JP2009233855A - Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold - Google Patents

Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold Download PDF

Info

Publication number
JP2009233855A
JP2009233855A JP2006199900A JP2006199900A JP2009233855A JP 2009233855 A JP2009233855 A JP 2009233855A JP 2006199900 A JP2006199900 A JP 2006199900A JP 2006199900 A JP2006199900 A JP 2006199900A JP 2009233855 A JP2009233855 A JP 2009233855A
Authority
JP
Japan
Prior art keywords
mold
transfer
transfer mold
producing
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006199900A
Other languages
Japanese (ja)
Inventor
Katsuhide Shinmo
勝秀 新毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006199900A priority Critical patent/JP2009233855A/en
Priority to PCT/JP2007/055680 priority patent/WO2008010330A1/en
Publication of JP2009233855A publication Critical patent/JP2009233855A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/565Consisting of shell-like structures supported by backing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • B05D1/42Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C2033/0005Moulds or cores; Details thereof or accessories therefor with transparent parts, e.g. permitting visual inspection of the interior of the cavity

Abstract

<P>PROBLEM TO BE SOLVED: To provide simply at low cost a transfer mold having excellent light transmission and breaking resistance, particularly a transfer mold suitable for nanoimprinting. <P>SOLUTION: The transfer mold has a multilayer structure comprising a first base material formed of a light transparent material and a first surface covering layer provided on the first base material. The first surface covering layer is formed by a sol-gel process, is formed of a light transparent material having a lower refractive index than the first base material, and has a mold surface with predetermined fine concaves and convexes provided therein. The method for manufacturing the transfer mold includes a step of coating a predetermined sol liquid on the first base material formed of a light transparent material, and a step of forming the first surface covering layer by heating and holding the assembly in such a state that an original mold is pressed against the assembly to cure the gel layer and thus to form the first surface covering layer having a mold surface with predetermined fine concaves and convexes provided therein. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光透過性および耐破壊性に優れた転写用型およびその製造方法ならびに転写用型を用いた転写物の製造方法に関する。   The present invention relates to a transfer mold excellent in light transmittance and fracture resistance, a manufacturing method thereof, and a transfer material manufacturing method using the transfer mold.

従来の微細な凹凸パターンを基材上に形成する方法の一つとしてナノインプリント技術が挙げられる。ナノインプリント技術は、レコード盤作製に端を発するインプリント技術をさらに発展させたものであって、一般にサブミクロンから数ミクロン程度の微細形状を基板上に転写成型するために、熱可塑性樹脂や紫外線硬化樹脂をシリコン基板等の基材に塗布した後、型を押し当てて型の形状を転写する技術である。光学的な手法を用いた加工技術の場合は光の波長が微細加工限界となるが、ナノインプリント技術ではさらに微細なナノレベルの加工が可能であるため、集積回路の微細化、集積化を進める上で重要な技術である。また、産業への利用について考えたとき、製造費を安価にし製造時間を短縮することは製造物のコスト削減に直結するため重要な課題である。   One of the conventional methods for forming a fine uneven pattern on a substrate is a nanoimprint technique. Nanoimprint technology is a further development of imprint technology that originated in the production of record boards. Generally, in order to transfer and mold fine shapes on the order of submicron to several microns onto a substrate, thermoplastic resin or UV curing is used. In this technique, a resin is applied to a base material such as a silicon substrate, and then a mold is pressed to transfer the shape of the mold. In the case of processing technology using an optical method, the wavelength of light is the limit of fine processing. However, since nanoimprint technology enables processing at a finer nano level, further miniaturization and integration of integrated circuits will be promoted. It is an important technology. In consideration of industrial use, it is an important issue to reduce the manufacturing cost and shorten the manufacturing time because it directly leads to cost reduction of the product.

ナノインプリント技術用の転写用型を製作する従来の手段としては、例えば図1に示すように電子線描画法、リソグラフィー技術もしくはドライエッチング技術などで表面形状を転写する方法、電子線描画法等で既に製作された高価な転写用型を複製するため、さらに反転転写用型としてNi電鋳型を形成する方法(例えば特許文献1)がある。また転写方法としては、プラスチック基材上に型を押圧した状態で赤外線を照射することで、樹脂を加熱し塑性変形させて転写成形する方法(例えば特許文献2)等がある。   As a conventional means for producing a transfer mold for nanoimprint technology, for example, as shown in FIG. 1, an electron beam drawing method, a method of transferring a surface shape by a lithography technique or a dry etching technique, an electron beam drawing method, etc. In order to duplicate the manufactured expensive transfer mold, there is a method (for example, Patent Document 1) of forming a Ni electromold as a reverse transfer mold. Further, as a transfer method, there is a method in which a resin is heated and plastically deformed by irradiating infrared rays in a state where a mold is pressed on a plastic substrate (for example, Patent Document 2).

しかしながら、電子線描画法、およびリソグラフィー法もしくはドライエッチング法はいずれも非常に高価な装置を必要とする。また、転写用型に用いる基材は通常シリコンや石英といった単一の脆性材料からなり、しかも市販され入手可能な基材は概して比較的薄い(例えばSi基板で0.5mm程度)場合が多いため、仮に転写用型と転写材料の間に異物などが入り込んだ場合、この異物を挟みこんで亀裂や割れが生じやすい。また、転写用型が単一の脆性材料からなる場合には、光の反射防止機能が存在しないため、転写用型として光硬化樹脂を使用して転写用型の型の裏側から光を照射すると表面で光を反射する結果として材料の光透過性が低くなり、光のロスが生じるため好ましくない。さらに、電子線描画法は、1本1本パターンを形成する方法であるため、製作に長時間を必要とする。   However, both the electron beam drawing method and the lithography method or the dry etching method require a very expensive apparatus. In addition, since the base material used for the transfer mold is usually made of a single brittle material such as silicon or quartz, and commercially available base materials are generally relatively thin (for example, about 0.5 mm for a Si substrate), If a foreign substance or the like enters between the transfer mold and the transfer material, the foreign substance is caught and cracks or cracks are likely to occur. In addition, when the transfer mold is made of a single brittle material, there is no antireflection function for light, so if light is irradiated from the back side of the transfer mold using a photocurable resin as the transfer mold As a result of reflecting light on the surface, the light transmittance of the material becomes low, and light loss occurs, which is not preferable. Furthermore, since the electron beam drawing method is a method of forming a pattern one by one, it takes a long time for manufacturing.

また、特許文献1記載の方法は、Niが光を通さないため型の裏面から光を照射しても転写用材料には光が到達しないため転写用材料として光硬化樹脂を用いる場合には適さない。またNi電鋳型は薄い(例えば2mm程度)単一膜であるため反りやすく十分な転写精度が得られないという問題もある。さらに特許文献2記載の方法もまた単一のプラスチック基材に微細凹凸形状を形成する方法であるため、単一材料による前述したような問題がある。   The method described in Patent Document 1 is suitable when a photo-curing resin is used as a transfer material because Ni does not transmit light and light does not reach the transfer material even when light is irradiated from the back of the mold. Absent. Further, since the Ni electromold is a thin (for example, about 2 mm) single film, there is a problem that warpage is likely to occur and sufficient transfer accuracy cannot be obtained. Furthermore, since the method described in Patent Document 2 is also a method of forming fine irregularities on a single plastic substrate, there is a problem as described above with a single material.

さらにまた、特許文献3には、基板上および/または微細な凹凸パターンを有する有機樹脂製型上に、加水分解・縮重合し得るゾルゲル溶液を用いて塗布膜を形成し、この基板および型を接合押圧して塗布膜を型の凹凸パターンを有する膜とし、その後、型を膜体から離型し、この膜体を加熱することにより微細パターンを転写する技術が開示されている。しかしながら、この転写物は液晶表示用セルのスペーサー付き基板、回折格子や結像素子等の光学部品の製造に用いられるものであって、ナノインプリント用の転写用型としての使用を目的にしたものではない。   Furthermore, in Patent Document 3, a coating film is formed on a substrate and / or an organic resin mold having a fine concavo-convex pattern using a sol-gel solution that can be hydrolyzed / condensed, and the substrate and the mold are formed. A technique for transferring a fine pattern by bonding and pressing to form a coating film having a concave / convex pattern of the mold, then releasing the mold from the film body, and heating the film body is disclosed. However, this transfer product is used for the production of optical components such as substrates with spacers for liquid crystal display cells, diffraction gratings and imaging elements, and is not intended for use as a transfer mold for nanoimprinting. Absent.

こうした状況の中で、ナノレベルの微細構造を樹脂材料に成形する際の転写用型として、光透過性が高く壊れにくい転写用型を開発する必要があった。   Under such circumstances, it was necessary to develop a transfer mold that has high light transmittance and is not easily broken as a transfer mold when a nano-level microstructure is formed into a resin material.

特開2006−130841号公報JP 2006-130841 A 特開2006−88517号公報JP 2006-88517 A 特開平6−114334号公報JP-A-6-114334

本発明の目的は、ゾルゲル法を用いて、簡便かつ安価に光透過性及び耐破壊性に優れた転写用型、特にナノインプリントに適する転写用型を提供する。また本発明の別の目的は、転写用型を簡便かつ安価に製造することができる転写用型の製造方法を提供することにある。さらに、本発明の他の目的は、転写物、特に転写用型を簡便かつ安価に製造するための反転転写用型を製造することができる転写物の製造方法を提供する。   An object of the present invention is to provide a transfer mold, particularly a transfer mold suitable for nanoimprinting, which is simple and inexpensive and excellent in light transmittance and fracture resistance using a sol-gel method. Another object of the present invention is to provide a method for manufacturing a transfer mold, which can manufacture the transfer mold easily and inexpensively. Furthermore, another object of the present invention is to provide a method for producing a transfer product, in particular, a transfer product capable of producing a reversal transfer mold for producing a transfer mold in a simple and inexpensive manner.

上記目標を達成するため、本発明の要旨構成は以下の通りである。   In order to achieve the above goal, the gist of the present invention is as follows.

(1)透光材料からなる第1基材と、該第1基材上にゾルゲル法により形成され、前記第1基材よりも低屈折率の透光材料からなり所定の微細凹凸形状が付与された型面をもつ第1表面被覆層との複層構造を有することを特徴とする転写用型。   (1) A first base material made of a light-transmitting material, and formed by a sol-gel method on the first base material, and made of a light-transmitting material having a lower refractive index than the first base material and imparting a predetermined fine uneven shape A transfer mold having a multilayer structure with a first surface coating layer having a formed mold surface.

(2)前記第1基材は結晶質材料、非晶質材料もしくは結晶化ガラス材料からなる前記(1)に記載の転写用型。   (2) The transfer mold according to (1), wherein the first substrate is made of a crystalline material, an amorphous material, or a crystallized glass material.

(3)前記結晶質材料はシリコンである前記(2)に記載の転写用型。   (3) The transfer mold according to (2), wherein the crystalline material is silicon.

(4)前記非晶質材料は石英、ソーダライムガラスもしくはボロシリケートガラスである前記(2)に記載の転写用型。   (4) The transfer mold according to (2), wherein the amorphous material is quartz, soda lime glass, or borosilicate glass.

(5)前記結晶化ガラス材料は、結晶成分がβ−石英固溶体結晶もしくはβ−ユークリプタイト固溶体を主たる析出結晶として含む結晶化ガラス材料である前記(2)に記載の転写用型。   (5) The transfer mold according to (2), wherein the crystallized glass material is a crystallized glass material whose crystal component includes β-quartz solid solution crystal or β-eucryptite solid solution as a main precipitated crystal.

(6)前記第1表面被覆層は、RSi(OC2H5)3、RSi(OCH3)3およびRSiCl3(Rは官能基)で表される少なくとも1種の化合物と酸水溶液とで主として構成されるゾル液を用いて形成してなる前記(1)〜(5)のいずれかに記載の転写用型。 (6) The first surface coating layer is mainly composed of at least one compound represented by RSi (OC 2 H 5 ) 3 , RSi (OCH 3 ) 3 and RSiCl 3 (R is a functional group) and an acid aqueous solution. The transfer mold according to any one of (1) to (5), wherein the transfer mold is formed using a sol solution that is configured.

(7)転写用型は第1表面被覆層の上にさらに離型層を有する前記(1)〜(6)のいずれかに記載の転写用型。   (7) The transfer mold according to any one of (1) to (6), wherein the transfer mold further includes a release layer on the first surface coating layer.

(8)透光材料からなる第1基材上に所定のゾル液を塗布する工程と、原型を押し当てた状態で加熱、保持してゲル層を硬化させて所定の微細凹凸形状が付与された型面を持つ第1表面被覆層を形成する工程を有する転写用型の製造方法。   (8) A step of applying a predetermined sol solution on the first base material made of a light-transmitting material, and heating and holding in a state where the prototype is pressed to cure the gel layer to give a predetermined fine uneven shape A method for producing a transfer mold, comprising a step of forming a first surface coating layer having a mold surface.

(9)前記第1基材は結晶質材料、非晶質材料もしくは結晶化ガラス材料である前記(8)に記載の転写用型の製造方法。   (9) The transfer mold manufacturing method according to (8), wherein the first base material is a crystalline material, an amorphous material, or a crystallized glass material.

(10)前記結晶質材料はシリコンである前記(9)に記載の転写用型の製造方法。   (10) The method for producing a transfer mold according to (9), wherein the crystalline material is silicon.

(11)前記非晶質材料は石英、ソーダライムガラスもしくはボロシリケートガラスである前記(9)に記載の転写用型の製造方法。   (11) The method for producing a transfer mold according to (9), wherein the amorphous material is quartz, soda lime glass, or borosilicate glass.

(12)前記結晶化ガラス材料は、結晶成分がβ−石英固溶体結晶もしくはβ−ユークリプタイト固溶体を析出結晶として含む結晶化ガラス材料である前記(9)に記載の転写用型の製造方法。   (12) The method for producing a transfer mold according to (9), wherein the crystallized glass material is a crystallized glass material whose crystal component includes β-quartz solid solution crystal or β-eucryptite solid solution as a precipitated crystal.

(13)前記所定のゾル液がRSi(OC2H5)3、RSi(OCH3)3およびRSiCl3(Rは官能基)で表される少なくとも1種の化合物と酸水溶液とを含有する組成を有する前記(8)〜(12)のいずれか1項に記載の転写用型の製造方法。 (13) A composition in which the predetermined sol solution contains at least one compound represented by RSi (OC 2 H 5 ) 3 , RSi (OCH 3 ) 3 and RSiCl 3 (R is a functional group) and an acid aqueous solution. The method for producing a transfer mold according to any one of (8) to (12), comprising:

(14)前記(1)〜(7)のいずれか1項に記載の転写用型を用いて、その表面被覆層の型面の微細な凹凸形状が転写された転写物を製造する方法であって、第2基材上に所定の樹脂を塗布しこの塗布した樹脂に前記転写用型を押し当てた状態でこの転写用型の型面の裏側から光を照射することにより前記樹脂を硬化させて第2表面被覆層を形成し、その後離型することを特徴とする転写物の製造方法。   (14) A method for producing a transfer product using the transfer mold according to any one of (1) to (7), wherein a fine uneven shape of the mold surface of the surface coating layer is transferred. Then, a predetermined resin is applied onto the second base material, and the resin is cured by irradiating light from the back side of the mold surface of the transfer mold while the transfer mold is pressed against the applied resin. Forming a second surface coating layer, and then releasing the mold.

(15)前記転写物は、第2基材が第1基材と同一の透光材料からなり、第2表面被覆層が第1表面被覆層と同一の透光材料からなり、前記転写用型の型面を形成するための反転転写用型である前記(14)に記載の転写物の製造方法。   (15) In the transfer material, the second base material is made of the same light-transmitting material as the first base material, the second surface covering layer is made of the same light-transmitting material as the first surface covering layer, and the transfer mold The method for producing a transfer product according to (14), wherein the mold is a reversal transfer mold for forming the mold surface.

(16)前記所定の樹脂は、紫外線照射により硬化する物性を持つ樹脂である前記(14)または(15)に記載の転写物の製造方法。   (16) The method for producing a transfer product according to (14) or (15), wherein the predetermined resin is a resin having physical properties that are cured by ultraviolet irradiation.

(17)前記(1)〜(7)のいずれか1項に記載の転写用型を用いて、その第1表面被覆層の型面の微細な凹凸形状が転写された転写物を製造する方法であって、第3基材に前記転写用型を押し当てた状態でこの転写用型の型面の裏側から光を照射することにより、前記樹脂を軟化させて前記第3基材の表面に前記転写用型の型面の微細凹凸形状を転写し、その後冷却して離型することを特徴とする転写物の製造方法。   (17) A method for producing a transfer product using the transfer mold according to any one of (1) to (7), wherein a fine uneven shape of the mold surface of the first surface coating layer is transferred. In the state where the transfer mold is pressed against the third substrate, light is irradiated from the back side of the mold surface of the transfer mold, so that the resin is softened and applied to the surface of the third substrate. A method for producing a transfer product, comprising transferring a fine concavo-convex shape on a mold surface of the transfer mold and then cooling to release the mold.

(18)前記第3基材は、光の照射によって軟化する物性を持つプラスチック材料からなる前記(17)に記載の転写物の製造方法。   (18) The transfer material manufacturing method according to (17), wherein the third base material is made of a plastic material having physical properties that are softened by light irradiation.

(19)前記(1)〜(7)のいずれか1項に記載の転写用型を用いて、その表面被覆層の型面の微細な凹凸形状が転写された転写物を製造する方法であって、第4基材上に熱軟化樹脂を塗布し、この塗布した熱軟化樹脂に、前記転写用型を押し当てた状態で、前記熱軟化樹脂を軟化点以上に加熱して軟化させた後、軟化点未満に冷却して第3表面被覆層を形成し、その後離型することを特徴とする転写物の製造方法。   (19) A method for producing a transfer product using the transfer mold according to any one of (1) to (7), wherein a fine uneven shape of the mold surface of the surface coating layer is transferred. Then, after applying the heat softening resin on the fourth base material, the heat softening resin is heated above the softening point and softened in a state where the transfer mold is pressed against the applied heat softening resin. A method for producing a transfer product, comprising cooling to below the softening point to form a third surface coating layer and then releasing the mold.

(20)第4基材がガラス材料からなり、第3表面被覆層が熱可塑性樹脂からなる前記(19)記載の転写物の製造方法。   (20) The method for producing a transferred material according to (19), wherein the fourth base material is made of a glass material, and the third surface coating layer is made of a thermoplastic resin.

本発明によれば、ゾルゲル法を用い複層構造を形成することにより、光透過性及び耐破壊性に優れた転写用型、特にナノインプリントに適する転写用型の提供が可能になった。   According to the present invention, by forming a multilayer structure using the sol-gel method, it is possible to provide a transfer mold excellent in light transmittance and fracture resistance, particularly a transfer mold suitable for nanoimprint.

次に本発明の実施形態について図面を参照しながら説明する。図2(a)~(c)は、本発明の転写用型の製造方法の工程を示したものであり、図中1は転写用型、2は基材、3は第1表面被覆層、4は型面、そして5は原型(反転転写用型)である。本発明の転写用型1は、第1基材2と第1表面被覆層3との被覆構造で構成されている。   Next, embodiments of the present invention will be described with reference to the drawings. 2 (a) to 2 (c) show the steps of the transfer mold manufacturing method of the present invention, in which 1 is a transfer mold, 2 is a substrate, 3 is a first surface coating layer, 4 is a mold surface, and 5 is an original mold (reverse transfer mold). The transfer mold 1 of the present invention has a covering structure of a first base 2 and a first surface covering layer 3.

本発明者は、転写用型において高透過性と耐破壊性を向上させるため鋭意検討を行った。その結果、転写用型を単一材料で構成する場合に比べて、透光材料からなる第1基材2と該第1基材2上にゾルゲル法により形成され、前記第1基材2よりも低屈折率の透光材料からなり所定の微細凹凸形状が付与された型面をもつ第1表面被覆層3との複層構造で構成する場合の方が、光透過性が格段に向上し、さらに第1表面被覆層3の存在により、耐破壊性も向上することを見出した。すなわち本発明の転写用型は、具体的には透光材料からなる第1基材と該第1基材上にゾルゲル法により形成され、前記第1基材よりも低屈折率の透光材料からなり所定の微細凹凸形状が付与された型面をもつ第1表面被覆層との複層構造を有することことにある。   The present inventor has intensively studied to improve the high permeability and fracture resistance in the transfer mold. As a result, compared with the case where the transfer mold is made of a single material, the first base 2 made of a light-transmitting material and the first base 2 are formed by the sol-gel method. In the case of a multi-layer structure with the first surface coating layer 3 having a mold surface made of a light-transmitting material having a low refractive index and provided with a predetermined fine uneven shape, the light transmittance is remarkably improved. Furthermore, it has been found that the presence of the first surface coating layer 3 also improves the fracture resistance. That is, the transfer mold of the present invention is specifically formed of a first base material made of a light-transmitting material and a sol-gel method formed on the first base material, and has a lower refractive index than the first base material. And having a multilayer structure with a first surface coating layer having a mold surface provided with a predetermined fine uneven shape.

第1基材2は、結晶質材料、非晶質材料もしくは結晶化ガラス材料からなることが好ましい。前記結晶質材料としては例えばシリコンが挙げられ、前記非晶質材料としては例えば石英、ソーダライムガラスもしくはボロシリケートガラスが挙げられ、そして前記結晶化ガラス材料としては例えば結晶成分がβ−石英固溶体結晶もしくはβ−ユークリプタイト固溶体を主たる結晶成分として含む結晶化ガラス材料が挙げられる。ここで、「主たる」とはこの成分を50質量%以上含むことを示す。特に耐熱性を重視する場合には、結晶化ガラス材料であるゼロデュア(登録商標)およびクリアセラム(登録商標)のような、いわゆるゼロ膨張ガラスを用いることが好ましい。   The first substrate 2 is preferably made of a crystalline material, an amorphous material, or a crystallized glass material. Examples of the crystalline material include silicon, examples of the amorphous material include quartz, soda lime glass, and borosilicate glass. Examples of the crystallized glass material include a β-quartz solid solution crystal. Or the crystallized glass material which contains (beta) -eucryptite solid solution as a main crystal component is mentioned. Here, “main” means that 50% by mass or more of this component is contained. In particular, when importance is attached to heat resistance, it is preferable to use a so-called zero-expansion glass such as Zerodur (registered trademark) and Clear Serum (registered trademark) which are crystallized glass materials.

第1被覆層3は、RSi(OC2H5)3、RSi(OCH3)3、およびRSiCl3の少なくとも1つの化合物と、酸水溶液とで主として構成されるゾル液を用いて形成することが好ましい。ここでRはH、CH3、C2H5、およびC6H5の群から選択される官能基である。酸水溶液は加水分解に必須であり、HCl、H2SO4、HCOOH、CH3COOHおよびHNO3の群から選択される酸を水で希釈して0.01〜1.0Mのものを使用することが好適である。ここで、0.01M未満であるとゲル化反応が遅くプロセス時間が長くなる傾向があり、1.0Mを超えると硬化が速すぎて成形できないおそれがある。またゾル溶液中にさらにポリエチレングリコールおよび/またはアルコールを含有させることが好ましい。Si原料がSi(OC2H5)4のみからなる場合には、ポリエチレングリコールをゾル液中に5〜20質量%含有させることが好ましく、5質量%未満であると膜硬度が高すぎて成形できないおそれがあり、20質量%を超えると硬化しにくくなるおそれがある。またポリエチレングリコールの分子量は400〜2000であることが好ましく、分子量が400未満であると膜硬度が高すぎて成形できないおそれがあり2000を超えると硬化しにくくなるおそれがある。アルコールは、エタノール、メタノールおよびイソプロピルアルコールの群から選択され、ゾル溶液中のアルコール含有量は10〜40質量部であることが好ましい。10質量部未満であると液の均一撹拌が困難となり40質量部を超えると十分な塗膜厚みが得られないおそれがある。 The first coating layer 3 may be formed using a sol solution mainly composed of at least one compound of RSi (OC 2 H 5 ) 3 , RSi (OCH 3 ) 3 , and RSiCl 3 and an acid aqueous solution. preferable. Here, R is a functional group selected from the group of H, CH 3 , C 2 H 5 , and C 6 H 5 . The acid aqueous solution is essential for hydrolysis, and an acid selected from the group of HCl, H 2 SO 4 , HCOOH, CH 3 COOH and HNO 3 is diluted with water and used in a concentration of 0.01 to 1.0 M. Is preferred. Here, if it is less than 0.01M, the gelation reaction tends to be slow and the process time tends to be long, and if it exceeds 1.0M, curing may be too fast and molding may not be possible. Further, it is preferable to further contain polyethylene glycol and / or alcohol in the sol solution. When the Si raw material consists only of Si (OC 2 H 5 ) 4 , it is preferable to contain 5 to 20% by mass of polyethylene glycol in the sol liquid, and if it is less than 5% by mass, the film hardness is too high and molding is performed. If it exceeds 20% by mass, it may be difficult to cure. The molecular weight of polyethylene glycol is preferably 400 to 2000. If the molecular weight is less than 400, the film hardness may be too high to be molded, and if it exceeds 2000, it may be difficult to cure. The alcohol is selected from the group of ethanol, methanol and isopropyl alcohol, and the alcohol content in the sol solution is preferably 10 to 40 parts by mass. If the amount is less than 10 parts by mass, it is difficult to uniformly stir the solution, and if it exceeds 40 parts by mass, a sufficient coating thickness may not be obtained.

また本発明では、転写用型の裏側を表面での反射を抑制するため、第1表面被覆層を構成する透光材料の屈折率を第1基材よりも低屈折率にする。具体的には、第1表面被覆層の屈折率を1.40〜1.56とし、これらの屈折率の差を大きくすることが好ましい。あるいは第1基材をシリコンにした場合は、屈折率は4.2程度であるので被覆層との間で十分な屈折率差が得られる。さらに、型面の微細凹凸形状は、具体的には10〜1000nmの凹凸形状を意味する。   In the present invention, in order to suppress reflection on the surface of the back side of the transfer mold, the refractive index of the translucent material constituting the first surface coating layer is set to be lower than that of the first substrate. Specifically, it is preferable to set the refractive index of the first surface coating layer to 1.40 to 1.56 and to increase the difference between these refractive indexes. Alternatively, when the first substrate is made of silicon, the refractive index is about 4.2, so that a sufficient difference in refractive index from the coating layer can be obtained. Further, the fine uneven shape of the mold surface specifically means an uneven shape of 10 to 1000 nm.

さらに、転写用型1は第1表面被覆層の上にさらに離型層を有することが好ましい。尚、本発明において第1表面被覆層3を形成するゾル溶液中にRSi(OC2H5)3、RSi(OCH3)3、およびRSiCl3(Rは官能基)の少なくとも1つの化合物を含有する場合には、RがCH3、C2H5、C6H5の群から選択される疎水性の置換基であると、この置換基が離型性を有するため、この場合には離型層の形成は必ずしも必要としない。 Furthermore, it is preferable that the transfer mold 1 further has a release layer on the first surface coating layer. In the present invention, the sol solution forming the first surface coating layer 3 contains at least one compound of RSi (OC 2 H 5 ) 3 , RSi (OCH 3 ) 3 , and RSiCl 3 (R is a functional group). In this case, if R is a hydrophobic substituent selected from the group of CH 3 , C 2 H 5 , and C 6 H 5 , this substituent has releasability. It is not always necessary to form the mold layer.

本発明の転写用型の製造方法は、透光材料からなる第1基材2上に所定のゾル液を塗布する工程と、原型(反転転写用型)を押し当てた状態で加熱、保持してゲル層を硬化させて所定の微細凹凸形状が付与された型面4を持つ第1表面被覆層3を形成する工程とを有する。前記加熱温度は50〜150℃とすることが好ましく、加熱温度が50℃未満であると硬化に長時間を要し、150℃超だと気泡が発生しやすい。保持時間は0.05〜2時間とすることが好ましく、保持温度が0.05時間未満であると硬化せず、2時間超であると熱処理コストの増加に伴って製造コストが増加する。この処理により第1被覆層3の表面に微細凹凸形状が付与され、RSi(OC2H5)3、RSi(OCH3)3、RSiCl3およびSi(OC2H5)4(Rは官能基)の少なくとも1つの化合物を加水分解した後、脱水縮合してゲル層を硬化させる。その後、該硬化したゲル層を焼成して膜中に残存する有機物を除去するにより本発明の転写用型を製造することができる。 The method for producing a transfer mold according to the present invention includes a step of applying a predetermined sol solution onto the first base material 2 made of a translucent material, and heating and holding the original mold (reverse transfer mold) in a pressed state. And the step of curing the gel layer to form the first surface coating layer 3 having the mold surface 4 provided with a predetermined fine uneven shape. The heating temperature is preferably 50 to 150 ° C. When the heating temperature is less than 50 ° C., it takes a long time for curing, and when it exceeds 150 ° C., bubbles are likely to be generated. The holding time is preferably 0.05 to 2 hours, and if the holding temperature is less than 0.05 hours, it is not cured, and if it is more than 2 hours, the production cost increases with an increase in the heat treatment cost. By this treatment, fine irregularities are imparted to the surface of the first coating layer 3, and RSi (OC 2 H 5 ) 3 , RSi (OCH 3 ) 3 , RSiCl 3 and Si (OC 2 H 5 ) 4 (R is a functional group) And at least one compound is hydrolyzed and dehydrated to cure the gel layer. Thereafter, the cured gel layer is baked to remove organic substances remaining in the film, whereby the transfer mold of the present invention can be produced.

本発明による転写用型は光透過性が高く、高温でも安定であるため、転写用型の裏側から光を照射することにより、光硬化性樹脂、熱硬化樹脂等の様々な材料を変形させて、型面の微細な凹凸形状が転写された転写物を製造することができる。また、この製造方法により製造した転写用型を用いて、電子線描画法等により作製した高価な原型を複製することも可能である。さらに、本発明の転写用型は複層構造であるため剛性が高く繰り返し転写をしても単一材料の転写用型よりも割れにくい。   Since the transfer mold according to the present invention has high light permeability and is stable even at high temperatures, by irradiating light from the back side of the transfer mold, various materials such as a photocurable resin and a thermosetting resin can be deformed. In addition, it is possible to produce a transfer product on which fine irregularities on the mold surface are transferred. Further, it is possible to duplicate an expensive original produced by an electron beam drawing method or the like using a transfer mold produced by this production method. Furthermore, since the transfer mold of the present invention has a multilayer structure, it has high rigidity and is less likely to break than a single-material transfer mold even when repeated transfer is performed.

次に本発明に従う転写物の製造方法について説明する。   Next, a method for producing a transcript according to the present invention will be described.

前記転写用型を用いた第1の転写物の製造法は、まず第2基材上に、紫外線等の光を照射することによって硬化する物性を持つ樹脂を塗布し、この塗布した樹脂に前記転写用型を押し当てた状態でこの転写用型の型面の裏側から所定の光を照射することにより前記樹脂を硬化させて第2表面被覆層を形成する。その後離型することによってその表面被覆層の型面に微細な凹凸形状が転写された転写物を製造する。   In the method for producing a first transfer product using the transfer mold, first, a resin having physical properties that is cured by irradiating light such as ultraviolet rays is applied onto the second substrate, and the applied resin is applied to the resin. In a state where the transfer mold is pressed, the resin is cured by irradiating predetermined light from the back side of the mold surface of the transfer mold to form the second surface coating layer. Thereafter, by releasing the mold, a transfer product in which fine irregularities are transferred to the mold surface of the surface coating layer is produced.

前記転写用型を用いた第2の転写物の製造法は、第3基材、好適には光の照射によって軟化する物性を持つプラスチック材料からなる第3基材上に前記転写用型を押し当てた状態で転写用型の型面の裏側から光を照射し、前記樹脂を軟化させて前記第3基材の表面に前記転写用型の型面の微細凹凸形状を転写し、その後冷却して離型することによって、その前記第3基材の表面に微細な凹凸形状が転写された転写物を製造する。   The method for producing the second transfer product using the transfer mold is to push the transfer mold onto a third substrate, preferably a third substrate made of a plastic material having a physical property that is softened by light irradiation. In the applied state, light is irradiated from the back side of the mold surface of the transfer mold, the resin is softened to transfer the fine uneven shape of the mold surface of the transfer mold onto the surface of the third substrate, and then cooled. By releasing the mold, a transfer product in which fine irregularities are transferred to the surface of the third substrate is manufactured.

前記転写用型を用いた第3の転写物の製造法は、まず第4基材上にPMMA、ポリカーボネート、アクリル樹脂、ポリイミドおよびポリアミドの群から選択される熱可塑性樹脂を塗布し、この塗布した樹脂に前記転写用型を押し当てた状態で軟化点以上に加熱し、その後軟化点未満に冷却することによって前記樹脂を硬化させて第3表面被覆層を形成する。その後離型することによってその表面被覆層の型面に微細な凹凸形状が転写された転写物を製造する。また、軟化点はそれぞれ選択した樹脂の物性値による。このように製造した転写物は、転写用型の型面が精度良く転写された転写物であるが、特に本発明では電子線描画法等により作製した高価な原型である反転転写用型を製造することができる点で有利である。   In the third transfer product production method using the transfer mold, first, a thermoplastic resin selected from the group consisting of PMMA, polycarbonate, acrylic resin, polyimide and polyamide was applied on the fourth substrate, and this was applied. The third surface coating layer is formed by curing the resin by heating to a temperature equal to or higher than the softening point while the transfer mold is pressed against the resin, and then cooling to a temperature lower than the softening point. Thereafter, by releasing the mold, a transfer product in which fine irregularities are transferred to the mold surface of the surface coating layer is produced. The softening point depends on the physical property value of the selected resin. The transfer product thus manufactured is a transfer product in which the mold surface of the transfer mold is accurately transferred. In particular, in the present invention, an inversion transfer mold, which is an expensive prototype manufactured by an electron beam drawing method or the like, is manufactured. This is advantageous in that it can be done.

尚、上述したところは本発明の実施形態の一例を示したにすぎず、特許請求の範囲内において種々の態様を取ることができる   The above description is merely an example of an embodiment of the present invention, and various aspects can be taken within the scope of the claims.

(実施例1)
原型(反転転写用型)としては電子線描画法により作製した溝付き基板を用い、0.05molのSi(OC2H5)4を主成分とし、0.1Mの酸水溶液を0.3mol、分子量600のポリエチレングリコールを0.005mol、およびエタノールを0.25mol加えたゾル液を石英基板に塗布した。この石英基板に原型を押し当てた状態で60℃で2時間保持し、ゲル膜を硬化させた。硬化したゲル膜を500℃で焼成し、膜内に残る有機物を除去することにより転写用型を得た。得られた転写用型の型面に離型処理を施した後、ナノインプリント転写用型としての性能を検討した。
Example 1
As a prototype (mold for reversal transfer), a grooved substrate prepared by an electron beam drawing method is used, 0.05 mol of Si (OC 2 H 5 ) 4 as a main component, 0.1 M acid aqueous solution of 0.3 mol, A sol solution containing 0.005 mol of polyethylene glycol having a molecular weight of 600 and 0.25 mol of ethanol was applied to a quartz substrate. The gel film was cured by holding at 60 ° C. for 2 hours with the prototype pressed against the quartz substrate. The cured gel film was baked at 500 ° C., and organic substances remaining in the film were removed to obtain a transfer mold. The mold surface of the obtained transfer mold was subjected to a release treatment, and then the performance as a nanoimprint transfer mold was examined.

まず、紫外線硬化樹脂を基材に塗布し、前記転写用型を押し当てて型面の裏側から紫外線を照射した。その後、離型することで転写用型の微細凹凸形状が紫外線硬化樹脂に転写されていることがAFM(原子間力顕微鏡)評価により確認できた。   First, an ultraviolet curable resin was applied to a substrate, the transfer mold was pressed against the substrate, and ultraviolet rays were irradiated from the back side of the mold surface. Thereafter, it was confirmed by AFM (Atomic Force Microscope) evaluation that the fine concavo-convex shape of the transfer mold was transferred to the ultraviolet curable resin by releasing the mold.

次に別の基材にPMMAを溶剤に溶かし前記基材に塗布した後、軟化点まで加熱し軟化させた状態で前記転写用型を押し当て軟化点未満に温度を下げた後、離型した。得られたPMMAは転写用型と同様の微細凹凸構造が転写されていることがAFM評価により確認できた。以上の結果から、今回の転写用型が光ナノインプリントや熱ナノインプリントの転写用型として利用できることが実証された。   Next, after dissolving PMMA in a solvent on another base material and applying it to the base material, it was heated to the softening point and softened, and the transfer mold was pressed to lower the temperature below the softening point and then released. . It was confirmed by AFM evaluation that the obtained PMMA had the same fine uneven structure as the transfer mold. From the above results, it was demonstrated that the present transfer mold can be used as a transfer mold for optical nanoimprint and thermal nanoimprint.

またそれぞれの転写後に離型する際に転写用型の表面の一部に基材を当てることで傷を付けたが、その後繰り返し転写、離型テストを30回実施しても型が割れることはなく、転写された微細凹凸構造も問題ないことがAFM評価により確認できた。傷を詳細に確認したところ、転写用型の表面被覆層のみに傷が認められたが基材までは傷が到達していないことがSEM(走査電子顕微鏡)評価により判明した。   Also, when releasing the mold after each transfer, the substrate was scratched by applying a substrate to a part of the surface of the transfer mold. However, the mold could be broken even after repeated transfer and release tests 30 times. In addition, it was confirmed by AFM evaluation that there was no problem with the transferred fine uneven structure. When scratches were confirmed in detail, it was found by SEM (scanning electron microscope) evaluation that scratches were observed only on the surface coating layer of the transfer mold, but the scratches did not reach the substrate.

以上の結果から、本発明の転写用型は基材上に剛性の高い無機材料の微細凹凸を容易に形成でき、2層からなる被覆層構造のため傷など発生しても割れにくく紫外線が透過するため、これを転写用型として用いることで光ナノインプリントや熱ナノインプリントが容易に行うことができ、微細凹凸形状を持つ光学素子などを安価に提供できることが明らかになった。   From the above results, the transfer mold of the present invention can easily form fine irregularities of a highly rigid inorganic material on a base material, and because of a two-layer coating layer structure, it is resistant to cracking and can transmit ultraviolet rays. Therefore, it has been clarified that optical nanoimprinting and thermal nanoimprinting can be easily performed by using this as a transfer mold, and an optical element having a fine concavo-convex shape can be provided at low cost.

(実施例2)
原型(反転転写用型)としては電子線描画法により作製した溝付き基板を用い、0.05molのSi(OC2H5)4を主成分とし、0.1Mの酸水溶液を0.3mol、分子量400のポリエチレングリコールを0.005mol、およびエタノールを0.25mol加えたゾル液をシリコン基板に塗布した。このシリコン基板に原型を押し当てた状態で60℃で2時間保持し、ゲル膜を硬化させた。硬化したゲル膜を500℃で焼成し、膜内に残る有機物を除去することにより樹脂転写用の転写用型を得た。得られた転写用型の型面に離型処理を施した後、ナノインプリント転写用型としての性能を検討した。
(Example 2)
As a prototype (mold for reversal transfer), a grooved substrate prepared by an electron beam drawing method is used, 0.05 mol of Si (OC 2 H 5 ) 4 as a main component, 0.1 M acid aqueous solution of 0.3 mol, A sol solution containing 0.005 mol of polyethylene glycol having a molecular weight of 400 and 0.25 mol of ethanol was applied to a silicon substrate. The gel film was cured by holding at 60 ° C. for 2 hours with the prototype pressed against the silicon substrate. The cured gel film was baked at 500 ° C., and organic substances remaining in the film were removed to obtain a transfer mold for resin transfer. The mold surface of the obtained transfer mold was subjected to a release treatment, and then the performance as a nanoimprint transfer mold was examined.

まず、得られた転写用型は赤外線を透過することが分光光度計評価で確認できた。プラスチック基板にこの型を接合した状態で型面の裏側からCO2レーザーを照射することにより樹脂を軟化させて型面を転写した後、冷却してから離型することで転写用型の微細凹凸形状をプラスチック基板上に転写できることがAFMによる評価により確認できた。また、転写用型として20回使用しても破損せず、転写された微細凹凸構造も問題ないことがAFM評価により確認できた。 First, it was confirmed by spectrophotometer evaluation that the obtained transfer mold transmits infrared rays. With this mold bonded to a plastic substrate, the CO 2 laser is irradiated from the back side of the mold surface to soften the resin and transfer the mold surface. It was confirmed by AFM evaluation that the shape could be transferred onto a plastic substrate. In addition, it was confirmed by AFM evaluation that it was not damaged even when used as a transfer mold 20 times, and that the transferred fine uneven structure had no problem.

以上の結果から、基板にシリコンを選択して本発明の転写用型を作製した場合、型面の裏側から赤外線を照射することによって、赤外線によって軟化する転写材料の表面に型面の微細凹凸構造を転写できることが実証できた。   From the above results, when the transfer mold of the present invention was produced by selecting silicon as the substrate, the fine uneven structure of the mold surface was formed on the surface of the transfer material that was softened by infrared light by irradiating the infrared light from the back side of the mold surface. It was proved that can be transferred.

(実施例3)
原型(反転転写用型)としては電子線描画法により作製した溝付き基板を用い、0.05molのCH3(OC2H5)3を主成分とし、0.1Mの酸水溶液を0.2mol、およびエタノールを0.05mol加えたゾル液をソーダライムガラス基板上に塗布した。このソーダライムガラス基板に原型を押し当てた状態で60℃、2時間保持しゲル膜を硬化させた。さらに300℃で焼成した後、硬化したゲル膜を原型から離型処理し得られた溝付き基板を焼成すること樹脂転写用の転写用型を得た。
(Example 3)
As a prototype (reverse transfer mold), a grooved substrate prepared by an electron beam drawing method is used, 0.05 mol of CH 3 (OC 2 H 5 ) 3 as a main component, and 0.1 M acid aqueous solution of 0.2 mol. And a sol solution containing 0.05 mol of ethanol was applied onto a soda lime glass substrate. The gel film was cured by holding at 60 ° C. for 2 hours in a state where the prototype was pressed against the soda lime glass substrate. Further, after baking at 300 ° C., a grooved substrate obtained by releasing the cured gel film from the original mold was baked to obtain a transfer mold for resin transfer.

得られた基板を転写用型として使用して、ガラス基板上に塗布したPMMAに対して軟化点まで加熱してこの型を加圧した後冷却し、軟化点未満の温度で離型することにより転写物を得た。この転写物をAFM評価した結果、確かに原型の微細構造が転写されていることが確認された。   By using the obtained substrate as a transfer mold, heating the PMMA coated on the glass substrate to the softening point, pressurizing the mold, cooling, and releasing at a temperature below the softening point A transcript was obtained. As a result of AFM evaluation of this transcript, it was confirmed that the original microstructure was transferred.

離型する際に転写用型の表面被覆層に基材を当てることによって傷を付けたが、この後繰り返し転写、離型を実施しても転写用型が割れなかった。詳細に傷を観察したところ、表面被覆層のゾルゲル膜には傷があるものの基材までは達していないことがSEMによる評価により判明した。また、離型剤なしで10回転写、離型することができた。   When the mold was released, the substrate was applied to the surface coating layer of the transfer mold so as to be scratched. However, the transfer mold was not broken even after repeated transfer and release. When scratches were observed in detail, it was found by evaluation by SEM that the sol-gel film of the surface coating layer had scratches but did not reach the substrate. Moreover, it was possible to transfer and release 10 times without a release agent.

以上の結果により、本発明の転写用型は樹脂の軟化点以上においても表面の微細凹凸構造が維持されるため、熱ナノインプリントの転写用型として使用できることが明らかになった。   From the above results, it has been clarified that the transfer mold of the present invention can be used as a transfer mold for thermal nanoimprint because the fine uneven structure on the surface is maintained even above the softening point of the resin.

(比較例)
石英上にレジストを塗布し、電子線描画もしくは現像により微細溝パターンを形成したレジストをマスクとしてドライエッチングにより石英基板上に微細溝パターンを形成し、この後離型処理を施して転写用型とした。基板上に塗布したPMMAを加熱して軟化させここに転写用型を押し当て、軟化点未満まで温度を下げた後離型することによって転写用型の型面形状を樹脂に転写した。これと同様の繰り返し転写、離型を行ったところ、誤って基材の角を転写用型にぶつけて傷を付けてしまった。その後繰り返し転写、離型実験を行ったところ、3回目の離型時に転写用型が破損した。
(Comparative example)
A resist is coated on quartz, and a fine groove pattern is formed on the quartz substrate by dry etching using a resist in which a fine groove pattern is formed by electron beam drawing or development as a mask. did. The PMMA coated on the substrate was heated and softened, the transfer mold was pressed against it, the temperature was lowered to below the softening point, and then the mold was released to transfer the mold surface shape of the transfer mold to the resin. When the same repetitive transfer and mold release were carried out in this manner, the corners of the base material were accidentally hit against the transfer mold and scratched. Thereafter, repeated transfer and release experiments were conducted, and the transfer mold was damaged during the third release.

本発明によれば、ゾルゲル法を用い、複層構造を形成することにより、簡便かつ安価に光透過性及び耐破壊性に優れた転写用型、特にナノインプリントに適する転写用型の提供が可能になった。   According to the present invention, by using a sol-gel method and forming a multilayer structure, it is possible to easily and inexpensively provide a transfer mold excellent in light transmission and fracture resistance, particularly a transfer mold suitable for nanoimprinting. became.

従来の原版作製プロセスを示す図である。It is a figure which shows the conventional original plate preparation process. 本発明に伴う転写用型の製造方法の主要工程を示すフロー図である。It is a flowchart which shows the main processes of the manufacturing method of the transcription | transfer type | mold accompanying this invention.

符号の説明Explanation of symbols

1転写用型
2基材
3第1表面被覆層
4型面
5原型(又は反転転写用型)
1 transfer mold 2 base material 3 first surface coating layer 4 mold surface 5 prototype (or reverse transfer mold)

Claims (20)

透光材料からなる第1基材と、該第1基材上にゾルゲル法により形成され、前記第1基材よりも低屈折率の透光材料からなり所定の微細凹凸形状が付与された型面をもつ第1表面被覆層との複層構造を有することを特徴とする転写用型。   A first base material made of a light-transmitting material, and a mold formed on the first base material by a sol-gel method and made of a light-transmitting material having a lower refractive index than the first base material and provided with a predetermined fine uneven shape A transfer mold having a multilayer structure with a first surface coating layer having a surface. 前記第1基材は結晶質材料、非晶質材料もしくは結晶化ガラス材料からなる請求項1に記載の転写用型。   The transfer mold according to claim 1, wherein the first substrate is made of a crystalline material, an amorphous material, or a crystallized glass material. 前記結晶質材料はシリコンである請求項2に記載の転写用型。   The transfer mold according to claim 2, wherein the crystalline material is silicon. 前記非晶質材料は石英、ソーダライムガラスもしくはボロシリケートガラスからなる請求項2に記載の転写用型。   The transfer mold according to claim 2, wherein the amorphous material is made of quartz, soda-lime glass, or borosilicate glass. 前記結晶化ガラス材料は、結晶成分がβ−石英固溶体結晶もしくはβ−ユークリプタイト固溶体を主たる析出結晶として含む結晶化ガラス材料である請求項2に記載の転写用型。   3. The transfer mold according to claim 2, wherein the crystallized glass material is a crystallized glass material whose crystal component includes β-quartz solid solution crystal or β-eucryptite solid solution as a main precipitated crystal. 前記第1表面被覆層は、RSi(OC2H5)3、RSi(OCH3)3およびRSiCl3(Rは官能基)で表される少なくとも1種の化合物と酸水溶液とで主として構成されるゾル液を用いて形成してなる請求項1〜5のいずれかに記載の転写用型。 The first surface coating layer is mainly composed of at least one compound represented by RSi (OC 2 H 5 ) 3 , RSi (OCH 3 ) 3 and RSiCl 3 (R is a functional group) and an acid aqueous solution. The transfer mold according to claim 1, which is formed using a sol solution. 転写用型は第1表面被覆層の上にさらに離型層を有する請求項1〜6のいずれかに記載の転写用型。   The transfer mold according to claim 1, wherein the transfer mold further has a release layer on the first surface coating layer. 透光材料からなる第1基材上に所定のゾル液を塗布する工程と、原型を押し当てた状態で加熱、保持してゲル層を硬化させて所定の微細凹凸形状が付与された型面を持つ第1表面被覆層を形成する工程を有する転写用型の製造方法。   A step of applying a predetermined sol solution on a first base material made of a light-transmitting material, and a mold surface provided with a predetermined fine uneven shape by heating and holding the original mold while pressing and curing the gel layer A method for producing a transfer mold, comprising a step of forming a first surface coating layer having 前記第1基材は結晶質材料、非晶質材料もしくは結晶化ガラス材料からなる請求項8に記載の転写用型の製造方法。   The method for manufacturing a transfer mold according to claim 8, wherein the first base material is made of a crystalline material, an amorphous material, or a crystallized glass material. 前記結晶質材料はシリコンである請求項9に記載の転写用型の製造方法。   The method for manufacturing a transfer mold according to claim 9, wherein the crystalline material is silicon. 前記非晶質材料は石英、ソーダライムガラスもしくはボロシリケートガラスからなる請求項9に記載の転写用型の製造方法。   The method for producing a transfer mold according to claim 9, wherein the amorphous material is made of quartz, soda-lime glass, or borosilicate glass. 前記結晶化ガラス材料は、結晶成分がβ−石英固溶体結晶もしくはβ−ユークリプタイト固溶体を主たる析出結晶として含む結晶化ガラス材料である請求項9に記載の転写用型の製造方法。   The method for producing a transfer mold according to claim 9, wherein the crystallized glass material is a crystallized glass material whose crystal component includes β-quartz solid solution crystal or β-eucryptite solid solution as a main precipitated crystal. 前記所定のゾル液がRSi(OC2H5)3、RSi(OCH3)3およびRSiCl3(Rは官能基)で表される少なくとも1種の化合物と酸水溶液とを含有する組成を有する請求項8〜12のいずれか1項に記載の転写用型の製造方法。 The predetermined sol solution has a composition containing at least one compound represented by RSi (OC 2 H 5 ) 3 , RSi (OCH 3 ) 3 and RSiCl 3 (R is a functional group) and an acid aqueous solution. Item 13. The method for producing a transfer mold according to any one of Items 8 to 12. 請求項1〜7のいずれか1項に記載の転写用型を用いて、その表面被覆層の型面の微細な凹凸形状が転写された転写物を製造する方法であって、第2基材上に所定の樹脂を塗布しこの塗布した樹脂に前記転写用型を押し当てた状態でこの転写用型の型面の裏側から光を照射することにより前記樹脂を硬化させて第2表面被覆層を形成し、その後離型することを特徴とする転写物の製造方法。   A method for producing a transfer product using the transfer mold according to any one of claims 1 to 7, wherein a fine concavo-convex shape of the mold surface of the surface coating layer is transferred, wherein the second substrate A second surface coating layer is formed by applying a predetermined resin on the top and irradiating light from the back side of the mold surface of the transfer mold in a state where the transfer mold is pressed against the applied resin. Is formed, and then released from the mold. 前記転写物は、第2基材が第1基材と同一の透光材料からなり、第2表面被覆層が第1表面被覆層と同一の透光材料からなり、前記転写用型の型面を形成するための反転転写用型である請求項14に記載の転写物の製造方法。   In the transferred material, the second base material is made of the same light-transmitting material as the first base material, the second surface covering layer is made of the same light-transmitting material as the first surface covering layer, and the mold surface of the transfer mold The method for producing a transfer product according to claim 14, wherein the mold is a reversal transfer mold for forming a film. 前記所定の樹脂は、紫外線照射により硬化する物性を持つ樹脂である請求項14または15に記載の転写物の製造方法。   16. The method for producing a transfer product according to claim 14, wherein the predetermined resin is a resin having physical properties that are cured by ultraviolet irradiation. 請求項1〜7のいずれか1項に記載の転写用型を用いて、その第1表面被覆層の型面の微細な凹凸形状が転写された転写物を製造する方法であって、第3基材に前記転写用型を押し当てた状態でこの転写用型の型面の裏側から光を照射することにより、前記樹脂を軟化させて前記第3基材の表面に前記転写用型の型面の微細凹凸形状を転写し、その後冷却して離型することを特徴とする転写物の製造方法。   A method for producing a transfer product using the transfer mold according to any one of claims 1 to 7, wherein a fine concavo-convex shape of the mold surface of the first surface coating layer is transferred. The transfer mold is softened on the surface of the third substrate by irradiating light from the back side of the mold surface of the transfer mold while the transfer mold is pressed against the substrate. A method for producing a transfer product, comprising transferring a fine uneven shape of a surface, and then cooling and releasing the mold. 前記第3基材は、光の照射によって軟化する物性を持つプラスチック材料からなる請求項17に記載の転写物の製造方法。   The method for producing a transfer according to claim 17, wherein the third base material is made of a plastic material having physical properties that are softened by light irradiation. 請求項1〜7のいずれか1項に記載の転写用型を用いて、その表面被覆層の型面の微細な凹凸形状が転写された転写物を製造する方法であって、第4基材上に熱軟化樹脂を塗布し、この塗布した熱軟化樹脂に、前記転写用型を押し当てた状態で、前記熱軟化樹脂を軟化点以上に加熱して軟化させた後、軟化点未満に冷却して第3表面被覆層を形成し、その後離型することを特徴とする転写物の製造方法。   A method for producing a transfer product using the transfer mold according to any one of claims 1 to 7, wherein a fine concavo-convex shape of the mold surface of the surface coating layer is transferred, wherein the fourth substrate A heat-softening resin is applied to the heat-softening resin, the heat-softening resin is heated above the softening point and softened with the transfer mold pressed against the applied heat-softening resin, and then cooled below the softening point. And forming a third surface coating layer, and then releasing the mold. 第4基材がガラス材料からなり、第3表面被覆層が熱可塑性樹脂からなる請求項19記載の転写物の製造方法。   The method for producing a transferred material according to claim 19, wherein the fourth substrate is made of a glass material, and the third surface coating layer is made of a thermoplastic resin.
JP2006199900A 2006-07-21 2006-07-21 Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold Withdrawn JP2009233855A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006199900A JP2009233855A (en) 2006-07-21 2006-07-21 Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold
PCT/JP2007/055680 WO2008010330A1 (en) 2006-07-21 2007-03-20 Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199900A JP2009233855A (en) 2006-07-21 2006-07-21 Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold

Publications (1)

Publication Number Publication Date
JP2009233855A true JP2009233855A (en) 2009-10-15

Family

ID=38956665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199900A Withdrawn JP2009233855A (en) 2006-07-21 2006-07-21 Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold

Country Status (2)

Country Link
JP (1) JP2009233855A (en)
WO (1) WO2008010330A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188873A (en) * 2012-03-12 2013-09-26 Hokunetsu:Kk Mold part
WO2014136624A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石エネルギー株式会社 Method of manufacturing member having relief structure, and member having relief structure manufactured thereby
KR101517684B1 (en) 2012-08-31 2015-05-04 도시바 기카이 가부시키가이샤 Transfer device, molded material and transfer method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342895B2 (en) * 2013-07-26 2018-06-13 Jxtgエネルギー株式会社 Manufacturing method of substrate having concavo-convex structure
CN115432946A (en) * 2022-08-30 2022-12-06 维达力实业(深圳)有限公司 AG effect microcrystalline glass preparation mold, microcrystalline glass and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102445A (en) * 1985-10-28 1987-05-12 Nippon Sheet Glass Co Ltd Production of optical disk substrate
JPH0283227A (en) * 1988-09-21 1990-03-23 Seiko Epson Corp Forming method
JP3381945B2 (en) * 1992-10-05 2003-03-04 日本板硝子株式会社 Method of forming fine uneven pattern on substrate
JP2002240057A (en) * 2001-02-21 2002-08-28 Nippon Sheet Glass Co Ltd Method for manufacturing composite optical element
JP2002338304A (en) * 2001-02-28 2002-11-27 Nippon Sheet Glass Co Ltd Producing method of article having prescribed surface shape
JP2004358559A (en) * 2003-06-02 2004-12-24 Ricoh Opt Ind Co Ltd Method of manufacturing article with fine surface structure, and die and method of manufacturing the same
JP4424932B2 (en) * 2003-07-31 2010-03-03 スリーエム イノベイティブ プロパティズ カンパニー MOLD FOR MICROSTRUCTURE REPLICATION AND METHOD FOR PRODUCING MATERIAL AND FLEXIBLE MOLD
JP4739729B2 (en) * 2004-11-08 2011-08-03 パナソニック株式会社 Method for manufacturing member having antireflection structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188873A (en) * 2012-03-12 2013-09-26 Hokunetsu:Kk Mold part
KR101517684B1 (en) 2012-08-31 2015-05-04 도시바 기카이 가부시키가이샤 Transfer device, molded material and transfer method
WO2014136624A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石エネルギー株式会社 Method of manufacturing member having relief structure, and member having relief structure manufactured thereby
JPWO2014136624A1 (en) * 2013-03-06 2017-02-09 Jxエネルギー株式会社 Manufacturing method of member having concavo-convex structure and member having concavo-convex structure manufactured thereby

Also Published As

Publication number Publication date
WO2008010330A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
KR101457254B1 (en) Photocurable composition, method for producing fine patterned body, and optical device
JP5617636B2 (en) Wafer lens manufacturing method
JP3751778B2 (en) Method for producing sol-gel molded product
CN104991416B (en) Hot stamping method of two-dimensional periodic micro-nano structure based on optical disk
Kim et al. Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique
TW200911498A (en) Mold, method for production of the mold, and method for production of substrate having replicated fine pattern
US20110233799A1 (en) Method for manufacturing lens having functional nanopattern
JP2009013048A (en) Titania-doped quartz glass for nanoimprint molds
JPWO2002053345A1 (en) Article having predetermined surface shape and method of manufacturing the same
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
JP2010069730A (en) Highly durable replica mold for nanoimprint lithography and method for fabricating the same
JP2009233855A (en) Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold
JP2010184485A (en) Mold for imprint, method for manufacturing mold for imprint, and method for reproducing mold for imprint
WO2009116447A1 (en) Method for producing wafer lens
JP4641835B2 (en) Method of manufacturing phase shifter optical element and element obtained
JP2007101799A (en) Transmission optical element
JP2001249208A (en) Diffraction optical device and method of manufacturing the same
JPWO2009125697A1 (en) Mold, method for producing the same, and method for producing a substrate having a transfer fine pattern
JP2006310678A (en) Substrate for forming micro surface structure, method of manufacturing article having micro surface structure, and article having micro surface structure manufactured by the method
JP6008628B2 (en) Pattern production method using photocurable nanoimprinting composition
JP2001072442A (en) Method for producing article having uneven surface and article produced by the method
JP5488464B2 (en) OPTICAL ELEMENT, OPTICAL ELEMENT MANUFACTURING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
Gvishi et al. UV-curable glassy material for the manufacture of bulk and nano-structured elements
JP2011148117A (en) Imprinting mold release agent
TW201507856A (en) Transfer film, crosslinked transfer film and substrate having relief structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110