WO2009130793A1 - 試験システムおよびプローブ装置 - Google Patents

試験システムおよびプローブ装置 Download PDF

Info

Publication number
WO2009130793A1
WO2009130793A1 PCT/JP2008/058143 JP2008058143W WO2009130793A1 WO 2009130793 A1 WO2009130793 A1 WO 2009130793A1 JP 2008058143 W JP2008058143 W JP 2008058143W WO 2009130793 A1 WO2009130793 A1 WO 2009130793A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
probe
semiconductor
wiring board
semiconductor wafer
Prior art date
Application number
PCT/JP2008/058143
Other languages
English (en)
French (fr)
Inventor
芳春 梅村
芳雄 甲元
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2008/058143 priority Critical patent/WO2009130793A1/ja
Priority to TW098113186A priority patent/TWI391672B/zh
Publication of WO2009130793A1 publication Critical patent/WO2009130793A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0491Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets for testing integrated circuits on wafers, e.g. wafer-level test cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers

Definitions

  • the present invention relates to a test system and a probe device.
  • the present invention relates to a test apparatus that tests a plurality of semiconductor chips formed on a semiconductor wafer, and a probe apparatus that is electrically connected to the plurality of semiconductor chips formed on the semiconductor wafer.
  • the semiconductor wafer container is formed of a holding plate for holding a semiconductor wafer, a wiring board provided with a probe connected to a terminal of a semiconductor chip, and a sealing material for sealing between the holding plate and the wiring board. And the probe of a wiring board and the terminal of a semiconductor chip are connected by decompressing sealed space.
  • the terminal spacing of the wiring board is different from the terminal spacing of the semiconductor chip, it is conceivable to insert a pitch conversion board between the wiring board and the semiconductor chip. In this case, it is conceivable to fix the pitch conversion board to the wiring board.
  • the pitch conversion board and the wiring board have different coefficients of thermal expansion, if the pitch conversion board is fixed to the wiring board, stress is applied to the pitch conversion board and the fixing portion of the wiring board along with the temperature change.
  • the pitch conversion board falls off the wiring board when the holding plate is moved to replace the semiconductor wafer to be tested.
  • an object of the present invention is to provide a probe device and a test system that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • a probe device that is electrically connected to a semiconductor wafer on which a plurality of semiconductor chips are formed, a wiring board provided with a plurality of terminals, A plurality of device-side connection terminals provided between the wiring substrate and the semiconductor wafer, having a plurality of device-side connection terminals on the surface on the wiring substrate side, and electrically connected to each semiconductor chip collectively on the surface on the semiconductor wafer side
  • a probe device comprising a probe wafer having a wafer-side connection terminal and a support unit for holding the probe wafer so that the position of the probe wafer relative to the wiring substrate can be displaced within a predetermined range.
  • a test system for testing a plurality of semiconductor chips formed on a semiconductor wafer, a chamber, a transfer device for sequentially transferring each semiconductor wafer into the chamber, And a probe device that is electrically connected to the semiconductor wafer, the probe device being a probe device that is electrically connected to the semiconductor wafer on which a plurality of semiconductor chips are formed, wherein the wiring board is provided with a plurality of terminals Are provided between the wiring substrate and the semiconductor wafer, have a plurality of device side connection terminals on the surface on the wiring substrate side, and are electrically connected to the respective semiconductor chips collectively on the surface on the semiconductor wafer side A probe wafer having a plurality of wafer side connection terminals and a probe so that the position of the probe wafer relative to the wiring board can be displaced within a predetermined range.
  • Providing a test system comprising a support part for holding the Movement.
  • FIG. 1 is a diagram showing an outline of a test system 400 according to one embodiment.
  • 3 is a cross-sectional view showing a configuration example of a probe device 200 provided in the chamber 20 and electrically connected to the semiconductor wafer 300.
  • FIG. 2 is a cross-sectional view showing the probe apparatus 200 in a state where a wafer tray 226 is separated from a membrane 222 and a probe wafer 100.
  • FIG. 2 is a top view illustrating an example of a surface of a probe wafer 100 on a wiring board side.
  • FIG. 3 is a diagram illustrating a configuration example of a membrane 222.
  • FIG. 5 is a diagram illustrating a configuration example of a wafer tray 226.
  • FIG. 5 is a diagram illustrating a configuration example of a wafer tray 226.
  • FIG. 1 is a diagram for explaining an outline of a probe wafer 100. 1 is an example of a cross-sectional view of a probe wafer 100.
  • FIG. 3 is a block diagram illustrating a functional configuration example of a circuit unit 110.
  • FIG. It is a figure which shows the outline
  • FIG. It is a figure which shows the outline
  • DESCRIPTION OF SYMBOLS 10 Control apparatus, 20 ... Chamber, 40 ... Transfer apparatus, 60 ... Wafer cassette, 100 ... Probe wafer, 102 ... Wafer connection surface, 104 ... Device connection surface, DESCRIPTION OF SYMBOLS 110 ... Circuit part, 111 ... Wafer substrate, 112 ... Wafer side connection terminal, 114 ... Device side connection terminal, 116 ... Through hole, 117 ... Wiring, 122 ... Pattern Generation unit 124 ... Pattern memory 126 ... Expected value memory 128 ... Fail memory 130 ... Waveform shaping unit 132 ... Driver 134 134 Comparator 136 ... Timing Generating unit, 138... Logic comparing unit, 140... Characteristic measuring unit, 142...
  • Power supply unit 150... Pad, 200. ... Supporting part, 205 ... Column part, 206 ... Screw hole, 208 ... Screw hole, 209 ... Overhang part, 212 ... Anisotropic conductive sheet on the device side, 214.
  • Device side seal part 218 ... Wafer side anisotropic conductive sheet, 220 ... Fixing ring, 222 ... Membrane, 224 ... Wafer side seal part, 226 ... Wafer tray, 228 ... Wafer stage, 230 ... intake path, 232 ... intake path, 234 ... decompression section, 236 ... decompressor, 238 ... decompressor, 240 ... through hole, 242 ... through Holes, 244 ...
  • Air reservoir space 246 ... Air reservoir space, 248 ... Sealing part, 250 ... Sealing part, 252 ... Anisotropic conductive sheet, 300 ... Semiconductor wafer 310 ... Semiconductor chip, 400 ... Test system Arm
  • FIG. 1 is a diagram showing an outline of a test system 400 according to one embodiment.
  • the test system 400 tests a plurality of semiconductor chips formed on the semiconductor wafer 300.
  • the test system 400 may test a plurality of semiconductor wafers 300 in parallel.
  • the test system 400 includes a control device 10, a plurality of chambers 20, a transfer device 40, and a wafer cassette 60.
  • the control device 10 controls the test system 400.
  • the control device 10 may control the chamber 20, the transfer device 40, and the wafer cassette 60.
  • the chamber 20 sequentially receives the semiconductor wafers 300 to be tested and tests the semiconductor wafers 300 inside the chamber 20.
  • Each chamber 20 may independently test the semiconductor wafer 300. That is, each chamber 20 may test the semiconductor wafer 300 without synchronizing with the other chambers 20.
  • the wafer cassette 60 stores a plurality of semiconductor wafers 300.
  • the transfer device 40 transfers each semiconductor wafer 300 stored in the wafer cassette 60 into one of the vacant chambers 20. Further, the transfer device 40 may unload the semiconductor wafer 300 that has been tested from the chamber 20 and store it in the wafer cassette 60.
  • FIG. 2 is a cross-sectional view showing a configuration example of the probe apparatus 200 provided in the chamber 20 and electrically connected to the semiconductor wafer 300.
  • the probe apparatus 200 of this example delivers signals to and from the semiconductor wafer 300 in response to a control signal from the control apparatus 10.
  • the probe device 200 includes a wiring board 202, a support portion 204, a device-side anisotropic conductive sheet 212, a device-side seal portion 214, a probe wafer 100, a wafer-side anisotropic conductive sheet 218, a membrane 222, a fixing ring 220, and a wafer side.
  • a seal unit 224, a wafer tray 226, a wafer stage 228, and a decompression unit 234 are included.
  • a sealed space for storing the probe wafer 100 and the semiconductor wafer 300 is formed by the wiring substrate 202, the wafer tray 226, the apparatus side seal part 214, and the wafer side seal part 224. Then, by depressurizing the sealed space, the probe wafer 100 and the semiconductor wafer 300 are electrically connected, and the semiconductor wafer 300 is tested.
  • the wiring board 202 is provided with a plurality of terminals on the lower surface on the sealed space side and is electrically connected to the probe wafer 100. Further, the wiring board 202 may pass signals between the control device 10 shown in FIG. 1 and the probe wafer 100. The control device 10 may control the probe wafer 100 via the wiring board 202.
  • the wiring board 202 may be a board in which wiring and terminals are formed on a printed board, for example.
  • the probe wafer 100 is provided between the wiring board 202 and the semiconductor wafer 300 and is electrically connected to the wiring board 202 and the semiconductor wafer 300.
  • the probe wafer 100 may be electrically connected to the wiring board 202 via an apparatus-side anisotropic conductive sheet 212 provided between the probe wafer 100 and the wiring board 202.
  • the device-side anisotropic conductive sheet 212 is pressed to electrically connect the terminal of the wiring board 202 and the device-side connection terminal provided on the surface of the probe wafer 100 on the wiring board side.
  • the probe wafer 100 has a position in the vertical direction with respect to the lower surface of the wiring board 202 to such an extent that the device-side anisotropic conductive sheet 212 can be pressed and electrically connected to the wiring board 202 when the sealed space is depressurized. It is supported so that it can be displaced within a predetermined range.
  • the probe wafer 100 may be electrically connected to the semiconductor wafer 300 via the wafer side anisotropic conductive sheet 218 and the membrane 222 provided between the probe wafer 100 and the semiconductor wafer 300. Note that the probe wafer 100 is collectively electrically connected to a plurality of semiconductor chips provided on the semiconductor wafer 300.
  • the probe wafer 100 may be a wafer having a diameter larger than that of the semiconductor wafer 300.
  • the wafer side anisotropic conductive sheet 218 is provided between the probe wafer 100 and the membrane 222.
  • the wafer side anisotropic conductive sheet 218 is pressed to electrically connect the wafer side connection terminals provided on the semiconductor wafer side surface of the probe wafer 100 and the bump terminals of the membrane 222.
  • the membrane 222 is provided between the wafer side anisotropic conductive sheet 218 and the semiconductor wafer 300.
  • the membrane 222 may have bump terminals that electrically connect the terminals of the semiconductor wafer 300 and the wafer-side connection terminals of the probe wafer 100.
  • the fixing ring 220 fixes the membrane 222 to the device-side seal portion 214.
  • the fixing ring 220 may be provided in an annular shape along the peripheral edge of the surface of the probe wafer 100 on the semiconductor wafer side.
  • the inner diameter of the fixing ring 220 may be larger than the diameters of the wafer side anisotropic conductive sheet 218 and the semiconductor wafer 300.
  • the membrane 222 has a circular shape having substantially the same diameter as that of the fixing ring 220, and an end portion thereof is fixed to the fixing ring 220.
  • the apparatus-side anisotropic conductive sheet 212, the probe wafer 100, and the wafer-side anisotropic conductive sheet 218 are disposed between the membrane 222 and the wiring substrate 202, and are arranged at a predetermined position with respect to the wiring substrate 202 by the membrane 222. Retained. As shown in FIG. 2, a gap may be provided between the apparatus-side anisotropic conductive sheet 212, the probe wafer 100, the wafer-side anisotropic conductive sheet 218, and the apparatus-side seal portion 214. With such a configuration, the semiconductor wafer 300 and the probe wafer 100 can be electrically connected by pressing the membrane 222 with the semiconductor wafer 300.
  • the wafer tray 226 is provided so as to form a sealed space with the wiring board 202 when placed at a predetermined position. As described above, the wafer tray 226 of this example forms a sealed space with the wiring substrate 202, the apparatus-side seal portion 214, and the wafer-side seal portion 224. The wafer tray 226 places the semiconductor wafer 300 on the surface of the sealed space side.
  • the apparatus-side seal 214 is provided along the peripheral edge of the surface of the membrane 222 on the wiring board side, and seals between the peripheral edge of the surface of the membrane 222 on the wiring board side and the wiring board 202.
  • the device-side seal 214 may be provided between the lower surface of the wiring board 202 and the surface of the membrane 222 on the wiring board side.
  • the device-side seal portion 214 is formed of an elastic material having elasticity to such an extent that the membrane 222 can press and conduct the device-side anisotropic conductive sheet 212 and the wafer-side anisotropic conductive sheet 218. It's okay.
  • the wafer side seal part 224 is provided along the region corresponding to the peripheral part of the membrane 222 on the surface of the wafer tray 226, and seals between the peripheral part of the surface of the membrane 222 on the wafer tray side and the wafer tray 226.
  • the wafer side seal portion 224 may be formed in an annular shape on the surface of the wafer tray 226.
  • the wafer side seal portion 224 may be formed in a lip shape in which the annular diameter increases as the distance from the surface of the wafer tray 226 increases.
  • the tip of the wafer-side seal portion 224 bends according to the pressing force, thereby bringing the distance between the membrane 222 and the semiconductor wafer 300 closer.
  • the wafer-side seal portion 224 is formed such that the height from the surface of the wafer tray 226 when not pressed against the membrane 222 is higher than the height of the semiconductor wafer 300.
  • the wafer stage 228 moves the wafer tray 226.
  • the wafer stage 228 moves the wafer tray 226 to a position where the upper end portion of the wafer side seal portion 224 is in close contact with the membrane 222.
  • a sealed space for storing the probe wafer 100 and the semiconductor wafer 300 can be formed by the wiring substrate 202, the wafer tray 226, the apparatus-side seal portion 214, and the wafer-side seal portion 224.
  • the decompression unit 234 decompresses the sealed space between the wiring substrate 202 and the wafer tray 226 formed by the wiring substrate 202, the wafer tray 226, the apparatus side seal unit 214, and the wafer side seal unit 224.
  • the decompression unit 234 decompresses the sealed space after the wafer stage 228 moves the wafer tray 226 to form the sealed space.
  • the decompression unit 234 brings the wafer tray 226 closer to the wiring board 202 to a predetermined position.
  • the wafer tray 226 is disposed at the predetermined position, thereby applying a pressing force to the apparatus-side anisotropic conductive sheet 212 and the wafer-side anisotropic conductive sheet 218 to electrically connect the wiring board 202 and the probe wafer 100.
  • the probe wafer 100 and the semiconductor wafer 300 are electrically connected.
  • the wafer side seal portion 224 may contact the membrane 222 inside the fixing ring 220.
  • the sealed space is divided by the membrane 222 into a space on the wiring substrate 202 side and a space on the wafer tray 226 side.
  • the membrane 222 is provided with a through hole 242 connecting these spaces.
  • the probe wafer 100, the apparatus-side anisotropic conductive sheet 212, and the wafer-side anisotropic conductive sheet 218 are also provided with a through hole 240, a through hole 213, and a through hole 219.
  • the through holes provided in the membrane 222, the probe wafer 100, the apparatus-side anisotropic conductive sheet 212, and the wafer-side anisotropic conductive sheet 218 are preferably distributed substantially uniformly in each plane. With such a configuration, the air sucked in the process of depressurizing the sealed space flows in a dispersed manner through the many through holes.
  • the through hole 242, the through hole 240, the through hole 213, and the through hole 219 may be provided at corresponding positions, or may be provided at different positions.
  • the pressing force applied to the apparatus-side anisotropic conductive sheet 212 and the wafer-side anisotropic conductive sheet 218 is distributed substantially evenly in the respective planes. Stress strain can be greatly reduced. For this reason, the crack of the probe wafer 100, the distortion
  • the membrane 222 with the through hole 242
  • the space between the wiring substrate 202 and the membrane 222 and the space between the membrane 222 and the semiconductor wafer 300 can be decompressed with a single decompression unit 234.
  • the decompression unit 234 may adsorb the semiconductor wafer 300 to the wafer tray 226.
  • the decompression unit 234 of this example includes a decompressor 236 for a sealed space and a decompressor 238 for a semiconductor wafer.
  • an air intake path 232 for a sealed space and an air intake path 230 for a semiconductor wafer are formed in the wafer tray 226.
  • the air intake path 232 for the sealed space is provided through the inside of the wafer tray 226, one opening is formed on the surface on which the semiconductor wafer 300 is placed, and the other opening is connected to the decompressor 236 for the sealed space. Formed on the surface. Note that one opening of the air intake path 232 for the sealed space is inside the region surrounded by the wafer-side seal portion 224 on the surface of the wafer tray 226 where the semiconductor wafer 300 is placed, and the semiconductor wafer 300 is placed thereon. It is formed outside the area to be placed. Further, the air intake path 232 for the sealed space may have a plurality of openings on the surface of the wafer tray 226 on which the semiconductor wafer 300 is placed.
  • the intake path 230 for the semiconductor wafer is provided through the inside of the wafer tray 226, one opening is formed on the surface on which the semiconductor wafer 300 is placed, and the other opening is the decompressor 238 for the semiconductor wafer. Formed on the surface to be connected. Note that one opening of the intake path 230 for the semiconductor wafer is formed in a region where the semiconductor wafer 300 is placed on the surface of the wafer tray 226 on the sealed space side.
  • the semiconductor wafer intake path 230 may have a plurality of openings on the surface of the wafer tray 226 on which the semiconductor wafer 300 is placed.
  • the decompressor 236 for the sealed space decompresses the space between the wafer tray 226 and the membrane 222 by sucking the air intake path 232 for the sealed space.
  • the through-hole 242 is formed in the membrane 222, the space between the wafer tray 226 and the membrane 222 can be decompressed, so that the sealed space between the wiring substrate 202 and the membrane 222 can also be decompressed. it can.
  • the semiconductor wafer decompressor 238 sucks the semiconductor wafer intake passage 230 to adsorb the semiconductor wafer 300 to the wafer tray 226.
  • the probe device 200 is electrically connected to the semiconductor wafers 300 that are sequentially transferred by the transfer device 40.
  • the wafer tray 226 is provided so as to be separable from the membrane 222 and the probe wafer 100, and sequentially transfers the semiconductor wafers 300 to and from the transfer device 40.
  • the probe wafer 100 and the membrane 222 are provided on the lower surface of the wiring substrate 202.
  • the support unit 204 holds the probe wafer 100, the membrane 222, and the like so as not to drop off in a state where the wafer tray 226 is separated.
  • FIG. 3 is a cross-sectional view showing the probe apparatus 200 in a state where the wafer tray 226 is separated from the membrane 222.
  • the support unit 204 holds the membrane 222, the probe wafer 100, and the like so as not to drop from the wiring board 202 even in such a state.
  • the support unit 204 may support the membrane 222 by supporting the fixing ring 220. As described above, the membrane 222 is fixed to the fixing ring 220. Since the probe wafer 100 and the anisotropic conductive sheet are disposed between the wiring substrate 202 and the membrane 222 as described above, the support unit 204 supports the membrane 222 with respect to the wiring substrate 202, The probe wafer 100 and the like can also be supported with respect to the wiring substrate 202. As described above, the support part 204 supports the fixing ring 220 so that the fixing ring 220 does not drop off from the wiring substrate 202, so that the membrane 222 and the like can be prevented from dropping off.
  • the membrane 222 presses the device-side anisotropic conductive sheet 212, the probe wafer 100, and the wafer-side anisotropic conductive sheet 218, so that the probe wafer 100 and the wiring substrate 202, and Since the membrane 222 and the probe wafer 100 are electrically connected, the support unit 204 supports the membrane 222 so that the membrane 222 can approach the lower surface of the wiring substrate 202 within a predetermined range.
  • the support portion 204 has a lower end of the fixing ring 220 at a position away from the lower surface of the wiring substrate 202 by a predetermined distance h so that the lower end of the fixing ring 220 cannot be more than the predetermined distance h from the lower surface of the wiring substrate 202. May be supported.
  • the support part 204 in this example has a pillar part 205 and an overhang part 209.
  • the column part 205 is provided to extend in the vertical direction from the lower surface of the wiring board 202 to the lower end of the fixing ring 220 on the outer side of the peripheral part of the device-side seal part 214.
  • the overhang portion 209 is provided to protrude from the column portion 205 in the horizontal direction at the lower end of the column portion 205, and supports the lower end of the fixing ring 220.
  • the distance h from the lower surface of the wiring board 202 to the upper surface of the overhang portion 209 is the device side anisotropic conductive sheet 212, the probe wafer 100, the wafer side when the sealed space is decompressed by the decompression unit 234. It is preferably larger than the sum of the thicknesses of the anisotropic conductive sheet 218, the membrane 222, and the fixing ring 220.
  • the support unit 204 supports the membrane 222 so that the apparatus-side anisotropic conductive sheet 212 and the wafer-side anisotropic conductive sheet 218 can be pressed by the membrane 222 when the sealed space is depressurized. can do.
  • the distance h from the lower surface of the wiring board 202 to the upper surface of the overhang portion 209 is the device side anisotropic conductive sheet 212, the probe wafer 100, and the wafer side when the sealed space is not decompressed by the decompression unit 234.
  • the thickness may be smaller than the sum of the thicknesses of the anisotropic conductive sheet 218, the membrane 222, and the fixing ring 220. Thereby, it is possible to prevent the probe wafer 100 and the like from excessively vibrating when the probe apparatus 200 is moved.
  • the thickness of the apparatus-side anisotropic conductive sheet 212 when the sealed space is not decompressed by the decompression unit 234 is about 0.4 mm, and the thickness of the probe wafer 100 is about 0.725 mm.
  • the side anisotropic conductive sheet 218 has a thickness of about 0.17 mm
  • the membrane 222 has a thickness of about 0.025 mm
  • the fixing ring 220 has a thickness of about 4.0 mm. That is, the sum of these may be about 5.32 mm.
  • the anisotropic conductive sheet is compressed, and the total sum of these thicknesses is about 5.175 mm.
  • the distance h from the lower surface of the wiring board 202 to the upper surface of the overhang portion 209 may be about 5.20 to 5.30 mm.
  • the support unit 204 supports the membrane 222 and the like by applying a pressing force in the direction of the lower surface of the wiring board 202. Further, when the sealed space is decompressed by the decompression unit 234, the pressing force of the support unit 204 against the membrane 222 and the like becomes substantially zero.
  • the support unit 204 may support the membrane 222 and the like so that the position of the membrane 222 and the like can be displaced within a predetermined range even in the horizontal direction with respect to the lower surface of the wiring board 202.
  • the positions of the side surfaces of the device-side seal portion 214 and the fixing ring 220 are defined by the positions of the column portions 205.
  • the column part 205 may be connected to the lower surface of the wiring board 202 so as to move within a predetermined range in the horizontal direction.
  • the column part 205 may be screwed to the lower surface of the wiring board 202.
  • the diameter of the screw hole 206 formed in the column part 205 may be larger than the diameter of the screw hole 208 formed in the wiring board 202.
  • the wiring board 202 and the probe wafer 100 can be easily electrically connected. Further, the probe wafer 100 and the semiconductor wafer 300 can be easily electrically connected.
  • FIG. 4 is a top view showing an example of the surface of the probe wafer 100 on the wiring board side. As described with reference to FIGS. 2 and 3, a plurality of through holes 240 are formed in the probe wafer 100.
  • the plurality of through holes 240 may be formed so as to be distributed substantially evenly in the probe wafer 100. Further, the plurality of through holes 240 may be provided in a region where the circuit portion is not formed in the probe wafer 100. For example, the through-hole 240 may be formed in a boundary region between the respective circuit units.
  • FIG. 5 is a diagram illustrating a configuration example of the membrane 222.
  • FIG. 5 shows a surface of the membrane 222 on the semiconductor wafer 300 side. As described above, the membrane 222 is stretched inside the annular fixing ring 220.
  • the through holes 242 may be formed so as to be distributed substantially evenly in the membrane 222.
  • the membrane 222 is provided with a plurality of bumps that conduct between the front and back surfaces.
  • the through hole 242 may be provided between these bumps.
  • the overhanging portion 209 of the support portion 204 supports the fixing ring 220.
  • a plurality of support portions 204 may be provided on the circumference of the fixing ring 220 so as to be arranged at predetermined equal intervals.
  • FIG. 6 is a diagram illustrating a configuration example of the wafer tray 226.
  • FIG. 6 shows an upper surface of the wafer tray 226 on which the semiconductor wafer 300 is placed.
  • the wafer side seal portion 224 is provided on the upper surface of the wafer tray 226.
  • an opening of the air intake path 232 for the sealed space and an opening of the air intake path 230 for the semiconductor wafer are formed.
  • a plurality of openings of the intake path 230 for the semiconductor wafer may be formed in a region where the semiconductor wafer 300 is to be placed. Further, a plurality of openings of the air intake path 232 for the sealed space may be formed outside the region where the semiconductor wafer 300 is to be placed and inside the region where the wafer side seal portion 224 is provided.
  • FIG. 7 is a diagram showing a configuration example of the wafer tray 226.
  • FIG. 7 shows a cross section of a portion of the wafer tray 226.
  • the air intake path 232 for the sealed space and the air intake path 230 for the semiconductor wafer are formed inside the wafer tray 226.
  • a sealing unit 248 and a sealing unit 250 for sealing the opening of each intake path may be provided on the side surface of the wafer tray 226 connected to the decompression unit 234.
  • the sealing part 248 and the sealing part 250 may be provided so as to seal the opening of each intake passage when the decompression part 234 is removed.
  • an air reservoir space 244 that is connected to the intake path 230 and has a diameter larger than that of the intake path 230 may be formed inside the wafer tray 226.
  • An air reservoir space 246 that is connected to the intake path 232 and has a diameter larger than that of the intake path 232 may be formed inside the wafer tray 226.
  • the transfer apparatus 40 described with reference to FIG. 1 may transfer the wafer tray 226 to the inside of each chamber 20 with the semiconductor wafer 300 placed on the wafer tray 226.
  • the test system 400 may further include a placement unit that delivers the semiconductor wafer 300 to the transfer device 40 in a state where the semiconductor wafer 300 is placed on the wafer tray 226.
  • the transfer apparatus 40 may carry out the wafer tray 226 on which the semiconductor wafer 300 that has been tested is placed from the chamber 20.
  • the mounting unit described above may remove the semiconductor wafer 300 from the wafer tray 226 received from the transfer device 40 and place the semiconductor wafer 300 to be tested next on the wafer tray 226.
  • the semiconductor wafer 300 When the semiconductor wafer 300 is placed on the wafer tray 226 and transported, it is preferable that the semiconductor wafer 300 is attracted to the wafer tray 226 and then the semiconductor wafer intake path 230 is sealed and transported by the sealing portion 248. Thereby, the semiconductor wafer 300 can be transported more safely.
  • the test system 400 may include a plurality of wafer trays 226 that are larger than the number of chambers 20. In this case, even if the semiconductor wafers 300 are tested in parallel in all the chambers 20, there are wafer trays 226 that are not stored in the chambers 20. While the semiconductor wafer 300 is being tested in any of the chambers 20, the transfer device 40 places the semiconductor wafer 300 to be tested next on a wafer tray 226 that is not stored in any of the chambers 20 in advance. Good. Thereby, when the test of the semiconductor wafer 300 is completed in any one of the chambers 20, the semiconductor wafer 300 to be tested next can be quickly transferred.
  • FIG. 8 is a diagram for explaining the outline of the probe wafer 100.
  • the probe wafer 100 is shown together with the semiconductor wafer 300.
  • the semiconductor wafer 300 may be a disk-shaped semiconductor substrate, for example. More specifically, the semiconductor wafer 300 may be silicon, a compound semiconductor, or another semiconductor substrate.
  • the plurality of semiconductor chips 310 to be tested by the test system 400 may be formed on the semiconductor wafer 300 using a semiconductor process such as exposure.
  • the probe wafer 100 may electrically connect the semiconductor wafer 300 and the control device 10. More specifically, the probe wafer 100 is disposed between each terminal of the wiring board 202 connected to the control device 10 and each terminal formed on the semiconductor wafer 300, and in the wiring board 202 and the semiconductor wafer 300, Connect the corresponding terminals electrically.
  • the probe wafer 100 of this example includes a wafer substrate 111 and a plurality of wafer side connection terminals 112, as will be described later with reference to FIG.
  • the control device 10 tests each semiconductor chip 310 of the semiconductor wafer 300 through the probe wafer 100.
  • the control device 10 may supply a test signal to each semiconductor chip 310 via the probe wafer 100.
  • the control device 10 may receive a response signal output from each semiconductor chip 310 according to the test signal via the probe wafer 100, and determine whether each semiconductor chip 310 is good or bad based on the response signal.
  • FIG. 9 is an example of a cross-sectional view of the probe wafer 100.
  • the probe wafer 100 includes a wafer substrate 111, a wafer side connection terminal 112, a device side connection terminal 114, a through hole 116, a pad 150, and a wiring 117.
  • the wafer substrate 111 is formed of the same semiconductor material as the substrate of the semiconductor wafer 300.
  • the wafer substrate 111 may be a silicon substrate.
  • the wafer substrate 111 may be formed of a semiconductor material having substantially the same coefficient of thermal expansion as the substrate of the semiconductor wafer 300.
  • the wafer substrate 111 has a wafer connection surface 102 and a device connection surface 104 formed on the back surface of the wafer connection surface 102.
  • the wafer connection surface 102 is formed facing the semiconductor wafer 300, and the device connection surface 104 is formed facing the wiring substrate 202.
  • the plurality of wafer side connection terminals 112 are formed on the wafer connection surface 102 of the wafer substrate 111. Further, at least one wafer side connection terminal 112 is provided for each semiconductor chip 310. For example, one wafer side connection terminal 112 may be provided for each input / output terminal of each semiconductor chip 310. That is, when each semiconductor chip 310 has a plurality of input / output terminals, a plurality of wafer side connection terminals 112 may be provided for each semiconductor chip 310.
  • Each wafer side connection terminal 112 is provided at the same interval as each input / output terminal in the semiconductor wafer 300 and is electrically connected to the input / output terminal of the corresponding semiconductor chip 310.
  • “electrically connected” may refer to a state in which an electric signal can be transmitted between two members.
  • the wafer side connection terminal 112 and the input / output terminal of the semiconductor chip 310 may be electrically connected by direct contact or indirectly contact through another conductor.
  • the wafer side connection terminal 112 and the input / output terminals of the semiconductor chip 310 are electrically connected in a non-contact state, such as capacitive coupling (also referred to as electrostatic coupling) or inductive coupling (also referred to as magnetic coupling). May be.
  • a part of the transmission line between the wafer side connection terminal 112 and the input / output terminal of the semiconductor chip 310 may be an optical transmission line.
  • the plurality of device side connection terminals 114 are formed on the device connection surface 104 of the wafer substrate 111 and are electrically connected to the wiring substrate 202. Further, the apparatus side connection terminals 114 are provided in one-to-one correspondence with the plurality of wafer side connection terminals 112. Here, the device side connection terminals 114 are provided at the same intervals as the terminals of the wiring board 202. For this reason, as shown in FIG. 9, the apparatus side connection terminals 114 may be provided at different intervals from the wafer side connection terminals 112.
  • the through hole 116, the pad 150, and the wiring 117 are formed on the wafer substrate 111, and electrically connect the corresponding wafer side connection terminal 112 and apparatus side connection terminal 114.
  • the pad 150 is provided at a position facing the wafer side connection terminal 112 on the apparatus connection surface 104.
  • the through hole 116 is formed through the wafer substrate 111 so that one end is connected to the wafer side connection terminal 112 and the other end is connected to the pad 150.
  • the wiring 117 electrically connects the pad 150 and the device-side connection terminal 114 on the device connection surface 104. With such a configuration, the apparatus side connection terminals 114 and the wafer side connection terminals 112 having different arrangement intervals are electrically connected.
  • the wafer side connection terminals 112 are arranged at the same intervals as the input terminals so as to be electrically connected to the input terminals of the semiconductor chip 310. For this reason, as shown in FIG. 8, for example, the wafer side connection terminals 112 are provided in a predetermined region for each semiconductor chip 310 at a minute interval.
  • the device-side connection terminals 114 may be provided at intervals wider than the intervals between the plurality of wafer-side connection terminals 112 corresponding to one semiconductor chip 310.
  • the device-side connection terminals 114 may be arranged at equal intervals in the surface of the device connection surface 104 so that the distribution of the device-side connection terminals 114 is substantially uniform.
  • the wafer substrate 111 is formed of the same semiconductor material as the substrate of the semiconductor wafer 300, the probe wafer 100, the semiconductor wafer 300, and the like can be obtained even when the ambient temperature fluctuates.
  • the electrical connection between the two can be maintained well. For this reason, for example, even when the test is performed by heating the semiconductor wafer 300, the semiconductor wafer 300 can be accurately tested.
  • the wafer substrate 111 is formed of a semiconductor material, a large number of wafer side connection terminals 112 and the like can be easily formed on the wafer substrate 111.
  • the wafer side connection terminal 112, the apparatus side connection terminal 114, the through hole 116, and the wiring 117 can be easily formed by a semiconductor process using exposure or the like. Therefore, a large number of wafer side connection terminals 112 and the like corresponding to a large number of semiconductor chips 310 can be easily formed on the wafer substrate 111.
  • the terminals of the probe wafer 100 may be formed on the wafer substrate 111 by plating, evaporating, or the like with a conductive material.
  • a plurality of circuit units 110 may be formed on the probe wafer 100. At least one circuit unit 110 is provided for each semiconductor chip 310, and the corresponding semiconductor chip 310 is tested. In this case, the control device 10 may exchange signals with the circuit unit 110.
  • FIG. 10 is a block diagram illustrating a functional configuration example of the circuit unit 110.
  • the circuit unit 110 includes a pattern generation unit 122, a waveform shaping unit 130, a driver 132, a comparator 134, a timing generation unit 136, a logic comparison unit 138, a characteristic measurement unit 140, and a power supply unit 142.
  • the circuit unit 110 may have the configuration shown in FIG. 10 for each input / output pin of the semiconductor chip 310 to be connected.
  • the pattern generator 122 generates a logic pattern of the test signal.
  • the pattern generation unit 122 of this example includes a pattern memory 124, an expected value memory 126, and a fail memory 128.
  • the pattern generator 122 may output a logical pattern stored in advance in the pattern memory 124.
  • the pattern memory 124 may store a logical pattern given from the control device 10 before starting the test.
  • the pattern generator 122 may generate the logical pattern based on an algorithm given in advance.
  • the waveform shaping unit 130 shapes the waveform of the test signal based on the logical pattern given from the pattern generation unit 122.
  • the waveform shaping unit 130 may shape the waveform of the test signal by outputting a voltage corresponding to each logic value of the logic pattern for each predetermined bit period.
  • the driver 132 outputs a test signal corresponding to the waveform given from the waveform shaping unit 130.
  • the driver 132 may output a test signal in accordance with the timing signal given from the timing generator 136.
  • the driver 132 may output a test signal having the same cycle as the timing signal.
  • the test signal output from the driver 132 is supplied to the corresponding semiconductor chip 310 via a switching unit or the like.
  • the comparator 134 measures the response signal output from the semiconductor chip 310.
  • the comparator 134 may measure the logical pattern of the response signal by sequentially detecting the logical value of the response signal in accordance with the strobe signal supplied from the timing generator 136.
  • the logic comparison unit 138 functions as a determination unit that determines the quality of the corresponding semiconductor chip 310 based on the logic pattern of the response signal measured by the comparator 134. For example, the logic comparison unit 138 may determine the quality of the semiconductor chip 310 based on whether or not the expected value pattern given from the pattern generation unit 122 matches the logic pattern detected by the comparator 134.
  • the pattern generation unit 122 may supply the expected value pattern stored in advance in the expected value memory 126 to the logic comparison unit 138.
  • the expected value memory 126 may store a logic pattern given from the control device 10 before the test is started.
  • the pattern generation unit 122 may generate the expected value pattern based on an algorithm given in advance.
  • the fail memory 128 stores the comparison result in the logical comparison unit 138.
  • the fail memory 128 may store the pass / fail judgment result in the logic comparison unit 138 for each address of the semiconductor chip 310.
  • the control device 10 may read the pass / fail judgment result stored in the fail memory 128.
  • the apparatus side connection terminal 114 may output the pass / fail determination result stored in the fail memory 128 to the control apparatus 10 outside the probe wafer 100.
  • the characteristic measurement unit 140 measures the voltage or current waveform output by the driver 132.
  • the characteristic measurement unit 140 may function as a determination unit that determines whether the semiconductor chip 310 is good or not based on whether a waveform of a current or voltage supplied from the driver 132 to the semiconductor chip 310 satisfies a predetermined specification. .
  • the power supply unit 142 supplies power for driving the semiconductor chip 310.
  • the power supply unit 142 may supply power to the semiconductor chip 310 according to the power supplied from the control device 10 during the test. Further, the power supply unit 142 may supply driving power to each component of the circuit unit 110.
  • the test system 400 in which the scale of the control device 10 is reduced can be realized.
  • a general-purpose personal computer or the like can be used as the control device 10.
  • FIG. 11 is a diagram showing an outline when a semiconductor wafer 300 is tested using two probe wafers 100.
  • the probe apparatus 200 of the present example uses two probe wafers 100 in an overlapping manner in place of the probe wafer 100 in the configuration described with reference to FIGS.
  • the probe device 200 may further include an anisotropic conductive sheet between the two probe wafers 100.
  • the first probe wafer 100-1 and the second probe wafer 100-2 may function as the probe wafer 100 described with reference to FIGS.
  • the first probe wafer 100-1 on the semiconductor wafer 300 side may function as the pitch conversion probe wafer 100 described with reference to FIG.
  • the second probe wafer 100-2 on the wiring board 202 side may function as the probe wafer 100 having the circuit unit 110 described with reference to FIG.
  • the test can be performed only by replacing the probe wafer 100 for pitch conversion.
  • FIG. 12 is a diagram showing a configuration example of the probe apparatus 200 when two probe wafers 100 are used.
  • the configuration on the semiconductor wafer 300 side of the probe apparatus 200 is the same as the configuration described in relation to FIG. 2, and therefore the configuration on the semiconductor wafer 300 side is omitted in FIG.
  • the apparatus-side anisotropic conductive sheet 212 is disposed on the upper surface of the second probe wafer 100-2 in the same manner as the probe wafer 100 described with reference to FIGS. Further, a wafer-side anisotropic conductive sheet 218 is disposed on the lower surface of the first probe wafer 100-1 in the same manner as the probe wafer 100 described with reference to FIGS.
  • An anisotropic conductive sheet 252 is also disposed between the first probe wafer 100-1 and the second probe wafer 100-2. These configurations are provided in a space between the wiring board 202 and the membrane 222.
  • first probe wafer 100-1 and the second probe wafer 100-2 are each formed with a through hole 240, and a space between the first probe wafer 100-1 and the wiring board 202, and a second The space between the probe wafer 100-2 and the wafer tray 226 is connected.
  • the pressure can be reduced by the pressure reducing unit 234.
  • FIG. 13 is a diagram illustrating another configuration example of the probe apparatus 200.
  • the probe apparatus 200 of this example is different from the probe apparatus 200 described in relation to FIG. 2 in the configuration for fixing the probe wafer 100 and the membrane 222.
  • Other configurations may be the same as the probe apparatus 200 described with reference to FIG.
  • the end portion of the probe wafer 100 is fixed between the apparatus-side seal portion 214 and the fixing ring 220. Further, the end portion of the membrane 222 may be fixed to the end portion of the probe wafer 100. Even in such a case, since the through-hole is formed in the probe wafer 100 or the like, the space on the wiring board 202 side and the space on the wafer tray 226 side can be decompressed with one decompression unit 234. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 複数の半導体チップが形成された半導体ウエハと電気的に接続するプローブ装置であって、複数の端子が設けられる配線基板と、配線基板および半導体ウエハの間に設けられ、配線基板側の面に複数の装置側接続端子を有し、半導体ウエハ側の面に、それぞれの半導体チップと一括して電気的に接続される複数のウエハ側接続端子を有するプローブウエハと、プローブウエハの配線基板に対する位置が所定の範囲で変位できるように、プローブウエハを保持する支持部とを備えるプローブ装置を提供する。

Description

試験システムおよびプローブ装置
 本発明は、試験システムおよびプローブ装置に関する。特に本発明は、半導体ウエハに形成される複数の半導体チップを試験する試験装置、および、半導体ウエハに形成される複数の半導体チップと電気的に接続するプローブ装置に関する。
 半導体ウエハに形成された半導体チップを検査する場合に、当該半導体ウエハを収納する半導体ウエハ収納器を用いる検査方法が知られている(例えば特許文献1参照)。当該半導体ウエハ収納器は、半導体ウエハを保持する保持板と、半導体チップの端子と接続されるプローブが設けられた配線基板と、保持板および配線基板の間を密閉するシール材で形成される。そして、密閉空間を減圧することで、配線基板のプローブと、半導体チップの端子とを接続する。
特開平8-5666号公報
 ここで、例えば配線基板の端子間隔と、半導体チップの端子間隔とが異なる場合、配線基板と半導体チップとの間にピッチ変換基板を挿入することが考えられる。この場合、ピッチ変換基板を、配線基板に固定することも考えられる。しかし、ピッチ変換基板と配線基板等の熱膨張率が異なる場合、ピッチ変換基板を配線基板に固定すると、温度変化に伴い、ピッチ変換基板および配線基板の固定部分にストレスがかかってしまう。また、ピッチ変換基板を配線基板に固定しない場合、試験する半導体ウエハを交換すべく保持板を移動させた場合、ピッチ変換基板が配線基板から脱落してしまう。
 このように、配線基板と被試験ウエハとの間に基板を挿入した場合に、上述したような問題を生じさせずに、どのような構成で当該基板を保持すべきという課題については、従来解決されていない。また、どのような構成でこれらの基板を電気的に接続すべきか、という課題についても解決されていない。
 そこで本発明は、上記の課題を解決することのできるプローブ装置および試験システムを提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
 上記課題を解決するために、本発明の第1の形態においては、複数の半導体チップが形成された半導体ウエハと電気的に接続するプローブ装置であって、複数の端子が設けられる配線基板と、配線基板および半導体ウエハの間に設けられ、配線基板側の面に複数の装置側接続端子を有し、半導体ウエハ側の面に、それぞれの半導体チップと一括して電気的に接続される複数のウエハ側接続端子を有するプローブウエハと、プローブウエハの配線基板に対する位置が、所定の範囲で変位できるように、プローブウエハを保持する支持部とを備えるプローブ装置を提供する。
 本発明の第2の形態においては、半導体ウエハに形成された複数の半導体チップを試験する試験システムであって、チャンバと、それぞれの半導体ウエハを、チャンバ内に順次搬送する搬送装置と、チャンバ内において、半導体ウエハと電気的に接続するプローブ装置とを備え、プローブ装置は、複数の半導体チップが形成された半導体ウエハと電気的に接続するプローブ装置であって、複数の端子が設けられる配線基板と、配線基板および半導体ウエハの間に設けられ、配線基板側の面に複数の装置側接続端子を有し、半導体ウエハ側の面に、それぞれの半導体チップと一括して電気的に接続される複数のウエハ側接続端子を有するプローブウエハと、プローブウエハの配線基板に対する位置が所定の範囲で変位できるように、プローブウエハを保持する支持部とを有する試験システムを提供する。
 なお、上記の発明の概要は、発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
一つの実施形態に係る試験システム400の概要を示す図である。 チャンバ20内に設けられ、半導体ウエハ300と電気的に接続するプローブ装置200の構成例を示す断面図である。 ウエハトレイ226がメンブレン222およびプローブウエハ100から分離した状態におけるプローブ装置200を示す断面図である。 プローブウエハ100の配線基板側の面の一例を示す上面図である。 メンブレン222の構成例を示す図である。 ウエハトレイ226の構成例を示す図である。 ウエハトレイ226の構成例を示す図である。 プローブウエハ100の概要を説明する図である。 プローブウエハ100の断面図の一例である。 回路部110の機能構成例を示すブロック図である。 2枚のプローブウエハ100を用いて、半導体ウエハ300を試験する場合の概要を示す図である。 第1のプローブウエハ100-1および第2のプローブウエハ100-2の概要を示す図である。 プローブ装置200の他の構成例を示す図である。
符号の説明
10・・・制御装置、20・・・チャンバ、40・・・搬送装置、60・・・ウエハカセット、100・・・プローブウエハ、102・・・ウエハ接続面、104・・・装置接続面、110・・・回路部、111・・・ウエハ基板、112・・・ウエハ側接続端子、114・・・装置側接続端子、116・・・スルーホール、117・・・配線、122・・・パターン発生部、124・・・パターンメモリ、126・・・期待値メモリ、128・・・フェイルメモリ、130・・・波形成形部、132・・・ドライバ、134・・・コンパレータ、136・・・タイミング発生部、138・・・論理比較部、140・・・特性測定部、142・・・電源供給部、150・・・パッド、200・・・プローブ装置、202・・・配線基板、204・・・支持部、205・・・柱部、206・・・ネジ孔、208・・・ネジ孔、209・・・張出部、212・・・装置側異方性導電シート、214・・・装置側シール部、218・・・ウエハ側異方性導電シート、220・・・固定リング、222・・・メンブレン、224・・・ウエハ側シール部、226・・・ウエハトレイ、228・・・ウエハステージ、230・・・吸気経路、232・・・吸気経路、234・・・減圧部、236・・・減圧器、238・・・減圧器、240・・・貫通孔、242・・・貫通孔、244・・・空気溜め空間、246・・・空気溜め空間、248・・・封止部、250・・・封止部、252・・・異方性導電シート、300・・・半導体ウエハ、310・・・半導体チップ、400・・・試験システム
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、一つの実施形態に係る試験システム400の概要を示す図である。試験システム400は、半導体ウエハ300に形成される複数の半導体チップを試験する。また、試験システム400は、複数の半導体ウエハ300を並列に試験してよい。試験システム400は、制御装置10、複数のチャンバ20、搬送装置40、および、ウエハカセット60を備える。
 制御装置10は、試験システム400を制御する。例えば制御装置10は、チャンバ20、搬送装置40、および、ウエハカセット60を制御してよい。チャンバ20は、試験すべき半導体ウエハ300を順次受け取り、チャンバ20の内部で半導体ウエハ300を試験する。それぞれのチャンバ20は、独立に半導体ウエハ300を試験してよい。つまり、それぞれのチャンバ20は、他のチャンバ20と同期せずに、半導体ウエハ300を試験してよい。
 ウエハカセット60は、複数の半導体ウエハ300を格納する。搬送装置40は、ウエハカセット60が格納したそれぞれの半導体ウエハ300を、空いているいずれかのチャンバ20内に搬送する。また、搬送装置40は、試験が終了した半導体ウエハ300を、チャンバ20から搬出してウエハカセット60に格納してよい。
 図2は、チャンバ20内に設けられ、半導体ウエハ300と電気的に接続するプローブ装置200の構成例を示す断面図である。本例のプローブ装置200は、制御装置10からの制御信号に応じて、半導体ウエハ300と信号を受け渡す。プローブ装置200は、配線基板202、支持部204、装置側異方性導電シート212、装置側シール部214、プローブウエハ100、ウエハ側異方性導電シート218、メンブレン222、固定リング220、ウエハ側シール部224、ウエハトレイ226、ウエハステージ228、および、減圧部234を有する。
 本例のプローブ装置200は、配線基板202、ウエハトレイ226、装置側シール部214、および、ウエハ側シール部224により、プローブウエハ100および半導体ウエハ300を格納する密閉空間を形成する。そして、当該密閉空間を減圧することで、プローブウエハ100と半導体ウエハ300とを電気的に接続して、半導体ウエハ300の試験を行う。
 配線基板202は、密閉空間側の下面に複数の端子が設けられ、プローブウエハ100と電気的に接続される。また、配線基板202は、図1に示した制御装置10と、プローブウエハ100との間で信号を受け渡してよい。制御装置10は、配線基板202を介して、プローブウエハ100を制御してよい。配線基板202は、例えばプリント基板に配線および端子が形成された基板であってよい。
 プローブウエハ100は、配線基板202および半導体ウエハ300の間に設けられ、配線基板202および半導体ウエハ300と電気的に接続される。例えばプローブウエハ100は、プローブウエハ100と配線基板202との間に設けられた装置側異方性導電シート212を介して、配線基板202と電気的に接続されてよい。
 装置側異方性導電シート212は、押圧されることで、配線基板202の端子と、プローブウエハ100の配線基板側の面に設けられた装置側接続端子とを電気的に接続する。プローブウエハ100は、密閉空間が減圧されたときに、装置側異方性導電シート212を押圧して、配線基板202と電気的に接続できる程度に、配線基板202の下面に対する垂直方向の位置が所定の範囲で変位できるように支持される。
 また、プローブウエハ100は、プローブウエハ100および半導体ウエハ300の間に設けられたウエハ側異方性導電シート218およびメンブレン222を介して、半導体ウエハ300と電気的に接続されてよい。なお、プローブウエハ100は、半導体ウエハ300に設けられた複数の半導体チップに対して、一括して電気的に接続される。プローブウエハ100は、半導体ウエハ300よりも直径の大きいウエハであってよい。
 ウエハ側異方性導電シート218は、プローブウエハ100およびメンブレン222の間に設けられる。ウエハ側異方性導電シート218は、押圧されることで、プローブウエハ100の半導体ウエハ側の面に設けられたウエハ側接続端子と、メンブレン222のバンプ端子とを電気的に接続する。
 メンブレン222は、ウエハ側異方性導電シート218および半導体ウエハ300の間に設けられる。メンブレン222は、半導体ウエハ300の端子と、プローブウエハ100のウエハ側接続端子とを電気的に接続するバンプ端子を有してよい。固定リング220は、メンブレン222を装置側シール部214に対して固定する。
 例えば固定リング220は、プローブウエハ100における半導体ウエハ側の面の周縁部に沿って環状に設けられてよい。固定リング220の内径は、ウエハ側異方性導電シート218および半導体ウエハ300の直径より大きくてよい。
 メンブレン222は、固定リング220と略同一直径の円形状を有しており、端部が固定リング220に固定される。装置側異方性導電シート212、プローブウエハ100、および、ウエハ側異方性導電シート218は、メンブレン222および配線基板202の間に配置され、メンブレン222により、配線基板202に対して所定の位置に保持される。図2に示すように、装置側異方性導電シート212、プローブウエハ100、および、ウエハ側異方性導電シート218と、装置側シール部214との間には、隙間が設けられてよい。このような構成により、半導体ウエハ300でメンブレン222を押圧することで、半導体ウエハ300とプローブウエハ100とを電気的に接続することができる。
 ウエハトレイ226は、所定の位置に配置された場合に、配線基板202と密閉空間を形成するように設けられる。本例のウエハトレイ226は、上述したように、配線基板202、装置側シール部214、および、ウエハ側シール部224と、密閉空間を形成する。また、ウエハトレイ226は、当該密閉空間側の面に、半導体ウエハ300を載置する。
 装置側シール部214は、メンブレン222の配線基板側の面の周縁部に沿って設けられ、メンブレン222における配線基板側の面の周縁部、および、配線基板202の間をシールする。装置側シール部214は、配線基板202の下面と、メンブレン222の配線基板側の面との間に設けられてよい。この場合、装置側シール部214は、メンブレン222が装置側異方性導電シート212およびウエハ側異方性導電シート218を押圧して導通させることができる程度に、弾性を有する弾性材料で形成されてよい。
 ウエハ側シール部224は、ウエハトレイ226の表面において、メンブレン222の周縁部に対応する領域に沿って設けられ、メンブレン222におけるウエハトレイ側の面の周縁部、および、ウエハトレイ226の間をシールする。ウエハ側シール部224は、ウエハトレイ226の表面において環状に形成されてよい。
 また、ウエハ側シール部224は、ウエハトレイ226の表面からの距離が大きくなるに従い、環状の直径が大きくなるようなリップ状に形成されてよい。ウエハ側シール部224は、メンブレン222に押し付けられた場合に、その押圧力に応じて先端がたわむことで、メンブレン222と半導体ウエハ300との距離を接近させる。また、ウエハ側シール部224は、メンブレン222に押し付けられていない状態における、ウエハトレイ226の表面からの高さが、半導体ウエハ300の高さより高くなるように形成される。
 ウエハステージ228は、ウエハトレイ226を移動させる。例えばウエハステージ228は、ウエハ側シール部224の上端部が、メンブレン222と密着する位置まで、ウエハトレイ226を移動させる。このような構成により、配線基板202、ウエハトレイ226、装置側シール部214、および、ウエハ側シール部224により、プローブウエハ100および半導体ウエハ300を格納する密閉空間を形成することができる。
 減圧部234は、配線基板202、ウエハトレイ226、装置側シール部214、および、ウエハ側シール部224により形成される、配線基板202およびウエハトレイ226の間の密閉空間を減圧する。減圧部234は、ウエハステージ228がウエハトレイ226を移動させて、上述した密閉空間が形成された後に、当該密閉空間を減圧する。
 これにより減圧部234は、ウエハトレイ226を配線基板202に対して所定の位置まで接近させる。ウエハトレイ226は、当該所定の位置に配置されることで、装置側異方性導電シート212およびウエハ側異方性導電シート218に押圧力を印加して、配線基板202およびプローブウエハ100を電気的に接続させ、且つ、プローブウエハ100および半導体ウエハ300を電気的に接続させる。
 また、ウエハ側シール部224は、固定リング220の内側において、メンブレン222と接触してよい。この場合、メンブレン222により、密閉空間が、配線基板202側の空間と、ウエハトレイ226側の空間に分断されてしまう。このため、メンブレン222には、これらの空間を接続する貫通孔242が設けられることが好ましい。
 また、プローブウエハ100、装置側異方性導電シート212、および、ウエハ側異方性導電シート218にも、貫通孔240、貫通孔213、および、貫通孔219が設けられることが好ましい。メンブレン222、プローブウエハ100、装置側異方性導電シート212、および、ウエハ側異方性導電シート218に設けられる貫通孔は、それぞれの面内において略均等に分散配置されることが好ましい。このような構成により、密閉空間を減圧する過程で吸気される空気は、多数の貫通孔により分散して流動する。なお、貫通孔242、貫通孔240、貫通孔213、および、貫通孔219は、対応する位置に設けられてよく、また、それぞれ異なる位置に設けられてもよい。
 このため、密閉空間を減圧する過程において、装置側異方性導電シート212、および、ウエハ側異方性導電シート218にかかる押圧力が、それぞれの面内において略均等に分散され、減圧過程における応力歪を大幅に低減することができる。このため、プローブウエハ100の割れ、異方性導電シートの歪み等を防ぐことができる。
 また、メンブレン222に貫通孔242を設けることで、一つの減圧部234で、配線基板202およびメンブレン222の間の空間と、メンブレン222および半導体ウエハ300の間の空間とを減圧することができる。
 また、減圧部234は、半導体ウエハ300をウエハトレイ226に吸着させてよい。本例の減圧部234は、密閉空間用の減圧器236と、半導体ウエハ用の減圧器238とを有する。また、ウエハトレイ226には、密閉空間用の吸気経路232と、半導体ウエハ用の吸気経路230とが形成される。
 密閉空間用の吸気経路232は、ウエハトレイ226の内部を貫通して設けられ、一方の開口が半導体ウエハ300を載置する面に形成され、他方の開口が密閉空間用の減圧器236に接続する面に形成される。なお、密閉空間用の吸気経路232の一方の開口は、ウエハトレイ226の半導体ウエハ300を載置する面において、ウエハ側シール部224により囲まれた領域の内側であり、且つ、半導体ウエハ300を載置する領域の外側に形成される。また、密閉空間用の吸気経路232は、ウエハトレイ226の半導体ウエハ300を載置する面において複数の開口を有してよい。
 同様に、半導体ウエハ用の吸気経路230は、ウエハトレイ226の内部を貫通して設けられ、一方の開口が半導体ウエハ300を載置する面に形成され、他方の開口が半導体ウエハ用の減圧器238に接続する面に形成される。なお、半導体ウエハ用の吸気経路230の一方の開口は、ウエハトレイ226の密閉空間側の面において半導体ウエハ300が載置される領域に形成される。なお、半導体ウエハ用の吸気経路230は、ウエハトレイ226の半導体ウエハ300を載置する面において複数の開口を有してよい。
 密閉空間用の減圧器236は、密閉空間用の吸気経路232を吸気することで、ウエハトレイ226およびメンブレン222の間の空間を減圧する。上述したように、メンブレン222には、貫通孔242が形成されるので、ウエハトレイ226およびメンブレン222の間の空間を減圧することで、配線基板202およびメンブレン222の間の密閉空間も減圧することができる。
 また、半導体ウエハ用の減圧器238は、半導体ウエハ用の吸気経路230を吸気することで、半導体ウエハ300をウエハトレイ226に吸着させる。なお、プローブ装置200は、搬送装置40により順次搬送される半導体ウエハ300と電気的に接続される。このため、ウエハトレイ226は、メンブレン222およびプローブウエハ100から分離可能なように設けられ、搬送装置40との間で半導体ウエハ300を順次受け渡す。ここで、プローブウエハ100およびメンブレン222等は、配線基板202の下面に設けられる。このため、支持部204は、ウエハトレイ226が分離した状態で、プローブウエハ100およびメンブレン222等が脱落しないように保持する。
 図3は、ウエハトレイ226がメンブレン222から分離した状態におけるプローブ装置200を示す断面図である。上述したように、支持部204は、係る状態においても、メンブレン222およびプローブウエハ100等が配線基板202から脱落しないように保持する。
 例えば支持部204は、固定リング220を支持することにより、メンブレン222を支持してよい。上述したようにメンブレン222は、固定リング220に固定される。なお、プローブウエハ100および異方性導電シートは、上述したように配線基板202およびメンブレン222の間に配置されるので、支持部204は、メンブレン222を配線基板202に対して支持することで、プローブウエハ100等も配線基板202に対して支持することができる。このように、固定リング220が配線基板202に対して脱落しないように、支持部204が固定リング220を支持することで、メンブレン222等が脱落することを防ぐことができる。
 また、上述したように、メンブレン222が装置側異方性導電シート212、プローブウエハ100、および、ウエハ側異方性導電シート218を押圧することで、プローブウエハ100および配線基板202間、並びに、メンブレン222およびプローブウエハ100間が電気的に接続するので、支持部204は、メンブレン222が、配線基板202の下面に対して所定の範囲で接近できるように、メンブレン222を支持する。例えば支持部204は、固定リング220の下端が、配線基板202の下面から所定の距離h以上はなれないように、配線基板202の下面から所定の距離hだけ離れた位置で、固定リング220の下端を支持してよい。
 本例の支持部204は、柱部205と張出部209とを有する。柱部205は、装置側シール部214の周縁部より外側において、配線基板202の下面から固定リング220の下端まで、垂直方向に延伸して設けられる。張出部209は、柱部205の下端において、柱部205から水平方向に突出して設けられ、固定リング220の下端を支持する。
 ここで、配線基板202の下面から、張出部209の上面までの距離hは、減圧部234により密閉空間が減圧されたときの、装置側異方性導電シート212、プローブウエハ100、ウエハ側異方性導電シート218、メンブレン222、および、固定リング220の厚さの和より大きいことが好ましい。これにより、支持部204は、密閉空間が減圧されたときに、メンブレン222により装置側異方性導電シート212およびウエハ側異方性導電シート218を押圧することができるように、メンブレン222を支持することができる。
 また、配線基板202の下面から、張出部209の上面までの距離hは、減圧部234により密閉空間が減圧されていないときの、装置側異方性導電シート212、プローブウエハ100、ウエハ側異方性導電シート218、メンブレン222、および、固定リング220の厚さの和より小さくてよい。これにより、プローブ装置200の移動時等において、プローブウエハ100等が過剰に振動すること等を防ぐことができる。
 一例として、減圧部234により密閉空間が減圧されていないときの装置側異方性導電シート212の厚さは0.4mm程度であり、プローブウエハ100の厚さは0.725mm程度であり、ウエハ側異方性導電シート218の厚さは0.17mm程度であり、メンブレン222の厚さは0.025mm程度であり、固定リング220の厚さは4.0mm程度である。つまり、これらの総和は、5.32mm程度であってよい。これに対し、減圧部234により密閉空間が減圧された場合、異方性導電シートが圧縮され、これらの厚みの総和は5.175mm程度となる。この場合、配線基板202の下面から、張出部209の上面までの距離hは、5.20~5.30mm程度であってよい。
 つまり、減圧部234により密閉空間が減圧されていない場合、支持部204は、メンブレン222等に対して、配線基板202の下面の方向に押圧力を加えて支持する。また、減圧部234により密閉空間が減圧された場合、支持部204によるメンブレン222等に対する押圧力は略ゼロとなる。
 また、支持部204は、配線基板202の下面に対して水平方向においても、メンブレン222等の位置が所定の範囲で変位できるように、メンブレン222等を支持してもよい。図3に示すように、装置側シール部214および固定リング220の側面の位置は、柱部205の位置により規定される。柱部205は、水平方向において所定の範囲で動けるように、配線基板202の下面に接続されていてよい。
 例えば、柱部205は、配線基板202の下面にネジ止めされてよい。このとき、柱部205に形成されるネジ孔206の直径は、配線基板202に形成されるネジ孔208の直径より大きくてよい。このような構成により、メンブレン222等を、ネジ孔206およびネジ孔208の直径の差分に応じた範囲で水平方向に動ける状態で保持することができる。このような構成により、配線基板202と固定リング220の熱膨張率が異なる場合であっても、熱変動により生じるストレスを低減することができる。
 以上のような構成により、配線基板202とプローブウエハ100とを容易に電気的に接続することができる。また、プローブウエハ100と半導体ウエハ300とを容易に電気的に接続することができる。
 図4は、プローブウエハ100の配線基板側の面の一例を示す上面図である。図2および図3に関連して説明したように、プローブウエハ100には、複数の貫通孔240が形成される。
 上述したように、複数の貫通孔240は、プローブウエハ100において、略均等に分布するように形成されてよい。また、複数の貫通孔240は、プローブウエハ100において回路部が形成されない領域に設けられてよい。例えば、貫通孔240は、それぞれの回路部の間における、境界の領域に形成されてよい。
 図5は、メンブレン222の構成例を示す図である。図5は、メンブレン222における、半導体ウエハ300側の面を示す。上述したように、メンブレン222は、環状の固定リング220の内側に張り渡される。
 また、貫通孔242は、メンブレン222において、略均等に分布するように形成されてよい。また、メンブレン222には表裏面間を導通させる複数のバンプが設けられる。貫通孔242は、これらのバンプの間に設けられてよい。
 また、支持部204の張出部209は、固定リング220を支持する。支持部204は、固定リング220の円周上において、所定の等間隔に配置されるように、複数個設けられてよい。
 図6は、ウエハトレイ226の構成例を示す図である。図6は、ウエハトレイ226における、半導体ウエハ300を載置する上面を示す。上述したように、ウエハトレイ226の上面には、ウエハ側シール部224が設けられる。また、ウエハトレイ226の上面には、密閉空間用の吸気経路232の開口と、半導体ウエハ用の吸気経路230の開口とが形成される。
 半導体ウエハ用の吸気経路230の開口は、半導体ウエハ300を載置すべき領域内に複数個形成されてよい。また、密閉空間用の吸気経路232の開口は、半導体ウエハ300を載置すべき領域の外側で、且つ、ウエハ側シール部224が設けられる領域の内側に、複数個形成されてよい。
 図7は、ウエハトレイ226の構成例を示す図である。図7は、ウエハトレイ226の一部分の断面を示す。上述したように、ウエハトレイ226の内部には、密閉空間用の吸気経路232および半導体ウエハ用の吸気経路230が形成される。また、減圧部234に接続されるウエハトレイ226の側面には、それぞれの吸気経路の開口を封止する封止部248および封止部250が設けられてよい。封止部248および封止部250は、減圧部234を取り外したときに、それぞれの吸気経路の開口を封止するように設けられてよい。
 また、ウエハトレイ226の内部には、吸気経路230に接続され、吸気経路230より直径の大きい空気溜め空間244が形成されてよい。また、ウエハトレイ226の内部には、吸気経路232に接続され、吸気経路232より直径の大きい空気溜め空間246が形成されてよい。このような構成により、密閉される空間の容積を増大させることができる。このため、微小なリークが生じたときの密閉空間内の圧力低下を低減することができる。
 なお、図1に関連して説明した搬送装置40は、ウエハトレイ226に半導体ウエハ300を載置した状態で、ウエハトレイ226をそれぞれのチャンバ20の内部に搬送してよい。この場合、試験システム400は、半導体ウエハ300をウエハトレイ226に載置した状態で搬送装置40に受け渡す載置部を更に備えてよい。
 また、搬送装置40は、試験が終了した半導体ウエハ300を載置したウエハトレイ226を、チャンバ20から搬出してよい。そして、上述した載置部は、搬送装置40から受け取った当該ウエハトレイ226から半導体ウエハ300を取り外し、次に試験すべき半導体ウエハ300を当該ウエハトレイ226に載置してよい。
 ウエハトレイ226に半導体ウエハ300を載置して搬送する場合、半導体ウエハ300をウエハトレイ226に吸着させた後、封止部248により半導体ウエハ用の吸気経路230を密閉して搬送することが好ましい。これにより、半導体ウエハ300をより安全に搬送することができる。
 また、試験システム400は、チャンバ20の数より多い複数のウエハトレイ226を有してよい。この場合、全てのチャンバ20において平行して半導体ウエハ300の試験を行っても、チャンバ20に格納されていないウエハトレイ226が存在する。搬送装置40は、いずれかのチャンバ20で半導体ウエハ300を試験している間に、次に試験すべき半導体ウエハ300を、いずれのチャンバ20にも格納されていないウエハトレイ226に予め載置してよい。これにより、いずれかのチャンバ20において半導体ウエハ300の試験が終了したときに、次に試験すべき半導体ウエハ300を迅速に搬送することができる。
 図8は、プローブウエハ100の概要を説明する図である。図8においては、プローブウエハ100を、半導体ウエハ300とあわせて示す。半導体ウエハ300は、例えば円盤状の半導体基板であってよい。より具体的には、半導体ウエハ300はシリコン、化合物半導体、その他の半導体基板であってよい。また、試験システム400により試験される複数の半導体チップ310は、半導体ウエハ300において露光等の半導体プロセスを用いて形成されてよい。
 プローブウエハ100は、半導体ウエハ300と、制御装置10とを電気的に接続してよい。より具体的には、プローブウエハ100は、制御装置10に接続される配線基板202の各端子と、半導体ウエハ300に形成された各端子との間に配置され、配線基板202および半導体ウエハ300において対応する端子を電気的に接続する。本例のプローブウエハ100は、図9において後述するように、ウエハ基板111および複数のウエハ側接続端子112を有する。
 制御装置10は、プローブウエハ100を介して、半導体ウエハ300のそれぞれの半導体チップ310を試験する。例えば制御装置10は、プローブウエハ100を介して、それぞれの半導体チップ310に試験信号を供給してよい。また、制御装置10は、それぞれの半導体チップ310が試験信号に応じて出力する応答信号を、プローブウエハ100を介して受け取り、応答信号に基づいてそれぞれの半導体チップ310の良否を判定してよい。
 図9は、プローブウエハ100の断面図の一例である。図8および図9に示すように、プローブウエハ100は、ウエハ基板111、ウエハ側接続端子112、装置側接続端子114、スルーホール116、パッド150、および、配線117を有する。
 ウエハ基板111は、半導体ウエハ300の基板と同一の半導体材料で形成される。例えばウエハ基板111は、シリコン基板であってよい。また、ウエハ基板111は、半導体ウエハ300の基板と略同一の熱膨張率を有する半導体材料で形成されてもよい。また、ウエハ基板111は、図9に示すように、ウエハ接続面102、および、ウエハ接続面102の裏面に形成される装置接続面104を有する。ウエハ接続面102は、半導体ウエハ300と対向して形成され、装置接続面104は、配線基板202と対向して形成される。
 複数のウエハ側接続端子112は、ウエハ基板111のウエハ接続面102に形成される。また、ウエハ側接続端子112は、それぞれの半導体チップ310に対して少なくとも一つずつ設けられる。例えばウエハ側接続端子112は、それぞれの半導体チップ310のそれぞれの入出力端子に対して、一つずつ設けられてよい。つまり、それぞれの半導体チップ310が複数の入出力端子を有する場合、ウエハ側接続端子112は、それぞれの半導体チップ310に対して複数個ずつ設けられてよい。
 それぞれのウエハ側接続端子112は、半導体ウエハ300におけるそれぞれの入出力端子と同一の間隔で設けられ、対応する半導体チップ310の入出力端子と電気的に接続される。なお、電気的に接続するとは、2つの部材間で電気信号を伝送可能となる状態を指してよい。例えば、ウエハ側接続端子112および半導体チップ310の入出力端子は、直接に接触、または、他の導体を介して間接的に接触することで、電気的に接続されてよい。また、ウエハ側接続端子112および半導体チップ310の入出力端子は、容量結合(静電結合とも称する)または誘導結合(磁気結合とも称する)等のように、非接触の状態で電気的に接続されてもよい。また、ウエハ側接続端子112および半導体チップ310の入出力端子の間の伝送線路の一部が、光学的な伝送線路であってもよい。
 複数の装置側接続端子114は、ウエハ基板111の装置接続面104に形成され、配線基板202と電気的に接続される。また、装置側接続端子114は、複数のウエハ側接続端子112と一対一に対応して設けられる。ここで、装置側接続端子114は、配線基板202の端子と同一の間隔で設けられる。このため図9に示すように、装置側接続端子114は、ウエハ側接続端子112とは異なる間隔で設けられてよい。
 スルーホール116、パッド150、および配線117は、ウエハ基板111に形成され、対応するウエハ側接続端子112および装置側接続端子114を電気的に接続する。例えば、パッド150は、装置接続面104において、ウエハ側接続端子112と対向する位置に設けられる。スルーホール116は、一端がウエハ側接続端子112に接続され、他端がパッド150に接続されるように、ウエハ基板111を貫通して形成される。また、配線117は、装置接続面104において、パッド150および装置側接続端子114を電気的に接続する。このような構成により、配列間隔が異なる装置側接続端子114およびウエハ側接続端子112を電気的に接続する。
 例えば、ウエハ側接続端子112は、半導体チップ310の各入力端子と電気的に接続するべく、各入力端子と同一の間隔で配置される。このため、ウエハ側接続端子112は、例えば図8に示すように、半導体チップ310毎に予め定められた領域に、微小な間隔で設けられる。
 これに対し、それぞれの装置側接続端子114は、一つの半導体チップ310に対応する複数のウエハ側接続端子112の間隔より広い間隔で設けられてよい。例えば装置側接続端子114は、装置接続面104の面内において、装置側接続端子114の分布が略均等となるように等間隔に配置されてよい。
 本例のプローブウエハ100は、ウエハ基板111が、半導体ウエハ300の基板と同一の半導体材料で形成されるので、周囲温度が変動したような場合であっても、プローブウエハ100と半導体ウエハ300との間の電気的な接続を良好に維持することができる。このため、例えば半導体ウエハ300を加熱して試験を行うような場合であっても、半導体ウエハ300を精度よく試験することができる。
 また、ウエハ基板111が半導体材料で形成されるので、ウエハ基板111に多数のウエハ側接続端子112等を容易に形成することができる。例えば、露光等を用いた半導体プロセスにより、ウエハ側接続端子112、装置側接続端子114、スルーホール116、および、配線117を容易に形成することができる。このため、多数の半導体チップ310に対応する多数のウエハ側接続端子112等を、ウエハ基板111に容易に形成することができる。また、プローブウエハ100の端子は、導電材料をメッキ、蒸着等することでウエハ基板111に形成されてよい。
 このように、プローブウエハ100の両面に端子が設けられる。このため図2から図7に関連して説明したように、プローブウエハ100の両面に異方性導電シートが配置されるが、図2から図7に関連して説明したプローブ装置200の構成によれば、配線基板202、プローブウエハ100、および、半導体ウエハ300を効率よく接続することができる。
 また、図8に示すように、プローブウエハ100には、複数の回路部110が形成されてよい。それぞれの回路部110は、それぞれの半導体チップ310に対して少なくとも一つずつ設けられ、それぞれ対応する半導体チップ310を試験する。この場合、制御装置10は、当該回路部110と信号を受け渡してよい。
 図10は、回路部110の機能構成例を示すブロック図である。回路部110は、パターン発生部122、波形成形部130、ドライバ132、コンパレータ134、タイミング発生部136、論理比較部138、特性測定部140、および、電源供給部142を有する。なお、回路部110は、接続される半導体チップ310の入出力ピンのピン毎に、図10に示した構成を有してよい。
 パターン発生部122は、試験信号の論理パターンを生成する。本例のパターン発生部122は、パターンメモリ124、期待値メモリ126、および、フェイルメモリ128を有する。パターン発生部122は、パターンメモリ124に予め格納された論理パターンを出力してよい。パターンメモリ124は、試験開始前に制御装置10から与えられる論理パターンを格納してよい。また、パターン発生部122は、予め与えられるアルゴリズムに基づいて当該論理パターンを生成してもよい。
 波形成形部130は、パターン発生部122から与えられる論理パターンに基づいて、試験信号の波形を成形する。例えば波形成形部130は、論理パターンの各論理値に応じた電圧を、所定のビット期間ずつ出力することで、試験信号の波形を成形してよい。
 ドライバ132は、波形成形部130から与えられる波形に応じた試験信号を出力する。ドライバ132は、タイミング発生部136から与えられるタイミング信号に応じて、試験信号を出力してよい。例えばドライバ132は、タイミング信号と同一周期の試験信号を出力してよい。ドライバ132が出力する試験信号は、切替部等を介して、対応する半導体チップ310に供給される。
 コンパレータ134は、半導体チップ310が出力する応答信号を測定する。例えばコンパレータ134は、タイミング発生部136から与えられるストローブ信号に応じて応答信号の論理値を順次検出することで、応答信号の論理パターンを測定してよい。
 論理比較部138は、コンパレータ134が測定した応答信号の論理パターンに基づいて、対応する半導体チップ310の良否を判定する判定部として機能する。例えば論理比較部138は、パターン発生部122から与えられる期待値パターンと、コンパレータ134が検出した論理パターンとが一致するか否かにより、半導体チップ310の良否を判定してよい。パターン発生部122は、期待値メモリ126に予め格納された期待値パターンを、論理比較部138に供給してよい。期待値メモリ126は、試験開始前に制御装置10から与えられる論理パターンを格納してよい。また、パターン発生部122は、予め与えられるアルゴリズムに基づいて当該期待値パターンを生成してもよい。
 フェイルメモリ128は、論理比較部138における比較結果を格納する。例えば、半導体チップ310のメモリ領域を試験する場合、フェイルメモリ128は、半導体チップ310のアドレス毎に、論理比較部138における良否判定結果を格納してよい。制御装置10は、フェイルメモリ128が格納した良否判定結果を読み出してよい。例えば、装置側接続端子114は、フェイルメモリ128が格納した良否判定結果を、プローブウエハ100の外部の制御装置10に出力してよい。
 また、特性測定部140は、ドライバ132が出力する電圧または電流の波形を測定する。例えば特性測定部140は、ドライバ132から半導体チップ310に供給する電流または電圧の波形が、所定の仕様を満たすか否かに基づいて、半導体チップ310の良否を判定する判定部として機能してよい。
 電源供給部142は、半導体チップ310を駆動する電源電力を供給する。例えば電源供給部142は、試験中に制御装置10から与えられる電力に応じた電源電力を、半導体チップ310に供給してよい。また、電源供給部142は、回路部110の各構成要素に駆動電力を供給してもよい。
 回路部110がこのような構成を有することで、制御装置10の規模を低減した試験システム400を実現することができる。例えば制御装置10として、汎用のパーソナルコンピュータ等を用いることができる。
 図11は、2枚のプローブウエハ100を用いて、半導体ウエハ300を試験する場合の概要を示す図である。本例のプローブ装置200は、図2から図7に関連して説明した構成において、プローブウエハ100に代えて、2枚のプローブウエハ100を重ねて用いる。この場合、プローブ装置200は、2枚のプローブウエハ100の間に、異方性導電シートを更に有してよい。
 第1のプローブウエハ100-1および第2のプローブウエハ100-2は、それぞれ図8から図10に関連して説明したプローブウエハ100として機能してよい。例えば、半導体ウエハ300側の第1のプローブウエハ100-1は、図9に関連して説明したピッチ変換用のプローブウエハ100として機能してよい。また、配線基板202側の第2のプローブウエハ100-2は、図10に関連して説明した、回路部110を有するプローブウエハ100として機能してよい。このような構成により、例えば端子間隔が異なる複数の半導体ウエハ300について同一内容の試験を行う場合、ピッチ変換用のプローブウエハ100を交換するだけで試験を行うことができる。
 図12は、2枚のプローブウエハ100を用いる場合の、プローブ装置200の構成例を示す図である。なお、プローブ装置200の半導体ウエハ300側の構成は、図2に関連して説明した構成と同一であるので、図12においては半導体ウエハ300側の構成を省略して示す。
 第2のプローブウエハ100-2の上面には、図2から図7に関連して説明したプローブウエハ100と同様に装置側異方性導電シート212が配置される。また、第1のプローブウエハ100-1の下面には、図2から図7に関連して説明したプローブウエハ100と同様に、ウエハ側異方性導電シート218が配置される。
 第1のプローブウエハ100-1および第2のプローブウエハ100-2の間にも、異方性導電シート252が配置される。なお、これらの構成は、配線基板202およびメンブレン222の間の空間に設けられる。
 また、第1のプローブウエハ100-1および第2のプローブウエハ100-2には、それぞれ貫通孔240が形成され、第1のプローブウエハ100-1および配線基板202の間の空間と、第2のプローブウエハ100-2およびウエハトレイ226の間の空間とを接続する。このような構成により、2枚のプローブウエハ100を用いたプローブ装置200においても、プローブウエハ100と配線基板202との間の空間と、プローブウエハ100とウエハトレイ226との間の空間を、一つの減圧部234で減圧することができる。
 図13は、プローブ装置200の他の構成例を示す図である。本例のプローブ装置200は、図2に関連して説明したプローブ装置200に対して、プローブウエハ100およびメンブレン222を固定する構成が異なる。他の構成は、図2に関連して説明したプローブ装置200と同一であってよい。
 本例において、プローブウエハ100の端部は、装置側シール部214および固定リング220の間に固定される。また、メンブレン222の端部は、プローブウエハ100の端部に固定されてよい。このような場合であっても、プローブウエハ100等に貫通孔が形成されているので、一つの減圧部234で、配線基板202側の空間と、ウエハトレイ226側の空間とを減圧することができる。
 以上、発明を実施の形態を用いて説明したが、発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。

Claims (10)

  1.  複数の半導体チップが形成された半導体ウエハと電気的に接続するプローブ装置であって、
     複数の端子が設けられる配線基板と、
     前記配線基板および前記半導体ウエハの間に設けられ、前記配線基板側の面に複数の装置側接続端子を有し、前記半導体ウエハ側の面に、それぞれの前記半導体チップと一括して電気的に接続される複数のウエハ側接続端子を有するプローブウエハと、
     前記プローブウエハの前記配線基板に対する位置が、所定の範囲で変位できるように、前記プローブウエハを保持する支持部と
     を備えるプローブ装置。
  2.  前記支持部は、前記プローブウエハに対して、前記配線基板の方向に圧力が加えられた場合に、前記プローブウエハが前記配線基板に対して所定の範囲で接近できるように、前記プローブウエハを保持する
     請求項1に記載のプローブ装置。
  3.  前記プローブウエハと前記半導体ウエハとの間に設けられ、前記ウエハ側接続端子と前記半導体ウエハの端子とを電気的に接続するメンブレンと、
     前記プローブウエハにおける前記半導体ウエハ側の面の周縁部に沿って設けられ、前記メンブレンを前記プローブウエハに対して固定する固定リングと
     を更に備え、
     前記支持部は、前記固定リングを支持する
     請求項2に記載のプローブ装置。
  4.  前記プローブウエハは、前記配線基板の下面に対向する位置に設けられ、
     前記支持部は、前記配線基板の下面から所定の距離離れた位置で、前記固定リングの下端を支持する
     請求項3に記載のプローブ装置。
  5.  前記配線基板および前記プローブウエハの間に設けられ、押圧されることにより、前記配線基板の端子と、前記プローブウエハの前記装置側接続端子とを電気的に接続する装置側異方性導電シートを更に備える
     請求項4に記載のプローブ装置。
  6.  前記メンブレンと前記プローブウエハとの間に設けられ、押圧されることにより、前記メンブレンのバンプ端子と、前記プローブウエハの前記ウエハ側接続端子とを電気的に接続するウエハ側異方性導電シートと、
     前記半導体ウエハを載置し、前記配線基板に対して所定の位置に配置されることで、前記装置側異方性導電シートおよび前記ウエハ側異方性導電シートを押圧するウエハトレイと
     を更に備え、
     前記支持部は、前記固定リングの下端と接触する張出部と、前記配線基板の下面との距離が、前記ウエハトレイが前記所定の位置に配置された場合の、前記装置側異方性導電シート、前記プローブウエハ、前記ウエハ側異方性導電シート、前記メンブレン、および、前記固定リングの厚みの総和より大きくなるように設けられる
     請求項5に記載のプローブ装置。
  7.  前記支持部は、前記プローブウエハの周縁部より外側において、前記配線基板の下面から前記固定リングまで延伸して設けられる
     請求項3に記載のプローブ装置。
  8.  前記支持部は、前記固定リングの円周上において、所定の等間隔で複数個設けられる
     請求項4に記載のプローブ装置。
  9.  前記ウエハトレイは、前記配線基板および弾性材料のシール材と密閉空間を形成するように配置され、
     前記プローブ装置は、前記配線基板および前記ウエハトレイの間の前記密閉空間を減圧することで、前記ウエハトレイを前記配線基板に対して前記所定の位置に配置する減圧部を更に有する
     請求項6に記載のプローブ装置。
  10.  半導体ウエハに形成された複数の半導体チップを試験する試験システムであって、
     チャンバと、
     それぞれの前記半導体ウエハを、前記チャンバ内に順次搬送する搬送装置と、
     前記チャンバ内において、前記半導体ウエハと電気的に接続するプローブ装置と
     を備え、
     前記プローブ装置は、
     複数の半導体チップが形成された半導体ウエハと電気的に接続するプローブ装置であって、
     複数の端子が設けられる配線基板と、
     前記配線基板および前記半導体ウエハの間に設けられ、前記配線基板側の面に複数の装置側接続端子を有し、前記半導体ウエハ側の面に、それぞれの前記半導体チップと一括して電気的に接続される複数のウエハ側接続端子を有するプローブウエハと、
     前記プローブウエハの前記配線基板に対する位置が所定の範囲で変位できるように、前記プローブウエハを保持する支持部と
     を有する試験システム。
PCT/JP2008/058143 2008-04-25 2008-04-25 試験システムおよびプローブ装置 WO2009130793A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/058143 WO2009130793A1 (ja) 2008-04-25 2008-04-25 試験システムおよびプローブ装置
TW098113186A TWI391672B (zh) 2008-04-25 2009-04-21 測試系統以及探針裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058143 WO2009130793A1 (ja) 2008-04-25 2008-04-25 試験システムおよびプローブ装置

Publications (1)

Publication Number Publication Date
WO2009130793A1 true WO2009130793A1 (ja) 2009-10-29

Family

ID=41216542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058143 WO2009130793A1 (ja) 2008-04-25 2008-04-25 試験システムおよびプローブ装置

Country Status (2)

Country Link
TW (1) TWI391672B (ja)
WO (1) WO2009130793A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633486A (zh) * 2017-10-06 2019-04-16 苏州嘉大电子有限公司 测试装置及分类装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI710768B (zh) * 2019-09-04 2020-11-21 創意電子股份有限公司 測試裝置及使用其的測試流程
CN112444723B (zh) * 2019-09-04 2022-12-16 创意电子股份有限公司 测试装置及使用其的测试流程

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156128A (ja) * 1999-09-13 2001-06-08 Hoya Corp 多層配線基板及びその製造方法、並びに該多層配線基板を有するウエハ一括コンタクトボード
JP2002139540A (ja) * 2000-10-30 2002-05-17 Nec Corp プローブ構造体とその製造方法
JP2003007782A (ja) * 2001-06-19 2003-01-10 Matsushita Electric Ind Co Ltd プローブおよびプローブ装置
JP2004053409A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd プローブカード
JP2008039768A (ja) * 2006-07-10 2008-02-21 Tokyo Electron Ltd プローブカード

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066707B1 (en) * 2001-08-31 2006-06-27 Asyst Technologies, Inc. Wafer engine
TWI236723B (en) * 2002-10-02 2005-07-21 Renesas Tech Corp Probe sheet, probe card, semiconductor inspection device, and manufacturing method for semiconductor device
JP4521611B2 (ja) * 2004-04-09 2010-08-11 ルネサスエレクトロニクス株式会社 半導体集積回路装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156128A (ja) * 1999-09-13 2001-06-08 Hoya Corp 多層配線基板及びその製造方法、並びに該多層配線基板を有するウエハ一括コンタクトボード
JP2002139540A (ja) * 2000-10-30 2002-05-17 Nec Corp プローブ構造体とその製造方法
JP2003007782A (ja) * 2001-06-19 2003-01-10 Matsushita Electric Ind Co Ltd プローブおよびプローブ装置
JP2004053409A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd プローブカード
JP2008039768A (ja) * 2006-07-10 2008-02-21 Tokyo Electron Ltd プローブカード

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633486A (zh) * 2017-10-06 2019-04-16 苏州嘉大电子有限公司 测试装置及分类装置

Also Published As

Publication number Publication date
TW200951449A (en) 2009-12-16
TWI391672B (zh) 2013-04-01

Similar Documents

Publication Publication Date Title
JP5113905B2 (ja) 試験システムおよびプローブ装置
JP4722227B2 (ja) 試験用ウエハユニットおよび試験システム
KR101148917B1 (ko) 제조 방법 및 시험용 웨이퍼 유닛
JP4765127B1 (ja) トレーユニットおよび半導体デバイスの検査装置
JP5588347B2 (ja) プローブ装置および試験装置
JP4592885B2 (ja) 半導体基板試験装置
KR20200097836A (ko) 프로브 카드 및 그 제조 방법
JP2020106454A (ja) 温度測定部材、検査装置及び温度測定方法
WO2009130793A1 (ja) 試験システムおよびプローブ装置
JP5461394B2 (ja) 試験用ウエハユニットおよび試験システム
JP5351151B2 (ja) 試験システム
JP5368440B2 (ja) 試験システム
KR20020057364A (ko) 프로브 카드
JP6084882B2 (ja) プローブ組立体及びプローブ基板
KR20210051687A (ko) 테스트 핸들러
TW202422082A (zh) 電性連接裝置
JP5503189B2 (ja) プローブカード
KR100906344B1 (ko) 프로브 카드
KR20030087348A (ko) 프로브 카드 홀더

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08752177

Country of ref document: EP

Kind code of ref document: A1