure imgf000008_0002
[47] fl/f=-0.49 f2/f=0.69
[48] f3/f=1.03
[49] 由于 fl/f=-0.49满足 -0.6<fl/f<-0.4, f2/f=0.69满足 0.5<f2/f<0.8, f3/f=1.03满足 0.9<
[50] 图 3为实施例 1的光线追迹图, 说明该实施例产品的透镜布局; 图 4为像散、 场 曲及畸变分布图 (A为像散和场曲分布图, B为畸变分布图), 从图中可以看出该 实施例的***像散与场曲得到很好的较正; 图 5为线性度差曲线图, ***的线性 误差最大在 ±0.5%以内, 较好地实现了 F-theta镜头的物像关系式; 图 6为视场分 别为 0、 0.3、 0.5、 0.7、 0.85以及 1.0吋的光路差程图, 光程差最大也不超过 ±0.15 λ, 说明该实施例的***的像差得较好的校正; 图 7为光学传递函数 MTF图, 从 中可以看出各视场的 MTF值均较一致, 说明在全视场上成像均匀。
[51] 由以上各图说明: ***的像散与场曲得到很好的校正, 光程差最大也不超过 0.1 5λ, 且从光学传递函数 MTF图上看, 各视场的 MTF值均较一致, 说明在全视场 上成像均匀, 没有渐晕存在, 且在***的入射光束口径较大, 釆用的与一般的 fS 光学***不同的结构形式, 使得该***的产品能够与一般小入射光束口径的产 品进行互换, 达到小型化设计, 且在高功率的激光***中, 通过釆用双胶面的 透镜进行校正相关的像差。
[52] 实例 2:
[53] 第一透镜 L1分别由曲率半径为 Rl=— 63.66mm、 R2=— 156.46mm的两个曲面 SI 、 S2构成, 其光轴上的中心厚度 dl=5.9mm, 材料为 Ndl:Vdl约为 1.52/64; 第二 透镜 L2分别由曲率半径为 R3=—122.14mm、 R4=— 78.585mm的两个曲面 S3、 S4 构成, 其光轴上的中心厚度 d3=l lmm, 材料为 Nd3:Vd3约为 1.8/25.4; 第三透镜 L 3分别由曲率半径为 R5=— 744.74 mm、 R6=— 232.62mm的两个曲面 S5、 S6构成, 其光轴上的中心厚度 d5=8 mm, 材料为 Nd5:Vd5约为 1.8/25.4; 第一透镜 L1与第 二透镜 L2在光轴上的间隔为 d2=3.2mm, 第二透镜 L2与第三透镜 L3在光轴上的间 隔为 d4=0.3mm, 第三透镜 L3与成象面在光轴上的距离为 d6=485mm。 并列表如 下:
[54]
Figure imgf000009_0002
据上表, 可得出数据如下:
f=433.3mm D/f=l:14
Figure imgf000009_0001
fl/f=-0.49 f2/f=0.58 f3/f=1.01
由于 fl/f=—0.49满足 -0.6<fl/f<-0.4, f2/f=0.58满足 0.5<f2/f<0.8, f3/f=1.01满足 0.9< f3/f<1.2o [60] 图 8为实施例 2的光线追迹图, 说明该实施例产品的透镜布局; 图 9为像散、 场 曲及畸变分布图 (A为像散和场曲分布图, B为畸变分布图), 从图中可以看出该 实施例的***像散与场曲得到很好的校正; 图 10为线性度差曲线图, ***的线 性误差最大在 ±0.5%以内, 较好地实现了 F-theta镜头的物像关系式; 图 11为视场 分别为 0、 0.3、 0.5、 0.7、 0.85以及 1.0吋的光路差程图, 光程差最大也不超过 ±0. 2λ, 说明该实施例的***的像差得到了较好的校正; 图 12为光学传递函数 MTF 图, 由以上各图说明: ***的像散与场曲得到很好的较正, 光程差最大也不超 过 0.2λ, 且从光学传递函数 MTF图上看, 各视场的 MTF值均较一致, 说明在全视 场上成像均匀, 没有渐晕存在, 且在***的入射光束口径较大, 釆用的与一般 的 ίθ光学***不同的结构形式, 使得该***的产品能够与一般小入射光束口径的 产品进行互换, 达到小型化设计。

Claims

权利要求书
一种光学镜头, 包括透镜组和光阑, 其特征在于: 所述光阑位于所述透镜 组的前方, 所述透镜组包括三个透镜,分别为第一、 第二、 第三透镜, 依次 排列为"负一正一正"分离的光焦度***, 其中, 所述第一透镜为弯月型负 透镜, 所述第二透镜为弯月型正透镜, 所述第三透镜为平凸型或弯月型正 透镜, 所述第一透镜、 所述第二透镜及所述第三透镜所有的曲面均向着所 述光阑方向弯曲, 且整个光学***的焦距为, 第一、 第二、 第三透镜的焦 距分别为 、 、 , 各透镜的焦距与整个光学***的焦距比率满足以下 要求:
如权利要求所述的光学镜头, 其特征在于:
如权利要求所述的光学镜头, 其特征在于: 如权利要求所述的光学镜头, 其特征在于: 所述第一透镜与所述光阑之间 的距离为 25— 60mm。
PCT/CN2009/070855 2008-04-28 2009-03-18 光学镜头 WO2009132535A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011506554A JP2011519067A (ja) 2008-04-28 2009-03-18 光学レンズ
US12/914,576 US8331044B2 (en) 2008-04-28 2010-10-28 Fixed focal length optical lens system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100669068A CN101369047B (zh) 2008-04-28 2008-04-28 光学镜头
CN200810066906.8 2008-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/914,576 Continuation US8331044B2 (en) 2008-04-28 2010-10-28 Fixed focal length optical lens system

Publications (1)

Publication Number Publication Date
WO2009132535A1 true WO2009132535A1 (zh) 2009-11-05

Family

ID=40412942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070855 WO2009132535A1 (zh) 2008-04-28 2009-03-18 光学镜头

Country Status (4)

Country Link
US (1) US8331044B2 (zh)
JP (1) JP2011519067A (zh)
CN (1) CN101369047B (zh)
WO (1) WO2009132535A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324696B (zh) 2008-04-28 2011-05-04 深圳市大族激光科技股份有限公司 光学镜头
CN100593742C (zh) 2008-04-28 2010-03-10 深圳市大族激光科技股份有限公司 光学镜头
CN101369047B (zh) * 2008-04-28 2010-12-08 深圳市大族激光科技股份有限公司 光学镜头
CN101414047B (zh) 2008-04-28 2010-06-09 深圳市大族激光科技股份有限公司 光学镜头
CN101639564B (zh) * 2009-04-29 2010-10-06 深圳市大族激光科技股份有限公司 激光应用大孔径的光学镜头
CN102313968B (zh) * 2010-06-29 2013-08-14 深圳市大族激光科技股份有限公司 一种紫外激光fθ镜头、激光打标机及激光刻划机
US9739984B2 (en) 2012-10-31 2017-08-22 Han's Laser Technology Industry Group Co., Ltd. F-theta lens and laser processing device for far-infrared laser processing
JP2014149481A (ja) 2013-02-04 2014-08-21 Fujifilm Corp 内視鏡用対物レンズおよび内視鏡
WO2016072891A1 (en) * 2014-11-04 2016-05-12 Vaur Ab Optical system for focusing a high energy laser
DE112014007214B4 (de) * 2014-11-28 2019-04-11 Han's Laser Technology Industry Group Co., Ltd. Optische linsen zur laserbeschriftung
CN106471413B (zh) * 2014-11-28 2019-07-05 大族激光科技产业集团股份有限公司 F-θ型光刻镜头
CN104570285B (zh) * 2015-02-05 2017-01-18 大族激光科技产业集团股份有限公司 一种F‑theta光学镜头及激光加工***
CN110036321B (zh) * 2016-12-06 2020-09-22 松下知识产权经营株式会社 调芯方法
CN109471240B (zh) * 2018-12-13 2024-03-01 福建福光天瞳光学有限公司 一种长焦红外光学无热化***
CN109521542B (zh) * 2018-12-28 2023-11-14 福建福光天瞳光学有限公司 一种经济型低畸变长波红外光学无热化镜头及其装配方法
RU198458U1 (ru) * 2019-06-10 2020-07-10 Общество с ограниченной ответственностью "СИСТЕМЫ ФОТОНИКИ" F-theta объектив для сканирующей системы лазерной развертки
CN110441892B (zh) * 2019-08-02 2024-02-13 佛山科学技术学院 一种低畸变小型化高分辨率鱼眼镜头光学***
CN112130304A (zh) * 2020-09-30 2020-12-25 中国科学院西安光学精密机械研究所 一种无热化激光发射镜头
US20220283416A1 (en) * 2021-03-04 2022-09-08 Ii-Vi Delaware, Inc. Dynamic Focus For Laser Processing Head
CN114280783B (zh) * 2021-12-22 2022-12-06 上海摩软通讯技术有限公司 光学模组及vr设备
CN114326055B (zh) * 2021-12-30 2024-01-12 深圳市韵腾激光科技有限公司 一种大扫描角度的红外场镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200314A (ja) * 1986-02-28 1987-09-04 Sankyo Seiki Mfg Co Ltd 広角fθレンズ系
JPS63104009A (ja) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd 等速度走査レンズ
JPH06109995A (ja) * 1992-09-28 1994-04-22 Seiko Epson Corp 光走査装置
JPH0815606A (ja) * 1994-07-01 1996-01-19 Dainippon Screen Mfg Co Ltd 光走査装置
JPH1039205A (ja) * 1996-07-24 1998-02-13 Nikon Corp 走査用レンズ
CN2585256Y (zh) * 2002-12-18 2003-11-05 上海市激光技术研究所 二个孔径光阑置于前端的fθ物镜
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113573B1 (zh) 1970-12-15 1976-04-30
JPS593725B2 (ja) 1978-01-27 1984-01-25 旭光学工業株式会社 レトロフオ−カス型広角写真レンズ
JPS56135815A (en) 1980-03-26 1981-10-23 Minolta Camera Co Ltd Lens for optical scanning
JPS6053294B2 (ja) * 1980-06-20 1985-11-25 株式会社ニコン 4群構成fθレンズ系
JPS61286810A (ja) 1985-06-14 1986-12-17 Konishiroku Photo Ind Co Ltd 走査光学系用レンズ
JPS6289013A (ja) * 1985-10-15 1987-04-23 Copal Electron Co Ltd f・θレンズ
US4880299A (en) 1986-04-28 1989-11-14 Minolta Camera Kabushiki Kaisha Telecentric fθ lens system for laser COM
JPS62254110A (ja) 1986-04-28 1987-11-05 Fuji Xerox Co Ltd 光ビ−ム走査装置およびそれを用いたカラ−プリンタ
JPS63267910A (ja) 1987-04-27 1988-11-04 Dainippon Screen Mfg Co Ltd 光ビ−ム走査用レンズ
JP2702516B2 (ja) 1988-08-15 1998-01-21 リコー光学株式会社 fθレンズ
JPH02181712A (ja) * 1989-01-09 1990-07-16 Canon Inc 色消しレーザ走査光学系
JP2673591B2 (ja) 1989-12-20 1997-11-05 キヤノン株式会社 fθレンズ及びそれを用いたレーザー走査光学系
JP2945097B2 (ja) 1990-08-10 1999-09-06 リコー光学株式会社 テレセントリックなfθレンズ
US5917663A (en) 1995-02-10 1999-06-29 Nikon Corporation Wide-angle lens with an image stabilizing function
US5633736A (en) 1995-03-28 1997-05-27 Eastman Kodak Company Scan lens and an optical scanner system incorporating two deflectors
JPH0990216A (ja) 1995-09-22 1997-04-04 Matsushita Electric Ind Co Ltd テレセントリックfθレンズ
JP4488263B2 (ja) 2000-03-29 2010-06-23 フジノン株式会社 f・θレンズ
JP4030743B2 (ja) 2001-10-31 2008-01-09 ペンタックス株式会社 ズームレンズ系
US6924938B2 (en) 2003-03-19 2005-08-02 Ricoh Company, Ltd. Zoom lens, camera, and mobile information terminal
JP4874852B2 (ja) 2007-04-09 2012-02-15 Hoya株式会社 マクロレンズ系
JP5015657B2 (ja) 2007-05-18 2012-08-29 富士フイルム株式会社 撮像レンズ、および該撮像レンズを備えた撮像装置
CN101414047B (zh) 2008-04-28 2010-06-09 深圳市大族激光科技股份有限公司 光学镜头
CN100593742C (zh) 2008-04-28 2010-03-10 深圳市大族激光科技股份有限公司 光学镜头
CN101324696B (zh) 2008-04-28 2011-05-04 深圳市大族激光科技股份有限公司 光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200314A (ja) * 1986-02-28 1987-09-04 Sankyo Seiki Mfg Co Ltd 広角fθレンズ系
JPS63104009A (ja) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd 等速度走査レンズ
JPH06109995A (ja) * 1992-09-28 1994-04-22 Seiko Epson Corp 光走査装置
JPH0815606A (ja) * 1994-07-01 1996-01-19 Dainippon Screen Mfg Co Ltd 光走査装置
JPH1039205A (ja) * 1996-07-24 1998-02-13 Nikon Corp 走査用レンズ
CN2585256Y (zh) * 2002-12-18 2003-11-05 上海市激光技术研究所 二个孔径光阑置于前端的fθ物镜
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头

Also Published As

Publication number Publication date
CN101369047A (zh) 2009-02-18
US8331044B2 (en) 2012-12-11
US20110043931A1 (en) 2011-02-24
CN101369047B (zh) 2010-12-08
JP2011519067A (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2009132535A1 (zh) 光学镜头
WO2009132539A1 (zh) 光学镜头
WO2009132537A1 (zh) 光学镜头
WO2009132538A1 (zh) 光学镜头
WO2021031499A1 (zh) 一种投影镜头
TWI664044B (zh) 一種適於在雷射加工工藝中使用的F-theta鏡頭
JP2005234564A (ja) 複ガウス型写真対物レンズ
JP2001281604A (ja) コリメータレンズおよびこれを用いた光走査装置
CN100549748C (zh) F-theta光学镜头
JP2000028915A (ja) コリメータレンズおよびこれを用いた光走査装置
JPS6233565B2 (zh)
CN101866044B (zh) 一种光学镜头
JP4628516B2 (ja) コリメータレンズおよびこれを用いた光走査装置
CN100476489C (zh) 激光应用光学fθ镜头
CN213987002U (zh) 大孔径且低畸变的F-theta紫外场镜装置
CN216083234U (zh) F-θ物镜
CN201004108Y (zh) 用于激光打标***中的fθ镜头
CN112817128A (zh) 大孔径且低畸变的F-theta紫外场镜装置
CN115343829A (zh) 一种平场远心管镜
CN115877564A (zh) 一种近红外激光打标镜头的大视场大孔径成像方法
CN116736501A (zh) 一种远心平场镜头
CN116381915A (zh) 一种远心平场镜头
CN117406395A (zh) 一种平场镜头及激光加工设备
JPS6217720A (ja) 等速度走査用レンズ
JPH03188404A (ja) テレセントリックなfθレンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09737646

Country of ref document: EP

Kind code of ref document: A1