WO2009123136A1 - 電子材料用Cu-Ni-Si系合金 - Google Patents

電子材料用Cu-Ni-Si系合金 Download PDF

Info

Publication number
WO2009123136A1
WO2009123136A1 PCT/JP2009/056535 JP2009056535W WO2009123136A1 WO 2009123136 A1 WO2009123136 A1 WO 2009123136A1 JP 2009056535 W JP2009056535 W JP 2009056535W WO 2009123136 A1 WO2009123136 A1 WO 2009123136A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
mass
copper alloy
strength
particle size
Prior art date
Application number
PCT/JP2009/056535
Other languages
English (en)
French (fr)
Inventor
光浩 大久保
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Publication of WO2009123136A1 publication Critical patent/WO2009123136A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a precipitation hardening type copper alloy, and more particularly to a Cu—Ni—Si based alloy suitable for use in various electronic device parts.
  • Copper alloys for electronic materials used in various electronic equipment components such as lead frames, connectors, pins, terminals, relays, switches, etc., have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Required. In recent years, high integration and miniaturization / thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic device components has been increased accordingly.
  • the amount of precipitation hardening type copper alloys has increased in place of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials. ing.
  • precipitation-hardened copper alloys by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.
  • Cu-Ni-Si copper alloys commonly called Corson alloys
  • Corson alloys are representative copper alloys that have relatively high electrical conductivity, strength, stress relaxation characteristics and bending workability. Is one of the alloys that is currently under active development. In this copper alloy, the strength and conductivity can be improved by precipitating fine Ni—Si intermetallic compound particles in the copper matrix.
  • Patent Document 1 there are Ni—Si compound particles having a particle size of 0.003 ⁇ m or more and less than 0.03 ⁇ m (small particles) and 0.03 ⁇ m to 100 ⁇ m (large particles), In addition, it is described that the ratio of the number of small particles / large particles is 1.5 or more. Small particles having a particle size of less than 0.03 ⁇ m mainly improve the strength and heat resistance of the alloy, but do not contribute much to the shear processability.
  • the copper alloy of patent document 1 is a copper alloy which has characteristics, such as intensity
  • the following is disclosed as a method for producing the copper alloy described in Patent Document 1. 1) When the Ni content is 4 wt% and the Si content is 1 wt% or more, coarsening of the crystallized particles is particularly likely to occur.
  • the molten metal is maintained at a temperature of 1300 ° C. or higher for 5 minutes or longer, and both are completely dissolved, and the cooling rate in the mold is set to 0.3 ° C./second or higher from the casting temperature to the solidification temperature.
  • the hot-rolled material after hot rolling is quenched in water, and the cold-rolled material is heated at 500 to 700 ° C. for 1 minute to 2 hours to precipitate large particles. Thereafter, cold rolling is further performed, and this time heating is performed at 300 to 600 ° C. for 30 minutes or more to precipitate small particles.
  • Patent Document 2 Japanese Patent No. 3977376 (Patent Document 2), the relationship between the grain size of Ni—Si precipitates in the structure of the copper alloy and other precipitates, the ratio of the distribution density, and the suppression of the coarsening of the crystal grains.
  • the precipitate X is composed of Ni and Si, and the precipitate Y does not contain one or both of Ni and Si, and the particle diameter of the precipitate X is 0.001 to 0.1 ⁇ m. It is described that the particle size of the product Y is 0.01 to 1 ⁇ m.
  • the number of precipitates X should be 20 to 2000 times the number of precipitates Y, or the number of precipitates X can be 10 8 to 10 12 per mm 2 .
  • the number of precipitates Y is 10 4 to 10 8 per 1 mm 2 .
  • the following is disclosed as a method for producing the copper alloy described in Patent Document 2.
  • the ingot is heated at a heating rate of 20 to 200 ° C./hour, hot-rolled at 850 to 1050 ° C. for 0.5 to 5 hours, and the end temperature of hot rolling Rapidly cools to 300-700 ° C.
  • precipitates X and Y are generated.
  • hot rolling for example, solution heat treatment, annealing, and cold rolling are combined to obtain a desired plate thickness.
  • the purpose of the solution heat treatment is a heat treatment in which Ni and Si precipitated during casting and hot working are re-solidified and recrystallized at the same time.
  • the temperature of the solution heat treatment is adjusted according to the amount of added Ni. For example, when the Ni amount is 2.0 to less than 2.5% by mass, 650 ° C., and when the amount of Ni is less than 2.5 to 3.0% by mass, 800 ° C. 0.0 to less than 3.5% by mass is 850 ° C, 3.5 to less than 4.0% by mass is 900 ° C, 4.0 to less than 4.5% by mass is 950 ° C, 4.5 to 5.0% by mass Is 980 ° C.
  • Japanese Patent No. 3797736 Japanese Patent No. 3777376
  • Patent Document 1 In the copper alloy described in Patent Document 1, only the ratio of the number of small particles to the number of large particles has been examined, and the number density of particles is not mentioned.
  • the large particles and the small particles are precipitated by being aged twice, but the small particles precipitated in the second time have a concentration of Ni and Si dissolved in comparison with the first time. Since it is low, it is difficult to precipitate, and since both the number density and the particle diameter are small, the positive effect on the strength is insufficient (see Comparative Example 5 described later).
  • the method of aging twice also has a problem that it is difficult to control the particle diameter and density because the amount of Ni and Si dissolved in the solution changes depending on the first aging.
  • the Ni—Si compound particles are controlled only in the particle size range of 0.001 to 0.1 ⁇ m, and the Ni—Si compound particles having a larger particle size give the alloy characteristics.
  • the impact has not been studied.
  • the large particles described in Patent Document 2 are precipitates that do not contain one or both of Ni and Si. Such large particles are coarsened depending on the amount of additive element and temperature conditions, and are liable to adversely affect bending workability (see Comparative Examples 15, 16, and 17 described later).
  • an object of the present invention is to improve the characteristics of the Corson alloy by controlling the distribution state of the Ni—Si compound particles more strictly.
  • Ni—Si compound particles precipitated in the copper matrix have a particle diameter of 0.01 ⁇ m or more and 0.05 ⁇ m, which are likely to precipitate mainly in the crystal grains.
  • Ni-Si compound particles (small particles) that are less than 5 ⁇ m and Ni—Si compound particles (large particles) that have a particle size that tends to precipitate mainly at the grain boundaries is 0.05 ⁇ m or more and less than 5.0 ⁇ m. It was found that by controlling the size and number density, it is possible to obtain a Corson-based alloy having an excellent balance between strength and electrical conductivity and excellent bending workability.
  • the small particles are controlled to have a size in the range of 0.01 ⁇ m or more and less than 0.05 ⁇ m to control the number density to 10 6 -10 10 per mm 2 , and the large particles are 0.05 ⁇ m.
  • it has been found that it is effective to control the number density to be less than 5.0 ⁇ m so that the number density is 1 / 10,000 to 1/10 of the number density of the small particles.
  • the present invention completed on the basis of such knowledge includes, in one aspect, Ni: 0.4 to 6.0% by mass, Si: 0.1 to 2.0% by mass, the balance being Cu and inevitable impurities.
  • a copper alloy for electronic materials containing Ni: 0.4 to 6.0 mass%, Si: 0.1 to 2.0 mass%, and composed of the balance Cu and inevitable impurities.
  • Ni—Si compound particles with a particle size of 0.01 ⁇ m or more and less than 0.05 ⁇ m and large Ni—Si compound particles with a particle size of 0.05 ⁇ m or more and less than 5.0 ⁇ m.
  • the number density of small particles is 10 6 -10 10 per 1 mm 2
  • the number density of large particles is 1/10000 to 1/10 of the number density of the small particles. It is an alloy.
  • the ratio of the average particle size of the large particles to the average particle size of the small particles is 2 to 100.
  • the average crystal grain size is 5 to 30 ⁇ m in terms of equivalent circle diameter when observed from the cross section in the thickness direction parallel to the rolling direction.
  • the copper alloy for electronic materials according to the present invention further includes one or more selected from Cr, Co, Mg, Mn, Fe, Sn, Zn, Al and P in a total of 1. Contains up to 0% by weight.
  • a copper-drawn product made of the copper alloy for electronic materials according to the present invention.
  • the present invention is an electronic component including the copper alloy for electronic materials according to the present invention.
  • Ni and Si Ni and Si form Ni—Si compound particles (Ni 2 Si or the like) as intermetallic compounds by performing an appropriate heat treatment, and can increase the strength without deteriorating the conductivity. If the amount of Si or Ni added is too small, the desired strength cannot be obtained. If it is too large, the strength can be increased, but the electrical conductivity is remarkably lowered, and the hot workability is lowered. In addition, hydrogen may be dissolved in Ni, which may cause blowholes during melt casting, so increasing the amount of Ni added may cause breakage in intermediate processing. Since Si reacts with C and reacts with O, if the addition amount is large, a very large amount of inclusions are formed, which causes breakage during bending.
  • an appropriate Si addition amount is 0.1 to 2.0% by mass, preferably 0.2 to 1.5%.
  • a suitable Ni addition amount is 0.4 to 6.0% by mass, preferably 1.0 to 5.0% by mass.
  • Addition amount of other elements (1) Cr, Co Cr and Co are dissolved in Cu to suppress the coarsening of crystal grains during the solution treatment. Also, the alloy strength is raised. During the aging treatment, silicide is formed and deposited, which can contribute to improvement in strength and conductivity. These additive elements may be positively added because they do not substantially lower the electrical conductivity. However, if the added amount is large, the characteristics may be adversely affected. Therefore, it is preferable to add one or both of Cr and Co to a total of 1.0% by mass, preferably 0.005 to 1.0% by mass. (2) Mg, Mn Since Mg and Mn react with O, the deoxidation effect of the molten metal can be obtained. In general, it is an element added as an element for improving the alloy strength.
  • Sn Sn has the same effect as Mg. However, unlike Mg, the amount dissolved in Cu is large, so it is added when more heat resistance is required. However, the conductivity decreases significantly as the amount increases. Therefore, Sn is preferably added up to 0.5% by mass, preferably 0.1 to 0.4% by mass. However, when both Mg and Sn are added, in order to suppress adverse effects on the electrical conductivity, the total concentration of both is up to 1.0 mass%, preferably up to 0.8 mass%. (4) Zn Zn has an effect of suppressing solder embrittlement. However, since the conductivity decreases when the amount added is large, it is preferable to add up to 0.5% by mass, and preferably 0.1 to 0.4% by mass.
  • Ni-Si compound particles In the present invention, the Ni-Si compound particles precipitated in the copper matrix are divided into two types, small particles and large particles, and the number density and particle size of each particle, and also their interrelationship are controlled.
  • small particles refer to Ni—Si compound particles having a particle size of 0.01 ⁇ m or more and less than 0.05 ⁇ m
  • large particles refer to Ni— having a particle size of 0.05 ⁇ m or more and less than 5.0 ⁇ m.
  • Si compound particles Small particles are mainly particles precipitated in crystal grains, and large particles are mainly particles precipitated in crystal grain boundaries.
  • Ni—Si compound particles refer to particles in which both Ni and Si are detected by elemental analysis. The small particles mainly contribute to the strength and heat resistance of the alloy, and the large particles mainly contribute to maintenance of conductivity and refinement of crystal grains.
  • Ni—Si compound particles precipitated in the crystal grains can generally be fine precipitates of about several tens of nm.
  • Ni—Si compound particles having a diameter of less than 0.05 ⁇ m have a dislocation pinning effect, and therefore the dislocation density is increased and the strength of the entire alloy is easily improved. Since the Ni—Si compound particles having such a particle size have a small inter-particle distance and a large number, the rate of contributing to the strength is high. Moreover, since it has the effect
  • particles of this size are sheared when the large strain is applied and the surface area of the particles is reduced, so that the force required for shearing is reduced. Therefore, the dislocation density is not increased without leaving a dislocation loop. Therefore, Ni—Si compound particles of less than 0.01 ⁇ m hardly contribute to strength.
  • the sheared particles may be dissolved again in the copper matrix, leading to a decrease in conductivity. Further, since the sheared particles do not act as nucleation sites for recrystallization, there is a high possibility that the recrystallized grains become coarse. Coarse crystal grains have an adverse effect on strength and bendability.
  • the number density of small particles having a particle size of 0.01 ⁇ m or more and less than 0.05 ⁇ m.
  • Small particles greatly contribute to the improvement of strength, but if they increase, the conductivity tends to decrease. Therefore, in order to balance the strength and conductivity, the number density of small particles should be 10 6 -10 10 per mm 2. It is necessary. The number density of the small particles can be measured by observing the structure with a transmission electron microscope.
  • the Ni—Si compound particles precipitated at the crystal grain boundaries can generally become precipitates having a size of about several hundred nm to several ⁇ m.
  • Ni—Si compound particles of 0.05 ⁇ m or more and less than 5.0 ⁇ m can act as strong particles that are not sheared.
  • the strength and heat resistance of the alloy can be improved in the same way as small particles, but the number of particles is small due to the large particle size and the distance between particles is large, so the contribution to strength and heat resistance is smaller than that of small particles. .
  • the unsheared particles can serve as nucleation sites during recrystallization.
  • Fine crystal grains particularly contribute to strength and bendability.
  • Ni and Si to be used for the formation of small particles are insufficient and the strength tends to decrease.
  • Ag plating or the like is performed on the material, the plating thickness locally increases, which may lead to protrusion-like defects.
  • the number density of large particles of 0.05 ⁇ m or more and less than 5.0 ⁇ m Large particles contribute to the refinement of crystal grains and electrical conductivity, while increasing the number of small particles tends to reduce the number density of small particles, so if the ratio of the number of large particles to small particles is not within the appropriate range, -The balance of conductivity is out of balance. Specifically, the strength decreases as the number of large particles increases, and the conductivity decreases as the number of small particles increases. Therefore, in order to balance strength and electrical conductivity, the number density in the particle size range of 0.05 ⁇ m or more and less than 5.0 ⁇ m needs to be 1 / 10,000 to 1/10 compared to the small particles. The number density of large particles can be measured by observing the structure with a scanning electron microscope.
  • the ratio of the average particle size of the large particles to the average particle size of the small particles is preferably 2 to 100.
  • the copper alloy according to the present invention has an average crystal grain size of 5 to 30 ⁇ m expressed in terms of an equivalent circle diameter when observed from a cross section in the thickness direction parallel to the rolling direction.
  • the copper alloy according to the present invention can be manufactured through some characteristic processes, based on the conventional manufacturing process of Cu—Ni—Si alloys.
  • Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of 600 to 1000 ° C. to dissolve the Ni—Si compound in the Cu matrix and simultaneously recrystallize the Cu matrix. The solution treatment may be combined with hot rolling.
  • the heating temperature before hot rolling is set to a high temperature of about 800-1000 ° C., and a lower temperature is selected when cracking occurs. When a low temperature of less than 800 ° C.
  • the holding time for the purpose of reducing crystallized particles, and depending on the temperature, most particles can be made smaller than 5 ⁇ m by holding for about 3 hours. it can.
  • the temperature at this time may be terminated at a high temperature of 600 ° C. or higher.
  • the precipitated particles may be deposited by air cooling (cooling) after completion, and therefore cooling such as water cooling is effective if necessary.
  • the crystal grain size after solution treatment should be in the range of 5-30 ⁇ m when observed in a cross section perpendicular to the rolling direction. It is important to adjust the temperature and time of the solution treatment. In addition, if the thickness of the material during the solution treatment is large, a sufficient cooling rate cannot be obtained even when water-cooled after the solution treatment, and the solidified additive element may be precipitated during the cooling. Accordingly, it is desirable that the thickness of the solution treatment is 0.3 mm or less. In order to suppress the precipitation of the additive element, the average cooling rate from the solution temperature to 400 ° C.
  • a cooling rate is preferably 10 ° C./second or more, and more preferably 15 ° C./second or more.
  • Such a cooling rate can be achieved by air cooling if the plate thickness is about 0.3 mm or less, but water cooling is still better. However, even if the cooling rate is increased too much, the shape of the product is deteriorated, so that it is preferably 30 ° C./second or less, and more preferably 20 ° C./second or less.
  • the degree of processing (%) can be expressed by (plate thickness before processing ⁇ plate thickness after processing) / plate thickness before processing ⁇ 100.
  • Patent Document 1 employs a method of precipitating large particles and small particles by performing aging treatment twice.
  • the solid particles are solidified in copper. Since the dissolved Ni and Si concentrations are low, Ni and Si are less likely to diffuse and therefore less likely to precipitate. For this reason, small particles having a number density as intended by the present invention cannot be obtained.
  • the size of the precipitated particles already generated in the first aging treatment is affected during the second aging treatment, it is difficult to control the particle size and density.
  • it may be about 0.5 h-1 h at 600 ° C., about 2 h-5 h at 500 ° C., and 10 h-20 h at 400 ° C.
  • cold rolling can also be performed after aging.
  • strain relief annealing low temperature annealing
  • the copper alloy according to the present invention can be processed into various copper products, such as plates, strips, tubes, rods and wires, and the copper alloy according to the present invention has high strength and high electrical conductivity (or heat conduction).
  • Can be used for electronic device parts such as lead frames, connectors, pins, terminals, relays, switches, and foil materials for secondary batteries.
  • Copper alloys having various component compositions shown in Tables 1 to 4 were melted at 1300 ° C. in a high frequency melting furnace and cast into a 30 mm thick ingot. Next, the ingot was heated at 1000 ° C. for 1 hour, and then hot-rolled to a plate thickness of 10 mm (the material temperature at the end of hot rolling was 500 ° C.) and rapidly cooled in water. After surface chamfering to a thickness of 8 mm for removing scale on the surface, a plate having a thickness of 0.2 mm was formed by cold rolling. Next, solution treatment was performed under the conditions shown in Tables 1 to 4, and then cooled to room temperature in water. At this time, the crystal grain size varies depending on the concentration of the additive element and the solution conditions.
  • Table 1 (Examples) and Table 3 (Comparative Examples) show production examples of Cu—Ni—Si based copper alloys, and Tables 2 and 4 further added Mg, Cr, Sn, Zn, Mn, and Fe as appropriate. An example of producing a Cu—Ni—Si based copper alloy is shown.
  • the crystal grain size was measured using a scanning electron microscope (SEM): HITACHI-S-4700 immediately after the solution treatment. A cross section in the thickness direction parallel to the rolling direction was cut by FIB to obtain a sample. As for the crystal grain size, an average value of 10 crystal grains was obtained for the width in the processing direction. In addition, since the cold rolling was performed after the solution treatment, the crystal grains in the final product were crushed in the thickness direction and extended in the rolling direction, but the area was preserved, so the structure of the final product was observed. Results in the same. From the final product, the crystal grain size can be measured by the following method.
  • a cross section in the thickness direction parallel to the rolling direction is electropolished, the cross-sectional structure is observed by SEM, and the number of crystal grains per unit area is counted. Then, the areas of all observation fields are summed, and the total area is divided by the total number of crystal grains counted to calculate the area per crystal grain. From the area, the diameter (equivalent circle diameter) of a perfect circle having the same area as that area can be calculated and used as the average crystal grain size. You may observe the particle size of a large particle and a small particle from arbitrary cross sections.
  • the area is calculated from the major axis and minor axis of each particle, and from the area, the diameter of a perfect circle having the same area as that area (equivalent circle diameter) is calculated. It can be a diameter.
  • the particle size is divided into small particles and large particles, the particle size and the number of particles are totaled, the sum of the particle sizes is divided by the number of particles to obtain the average particle size, and the sum of the particle numbers is divided by the total area of the observation field. Thus, the number density was obtained.
  • the major axis refers to the length of the longest line segment that passes through the particle's center of gravity and has intersections at both ends with the boundary line of the particle
  • the minor axis refers to the particle's center of gravity.
  • the observed particles are Ni-Si compound particles, which means that elemental mapping with a scanning electron microscope equipped with EDS, especially a field emission electron microscope with high elemental analysis accuracy, and transmission type equipped with EELS for small precipitates. This was confirmed by the element mapping method using an electron microscope. In the final product, there are cases in which dislocations are very large and it is difficult to observe precipitates.
  • strain relief annealing may be performed at a temperature of about 200 ° C. at which no precipitation occurs for easy observation.
  • an electropolishing method is used, but measurement may be performed by forming a thin film by FIB (Focused Ion Beam).
  • the copper alloys corresponding to the examples of the present invention described in Tables 1 and 3 are maintained in a well-balanced strength, electrical conductivity, and bending workability.
  • Comparative Example 1 since Si was out of the composition range, the Ni / Si ratio was not an appropriate ratio, and cracks occurred during hot rolling due to the coarse crystallized product.
  • Comparative Example 2 since Ni was out of the composition range, Ni was in an excessive state. This deteriorated hot workability and cracked during hot rolling. Since Comparative Example 3 had a low solution temperature, coarse particles remained. As a result, the conductivity increased, but the strength decreased because the number density of small particles decreased. Further, during the bending, the fracture occurred starting from coarse particles.
  • Comparative Example 4 since the solution temperature was high, the crystal grain size was increased, the large particles were decreased, and the number of small particles was increased. As a result, the strength increased, but the conductivity decreased. Since the crystal grains at the time of solution treatment were large, the bendability deteriorated due to grain boundary fracture during bending. Comparative Example 5 corresponds to the copper alloy described in Patent Document 1. Since the aging was performed twice, the size of the small particles precipitated by the second aging was small, and the number density was remarkably reduced. The ratio of large particles to small particles is appropriate, but the strength is low because the number density of small particles is too low. Since Comparative Example 6 had a high aging temperature, coarse precipitates increased. As a result, the density of small particles decreased and the strength decreased.
  • Comparative Example 11 corresponds to the copper alloy described in Patent Document 2. Since there was no intermediate cold rolling, the number of large particles decreased and the conductivity decreased. In Comparative Example 12, since the amount of Mg added was too large, coarse inclusions such as MgO increased, and the bendability deteriorated. However, the strength was increased by the precipitates of Cr and Si. In Comparative Example 13, the heat-resistant peelability was improved by Sn and Zn, but the conductivity decreased because of the large amount of addition. In Comparative Example 14, since the amount of P added was large, coarse inclusions increased and the bendability deteriorated. The strength was increased by Fe precipitation. Since the comparative example 15 had much Ti addition amount, the electrical conductivity fell remarkably.
  • Comparative Example 16 since the Zr addition amount was large, inclusions due to Zr increased, and the bendability deteriorated. In Comparative Example 17, a large number of coarse Al—Zr precipitates were precipitated. This caused defects (projections) during plating. In Comparative Example 18, a large number of defects (projections) were generated during plating due to coarse precipitates (inclusions) of Cu—Zr and Cu—Ti.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Ni-Si化合物粒子の分布状態を制御することでコルソン系合金の特性向上を図る。Ni:0.4~6.0質量%、Si:0.1~2.0質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、粒径が0.01μm以上で0.05μm未満であるNi-Si化合物小粒子と、粒径が0.05μm以上で5.0μm未満であるNi-Si化合物大粒子が存在しており、小粒子の個数密度が1mm2当たり106-1010個であり、大粒子の個数密度が前記小粒子の個数密度と比べて1/10000~1/10である電子材料用銅合金。

Description

電子材料用Cu-Ni-Si系合金
 本発明は析出硬化型銅合金に関し、とりわけ各種電子機器部品に用いるのに好適なCu-Ni-Si系合金に関する。
 リードフレーム、コネクタ、ピン、端子、リレー、スイッチ等の各種電子機器部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。
 高強度及び高導電性の観点から、近年、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。
 析出硬化型銅合金のうち、コルソン系合金と一般に呼ばれるCu-Ni-Si系銅合金は比較的高い導電性、強度、応力緩和特性及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi-Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図れる。
 Ni-Si化合物粒子の析出状態は合金特性に影響を与えることが知られている。
 特許3797736号公報(特許文献1)では、Ni-Si化合物粒子の粒径が0.003μm以上0.03μm未満のもの(小粒子)及び0.03μm~100μmのもの(大粒子)が存在し、かつ小粒子/大粒子の数の比率が1.5以上とすることが記載されている。そして、粒径が0.03μm未満の小粒子は、主に合金の強度及び耐熱性を向上させるが剪断加工性にはあまり寄与しない。一方、粒径が0.03μm以上の大粒子は合金の強度及び耐熱性の向上にはあまり寄与しないが、剪断加工時に応力を集中的に受け、ミクロクラックの発生源となり剪断加工性を著しく向上させることが記載されている。そして、特許文献1に記載の銅合金は電気電子部品用銅合金として要求される強度や耐熱性などの特性を有するとともに、剪断加工性に優れた銅合金であることが述べられている。
 特許文献1に記載の銅合金を製造する方法として、以下が開示されている。
1)Niの含有量が4wt%、Siの含有量が1wt%以上になると、晶出粒子の粗大化が特に発生しやすくなるので、晶出粒子の寸法を目的の範囲内とするには、Ni及びSi添加後溶湯を1300℃以上の温度に5分以上保持し、両者を完全に溶解させ、鋳造温度~凝固温度まで鋳型内での冷却速度を0.3℃/秒以上とする。
2)熱間圧延後の熱延材を水中急冷し、さらに冷間圧延した材料を500~700℃で1分~2時間の加熱を行って大粒子を析出させる。その後、さらに冷間圧延を加え、今度は300~600℃で30分以上の加熱を行い小粒子を析出させる。
3)熱間圧延終了時に冷却する際に急冷せず、500~700℃で1分~2時間保持して大粒子を析出させた後急冷する。さらに冷間圧延を加えた後、今度は300~600℃で30分以上の加熱を行って小粒子を析出させる。
 特許3977376号公報(特許文献2)では、銅合金の組織中のNi-Si析出物、それ以外の析出物の粒径、さらにその分布密度の割合と、結晶粒の粗大化抑制との関連に着目して、Ni及びSiからなる析出物Xと、NiとSiの一方若しくは両方を含有しない析出物Yを有し、前記析出物Xの粒径が0.001~0.1μmで、前記析出物Yの粒径を0.01~1μmとすることが記載されている。また、強度と曲げ加工性の両立を図るためには、析出物Xの数を析出物Yの20~2000倍とすることや、析出物Xの数を1mm2あたり108~1012個、析出物Yの数を1mm2あたり104~108個とすることが記載されている。
 特許文献2に記載の銅合金を製造する方法として、以下が開示されている。
 鋳塊を熱間圧延する際、鋳塊を昇温速度20~200℃/時間で加熱し、850~1050℃×0.5~5時間の間に熱間圧延し、熱間圧延の終了温度は300~700℃として急冷する。これにより析出物X及びYが生成する。熱間圧延後は、例えば、溶体化熱処理、焼鈍、冷間圧延を組み合わせ、所望の板厚にする。
 前記溶体化熱処理の目的は鋳造や熱間加工時に析出したNiとSiを再固溶させると同時に再結晶させる熱処理である。前記溶体化熱処理の温度は添加したNi量によって調整を行い、例えば、Ni量が2.0~2.5質量%未満は650℃、2.5~3.0質量%未満は800℃、3.0~3.5質量%未満は850℃、3.5~4.0質量%未満は900℃、4.0~4.5質量%未満は950℃、4.5~5.0質量%は980℃とする。
特許3797736号公報 特許3977376号公報
 特許文献1に記載の銅合金では小粒子と大粒子の個数について比率しか検討されておらず、粒子の個数密度については言及されていない。また、特許文献1では二回時効することで大粒子と小粒子をそれぞれ析出させるとしているが、二回目に析出させる小粒子は、一回目に比較して固溶しているNi、Si濃度が低いため析出しにくく、数密度、粒子径ともに小さいため、強度に与える好影響が不十分である(後述する比較例5参照)。二回時効するという手法は、また一回目の時効によっては固溶するNi、Si量が変化してしまうため、粒子径、密度の制御が困難であるという問題もある。
 特許文献2に記載の銅合金ではNi-Si化合物粒子を粒径が0.001~0.1μmの範囲においてしか制御しておらず、より粒径の大きなNi-Si化合物粒子が合金特性に与える影響について検討がされていない。特許文献2に記載の大粒子はNiとSiの一方若しくは両方を含有しない析出物である。このような大粒子は添加元素の量や温度条件によっては粗大化して、曲げ加工性に悪影響を与えやすくなる(後述する比較例15、16及び17参照)。
 そこで、本発明ではNi-Si化合物粒子の分布状態をより厳密に制御することでコルソン系合金の特性向上を図ることを課題とする。
 本発明者は上記課題を解決するために鋭意研究を重ねたところ、銅マトリックス中に析出するNi-Si化合物粒子を、主として結晶粒内に析出しやすい粒径が0.01μm以上で0.05μm未満であるNi-Si化合物粒子(小粒子)と、主として結晶粒界に析出しやすい粒径が0.05μm以上で5.0μm未満であるNi-Si化合物粒子(大粒子)に分けてそれぞれの大きさと個数密度を制御することで強度及び導電率のバランスに優れ、曲げ加工性も良好なコルソン系合金を得ることができることが分かった。具体的には、小粒子を0.01μm以上で0.05μm未満の範囲の大きさに制御してその個数密度を1mm2当たり106-1010個に制御するとともに、大粒子を0.05μm以上で5.0μm未満の範囲の大きさに制御してその個数密度を前記小粒子の個数密度に対して1/10000~1/10とすることが有効であることを見いだした。
 かかる知見を基礎として完成した本発明は一側面において、Ni:0.4~6.0質量%、Si:0.1~2.0質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、Ni:0.4~6.0質量%、Si:0.1~2.0質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、粒径が0.01μm以上で0.05μm未満であるNi-Si化合物小粒子と、粒径が0.05μm以上で5.0μm未満であるNi-Si化合物大粒子が存在しており、小粒子の個数密度が1mm2当たり106-1010個であり、大粒子の個数密度が前記小粒子の個数密度と比べて1/10000~1/10である電子材料用銅合金である。
 本発明に係る電子材料用銅合金は一実施形態において、小粒子の平均粒径に対する大粒子の平均粒径の比が2~100である。
 本発明に係る電子材料用銅合金は更に別の一実施形態において、平均結晶粒径が圧延方向に平行な厚み方向の断面から観察した時に円相当径で表して5~30μmである。
 本発明に係る電子材料用銅合金は別の一実施形態において、更にCr、Co、Mg、Mn、Fe、Sn、Zn、Al及びPから選択される1種又は2種以上を合計で1.0質量%まで含有する。
 本発明は別の一側面において、本発明に係る電子材料用銅合金からなる伸銅品である。
 本発明は更に別の一側面において、本発明に係る電子材料用銅合金を備えた電子部品である。
 本発明によれば、銅マトリクス中に析出したNi-Si化合物粒子による合金特性への恩恵をより効果的に享受できるので、コルソン系合金の特性向上を図ることができる。
Ni及びSiの添加量
 Ni及びSiは、適当な熱処理を施すことにより金属間化合物としてNi-Si化合物粒子(Ni2Si等)を形成し、導電率を劣化させずに高強度化が図れる。
 SiやNi添加量は少なすぎると所望の強度が得られず、多すぎると高強度化は図れるが導電率が著しく低下し、熱間加工性が低下する。また、Ni中には水素が固溶することがあり、溶解鋳造時のブローホールの原因となったりするため、Ni添加量を多くすると中間の加工において破断の原因となる可能性がある。SiはCと反応したり、Oと反応したりするため、添加量が多いと極めて多くの介在物を形成し、曲げの際に破断の原因になる。
 そこで、適切なSi添加量は0.1~2.0質量%であり、好ましくは0.2~1.5%である。適切なNi添加量は0.4~6.0質量%であり、好ましくは1.0~5.0%質量%である。
 Ni-Si化合物粒子の析出物は化学量論組成で一般に構成されており、NiとSiの質量比を金属間化合物であるNi2Siの質量組成比(Niの原子量×2:Siの原子量×1)に近づけることにより、すなわちNiとSiの質量比をNi/Si=3~7、好ましくは3.5~5とすることにより良好な電気伝導性が得られる。Niの比率が上記質量組成比よりも高いと導電率が低下しやすく、Siの比率が上記質量組成比よりも高いと粗大なNi-Si晶出物により熱間加工性が劣化しやすい。
その他の元素の添加量
(1)Cr、Co
 Cr、CoはCu中に固溶し、溶体化処理時の結晶粒の粗大化を抑制する。また合金強度が底上げされる。時効処理時にはシリサイドを形成して析出し、強度及び導電率の改善に寄与することもできる。これらの添加元素は導電率をほとんど低下しないことから積極的に添加しても良いが、添加量が多い場合は逆に特性を損なう恐れがある。そこで、Cr及びCoは一方又は両方を合計で1.0質量%まで添加するのがよく、0.005~1.0質量%添加するのが好ましい。
(2)Mg、Mn
 MgやMnはOと反応するため溶湯の脱酸効果が得られる。また、一般的に合金強度を向上させる元素として添加される元素である。最も有名な効果としては応力緩和特性の向上であり、いわゆる耐クリープ特性である。近年、電子機器の高集積化にともない、高電流が流れ、またBGAタイプのような熱放散性が低い半導体パッケージにおいては、熱により素材が劣化する恐れがあり、故障の原因となる。特に、車載する場合はエンジンまわりの熱による劣化が懸念され、耐熱性は重要な課題である。これらの理由で積極的に添加しても良い元素である。ただし、添加量が多すぎると曲げ加工性への悪影響が無視できなくなる。そこで、Mg及びMnは一方又は両方を合計で0.5質量%まで添加するのがよく、0.005~0.4質量%添加するのが好ましい。
(3)Sn
 SnはMgと同様の効果がある。しかしMgと異なり、Cu中に固溶する量が多いため、より耐熱性が必要な場合に添加される。しかしながら、量が増えれば導電率は著しく低下する。よって、Snは0.5質量%まで添加するのがよく、0.1~0.4質量%質量%添加するのが好ましい。ただし、MgとSnを共に添加するときは導電率への悪影響を抑えるために両者の合計濃度を1.0質量%までとし、好ましくは0.8質量%までとするのが望ましい。
(4)Zn
 Znははんだ脆化を抑制する効果がある。ただし、添加量が多いと導電率が低下するので、0.5質量%まで添加するのがよく、0.1~0.4質量%添加するのが好ましい。
(5)Fe、Al、P
 これらの元素も合金強度を向上させることのできる元素である。必要に応じて添加すればよい。ただし、添加量が多いと添加元素に応じて特性が悪化するので、0.5質量%まで添加するのがよく、0.005~0.4質量%添加するのが好ましい。
 上記のCr、Co、Mg、Mn、Sn、Fe、Al及びPは合計で1.0質量%を超えると製造性を損ないやすいので、好ましくはこれらの合計は1.0質量%以下とし、より好ましくは0.5質量%以下とする。
Ni-Si化合物粒子
 本発明においては、銅マトリックス中に析出するNi-Si化合物粒子を小粒子と大粒子の二種類に分け、それぞれの個数密度及び粒径、さらにはそれらの相互関係も制御する。本発明において、小粒子とは粒径が0.01μm以上で0.05μm未満であるNi-Si化合物粒子を指し、大粒子とは粒径が0.05μm以上で5.0μm未満であるNi-Si化合物粒子を指す。小粒子は主として結晶粒内に析出した粒子であり、大粒子は主として結晶粒界に析出した粒子である。また、Ni-Si化合物粒子とは、元素分析によってNi及びSiの両者が検出される粒子のことを指す。小粒子は主に合金の強度及び耐熱性に寄与し、大粒子は主に導電率の維持及び結晶粒の微細化に寄与する。
 結晶粒内に析出するNi-Si化合物粒子は一般に数十nm程度の微細な析出物となることができる。そのうち、0.05μm未満であるNi-Si化合物粒子は転位のピン止め効果を有するため、転位密度が高くなり、合金全体の強度が向上しやすい。この程度の粒径のNi-Si化合物粒子は粒子間距離が小さく、数も多いために強度に寄与する率が高い。また、加熱時による転移の移動を妨げる作用があることから、耐熱性を向上させる。
 しかしながら、この程度の大きさの粒子、とりわけ0.01μm未満のNi-Si化合物粒子は大きなひずみが加えられると剪断されて粒子の表面積が減少するために、剪断に必要な力が減少する。従って転位ループが残されずに転位密度が高くならない。従って0.01μm未満のNi-Si化合物粒子は強度に寄与しにくい。剪断された粒子は銅母相中に再度固溶し、導電率の低下を招くおそれもある。また、剪断された粒子は再結晶の核生成サイトとして働かないので、再結晶粒も粗大になる可能性が高くなる。粗大な結晶粒は強度や曲げ性に悪影響を与える。
 従って、粒径が0.01μm以上で0.05μm未満の小粒子の個数密度を制御することが有利となる。小粒子は強度向上に大きく寄与する一方で多くなると導電率を低下させやすいことから、強度及び導電率のバランスを図る上では、小粒子の個数密度を1mm2当たり106-1010個とすることが必要である。小粒子の個数密度は、透過型電子顕微鏡で組織観察して測定することができる。
 一方、結晶粒界に析出するNi-Si化合物粒子は一般に数百nm~数μm程度の大きさの析出物となることができる。そのうち、0.05μm以上で5.0μm未満であるNi-Si化合物粒子は剪断されない強い粒子として作用することができる。小粒子と同様に合金の強度と耐熱性を向上させることができるが、粒径が大きいために粒子の数が少なく、粒子間距離が大きいために強度、耐熱性への寄与は小粒子より小さい。しかしながら大きなひずみが加えられても剪断されないために、導電率の低下がほとんど無い。また、剪断されない粒子は再結晶の際の核生成サイトとして働くことができる。従って、大粒子によって微細な結晶粒が形成しやすくなる。微細な結晶粒は特に強度及び曲げ性に寄与する。大きさが5.0μmを超える粒子が増加していくと、小粒子の形成に利用されるべきNi及びSiが不足して強度が低下しやすくなる。材料にAgめっきなどを行った場合に局所的にめっき厚が厚くなり、突起状の欠陥を招くおそれもある。
 従って、0.05μm以上で5.0μm未満の大粒子の個数密度を制御することが有利となる。大粒子は結晶粒の微細化や導電率の向上に寄与する一方で多くなると小粒子の個数密度を低下させやすいことから、大粒子と小粒子の数の比が適切な範囲に無い場合、強度-導電率の両立はバランスが崩れる。具体的には、大粒子が多くなれば強度が低下し、小粒子が多くなれば導電率が低下する。そこで、強度及び導電率のバランスを図る上では、0.05μm以上で5.0μm未満の粒径範囲における個数密度を小粒子と比べて1/10000~1/10とすることが必要である。大粒子の個数密度は、走査電子顕微鏡で組織観察して測定することができる。
 小粒子及び大粒子の平均粒径の差を適切な範囲に制御することで、小粒子と大粒子の両者の利点が生かしながら、両者の欠点を補完する効果が大きくなる。小粒子の平均粒径に対する大粒子の平均粒径の比を2~100とするのが好ましい。
 結晶粒は微細であることが強度及び曲げ性の観点から有利であるが、小さすぎると粒界に析出する大粒子と粒内に析出する小粒子のバランスが崩れる。そこで、本発明に係る銅合金では、圧延方向に平行な厚み方向の断面から観察した時に円相当径で表して平均結晶粒径を5~30μmとするのが好ましい。
製造方法
 次に本発明に係る銅合金の製造方法に関して説明する。本発明に係る銅合金はCu-Ni-Si系合金の慣例の製造工程を基本としながら、一部の特徴的な工程を経て製造することができる。
 まず大気溶解炉を用い、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、600~1000℃の高温で加熱して、Ni-Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。
 晶出粒子の粗大化を抑制するためにはNi及びSi添加後溶湯を1300℃以上の温度に5分以上保持することが重要となる。
 また、その後の熱間圧延前においては加熱温度、保持時間を制御し、かつ熱間圧延終了時の材料温度を制御するのが望ましい。しかしながら、一般的にNi及びSi濃度が高くなると、加熱温度が高い場合は熱間圧延で割れが生じることが知られている。従って、熱間圧延前の加熱温度は800-1000℃程度の高い温度とし、割れが生じた場合はより低い温度を選定する。800℃未満の低い温度を選定した場合は晶出粒子の低減を目的として保持時間を長くすることが必要で、温度にもよるが3時間程度の保持でほとんどの粒子を5μmより小さくすることができる。熱間圧延終了時の板厚は20mmより薄くすることで冷却が早くなり、特性に寄与しない析出物の析出を抑制することができる。この際の温度は600℃以上の高い温度で終了してもよいが、後の工程において溶体化が困難となる場合は、より低い温度で終了する方が有効である。
 更に、熱間圧延にて溶体化処理を兼ねる場合は、終了後の空冷(放冷)によって析出粒子が析出する場合があるので、必要に応じて水冷等の冷却を実施すると効果的である。
 また、本発明では溶体化処理の条件を厳密に制御する。具体的には添加元素、特にNiを十分に固溶させるために、Ni濃度に応じて一定程度以上の溶体化温度を選定する。但し、あまり高すぎると結晶粒径が大きくなり過ぎるので高ければよいというものでもない。具体的には、Ni濃度が高ければ高い温度とし、おおまかな目安として1.5%では650-700℃、2.5%では800-850℃、3.5%では900-950℃程度とする。より一般化すれば、y=125x+500±25(式中、xはNiの添加濃度(質量%)、yは溶体化温度(℃))程度とする。そして、大粒子及び小粒子の析出状態を本発明で規定する範囲に収める上では溶体化処理後の結晶粒径が圧延方向に直角な断面で観察したときに5-30μmの範囲になるように溶体化処理の温度及び時間を調節することが重要である。また、溶体化処理時の材料の板厚が大きいと、溶体化処理後に水冷しても冷却速度が十分に得られず、固溶させた添加元素が冷却中に析出してしまうおそれがある。従って、溶体化処理を実施する際の板厚は0.3mm以下とするのが望ましい。また、添加元素の析出を抑制する上では溶体化温度から400℃までの平均冷却速度を10℃/秒以上とするのが望ましく、15℃/秒以上とするのがより望ましい。このような冷却速度は板厚が0.3mm以下程度であれば空冷で達成できるが、水冷するのがなお良い。ただし、あまり冷却速度を高くしても製品の形状が悪くなるので30℃/秒以下とするのが好ましく、20℃/秒以下とするのがより好ましい。
 溶体化処理の後は求める特性に応じて適切な加工度(圧下率)で冷間加工を行うことが重要である。加工度が高すぎると曲げ加工性に異方性が現れ、低すぎると強度が高くならない。曲げ加工性及び大粒子による特性向上効果の両立を狙うなら、溶体化処理後に加工度20~50%冷間圧延を行うのが好ましい。加工度(%)は(加工前の板厚-加工後の板厚)/加工前の板厚×100によって表すことができる。
 また、本発明では時効処理の条件も重要となる。本発明に係る銅合金を製造するにあたっては、一回の時効処理で大粒子及び小粒子の分布状態を制御することが望ましい。特許文献1では時効処理を二回することで大粒子と小粒子を析出させる方法を採用しているが、一般的に知られたこととして、一端析出物が析出した状態では、銅中に固溶したNi、Si濃度が低くなるために、Ni、Siが拡散しにくく、従って析出しにくくなる。そのため、本発明が意図するような個数密度の小粒子が得られない。また、2回目の時効処理時に、1回目の時効処理で既に生成している析出粒子の大きさが影響を受けるため、粒子径や密度の制御が困難である。
 一回の時効処理で大粒子と小粒子を所望の範囲にするためには前工程で溶体化処理及び冷間圧延を適切に行っていることが前提であるが、温度と時間を適切な範囲にすることが重要である。この時効処理で強度と導電率が上昇する。時効処理は300~600℃の温度で0.5~50hとするが、加熱温度が高いほど短時間、加熱温度が低いほど長時間とする。高温で長時間加熱するとNi-Si化合物粒子が粗大化しやすく、低温で短時間加熱するとNi-Si化合物粒子が十分に析出しないからである。具体的には、300~500℃ではy=-0.115x+61(xは加熱温度(℃)、yは時効時間(h))程度とすることができ、500~600℃ではy=-0.0275x+17.25(xは加熱温度(℃)、yは時効時間(h))程度とすることができる。例えば600℃では0.5h-1h程度、500℃では2h-5h程度、400℃では10h-20hとすればよい。より高い強度を得るために、時効後に冷間圧延を行なうこともできる。時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行なってもよい。
 本発明に係る銅合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明による銅合金は、高い強度及び高い電気伝導性(又は熱伝導性)を両立させることが要求されるリードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品に使用することができる。
 以下に本発明の具体例を示すが、これら実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
 表1~表4に記載の各種成分組成の銅合金を、高周波溶解炉で1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で1時間加熱後、板厚10mmまで熱間圧延し(熱間圧延終了時の材料温度は500℃)、速やかに水中冷却を行った。表面のスケール除去のため厚さ8mmまで面削を施した後、冷間圧延により厚さ0.2mmの板とした。次に溶体化処理を表1~表4に記載の各条件で実施した後、室温まで水中冷却した。このとき結晶粒径は添加元素濃度や溶体化条件によって変化する。その後0.1mmまで冷間圧延して、最後に表1~表4に記載の各条件で不活性雰囲気中で時効処理を施して、各試験片を製造した。表1(実施例)及び表3(比較例)はCu-Ni-Si系銅合金の製造例を示し、表2及び表4は更にMg、Cr、Sn、Zn、Mn、Feを適宜添加したCu-Ni-Si系銅合金の製造例を示す。
 このようにして得られた各合金につき各特性評価を行い、結果を表1~表4に記載した。
 強度については圧延平行方向での引っ張り試験を行い、引張り強さ及び0.2%耐力(Mpa)を測定した。
 導電率(%IACS)についてはダブルブリッジによる体積抵抗率測定により求めた。
 曲げ性の評価は、JIS H 3130に従って、Goodway(曲げ軸が圧延方向と直角方向)及びBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
 結晶粒径は、溶体化処理直後に、走査電子顕微鏡(SEM):HITACHI-S-4700を用いて測定した。圧延方向に平行な厚み方向の断面をFIBにより切断して試料とした。結晶粒径は加工方向の幅について、10個の結晶粒の平均値を求めた。なお、溶体化処理後に冷間圧延をしているため、最終製品では結晶粒が厚み方向に潰され、圧延方向に延びているが、面積は保存されることから、最終製品を組織観察したのと同様の結果となる。
 最終製品からは以下の方法で結晶粒径を測定することが可能である。まず、圧延方向に平行な厚み方向の断面を電解研磨し、SEMにより断面組織を観察し、単位面積当たりの結晶粒の数をカウントする。そして、全観察視野の面積を合計し、それをカウントした結晶粒の合計で除し、結晶粒一個あたりの面積を計算する。その面積より、その面積と同じ面積を有する真円の直径(円相当径)を計算し、これを平均結晶粒径とすることができる。
 大粒子及び小粒子の粒径は任意の断面から観察して良い。実施例は製品の圧延方向の平行断面に対して、大粒子を走査型電子顕微鏡(HITACHI-S-4700)により、小粒子を透過型電子顕微鏡(HITACHI-H-9000)によりそれぞれ10視野観察してそれぞれの粒子が100個程度観察できるように実施した。析出物の大きさが5~100nmの場合は50万倍~70万倍の倍率、100~5000nmの場合は5~10万倍で撮影を行った。なお析出物の大きさが5nmより小さいものは観察が不可能である。5000nmより大きいものは走査型電子顕微鏡で観察可能である。
 このように観察された粒子について、個々の粒子の長径と短径から面積を計算し、その面積より、その面積と同じ面積を有する真円の直径(円相当径)を計算し、これを粒径とすることができる。粒径から小粒子と大粒子に分け、それぞれ粒子径と粒子の数を集計し、粒子径の和を粒子数で除して平均粒子径とし、粒子数の和を観察視野の合計面積で除して個数密度を求めた。ここで、長径とは、粒子の重心を通り、粒子の境界線との交点を両端にもつ線分のうち、もっとも長い線分の長さを指し、短径とは粒子の重心を通り、粒子の境界線との交点を両端にもつ線分のうち、もっとも短い線分の長さを指す。
 観察した粒子がNi-Si化合物粒子であることは、EDSを搭載した走査型電子顕微鏡、特に元素分析の精度が高い電界放射型電子顕微鏡による元素マッピング、小さい析出物についてはEELSを搭載した透過型電子顕微鏡による元素マッピングの方法により確認した。
 なお、最終製品においては、転位が非常に多く析出物が観察しにくい場合があり、その場合、観察を容易にするために析出しない200℃程度の温度で歪取り焼鈍を実施しても良い。また、一般的な透過型電子顕微鏡の試料作成において、電解研磨法が用いられるが、FIB(Focused Ion Beam:集束イオンビーム)による薄膜作成を行って測定しても良い。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表3に記載の本発明の実施例に相当する銅合金については、強度、導電率及び曲げ加工性がバランス良く保たれていることが分かる。
 比較例1はSiが組成の範囲を外れたため、Ni/Si比も適切な比ではなくなり、粗大な晶出物により熱間圧延中に割れが生じた。
 比較例2はNiが組成の範囲を外れたため、Niが過剰状態となった。これにより熱間加工性が劣化し、熱間圧延中に割れた。
 比較例3は溶体化温度が低いため、粗大な粒子が残留した。その結果、導電率は高くなったが、小粒子の数密度が減少したため強度が低くなった。また、曲げの際、粗大な粒子を起点として破断した。
 比較例4は溶体化温度が高いため、結晶粒径が大きくなり、大粒子が減少する一方で、小粒子の数が増えた。そのため、強度が高くなったが、導電率は低下した。溶体化時の結晶粒が大きいため、曲げの際、粒界破壊により曲げ性が劣化した。
 比較例5は特許文献1に記載の銅合金に相当する。2回時効したため、2回目の時効で析出した小粒子の大きさが小さく、かつ数密度が著しく減少した。大粒子と小粒子の比は適切だが、小粒子の数密度が低すぎるため、強度が低くなった。
 比較例6は時効温度が高いため、粗大な析出物が増えた。その結果、小粒子の密度が減少し、強度が低下した。また導電率は高くなると思われたが、時効温度が高いため、再固溶現象により導電率も低下した。曲げは粗大な粒子を起点として破断した。
 比較例7は時効時間が長すぎたため、小粒子の大きさが大きくなってしまい、小粒子の数密度もそれに伴い小さくなり、強度が低下した。
 比較例8は時効時間が短すぎたため、析出粒子が無く、強度が低下した。
 比較例9は時効時間が長すぎたため、大粒子と小粒子の区別がつかず、大粒子がほとんどとなったため、導電率は高いが、強度が低かった。
 比較例10は時効時間が短すぎたため、析出粒子が無く、強度が低かった。
 比較例11は特許文献2に記載の銅合金に相当する。中間の冷間圧延が無いために、大粒子の数が減少して導電率が低下した。
 比較例12はMgの添加量が多すぎたためMgO等の粗大な介在物が増加し、曲げ性が劣化した。但し、CrとSiの析出物により強度は高くなった。
 比較例13はSnとZnにより耐熱剥離性が向上したが、添加量が多いため導電率が低下した。
 比較例14はPの添加量が多いため粗大な介在物が増加し、曲げ性が劣化した。なお、Fe析出により強度は高くなった。
 比較例15はTi添加量が多いため、導電率が著しく低下した。
 比較例16はZr添加量が多いため、Zr起因の介在物が増加し、曲げ性が劣化した。
 比較例17はAl-Zrの粗大析出物が多数析出した。それを起因としてめっき時の欠陥(突起物)を発生させた。
 比較例18はCu-Zr、Cu-Tiの粗大析出物(介在物)が起因となってめっき時に多数の欠陥(突起物)を発生させた。

Claims (6)

  1.  Ni:0.4~6.0質量%、Si:0.1~2.0質量%を含有し、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、粒径が0.01μm以上で0.05μm未満であるNi-Si化合物小粒子と、粒径が0.05μm以上で5.0μm未満であるNi-Si化合物大粒子が存在しており、小粒子の個数密度が1mm2当たり106-1010個であり、大粒子の個数密度が前記小粒子の個数密度と比べて1/10000~1/10である電子材料用銅合金。
  2.  小粒子の平均粒径に対する大粒子の平均粒径の比が2~100である請求項1記載の電子材料用銅合金。
  3.  平均結晶粒径が圧延方向に平行な厚み方向の断面から観察した時に円相当径で表して5~30μmである請求項1又は2記載の電子材料用銅合金。
  4.  更にCr、Co、Mg、Mn、Fe、Sn、Zn、Al及びPから選択される1種又は2種以上を合計で1.0質量%まで含有する請求項1~3の何れか一項に記載の電子材料用銅合金。
  5.  請求項1~4の何れか一項に記載の銅合金からなる伸銅品。
  6.  請求項1~4の何れか一項に記載の銅合金を備えた電子部品。
PCT/JP2009/056535 2008-03-31 2009-03-30 電子材料用Cu-Ni-Si系合金 WO2009123136A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008093888A JP5367999B2 (ja) 2008-03-31 2008-03-31 電子材料用Cu−Ni−Si系合金
JP2008-093888 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123136A1 true WO2009123136A1 (ja) 2009-10-08

Family

ID=41135510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056535 WO2009123136A1 (ja) 2008-03-31 2009-03-30 電子材料用Cu-Ni-Si系合金

Country Status (3)

Country Link
JP (1) JP5367999B2 (ja)
TW (1) TWI381398B (ja)
WO (1) WO2009123136A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019910A (ja) * 2012-07-18 2014-02-03 Mitsubishi Shindoh Co Ltd 優れたばね限界値及び耐応力緩和性を有するSnめっき後の耐熱剥離性が良好なCu−Ni−Si系銅合金板
US20140116583A1 (en) * 2012-10-31 2014-05-01 Dowa Metaltech Co., Ltd. Cu-Ni-Co-Si BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME
CN105408509A (zh) * 2013-07-16 2016-03-16 古河科技材料株式会社 抗应力腐蚀性优异的由Cu-Al-Mn系合金材料构成的伸展材及其用途
US10092970B2 (en) 2015-01-09 2018-10-09 Jx Nippon Mining & Metals Corporation Titanium-copper alloy having plating layer
CN115094266A (zh) * 2022-07-05 2022-09-23 中南大学 一种高强导电弹性铜合金及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411693B (zh) * 2010-04-02 2013-10-11 Jx Nippon Mining & Metals Corp Cu-Ni-Si alloy for electronic materials
JP5654571B2 (ja) * 2010-04-02 2015-01-14 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si系合金
JP4672804B1 (ja) 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP4834781B1 (ja) 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系合金
JP5734156B2 (ja) * 2010-10-15 2015-06-10 Dowaメタルテック株式会社 銅合金板材およびその製造方法
JP5827530B2 (ja) * 2011-09-16 2015-12-02 三菱伸銅株式会社 優れたばね限界値及び耐応力緩和性を有するせん断加工性が良好なCu−Ni−Si系銅合金板
JP6246454B2 (ja) * 2011-11-02 2017-12-13 Jx金属株式会社 Cu−Ni−Si系合金及びその製造方法
JP5189708B1 (ja) * 2011-12-22 2013-04-24 三菱伸銅株式会社 耐金型磨耗性及びせん断加工性が良好なCu−Ni−Si系銅合金板及びその製造方法
JP6111028B2 (ja) * 2012-03-26 2017-04-05 Jx金属株式会社 コルソン合金及びその製造方法
JP2016084542A (ja) * 2012-03-26 2016-05-19 Jx金属株式会社 コルソン合金及びその製造方法
JP5773929B2 (ja) * 2012-03-28 2015-09-02 株式会社神戸製鋼所 曲げ加工性及び耐応力緩和特性に優れる電気電子部品用銅合金板
JP6126791B2 (ja) * 2012-04-24 2017-05-10 Jx金属株式会社 Cu−Ni−Si系銅合金
JP6581755B2 (ja) * 2013-08-09 2019-09-25 古河電気工業株式会社 銅合金板材およびその製造方法
JP6050738B2 (ja) * 2013-11-25 2016-12-21 Jx金属株式会社 導電性、成形加工性および応力緩和特性に優れる銅合金板
JP6113061B2 (ja) * 2013-11-25 2017-04-12 Jx金属株式会社 導電性、耐応力緩和特性および成形加工性に優れる銅合金板
WO2016006053A1 (ja) * 2014-07-09 2016-01-14 古河電気工業株式会社 銅合金板材、コネクタ、及び銅合金板材の製造方法
WO2016059707A1 (ja) * 2014-10-16 2016-04-21 三菱電機株式会社 Cu-Ni-Si合金及びその製造方法
DE102015001293B4 (de) * 2015-02-02 2022-11-17 Isabellenhütte Heusler Gmbh & Co. Kg Stromschienenanordnung
JP6830135B2 (ja) * 2019-08-06 2021-02-17 Jx金属株式会社 電子部品用Cu−Ni−Co−Si合金
CN111172423B (zh) * 2020-03-08 2021-10-29 沈阳有色金属研究所有限公司 一种白铜合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641660A (ja) * 1992-07-28 1994-02-15 Mitsubishi Shindoh Co Ltd 微細組織を有する電気電子部品用Cu合金板材
JPH10219374A (ja) * 1997-02-10 1998-08-18 Kobe Steel Ltd 剪断加工性に優れる高強度銅合金
JP2007100145A (ja) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd 曲げ加工性と疲労特性を改善した銅合金板材
JP2008001937A (ja) * 2006-06-21 2008-01-10 Hitachi Cable Ltd 端子・コネクタ用銅合金材及びその製造方法
WO2008032738A1 (fr) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Matériau de plaque en alliage de cuivre pour un équipement électrique/électronique et procédé pour produire celui-ci

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701288B2 (ja) * 1988-02-29 1998-01-21 株式会社島津製作所 ギヤポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641660A (ja) * 1992-07-28 1994-02-15 Mitsubishi Shindoh Co Ltd 微細組織を有する電気電子部品用Cu合金板材
JPH10219374A (ja) * 1997-02-10 1998-08-18 Kobe Steel Ltd 剪断加工性に優れる高強度銅合金
JP2007100145A (ja) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd 曲げ加工性と疲労特性を改善した銅合金板材
JP2008001937A (ja) * 2006-06-21 2008-01-10 Hitachi Cable Ltd 端子・コネクタ用銅合金材及びその製造方法
WO2008032738A1 (fr) * 2006-09-12 2008-03-20 The Furukawa Electric Co., Ltd. Matériau de plaque en alliage de cuivre pour un équipement électrique/électronique et procédé pour produire celui-ci

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019910A (ja) * 2012-07-18 2014-02-03 Mitsubishi Shindoh Co Ltd 優れたばね限界値及び耐応力緩和性を有するSnめっき後の耐熱剥離性が良好なCu−Ni−Si系銅合金板
US20140116583A1 (en) * 2012-10-31 2014-05-01 Dowa Metaltech Co., Ltd. Cu-Ni-Co-Si BASED COPPER ALLOY SHEET MATERIAL AND METHOD FOR PRODUCING THE SAME
US9412482B2 (en) * 2012-10-31 2016-08-09 Dowa Metaltech Co., Ltd. Cu-Ni-Co-Si based copper alloy sheet material and method for producing the same
CN105408509A (zh) * 2013-07-16 2016-03-16 古河科技材料株式会社 抗应力腐蚀性优异的由Cu-Al-Mn系合金材料构成的伸展材及其用途
US10400311B2 (en) 2013-07-16 2019-09-03 Furukawa Techno Material Co., Ltd. Wrought material comprising Cu—Al—Mn-based alloy excellent in stress corrosion resistance and use thereof
US10092970B2 (en) 2015-01-09 2018-10-09 Jx Nippon Mining & Metals Corporation Titanium-copper alloy having plating layer
CN115094266A (zh) * 2022-07-05 2022-09-23 中南大学 一种高强导电弹性铜合金及其制备方法

Also Published As

Publication number Publication date
TWI381398B (zh) 2013-01-01
JP5367999B2 (ja) 2013-12-11
JP2009242926A (ja) 2009-10-22
TW200949860A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
JP5367999B2 (ja) 電子材料用Cu−Ni−Si系合金
JP5654571B2 (ja) 電子材料用Cu−Ni−Si系合金
JP4596493B2 (ja) 導電性ばね材に用いられるCu−Ni−Si系合金
JP4303313B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4937815B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4913902B2 (ja) 電気・電子部品用銅合金材料の製造方法
JP4837697B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP4440313B2 (ja) 電子材料用Cu−Ni−Si−Co−Cr系合金
WO2011125554A1 (ja) 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法
JP6306632B2 (ja) 電子材料用銅合金
JP4834781B1 (ja) 電子材料用Cu−Co−Si系合金
JP6222885B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP2012229467A (ja) 電子材料用Cu−Ni−Si系銅合金
JP5524901B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
US20170096725A1 (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP7311651B1 (ja) 電子材料用銅合金及び電子部品
JP2016183418A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
TWI411693B (zh) Cu-Ni-Si alloy for electronic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727553

Country of ref document: EP

Kind code of ref document: A1