WO2009125697A1 - Mold, process for producing the same, and process for producing substrate having transferred fine pattern - Google Patents

Mold, process for producing the same, and process for producing substrate having transferred fine pattern Download PDF

Info

Publication number
WO2009125697A1
WO2009125697A1 PCT/JP2009/056732 JP2009056732W WO2009125697A1 WO 2009125697 A1 WO2009125697 A1 WO 2009125697A1 JP 2009056732 W JP2009056732 W JP 2009056732W WO 2009125697 A1 WO2009125697 A1 WO 2009125697A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
layer
fluoropolymer
fine pattern
transparent resin
Prior art date
Application number
PCT/JP2009/056732
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 角崎
泰秀 川口
幹彦 佐野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010507218A priority Critical patent/JPWO2009125697A1/en
Publication of WO2009125697A1 publication Critical patent/WO2009125697A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds

Definitions

  • the present invention relates to a mold, a method for producing the mold, and a method for producing a substrate having a transfer fine pattern made of a cured product of a photocurable resin using the mold.
  • the nanoimprint method is mainly studied as a method for forming a fine pattern with a maximum height of 100 nm or less, such as fine wiring of semiconductor elements, recording media, etc., but MEMS (Micro-Electro-Mechanical-Systems), bio-related As a method for forming a fine pattern in which the maximum height of a member, an optical member or the like exceeds several ⁇ m to several tens of ⁇ m, its application is expected in terms of greatly improving productivity.
  • MEMS Micro-Electro-Mechanical-Systems
  • the following molds have been proposed as molds used in the optical nanoimprint method.
  • Quartz mold (2) a transparent substrate (A), a surface layer (B) having a fine pattern on the surface, a transparent substrate (A), and a surface layer (including a fluorine-containing aliphatic ring structure in the main chain) B) a mold having an intermediate layer (C) existing between (see Patent Document 3).
  • the mold has low releasability, and the accuracy of the transferred fine pattern of the cured product tends to decrease when the mold is separated from the cured product.
  • a method for improving the releasability a method of applying a release agent to the surface of the fine pattern of the mold has been proposed.
  • the fine pattern of the mold cannot be accurately transferred due to the uneven thickness of the applied release agent.
  • the mold (2) Since the surface layer (B) is made of a fluoropolymer, the mold (2) has a high releasability. However, since the mold (2) for the purpose of improving mechanical strength and dimensional stability uses a hard material as the transparent substrate (A), the maximum height is the thickness of the surface layer (B) and the intermediate layer. It is difficult to form a fine pattern exceeding the total thickness of (C) for the following reason.
  • the intermediate layer (C) and the surface layer (B) are formed on the surface of the transparent substrate (A) by coating, the master mold is pressed against the surface layer (B), and the reverse pattern of the master mold is formed. It is manufactured by transferring to the surface layer (B).
  • the maximum height of the reverse pattern of the master mold If the maximum height difference of the concavo-convex structure including distortion (waviness) of the entire master mold exceeds the total thickness, in order to accurately transfer the reverse pattern of the master mold, the total thickness is For the excess, the reverse pattern must be transferred to the transparent substrate (A). However, since the transparent substrate (A) is hard, the reverse pattern cannot be transferred to the transparent substrate (A) for the portion exceeding the total thickness.
  • the present invention provides a mold having a fine pattern with high light transmission and releasability and a relatively large maximum height, a method for manufacturing the mold, and a fine pattern of the mold can be transferred with high accuracy and production efficiency.
  • the mold of the present invention is a mold having a fine pattern for molding a photocurable resin, the following transparent resin layer (A), the following surface layer (B), and the surface of the transparent resin layer (A) And the following intermediate layer (C) present between the transparent resin layer (A) and the surface layer (B), wherein the maximum height of the fine pattern is the surface layer (B) ) And the total thickness of the intermediate layer (C).
  • Transparent resin layer (A) a layer made of a transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the following fluoropolymer (I) and the following fluoropolymer (II), and forming an intermediate layer (C) Before the intermediate layer (C) is formed, the surface on which the intermediate layer (C) is formed has the functional group (x). After the intermediate layer (C) is formed, the surface on which the intermediate layer (C) is formed A layer having a chemical bond based on the functional group (x) and the following reactive group (y).
  • Surface layer (B) A layer comprising a fluoropolymer (I) having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
  • Intermediate layer (C) A layer comprising a fluorinated polymer (II) having a fluorinated aliphatic ring structure in the main chain and having a reactive group (y) reactive with the functional group (x).
  • the maximum height of the fine pattern is preferably 1 to 500 ⁇ m.
  • the transparent resin layer (A) is preferably supported by a transparent support (D).
  • the functional group (x) is preferably a hydroxyl group, an amino group or an oxiranyl group, and the reactive group (y) is preferably a carboxyl group.
  • the transparent resin layer (A) is preferably a layer in which a functional group (x) is introduced to the surface by surface treatment.
  • the mold production method of the present invention is a mold production method having a fine pattern for molding a photocurable resin, which is made of the following transparent resin, and has a transparent resin layer (A) having a functional group (x) on the surface. ), A step in which a solution obtained by dissolving the following fluoropolymer (II) in a fluorine-containing solvent is applied and dried to form an intermediate layer (C) comprising the following fluoropolymer (II); On the surface of the intermediate layer (C), a solution in which the following fluoropolymer (I) is dissolved in a fluorine-containing solvent is applied and dried to form a surface layer (B) comprising the following fluoropolymer (I).
  • the reversal pattern of the master mold that exceeds the total thickness of the intermediate layer (C), and at least one of the mold precursor and the master mold is the following fluoropolymer (I) and the following fluoropolymer Pressing in a state where the glass transition temperature is higher than (II), forming a fine pattern over the surface layer (B), the intermediate layer (C) and the transparent resin layer (A) to obtain a mold; Characterized by a step of separating the master mold from Rudo.
  • Transparent resin A transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the following fluoropolymer (I) and the following fluoropolymer (II).
  • Fluoropolymer (I) Fluoropolymer having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
  • Fluoropolymer (II) Fluoropolymer having a fluorinated aliphatic ring structure in the main chain and a reactive group (y) reactive with the functional group (x).
  • the method for producing a substrate having a transfer fine pattern according to the present invention comprises a step of placing a photocurable resin on the surface of the substrate and a mold according to the present invention so that the fine pattern of the mold is in contact with the photocurable resin. Then, in the state of pressing the photocurable resin, and in a state where the mold is pressed to the photocurable resin, the photocurable resin is irradiated with light to cure the photocurable resin to obtain a cured product. It has a process and the process of isolate
  • the method for producing a substrate having a transfer fine pattern according to the present invention comprises a step of placing a photocurable resin on the surface of a fine pattern of a mold according to the present invention, and a substrate as the photocurable resin on the surface of the mold. A step of pressing the photocurable resin with light applied to the photocurable resin while the substrate is pressed against the photocurable resin, and curing the photocurable resin to obtain a cured product, and the cured product. And a step of separating the mold from the mold.
  • the method for producing a base material having a transfer fine pattern comprises a step of bringing a base material and the mold of the present invention into close contact or contact so that the fine pattern of the mold is on the base material side, and photocurability
  • the mold production method of the present invention can produce a mold having a fine pattern with high light transmittance and releasability and a relatively large maximum height.
  • the present invention can produce a substrate having a transfer fine pattern having a relatively large maximum height, by using the mold of the present invention, capable of accurately transferring the fine pattern of the mold with high production efficiency. Can do.
  • a compound represented by the formula (1) is referred to as a compound (1).
  • the mold of the present invention is a mold having a fine pattern for forming a photocurable resin.
  • FIG. 1 is a cross-sectional view showing an example of the mold of the present invention.
  • the mold 10 is formed on the surface of the transparent resin layer (A) 12, the surface layer (B) 16, and the transparent resin layer (A) 12, and the transparent resin layer (A) 12 and the surface layer (B) 16
  • the intermediate layer (C) 14 existing between the transparent resin layer (A) 12 and the transparent support (D) 17 that supports the transparent resin layer (A) 12 from the back side, and the surface layer (B) 16 and the intermediate layer (C ) 14 and the transparent resin layer (A) 12.
  • the transparent support (D) 17 is not necessarily provided.
  • the convex structure portion in the concavo-convex structure exists in a linear or dot shape on the surface of the mold.
  • the linear convex structure portion may be a straight line, a curved line, or a bent shape. Further, a large number of linear convex structure portions may exist in parallel to form a stripe shape. Examples of the cross-sectional shape of the linear convex structure portion (the cross-sectional shape perpendicular to the longitudinal direction) include a rectangle, a trapezoid, a triangle, and a semicircle.
  • Examples of the shape of the dot-like convex structure include columnar shapes, conical shapes, hemispherical shapes, polyhedral shapes, and the like whose bottom shape is a rectangle, square, rhombus, hexagon, triangle, circle, or the like.
  • the aspect ratio of the convex structure part (height of the convex structure part / width of the base of the convex structure part) is preferably 5 or less. When the aspect ratio is 5 or less, a good fine pattern free from defects such as pinholes can be formed when transferring the reverse pattern of the master mold.
  • the aspect ratio is more preferably 3 or less, and even more preferably 2 or less.
  • the height of the convex structure and the width of the bottom are obtained by profile measurement with a confocal laser microscope.
  • the fine pattern is cut and the cross-section is viewed with a microscope (optical microscope, laser It may be observed and determined with a microscope or an electron microscope.
  • the fine pattern is cut by a known method.
  • a resin embedding process, a cooling process with liquid nitrogen, or the like is performed.
  • the maximum height of the fine pattern exceeds the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C).
  • the maximum height of the fine pattern is preferably 500 ⁇ m or less. If the maximum height of the fine pattern is 500 ⁇ m or less, the reverse pattern of the master mold can be uniformly transferred over a wide area.
  • the maximum height of the fine pattern is more preferably 300 ⁇ m or less, and further preferably 100 ⁇ m or less.
  • the lower limit of the maximum height of the fine pattern depends on the total thickness of the surface layer (B) and the intermediate layer (C), but is usually 1 ⁇ m.
  • the maximum height in the present invention is the maximum height defined in JIS B0601, and is the maximum height difference between the highest peak line and the lowest valley line of the concavo-convex structure at the reference length L.
  • the maximum height is determined by profile measurement with a confocal laser microscope. However, if the maximum height is a fine pattern with a steep wall and it is difficult to measure accurately with a confocal laser microscope, the fine pattern is cut and the cross section is observed with a microscope (optical microscope, laser microscope or electron microscope) And you may ask for it.
  • the fine pattern is cut by a known method. However, when there is a possibility that the pattern shape may be lost by cutting, a resin embedding process, a cooling process with liquid nitrogen, or the like is performed.
  • the length of the reference length L is 5 to 20 periods in the case of periodic patterns such as line and space, V-groove, and dot pattern.
  • the length of the reference length L is determined so as to include a portion that becomes the highest point and a portion that becomes the lowest point in the design.
  • the length of the reference length L is large (several mm or more)
  • profile measurement and cross-sectional observation are performed for each location in multiple times, and the maximum height can be obtained by connecting data later.
  • the thicknesses of the surface layer (B) and the intermediate layer (C) are the thicknesses of the surface layer (B) and the intermediate layer (C) in the mold precursor before forming the fine pattern.
  • the transparent resin layer (A) is a layer made of a transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), and the intermediate layer (C) is formed. Before the intermediate layer (C) has a functional group (x), and after the intermediate layer (C) is formed, the functional layer (C) is formed on the surface on which the intermediate layer (C) is formed. It is a layer having a chemical bond based on the group (x) and the reactive group (y).
  • the glass transition temperature of the transparent resin is not higher than the glass transition temperature of the fluoropolymer (I) and not higher than the glass transition temperature of the fluoropolymer (II). If the glass transition temperature of the transparent resin is equal to or lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), the maximum height of the reverse pattern of the master mold (the distortion (swell) of the entire master mold) The maximum height difference of the concavo-convex structure included) exceeds the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C), the transparent resin layer (A) is deformed, and the concavo-convex structure of the reverse pattern In order to follow the distortion (swell) of the entire master mold, the reverse pattern can be accurately transferred.
  • the glass transition temperature of the transparent resin is equal to or lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), when the master mold is pressed, the master mold and the surface layer (B) Even if foreign matter is mixed in between, the transparent resin layer (A) is deformed and absorbs the influence of the foreign matter, so that the expensive master mold is not damaged.
  • the glass transition temperature of the transparent resin is preferably 5 ° C. or more, and more preferably 10 ° C. or more lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II).
  • the glass transition temperature of the transparent resin is preferably 20 ° C. or higher. If the glass transition temperature of transparent resin is 20 degreeC or more, when separating a master mold from a surface layer (B), a transparent resin layer (A) will not deform
  • the glass transition temperature of the transparent resin is more preferably 40 ° C. or higher.
  • the glass transition temperature of the transparent resin is preferably 200 ° C. or lower because it is difficult to synthesize the fluoropolymer (I) and the fluoropolymer (II) having a glass transition temperature exceeding 200 ° C.
  • the glass transition temperature in the present invention is determined according to JIS K7121: 1987 using a differential scanning calorimeter (DSC).
  • the glass transition temperature in this invention means an intermediate point glass transition temperature.
  • Transparent resins include acrylic resin, polystyrene, acrylonitrile butadiene styrene resin (ABS), amorphous polyester, cycloolefin resin (COP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and ethylene-tetrafluoro.
  • COP cycloolefin resin
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • ethylene-tetrafluoro examples include ethylene copolymer (ETFE), fluoroolefin-alkyl vinyl ether copolymer (FEVE), and silicone resin.
  • the transparent resin is preferably an acrylic resin, amorphous polyester or FEVE from the viewpoints of light transmittance, molding processability and patternability.
  • acrylic resin is polymethyl methacrylate (PMMA).
  • FEVE is Lumiflon (manufactured by Asahi Glass Co., Ltd.). Byron (made by Toyobo Co., Ltd.) is mentioned as an amorphous polyester.
  • the transparent resin is preferably acrylic resin, polystyrene, or COP from the viewpoints of light transmittance, molding processability, patternability, and heat resistance.
  • PMMA is mentioned as an acrylic resin.
  • COP include ZEONEX (manufactured by Nippon Zeon Co., Ltd.).
  • the transparent resin layer (A) (when the transparent support (D) is provided, a laminate of the transparent resin layer (A) and the transparent support (D)) is at least of light in the wavelength region of 300 to 500 nm.
  • the light transmittance is preferably 75% or more, more preferably 85% or more.
  • the photocurable resin can be efficiently cured in the method for producing a substrate having a transfer fine pattern described later.
  • the light transmittance at 436 nm (wavelength of g-line of high-pressure mercury lamp) or 365 nm (wavelength of i-line of high-pressure mercury lamp) is preferably 75% or more, more preferably 85% or more. If the light transmittance at a wavelength of 436 nm or 365 nm is 75% or more, the photocurable resin can be efficiently cured using a high-pressure mercury lamp in the method for producing a substrate having a transfer fine pattern described later.
  • a transparent resin layer (A) When providing a transparent support (D), you may form a transparent resin layer (A) by apply
  • transparent resin is shape
  • the shape of the transparent resin layer (A) (when a transparent support (D) is provided, a laminate of the transparent resin layer (A) and the transparent support (D)) is a flat plate (square shape, disk shape). It may be in the form of a film or a curved surface (lens, cylinder, column, etc.).
  • the transparent resin layer (A) When the shape of the transparent resin layer (A) (when the transparent support (D) is provided, a laminate of the transparent resin layer (A) and the transparent support (D)) is flat, the transparent resin layer (A ) Is preferably 0.4 mm to 20 mm, more preferably 0.5 mm to 15 mm, and still more preferably 0.5 mm to 8 mm. If the thickness of the transparent resin layer (A) is 0.4 mm or more, the mold is difficult to bend and the handleability is good. If the thickness of the transparent resin layer (A) is 20 mm or less, the material is not wasted, and the handleability is good because it does not become heavy.
  • the thickness of the transparent resin layer (A) is preferably in the range of 1 to 10 times the maximum height of the fine pattern. If the thickness of the transparent resin layer (A) is smaller than the maximum height of the fine pattern, the transfer of the fine pattern may be insufficient. When the thickness of the transparent resin layer (A) exceeds 10 times the maximum height of the fine pattern, the dimensional stability of the fine pattern is poor when the glass transition temperature of the transparent resin layer (A) is low (80 ° C. or lower). There is a risk. When the thickness of the transparent resin layer (A) is in the range of 1 to 10 times the maximum height of the fine pattern, it is easy to achieve both good transferability and good dimensional stability. The thickness of the transparent resin layer (A) is more preferably in the range of 1.5 to 6 times the maximum height of the fine pattern.
  • the functional group (x) is preferably a hydroxyl group, an oxiranyl group, or an amino group.
  • the functional group (x) may be a functional group derived from a transparent resin, or may be a functional group imparted to the surface of the transparent resin layer (A) by a surface treatment that introduces the functional group (x). .
  • the latter functional group is preferable because the type and amount of the functional group (x) can be arbitrarily controlled.
  • the surface treatment method for introducing the functional group (x) is a method of surface-treating the transparent resin layer (A) with a silane coupling agent having the functional group (x), or surface treatment of the transparent resin layer (A) by plasma treatment.
  • a method of surface-treating the transparent resin layer (A) by graft polymerization, a method of surface-treating the transparent resin layer (A) by UV ozone treatment, and having a functional group (x) on the transparent resin layer (A) A method of applying a primer is preferred.
  • silane coupling agent having a functional group (x) the following compounds are preferable.
  • Silane coupling agents having an amino group aminopropyltriethoxysilane, aminopropylmethyldiethoxysilane, aminoethyl-aminopropyltrimethoxysilane, aminoethyl-aminopropylmethyldimethoxysilane, and the like.
  • Silane coupling agents having an oxiranyl group glycidoxypropyltrimethoxysilane, glycidoxypropylmethyldimethoxysilane, and the like.
  • part or all of the functional group (x) is part of the reactive group (y) of the fluoropolymer (II). Or form a chemical bond with all.
  • the transparent resin layer (A) in the mold of the present invention has the functional group (x).
  • the transparent resin layer (A) in the mold of the present invention does not have the functional group (x).
  • a chemical bond formed from the functional group (x) and the reactive group (y) exists on the surface of the transparent resin layer (A) after the formation of the intermediate layer (C).
  • the chemical bond is an ester bond when the reactive group (y) is a carboxyl group and the functional group (x) is a hydroxyl group or an oxiranyl group, and the reactive group (y) is a carboxyl group and the functional group (x) is Examples include an amide bond in the case of an amino group. Therefore, in the mold of the present invention, the transparent resin layer (A) and the intermediate layer (C) are firmly bonded via chemical bonds.
  • the surface layer (B) is a layer made of the fluorinated polymer (I) having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
  • the fluorine-containing polymer (I) having a fluorine-containing aliphatic ring structure in the main chain is an amorphous or non-crystalline polymer. Having a fluorinated aliphatic ring structure in the main chain means that at least one carbon atom constituting the ring of the fluorinated aliphatic ring in the polymer is a carbon atom constituting the main chain of the polymer.
  • the atoms constituting the fluorine-containing aliphatic ring may contain oxygen atoms, nitrogen atoms and the like in addition to carbon atoms.
  • the fluorine-containing aliphatic ring is preferably a fluorine-containing aliphatic ring having 1 to 2 oxygen atoms.
  • the number of atoms constituting the fluorinated aliphatic ring is preferably 4 to 7.
  • the carbon atom constituting the main chain is a polymer obtained by polymerizing a cyclic monomer, it is derived from the carbon atom of a polymerizable double bond and obtained by cyclopolymerizing a diene monomer. In the case of a polymer, it is derived from 4 carbon atoms of 2 polymerizable double bonds.
  • the cyclic monomer is a monomer having a fluorine-containing aliphatic ring and having a polymerizable double bond between carbon atoms constituting the fluorine-containing aliphatic ring, or fluorine-containing aliphatic
  • the diene monomer is a monomer having two polymerizable double bonds.
  • the ratio of the number of fluorine atoms bonded to carbon atoms to the total number of hydrogen atoms bonded to carbon atoms and fluorine atoms bonded to carbon atoms is 80% or more, respectively. Preferably, 100% is particularly preferable.
  • compound (1) or compound (2) is preferable.
  • X 1 represents a fluorine atom or a perfluoroalkoxy group having 1 to 3 carbon atoms
  • R 1 and R 2 each independently represents a fluorine atom or a perfluoroalkyl group having 1 to 6 carbon atoms
  • 2 and X 3 each independently represents a fluorine atom or a perfluoroalkyl group having 1 to 9 carbon atoms.
  • compound (1) examples include compounds (1-1) to (1-3).
  • compound (2) examples include compounds (2-1) to (2-2).
  • the compound (3) is preferable.
  • Q represents a perfluoroalkylene group having 1 to 3 carbon atoms (which may have an etheric oxygen atom).
  • the etheric oxygen atom may be present at one end of the group or may be present at both ends of the group, and the carbon atom of the group May be present between From the viewpoint of cyclopolymerization, it is preferably present at one end of the group.
  • a fluorinated polymer having one or more monomer units of the following formulas ( ⁇ ) to ( ⁇ ) is obtained by cyclopolymerization of the compound (3).
  • compound (3) include compounds (3-1) to (3-9).
  • the ratio of the monomer units having a fluorinated aliphatic ring structure to the total monomer units (100 mol%) is 20 mol% or more from the viewpoint of the transparency of the fluoropolymer (I). Is preferable, 40 mol% or more is more preferable, and 100 mol% is particularly preferable.
  • the monomer unit having a fluorinated alicyclic structure is a monomer unit formed by polymerization of a cyclic monomer or a monomer unit formed by cyclopolymerization of a diene monomer.
  • Fluoropolymer (I) has substantially no reactive group (y). Having substantially no reactive group (y) means that the content of the reactive group (y) in the fluoropolymer (I) is below the detection limit. Further, it is preferable that the fluoropolymer (I) has substantially no reactive group other than the reactive group (y).
  • the intrinsic viscosity of the fluoropolymer (I) is preferably from 0.1 dL / g to 1.0 dL / g. Intrinsic viscosity correlates with the molecular weight of the fluoropolymer. When the intrinsic viscosity is 0.1 dL / g or more, the fluoropolymer (I) has high mechanical strength, and thus the fine pattern is hardly damaged. If the intrinsic viscosity is 1.0 dL / g or less, the flowability of the fluoropolymer (I) during heating becomes good, and therefore, formation of a fine pattern is facilitated.
  • the intrinsic viscosity of the fluoropolymer (I) is more preferably from 0.15 dL / g to 0.75 dL / g.
  • the intrinsic viscosity in the present invention is an intrinsic viscosity measured at 30 ° C. in perfluoro (2-butyltetrahydrofuran). The viscosity is measured according to JIS Z8803 using an Ubbelohde viscometer (capillary viscometer).
  • the fluoropolymer (I) a highly transparent fluoropolymer is preferable.
  • the light transmittance of light having a wavelength of 300 to 500 nm of the fluoropolymer (I) is preferably 90% or more.
  • the light transmittance is a light transmittance of the fluoropolymer (I) having a thickness of 100 ⁇ m.
  • the glass transition temperature of the fluoropolymer (I) is preferably 20 ° C. or higher.
  • the surface layer (B) is not deformed when the master mold is separated from the surface layer (B), and the dimensional accuracy of the fine pattern is good.
  • the shape of the fluoropolymer (I) is maintained, and the dimensional accuracy of the pattern is improved.
  • the glass transition temperature of the fluoropolymer (I) is more preferably 40 ° C. or higher, and further preferably 70 ° C. or higher.
  • the glass transition temperature of the fluorinated polymer (I) is preferably 200 ° C. or less, more preferably 150 ° C. or less, from the viewpoint that the synthesis of the fluorinated polymer (I) having a glass transition temperature exceeding 200 ° C. is difficult.
  • Fluoropolymer (I) can be obtained according to a known method. For example, after obtaining a fluorine-containing polymer (P) having a fluorine-containing aliphatic ring structure in the main chain or a fluorine-containing polymer (II) having a reactive group (y) by the method described later, the fluorine-containing polymer By bringing the polymer (P) or the fluoropolymer (II) into contact with a fluorine gas, the fluoropolymer (I) substantially free of the reactive group (y) can be obtained.
  • the thickness of the surface layer (B) is preferably 0.2 ⁇ m or more. When the thickness of the surface layer (B) is 0.2 ⁇ m or more, when transferring the reverse pattern of the master mold, defects such as pinholes do not occur and a good fine pattern can be formed.
  • the thickness of the surface layer (B) is more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the thickness of the surface layer (B) is preferably 15 ⁇ m or less. If the thickness of the surface layer (B) is 15 ⁇ m or less, a film having a uniform thickness can be formed by coating.
  • the thickness of the surface layer (B) is more preferably 10 ⁇ m or less, and further preferably 5 ⁇ m or less.
  • the thickness of the surface layer (B) is the thickness of the surface layer (B) in the mold precursor before forming the fine pattern.
  • the intermediate layer (C) is a layer comprising a fluorinated polymer (II) having a fluorinated aliphatic ring structure in the main chain and having a reactive group (y) reactive with the functional group (x). is there.
  • the fluorine-containing polymer (II) having a fluorine-containing aliphatic ring structure in the main chain is an amorphous or non-crystalline polymer.
  • the fluoropolymer (II) is the same polymer as the fluoropolymer (I) except that it has a reactive group (y).
  • the monomer unit having a fluorine-containing aliphatic ring structure in the fluorine-containing polymer (I) and the monomer unit having a fluorine-containing aliphatic ring structure in the fluorine-containing polymer (II) are the intermediate layer (C) and the surface layer (B ) Are more strongly bonded and the durability of the mold is excellent, and the same monomer unit is preferable.
  • the ratio of the monomer units having a fluorinated aliphatic ring structure to the total monomer units (100 mol%) is 20 mol% or more from the viewpoint of the transparency of the fluoropolymer (I). Is preferable, 40 mol% or more is more preferable, and 100 mol% is particularly preferable.
  • the fluoropolymer (II) has a reactive group (y).
  • the kind of reactive group (y) is suitably selected according to the kind of functional group (x).
  • the reactive group (y) is preferably a carboxyl group, a hydroxyl group, a silanol group, or a derivative thereof.
  • a carboxyl group is particularly preferable because it has a high reactivity with an oxiranyl group or an amino group and can easily form a strong bond.
  • the functional group (x) is a hydroxyl group, a silanol group or an alkoxysilane group having 1 to 4 carbon atoms is preferable because a strong bond can be easily formed.
  • the presence or absence of the reactive group (y) is preferably confirmed by an infrared spectrum. If necessary, it is preferably quantified as the number of reactive groups per 10 6 carbon atoms using the method described in JP-A-60-240713.
  • the intrinsic viscosity of the fluoropolymer (II) is preferably 0.1 dL / g to 1.0 dL / g. Intrinsic viscosity correlates with the molecular weight of the fluoropolymer. When the intrinsic viscosity is 0.1 dL / g to 1.0 dL / g, the affinity with the fluorine-containing polymer (I) is high, and the surface layer (B) and the intermediate layer (C) are good. Adhesion can be obtained.
  • the intrinsic viscosity of the fluoropolymer (II) is more preferably from 0.15 dL / g to 0.75 dL / g.
  • the fluoropolymer (II) a highly transparent fluoropolymer is preferable.
  • the light transmittance of light having a wavelength of 300 to 500 nm of the fluoropolymer (II) is preferably 90% or more.
  • the light transmittance is the light transmittance of a fluoropolymer (II) having a thickness of 100 ⁇ m.
  • Fluoropolymer (II) can be obtained according to a known method.
  • the fluoropolymer (II) in which the reactive group (y) is a carboxyl group is obtained by polymerizing a diene monomer or a cyclic monomer in the presence of a hydrocarbon radical polymerization initiator.
  • the fluorine-containing polymer (P) having a fluorine-containing aliphatic ring structure is obtained, and the fluorine-containing polymer (P) is then heat-treated in an oxygen gas atmosphere and further immersed in water.
  • the fluorine-containing polymer (II) in which the reactive group (y) is a silanol group is the carboxyl group of the fluorine-containing polymer (II) having a carboxyl group as in the method described in JP-A-4-226177. Is esterified to form a carboxylic acid methyl ester, and the carboxylic acid methyl ester is further reacted with a silane coupling agent having an amino group or an oxiranyl group to form an amide bond.
  • the fluorine-containing polymer (II) in which the reactive group (y) is a hydroxyl group can be obtained by reducing the carboxyl group of the fluorine-containing polymer having a carboxyl group.
  • the thickness of the intermediate layer (C) is preferably 5 nm to 2000 nm. If the thickness of the intermediate layer (C) is 5 nm or more, a uniform film can be formed and high adhesion can be obtained. If the thickness of the intermediate layer (C) is 2000 nm or less, there is little waste of material.
  • the thickness of the intermediate layer (C) is more preferably 10 nm to 1000 nm, further preferably 20 to 500 nm.
  • the thickness of the intermediate layer (C) is the thickness of the intermediate layer (C) in the mold precursor before forming the fine pattern.
  • Transparent support (D) The transparent resin layer (A) is preferably supported by the transparent support (D). If the transparent resin layer (A) is supported by the transparent support (D), the warping of the transparent resin layer (A) can be suppressed when transferring the reverse pattern of the master mold, and the material of the transparent resin layer (A) The choice of transparent resin that can be selected as is increased.
  • the heat distortion temperature of the transparent support (D) is preferably 100 ° C. or higher, more preferably 120 ° C. or higher.
  • the heat distortion temperature of the transparent support (D) is 100 ° C. or higher, it can be heated while maintaining the shape of the transparent resin layer (A), and the workability is excellent. Further, when transferring the reverse pattern of the master mold, the reverse pattern can be transferred with good dimensional stability.
  • the upper limit of the heat distortion temperature of the transparent support (D) is not particularly defined. You may use the transparent support body (D) whose heat-deformation temperature exceeds 300 degreeC like inorganic materials, such as glass.
  • the heat distortion temperature in the present invention is measured under a load condition of 1.82 MPa according to ASTM D648.
  • transparent support As a material of the transparent support (D), inorganic materials (quartz, glass, translucent ceramics, etc.). ) And transparent resins (polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), fluorene polyester, COP, polyarylate (PAR), aromatic polyetheretherketone (PEEK), aromatic polyethersulfone (PES), wholly aromatic polyketone, fluorine resin, silicone resin, acrylic resin, epoxy resin, phenol resin, etc.). Quartz, glass, PC, and COP are preferable from the viewpoint of light transmittance, molding processability, and heat resistance.
  • Step M1 On the surface side of the transparent resin layer (A) having a functional group (x) on the surface, a solution obtained by dissolving the fluorinated polymer (II) in a fluorinated solvent is applied, and then the fluorinated solvent Is removed by drying, and an intermediate layer (C) made of the fluoropolymer (II) is formed on the surface side of the transparent resin layer (A) having a functional group (x) on the surface.
  • Step M2 A solution in which the fluorinated polymer (I) is dissolved in a fluorinated solvent is applied to the surface side of the intermediate layer (C), and then the fluorinated solvent is removed by drying, so that the intermediate layer (C ) To form a surface layer (B) made of the fluoropolymer (I) to obtain a mold precursor.
  • Step M3 From the surface layer (B) side of the mold precursor, a fine pattern inversion pattern is provided on the surface, and the maximum height of the inversion pattern is the thickness of the surface layer (B) and the thickness of the intermediate layer (C).
  • Step M4 A step of separating the master mold from the mold after cooling the mold and the master mold to below the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II).
  • the drying in the step M1 is a chemical bond between part or all of the functional groups (x) of the transparent resin layer (A) and part or all of the reactive groups (y) of the fluoropolymer (II). Is performed at a temperature capable of forming The drying temperature is usually 100 ° C. or higher.
  • the drying temperature in the step M2 is preferably not less than the glass transition temperature of the fluoropolymer (II) and not less than the glass transition temperature of the fluoropolymer (I). By drying at this temperature, the intermediate layer (C) and the surface layer (B) are bonded with high strength.
  • step M3 at least one of the mold precursor and the master mold is heated to a temperature equal to or higher than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II). If the heating temperature is equal to or higher than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), the reverse pattern of the master mold can be accurately transferred.
  • the heating temperature is preferably 10 ° C. or more higher than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II).
  • the heating temperature is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the heating temperature of the mold precursor and the master mold is lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II) in the step M3, the heating temperature is the transparent resin layer ( If the glass transition temperature is equal to or higher than the glass transition temperature of A), the pattern can be transferred, but the pattern shape may not be accurately transferred, there may be a region where the pattern is not transferred, or the surface of the pattern may be roughened.
  • the heating temperature of the mold precursor and the master mold is lower than the glass transition temperature of the transparent resin layer (A), the pattern is not transferred.
  • the mold of the present invention described above is a laminate of a transparent resin layer (A), an intermediate layer (C) made of a fluoropolymer (II), and a surface layer (B) made of a fluoropolymer (I). Therefore, it has high light transmittance. Moreover, since the mold of this invention is a layer which a surface layer (B) consists of a fluoropolymer (I), it has the mold release property of the grade which can shape
  • the glass transition temperature of the transparent resin constituting the transparent resin layer (A) is not higher than the glass transition temperatures of the fluoropolymer (I) and the fluoropolymer (II). Therefore, the maximum height of the fine pattern (the maximum height difference of the concavo-convex structure including the distortion (waviness) of the entire mold) exceeds the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C).
  • the transparent resin layer (A) is deformed and can follow the concavo-convex structure of the reverse pattern, the distortion (swell) of the entire master mold, etc., so that the surface layer (B), intermediate layer A fine pattern can be accurately formed across (C) and the transparent resin layer (A). Furthermore, even if foreign particles are mixed between the master mold and the surface layer (B) when the master mold is pressed, the transparent resin layer (A) is deformed, so that the expensive master mold is not damaged.
  • A-1) A step of disposing the photocurable resin 20 on the surface of the substrate 30.
  • A-2) A step of pressing the mold 10 against the photocurable resin 20 so that the fine pattern 18 of the mold 10 contacts the photocurable resin 20 as shown in FIG.
  • A-3) A step of irradiating the photocurable resin 20 with light while the mold 10 is pressed against the photocurable resin 20 to cure the photocurable resin 20 to obtain a cured product.
  • A-4) A step of separating the mold 10 from the cured product.
  • Method (b) A method comprising the following steps (b-1) to (b-4).
  • B-1) A step of disposing the photocurable resin 20 on the surface of the fine pattern 18 of the mold 10.
  • B-2 A step of pressing the substrate 30 against the photocurable resin 20 on the surface of the mold 10 as shown in FIG.
  • B-3) A step of irradiating the photocurable resin 20 with light while the substrate 30 is pressed against the photocurable resin 20 to cure the photocurable resin 20 to obtain a cured product.
  • B-4) A step of separating the mold 10 from the cured product.
  • Method (c) A method comprising the following steps (c-1) to (c-4).
  • C-1) A step of bringing the base material 30 and the mold 10 close to or in contact with each other so that the fine pattern 18 of the mold 10 is on the base material 30 side.
  • C-2) A step of filling the photocurable resin 20 between the base material 30 and the mold 10 as shown in FIG.
  • C-3) A step of irradiating the photocurable resin 20 with light in a state where the base material 30 and the mold 10 are close to or in contact with each other to cure the photocurable resin 20 to obtain a cured product.
  • C-4) A step of separating the mold 10 from the cured product.
  • the photocurable resin is a resin that is cured by light irradiation to form a cured product.
  • the photocurable resin containing a polymeric compound and a photoinitiator is preferable.
  • the polymerizable compound include compounds having a polymerizable group, such as a polymerizable monomer, a polymerizable oligomer, and a polymerizable polymer.
  • the photopolymerization initiator is a photopolymerization initiator that causes radical reaction or ionic reaction by light.
  • the light irradiation is usually performed from the mold 10 side.
  • light irradiation may be performed from the base material 30 side.
  • the wavelength of the light in light irradiation should just be a wavelength range with which the mold of this invention has high light transmittance.
  • the wavelength of light in the light irradiation is particularly preferably g-line (wavelength 436 nm) or i-line (wavelength 365 nm) of a high-pressure mercury lamp from the viewpoint that a general photocurable resin can be cured at a low temperature.
  • the transparent resin layer (A) is inferior in light resistance to quartz or glass
  • the light in light irradiation preferably does not contain light having a wavelength of less than 300 nm, and more preferably does not contain light having a wavelength of less than 350 nm.
  • the temperature of the system in each step of the methods (a) to (c) is preferably not higher than the glass transition temperature of the fluoropolymer (I).
  • the substrate having a transfer fine pattern produced by the production method of the present invention has a transfer fine pattern made of a cured product of a photocurable resin on the surface of the substrate.
  • the transferred fine pattern is a fine pattern obtained by inverting the fine pattern of the mold of the present invention.
  • the transfer fine pattern is preferably a structure having a concavo-convex structure (hereinafter also referred to as a concavo-convex structure) made of a cured product of a photocurable resin.
  • the concavo-convex structure may have a layer structure composed of a continuous body having a concavo-convex shape on the surface, or may have a structure composed of an independent set of protrusions.
  • the former consists of a layer of a cured product of a photocurable resin that covers the surface of the substrate, and the surface of the cured product layer of the photocurable resin has a concavo-convex shape.
  • the latter refers to a structure in which a large number of protrusions made of a cured product of a photocurable resin are present independently on the surface of the base material and form an uneven shape together with a concave portion made of the surface of the base material.
  • the convex structure (projection) is made of a cured product of a photocurable resin.
  • the concavo-convex structure may have a structure having these two structures together at different positions on the surface of the substrate.
  • Examples of the substrate having a transfer fine pattern include semiconductor elements, recording media, MEMS, bio-related members, optical members, and the like.
  • Specific examples of the MEMS, bio-related member, and optical member include the following.
  • the fine pattern of the mold can be transferred with high accuracy and production efficiency, and a transfer fine pattern having a relatively large maximum height can be formed.
  • the intrinsic viscosity of the fluorinated polymer was measured in perfluoro (2-butyltetrahydrofuran) at 30 ° C. using a glass Ubbelohde tube.
  • the infrared absorption spectrum of the fluorine-containing polymer was measured using a Fourier transform infrared spectrometer (Nicolet, 20DXC).
  • Glass-transition temperature The glass transition temperature of the transparent resin and the fluoropolymer was measured using a differential scanning calorimeter (manufactured by Bruker AXS Co., Ltd., DSC3100) at a temperature rising rate of 20 ° C./min. The glass transition temperature was measured according to JIS K7121: 1987, and the midpoint glass transition temperature was taken as the glass transition temperature.
  • the heat distortion temperature of the transparent resin was measured by ASTM D648 using a heat distortion tester (manufactured by Yasuda Seiki Seisakusho, HD-PC) under a load of 1.82 MPa.
  • the film of the transparent resin layer (A) or the laminate of the transparent resin layer (A) and the transparent support (D) has a 436 nm transmittance and a 365 nm transmittance, and a fluoropolymer film having a wavelength of 300 to 500 nm.
  • the light transmittance of light was measured using a spectrophotometer (manufactured by Hitachi High-Technology Corporation, U-4100).
  • the thicknesses of the surface layer (B) and the intermediate layer (C) were measured using an optical interference film thickness measuring device (C10178, manufactured by Hamamatsu Photonics).
  • the refractive indexes of the fluoropolymer (I-1), the fluoropolymer (II-1) and the fluoropolymer (II-2) were each 1.34.
  • the maximum height of the fine pattern formed on the mold was obtained by profile measurement using a confocal laser microscope (manufactured by Keyence Corporation, VK-9500).
  • V-groove pattern the profile in the direction perpendicular to the groove was measured, and in the case of the cylindrical pattern, the profile on a line passing through the center of the cylinder was measured.
  • color ultra-depth observation is performed under the conditions of a lens magnification of 50 times, an optical zoom of 1 time, and a measurement pitch of 0.05 ⁇ m, and after performing surface tilt correction (automatic), a profile in a range of 200 ⁇ m in length is obtained.
  • the maximum height difference between the highest peak line and the lowest valley line of the concavo-convex structure was obtained.
  • Example 1 Production of fluorinated polymer (P-1): To an autoclave (made of pressure-resistant glass), 100 g of compound (3-3), 0.5 g of methanol, and 0.7 g of compound (4-1) were added, and compound (3-3) was added by suspension polymerization. Polymerization was performed to obtain a fluoropolymer (P-1).
  • the fluorine-containing polymer (P-1) is a polymer comprising monomer units represented by the following formula ( ⁇ -1).
  • the intrinsic viscosity of the fluoropolymer (P-1) was 0.34 dL / g.
  • the glass transition temperature of the fluoropolymer (P-1) was 108 ° C.
  • fluoropolymer (I-1) Production of a fluoropolymer having a monomer unit represented by the above formula ( ⁇ -1) and having a terminal —CF 3 (hereinafter referred to as fluoropolymer (I-1)):
  • the fluoropolymer (P-1) was placed in an autoclave (made of nickel, internal volume 1 L), and the interior of the autoclave was replaced with nitrogen gas three times, and then the pressure was reduced to 4.0 kPa (absolute pressure). After introducing fluorine gas diluted to 14% by volume with nitrogen gas into the autoclave up to 101.3 kPa, the internal temperature of the autoclave was maintained at 230 ° C. for 6 hours.
  • the contents of the autoclave were recovered to obtain a fluoropolymer (I-1).
  • a fluoropolymer (I-1) As a result of measuring the infrared absorption spectrum of the fluoropolymer (I-1), no peak due to the carboxyl group was confirmed.
  • the fluoropolymer (I-1) was processed into a film having a thickness of 100 ⁇ m, and the light transmittance of light having a wavelength of 300 to 500 nm was measured and found to be 95% or more.
  • the glass transition temperature of the fluoropolymer (I-1) was 108 ° C.
  • the intrinsic viscosity of the fluoropolymer (I-1) was 0.33 dL / g.
  • solution composition 1 containing the fluoropolymer (I-1): A perfluorotributylamine solution containing 9% by mass of the fluoropolymer (I-1) was prepared, and the solution was filtered through a membrane filter (pore size: 0.2 ⁇ m, manufactured by PTFE) to obtain a solution composition 1.
  • a membrane filter pore size: 0.2 ⁇ m, manufactured by PTFE
  • the fluoropolymer (P-1) was heat-treated at 300 ° C. for 1 hour in a hot-air circulating oven under atmospheric pressure, then immersed in ultrapure water at 110 ° C. for 1 week, and then vacuum dried. It was dried in the machine at 100 ° C. for 24 hours to obtain a fluoropolymer (II-1).
  • the fluoropolymer (II-1) was processed into a film having a thickness of 100 ⁇ m, and the light transmittance of light having a wavelength of 300 to 500 nm was measured. As a result, it was 93% or more.
  • the glass transition temperature of the fluoropolymer (II-1) was 108 ° C.
  • the intrinsic viscosity of the fluoropolymer (II-1) was 0.34 dL / g.
  • solution composition 2 containing the fluoropolymer (II-1): A perfluorotributylamine solution containing 1% by mass of the fluoropolymer (II-1) was prepared, and the solution was filtered through a membrane filter (pore size: 0.2 ⁇ m, manufactured by PTFE) to obtain a solution composition 2.
  • a membrane filter pore size: 0.2 ⁇ m, manufactured by PTFE
  • Example 4 Mold production: A PC sheet (length 40 mm ⁇ width 40 mm ⁇ thickness 0.5 mm) was prepared as the transparent resin layer (A). Table 1 shows the physical properties of the transparent resin layer (A).
  • a primer having an oxiranyl group (manufactured by Shin-Etsu Chemical Co., Ltd., FS-10) was diluted 20 times with a mixed solvent of butyl acetate / 2-propanol (5/9 mass ratio) to obtain a primer coating solution.
  • the primer coating solution is applied to the surface of the transparent resin layer (A) using a spin coating method, and heated and dried at 100 ° C. for 30 minutes in a nitrogen stream to introduce oxiranyl groups to the surface of the transparent resin layer (A). Surface treatment was performed.
  • the solution composition 2 is applied to the surface-treated surface of the transparent resin layer (A) by using a spin coating method, followed by heating and drying at 110 ° C. for 2 hours, so that the perfluorotributylamine in the solution composition 2 is obtained. Volatilized.
  • the intermediate layer (C) (C) comprising the fluoropolymer (II-1) is obtained by chemically bonding the oxiranyl group on the surface of the transparent resin layer (A) and the carboxyl group of the fluoropolymer (II-1). (Thickness: 0.1 ⁇ m) was formed.
  • the solution composition 1 is applied to the surface of the intermediate layer (C) by using a spin coating method, and heated and dried at 110 ° C. for 4 hours to volatilize perfluorotributylamine in the solution composition 1, A surface layer (B) was formed to obtain a mold precursor.
  • the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C) was 1.3 ⁇ m.
  • a nickel master mold having a fine pattern composed of V-grooves having a depth (maximum height) of 10 ⁇ m, a pitch of 20 ⁇ m, and an angle of slope of 45 degrees on the surface was prepared.
  • the master mold was heated to 160 ° C. and pressure-bonded at 3 MPa (absolute pressure) for 2 minutes from the surface layer (B) side of the mold precursor.
  • the master mold is separated from the mold precursor, and is composed of a transparent resin layer (A), an intermediate layer (C), and a surface layer (B).
  • a mold in which a fine pattern was formed over (B) and the intermediate layer (C) was obtained.
  • the maximum height of the fine pattern was 9.8 ⁇ m. Some warpage was observed in the mold.
  • the transparent resin layer (A) was exposed at the valley bottom of the fine pattern of the mold.
  • a photocurable resin (NIF-A-1 manufactured by Asahi Glass Co., Ltd.) was applied to the surface of the fine pattern of the mold, and a silicon wafer was pressed from above onto the photocurable resin.
  • the photocurable resin was cured by irradiating with ultraviolet rays (wavelength: 365 nm, illuminance: 50 mW / cm 2 ) for 30 seconds from the mold side. Next, an attempt was made to separate the mold, but it was not possible to separate the mold and the silicon wafer because they were bonded.
  • Example 5 Mold production: A PMMA sheet (length 40 mm ⁇ width 40 mm ⁇ thickness 1.8 mm) was prepared as the transparent resin layer (A). Table 1 shows the physical properties of the transparent resin layer (A). A transparent resin layer (A), an intermediate layer (C), and a transparent resin layer (A) were prepared in the same manner as in Example 4 except that a PMMA sheet was used instead of the PC sheet as the transparent resin layer (A) and the heating temperature of the master mold was 130 ° C. A mold comprising a surface layer (B) and having a fine pattern formed over the surface layer (B) and the intermediate layer (C) was obtained. The maximum height of the fine pattern was 9.8 ⁇ m. Some warpage was observed in the mold. Moreover, the transparent resin layer (A) was exposed at the valley bottom of the fine pattern of the mold.
  • a photocurable resin (NIF-A-1 manufactured by Asahi Glass Co., Ltd.) was applied to the surface of the fine pattern of the mold, and a silicon wafer was pressed from above onto the photocurable resin.
  • the photocurable resin was cured by irradiating with ultraviolet rays (wavelength: 365 nm, illuminance: 50 mW / cm 2 ) for 30 seconds from the mold side. Next, an attempt was made to separate the mold, but it was not possible to separate the mold and the silicon wafer because they were bonded.
  • Example 6 Mold production: As the transparent resin layer (A), a PMMA sheet (length 40 mm ⁇ width 40 mm ⁇ thickness 1.8 mm) having a glass transition temperature lower than that of the PMMA sheet used in Example 5 was prepared. Table 2 shows the physical properties of the transparent resin layer (A).
  • a transparent resin layer (A), an intermediate layer (C), and a transparent resin layer (A) were prepared in the same manner as in Example 4 except that a PMMA sheet was used instead of the PC sheet as the transparent resin layer (A) and the heating temperature of the master mold was 120 ° C.
  • a mold comprising a surface layer (B) and having a fine pattern formed on the surface layer (B), the intermediate layer (C) and the transparent resin layer (A) was obtained. The maximum height of the fine pattern was 10.0 ⁇ m. Some warpage was observed in the mold.
  • a photocurable resin (NIF-A-1 manufactured by Asahi Glass Co., Ltd.) was applied to the surface of the fine pattern of the mold, and a silicon wafer was pressed from above onto the photocurable resin.
  • the photocurable resin was cured by irradiating with ultraviolet rays (wavelength: 365 nm, illuminance: 50 mW / cm 2 ) for 30 seconds from the mold side.
  • the mold and the silicon wafer were separated, and a silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained.
  • VK-9500 manufactured by Keyence Corporation
  • Example 7 Mold production: A transparent resin FEVE (manufactured by Asahi Glass Co., Ltd., Lumiflon LF710F) was dissolved in toluene so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 100 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
  • a transparent support (D) was used in the same manner as in Example 4 except that a glass plate on which a transparent resin layer (A) made of FEVE was formed was used instead of the PC sheet, and the heating temperature of the master mold was 120 ° C. And a transparent resin layer (A), an intermediate layer (C), and a surface layer (B), and a mold having a fine pattern formed on the surface layer (B), the intermediate layer (C), and the transparent resin layer (A). Obtained. The maximum height of the fine pattern was 9.9 ⁇ m. A laser microscope image of the mold is shown in FIG. No warpage was observed in the mold.
  • a silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained in the same manner as in Example 6 except that the mold of Example 7 was used instead of the mold of Example 6.
  • the transferred fine pattern was observed with a laser microscope, the fine pattern of the master mold was reproduced.
  • Example 8 Mold production: A transparent resin FEVE (manufactured by Asahi Glass Co., Ltd., Lumiflon LF710F) was dissolved in toluene so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 100 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
  • the surface of the transparent resin layer (A) was previously hydrophilized (nitrogen plasma treatment).
  • the hydrophilic treatment was performed using a reactive ion etching apparatus (RIE-10NR, manufactured by Samco Corporation) under the conditions of a nitrogen flow rate: 20 sccm, a pressure: 4 Pa, an output: 80 W, and a treatment time: 1 minute.
  • RIE-10NR reactive ion etching apparatus
  • An ethanol solution containing 0.5% by mass of a silane coupling agent having an amino group (KBE-903, manufactured by Shin-Etsu Chemical Co., Ltd.) and 5% by mass of water is applied to the surface of the transparent resin layer (A) by spin coating. It applied using. Surface treatment for introducing the amino group derived from the silane coupling agent to the surface of the transparent resin layer (A) by washing the transparent resin layer (A) with water and then drying by heating in a nitrogen stream at 100 ° C. for 30 minutes. Went.
  • the solution composition 2 is applied to the surface-treated surface of the transparent resin layer (A) by using a spin coating method, followed by heating and drying at 110 ° C. for 2 hours, so that the perfluorotributylamine in the solution composition 2 is obtained. Volatilized. At the same time, the amino group on the surface of the transparent resin layer (A) and the carboxyl group of the fluoropolymer (II-1) are chemically bonded to form an intermediate layer (C) composed of the fluoropolymer (II-1) ( Thickness: 0.10 ⁇ m) was formed.
  • the solution composition 1 is applied to the surface of the intermediate layer (C) by using a spin coating method, and heated and dried at 110 ° C. for 4 hours to volatilize perfluorotributylamine in the solution composition 1, A surface layer (B) was formed to obtain a mold precursor.
  • the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C) was 1.25 ⁇ m.
  • a fine pattern is formed in the same manner as in Example 4 except that the mold precursor is used, and includes a transparent resin layer (A), an intermediate layer (C), and a surface layer (B).
  • a mold having a fine pattern formed over the intermediate layer (C) and the transparent resin layer (A) was obtained.
  • the maximum height of the fine pattern was 10.0 ⁇ m. No warpage was observed in the mold.
  • a silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained in the same manner as in Example 6 except that the mold of Example 8 was used instead of the mold of Example 6.
  • the transferred fine pattern was observed with a laser microscope, the fine pattern of the master mold was reproduced.
  • Example 9 Mold production: Except that the oxiranyl group was not introduced into the surface of the transparent resin layer (A), the same procedure as in Example 7 was conducted. When separating the master mold from the mold, the transparent resin layer (A) and the intermediate layer (C) Peeling occurred between.
  • Example 10 Mold production: When the intermediate layer (C) was formed, except that the solution composition 1 was used in place of the solution composition 2, it was performed in the same manner as in Example 8. When separating the master mold from the mold, a transparent resin was used. Peeling occurred between the layer (A) and the intermediate layer (C).
  • Example 11 A polymer comprising monomer units represented by the above formula ( ⁇ -1) and having a terminal reactive group (y) (silanol group (alkoxysilane group)) (hereinafter referred to as “fluorinated polymer”)).
  • fluorinated polymer hereinafter referred to as “fluorinated polymer”.
  • the system was replaced with nitrogen, and the mixture was stirred at room temperature for 3 hours to obtain a fluoropolymer (II-2).
  • the fluoropolymer (II-2) was processed into a film having a thickness of 100 ⁇ m, and the light transmittance of light having a wavelength of 300 to 500 nm was measured and found to be 92% or more.
  • the glass transition temperature of the fluoropolymer (II-2) was 108 ° C.
  • the intrinsic viscosity of the fluoropolymer (II-2) was 0.32 dL / g.
  • solution composition 3 A perfluorotributylamine solution containing 1% by mass of the fluoropolymer (II-2) was prepared. The solution was filtered through a membrane filter (pore size: 0.2 ⁇ m, made of PTFE) to obtain a solution composition 3.
  • Example 12 Mold production: Amorphous polyester (byron 200, manufactured by Toyobo Co., Ltd.), which is a transparent resin, was dissolved in cyclohexanone so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 150 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
  • the surface of the transparent resin layer (A) was previously hydrophilized (oxygen plasma treatment).
  • the hydrophilic treatment was performed using a reactive ion etching apparatus (RIE-10NR, manufactured by Samco) under the conditions of oxygen flow rate: 50 sccm, pressure: 10 Pa, output: 100 W, treatment time: 10 seconds.
  • RIE-10NR reactive ion etching apparatus
  • the solution composition 3 is applied to the surface-treated surface of the transparent resin layer (A) by using a spin coating method, and is heated and dried at 110 ° C. for 2 hours, so that the perfluorotributylamine in the solution composition 3 is obtained. Volatilized.
  • the hydroxyl group on the surface of the transparent resin layer (A) and the silanol group of the fluoropolymer (II-2) are chemically bonded to form an intermediate layer (C) (thickness of the fluoropolymer (II-2)). : 0.1 ⁇ m).
  • the solution composition 1 is applied to the surface of the intermediate layer (C) by using a spin coating method, and heated and dried at 110 ° C. for 4 hours to volatilize perfluorotributylamine in the solution composition 1, A surface layer (B) was formed to obtain a mold precursor.
  • the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C) was 1.2 ⁇ m.
  • a fine pattern is formed in the same manner as in Example 4 except that the mold precursor is used, and includes a transparent resin layer (A), an intermediate layer (C), and a surface layer (B).
  • a mold having a fine pattern formed over the intermediate layer (C) and the transparent resin layer (A) was obtained.
  • the maximum height of the fine pattern was 9.7 ⁇ m. No warpage was observed in the mold.
  • Example 13 Mold production: Amorphous polyester (byron 300, manufactured by Toyobo Co., Ltd.), which is a transparent resin, was dissolved in cyclohexanone so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 150 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
  • a mold was obtained. The maximum height of the fine pattern was 10.1 ⁇ m. No warpage was observed in the mold.
  • Example 14 Mold production: Example 7 except that instead of the master mold of Example 1, a silicon mold having a fine pattern in which cylindrical holes having a diameter of 5 ⁇ m and a depth (maximum height): 5 ⁇ m are arranged in a grid at intervals of 10 ⁇ m was used. In the same manner, the transparent support (D), the transparent resin layer (A), the intermediate layer (C), and the surface layer (B) are formed. The surface layer (B), the intermediate layer (C), and the transparent resin layer ( A mold having a fine pattern formed over A) was obtained. The maximum height of the fine pattern was 5.1 ⁇ m. No warpage was observed in the mold.
  • Example 15 Mold production: Except that the heating temperature of the master mold was set to 40 ° C., the same process as in Example 7 was performed. As a result, the fine pattern of the master mold was not transferred onto the surface of the mold.
  • the mold of the present invention is useful as a mold for optical nanoimprint using a photocurable resin.
  • a base material having a transfer fine pattern obtained by using the mold of the present invention is useful as a semiconductor element, a recording medium, a MEMS, a bio-related member, an optical member, and the like.

Abstract

A mold is provided which has high light transmission and high releasability and has a fine pattern having a relatively large maximum height. Also provided are: a process for producing the mold; and a process for producing a substrate with a transferred fine pattern using the mold. The mold (10) includes a transparent resin layer (A) (12) constituted of a transparent resin and having chemical bonds based on a functional group (x) in the surface thereof on the interlayer (C) side, an interlayer (C) (14) comprising a fluoropolymer (II) which has a backbone having a fluorinated alicyclic structure and has a reactive group (y) reactive with the functional group (x), and a surface layer (B) (16) comprising a fluoropolymer (I) which has a backbone having a fluorinated alicyclic structure and does not have the reactive group (y), the transparent resin having a glass transition temperature not higher than the glass transition temperatures of the fluoropolymer (I) and the fluoropolymer (II). The fine pattern has a maximum height exceeding the sum of the thickness of the surface layer (B) and the thickness of the interlayer (C).

Description

モールド、その製造方法および転写微細パターンを有する基材の製造方法Mold, method for producing the same, and method for producing a substrate having a transfer fine pattern
 本発明は、モールド、その製造方法および該モールドを用いた光硬化性樹脂の硬化物からなる転写微細パターンを有する基材の製造方法に関する。 The present invention relates to a mold, a method for producing the mold, and a method for producing a substrate having a transfer fine pattern made of a cured product of a photocurable resin using the mold.
 近年、表面に微細パターンを有するモールドと基材とを接触させて微細パターンの反転パターンを基材の表面に形成する方法、いわゆるナノインプリント法が注目されている(特許文献1および特許文献2参照)。なかでも、モールドの微細パターンの表面と基材との間に光硬化性樹脂を配置する工程、光硬化性樹脂に光照射し、光硬化性樹脂を硬化させて硬化物とする工程、および硬化物からモールドを分離する工程を順に行う、光ナノインプリント法が注目されている。 In recent years, a method of forming a reverse pattern of a fine pattern on a surface of a base material by bringing a mold having a fine pattern on the surface into contact with the base material, a so-called nanoimprint method has attracted attention (see Patent Document 1 and Patent Document 2). . Among them, a step of placing a photocurable resin between the surface of the mold fine pattern and the base material, a step of irradiating the photocurable resin with light, curing the photocurable resin to obtain a cured product, and curing An optical nanoimprint method that sequentially performs a process of separating a mold from an object has attracted attention.
 ナノインプリント法は、主に、半導体素子の微細配線、記録メディア等の最大高さが100nm以下の微細パターンを形成する方法として検討されているが、MEMS(Micro-Electro-Mechanical-Systems)、バイオ関連部材、光学部材等の最大高さが数μmから数十μmを超える微細パターンを形成する方法としても、生産性を大幅に向上させる点で、その応用が期待されている。 The nanoimprint method is mainly studied as a method for forming a fine pattern with a maximum height of 100 nm or less, such as fine wiring of semiconductor elements, recording media, etc., but MEMS (Micro-Electro-Mechanical-Systems), bio-related As a method for forming a fine pattern in which the maximum height of a member, an optical member or the like exceeds several μm to several tens of μm, its application is expected in terms of greatly improving productivity.
 光ナノインプリント法に用いられるモールドとしては、下記のモールドが提案されている。
 (1)石英製モールド。
 (2)透明基体(A)と、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体からなり、表面に微細パターンを有する表面層(B)と、透明基体(A)と表面層(B)との間に存在する中間層(C)とを有するモールド(特許文献3参照)。
The following molds have been proposed as molds used in the optical nanoimprint method.
(1) Quartz mold.
(2) a transparent substrate (A), a surface layer (B) having a fine pattern on the surface, a transparent substrate (A), and a surface layer (including a fluorine-containing aliphatic ring structure in the main chain) B) a mold having an intermediate layer (C) existing between (see Patent Document 3).
 (1)のモールドは、離型性が低く、硬化物からモールドを分離する際に硬化物の転写微細パターンの精度が低下しやすい。離型性を向上させる方法としては、モールドの微細パターンの表面に離型剤を塗布する方法が提案されている。しかし、塗布された離型剤の厚さムラにより、モールドの微細パターンを精度よく転写できない。さらに、モールドを連続して用いる場合、離型剤を再塗布する必要があり、生産効率が低下しやすい。 (1) The mold has low releasability, and the accuracy of the transferred fine pattern of the cured product tends to decrease when the mold is separated from the cured product. As a method for improving the releasability, a method of applying a release agent to the surface of the fine pattern of the mold has been proposed. However, the fine pattern of the mold cannot be accurately transferred due to the uneven thickness of the applied release agent. Furthermore, when using a mold continuously, it is necessary to re-apply a mold release agent, and production efficiency tends to be lowered.
 (2)のモールドは、表面層(B)が含フッ素重合体からなるため、離型性が高い。しかし、機械的強度、寸法安定性の向上を目的とした(2)のモールドは、透明基体(A)として硬い材料を用いているため、最大高さが表面層(B)の厚さと中間層(C)の厚さとの合計を超える微細パターンを形成することは下記理由から困難である。 (2) Since the surface layer (B) is made of a fluoropolymer, the mold (2) has a high releasability. However, since the mold (2) for the purpose of improving mechanical strength and dimensional stability uses a hard material as the transparent substrate (A), the maximum height is the thickness of the surface layer (B) and the intermediate layer. It is difficult to form a fine pattern exceeding the total thickness of (C) for the following reason.
 (2)のモールドは、透明基体(A)の表面に中間層(C)および表面層(B)を塗工により形成し、表面層(B)にマスターモールドを押しつけ、マスターモールドの反転パターンを表面層(B)に転写することにより製造されている。しかし、塗工で形成される表面層(B)の厚さと中間層(C)の厚さとの合計が薄い(0.1~15μm程度である。)ため、マスターモールドの反転パターンの最大高さ(マスターモールド全体の歪(うねり)を含めた凹凸構造の最大高低差。)が前記厚さの合計を超える場合、マスターモールドの反転パターンを正確に転写するためには、前記厚さの合計を超える分については透明基体(A)にも反転パターンを転写しなければならない。しかし、透明基体(A)が硬いため、前記厚さの合計を超える分については透明基体(A)に反転パターンを転写できない。 In the mold (2), the intermediate layer (C) and the surface layer (B) are formed on the surface of the transparent substrate (A) by coating, the master mold is pressed against the surface layer (B), and the reverse pattern of the master mold is formed. It is manufactured by transferring to the surface layer (B). However, since the sum of the thickness of the surface layer (B) formed by coating and the thickness of the intermediate layer (C) is thin (about 0.1 to 15 μm), the maximum height of the reverse pattern of the master mold If the maximum height difference of the concavo-convex structure including distortion (waviness) of the entire master mold exceeds the total thickness, in order to accurately transfer the reverse pattern of the master mold, the total thickness is For the excess, the reverse pattern must be transferred to the transparent substrate (A). However, since the transparent substrate (A) is hard, the reverse pattern cannot be transferred to the transparent substrate (A) for the portion exceeding the total thickness.
 むしろ、マスターモールドの反転パターンが透明基体(A)に到達した際に、中間層(C)および表面層(B)が破断し、透明基体(A)が表面に露出してしまう。透明基体(A)が表面に露出した(2)のモールドは、透明基体(A)と硬化物とが接着してしまうため、離型性が低い。
特表2004-504718号公報 特表2002-539604号公報 国際公開第2006/059580号パンフレット
Rather, when the reverse pattern of the master mold reaches the transparent substrate (A), the intermediate layer (C) and the surface layer (B) are broken, and the transparent substrate (A) is exposed on the surface. The mold (2) with the transparent substrate (A) exposed on the surface has low releasability because the transparent substrate (A) and the cured product adhere to each other.
JP-T-2004-504718 JP 2002-539604 A International Publication No. 2006/059580 Pamphlet
 本発明は、光透過性および離型性が高く、かつ最大高さが比較的大きな微細パターンを有するモールド、その製造方法、およびモールドの微細パターンを精度よく、かつ生産効率よく転写でき、転写微細パターンの最大高さが比較的大きい、転写微細パターンを有する基材の製造方法を提供する。 The present invention provides a mold having a fine pattern with high light transmission and releasability and a relatively large maximum height, a method for manufacturing the mold, and a fine pattern of the mold can be transferred with high accuracy and production efficiency. Provided is a method for producing a substrate having a transfer fine pattern in which the maximum height of the pattern is relatively large.
 本発明のモールドは、光硬化性樹脂を成形するための微細パターンを有するモールドであって、下記透明樹脂層(A)と、下記表面層(B)と、前記透明樹脂層(A)の表面に形成され、かつ前記透明樹脂層(A)と前記表面層(B)との間に存在する下記中間層(C)とを有し、前記微細パターンの最大高さが、前記表面層(B)の厚さと前記中間層(C)の厚さの合計を超えることを特徴とする。
 透明樹脂層(A):ガラス転移温度が下記含フッ素重合体(I)および下記含フッ素重合体(II)のガラス転移温度以下である透明樹脂からなる層であり、中間層(C)が形成される前には、中間層(C)が形成される表面に官能基(x)を有し、中間層(C)が形成された後には、中間層(C)が形成された表面に前記官能基(x)と下記反応性基(y)とに基づく化学結合を有する層。
 表面層(B):主鎖に含フッ素脂肪族環構造を有し、かつ下記反応性基(y)を実質的に有しない含フッ素重合体(I)からなる層。
 中間層(C):主鎖に含フッ素脂肪族環構造を有し、かつ前記官能基(x)と反応性の反応性基(y)を有する含フッ素重合体(II)からなる層。
The mold of the present invention is a mold having a fine pattern for molding a photocurable resin, the following transparent resin layer (A), the following surface layer (B), and the surface of the transparent resin layer (A) And the following intermediate layer (C) present between the transparent resin layer (A) and the surface layer (B), wherein the maximum height of the fine pattern is the surface layer (B) ) And the total thickness of the intermediate layer (C).
Transparent resin layer (A): a layer made of a transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the following fluoropolymer (I) and the following fluoropolymer (II), and forming an intermediate layer (C) Before the intermediate layer (C) is formed, the surface on which the intermediate layer (C) is formed has the functional group (x). After the intermediate layer (C) is formed, the surface on which the intermediate layer (C) is formed A layer having a chemical bond based on the functional group (x) and the following reactive group (y).
Surface layer (B): A layer comprising a fluoropolymer (I) having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
Intermediate layer (C): A layer comprising a fluorinated polymer (II) having a fluorinated aliphatic ring structure in the main chain and having a reactive group (y) reactive with the functional group (x).
 前記微細パターンの最大高さは、1~500μmであることが好ましい。
 前記透明樹脂層(A)は、透明支持体(D)によって支持されていることが好ましい。
 前記官能基(x)は、水酸基、アミノ基またはオキシラニル基であることが好ましく、前記反応性基(y)は、カルボキシル基であることが好ましい。
 前記透明樹脂層(A)は、表面処理によって官能基(x)が表面に導入された層であることが好ましい。
The maximum height of the fine pattern is preferably 1 to 500 μm.
The transparent resin layer (A) is preferably supported by a transparent support (D).
The functional group (x) is preferably a hydroxyl group, an amino group or an oxiranyl group, and the reactive group (y) is preferably a carboxyl group.
The transparent resin layer (A) is preferably a layer in which a functional group (x) is introduced to the surface by surface treatment.
 本発明のモールドの製造方法は、光硬化性樹脂を成形するための微細パターンを有するモールドの製造方法であって、下記透明樹脂からなり、表面に官能基(x)を有する透明樹脂層(A)の該表面に、含フッ素溶媒に下記含フッ素重合体(II)を溶解させた溶液を塗布、乾燥して下記含フッ素重合体(II)からなる中間層(C)を形成する工程と、
 前記中間層(C)の表面に、含フッ素溶媒に下記含フッ素重合体(I)を溶解させた溶液を塗布、乾燥して下記含フッ素重合体(I)からなる表面層(B)を形成し、モールド前駆体を得る工程と、前記モールド前駆体の前記表面層(B)側から、微細パターンの反転パターンを表面に有し、かつ該反転パターンの最大高さが前記表面層(B)の厚さと前記中間層(C)の厚さの合計を超えるマスターモールドの該反転パターンを、前記モールド前駆体および前記マスターモールドの少なくとも一方が下記含フッ素重合体(I)および下記含フッ素重合体(II)のガラス転移温度以上とされた状態で押しつけ、前記表面層(B)、前記中間層(C)および前記透明樹脂層(A)にわたって微細パターンを形成し、モールドを得る工程と、前記モールドからマスターモールドを分離する工程とを有することを特徴とする。
 透明樹脂:ガラス転移温度が下記含フッ素重合体(I)および下記含フッ素重合体(II)のガラス転移温度以下である透明樹脂。
 含フッ素重合体(I):主鎖に含フッ素脂肪族環構造を有し、かつ下記反応性基(y)を実質的に有しない含フッ素重合体。
 含フッ素重合体(II):主鎖に含フッ素脂肪族環構造を有し、かつ前記官能基(x)と反応性の反応性基(y)を有する含フッ素重合体。
The mold production method of the present invention is a mold production method having a fine pattern for molding a photocurable resin, which is made of the following transparent resin, and has a transparent resin layer (A) having a functional group (x) on the surface. ), A step in which a solution obtained by dissolving the following fluoropolymer (II) in a fluorine-containing solvent is applied and dried to form an intermediate layer (C) comprising the following fluoropolymer (II);
On the surface of the intermediate layer (C), a solution in which the following fluoropolymer (I) is dissolved in a fluorine-containing solvent is applied and dried to form a surface layer (B) comprising the following fluoropolymer (I). And a step of obtaining a mold precursor, and having a reverse pattern of a fine pattern on the surface from the surface layer (B) side of the mold precursor, and the maximum height of the reverse pattern being the surface layer (B) The reversal pattern of the master mold that exceeds the total thickness of the intermediate layer (C), and at least one of the mold precursor and the master mold is the following fluoropolymer (I) and the following fluoropolymer Pressing in a state where the glass transition temperature is higher than (II), forming a fine pattern over the surface layer (B), the intermediate layer (C) and the transparent resin layer (A) to obtain a mold; Characterized by a step of separating the master mold from Rudo.
Transparent resin: A transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the following fluoropolymer (I) and the following fluoropolymer (II).
Fluoropolymer (I): Fluoropolymer having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
Fluoropolymer (II): Fluoropolymer having a fluorinated aliphatic ring structure in the main chain and a reactive group (y) reactive with the functional group (x).
 本発明の転写微細パターンを有する基材の製造方法は、光硬化性樹脂を基材の表面に配置する工程と、本発明のモールドを、該モールドの微細パターンが前記光硬化性樹脂に接するように、前記光硬化性樹脂に押しつける工程と、前記モールドを前記光硬化性樹脂に押しつけた状態で、前記光硬化性樹脂に光を照射し、前記光硬化性樹脂を硬化させて硬化物とする工程と、前記硬化物からモールドを分離する工程とを有することを特徴とする。 The method for producing a substrate having a transfer fine pattern according to the present invention comprises a step of placing a photocurable resin on the surface of the substrate and a mold according to the present invention so that the fine pattern of the mold is in contact with the photocurable resin. Then, in the state of pressing the photocurable resin, and in a state where the mold is pressed to the photocurable resin, the photocurable resin is irradiated with light to cure the photocurable resin to obtain a cured product. It has a process and the process of isolate | separating a mold from the said hardened | cured material, It is characterized by the above-mentioned.
 本発明の転写微細パターンを有する基材の製造方法は、光硬化性樹脂を、本発明のモールドの微細パターンの表面に配置する工程と、基材を、前記モールドの表面の前記光硬化性樹脂に押しつける工程と、前記基材を前記光硬化性樹脂に押しつけた状態で、前記光硬化性樹脂に光を照射し、前記光硬化性樹脂を硬化させて硬化物とする工程と、前記硬化物からモールドを分離する工程とを有することを特徴とする。 The method for producing a substrate having a transfer fine pattern according to the present invention comprises a step of placing a photocurable resin on the surface of a fine pattern of a mold according to the present invention, and a substrate as the photocurable resin on the surface of the mold. A step of pressing the photocurable resin with light applied to the photocurable resin while the substrate is pressed against the photocurable resin, and curing the photocurable resin to obtain a cured product, and the cured product. And a step of separating the mold from the mold.
 本発明の転写微細パターンを有する基材の製造方法は、基材と、本発明のモールドとを、該モールドの微細パターンが前記基材側になるように接近または接触させる工程と、光硬化性樹脂を、前記基材と前記モールドとの間に充填する工程と、前記基材と前記モールドとが接近または接触した状態で、前記光硬化性樹脂に光を照射し、前記光硬化性樹脂を硬化させて硬化物とする工程と、前記硬化物からモールドを分離する工程とを有することを特徴とする。 The method for producing a base material having a transfer fine pattern according to the present invention comprises a step of bringing a base material and the mold of the present invention into close contact or contact so that the fine pattern of the mold is on the base material side, and photocurability The step of filling the resin between the base material and the mold, and the base material and the mold approaching or contacting each other, irradiating the photocurable resin with light, It has the process of hardening | curing and setting it as hardened | cured material, and the process of isolate | separating a mold from the said hardened | cured material, It is characterized by the above-mentioned.
 本発明のモールドの製造方法は、光透過性および離型性が高く、かつ最大高さが比較的大きな微細パターンを有するモールドを製造できる。
 また、本発明は、本発明のモールドを用いることにより、モールドの微細パターンを精度よく、かつ生産効率よく転写でき、さらに、最大高さが比較的大きい転写微細パターンを有する基材を製造することができる。
The mold production method of the present invention can produce a mold having a fine pattern with high light transmittance and releasability and a relatively large maximum height.
In addition, the present invention can produce a substrate having a transfer fine pattern having a relatively large maximum height, by using the mold of the present invention, capable of accurately transferring the fine pattern of the mold with high production efficiency. Can do.
本発明のモールドの一例を示す断面図である。It is sectional drawing which shows an example of the mold of this invention. 転写微細パターンを有する基材の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the base material which has a transcription | transfer fine pattern. 転写微細パターンを有する基材の製造方法の他の例を示す断面図である。It is sectional drawing which shows the other example of the manufacturing method of the base material which has a transcription | transfer fine pattern. 転写微細パターンを有する基材の製造方法の他の例を示す断面図である。It is sectional drawing which shows the other example of the manufacturing method of the base material which has a transcription | transfer fine pattern. 例7のモールドのレーザー顕微鏡像である。10 is a laser microscope image of the mold of Example 7.
符号の説明Explanation of symbols
 10 モールド
 12 透明樹脂層(A)
 14 中間層(C)
 16 表面層(B)
 17 透明支持体(D)
 18 微細パターン
 20 光硬化性樹脂
 30 基材
10 Mold 12 Transparent resin layer (A)
14 Intermediate layer (C)
16 Surface layer (B)
17 Transparent support (D)
18 Fine pattern 20 Photocurable resin 30 Base material
 本明細書においては、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。 In this specification, a compound represented by the formula (1) is referred to as a compound (1). The same applies to compounds represented by other formulas.
<モールド>
 本発明のモールドは、光硬化性樹脂を成形するための微細パターンを有するモールドである。図1は、本発明のモールドの一例を示す断面図である。モールド10は、透明樹脂層(A)12と、表面層(B)16と、透明樹脂層(A)12の表面に形成され、かつ透明樹脂層(A)12と表面層(B)16との間に存在する中間層(C)14と、透明樹脂層(A)12を裏面側から支持する透明支持体(D)17とを有し、かつ表面層(B)16、中間層(C)14および透明樹脂層(A)12にわたって形成された微細パターン18を有する。なお、透明支持体(D)17は、必ずしも設ける必要はない。
<Mold>
The mold of the present invention is a mold having a fine pattern for forming a photocurable resin. FIG. 1 is a cross-sectional view showing an example of the mold of the present invention. The mold 10 is formed on the surface of the transparent resin layer (A) 12, the surface layer (B) 16, and the transparent resin layer (A) 12, and the transparent resin layer (A) 12 and the surface layer (B) 16 The intermediate layer (C) 14 existing between the transparent resin layer (A) 12 and the transparent support (D) 17 that supports the transparent resin layer (A) 12 from the back side, and the surface layer (B) 16 and the intermediate layer (C ) 14 and the transparent resin layer (A) 12. The transparent support (D) 17 is not necessarily provided.
(微細パターン)
 微細パターンとしては、凹凸構造からなる微細パターンが好ましい。
 凹凸構造における凸構造部は、モールドの表面に線状または点状に存在する。
 線状の凸構造部は、直線であってもよく、曲線であってもよく、折れ曲がり形状であってもよい。また、線状の凸構造部が、多数平行に存在して縞状をなしていてもよい。線状の凸構造部の断面形状(長手方向に対して直角方向の断面の形状。)としては、長方形、台形、三角形、半円形等が挙げられる。
 点状の凸構造部の形状としては、底面形状が、長方形、正方形、菱形、六角形、三角形、円形等である柱状、錐状、半球形、多面体形等が挙げられる。
(Fine pattern)
As the fine pattern, a fine pattern having an uneven structure is preferable.
The convex structure portion in the concavo-convex structure exists in a linear or dot shape on the surface of the mold.
The linear convex structure portion may be a straight line, a curved line, or a bent shape. Further, a large number of linear convex structure portions may exist in parallel to form a stripe shape. Examples of the cross-sectional shape of the linear convex structure portion (the cross-sectional shape perpendicular to the longitudinal direction) include a rectangle, a trapezoid, a triangle, and a semicircle.
Examples of the shape of the dot-like convex structure include columnar shapes, conical shapes, hemispherical shapes, polyhedral shapes, and the like whose bottom shape is a rectangle, square, rhombus, hexagon, triangle, circle, or the like.
 凸構造部のアスペクト比(凸構造部の高さ/凸構造部の底辺の幅)は、5以下が好ましい。アスペクト比が5以下であればマスターモールドの反転パターンを転写する際にピンホール等の欠陥のない良好な微細パターンを形成できる。アスペクト比は、3以下がより好ましく、2以下がさらに好ましい。 The aspect ratio of the convex structure part (height of the convex structure part / width of the base of the convex structure part) is preferably 5 or less. When the aspect ratio is 5 or less, a good fine pattern free from defects such as pinholes can be formed when transferring the reverse pattern of the master mold. The aspect ratio is more preferably 3 or less, and even more preferably 2 or less.
 凸構造部の高さおよび底辺の幅は、共焦点レーザー顕微鏡のプロファイル計測により求める。ただし、凸構造部の高さおよび底辺の幅は、急峻な壁面を有する微細パターン等で共焦点レーザー顕微鏡では正確な測定が困難な場合、微細パターンを切断して断面を顕微鏡(光学顕微鏡、レーザー顕微鏡または電子顕微鏡)により観察し、求めてもよい。微細パターンの切断は、公知の方法で行う。ただし、切断によりパターン形状が崩れるおそれがある場合は、樹脂包埋処理、液体窒素による冷却処理等を行う。 The height of the convex structure and the width of the bottom are obtained by profile measurement with a confocal laser microscope. However, if the height of the convex structure and the width of the bottom are fine patterns with steep walls, etc., and it is difficult to measure accurately with a confocal laser microscope, the fine pattern is cut and the cross-section is viewed with a microscope (optical microscope, laser It may be observed and determined with a microscope or an electron microscope. The fine pattern is cut by a known method. However, when there is a possibility that the pattern shape may be lost by cutting, a resin embedding process, a cooling process with liquid nitrogen, or the like is performed.
 微細パターンの最大高さは、表面層(B)の厚さと中間層(C)の厚さの合計を超える。微細パターンの最大高さは、500μm以下が好ましい。微細パターンの最大高さが500μm以下であれば、マスターモールドの反転パターンを広い面積にわたって均一に転写できる。微細パターンの最大高さは、300μm以下がより好ましく、100μm以下がさらに好ましい。
 微細パターンの最大高さの下限は、表面層(B)の厚さと中間層(C)の厚さの合計によるが、通常は1μmである。
The maximum height of the fine pattern exceeds the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C). The maximum height of the fine pattern is preferably 500 μm or less. If the maximum height of the fine pattern is 500 μm or less, the reverse pattern of the master mold can be uniformly transferred over a wide area. The maximum height of the fine pattern is more preferably 300 μm or less, and further preferably 100 μm or less.
The lower limit of the maximum height of the fine pattern depends on the total thickness of the surface layer (B) and the intermediate layer (C), but is usually 1 μm.
 本発明における最大高さは、JIS B0601に規定される最大高さであり、基準長さLにおける、凹凸構造の最も高い山頂線および最も低い谷底線との最大高低差である。
 最大高さは、共焦点レーザー顕微鏡のプロファイル計測により求める。ただし、最大高さは、急峻な壁面を有する微細パターン等で共焦点レーザー顕微鏡では正確な測定が困難な場合、微細パターンを切断して断面を顕微鏡(光学顕微鏡、レーザー顕微鏡または電子顕微鏡)により観察し、求めてもよい。微細パターンの切断は公知の方法で行う。ただし、切断によりパターン形状が崩れるおそれがある場合は、樹脂包埋処理、液体窒素による冷却処理等を行う。
 基準長Lの長さは、ラインアンドスペース、V溝、ドットパターン等の周期パターンの場合は5~20周期分の長さとする。非周期パターンの場合は設計上最も高い点となる部分と最も低い点となる部分を含むように基準長Lの長さを決定する。基準長Lの長さが大きい場合(数mm以上)、共焦点レーザー顕微鏡のプロファイル計測や断面観察による1回の測定で最大高さを求めるのは困難である。そのような場合はプロファイル計測や断面観察を場所ごとに複数回に分けて行い、後からデータをつなげることで最大高さを求めることができる。
 また、表面層(B)および中間層(C)の厚さは、微細パターンを形成する前のモールド前駆体における表面層(B)および中間層(C)の厚さとする。
The maximum height in the present invention is the maximum height defined in JIS B0601, and is the maximum height difference between the highest peak line and the lowest valley line of the concavo-convex structure at the reference length L.
The maximum height is determined by profile measurement with a confocal laser microscope. However, if the maximum height is a fine pattern with a steep wall and it is difficult to measure accurately with a confocal laser microscope, the fine pattern is cut and the cross section is observed with a microscope (optical microscope, laser microscope or electron microscope) And you may ask for it. The fine pattern is cut by a known method. However, when there is a possibility that the pattern shape may be lost by cutting, a resin embedding process, a cooling process with liquid nitrogen, or the like is performed.
The length of the reference length L is 5 to 20 periods in the case of periodic patterns such as line and space, V-groove, and dot pattern. In the case of an aperiodic pattern, the length of the reference length L is determined so as to include a portion that becomes the highest point and a portion that becomes the lowest point in the design. When the length of the reference length L is large (several mm or more), it is difficult to obtain the maximum height by one measurement by profile measurement or cross-sectional observation of a confocal laser microscope. In such a case, profile measurement and cross-sectional observation are performed for each location in multiple times, and the maximum height can be obtained by connecting data later.
The thicknesses of the surface layer (B) and the intermediate layer (C) are the thicknesses of the surface layer (B) and the intermediate layer (C) in the mold precursor before forming the fine pattern.
(透明樹脂層(A))
 透明樹脂層(A)は、ガラス転移温度が含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以下である透明樹脂からなる層であり、中間層(C)が形成される前には、中間層(C)が形成される表面に官能基(x)を有し、中間層(C)が形成された後には、中間層(C)が形成された表面に前記官能基(x)と反応性基(y)とに基づく化学結合を有する層である。
(Transparent resin layer (A))
The transparent resin layer (A) is a layer made of a transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), and the intermediate layer (C) is formed. Before the intermediate layer (C) has a functional group (x), and after the intermediate layer (C) is formed, the functional layer (C) is formed on the surface on which the intermediate layer (C) is formed. It is a layer having a chemical bond based on the group (x) and the reactive group (y).
 透明樹脂のガラス転移温度は、含フッ素重合体(I)のガラス転移温度以下であり、かつ含フッ素重合体(II)のガラス転移温度以下である。透明樹脂のガラス転移温度が含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以下であれば、マスターモールドの反転パターンの最大高さ(マスターモールド全体の歪(うねり)を含めた凹凸構造の最大高低差。)が表面層(B)の厚さと中間層(C)の厚さとの合計を超えていても、透明樹脂層(A)が変形し、反転パターンの凹凸構造、マスターモールド全体の歪(うねり)等に追随するため、該反転パターンを精度よく転写できる。また、透明樹脂のガラス転移温度が含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以下であれば、マスターモールドを押しつけた際に、マスターモールドと表面層(B)との間に異物が混入したとしても、透明樹脂層(A)が変形して異物の影響を吸収するため、高価なマスターモールドを傷つけない。
 透明樹脂のガラス転移温度は、含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度よりも5℃以上低いことが好ましく、10℃以上低いことがより好ましい。
The glass transition temperature of the transparent resin is not higher than the glass transition temperature of the fluoropolymer (I) and not higher than the glass transition temperature of the fluoropolymer (II). If the glass transition temperature of the transparent resin is equal to or lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), the maximum height of the reverse pattern of the master mold (the distortion (swell) of the entire master mold) The maximum height difference of the concavo-convex structure included) exceeds the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C), the transparent resin layer (A) is deformed, and the concavo-convex structure of the reverse pattern In order to follow the distortion (swell) of the entire master mold, the reverse pattern can be accurately transferred. Further, when the glass transition temperature of the transparent resin is equal to or lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), when the master mold is pressed, the master mold and the surface layer (B) Even if foreign matter is mixed in between, the transparent resin layer (A) is deformed and absorbs the influence of the foreign matter, so that the expensive master mold is not damaged.
The glass transition temperature of the transparent resin is preferably 5 ° C. or more, and more preferably 10 ° C. or more lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II).
 透明樹脂のガラス転移温度は、20℃以上が好ましい。透明樹脂のガラス転移温度が20℃以上であれば、表面層(B)からマスターモールドを分離する際に透明樹脂層(A)が変形せず、微細パターンの寸法精度が良好となる。透明樹脂のガラス転移温度が20℃未満である場合、マスターモールドの反転パターンの転写を低温で行うことで微細パターンの寸法精度が良好となるが、作業性や生産性の点で不利である。透明樹脂のガラス転移温度は、40℃以上がより好ましい。
 透明樹脂のガラス転移温度は、ガラス転移温度が200℃を超える含フッ素重合体(I)および含フッ素重合体(II)の合成が困難な点から、200℃以下が好ましい。
The glass transition temperature of the transparent resin is preferably 20 ° C. or higher. If the glass transition temperature of transparent resin is 20 degreeC or more, when separating a master mold from a surface layer (B), a transparent resin layer (A) will not deform | transform and the dimensional accuracy of a fine pattern will become favorable. When the glass transition temperature of the transparent resin is less than 20 ° C., the dimensional accuracy of the fine pattern is improved by transferring the reverse pattern of the master mold at a low temperature, but it is disadvantageous in terms of workability and productivity. The glass transition temperature of the transparent resin is more preferably 40 ° C. or higher.
The glass transition temperature of the transparent resin is preferably 200 ° C. or lower because it is difficult to synthesize the fluoropolymer (I) and the fluoropolymer (II) having a glass transition temperature exceeding 200 ° C.
 本発明におけるガラス転移温度は、示差走査熱量計(DSC)を用いてJIS K7121:1987にしたがって求める。なお、本発明におけるガラス転移温度とは、中間点ガラス転移温度をいう。 The glass transition temperature in the present invention is determined according to JIS K7121: 1987 using a differential scanning calorimeter (DSC). In addition, the glass transition temperature in this invention means an intermediate point glass transition temperature.
 透明樹脂としては、アクリル樹脂、ポリスチレン、アクリロニトリルブタジエンスチレン樹脂(ABS)、非晶性ポリエステル、シクロオレフィン系樹脂(COP)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレン-テトラフルオロエチレン共重合体(ETFE)、フルオロオレフィン-アルキルビニルエーテル系共重合体(FEVE)、シリコーン樹脂等が挙げられる。 Transparent resins include acrylic resin, polystyrene, acrylonitrile butadiene styrene resin (ABS), amorphous polyester, cycloolefin resin (COP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and ethylene-tetrafluoro. Examples include ethylene copolymer (ETFE), fluoroolefin-alkyl vinyl ether copolymer (FEVE), and silicone resin.
 透明支持体(D)を設ける場合、透明樹脂としては、光線透過率、成形加工性、パターニング性の点から、アクリル樹脂、非晶性ポリエステルまたはFEVEが好ましい。アクリル樹脂としては、ポリメチルメタクリレート(PMMA)が挙げられる。FEVEとしては、ルミフロン(旭硝子社製)が挙げられる。非晶性ポリエステルとしては、バイロン(東洋紡社製)が挙げられる。 When the transparent support (D) is provided, the transparent resin is preferably an acrylic resin, amorphous polyester or FEVE from the viewpoints of light transmittance, molding processability and patternability. An example of the acrylic resin is polymethyl methacrylate (PMMA). An example of FEVE is Lumiflon (manufactured by Asahi Glass Co., Ltd.). Byron (made by Toyobo Co., Ltd.) is mentioned as an amorphous polyester.
 透明支持体(D)を設けない場合、透明樹脂としては、光線透過率、成形加工性、パターニング性、耐熱性の点から、アクリル樹脂、ポリスチレンまたはCOPが好ましい。アクリル樹脂としては、PMMAが挙げられる。COPとしては、ZEONEX(日本ゼオン社製)が挙げられる。 When the transparent support (D) is not provided, the transparent resin is preferably acrylic resin, polystyrene, or COP from the viewpoints of light transmittance, molding processability, patternability, and heat resistance. PMMA is mentioned as an acrylic resin. Examples of COP include ZEONEX (manufactured by Nippon Zeon Co., Ltd.).
 透明樹脂層(A)(透明支持体(D)を設ける場合、透明樹脂層(A)と透明支持体(D)との積層体。)は、300~500nmの波長領域の光のうち、少なくとも一部の波長領域で光線透過率が75%以上のものが好ましく、85%以上のものがより好ましい。該光線透過率が75%以上であれば、後述の転写微細パターンを有する基材の製造方法において、光硬化性樹脂を効率的に硬化できる。特に、436nm(高圧水銀灯のg線の波長。)または365nm(高圧水銀灯のi線の波長。)の光線透過率が75%以上のものが好ましく、85%以上のものがより好ましい。波長436nmまたは365nmの光線透過率が75%以上であれば、後述の転写微細パターンを有する基材の製造方法において、高圧水銀灯を用いて光硬化性樹脂を効率的に硬化できる。 The transparent resin layer (A) (when the transparent support (D) is provided, a laminate of the transparent resin layer (A) and the transparent support (D)) is at least of light in the wavelength region of 300 to 500 nm. In some wavelength regions, the light transmittance is preferably 75% or more, more preferably 85% or more. When the light transmittance is 75% or more, the photocurable resin can be efficiently cured in the method for producing a substrate having a transfer fine pattern described later. In particular, the light transmittance at 436 nm (wavelength of g-line of high-pressure mercury lamp) or 365 nm (wavelength of i-line of high-pressure mercury lamp) is preferably 75% or more, more preferably 85% or more. If the light transmittance at a wavelength of 436 nm or 365 nm is 75% or more, the photocurable resin can be efficiently cured using a high-pressure mercury lamp in the method for producing a substrate having a transfer fine pattern described later.
 透明支持体(D)を設ける場合、透明樹脂層(A)は、透明樹脂の前駆体または透明樹脂の溶液を透明支持体(D)の表面に塗布することにより形成してもよい。また、透明樹脂層(A)のフィルムと透明支持体(D)とをラミネート処理により接合してもよい。
 透明支持体(D)を設けない場合、透明樹脂を公知の成形法にて成形し、透明樹脂層(A)の成形体とする。
When providing a transparent support (D), you may form a transparent resin layer (A) by apply | coating the precursor of a transparent resin, or the solution of a transparent resin to the surface of a transparent support (D). Moreover, you may join the film of a transparent resin layer (A), and a transparent support body (D) by the lamination process.
When not providing a transparent support body (D), transparent resin is shape | molded by a well-known shaping | molding method and it is set as the molded object of a transparent resin layer (A).
 透明樹脂層(A)(透明支持体(D)を設ける場合、透明樹脂層(A)と透明支持体(D)との積層体。)の形状は、平板状(四角形状、ディスク状)であってよく、フィルム状であってもよく、曲面状(レンズ状、円筒状、円柱状等。)であってもよい。 The shape of the transparent resin layer (A) (when a transparent support (D) is provided, a laminate of the transparent resin layer (A) and the transparent support (D)) is a flat plate (square shape, disk shape). It may be in the form of a film or a curved surface (lens, cylinder, column, etc.).
 透明樹脂層(A)(透明支持体(D)を設ける場合、透明樹脂層(A)と透明支持体(D)との積層体。)の形状が平板状である場合、透明樹脂層(A)の厚さは、0.4mm以上20mm以下が好ましく、0.5mm以上15mm以下がより好ましく、0.5mm以上8mm以下がさらに好ましい。透明樹脂層(A)の厚さが0.4mm以上であれば、モールドがたわみにくく取り扱い性がよい。透明樹脂層(A)の厚さが20mm以下であれば、材料の無駄が少なく、また、重くならないため、取り扱い性がよい。
 透明支持体(D)を設ける場合、透明樹脂層(A)の厚さは、微細パターンの最大高さの1倍~10倍の範囲が好ましい。透明樹脂層(A)の厚さが微細パターンの最大高さよりも小さいと、微細パターンの転写が不十分となるおそれがある。透明樹脂層(A)の厚さが微細パターンの最大高さの10倍を超えると、透明樹脂層(A)のガラス転移温度が低い(80℃以下)場合に微細パターンの寸法安定性が悪くなるおそれがある。透明樹脂層(A)の厚さが微細パターンの最大高さの1倍~10倍の範囲であれば、良好な転写性と良好な寸法安定性の両立が容易である。透明樹脂層(A)の厚さは、微細パターンの最大高さの1.5倍~6倍の範囲がさらに好ましい。
When the shape of the transparent resin layer (A) (when the transparent support (D) is provided, a laminate of the transparent resin layer (A) and the transparent support (D)) is flat, the transparent resin layer (A ) Is preferably 0.4 mm to 20 mm, more preferably 0.5 mm to 15 mm, and still more preferably 0.5 mm to 8 mm. If the thickness of the transparent resin layer (A) is 0.4 mm or more, the mold is difficult to bend and the handleability is good. If the thickness of the transparent resin layer (A) is 20 mm or less, the material is not wasted, and the handleability is good because it does not become heavy.
When the transparent support (D) is provided, the thickness of the transparent resin layer (A) is preferably in the range of 1 to 10 times the maximum height of the fine pattern. If the thickness of the transparent resin layer (A) is smaller than the maximum height of the fine pattern, the transfer of the fine pattern may be insufficient. When the thickness of the transparent resin layer (A) exceeds 10 times the maximum height of the fine pattern, the dimensional stability of the fine pattern is poor when the glass transition temperature of the transparent resin layer (A) is low (80 ° C. or lower). There is a risk. When the thickness of the transparent resin layer (A) is in the range of 1 to 10 times the maximum height of the fine pattern, it is easy to achieve both good transferability and good dimensional stability. The thickness of the transparent resin layer (A) is more preferably in the range of 1.5 to 6 times the maximum height of the fine pattern.
 官能基(x)としては、水酸基、オキシラニル基、またはアミノ基が好ましい。官能基(x)は、透明樹脂に由来する官能基であってもよく、官能基(x)を導入する表面処理により透明樹脂層(A)の表面に付与された官能基であってもよい。官能基(x)の種類および量を任意に制御できる点から、後者の官能基が好ましい。 The functional group (x) is preferably a hydroxyl group, an oxiranyl group, or an amino group. The functional group (x) may be a functional group derived from a transparent resin, or may be a functional group imparted to the surface of the transparent resin layer (A) by a surface treatment that introduces the functional group (x). . The latter functional group is preferable because the type and amount of the functional group (x) can be arbitrarily controlled.
 官能基(x)を導入する表面処理の方法は、官能基(x)を有するシランカップリング剤で透明樹脂層(A)を表面処理する方法、プラズマ処理により透明樹脂層(A)を表面処理する方法、グラフト重合処理により透明樹脂層(A)を表面処理する方法、UVオゾン処理によって透明樹脂層(A)を表面処理する方法、透明樹脂層(A)上に官能基(x)を有するプライマーを塗布する方法などが好ましい。 The surface treatment method for introducing the functional group (x) is a method of surface-treating the transparent resin layer (A) with a silane coupling agent having the functional group (x), or surface treatment of the transparent resin layer (A) by plasma treatment. A method of surface-treating the transparent resin layer (A) by graft polymerization, a method of surface-treating the transparent resin layer (A) by UV ozone treatment, and having a functional group (x) on the transparent resin layer (A) A method of applying a primer is preferred.
 官能基(x)を有するシランカップリング剤としては、下記の化合物が好ましい。
 アミノ基を有するシランカップリング剤:アミノプロピルトリエトキシシラン、アミノプロピルメチルジエトキシシラン、アミノエチル-アミノプロピルトリメトキシシラン、アミノエチル-アミノプロピルメチルジメトキシシラン等。
 オキシラニル基を有するシランカップリング剤:グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルメチルジメトキシシラン等。
As the silane coupling agent having a functional group (x), the following compounds are preferable.
Silane coupling agents having an amino group: aminopropyltriethoxysilane, aminopropylmethyldiethoxysilane, aminoethyl-aminopropyltrimethoxysilane, aminoethyl-aminopropylmethyldimethoxysilane, and the like.
Silane coupling agents having an oxiranyl group: glycidoxypropyltrimethoxysilane, glycidoxypropylmethyldimethoxysilane, and the like.
 透明樹脂層(A)の表面に中間層(C)が形成されることによって、官能基(x)の一部または全部が、含フッ素重合体(II)の反応性基(y)の一部または全部と化学結合を形成する。透明樹脂層(A)の官能基(x)の一部が化学結合を形成した場合には、本発明のモールドにおける透明樹脂層(A)は、官能基(x)を有している。一方、透明樹脂層(A)の官能基(x)の全部が化学結合を形成した場合には、本発明のモールドにおける透明樹脂層(A)は、官能基(x)を有さない。 By forming the intermediate layer (C) on the surface of the transparent resin layer (A), part or all of the functional group (x) is part of the reactive group (y) of the fluoropolymer (II). Or form a chemical bond with all. When a part of the functional group (x) of the transparent resin layer (A) forms a chemical bond, the transparent resin layer (A) in the mold of the present invention has the functional group (x). On the other hand, when all of the functional groups (x) of the transparent resin layer (A) form a chemical bond, the transparent resin layer (A) in the mold of the present invention does not have the functional group (x).
 いずれにしても、中間層(C)を形成した後の透明樹脂層(A)の表面には、官能基(x)と反応性基(y)とから形成された化学結合が存在する。化学結合としては、反応性基(y)がカルボキシル基であり官能基(x)が水酸基またはオキシラニル基である場合のエステル結合、反応性基(y)がカルボキシル基であり官能基(x)がアミノ基である場合のアミド結合等が挙げられる。したがって、本発明のモールドにおいては、透明樹脂層(A)と中間層(C)が化学結合を介して強固に接着されている。 In any case, a chemical bond formed from the functional group (x) and the reactive group (y) exists on the surface of the transparent resin layer (A) after the formation of the intermediate layer (C). The chemical bond is an ester bond when the reactive group (y) is a carboxyl group and the functional group (x) is a hydroxyl group or an oxiranyl group, and the reactive group (y) is a carboxyl group and the functional group (x) is Examples include an amide bond in the case of an amino group. Therefore, in the mold of the present invention, the transparent resin layer (A) and the intermediate layer (C) are firmly bonded via chemical bonds.
(表面層(B))
 表面層(B)は、主鎖に含フッ素脂肪族環構造を有し、かつ下記の反応性基(y)を実質的に有しない含フッ素重合体(I)からなる層である。
(Surface layer (B))
The surface layer (B) is a layer made of the fluorinated polymer (I) having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
 主鎖に含フッ素脂肪族環構造を有する含フッ素重合体(I)は、無定形または非結晶性の重合体である。
 主鎖に含フッ素脂肪族環構造を有するとは、重合体における含フッ素脂肪族環の環を構成する炭素原子の1個以上が重合体の主鎖を構成する炭素原子であることをいう。含フッ素脂肪族環の環を構成する原子は、炭素原子以外に酸素原子、窒素原子等を含んでいてもよい。含フッ素脂肪族環としては、1~2個の酸素原子を有する含フッ素脂肪族環が好ましい。含フッ素脂肪族環を構成する原子の数は、4~7個が好ましい。
The fluorine-containing polymer (I) having a fluorine-containing aliphatic ring structure in the main chain is an amorphous or non-crystalline polymer.
Having a fluorinated aliphatic ring structure in the main chain means that at least one carbon atom constituting the ring of the fluorinated aliphatic ring in the polymer is a carbon atom constituting the main chain of the polymer. The atoms constituting the fluorine-containing aliphatic ring may contain oxygen atoms, nitrogen atoms and the like in addition to carbon atoms. The fluorine-containing aliphatic ring is preferably a fluorine-containing aliphatic ring having 1 to 2 oxygen atoms. The number of atoms constituting the fluorinated aliphatic ring is preferably 4 to 7.
 主鎖を構成する炭素原子は、環状単量体を重合させて得た重合体である場合には重合性二重結合の炭素原子に由来し、ジエン系単量体を環化重合させて得た重合体である場合には2個の重合性二重結合の4個の炭素原子に由来する。 When the carbon atom constituting the main chain is a polymer obtained by polymerizing a cyclic monomer, it is derived from the carbon atom of a polymerizable double bond and obtained by cyclopolymerizing a diene monomer. In the case of a polymer, it is derived from 4 carbon atoms of 2 polymerizable double bonds.
 環状単量体とは、含フッ素脂肪族環を有し、かつ該含フッ素脂肪族環を構成する炭素原子-炭素原子間に重合性二重結合を有する単量体、または、含フッ素脂肪族環を有し、かつ該含フッ素脂肪族環を構成する炭素原子と含フッ素脂肪族環外の炭素原子の間に重合性二重結合を有する単量体である。
 ジエン系単量体とは、2個の重合性二重結合を有する単量体である。
The cyclic monomer is a monomer having a fluorine-containing aliphatic ring and having a polymerizable double bond between carbon atoms constituting the fluorine-containing aliphatic ring, or fluorine-containing aliphatic A monomer having a ring and having a polymerizable double bond between a carbon atom constituting the fluorinated aliphatic ring and a carbon atom outside the fluorinated aliphatic ring.
The diene monomer is a monomer having two polymerizable double bonds.
 環状単量体およびジエン系単量体において、炭素原子に結合した水素原子および炭素原子に結合したフッ素原子の合計数に対する炭素原子に結合したフッ素原子の数の割合は、それぞれ、80%以上が好ましく、100%が特に好ましい。 In the cyclic monomer and the diene monomer, the ratio of the number of fluorine atoms bonded to carbon atoms to the total number of hydrogen atoms bonded to carbon atoms and fluorine atoms bonded to carbon atoms is 80% or more, respectively. Preferably, 100% is particularly preferable.
 環状単量体としては、化合物(1)または化合物(2)が好ましい。 As the cyclic monomer, compound (1) or compound (2) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ただし、Xは、フッ素原子または炭素原子数1~3のペルフルオロアルコキシ基を示し、RおよびRは、それぞれ独立に、フッ素原子または炭素原子数1~6のペルフルオロアルキル基を示し、XおよびXは、それぞれ独立に、フッ素原子または炭素原子数1~9のペルフルオロアルキル基を示す。 X 1 represents a fluorine atom or a perfluoroalkoxy group having 1 to 3 carbon atoms, R 1 and R 2 each independently represents a fluorine atom or a perfluoroalkyl group having 1 to 6 carbon atoms, and 2 and X 3 each independently represents a fluorine atom or a perfluoroalkyl group having 1 to 9 carbon atoms.
 化合物(1)の具体例としては、化合物(1-1)~(1-3)が挙げられる。 Specific examples of compound (1) include compounds (1-1) to (1-3).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 化合物(2)の具体例としては、化合物(2-1)~(2-2)が挙げられる。 Specific examples of compound (2) include compounds (2-1) to (2-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ジエン系単量体としては、化合物(3)が好ましい。
 CF=CF-Q-CF=CF ・・・(3)
 ただし、Qは、炭素原子数1~3のペルフルオロアルキレン基(エーテル性酸素原子を有していてもよい。)を示す。エーテル性酸素原子を有するペルフルオロアルキレン基である場合、エーテル性酸素原子は該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子の間に存在していてもよい。環化重合性の点からは、該基の一方の末端に存在しているのが好ましい。
As the diene monomer, the compound (3) is preferable.
CF 2 = CF-Q-CF = CF 2 (3)
Q represents a perfluoroalkylene group having 1 to 3 carbon atoms (which may have an etheric oxygen atom). In the case of a perfluoroalkylene group having an etheric oxygen atom, the etheric oxygen atom may be present at one end of the group or may be present at both ends of the group, and the carbon atom of the group May be present between From the viewpoint of cyclopolymerization, it is preferably present at one end of the group.
 化合物(3)の環化重合により、下式(α)~(γ)のうちの1種以上のモノマー単位を有する含フッ素重合体が得られる。 A fluorinated polymer having one or more monomer units of the following formulas (α) to (γ) is obtained by cyclopolymerization of the compound (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 化合物(3)の具体例としては、化合物(3-1)~(3-9)が挙げられる。
 CF=CFOCFCF=CF ・・・(3-1)、
 CF=CFOCF(CF)CF=CF ・・・(3-2)、
 CF=CFOCFCFCF=CF ・・・(3-3)、
 CF=CFOCF(CF)CFCF=CF ・・・(3-4)、
 CF=CFOCFCF(CF)CF=CF ・・・(3-5)、
 CF=CFOCFOCF=CF ・・・(3-6)、
 CF=CFOC(CFOCF=CF ・・・(3-7)、
 CF=CFCFCF=CF ・・・(3-8)、
 CF=CFCFCFCF=CF ・・・(3-9)。
Specific examples of compound (3) include compounds (3-1) to (3-9).
CF 2 = CFOCF 2 CF = CF 2 (3-1),
CF 2 = CFOCF (CF 3 ) CF═CF 2 (3-2),
CF 2 = CFOCF 2 CF 2 CF = CF 2 (3-3),
CF 2 = CFOCF (CF 3 ) CF 2 CF═CF 2 (3-4),
CF 2 = CFOCF 2 CF (CF 3) CF = CF 2 ··· (3-5),
CF 2 = CFOCF 2 OCF = CF 2 (3-6),
CF 2 = CFOC (CF 3 ) 2 OCF = CF 2 (3-7),
CF 2 = CFCF 2 CF = CF 2 (3-8),
CF 2 = CFCF 2 CF 2 CF = CF 2 ··· (3-9).
 含フッ素重合体(I)において、全モノマー単位(100モル%)に対する含フッ素脂肪族環構造を有するモノマー単位の割合は、含フッ素重合体(I)の透明性の点から、20モル%以上が好ましく、40モル%以上がより好ましく、100モル%が特に好ましい。含フッ素脂肪族環構造を有するモノマー単位とは、環状単量体の重合により形成されたモノマー単位、またはジエン系単量体の環化重合により形成されたモノマー単位である。 In the fluoropolymer (I), the ratio of the monomer units having a fluorinated aliphatic ring structure to the total monomer units (100 mol%) is 20 mol% or more from the viewpoint of the transparency of the fluoropolymer (I). Is preferable, 40 mol% or more is more preferable, and 100 mol% is particularly preferable. The monomer unit having a fluorinated alicyclic structure is a monomer unit formed by polymerization of a cyclic monomer or a monomer unit formed by cyclopolymerization of a diene monomer.
 含フッ素重合体(I)は、反応性基(y)を実質的に有さない。反応性基(y)を実質的に有さないとは、含フッ素重合体(I)中の反応性基(y)の含有量が検出限界以下であることをいう。また、含フッ素重合体(I)は反応性基(y)以外の反応性基も実質的に有さないことが好ましい。 Fluoropolymer (I) has substantially no reactive group (y). Having substantially no reactive group (y) means that the content of the reactive group (y) in the fluoropolymer (I) is below the detection limit. Further, it is preferable that the fluoropolymer (I) has substantially no reactive group other than the reactive group (y).
 含フッ素重合体(I)の固有粘度は、0.1dL/g~1.0dL/gが好ましい。固有粘度は含フッ素重合体の分子量と相関がある。固有粘度が0.1dL/g以上であれば、機械的強度の高い含フッ素重合体(I)となるため、微細パターンが損傷しにくい。固有粘度が1.0dL/g以下であれば、加熱時の含フッ素重合体(I)の流動性が良好になるため、微細パターンの形成が容易となる。含フッ素重合体(I)の固有粘度は、0.15dL/g~0.75dL/gがより好ましい。
 本発明における固有粘度は、ペルフルオロ(2-ブチルテトラヒドロフラン)中30℃で測定される固有粘度である。粘度測定は、ウベローデ粘度計(毛細管粘度計)を用いて、JIS Z8803にしたがって行う。
The intrinsic viscosity of the fluoropolymer (I) is preferably from 0.1 dL / g to 1.0 dL / g. Intrinsic viscosity correlates with the molecular weight of the fluoropolymer. When the intrinsic viscosity is 0.1 dL / g or more, the fluoropolymer (I) has high mechanical strength, and thus the fine pattern is hardly damaged. If the intrinsic viscosity is 1.0 dL / g or less, the flowability of the fluoropolymer (I) during heating becomes good, and therefore, formation of a fine pattern is facilitated. The intrinsic viscosity of the fluoropolymer (I) is more preferably from 0.15 dL / g to 0.75 dL / g.
The intrinsic viscosity in the present invention is an intrinsic viscosity measured at 30 ° C. in perfluoro (2-butyltetrahydrofuran). The viscosity is measured according to JIS Z8803 using an Ubbelohde viscometer (capillary viscometer).
 含フッ素重合体(I)としては、透明性が高い含フッ素重合体が好ましい。含フッ素重合体(I)の波長300~500nmの光の光線透過率は、90%以上が好ましい。光線透過率は、厚さ100μmの含フッ素重合体(I)の光線透過率である。 As the fluoropolymer (I), a highly transparent fluoropolymer is preferable. The light transmittance of light having a wavelength of 300 to 500 nm of the fluoropolymer (I) is preferably 90% or more. The light transmittance is a light transmittance of the fluoropolymer (I) having a thickness of 100 μm.
 含フッ素重合体(I)のガラス転移温度は20℃以上が好ましい。含フッ素重合体(I)のガラス転移温度が20℃以上であれば、表面層(B)からマスターモールドを分離する際に表面層(B)が変形せず、微細パターンの寸法精度が良好となる。また、得られたモールドの微細パターンを光硬化性樹脂に転写する工程において、含フッ素重合体(I)の形状が維持されてパターンの寸法精度が良好となる。含フッ素重合体(I)のガラス転移温度が20℃未満である場合、マスターモールドの反転パターンの転写を低温で行うことで微細パターンの寸法精度が良好となるが、作業性や生産性の点で不利である。含フッ素重合体(I)のガラス転移温度は、40℃以上がより好ましく、70℃以上がさらに好ましい。
 含フッ素重合体(I)のガラス転移温度は、ガラス転移温度が200℃を超える含フッ素重合体(I)の合成が困難な点から、200℃以下が好ましく、150℃以下がより好ましい。
The glass transition temperature of the fluoropolymer (I) is preferably 20 ° C. or higher. When the glass transition temperature of the fluoropolymer (I) is 20 ° C. or higher, the surface layer (B) is not deformed when the master mold is separated from the surface layer (B), and the dimensional accuracy of the fine pattern is good. Become. Moreover, in the process of transferring the fine pattern of the obtained mold to the photocurable resin, the shape of the fluoropolymer (I) is maintained, and the dimensional accuracy of the pattern is improved. When the glass transition temperature of the fluoropolymer (I) is less than 20 ° C., the dimensional accuracy of the fine pattern is improved by transferring the reversal pattern of the master mold at a low temperature. It is disadvantageous. The glass transition temperature of the fluoropolymer (I) is more preferably 40 ° C. or higher, and further preferably 70 ° C. or higher.
The glass transition temperature of the fluorinated polymer (I) is preferably 200 ° C. or less, more preferably 150 ° C. or less, from the viewpoint that the synthesis of the fluorinated polymer (I) having a glass transition temperature exceeding 200 ° C. is difficult.
 含フッ素重合体(I)は、公知の方法にしたがって入手できる。たとえば、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体(P)、または反応性基(y)を有する含フッ素重合体(II)を後述の方法によって得た後、該含フッ素重合体(P)または含フッ素重合体(II)をフッ素ガスに接触させることにより、実質的に反応性基(y)を含まない含フッ素重合体(I)を入手できる。 Fluoropolymer (I) can be obtained according to a known method. For example, after obtaining a fluorine-containing polymer (P) having a fluorine-containing aliphatic ring structure in the main chain or a fluorine-containing polymer (II) having a reactive group (y) by the method described later, the fluorine-containing polymer By bringing the polymer (P) or the fluoropolymer (II) into contact with a fluorine gas, the fluoropolymer (I) substantially free of the reactive group (y) can be obtained.
 表面層(B)の厚さは、0.2μm以上が好ましい。表面層(B)の厚さが0.2μm以上であれば、マスターモールドの反転パターンを転写する際に、ピンホール等の欠陥が発生せず良好な微細パターンを形成できる。表面層(B)の厚さは、0.5μm以上がより好ましく、1μm以上がさらに好ましい。
 表面層(B)の厚さは、15μm以下が好ましい。表面層(B)の厚さが15μm以下であれば、塗工により厚さが均一な膜を形成できる。表面層(B)の厚さは、10μm以下がより好ましく、5μm以下がさらに好ましい。
 表面層(B)の厚さは、微細パターンを形成する前のモールド前駆体における表面層(B)の厚さとする。
The thickness of the surface layer (B) is preferably 0.2 μm or more. When the thickness of the surface layer (B) is 0.2 μm or more, when transferring the reverse pattern of the master mold, defects such as pinholes do not occur and a good fine pattern can be formed. The thickness of the surface layer (B) is more preferably 0.5 μm or more, and further preferably 1 μm or more.
The thickness of the surface layer (B) is preferably 15 μm or less. If the thickness of the surface layer (B) is 15 μm or less, a film having a uniform thickness can be formed by coating. The thickness of the surface layer (B) is more preferably 10 μm or less, and further preferably 5 μm or less.
The thickness of the surface layer (B) is the thickness of the surface layer (B) in the mold precursor before forming the fine pattern.
(中間層(C))
 中間層(C)は、主鎖に含フッ素脂肪族環構造を有し、かつ前記官能基(x)と反応性の反応性基(y)を有する含フッ素重合体(II)からなる層である。
(Intermediate layer (C))
The intermediate layer (C) is a layer comprising a fluorinated polymer (II) having a fluorinated aliphatic ring structure in the main chain and having a reactive group (y) reactive with the functional group (x). is there.
 主鎖に含フッ素脂肪族環構造を有する含フッ素重合体(II)は、無定形または非結晶性の重合体である。
 含フッ素重合体(II)は、反応性基(y)を有する以外は、前記含フッ素重合体(I)と同様の重合体である。
The fluorine-containing polymer (II) having a fluorine-containing aliphatic ring structure in the main chain is an amorphous or non-crystalline polymer.
The fluoropolymer (II) is the same polymer as the fluoropolymer (I) except that it has a reactive group (y).
 含フッ素重合体(I)における含フッ素脂肪族環構造を有するモノマー単位と、含フッ素重合体(II)における含フッ素脂肪族環構造を有するモノマー単位は、中間層(C)と表面層(B)とがより強固に接着され、モールドの耐久性が優れる点から、同じモノマー単位であることが好ましい。 The monomer unit having a fluorine-containing aliphatic ring structure in the fluorine-containing polymer (I) and the monomer unit having a fluorine-containing aliphatic ring structure in the fluorine-containing polymer (II) are the intermediate layer (C) and the surface layer (B ) Are more strongly bonded and the durability of the mold is excellent, and the same monomer unit is preferable.
 含フッ素重合体(II)において、全モノマー単位(100モル%)に対する含フッ素脂肪族環構造を有するモノマー単位の割合は、含フッ素重合体(I)の透明性の点から、20モル%以上が好ましく、40モル%以上がより好ましく、100モル%が特に好ましい。 In the fluoropolymer (II), the ratio of the monomer units having a fluorinated aliphatic ring structure to the total monomer units (100 mol%) is 20 mol% or more from the viewpoint of the transparency of the fluoropolymer (I). Is preferable, 40 mol% or more is more preferable, and 100 mol% is particularly preferable.
 含フッ素重合体(II)は、反応性基(y)を有する。反応性基(y)の種類は、官能基(x)の種類に応じて適宜選択される。官能基(x)が水酸基、オキシラニル基、またはアミノ基である場合、反応性基(y)としては、カルボキシル基、水酸基、シラノール基またはそれらの誘導体が好ましい。反応性基(y)としては、オキシラニル基、またはアミノ基との反応性が高く、強固な結合を容易に形成できる点から、カルボキシル基が特に好ましい。また、官能基(x)が水酸基である場合は、強固な結合を容易に形成できる点から、シラノール基または炭素数1~4のアルコキシシラン基が好ましい。 The fluoropolymer (II) has a reactive group (y). The kind of reactive group (y) is suitably selected according to the kind of functional group (x). When the functional group (x) is a hydroxyl group, an oxiranyl group, or an amino group, the reactive group (y) is preferably a carboxyl group, a hydroxyl group, a silanol group, or a derivative thereof. As the reactive group (y), a carboxyl group is particularly preferable because it has a high reactivity with an oxiranyl group or an amino group and can easily form a strong bond. In addition, when the functional group (x) is a hydroxyl group, a silanol group or an alkoxysilane group having 1 to 4 carbon atoms is preferable because a strong bond can be easily formed.
 反応性基(y)の有無は赤外線スペクトルによって確認することが好ましい。また、必要に応じて特開昭60-240713号公報に記されている方法を用いて、10炭素原子当たりの反応性基の数として定量することが好ましい。 The presence or absence of the reactive group (y) is preferably confirmed by an infrared spectrum. If necessary, it is preferably quantified as the number of reactive groups per 10 6 carbon atoms using the method described in JP-A-60-240713.
 含フッ素重合体(II)の固有粘度は、0.1dL/g~1.0dL/gが好ましい。固有粘度は含フッ素重合体の分子量と相関がある。固有粘度が0.1dL/g~1.0dL/gであることにより、含フッ素重合体(I)との親和性が高く、表面層(B)と中間層(C)との間で良好な密着性が得られる。含フッ素重合体(II)の固有粘度は、0.15dL/g~0.75dL/gがより好ましい。 The intrinsic viscosity of the fluoropolymer (II) is preferably 0.1 dL / g to 1.0 dL / g. Intrinsic viscosity correlates with the molecular weight of the fluoropolymer. When the intrinsic viscosity is 0.1 dL / g to 1.0 dL / g, the affinity with the fluorine-containing polymer (I) is high, and the surface layer (B) and the intermediate layer (C) are good. Adhesion can be obtained. The intrinsic viscosity of the fluoropolymer (II) is more preferably from 0.15 dL / g to 0.75 dL / g.
 含フッ素重合体(II)としては、透明性が高い含フッ素重合体が好ましい。含フッ素重合体(II)の波長300~500nmの光の光線透過率は、90%以上が好ましい。光線透過率は、厚さ100μmの含フッ素重合体(II)の光線透過率である。 As the fluoropolymer (II), a highly transparent fluoropolymer is preferable. The light transmittance of light having a wavelength of 300 to 500 nm of the fluoropolymer (II) is preferably 90% or more. The light transmittance is the light transmittance of a fluoropolymer (II) having a thickness of 100 μm.
 含フッ素重合体(II)は、公知の方法にしたがって入手できる。たとえば、反応性基(y)がカルボキシル基である含フッ素重合体(II)は、炭化水素系ラジカル重合開始剤の存在下に、ジエン系単量体または環状単量体を重合して主鎖に含フッ素脂肪族環構造を有する含フッ素重合体(P)を得て、つぎに該含フッ素重合体(P)を酸素ガス雰囲気下に加熱処理し、さらに水中に浸漬することにより得られる。 Fluoropolymer (II) can be obtained according to a known method. For example, the fluoropolymer (II) in which the reactive group (y) is a carboxyl group is obtained by polymerizing a diene monomer or a cyclic monomer in the presence of a hydrocarbon radical polymerization initiator. The fluorine-containing polymer (P) having a fluorine-containing aliphatic ring structure is obtained, and the fluorine-containing polymer (P) is then heat-treated in an oxygen gas atmosphere and further immersed in water.
 反応性基(y)がシラノール基である含フッ素重合体(II)は、特開平4-226177号公報に記載の方法のように、カルボキシル基を有する含フッ素重合体(II)の該カルボキシル基をエステル化してカルボン酸メチルエステルとし、さらにカルボン酸メチルエステルをアミノ基またはオキシラニル基を有するシランカップリング剤と反応させてアミド結合を形成させることにより得られる。 The fluorine-containing polymer (II) in which the reactive group (y) is a silanol group is the carboxyl group of the fluorine-containing polymer (II) having a carboxyl group as in the method described in JP-A-4-226177. Is esterified to form a carboxylic acid methyl ester, and the carboxylic acid methyl ester is further reacted with a silane coupling agent having an amino group or an oxiranyl group to form an amide bond.
 反応性基(y)が水酸基である含フッ素重合体(II)は、カルボキシル基を有する含フッ素重合体の該カルボキシル基を還元することにより得られる。 The fluorine-containing polymer (II) in which the reactive group (y) is a hydroxyl group can be obtained by reducing the carboxyl group of the fluorine-containing polymer having a carboxyl group.
 中間層(C)の厚さは、5nm~2000nmが好ましい。中間層(C)の厚さが5nm以上であれば、均一な膜が形成でき、高い密着性が得られる。中間層(C)の厚さが2000nm以下であれば、材料の無駄が少ない。中間層(C)の厚さは、10nm~1000nmがより好ましく、20~500nmがさらに好ましい。
 中間層(C)の厚さは、微細パターンを形成する前のモールド前駆体における中間層(C)の厚さとする。
The thickness of the intermediate layer (C) is preferably 5 nm to 2000 nm. If the thickness of the intermediate layer (C) is 5 nm or more, a uniform film can be formed and high adhesion can be obtained. If the thickness of the intermediate layer (C) is 2000 nm or less, there is little waste of material. The thickness of the intermediate layer (C) is more preferably 10 nm to 1000 nm, further preferably 20 to 500 nm.
The thickness of the intermediate layer (C) is the thickness of the intermediate layer (C) in the mold precursor before forming the fine pattern.
(透明支持体(D))
 透明樹脂層(A)は、透明支持体(D)によって支持されていることが好ましい。
 透明樹脂層(A)が透明支持体(D)によって支持されていれば、マスターモールドの反転パターンを転写する際に透明樹脂層(A)の反りが抑えられ、透明樹脂層(A)の材料として選べる透明樹脂の選択肢が多くなる。
(Transparent support (D))
The transparent resin layer (A) is preferably supported by the transparent support (D).
If the transparent resin layer (A) is supported by the transparent support (D), the warping of the transparent resin layer (A) can be suppressed when transferring the reverse pattern of the master mold, and the material of the transparent resin layer (A) The choice of transparent resin that can be selected as is increased.
 透明支持体(D)の熱変形温度は、100℃以上が好ましく、120℃以上がより好ましい。透明支持体(D)の熱変形温度が100℃以上であれば、透明樹脂層(A)の形状を維持したまま加熱でき、作業性に優れる。また、マスターモールドの反転パターンを転写する際に、寸法安定性よく反転パターンを転写できる。
 透明支持体(D)の熱変形温度の上限は特に規定されない。ガラス等の無機材料のように熱変形温度が300℃を超える透明支持体(D)を用いてもよい。
 本発明における熱変形温度は、ASTM D648にしたがって、1.82MPaの荷重の条件により測定される。
The heat distortion temperature of the transparent support (D) is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. When the heat distortion temperature of the transparent support (D) is 100 ° C. or higher, it can be heated while maintaining the shape of the transparent resin layer (A), and the workability is excellent. Further, when transferring the reverse pattern of the master mold, the reverse pattern can be transferred with good dimensional stability.
The upper limit of the heat distortion temperature of the transparent support (D) is not particularly defined. You may use the transparent support body (D) whose heat-deformation temperature exceeds 300 degreeC like inorganic materials, such as glass.
The heat distortion temperature in the present invention is measured under a load condition of 1.82 MPa according to ASTM D648.
 透明支持体(D)の材料としては、無機材料(石英、ガラス、透光性セラミックス等。
)や透明樹脂(ポリカーボネート(PC)、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタラート(PBT)、ポリエチレンナフタレート(PEN)、フルオレン系ポリエステル、COP、ポリアリレート(PAR)、芳香族ポリエーテルエーテルケトン(PEEK)、芳香族ポリエーテルスルホン(PES)、全芳香族ポリケトン、フッ素樹脂、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂等。)が挙げられる。光線透過率、成形加工性、耐熱性の点から、石英、ガラス、PC、COPが好ましい。
As a material of the transparent support (D), inorganic materials (quartz, glass, translucent ceramics, etc.).
) And transparent resins (polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), fluorene polyester, COP, polyarylate (PAR), aromatic polyetheretherketone (PEEK), aromatic polyethersulfone (PES), wholly aromatic polyketone, fluorine resin, silicone resin, acrylic resin, epoxy resin, phenol resin, etc.). Quartz, glass, PC, and COP are preferable from the viewpoint of light transmittance, molding processability, and heat resistance.
(モールドの製造方法)
 本発明のモールドの製造方法としては、下記工程M1、下記工程M2、下記工程M3、および下記工程M4を順に行う方法が挙げられる。
 工程M1:表面に官能基(x)を有する透明樹脂層(A)の該表面側に、含フッ素溶媒に含フッ素重合体(II)を溶解させた溶液を塗布し、つぎに、含フッ素溶媒を乾燥により除去して、含フッ素重合体(II)からなる中間層(C)を、表面に官能基(x)を有する透明樹脂層(A)の該表面側に形成する工程。
 工程M2:中間層(C)の表面側に、含フッ素溶媒に含フッ素重合体(I)を溶解させた溶液を塗布し、つぎに、乾燥により含フッ素溶媒を除去して、中間層(C)の表面に含フッ素重合体(I)からなる表面層(B)を形成し、モールド前駆体を得る工程。
 工程M3:モールド前駆体の表面層(B)側から、微細パターンの反転パターンを表面に有し、かつ該反転パターンの最大高さが表面層(B)の厚さと中間層(C)の厚さの合計を超えるマスターモールドの該反転パターンを、モールド前駆体およびマスターモールドの少なくとも一方が含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以上とされた状態で押しつけ、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンを形成し、本発明のモールドを得る工程。
 工程M4:モールドおよびマスターモールドを含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以下に冷却した後に、モールドからマスターモールドを分離する工程。
(Mold manufacturing method)
Examples of the method for producing a mold of the present invention include a method of sequentially performing the following step M1, the following step M2, the following step M3, and the following step M4.
Step M1: On the surface side of the transparent resin layer (A) having a functional group (x) on the surface, a solution obtained by dissolving the fluorinated polymer (II) in a fluorinated solvent is applied, and then the fluorinated solvent Is removed by drying, and an intermediate layer (C) made of the fluoropolymer (II) is formed on the surface side of the transparent resin layer (A) having a functional group (x) on the surface.
Step M2: A solution in which the fluorinated polymer (I) is dissolved in a fluorinated solvent is applied to the surface side of the intermediate layer (C), and then the fluorinated solvent is removed by drying, so that the intermediate layer (C ) To form a surface layer (B) made of the fluoropolymer (I) to obtain a mold precursor.
Step M3: From the surface layer (B) side of the mold precursor, a fine pattern inversion pattern is provided on the surface, and the maximum height of the inversion pattern is the thickness of the surface layer (B) and the thickness of the intermediate layer (C). And pressing the reversal pattern of the master mold that exceeds the total sum in a state in which at least one of the mold precursor and the master mold is equal to or higher than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), A step of forming a fine pattern over the surface layer (B), the intermediate layer (C) and the transparent resin layer (A) to obtain the mold of the present invention.
Step M4: A step of separating the master mold from the mold after cooling the mold and the master mold to below the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II).
 工程M1における乾燥は、透明樹脂層(A)の官能基(x)の一部または全部と、含フッ素重合体(II)の反応性基(y)の一部または全部との間に化学結合を形成しうる温度で行われる。乾燥温度は、通常100℃以上である。
 工程M2における乾燥温度は、含フッ素重合体(II)のガラス転移温度以上、および含フッ素重合体(I)のガラス転移温度以上が好ましい。該温度で乾燥することにより、中間層(C)と表面層(B)が高強度に接着される。
The drying in the step M1 is a chemical bond between part or all of the functional groups (x) of the transparent resin layer (A) and part or all of the reactive groups (y) of the fluoropolymer (II). Is performed at a temperature capable of forming The drying temperature is usually 100 ° C. or higher.
The drying temperature in the step M2 is preferably not less than the glass transition temperature of the fluoropolymer (II) and not less than the glass transition temperature of the fluoropolymer (I). By drying at this temperature, the intermediate layer (C) and the surface layer (B) are bonded with high strength.
 工程M3においては、モールド前駆体およびマスターモールドの少なくとも一方を、含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以上に加熱する。加熱温度が含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以上であれば、マスターモールドの反転パターンを精度よく転写できる。加熱温度は、含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度よりも10℃以上高いことが好ましい。加熱温度は、250℃以下が好ましく、220℃以下がより好ましい。加熱温度が250℃を超えると、官能基(x)と反応性基(y)とに基づく化学結合が破壊され、透明樹脂層(A)と中間層(C)との間で剥離が発生するおそれがある
 なお、工程M3においてモールド前駆体およびマスターモールドの加熱温度がフッ素重合体(I)および含フッ素重合体(II)のガラス転移温度未満であった場合でも、加熱温度が透明樹脂層(A)のガラス転移温度以上であればパターンの転写は可能であるが、パターン形状が正確に転写できなかったり、パターンが転写されない領域が生じたり、パターンの表面が荒れたりするおそれがある。
 工程M3においてモールド前駆体およびマスターモールドの加熱温度が透明樹脂層(A)のガラス転移温度よりも低い場合、パターンは転写されない。
In step M3, at least one of the mold precursor and the master mold is heated to a temperature equal to or higher than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II). If the heating temperature is equal to or higher than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II), the reverse pattern of the master mold can be accurately transferred. The heating temperature is preferably 10 ° C. or more higher than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II). The heating temperature is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower. When heating temperature exceeds 250 degreeC, the chemical bond based on a functional group (x) and a reactive group (y) will be destroyed, and peeling will generate | occur | produce between a transparent resin layer (A) and an intermediate | middle layer (C). In addition, even when the heating temperature of the mold precursor and the master mold is lower than the glass transition temperature of the fluoropolymer (I) and the fluoropolymer (II) in the step M3, the heating temperature is the transparent resin layer ( If the glass transition temperature is equal to or higher than the glass transition temperature of A), the pattern can be transferred, but the pattern shape may not be accurately transferred, there may be a region where the pattern is not transferred, or the surface of the pattern may be roughened.
In step M3, when the heating temperature of the mold precursor and the master mold is lower than the glass transition temperature of the transparent resin layer (A), the pattern is not transferred.
 以上説明した本発明のモールドは、透明樹脂層(A)、含フッ素重合体(II)からなる中間層(C)、および含フッ素重合体(I)からなる表面層(B)の積層体であるため、高い光透過性を有する。
 また、本発明のモールドは、表面層(B)が含フッ素重合体(I)からなる層であるため、高粘着性の光硬化性樹脂を成形できる程度の高い離型性を有する。また、離型剤を塗布する必要がないため、高精度な微細パターンを有し、かつ繰り返し使用しても微細パターンが離型剤で汚染されにくい。
The mold of the present invention described above is a laminate of a transparent resin layer (A), an intermediate layer (C) made of a fluoropolymer (II), and a surface layer (B) made of a fluoropolymer (I). Therefore, it has high light transmittance.
Moreover, since the mold of this invention is a layer which a surface layer (B) consists of a fluoropolymer (I), it has the mold release property of the grade which can shape | mold a highly adhesive photocurable resin. Further, since it is not necessary to apply a release agent, the fine pattern has a highly accurate fine pattern, and the fine pattern is not easily contaminated by the release agent even if it is used repeatedly.
 また、本発明のモールドは、透明樹脂層(A)を構成する透明樹脂のガラス転移温度が含フッ素重合体(I)および含フッ素重合体(II)のガラス転移温度以下である。したがって、微細パターンの最大高さ(モールド全体の歪(うねり)を含めた凹凸構造の最大高低差。)が表面層(B)の厚さと中間層(C)の厚さとの合計を超えていても、マスターモールドの反転パターンを転写する際に透明樹脂層(A)が変形し、反転パターンの凹凸構造、マスターモールド全体の歪(うねり)等に追随できるため、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンを精度よく形成できる。さらに、マスターモールドを押しつける際に、マスターモールドと表面層(B)との間に異物粒子が混入したとしても、透明樹脂層(A)が変形するため高価なマスターモールドを傷つけない。 In the mold of the present invention, the glass transition temperature of the transparent resin constituting the transparent resin layer (A) is not higher than the glass transition temperatures of the fluoropolymer (I) and the fluoropolymer (II). Therefore, the maximum height of the fine pattern (the maximum height difference of the concavo-convex structure including the distortion (waviness) of the entire mold) exceeds the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C). However, when the reverse pattern of the master mold is transferred, the transparent resin layer (A) is deformed and can follow the concavo-convex structure of the reverse pattern, the distortion (swell) of the entire master mold, etc., so that the surface layer (B), intermediate layer A fine pattern can be accurately formed across (C) and the transparent resin layer (A). Furthermore, even if foreign particles are mixed between the master mold and the surface layer (B) when the master mold is pressed, the transparent resin layer (A) is deformed, so that the expensive master mold is not damaged.
<転写微細パターンを有する基材の製造方法>
 本発明の、転写微細パターンを有する基材の製造方法としては、下記の方法(a)~(c)が挙げられる。
<Method for producing substrate having transfer fine pattern>
The following methods (a) to (c) are mentioned as the method for producing a substrate having a transfer fine pattern of the present invention.
方法(a):
 下記の工程(a-1)~(a-4)を有する方法。
 (a-1)光硬化性樹脂20を基材30の表面に配置する工程。
 (a-2)図2に示すように、モールド10を、該モールド10の微細パターン18が光硬化性樹脂20に接するように、光硬化性樹脂20に押しつける工程。
 (a-3)モールド10を光硬化性樹脂20に押しつけた状態で、光硬化性樹脂20に光を照射し、光硬化性樹脂20を硬化させて硬化物とする工程。
 (a-4)硬化物からモールド10を分離する工程。
Method (a):
A method comprising the following steps (a-1) to (a-4).
(A-1) A step of disposing the photocurable resin 20 on the surface of the substrate 30.
(A-2) A step of pressing the mold 10 against the photocurable resin 20 so that the fine pattern 18 of the mold 10 contacts the photocurable resin 20 as shown in FIG.
(A-3) A step of irradiating the photocurable resin 20 with light while the mold 10 is pressed against the photocurable resin 20 to cure the photocurable resin 20 to obtain a cured product.
(A-4) A step of separating the mold 10 from the cured product.
方法(b):
 下記の工程(b-1)~(b-4)を有する方法。
 (b-1)光硬化性樹脂20をモールド10の微細パターン18の表面に配置する工程。
 (b-2)図3に示すように、基材30をモールド10の表面の光硬化性樹脂20に押しつける工程。
 (b-3)基材30を光硬化性樹脂20に押しつけた状態で、光硬化性樹脂20に光を照射し、光硬化性樹脂20を硬化させて硬化物とする工程。
 (b-4)硬化物からモールド10を分離する工程。
Method (b):
A method comprising the following steps (b-1) to (b-4).
(B-1) A step of disposing the photocurable resin 20 on the surface of the fine pattern 18 of the mold 10.
(B-2) A step of pressing the substrate 30 against the photocurable resin 20 on the surface of the mold 10 as shown in FIG.
(B-3) A step of irradiating the photocurable resin 20 with light while the substrate 30 is pressed against the photocurable resin 20 to cure the photocurable resin 20 to obtain a cured product.
(B-4) A step of separating the mold 10 from the cured product.
方法(c):
 下記の工程(c-1)~(c-4)を有する方法。
 (c-1)基材30とモールド10とを、モールド10の微細パターン18が基材30側になるように接近または接触させる工程。
 (c-2)図4に示すように、光硬化性樹脂20を基材30とモールド10との間に充填する工程。
 (c-3)基材30とモールド10とが接近または接触した状態で、光硬化性樹脂20に光を照射し、光硬化性樹脂20を硬化させて硬化物とする工程。
 (c-4)硬化物からモールド10を分離する工程。
Method (c):
A method comprising the following steps (c-1) to (c-4).
(C-1) A step of bringing the base material 30 and the mold 10 close to or in contact with each other so that the fine pattern 18 of the mold 10 is on the base material 30 side.
(C-2) A step of filling the photocurable resin 20 between the base material 30 and the mold 10 as shown in FIG.
(C-3) A step of irradiating the photocurable resin 20 with light in a state where the base material 30 and the mold 10 are close to or in contact with each other to cure the photocurable resin 20 to obtain a cured product.
(C-4) A step of separating the mold 10 from the cured product.
 光硬化性樹脂とは、光照射により硬化して硬化物を形成する樹脂である。
 光硬化性樹脂としては、重合性化合物および光重合開始剤を含む光硬化性樹脂が好ましい。
 重合性化合物としては、重合性基を有する化合物、たとえば、重合性モノマー、重合性オリゴマー、重合性ポリマーが挙げられる。
 光重合開始剤とは、光によりラジカル反応またはイオン反応を引き起こす光重合開始剤である。
The photocurable resin is a resin that is cured by light irradiation to form a cured product.
As a photocurable resin, the photocurable resin containing a polymeric compound and a photoinitiator is preferable.
Examples of the polymerizable compound include compounds having a polymerizable group, such as a polymerizable monomer, a polymerizable oligomer, and a polymerizable polymer.
The photopolymerization initiator is a photopolymerization initiator that causes radical reaction or ionic reaction by light.
 光照射は、通常、モールド10側から行う。基材30の光透過性が高い場合は、基材30側から光照射を行ってもよい。
 光照射における光の波長は、本発明のモールドが高い光透過性を有する波長範囲であればよい。光照射における光の波長は、一般的な光硬化性樹脂を低温で硬化できる点から、高圧水銀灯のg線(波長436nm)またはi線(波長365nm)が特に好ましい。
The light irradiation is usually performed from the mold 10 side. When the light transmittance of the base material 30 is high, light irradiation may be performed from the base material 30 side.
The wavelength of the light in light irradiation should just be a wavelength range with which the mold of this invention has high light transmittance. The wavelength of light in the light irradiation is particularly preferably g-line (wavelength 436 nm) or i-line (wavelength 365 nm) of a high-pressure mercury lamp from the viewpoint that a general photocurable resin can be cured at a low temperature.
 透明樹脂層(A)は、石英またはガラスに比べ耐光性が劣るため、光照射における光は、波長300nm未満の光を含まないことが好ましく、350nm未満の光を含まないことがさらに好ましい。波長300nm未満の光を含まない場合、透明樹脂層(A)の黄変や脆化が起きにくくなるため、モールド10をより長期間使用できる。
 方法(a)~(c)の各工程における系の温度は、含フッ素重合体(I)のガラス転移温度以下が好ましい。
Since the transparent resin layer (A) is inferior in light resistance to quartz or glass, the light in light irradiation preferably does not contain light having a wavelength of less than 300 nm, and more preferably does not contain light having a wavelength of less than 350 nm. When light having a wavelength of less than 300 nm is not included, yellowing and embrittlement of the transparent resin layer (A) is less likely to occur, so that the mold 10 can be used for a longer period.
The temperature of the system in each step of the methods (a) to (c) is preferably not higher than the glass transition temperature of the fluoropolymer (I).
 本発明の製造方法で製造される転写微細パターンを有する基材は、基材の表面に、光硬化性樹脂の硬化物からなる転写微細パターンを有する。転写微細パターンは、本発明のモールドの微細パターンが反転した微細パターンである。 The substrate having a transfer fine pattern produced by the production method of the present invention has a transfer fine pattern made of a cured product of a photocurable resin on the surface of the substrate. The transferred fine pattern is a fine pattern obtained by inverting the fine pattern of the mold of the present invention.
 転写微細パターンは、光硬化性樹脂の硬化物からなる、凹凸構造を有する構造体(以下、凹凸構造体とも記す。)が好ましい。凹凸構造体は、凹凸形状を表面に有する連続体からなる層構造を有していてもよく、独立した突起体の集合からなる構造を有していてもよい。前者は、基材の表面を覆う光硬化性樹脂の硬化物の層からなり、光硬化性樹脂の硬化物の層の表面が凹凸形状をなしている構造をいう。後者は、光硬化性樹脂の硬化物からなる突起体が、基材の表面に独立して多数存在し、基材の表面からなる凹部とともに凹凸形状をなしている構造をいう。いずれの場合においても、凸構造部(突起体)は、光硬化性樹脂の硬化物からなる。さらに、凹凸構造体は、それら2つの構造を基材の表面の異なる位置で併有する構造を有していてもよい。 The transfer fine pattern is preferably a structure having a concavo-convex structure (hereinafter also referred to as a concavo-convex structure) made of a cured product of a photocurable resin. The concavo-convex structure may have a layer structure composed of a continuous body having a concavo-convex shape on the surface, or may have a structure composed of an independent set of protrusions. The former consists of a layer of a cured product of a photocurable resin that covers the surface of the substrate, and the surface of the cured product layer of the photocurable resin has a concavo-convex shape. The latter refers to a structure in which a large number of protrusions made of a cured product of a photocurable resin are present independently on the surface of the base material and form an uneven shape together with a concave portion made of the surface of the base material. In any case, the convex structure (projection) is made of a cured product of a photocurable resin. Furthermore, the concavo-convex structure may have a structure having these two structures together at different positions on the surface of the substrate.
 転写微細パターンを有する基材としては、半導体素子、記録メディア、MEMS、バイオ関連部材、光学部材等が挙げられる。
 MEMS、バイオ関連部材、光学部材の具体例としては下記のものが挙げられる。
 プリンターヘッド、HDDのヘッド、高周波スイッチ、発振器用振動子、光通信用光スイッチ、光スキャナ、電子ペーパー、デジタルミラーデバイス、マイクロフォン、圧力センサ、触覚センサ、慣性センサ、加速度センサ、ジャイロセンサ、バイオセンサ、マイクロバルブ、マイクロ流路、DNA分析チップ、蛋白質分析チップ、血液検査チップ、能動カテーテル、ドラッグデリバリーシステム、化学センサ、プリズムシート、マイクロレンズアレイ、光導波路等。
Examples of the substrate having a transfer fine pattern include semiconductor elements, recording media, MEMS, bio-related members, optical members, and the like.
Specific examples of the MEMS, bio-related member, and optical member include the following.
Printer head, HDD head, high frequency switch, oscillator for oscillator, optical switch for optical communication, optical scanner, electronic paper, digital mirror device, microphone, pressure sensor, tactile sensor, inertial sensor, acceleration sensor, gyro sensor, biosensor , Microvalve, microchannel, DNA analysis chip, protein analysis chip, blood test chip, active catheter, drug delivery system, chemical sensor, prism sheet, microlens array, optical waveguide, etc.
 以上説明した本発明の、転写微細パターンを有する基材の製造方法によれば、モールドの微細パターンを精度よく、かつ生産効率よく転写でき、最大高さが比較的大きい転写微細パターンを形成できる。 According to the above-described method for producing a substrate having a transfer fine pattern according to the present invention, the fine pattern of the mold can be transferred with high accuracy and production efficiency, and a transfer fine pattern having a relatively large maximum height can be formed.
 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されない。
 例6~8、12~14は実施例であり、例4、5、9、10、15は比較例である。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
Examples 6 to 8 and 12 to 14 are examples, and examples 4, 5, 9, 10, and 15 are comparative examples.
(固有粘度)
 含フッ素重合体の固有粘度は、ガラスウベローデ管を用い、30℃のペルフルオロ(2-ブチルテトラヒドロフラン)中にて測定した。
(Intrinsic viscosity)
The intrinsic viscosity of the fluorinated polymer was measured in perfluoro (2-butyltetrahydrofuran) at 30 ° C. using a glass Ubbelohde tube.
(赤外吸収スペクトル)
 含フッ素重合体の赤外吸収スペクトルは、フーリエ変換赤外分光計(ニコレット社製、20DXC)を用いて測定した。
(Infrared absorption spectrum)
The infrared absorption spectrum of the fluorine-containing polymer was measured using a Fourier transform infrared spectrometer (Nicolet, 20DXC).
(ガラス転移温度)
 透明樹脂、含フッ素重合体のガラス転移温度は、示差走査熱量計(ブルカー・エイエックスエス社製、DSC3100)を用い、昇温速度20℃/分の条件で測定した。なお、ガラス転移温度の測定は、JIS K7121:1987に準じて測定を行い、中間点ガラス転移温度をガラス転移温度とした。
(Glass-transition temperature)
The glass transition temperature of the transparent resin and the fluoropolymer was measured using a differential scanning calorimeter (manufactured by Bruker AXS Co., Ltd., DSC3100) at a temperature rising rate of 20 ° C./min. The glass transition temperature was measured according to JIS K7121: 1987, and the midpoint glass transition temperature was taken as the glass transition temperature.
(熱変形温度)
 透明樹脂の熱変形温度は、ASTM D648により、ヒートデストーションテスター(安田精機製作所社製、HD-PC)を用い、1.82MPaの荷重の条件で測定した。
(Heat deformation temperature)
The heat distortion temperature of the transparent resin was measured by ASTM D648 using a heat distortion tester (manufactured by Yasuda Seiki Seisakusho, HD-PC) under a load of 1.82 MPa.
(光線透過率)
 透明樹脂層(A)のフィルム、または透明樹脂層(A)と透明支持体(D)との積層体の436nm透過率および365nm透過率、および含フッ素重合体のフィルムの、波長300~500nmの光の光線透過率は、分光光度計(日立ハイテクノロジー社製、U-4100)を用いて測定した。
(Light transmittance)
The film of the transparent resin layer (A) or the laminate of the transparent resin layer (A) and the transparent support (D) has a 436 nm transmittance and a 365 nm transmittance, and a fluoropolymer film having a wavelength of 300 to 500 nm. The light transmittance of light was measured using a spectrophotometer (manufactured by Hitachi High-Technology Corporation, U-4100).
(厚さ)
 表面層(B)および中間層(C)の厚さは、光干渉式膜厚測定装置(浜松ホトニクス社製、C10178)を用いて測定した。含フッ素重合体(I-1)、含フッ素重合体(II-1)、含フッ素重合体(II-2)の屈折率はそれぞれ1.34とした。
(thickness)
The thicknesses of the surface layer (B) and the intermediate layer (C) were measured using an optical interference film thickness measuring device (C10178, manufactured by Hamamatsu Photonics). The refractive indexes of the fluoropolymer (I-1), the fluoropolymer (II-1) and the fluoropolymer (II-2) were each 1.34.
(最大高さ)
 モールドに形成された微細パターンの最大高さは、共焦点レーザー顕微鏡(キーエンス社製、VK-9500)を用い、プロファイル計測により求めた。V溝パターンの場合は、溝に対して垂直な方向のプロファイル、円筒状パターンの場合は円筒の中心を通る線上のプロファイルを測定した。具体的には、レンズ倍率50倍、光学ズーム1倍、測定ピッチ0.05μmの条件でカラー超深度観察を行い、面傾き補正(自動)を行った後、長さ200μmの範囲におけるプロファイルを求めて凹凸構造の最も高い山頂線および最も低い谷底線との最大高低差を求めた。
(Maximum height)
The maximum height of the fine pattern formed on the mold was obtained by profile measurement using a confocal laser microscope (manufactured by Keyence Corporation, VK-9500). In the case of the V-groove pattern, the profile in the direction perpendicular to the groove was measured, and in the case of the cylindrical pattern, the profile on a line passing through the center of the cylinder was measured. Specifically, color ultra-depth observation is performed under the conditions of a lens magnification of 50 times, an optical zoom of 1 time, and a measurement pitch of 0.05 μm, and after performing surface tilt correction (automatic), a profile in a range of 200 μm in length is obtained. The maximum height difference between the highest peak line and the lowest valley line of the concavo-convex structure was obtained.
〔例1〕
 含フッ素重合体(P-1)の製造:
 オートクレーブ(耐圧ガラス製)に、化合物(3-3)の100g、メタノールの0.5g、および化合物(4-1)の0.7gを加え、懸濁重合法にて化合物(3-3)の重合を行って含フッ素重合体(P-1)を得た。含フッ素重合体(P-1)は下式(α-1)で表されるモノマー単位からなる重合体である。含フッ素重合体(P-1)の固有粘度は、0.34dL/gであった。含フッ素重合体(P-1)のガラス転移温度は、108℃であった。
 CF=CFOCFCFCF=CF ・・・(3-3)、
 ((CHCHOCOO) ・・・(4-1)。
[Example 1]
Production of fluorinated polymer (P-1):
To an autoclave (made of pressure-resistant glass), 100 g of compound (3-3), 0.5 g of methanol, and 0.7 g of compound (4-1) were added, and compound (3-3) was added by suspension polymerization. Polymerization was performed to obtain a fluoropolymer (P-1). The fluorine-containing polymer (P-1) is a polymer comprising monomer units represented by the following formula (α-1). The intrinsic viscosity of the fluoropolymer (P-1) was 0.34 dL / g. The glass transition temperature of the fluoropolymer (P-1) was 108 ° C.
CF 2 = CFOCF 2 CF 2 CF = CF 2 (3-3),
((CH 3 ) 2 CHOCOO) 2 (4-1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔例2〕
 上式(α-1)で表されるモノマー単位からなる重合体で、末端が-CFである含フッ素重合体(以下、含フッ素重合体(I-1)と記す。)の製造:
 含フッ素重合体(P-1)を、オートクレーブ(ニッケル製、内容積1L)に入れ、オートクレーブ内を窒素ガスで3回置換してから4.0kPa(絶対圧)まで減圧した。オートクレーブ内に窒素ガスで14体積%に希釈したフッ素ガスを101.3kPaまで導入してから、オートクレーブの内温を230℃に6時間保持した。オートクレーブの内容物を回収して含フッ素重合体(I-1)を得た。含フッ素重合体(I-1)の赤外吸収スペクトルを測定した結果、カルボキシル基に起因するピークは確認されなかった。含フッ素重合体(I-1)を厚さ100μmのフィルムに加工し、波長300~500nmの光の光線透過率を測定した結果、95%以上であった。含フッ素重合体(I-1)のガラス転移温度は、108℃であった。含フッ素重合体(I-1)の固有粘度は、0.33dL/gであった。
[Example 2]
Production of a fluoropolymer having a monomer unit represented by the above formula (α-1) and having a terminal —CF 3 (hereinafter referred to as fluoropolymer (I-1)):
The fluoropolymer (P-1) was placed in an autoclave (made of nickel, internal volume 1 L), and the interior of the autoclave was replaced with nitrogen gas three times, and then the pressure was reduced to 4.0 kPa (absolute pressure). After introducing fluorine gas diluted to 14% by volume with nitrogen gas into the autoclave up to 101.3 kPa, the internal temperature of the autoclave was maintained at 230 ° C. for 6 hours. The contents of the autoclave were recovered to obtain a fluoropolymer (I-1). As a result of measuring the infrared absorption spectrum of the fluoropolymer (I-1), no peak due to the carboxyl group was confirmed. The fluoropolymer (I-1) was processed into a film having a thickness of 100 μm, and the light transmittance of light having a wavelength of 300 to 500 nm was measured and found to be 95% or more. The glass transition temperature of the fluoropolymer (I-1) was 108 ° C. The intrinsic viscosity of the fluoropolymer (I-1) was 0.33 dL / g.
 含フッ素重合体(I-1)を含む溶液組成物(以下、溶液組成物1と記す。)の調製:
 含フッ素重合体(I-1)の9質量%を含むペルフルオロトリブチルアミン溶液を調製し、該溶液をメンブレンフィルター(孔径:0.2μm、PTFE製)で濾過して溶液組成物1を得た。
Preparation of a solution composition (hereinafter referred to as solution composition 1) containing the fluoropolymer (I-1):
A perfluorotributylamine solution containing 9% by mass of the fluoropolymer (I-1) was prepared, and the solution was filtered through a membrane filter (pore size: 0.2 μm, manufactured by PTFE) to obtain a solution composition 1.
〔例3〕
 上式(α-1)で表されるモノマー単位からなる重合体で、末端が反応性基(y)(カルボキシル基)である含フッ素重合体(以下、含フッ素重合体(II-1)と記す。)の製造: 
 含フッ素重合体(P-1)を、大気圧雰囲気下の熱風循環式オーブン中で300℃にて1時間熱処理し、つぎに超純水中に110℃にて1週間浸漬し、さらに真空乾燥機中で100℃にて24時間乾燥して、含フッ素重合体(II-1)を得た。含フッ素重合体(II-1)の赤外吸収スペクトルを測定した結果、1810cm-1にカルボキシル基に由来するピークが確認された。含フッ素重合体(II-1)を厚さ100μmのフィルムに加工し、波長300~500nmの光の光線透過率を測定した結果、93%以上であった。含フッ素重合体(II-1)のガラス転移温度は、108℃であった。含フッ素重合体(II-1)の固有粘度は、0.34dL/gであった。
[Example 3]
A polymer comprising monomer units represented by the above formula (α-1), the terminal of which is a reactive group (y) (carboxyl group) (hereinafter referred to as a fluoropolymer (II-1)) Manufacturing):
The fluoropolymer (P-1) was heat-treated at 300 ° C. for 1 hour in a hot-air circulating oven under atmospheric pressure, then immersed in ultrapure water at 110 ° C. for 1 week, and then vacuum dried. It was dried in the machine at 100 ° C. for 24 hours to obtain a fluoropolymer (II-1). As a result of measuring the infrared absorption spectrum of the fluoropolymer (II-1), a peak derived from a carboxyl group was confirmed at 1810 cm −1 . The fluoropolymer (II-1) was processed into a film having a thickness of 100 μm, and the light transmittance of light having a wavelength of 300 to 500 nm was measured. As a result, it was 93% or more. The glass transition temperature of the fluoropolymer (II-1) was 108 ° C. The intrinsic viscosity of the fluoropolymer (II-1) was 0.34 dL / g.
 含フッ素重合体(II-1)を含む溶液組成物(以下、溶液組成物2と記す。)の調製:
 含フッ素重合体(II-1)の1質量%を含むペルフルオロトリブチルアミン溶液を調製し、該溶液をメンブレンフィルター(孔径:0.2μm、PTFE製)で濾過して溶液組成物2を得た。
Preparation of a solution composition (hereinafter referred to as solution composition 2) containing the fluoropolymer (II-1):
A perfluorotributylamine solution containing 1% by mass of the fluoropolymer (II-1) was prepared, and the solution was filtered through a membrane filter (pore size: 0.2 μm, manufactured by PTFE) to obtain a solution composition 2.
〔例4〕
 モールドの製造:
 透明樹脂層(A)としてPCシート(縦40mm×横40mm×厚さ0.5mm)を用意した。該透明樹脂層(A)の物性を表1に示す。
 オキシラニル基を有するプライマー(信越化学工業社製、FS-10)を、酢酸ブチル/2-プロパノール(5/9質量比)の混合溶媒で20倍に希釈してプライマー塗布液とした。プライマー塗布液を透明樹脂層(A)の表面にスピンコート法を用いて塗布し、窒素気流中で100℃にて30分加熱乾燥して、オキシラニル基を透明樹脂層(A)の表面に導入する表面処理を行った。
[Example 4]
Mold production:
A PC sheet (length 40 mm × width 40 mm × thickness 0.5 mm) was prepared as the transparent resin layer (A). Table 1 shows the physical properties of the transparent resin layer (A).
A primer having an oxiranyl group (manufactured by Shin-Etsu Chemical Co., Ltd., FS-10) was diluted 20 times with a mixed solvent of butyl acetate / 2-propanol (5/9 mass ratio) to obtain a primer coating solution. The primer coating solution is applied to the surface of the transparent resin layer (A) using a spin coating method, and heated and dried at 100 ° C. for 30 minutes in a nitrogen stream to introduce oxiranyl groups to the surface of the transparent resin layer (A). Surface treatment was performed.
 つぎに、透明樹脂層(A)の表面処理面にスピンコート法を用いて溶液組成物2を塗布し、110℃にて2時間、加熱乾燥して、溶液組成物2中のペルフルオロトリブチルアミンを揮発させた。同時に、透明樹脂層(A)の表面のオキシラニル基と、含フッ素重合体(II-1)のカルボキシル基とを化学結合させ、含フッ素重合体(II-1)からなる中間層(C)(厚さ:0.1μm)を形成した。 Next, the solution composition 2 is applied to the surface-treated surface of the transparent resin layer (A) by using a spin coating method, followed by heating and drying at 110 ° C. for 2 hours, so that the perfluorotributylamine in the solution composition 2 is obtained. Volatilized. At the same time, the intermediate layer (C) (C) comprising the fluoropolymer (II-1) is obtained by chemically bonding the oxiranyl group on the surface of the transparent resin layer (A) and the carboxyl group of the fluoropolymer (II-1). (Thickness: 0.1 μm) was formed.
 つぎに、スピンコート法を用いて溶液組成物1を中間層(C)の表面に塗布し、110℃にて4時間、加熱乾燥して、溶液組成物1中のペルフルオロトリブチルアミンを揮発させ、表面層(B)を形成し、モールド前駆体を得た。表面層(B)の厚さと中間層(C)の厚さとの合計は、1.3μmであった。 Next, the solution composition 1 is applied to the surface of the intermediate layer (C) by using a spin coating method, and heated and dried at 110 ° C. for 4 hours to volatilize perfluorotributylamine in the solution composition 1, A surface layer (B) was formed to obtain a mold precursor. The sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C) was 1.3 μm.
 マスターモールドとして、深さ(最大高さ):10μm、ピッチ:20μm、斜面の角度:45度のV溝からなる微細パターンを表面に有するニッケル製のマスターモールドを用意した。
 該マスターモールドを160℃に加熱し、モールド前駆体の表面層(B)側から3MPa(絶対圧)で2分間、圧着させた。マスターモールドおよびモールド前駆体の温度を50℃以下にした後、モールド前駆体からマスターモールドを分離し、透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)および中間層(C)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは9.8μmであった。モールドには、若干の反りが観察された。また、モールドの微細パターンの谷底にて透明樹脂層(A)が露出していた。
As a master mold, a nickel master mold having a fine pattern composed of V-grooves having a depth (maximum height) of 10 μm, a pitch of 20 μm, and an angle of slope of 45 degrees on the surface was prepared.
The master mold was heated to 160 ° C. and pressure-bonded at 3 MPa (absolute pressure) for 2 minutes from the surface layer (B) side of the mold precursor. After the temperature of the master mold and the mold precursor is set to 50 ° C. or lower, the master mold is separated from the mold precursor, and is composed of a transparent resin layer (A), an intermediate layer (C), and a surface layer (B). A mold in which a fine pattern was formed over (B) and the intermediate layer (C) was obtained. The maximum height of the fine pattern was 9.8 μm. Some warpage was observed in the mold. Moreover, the transparent resin layer (A) was exposed at the valley bottom of the fine pattern of the mold.
 転写微細パターンを有する基材の製造:
 光硬化性樹脂(旭硝子社製、NIF-A-1)を、モールドの微細パターンの表面に塗布し、その上から光硬化性樹脂に接するようにシリコンウェハを押しつけた。モールド側から紫外線(波長:365nm、照度:50mW/cm)を30秒間照射して光硬化性樹脂を硬化させた。つぎに、モールドを分離しようとしたが、モールドとシリコンウェハとが接着していたため、分離できなかった。
Production of a substrate having a transferred fine pattern:
A photocurable resin (NIF-A-1 manufactured by Asahi Glass Co., Ltd.) was applied to the surface of the fine pattern of the mold, and a silicon wafer was pressed from above onto the photocurable resin. The photocurable resin was cured by irradiating with ultraviolet rays (wavelength: 365 nm, illuminance: 50 mW / cm 2 ) for 30 seconds from the mold side. Next, an attempt was made to separate the mold, but it was not possible to separate the mold and the silicon wafer because they were bonded.
〔例5〕
 モールドの製造:
 透明樹脂層(A)としてPMMAシート(縦40mm×横40mm×厚さ1.8mm)を用意した。該透明樹脂層(A)の物性を表1に示す。
 透明樹脂層(A)としてPCシートの代わりにPMMAシートを用い、マスターモールドの加熱温度を130℃とした以外は、例4と同様にして、透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)および中間層(C)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは9.8μmであった。モールドには、若干の反りが観察された。また、モールドの微細パターンの谷底にて透明樹脂層(A)が露出していた。
[Example 5]
Mold production:
A PMMA sheet (length 40 mm × width 40 mm × thickness 1.8 mm) was prepared as the transparent resin layer (A). Table 1 shows the physical properties of the transparent resin layer (A).
A transparent resin layer (A), an intermediate layer (C), and a transparent resin layer (A) were prepared in the same manner as in Example 4 except that a PMMA sheet was used instead of the PC sheet as the transparent resin layer (A) and the heating temperature of the master mold was 130 ° C. A mold comprising a surface layer (B) and having a fine pattern formed over the surface layer (B) and the intermediate layer (C) was obtained. The maximum height of the fine pattern was 9.8 μm. Some warpage was observed in the mold. Moreover, the transparent resin layer (A) was exposed at the valley bottom of the fine pattern of the mold.
 転写微細パターンを有する基材の製造:
 光硬化性樹脂(旭硝子社製、NIF-A-1)を、モールドの微細パターンの表面に塗布し、その上から光硬化性樹脂に接するようにシリコンウェハを押しつけた。モールド側から紫外線(波長:365nm、照度:50mW/cm)を30秒間照射して光硬化性樹脂を硬化させた。つぎに、モールドを分離しようとしたが、モールドとシリコンウェハとが接着していたため、分離できなかった。
Production of a substrate having a transferred fine pattern:
A photocurable resin (NIF-A-1 manufactured by Asahi Glass Co., Ltd.) was applied to the surface of the fine pattern of the mold, and a silicon wafer was pressed from above onto the photocurable resin. The photocurable resin was cured by irradiating with ultraviolet rays (wavelength: 365 nm, illuminance: 50 mW / cm 2 ) for 30 seconds from the mold side. Next, an attempt was made to separate the mold, but it was not possible to separate the mold and the silicon wafer because they were bonded.
〔例6〕
 モールドの製造:
 透明樹脂層(A)として、例5で用いたPMMAシートよりもガラス転移温度が低いPMMAシート(縦40mm×横40mm×厚さ1.8mm)を用意した。該透明樹脂層(A)の物性を表2に示す。
[Example 6]
Mold production:
As the transparent resin layer (A), a PMMA sheet (length 40 mm × width 40 mm × thickness 1.8 mm) having a glass transition temperature lower than that of the PMMA sheet used in Example 5 was prepared. Table 2 shows the physical properties of the transparent resin layer (A).
 透明樹脂層(A)としてPCシートの代わりにPMMAシートを用い、マスターモールドの加熱温度を120℃とした以外は、例4と同様にして、透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは10.0μmであった。モールドには、若干の反りが観察された。 A transparent resin layer (A), an intermediate layer (C), and a transparent resin layer (A) were prepared in the same manner as in Example 4 except that a PMMA sheet was used instead of the PC sheet as the transparent resin layer (A) and the heating temperature of the master mold was 120 ° C. A mold comprising a surface layer (B) and having a fine pattern formed on the surface layer (B), the intermediate layer (C) and the transparent resin layer (A) was obtained. The maximum height of the fine pattern was 10.0 μm. Some warpage was observed in the mold.
 転写微細パターンを有する基材の製造:
 光硬化性樹脂(旭硝子社製、NIF-A-1)を、モールドの微細パターンの表面に塗布し、その上から光硬化性樹脂に接するようにシリコンウェハを押しつけた。モールド側から紫外線(波長:365nm、照度:50mW/cm)を30秒間照射して光硬化性樹脂を硬化させた。つぎに、モールドとシリコンウェハとを分離し、光硬化性樹脂の硬化物からなる転写微細パターンを表面に有するシリコンウェハを得た。
 転写微細パターンをレーザー顕微鏡(キーエンス社製、VK-9500)にて観察したところ、マスターモールドの微細パターンを再現していた。
Production of a substrate having a transferred fine pattern:
A photocurable resin (NIF-A-1 manufactured by Asahi Glass Co., Ltd.) was applied to the surface of the fine pattern of the mold, and a silicon wafer was pressed from above onto the photocurable resin. The photocurable resin was cured by irradiating with ultraviolet rays (wavelength: 365 nm, illuminance: 50 mW / cm 2 ) for 30 seconds from the mold side. Next, the mold and the silicon wafer were separated, and a silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained.
When the transferred fine pattern was observed with a laser microscope (VK-9500, manufactured by Keyence Corporation), the fine pattern of the master mold was reproduced.
〔例7〕
 モールドの製造:
 透明樹脂であるFEVE(旭硝子社製、ルミフロンLF710F)を、30質量%となるようにトルエンに溶解して塗布液とした。アプリケーターを用い、該塗布液を透明支持体(D)(ソーダライムガラス板、厚さ:1.30mm、熱変形温度:300℃以上)に塗布して、100℃で2時間乾燥させて透明樹脂層(A)を形成した。透明樹脂層(A)の厚さをマイクロメーターで測定したところ30μmであった。透明樹脂層(A)および透明支持体(D)の物性を表2に示す。
[Example 7]
Mold production:
A transparent resin FEVE (manufactured by Asahi Glass Co., Ltd., Lumiflon LF710F) was dissolved in toluene so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 100 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
 PCシートの代わりに、FEVEからなる透明樹脂層(A)が形成されたガラス板を用い、マスターモールドの加熱温度を120℃とした以外は、例4と同様にして、透明支持体(D)と透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは9.9μmであった。モールドのレーザー顕微鏡像を図5に示す。モールドには、反りは観察されなかった。 A transparent support (D) was used in the same manner as in Example 4 except that a glass plate on which a transparent resin layer (A) made of FEVE was formed was used instead of the PC sheet, and the heating temperature of the master mold was 120 ° C. And a transparent resin layer (A), an intermediate layer (C), and a surface layer (B), and a mold having a fine pattern formed on the surface layer (B), the intermediate layer (C), and the transparent resin layer (A). Obtained. The maximum height of the fine pattern was 9.9 μm. A laser microscope image of the mold is shown in FIG. No warpage was observed in the mold.
 転写微細パターンを有する基材の製造:
 例6のモールドの代わりに例7のモールドを用いた以外は、例6と同様にして、光硬化性樹脂の硬化物からなる転写微細パターンを表面に有するシリコンウェハを得た。
 転写微細パターンをレーザー顕微鏡にて観察したところ、マスターモールドの微細パターンを再現していた。
Production of a substrate having a transferred fine pattern:
A silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained in the same manner as in Example 6 except that the mold of Example 7 was used instead of the mold of Example 6.
When the transferred fine pattern was observed with a laser microscope, the fine pattern of the master mold was reproduced.
 〔例8〕
 モールドの製造:
 透明樹脂であるFEVE(旭硝子社製、ルミフロンLF710F)を、30質量%となるようにトルエンに溶解して塗布液とした。アプリケーターを用い、該塗布液を透明支持体(D)(ソーダライムガラス板、厚さ:1.30mm、熱変形温度:300℃以上)に塗布して、100℃で2時間乾燥させて透明樹脂層(A)を形成した。透明樹脂層(A)の厚さをマイクロメーターで測定したところ30μmであった。透明樹脂層(A)および透明支持体(D)の物性を表2に示す。
[Example 8]
Mold production:
A transparent resin FEVE (manufactured by Asahi Glass Co., Ltd., Lumiflon LF710F) was dissolved in toluene so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 100 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
 透明樹脂層(A)の表面をあらかじめ親水化処理(窒素プラズマ処理)した。親水化処理は、リアクティブイオンエッチング装置(サムコ社製、RIE-10NR)を用いて、窒素流量:20sccm、圧力:4Pa、出力:80W、処理時間:1分の条件で行った。 The surface of the transparent resin layer (A) was previously hydrophilized (nitrogen plasma treatment). The hydrophilic treatment was performed using a reactive ion etching apparatus (RIE-10NR, manufactured by Samco Corporation) under the conditions of a nitrogen flow rate: 20 sccm, a pressure: 4 Pa, an output: 80 W, and a treatment time: 1 minute.
 アミノ基を有するシランカップリング剤(信越化学工業社製、KBE-903)の0.5質量%と水の5質量%とを含むエタノール溶液を、透明樹脂層(A)の表面にスピンコート法を用いて塗布した。透明樹脂層(A)を水洗してから、窒素気流中で100℃にて30分加熱乾燥して、該シランカップリング剤由来のアミノ基を透明樹脂層(A)の表面に導入する表面処理を行った。 An ethanol solution containing 0.5% by mass of a silane coupling agent having an amino group (KBE-903, manufactured by Shin-Etsu Chemical Co., Ltd.) and 5% by mass of water is applied to the surface of the transparent resin layer (A) by spin coating. It applied using. Surface treatment for introducing the amino group derived from the silane coupling agent to the surface of the transparent resin layer (A) by washing the transparent resin layer (A) with water and then drying by heating in a nitrogen stream at 100 ° C. for 30 minutes. Went.
 つぎに、透明樹脂層(A)の表面処理面にスピンコート法を用いて溶液組成物2を塗布し、110℃にて2時間、加熱乾燥して、溶液組成物2中のペルフルオロトリブチルアミンを揮発させた。同時に、透明樹脂層(A)の表面のアミノ基と、含フッ素重合体(II-1)のカルボキシル基とを化学結合させ、含フッ素重合体(II-1)からなる中間層(C)(厚さ:0.10μm)を形成した。 Next, the solution composition 2 is applied to the surface-treated surface of the transparent resin layer (A) by using a spin coating method, followed by heating and drying at 110 ° C. for 2 hours, so that the perfluorotributylamine in the solution composition 2 is obtained. Volatilized. At the same time, the amino group on the surface of the transparent resin layer (A) and the carboxyl group of the fluoropolymer (II-1) are chemically bonded to form an intermediate layer (C) composed of the fluoropolymer (II-1) ( Thickness: 0.10 μm) was formed.
 つぎに、スピンコート法を用いて溶液組成物1を中間層(C)の表面に塗布し、110℃にて4時間、加熱乾燥して、溶液組成物1中のペルフルオロトリブチルアミンを揮発させ、表面層(B)を形成し、モールド前駆体を得た。表面層(B)の厚さと中間層(C)の厚さとの合計は、1.25μmであった。 Next, the solution composition 1 is applied to the surface of the intermediate layer (C) by using a spin coating method, and heated and dried at 110 ° C. for 4 hours to volatilize perfluorotributylamine in the solution composition 1, A surface layer (B) was formed to obtain a mold precursor. The sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C) was 1.25 μm.
 該モールド前駆体を用いた以外は、例4と同様にして微細パターンを形成し、透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは10.0μmであった。モールドには、反りは観察されなかった。 A fine pattern is formed in the same manner as in Example 4 except that the mold precursor is used, and includes a transparent resin layer (A), an intermediate layer (C), and a surface layer (B). A mold having a fine pattern formed over the intermediate layer (C) and the transparent resin layer (A) was obtained. The maximum height of the fine pattern was 10.0 μm. No warpage was observed in the mold.
 転写微細パターンを有する基材の製造:
 例6のモールドの代わりに例8のモールドを用いた以外は、例6と同様にして、光硬化性樹脂の硬化物からなる転写微細パターンを表面に有するシリコンウェハを得た。
 転写微細パターンをレーザー顕微鏡にて観察したところ、マスターモールドの微細パターンを再現していた。
Production of a substrate having a transferred fine pattern:
A silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained in the same manner as in Example 6 except that the mold of Example 8 was used instead of the mold of Example 6.
When the transferred fine pattern was observed with a laser microscope, the fine pattern of the master mold was reproduced.
〔例9〕
 モールドの製造:
 オキシラニル基を透明樹脂層(A)の表面に導入しなかった以外は、例7と同様に行ったところ、モールドからマスターモールドを分離する際に、透明樹脂層(A)と中間層(C)との間で剥離が発生した。
[Example 9]
Mold production:
Except that the oxiranyl group was not introduced into the surface of the transparent resin layer (A), the same procedure as in Example 7 was conducted. When separating the master mold from the mold, the transparent resin layer (A) and the intermediate layer (C) Peeling occurred between.
〔例10〕
 モールドの製造:
 中間層(C)を形成する際に、溶液組成物2の代わりに溶液組成物1を用いた以外は、例8と同様にして行ったところ、モールドからマスターモールドを分離する際に、透明樹脂層(A)と中間層(C)との間で剥離が発生した。
[Example 10]
Mold production:
When the intermediate layer (C) was formed, except that the solution composition 1 was used in place of the solution composition 2, it was performed in the same manner as in Example 8. When separating the master mold from the mold, a transparent resin was used. Peeling occurred between the layer (A) and the intermediate layer (C).
〔例11〕
 上式(α-1)で表されるモノマー単位からなる重合体で、末端が反応性基(y)(シラノール基(アルコキシシラン基))である含フッ素重合体(以下、含フッ素重合体(II-2)と記す。)の製造:
 例3で得られた含フッ素重合体(II-1)のカルボキシル基をエステル化して-COOCHとした。該重合体の3.5gをペルフルオロ(2-ブチルテトラヒドロフラン)の46.5gに溶解した溶液に、γ-アミノプロピルトリメトキシシランの0.1gを加えた。系内を窒素で置換し、室温で3時間撹拌して、含フッ素重合体(II-2)を得た。含フッ素重合体(II-2)の赤外線吸収スペクトルを測定したところ、もとの重合体に存在した-COOCHの1800cm-1の吸収はなく、-CONH-の吸収が1730cm-1に認められた。含フッ素重合体(II-2)を厚さ100μmのフィルムに加工し、波長300~500nmの光の光線透過率を測定した結果、92%以上であった。含フッ素重合体(II-2)のガラス転移温度は、108℃であった。含フッ素重合体(II-2)の固有粘度は、0.32dL/gであった。
[Example 11]
A polymer comprising monomer units represented by the above formula (α-1) and having a terminal reactive group (y) (silanol group (alkoxysilane group)) (hereinafter referred to as a fluoropolymer (hereinafter referred to as “fluorinated polymer”)). II-2).) Production:
The carboxyl group of the fluoropolymer (II-1) obtained in Example 3 was esterified to give —COOCH 3 . To a solution of 3.5 g of the polymer in 46.5 g of perfluoro (2-butyltetrahydrofuran), 0.1 g of γ-aminopropyltrimethoxysilane was added. The system was replaced with nitrogen, and the mixture was stirred at room temperature for 3 hours to obtain a fluoropolymer (II-2). When the infrared absorption spectrum of the fluoropolymer (II-2) was measured, there was no absorption at 1800 cm −1 of —COOCH 3 present in the original polymer, and absorption at −CONH— was observed at 1730 cm −1. It was. The fluoropolymer (II-2) was processed into a film having a thickness of 100 μm, and the light transmittance of light having a wavelength of 300 to 500 nm was measured and found to be 92% or more. The glass transition temperature of the fluoropolymer (II-2) was 108 ° C. The intrinsic viscosity of the fluoropolymer (II-2) was 0.32 dL / g.
 含フッ素重合体(II-2)を含む溶液組成物(以下、溶液組成物3と記す。)の調製: 含フッ素重合体(II-2)の1質量%を含むペルフルオロトリブチルアミン溶液を調製し、該溶液をメンブレンフィルター(孔径:0.2μm、PTFE製)で濾過して溶液組成物3を得た。 Preparation of a solution composition containing the fluoropolymer (II-2) (hereinafter referred to as solution composition 3): A perfluorotributylamine solution containing 1% by mass of the fluoropolymer (II-2) was prepared. The solution was filtered through a membrane filter (pore size: 0.2 μm, made of PTFE) to obtain a solution composition 3.
〔例12〕
 モールドの製造:
 透明樹脂である非晶質ポリエステル(東洋紡社製、バイロン200)を、30質量%となるようにシクロヘキサノンに溶解して塗布液とした。アプリケーターを用い、該塗布液を透明支持体(D)(ソーダライムガラス板、厚さ:1.30mm、熱変形温度:300℃以上)に塗布して、150℃で2時間乾燥させて透明樹脂層(A)を形成した。透明樹脂層(A)の厚さをマイクロメーターで測定したところ30μmであった。透明樹脂層(A)および透明支持体(D)の物性を表2に示す。
[Example 12]
Mold production:
Amorphous polyester (byron 200, manufactured by Toyobo Co., Ltd.), which is a transparent resin, was dissolved in cyclohexanone so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 150 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
 透明樹脂層(A)の表面をあらかじめ親水化処理(酸素プラズマ処理)した。親水化処理は、リアクティブイオンエッチング装置(サムコ社製、RIE-10NR)を用いて、酸素流量:50sccm、圧力:10Pa、出力:100W、処理時間:10秒の条件で行った。該処理により透明樹脂層(A)の表面に水酸基が導入された。 The surface of the transparent resin layer (A) was previously hydrophilized (oxygen plasma treatment). The hydrophilic treatment was performed using a reactive ion etching apparatus (RIE-10NR, manufactured by Samco) under the conditions of oxygen flow rate: 50 sccm, pressure: 10 Pa, output: 100 W, treatment time: 10 seconds. By this treatment, hydroxyl groups were introduced on the surface of the transparent resin layer (A).
 つぎに、透明樹脂層(A)の表面処理面にスピンコート法を用いて溶液組成物3を塗布し、110℃にて2時間、加熱乾燥して、溶液組成物3中のペルフルオロトリブチルアミンを揮発させた。同時に、透明樹脂層(A)の表面の水酸基と含フッ素重合体(II-2)のシラノール基とを化学結合させ、含フッ素重合体(II-2)からなる中間層(C)(厚さ:0.1μm)を形成した。 Next, the solution composition 3 is applied to the surface-treated surface of the transparent resin layer (A) by using a spin coating method, and is heated and dried at 110 ° C. for 2 hours, so that the perfluorotributylamine in the solution composition 3 is obtained. Volatilized. At the same time, the hydroxyl group on the surface of the transparent resin layer (A) and the silanol group of the fluoropolymer (II-2) are chemically bonded to form an intermediate layer (C) (thickness of the fluoropolymer (II-2)). : 0.1 μm).
 つぎに、スピンコート法を用いて溶液組成物1を中間層(C)の表面に塗布し、110℃にて4時間、加熱乾燥して、溶液組成物1中のペルフルオロトリブチルアミンを揮発させ、表面層(B)を形成し、モールド前駆体を得た。表面層(B)の厚さと中間層(C)の厚さとの合計は、1.2μmであった。 Next, the solution composition 1 is applied to the surface of the intermediate layer (C) by using a spin coating method, and heated and dried at 110 ° C. for 4 hours to volatilize perfluorotributylamine in the solution composition 1, A surface layer (B) was formed to obtain a mold precursor. The sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C) was 1.2 μm.
 該モールド前駆体を用いた以外は、例4と同様にして微細パターンを形成し、透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは9.7μmであった。モールドには、反りは観察されなかった。 A fine pattern is formed in the same manner as in Example 4 except that the mold precursor is used, and includes a transparent resin layer (A), an intermediate layer (C), and a surface layer (B). A mold having a fine pattern formed over the intermediate layer (C) and the transparent resin layer (A) was obtained. The maximum height of the fine pattern was 9.7 μm. No warpage was observed in the mold.
 転写微細パターンを有する基材の製造:
 例6のモールドの代わりに例11のモールドを用いた以外は、例6と同様にして、光硬化性樹脂の硬化物からなる転写微細パターンを表面に有するシリコンウェハを得た。
 転写微細パターンをレーザー顕微鏡にて観察したところ、マスターモールドの微細パターンを再現していた。
Production of a substrate having a transferred fine pattern:
Except that the mold of Example 11 was used instead of the mold of Example 6, a silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained in the same manner as in Example 6.
When the transferred fine pattern was observed with a laser microscope, the fine pattern of the master mold was reproduced.
〔例13〕
 モールドの製造:
 透明樹脂である非晶質ポリエステル(東洋紡社製、バイロン300)を、30質量%となるようにシクロヘキサノンに溶解して塗布液とした。アプリケーターを用い、該塗布液を透明支持体(D)(ソーダライムガラス板、厚さ:1.30mm、熱変形温度:300℃以上)に塗布して、150℃で2時間乾燥させて透明樹脂層(A)を形成した。透明樹脂層(A)の厚さをマイクロメーターで測定したところ30μmであった。透明樹脂層(A)および透明支持体(D)の物性を表2に示す。
[Example 13]
Mold production:
Amorphous polyester (byron 300, manufactured by Toyobo Co., Ltd.), which is a transparent resin, was dissolved in cyclohexanone so as to be 30% by mass to obtain a coating solution. Using an applicator, the coating solution is applied to a transparent support (D) (soda lime glass plate, thickness: 1.30 mm, heat distortion temperature: 300 ° C. or higher) and dried at 150 ° C. for 2 hours to form a transparent resin Layer (A) was formed. It was 30 micrometers when the thickness of the transparent resin layer (A) was measured with the micrometer. Table 2 shows the physical properties of the transparent resin layer (A) and the transparent support (D).
 PCシートの代わりに、非晶質ポリエステルからなる透明樹脂層(A)が形成されたガラス板を用い、マスターモールドの加熱温度を120℃とした以外は、例4と同様にして、透明支持体(D)と透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは10.1μmであった。モールドには、反りは観察されなかった。 A transparent support in the same manner as in Example 4 except that instead of the PC sheet, a glass plate on which a transparent resin layer (A) made of amorphous polyester was formed was used and the heating temperature of the master mold was 120 ° C. (D), transparent resin layer (A), intermediate layer (C), and surface layer (B), and a fine pattern is formed over the surface layer (B), intermediate layer (C), and transparent resin layer (A). A mold was obtained. The maximum height of the fine pattern was 10.1 μm. No warpage was observed in the mold.
 転写微細パターンを有する基材の製造:
 例6のモールドの代わりに例13のモールドを用いた以外は、例6と同様にして、光硬化性樹脂の硬化物からなる転写微細パターンを表面に有するシリコンウェハを得た。
 転写微細パターンをレーザー顕微鏡にて観察したところ、マスターモールドの微細パターンを再現していたが、一部に微細パターンの倒れや潰れが観察された。
Production of a substrate having a transferred fine pattern:
Except that the mold of Example 13 was used instead of the mold of Example 6, a silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained in the same manner as in Example 6.
When the transferred fine pattern was observed with a laser microscope, the fine pattern of the master mold was reproduced, but the collapse or collapse of the fine pattern was observed in part.
〔例14〕
 モールドの製造:
 例1のマスターモールドの代わりに、直径:5μm、深さ(最大高さ):5μmの円柱状の穴が10μm間隔で格子状に配列した微細パターンを有するシリコンモールドを用いた以外は、例7と同様にして、透明支持体(D)と透明樹脂層(A)と中間層(C)と表面層(B)とからなり、表面層(B)、中間層(C)および透明樹脂層(A)にわたって微細パターンが形成されたモールドを得た。微細パターンの最大高さは5.1μmであった。モールドには、反りは観察されなかった。
[Example 14]
Mold production:
Example 7 except that instead of the master mold of Example 1, a silicon mold having a fine pattern in which cylindrical holes having a diameter of 5 μm and a depth (maximum height): 5 μm are arranged in a grid at intervals of 10 μm was used. In the same manner, the transparent support (D), the transparent resin layer (A), the intermediate layer (C), and the surface layer (B) are formed. The surface layer (B), the intermediate layer (C), and the transparent resin layer ( A mold having a fine pattern formed over A) was obtained. The maximum height of the fine pattern was 5.1 μm. No warpage was observed in the mold.
 転写微細パターンを有する基材の製造:
 例6のモールドの代わりに例14のモールドを用いた以外は、例6と同様にして、光硬化性樹脂の硬化物からなる転写微細パターンを表面に有するシリコンウェハを得た。
 転写微細パターンをレーザー顕微鏡にて観察したところ、マスターモールドの微細パターンを再現していた。
Production of a substrate having a transferred fine pattern:
Except that the mold of Example 14 was used instead of the mold of Example 6, a silicon wafer having a transfer fine pattern made of a cured product of a photocurable resin on the surface was obtained in the same manner as in Example 6.
When the transferred fine pattern was observed with a laser microscope, the fine pattern of the master mold was reproduced.
〔例15〕
 モールドの製造:
 マスターモールドの加熱温度を40℃とした以外は例7と同様に行ったところ、モールドの表面にマスターモールドの微細パターンは転写されなかった。
[Example 15]
Mold production:
Except that the heating temperature of the master mold was set to 40 ° C., the same process as in Example 7 was performed. As a result, the fine pattern of the master mold was not transferred onto the surface of the mold.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のモールドは、光硬化性樹脂を用いる光ナノインプリント用のモールドとして有用である。本発明のモールドを用いて得られる、転写微細パターンを有する基材は、半導体素子、記録メディア、MEMS、バイオ関連部材、光学部材等として有用である。

 なお、2008年4月8日に出願された日本特許出願2008-100552号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The mold of the present invention is useful as a mold for optical nanoimprint using a photocurable resin. A base material having a transfer fine pattern obtained by using the mold of the present invention is useful as a semiconductor element, a recording medium, a MEMS, a bio-related member, an optical member, and the like.

The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-100552 filed on Apr. 8, 2008 are cited herein as disclosure of the specification of the present invention. Incorporated.

Claims (9)

  1.  光硬化性樹脂を成形するための微細パターンを有するモールドであり、
     下記透明樹脂層(A)と、
     下記表面層(B)と、
     前記透明樹脂層(A)の表面に形成され、かつ前記透明樹脂層(A)と前記表面層(B)との間に存在する下記中間層(C)とを有し、
     前記微細パターンの最大高さが、前記表面層(B)の厚さと前記中間層(C)の厚さの合計を超える、ことを特徴とするモールド。
     透明樹脂層(A):ガラス転移温度が下記含フッ素重合体(I)および下記含フッ素重合体(II)のガラス転移温度以下である透明樹脂からなる層であり、中間層(C)が形成される前には、中間層(C)が形成される表面に官能基(x)を有し、中間層(C)が形成された後には、中間層(C)が形成された表面に前記官能基(x)と下記反応性基(y)とに基づく化学結合を有する層。
     表面層(B):主鎖に含フッ素脂肪族環構造を有し、かつ下記反応性基(y)を実質的に有しない含フッ素重合体(I)からなる層。
     中間層(C):主鎖に含フッ素脂肪族環構造を有し、かつ前記官能基(x)と反応性の反応性基(y)を有する含フッ素重合体(II)からなる層。
    It is a mold having a fine pattern for molding a photocurable resin,
    The following transparent resin layer (A),
    The following surface layer (B);
    The following intermediate layer (C) formed on the surface of the transparent resin layer (A) and present between the transparent resin layer (A) and the surface layer (B),
    The mold wherein the maximum height of the fine pattern exceeds the sum of the thickness of the surface layer (B) and the thickness of the intermediate layer (C).
    Transparent resin layer (A): a layer made of a transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the following fluoropolymer (I) and the following fluoropolymer (II), and forming an intermediate layer (C) Before the intermediate layer (C) is formed, the surface on which the intermediate layer (C) is formed has the functional group (x). After the intermediate layer (C) is formed, the surface on which the intermediate layer (C) is formed A layer having a chemical bond based on the functional group (x) and the following reactive group (y).
    Surface layer (B): A layer comprising a fluoropolymer (I) having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
    Intermediate layer (C): A layer comprising a fluorinated polymer (II) having a fluorinated aliphatic ring structure in the main chain and having a reactive group (y) reactive with the functional group (x).
  2.  前記微細パターンの最大高さが、1~500μmである、請求項1に記載のモールド。 The mold according to claim 1, wherein the maximum height of the fine pattern is 1 to 500 µm.
  3.  前記透明樹脂層(A)が、透明支持体(D)によって支持されている、請求項1または2に記載のモールド。 The mold according to claim 1 or 2, wherein the transparent resin layer (A) is supported by a transparent support (D).
  4.  前記官能基(x)が、水酸基、アミノ基またはオキシラニル基であり、
     前記反応性基(y)が、カルボキシル基である、請求項1~3のいずれかに記載のモールド。
    The functional group (x) is a hydroxyl group, an amino group or an oxiranyl group;
    The mold according to any one of claims 1 to 3, wherein the reactive group (y) is a carboxyl group.
  5.  前記透明樹脂層(A)が、表面処理によって官能基(x)が表面に導入された層である、請求項1~4のいずれかに記載のモールド。 The mold according to any one of claims 1 to 4, wherein the transparent resin layer (A) is a layer having a functional group (x) introduced into the surface by a surface treatment.
  6.  光硬化性樹脂を成形するための微細パターンを有するモールドの製造方法であって、
     下記透明樹脂からなり、表面に官能基(x)を有する透明樹脂層(A)の該表面に、含フッ素溶媒に下記含フッ素重合体(II)を溶解させた溶液を塗布、乾燥して下記含フッ素重合体(II)からなる中間層(C)を形成する工程と、
     前記中間層(C)の表面に、含フッ素溶媒に下記含フッ素重合体(I)を溶解させた溶液を塗布、乾燥して下記含フッ素重合体(I)からなる表面層(B)を形成し、モールド前駆体を得る工程と、
     前記モールド前駆体の前記表面層(B)側から、微細パターンの反転パターンを表面に有し、かつ該反転パターンの最大高さが前記表面層(B)の厚さと前記中間層(C)の厚さの合計を超えるマスターモールドの該反転パターンを、前記モールド前駆体および前記マスターモールドの少なくとも一方が下記含フッ素重合体(I)および下記含フッ素重合体(II)のガラス転移温度以上とされた状態で押しつけ、前記表面層(B)、前記中間層(C)および前記透明樹脂層(A)にわたって微細パターンを形成し、モールドを得る工程と、
     前記モールドからマスターモールドを分離する工程と
    を有する、ことを特徴とするモールドの製造方法。
     透明樹脂:ガラス転移温度が下記含フッ素重合体(I)および下記含フッ素重合体(II)のガラス転移温度以下である透明樹脂。
     含フッ素重合体(I):主鎖に含フッ素脂肪族環構造を有し、かつ下記反応性基(y)を実質的に有しない含フッ素重合体。
     含フッ素重合体(II):主鎖に含フッ素脂肪族環構造を有し、かつ前記官能基(x)と反応性の反応性基(y)を有する含フッ素重合体。
    A method for producing a mold having a fine pattern for molding a photocurable resin,
    A solution prepared by dissolving the following fluoropolymer (II) in a fluorine-containing solvent is applied to the surface of the transparent resin layer (A) having the functional group (x) on the surface and dried, and then dried. Forming an intermediate layer (C) comprising a fluoropolymer (II);
    On the surface of the intermediate layer (C), a solution in which the following fluoropolymer (I) is dissolved in a fluorine-containing solvent is applied and dried to form a surface layer (B) comprising the following fluoropolymer (I). And obtaining a mold precursor;
    From the surface layer (B) side of the mold precursor, it has a reverse pattern of a fine pattern on the surface, and the maximum height of the reverse pattern is the thickness of the surface layer (B) and the intermediate layer (C). The reverse pattern of the master mold exceeding the total thickness is such that at least one of the mold precursor and the master mold has a glass transition temperature equal to or higher than the glass transition temperature of the following fluoropolymer (I) and the following fluoropolymer (II). Pressing in a state, forming a fine pattern over the surface layer (B), the intermediate layer (C) and the transparent resin layer (A) to obtain a mold;
    And a step of separating the master mold from the mold.
    Transparent resin: A transparent resin having a glass transition temperature equal to or lower than the glass transition temperature of the following fluoropolymer (I) and the following fluoropolymer (II).
    Fluoropolymer (I): Fluoropolymer having a fluorinated aliphatic ring structure in the main chain and substantially not having the following reactive group (y).
    Fluoropolymer (II): Fluoropolymer having a fluorinated aliphatic ring structure in the main chain and a reactive group (y) reactive with the functional group (x).
  7.  光硬化性樹脂を基材の表面に配置する工程と、
     請求項1~5のいずれかに記載のモールドを、該モールドの微細パターンが前記光硬化性樹脂に接するように、前記光硬化性樹脂に押しつける工程と、
     前記モールドを前記光硬化性樹脂に押しつけた状態で、前記光硬化性樹脂に光を照射し、前記光硬化性樹脂を硬化させて硬化物とする工程と、
     前記硬化物からモールドを分離する工程と
    を有する、ことを特徴とする転写微細パターンを有する基材の製造方法。
    Placing the photocurable resin on the surface of the substrate;
    Pressing the mold according to any one of claims 1 to 5 to the photocurable resin so that a fine pattern of the mold is in contact with the photocurable resin;
    With the mold pressed against the photocurable resin, irradiating the photocurable resin with light to cure the photocurable resin to obtain a cured product;
    Separating the mold from the cured product, and a method for producing a substrate having a transfer fine pattern.
  8.  光硬化性樹脂を、請求項1~5のいずれかに記載のモールドの微細パターンの表面に配置する工程と、
     基材を、前記モールドの表面の前記光硬化性樹脂に押しつける工程と、
     前記基材を前記光硬化性樹脂に押しつけた状態で、前記光硬化性樹脂に光を照射し、前記光硬化性樹脂を硬化させて硬化物とする工程と、
     前記硬化物からモールドを分離する工程と
    を有する、ことを特徴とする転写微細パターンを有する基材の製造方法。
    Disposing a photocurable resin on the surface of the fine pattern of the mold according to any one of claims 1 to 5;
    Pressing the substrate against the photocurable resin on the surface of the mold;
    With the substrate pressed against the photocurable resin, irradiating the photocurable resin with light, curing the photocurable resin to obtain a cured product,
    Separating the mold from the cured product, and a method for producing a substrate having a transfer fine pattern.
  9.  基材と、請求項1~5のいずれかに記載のモールドとを、該モールドの微細パターンが前記基材側になるように接近または接触させる工程と、
     光硬化性樹脂を、前記基材と前記モールドとの間に充填する工程と、
     前記基材と前記モールドとが接近または接触した状態で、前記光硬化性樹脂に光を照射し、前記光硬化性樹脂を硬化させて硬化物とする工程と、
     前記硬化物からモールドを分離する工程と
    を有する、ことを特徴とする転写微細パターンを有する基材の製造方法。
    Bringing the base material and the mold according to any one of claims 1 to 5 close or in contact so that a fine pattern of the mold is on the base material side;
    Filling a photocurable resin between the substrate and the mold;
    With the substrate and the mold approaching or in contact with each other, irradiating the photocurable resin with light, curing the photocurable resin to obtain a cured product,
    Separating the mold from the cured product, and a method for producing a substrate having a transfer fine pattern.
PCT/JP2009/056732 2008-04-08 2009-03-31 Mold, process for producing the same, and process for producing substrate having transferred fine pattern WO2009125697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507218A JPWO2009125697A1 (en) 2008-04-08 2009-03-31 Mold, method for producing the same, and method for producing a substrate having a transfer fine pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008100552 2008-04-08
JP2008-100552 2008-04-08

Publications (1)

Publication Number Publication Date
WO2009125697A1 true WO2009125697A1 (en) 2009-10-15

Family

ID=41161829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056732 WO2009125697A1 (en) 2008-04-08 2009-03-31 Mold, process for producing the same, and process for producing substrate having transferred fine pattern

Country Status (3)

Country Link
JP (1) JPWO2009125697A1 (en)
TW (1) TW201005430A (en)
WO (1) WO2009125697A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052369A1 (en) * 2009-10-29 2011-05-05 Dic株式会社 Uv curable composition for optical discs and optical disc
JP2011159824A (en) * 2010-02-01 2011-08-18 Sumitomo Electric Ind Ltd Method for forming resin pattern by nanoimprinting method and method for forming diffraction grating
JP2013219230A (en) * 2012-04-10 2013-10-24 Dainippon Printing Co Ltd Nanoimprint method and nanoimprint device
JP5794387B2 (en) * 2012-04-10 2015-10-14 ダイキン工業株式会社 Resin mold material composition for imprint
WO2021033538A1 (en) * 2019-08-21 2021-02-25 Agc株式会社 Electronic substrate, method for manufacturing electronic substrate, and electronic instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3173685A1 (en) 2020-03-27 2021-09-30 Illumina Inc. Imprinting apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288783A (en) * 2003-03-20 2004-10-14 Hitachi Ltd Nano printing apparatus and microstructure transfer method
WO2006059580A1 (en) * 2004-11-30 2006-06-08 Asahi Glass Company, Limited Mold and process for production of substrates having transferred micropatterns thereon
JP2007245702A (en) * 2006-02-20 2007-09-27 Asahi Glass Co Ltd Method for manufacturing template and processed base material having transfer fine pattern
JP2007266384A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Mold for imprinting and manufacturing method thereof
JP2007320071A (en) * 2006-05-30 2007-12-13 Asahi Glass Co Ltd Manufacturing method of template and treated base material having transfer fine pattern
JP2008074043A (en) * 2006-09-25 2008-04-03 Yamaha Corp Mold for fine molding and its regeneration method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288783A (en) * 2003-03-20 2004-10-14 Hitachi Ltd Nano printing apparatus and microstructure transfer method
WO2006059580A1 (en) * 2004-11-30 2006-06-08 Asahi Glass Company, Limited Mold and process for production of substrates having transferred micropatterns thereon
JP2007245702A (en) * 2006-02-20 2007-09-27 Asahi Glass Co Ltd Method for manufacturing template and processed base material having transfer fine pattern
JP2007266384A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Mold for imprinting and manufacturing method thereof
JP2007320071A (en) * 2006-05-30 2007-12-13 Asahi Glass Co Ltd Manufacturing method of template and treated base material having transfer fine pattern
JP2008074043A (en) * 2006-09-25 2008-04-03 Yamaha Corp Mold for fine molding and its regeneration method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052369A1 (en) * 2009-10-29 2011-05-05 Dic株式会社 Uv curable composition for optical discs and optical disc
JP4748377B2 (en) * 2009-10-29 2011-08-17 Dic株式会社 Ultraviolet curable composition for optical disc and optical disc
CN102741926A (en) * 2009-10-29 2012-10-17 Dic株式会社 Uv curable composition for optical discs and optical disc
US8409687B2 (en) 2009-10-29 2013-04-02 Dic Corporation UV-curable composition for optical discs and optical disc
JP2011159824A (en) * 2010-02-01 2011-08-18 Sumitomo Electric Ind Ltd Method for forming resin pattern by nanoimprinting method and method for forming diffraction grating
JP2013219230A (en) * 2012-04-10 2013-10-24 Dainippon Printing Co Ltd Nanoimprint method and nanoimprint device
JP5794387B2 (en) * 2012-04-10 2015-10-14 ダイキン工業株式会社 Resin mold material composition for imprint
WO2021033538A1 (en) * 2019-08-21 2021-02-25 Agc株式会社 Electronic substrate, method for manufacturing electronic substrate, and electronic instrument

Also Published As

Publication number Publication date
TW201005430A (en) 2010-02-01
JPWO2009125697A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP2009001002A (en) Mold, its manufacturing method, and manufacturing method for base material having transfer micro-pattern
JP4655043B2 (en) Mold, and method for producing substrate having transfer fine pattern
JP2007320072A (en) Mold and its manufacturing method
WO2009125697A1 (en) Mold, process for producing the same, and process for producing substrate having transferred fine pattern
JP5413195B2 (en) Fine pattern formed body, method for producing fine pattern formed body, optical element, and photocurable composition
US8282381B1 (en) Nanoimprint resist, nanoimprint mold and nanoimprint lithography
JP5292621B2 (en) Resin mold for nanoimprint
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
EP2463073A1 (en) Resin mold for imprinting and method for producing same
JP2007307752A (en) Mold and its manufacturing method
JP2007320071A (en) Manufacturing method of template and treated base material having transfer fine pattern
JP2009543340A (en) Printing form precursor and method for producing a stamp from the precursor
JPWO2008015842A1 (en) Mold manufacturing method
US20100304087A1 (en) Mold, Fine Pattern Product, and Method of Manufacturing Those
JP2010069730A (en) Highly durable replica mold for nanoimprint lithography and method for fabricating the same
WO2014041904A1 (en) Method for manufacturing laminate provided with uneven shape, and transfer film
JP5362186B2 (en) Resin composition for nanoimprint
US20190112186A1 (en) Hierarchical microstructure, mold for manufacturing same, and method for manufacturing same mold
JP5212463B2 (en) Wafer lens manufacturing method
KR101291727B1 (en) Method for manufacturing implint resin and implinting method
TWI714725B (en) Method for manufacturing pattern laminate, method for manufacturing reverse pattern, and pattern laminate
KR20120020012A (en) Organic-inorganic hybrid material and stamp for nanoimprint manufactured from the same
JP2009233855A (en) Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold
KR20110090808A (en) Resin type, molding and the method for producing the molding
US8728584B2 (en) Method for patterning polymer surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010507218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730540

Country of ref document: EP

Kind code of ref document: A1