WO2009119165A1 - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
WO2009119165A1
WO2009119165A1 PCT/JP2009/052141 JP2009052141W WO2009119165A1 WO 2009119165 A1 WO2009119165 A1 WO 2009119165A1 JP 2009052141 W JP2009052141 W JP 2009052141W WO 2009119165 A1 WO2009119165 A1 WO 2009119165A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
engine
fuel injection
control means
exhaust gas
Prior art date
Application number
PCT/JP2009/052141
Other languages
English (en)
French (fr)
Inventor
豪 朝井
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN2009801099327A priority Critical patent/CN101978149A/zh
Priority to EP09724482A priority patent/EP2275657A1/en
Priority to US12/934,059 priority patent/US20110023824A1/en
Publication of WO2009119165A1 publication Critical patent/WO2009119165A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/02Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by cutting out a part of engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine that performs reduced-cylinder operation at a low temperature start.
  • the reduced cylinder operation is an operation in which fuel injection is stopped for a specific cylinder in a multi-cylinder engine having a plurality of cylinders.
  • An engine that performs a reduced cylinder operation at a low temperature start is known.
  • the cold start is to start the engine in a state where the temperature of the combustion chamber is low, such as in a situation where the outside air temperature is low.
  • the engine disclosed in Japanese Patent Application Laid-Open No. 2001-059432 is configured to perform a reduced-cylinder operation at a low temperature start, and even if the combustion chamber temperature is low, the amount of fuel injection per cylinder is large, and thus combustion is performed. Blue and white smoke is effectively reduced by raising the temperature.
  • the exhaust gas temperature exceeds 200 ° C due to reduced cylinder operation.
  • the activation temperature of a continuously regenerating diesel particulate filter or NOx reduction catalyst installed downstream of the oxidation catalyst is 250 to 300 ° C.
  • the engine disclosed in Japanese Patent Application Laid-Open No. 2001-059432 is disadvantageous in that the exhaust gas can hardly be purified at a low temperature start.
  • An object of the present invention is to provide an engine capable of activating a catalyst of an exhaust purification device at a low temperature start.
  • the engine of the present invention includes an engine main body having a plurality of cylinders, a fuel injection device for injecting fuel into each cylinder, an exhaust purification device having an oxidation catalyst provided in an exhaust path of the engine main body, and the fuel injection device. And a control means for adjusting the fuel injection amount and fuel injection timing according to the engine, wherein the control means is an engine that performs a reduced-cylinder operation in which fuel injection is stopped with respect to a specific cylinder at a low temperature start.
  • the control means is an engine that performs a reduced-cylinder operation in which fuel injection is stopped with respect to a specific cylinder at a low temperature start.
  • exhaust gas temperature detection means for detecting an exhaust gas temperature is provided upstream or downstream of the oxidation catalyst, and the control means determines the fuel injection amount of the post injection based on the exhaust gas temperature. It is preferable to adjust.
  • control means stops the post injection when the exhaust gas temperature becomes equal to or higher than a first predetermined temperature.
  • control means stops the reduced-cylinder operation when the exhaust gas temperature becomes equal to or higher than a second predetermined temperature higher than the first predetermined temperature.
  • the engine according to the present invention further includes a flow rate control unit that blocks or suppresses the air inflow of each cylinder, and the control unit uses the flow rate control unit to set the specific cylinder that has stopped fuel injection during the reduced-cylinder operation. On the other hand, it is preferable to block or suppress air inflow.
  • control means shuts off or suppresses air inflow to the specific cylinder that has stopped fuel injection during the reduced-cylinder operation by the flow rate control means based on the equivalence ratio. .
  • the fuel that does not contribute to the main combustion by the post injection is lightened by the high temperature atmosphere in the operating cylinder that has become high temperature due to the reduced cylinder operation at the time of low temperature start, and the unburned hydrocarbon becomes the oxidation catalyst. It is possible to activate the oxidation catalyst, raise the exhaust gas temperature downstream of the oxidation catalyst, and activate the catalyst of the exhaust purification device.
  • FIG. 1 is a configuration diagram showing an overall configuration of an engine according to Embodiment 1 of the present invention.
  • the flowchart which shows the catalyst protection control which concerns on Embodiment 2 of this invention.
  • the block diagram which shows the whole structure of the engine which concerns on Embodiment 3 of this invention.
  • the block diagram which shows the whole structure of the engine which concerns on Embodiment 4 of this invention.
  • the time chart which similarly shows the restriction
  • the engine 101 is a straight 6-cylinder diesel engine having six cylinders 6a, 6b, 6c, 6d, 6e, and 6f.
  • the engine 101 includes an engine body, an intake pipe 11, an exhaust path, a fuel injection device 14, and an ECU (Engine ContrOl Unit) 70.
  • the intake pipe 11 is branched from the wake of the air cleaner into an intake pipe 11w and an intake pipe 11x.
  • the intake pipe 11w is branched into intake pipes 11a, 11b, and 11c, and the intake pipe 11x is branched into intake pipes 11d, 11e, and 11f. These are connected to the intake manifold 7.
  • the exhaust path is configured by connecting an exhaust purification device by an exhaust pipe 12.
  • the exhaust purification device includes an oxidation catalyst 31, a diesel particulate filter (hereinafter referred to as DPF) 32, and a urea SCR device 33 as a NOx reduction catalyst in order from the exhaust manifold 8 side.
  • DPF diesel particulate filter
  • the oxidation catalyst 31 is a catalyst that accelerates the oxidation reaction of the fuel at a low temperature start and raises the exhaust gas temperature in order to warm the DPF 32 and the urea SCR device 33 arranged in the downstream.
  • the cold start is to start the engine in a state where the temperature of the combustion chamber is low, such as in a situation where the outside air temperature is low.
  • the DPF 32 is a device that removes particulate matter (PM) in the exhaust gas.
  • the urea SCR device 33 is a device that converts NOx to nitrogen by supplying urea from the outside to change to ammonia, and reacting the ammonia with NOx in the exhaust gas.
  • the exhaust pipes 12a, 12b, and 12c connected to the exhaust manifold 8 are aggregated into the exhaust pipe 12w, the exhaust pipes 12d, 12e, and 12f are aggregated into the exhaust pipe 12x, and the exhaust pipe 12w and the exhaust pipe 12x are further aggregated.
  • the exhaust temperature sensor 41 is provided between the oxidation catalyst 31 and the DPF 32 as exhaust gas temperature detection means.
  • the engine body includes a cylinder head 4 and a cylinder block 5.
  • the cylinder head 4 includes an intake manifold 7 that communicates with the intake pipe 11 and an exhaust manifold 8 that communicates with the exhaust pipe 12.
  • the cylinder 6 includes a combustion chamber 9 and a piston 10.
  • the piston 10 reciprocates by airtightly sliding on the inner peripheral surface of the cylinder forming the combustion chamber 9.
  • the crankshaft 2 is a shaft connected to the piston 10 via the connecting rod 3, and performs rotational movement by reciprocating movement of the piston 10.
  • the fuel injection device 14 includes a supply pump (not shown), a common rail 15, and an injector 16.
  • the common rail 15 is a high-pressure container in which high-pressure fuel is accumulated by driving a supply pump.
  • the injector 16 is a device that injects high-pressure fuel accumulated by the common rail 15 into the combustion chamber 9.
  • the ECU 70 includes a controller 50 as control means and a storage means 60.
  • the ECU 70 is connected to the solenoid valves of the injectors 16a, 16b, 16c, 16d, 16e, and 16f, and the exhaust gas temperature sensor 41.
  • the controller 50 has a function of injecting fuel to the cylinders 6a, 6b, 6c, 6d, 6e, and 6f at an optimum pressure by the injectors 16a, 16b, 16c, 16d, 16e, and 16f.
  • the controller 50 has a function of performing reduced cylinder-post injection control.
  • the reduced-cylinder-post-injection control is a control for performing the post-injection control on the operating cylinders 6d, 6e, and 6f during the reduced-cylinder operation at the time of low temperature start. Further, the reduced cylinder-post injection control is performed based on the exhaust gas temperature T immediately after the oxidation catalyst 31 by the exhaust temperature sensor 41.
  • the reduced-cylinder operation is an operation in which the fuel injection by the injectors 16a, 16b, and 16c is stopped and the cylinders 6a, 6b, and 6c are not combusted at a low temperature start.
  • the fuel injection amount of the operating cylinders 6d, 6e, and 6f is increased compared to the normal operation (all cylinder operation). Therefore, even if the combustion chamber temperature is low, the combustion temperature can be raised.
  • the reduced-cylinder operation is to stop the cylinders 6a, 6b, and 6c.
  • Post injection control is fuel injection control in which fuel is injected at least once at a timing that does not contribute to combustion after the top dead center of one combustion cycle.
  • the exhaust gas temperature during the reduced-cylinder operation exceeds 200 ° C, but the activation temperature of the DPF or NOx reduction catalyst installed downstream of the oxidation catalyst is 250 to 300 ° C. In other words, in idle operation, the exhaust gas is hardly purified by the DPF or NOx reduction catalyst.
  • the oxidation catalyst 31 is further compared with that in the simple cylinder reduction operation. Can increase the outlet temperature.
  • the combustion chamber 9 of the operating cylinder is in a high temperature state that cannot be realized in the normal operation.
  • the fuel injected into the combustion chamber 9 in such a state is quickly lightened and mixed with the exhaust gas without adhering to the wall surface of the combustion chamber 9.
  • Lightening means that hydrocarbons are not combusted and are vaporized and thermally decomposed, and this unburned hydrocarbon causes the oxidation catalyst 31 to rapidly oxidize and raise the exhaust gas temperature to 300 ° C. or higher. it can.
  • the exhaust gas can be purified at an early stage by activating the oxidation catalyst 31 immediately after the low temperature start and activating the DPF 32 or the urea SCR device 33. Further, since the post-injection control at the time of reduced cylinder is performed based on the exhaust gas temperature T of the oxidation catalyst 31, the oxidation catalyst 31 can be reliably activated.
  • Embodiment 2 will be described with reference to FIG.
  • the controller 50 has a function of performing catalyst protection control in the reduced cylinder-post injection control in the first embodiment.
  • the storage unit 60 stores preset temperatures T1 and T2 (T1 ⁇ T2).
  • the controller 50 performs the reduced cylinder-post injection control (S110). Next, the controller 50 determines whether the exhaust gas temperature T is equal to or higher than the first predetermined temperature T1 (S120). If the exhaust gas temperature T is not equal to or higher than the first predetermined temperature T1 in S120, the reduced cylinder-post injection control is continued (S110).
  • the controller 50 stops the post injection control. However, the reduced-cylinder operation continues (S130). Next, the controller 50 waits for a predetermined time (S140). Further, the controller 50 determines whether the exhaust gas temperature T is equal to or higher than the second predetermined temperature T2 (S150). If the exhaust gas temperature T is not equal to or higher than the second predetermined temperature T2 in S150, the process waits for a predetermined time (S140). Here, if the exhaust gas temperature T is equal to or higher than the second predetermined temperature T2, the controller 50 stops the reduced-cylinder operation and performs normal control (S160).
  • the oxidation catalyst 31 can be prevented from being damaged by the high temperature. Further, since the normal control is promptly restored, an abnormal increase in the exhaust gas temperature T can be prevented.
  • the engine 102 which is Embodiment 3 is demonstrated using FIG.
  • the engine 102 is an engine in which flow rate adjusting valves 42w and 42x as intake amount adjusting means and an O 2 sensor 43 as equivalent ratio detecting means are added to the engine 101 of the first embodiment. For this reason, descriptions of other means are omitted.
  • the engine 102 performs post-injection control at the time of reduced cylinders as in the first embodiment.
  • the flow rate adjusting valve 42w is provided in the intake pipe 11w.
  • the intake pipe 11w is an intake pipe before the branch of each of the intake pipes 11a, 11b, and 11c.
  • the flow rate adjustment valve 42x is provided in the intake pipe 11x.
  • the intake pipe 11x is an intake pipe before the branch of each of the intake pipes 11d, 11e, and 11f.
  • the flow rate adjusting valves 42w and 42x have a function of adjusting the amount of air passing through the intake pipes 11w and 11x.
  • the suction amount adjusting means is not limited to the flow rate adjusting valves 42w and 42x, and may be a valve having only an opening / closing mechanism.
  • the O 2 sensor 43 is provided between the oxidation catalyst 31 and the DPF 32.
  • the O 2 sensor 43 has a function of detecting the O 2 concentration in the exhaust gas.
  • the controller 50 has a function of calculating an equivalence ratio from the O 2 concentration detected by the O 2 sensor 43.
  • the equivalence ratio detection means is not limited to the O 2 sensor 43 and may be a sensor having an equivalent function.
  • the controller 50 has a function of performing reduced cylinder-post injection control.
  • the controller 50 has a function of adjusting the flow rate adjustment valve 42.
  • the cold air of the outside air is guided to the exhaust pipes 12a, 12b, and 12c as they are in the idle cylinders 6a, 6b, and 6c, and thus the exhaust gas temperature at the inlet of the oxidation catalyst 31 is rapidly cooled. It will be. Therefore, in the third embodiment, the intake air flowing into the idle cylinders 6a, 6b, and 6c is reduced by the flow rate adjusting valve 42w. At the same time, the amount of air passing through the idle cylinders 6a, 6b, and 6c is adjusted by the flow rate adjusting valve 42w so as to provide an amount of air that is necessary and sufficient for reaction in the oxidation catalyst 31.
  • the exhaust gas temperature can be further increased as compared with the post-injection control when the cylinder is reduced.
  • the reduced cylinder-post injection control can reduce the post injection amount with respect to the exhaust gas temperature rise by suppressing the inflow air. Therefore, fuel consumption can be reduced. Further, since the air flowing into the idle cylinder is blocked or suppressed based on the equivalence ratio, the post injection amount can be optimized and the fuel consumption can be reduced.
  • the engine 103 which is Embodiment 4 is demonstrated using FIG.
  • the engine 103 is an engine in which a variable valve device 65 is added to the engine 101 of the first embodiment. For this reason, the description other than the variable valve gear 65 is omitted.
  • the engine 103 performs post-injection control when the cylinder is reduced as in the first embodiment.
  • variable valve operating devices 65a and 65b are devices for changing the lift amount or opening / closing timing of the intake valve 21 or the exhaust valve 22.
  • a known variable valve operating device is used.
  • the controller 50 has a function of performing reduced cylinder-post injection control. Further, the controller 50 has a function of performing variable valve control using the variable valve devices 65a and 65b. Below, two variable valve control is demonstrated.
  • FIG. 5A is a diagram illustrating a normal valve lift amount d for comparison with the present control
  • FIG. 5B is a diagram illustrating the valve lift amount d of the present control.
  • the horizontal axis indicates the crank angle ⁇ in one combustion cycle
  • the broken line on the right side of the graph indicates the lift amount d of the intake valve 21
  • the solid line on the left side of the graph indicates the exhaust valve 22.
  • the lift amount d is shown.
  • the lift amount of each intake valve 21 is limited to ⁇ d with respect to the deactivated cylinders 6a, 6b, and 6c.
  • the exhaust gas temperature can be further increased as compared with the post-injection control when the cylinder is reduced.
  • the reduced cylinder-post injection control can reduce the post injection amount with respect to the exhaust gas temperature rise caused by suppressing the inflow air. Therefore, fuel consumption can be reduced. Further, since the air flowing into the idle cylinder is blocked or suppressed based on the equivalence ratio, the post injection amount can be optimized and the fuel consumption can be reduced. It should be noted that instead of limiting the lift amount of the intake valve 21, it is possible to limit the lift amount of the exhaust valve 22. In this case, the same effect can be obtained.
  • variable operation timing change control that is variable valve control will be described with reference to FIG. 6A is a diagram showing normal valve timings (intake process a1, compression process a2, combustion process a3, exhaust process a4) for comparison with the present control, and FIG. It is a figure which shows the variable motion timing (intake process b1, compression process b2, combustion stroke b3, exhaust process b4) of control.
  • FIG. 6 in this control, the timing of opening the respective exhaust valves 22 is advanced by ⁇ relative to the non-cylinder cylinders 6 a, 6 b, and 6 c. With such a configuration, the air in the idle cylinders 6a, 6b, and 6c is compressed, and high-temperature air is discharged. In this way, the exhaust temperatures of the deactivated cylinders 6a, 6b, 6c can be increased compared to the normal valve timing.
  • the present invention can be used for an engine that performs a reduced-cylinder operation at a low temperature start.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

本発明は、低温始動時において、排気浄化装置の触媒を活性化させることが可能なエンジンを提供することを課題とする。本発明のエンジン(101)は、複数の気筒(6a~6f)を備えるエンジン本体と、前記各気筒(6a-6f)に燃料を噴射する燃料噴射装置(14)と前記エンジン本体の排気経路に設けられ、酸化触媒(31)を備える排気浄化装置と、前記燃料噴射装置(14)による燃料噴射量及び燃料噴射時期を調整するコントローラ(50)と、を具備し、前記コントローラ(50)は、低温始動時には、特定気筒(6a-6c)に対して燃料噴射を休止させる減筒運転を行うエンジン(101)において、前記コントローラ(50)は、低温始動時の前記減筒運転を行うときには、前記燃料噴射を休止した特定気筒以外の気筒(6d-6f)に対して、該運転気筒の1燃焼サイクルの上死点以降に少なくとも1回燃料を噴射するポスト噴射を行う。

Description

エンジン
 本発明は、低温始動時に減筒運転を行うエンジンに関する。
 従来、減筒運転を行うエンジンは公知である。減筒運転とは、複数の気筒を備える多気筒エンジンにおいて、特定気筒に対して燃料噴射を休止させる運転である。また、低温始動時に減筒運転を行うエンジンは公知である。低温始動とは、外気温度が低い状況下等において、燃焼室温度が低温である状態でエンジン始動を行うことである。例えば、特開2001-059432号公報に開示されたエンジンは、低温始動時に減筒運転を行うように構成され、燃焼室温度が低温であっても、1気筒あたりの燃料噴射量が多いため燃焼温度を上昇させることで青白煙を有効に低減している。
 排気ガス温度は、減筒運転によって200℃を上回る。しかし、酸化触媒の下流に設置される連続再生式のディーゼルパティキュレートフィルタ又はNOx還元型触媒等の活性化温度は250~300℃である。つまり、特開2001-059432号公報に開示されたエンジンは、低温始動時において、排気ガスをほとんど浄化できない点で不利である。
 本発明は、低温始動時において、排気浄化装置の触媒を活性化させることが可能なエンジンを提供することを課題とする。
 本発明のエンジンは、複数の気筒を備えるエンジン本体と、前記各気筒に燃料を噴射する燃料噴射装置と前記エンジン本体の排気経路に設けられ、酸化触媒を備える排気浄化装置と、前記燃料噴射装置による燃料噴射量及び燃料噴射時期を調整する制御手段と、を具備し、前記制御手段は、低温始動時には、特定気筒に対して燃料噴射を休止させる減筒運転を行うエンジンにおいて、前記制御手段は、低温始動時の前記減筒運転を行うときには、前記燃料噴射を休止した特定気筒以外の気筒に対して、該運転気筒の1燃焼サイクルの上死点以降に少なくとも1回燃料を噴射するポスト噴射を行う。
 本発明のエンジンにおいては、前記酸化触媒の上流又は下流に排気ガス温度を検出する排気ガス温度検出手段を具備し、前記制御手段は、前記排気ガス温度に基づいて前記ポスト噴射の燃料噴射量を調整することが好ましい。
 本発明のエンジンにおいては、前記制御手段は、前記排気ガス温度が第一所定温度以上となったときには、前記ポスト噴射を停止することが好ましい。
 本発明のエンジンにおいては、前記制御手段は、前記排気ガス温度が第一所定温度以上よりも高い第二所定温度以上となったときには、前記減筒運転を中止することが好ましい。
 本発明のエンジンにおいては、前記各気筒の空気流入を遮断又は抑制する流量制御手段を具備し、前記制御手段は、前記流量制御手段によって、前記減筒運転中の燃料噴射を休止した特定気筒に対し、空気流入を遮断又は抑制することが好ましい。
 本発明のエンジンにおいては、前記制御手段は、前記当量比に基づいて、前記流量制御手段によって、前記減筒運転中の燃料噴射を休止した特定気筒に対し、空気流入を遮断又は抑制ことが好ましい。
 本発明のエンジンによれば、低温始動時の減筒運転によって高温となった運転気筒において、ポスト噴射によって主燃焼に寄与しない燃料が高温雰囲気によって軽質化され、未燃化炭化水素が酸化触媒に導かれ酸化触媒を活性化させ、酸化触媒下流の排気ガス温度を上昇させ、排気浄化装置の触媒を活性化させることができる。
本発明の実施形態1に係るエンジンの全体的な構成を示す構成図。 本発明の実施形態2に係る触媒保護制御を示すフロー図。 本発明の実施形態3に係るエンジンの全体的な構成を示す構成図。 本発明の実施形態4に係るエンジンの全体的な構成を示す構成図。 同じく可変動弁手段の可変動弁リフトの制限を示すタイムチャート図。 同じく可変動弁手段の可変動タイミングを示すダイアグラム図。
 まず、図1を用いて、実施形態1であるエンジン101について説明する。エンジン101は、6つの気筒6a・6b・6c・6d・6e・6fを有する直墳式6気筒ディーゼルエンジンである。エンジン101は、エンジン本体と、吸気管11と、排気経路と、燃料噴射装置14と、及びECU(Engine COntrOl Unit)70と、を備えている。
 吸気管11は、エアクリーナの後流から吸気管11wと吸気管11xに分岐され、該吸気管11wは吸気管11a・11b・11cに分岐され、吸気管11xは吸気管11d・11e・11fに分岐され、これらは吸気マニホールド7に接続されている。
 排気経路は、排気浄化装置を排気管12によって接続して構成されている。排気浄化装置は、排気マニホールド8側から順に、酸化触媒31と、ディーゼルパティキュレートフィルタ(以下、DPF)32と、NOx還元型触媒としての尿素SCR装置33と、を備えている。
 酸化触媒31は、低温始動時において、燃料の酸化反応を促進し、後流に配置されるDPF32及び尿素SCR装置33を温めるために排気ガス温度を上昇させる触媒である。低温始動とは、外気温度が低い状況下等において、燃焼室温度が低温である状態でエンジン始動を行うことである。DPF32は、排気ガス中の粒子状物質(PM)を取り除く装置である。尿素SCR装置33は、尿素を外部から供給してアンモニアに変え、該アンモニアと排気ガス中のNOxを反応させることで、NOxを窒素に変える装置である。
 排気マニホールド8に接続される排気管12a・12b・12cは、排気管12wに集約され、排気管12d・12e・12fは排気管12xに集約され、さらに排気管12wと排気管12xとが集約される。排気温度センサー41は、排気ガス温度検出手段として、酸化触媒31とDPF32との間に設けられている。
 エンジン本体は、シリンダーヘッド4と、シリンダーブロック5と、を備えている。シリンダーヘッド4は、吸気管11と連通する吸気マニホールド7と、排気管12と連通する排気マニホールド8と、を備えている。気筒6は、燃焼室9と、ピストン10と、を備えている。ピストン10は、燃焼室9を形成するシリンダーの内周面を気密的に摺動して往復運動を行うものである。クランク軸2は、コンロッド3を介してピストン10に連結される軸であり、ピストン10の往復運動によって回転運動を行うものである。
 燃料噴射装置14は、サプライポンプ(図示略)と、コモンレール15と、インジェクタ16と、を備えている。コモンレール15は、サプライポンプが駆動されることにより高圧燃料が蓄圧される高圧容器である。インジェクタ16は、コモンレール15によって蓄圧された高圧燃料を燃焼室9に噴射する装置である。
 ECU70は、制御手段としてのコントローラ50と、記憶手段60と、を備えている。また、ECU70には、インジェクタ16a・16b・16c・16d・16e・16fのそれぞれの電磁弁、並びに排気ガス温度センサー41が接続されている。
 コントローラ50は、インジェクタ16a・16b・16c・16d・16e・16fによって、最適な時期に最適な圧力で各気筒6a・6b・6c・6d・6e・6fに燃料を噴射する機能を有する。
 コントローラ50は、減筒-ポスト噴射制御を行う機能を有する。減筒-ポスト噴射制御とは、低温始動時において、減筒運転中の運転気筒6d・6e・6fに対しポスト噴射制御を行う制御である。また、減筒-ポスト噴射制御は、排気温度センサー41による酸化触媒31直後の排気ガス温度Tに基づいてポスト噴射制御を行うものとする。
 減筒運転とは、低温始動時にインジェクタ16a・16b・16cによる燃料噴射を休止して気筒6a・6b・6cを燃焼させない運転である。減筒運転は、通常運転(全気筒運転)に比較して、運転気筒6d・6e・6fの燃料噴射量が増加する。そのため、燃焼室温度が低温であっても、燃焼温度を上昇させることができる。本実施形態では、以降において、減筒運転とは気筒6a・6b・6cを休止させるものとする。
 ポスト噴射制御とは、1燃焼サイクルの上死点以降に燃焼に寄与しないタイミングで少なくとも1回燃料を噴射する燃料噴射制御である。
 減筒運転時の排気ガス温度は200℃を上回るが、酸化触媒の下流に設置されるDPF又はNOx還元型触媒等の活性化温度は250~300℃である。つまり、アイドル運転において、DPF又はNOx還元型触媒等では、排気ガスはほとんど浄化されていなかった。しかし、実施形態1では、減筒運転中の運転気筒に対し上死点以降に燃焼に寄与しない燃料噴射いわゆるポスト噴射を行うことで、単なる減筒運転時と比較しても、さらに酸化触媒31の出口温度を上げることができる。
 上記作用について、詳細に説明する。すなわち、上述したように減筒運転においては、運転気筒の燃焼室9は、通常運転では実現できない高温状態となる。このような状態の燃焼室9に噴射された燃料は、速やかに軽質化し、燃焼室9の壁面に付着することなく排気と混合される。軽質化とは、炭化水素が燃焼せず気化・熱分解されることをいうこの未燃炭化水素によって、酸化触媒31は速やかに酸化反応を起こし、排気ガス温度を300℃以上に上昇させることができる。
 このようにして、酸化触媒31を低温始動直後から活性化させ、DPF32又は尿素SCR装置33を活性化させることによって排気ガスを早期に浄化させることができる。また、酸化触媒31の排気ガス温度Tに基づいて減筒時-ポスト噴射制御を行うため、酸化触媒31を確実に活性化させることができる。
 図2を用いて、実施形態2について説明する。コントローラ50は、実施形態1における上記減筒時-ポスト噴射制御において触媒保護制御を行う機能を有する。ここで、記憶手段60には、予め設定温度T1、T2(T1<T2)が記憶されている。
 コントローラ50は、減筒-ポスト噴射制御を行っている(S110)。次に、コントローラ50は、排気ガス温度Tが第一所定温度T1以上であるかを判定する(S120)。S120において排気ガス温度Tが第一所定温度T1以上でなければ、減筒-ポスト噴射制御を継続する(S110)。
 コントローラ50は、排気ガス温度Tが第一所定温度T1以上であれば、ポスト噴射制御を停止する。ただし減筒運転は継続する(S130)。次に、コントローラ50は、所定時間待機する(S140)。
 また、コントローラ50は、排気ガス温度Tが第二所定温度T2以上であるかを判定する(S150)。S150において排気ガス温度Tが第二所定温度T2以上でなければ、所定時間待機する(S140)。
 ここで、コントローラ50は、排気ガス温度Tが第二所定温度T2以上であれば、減筒運転を中止して、通常制御を行う(S160)。
 このようにして、酸化触媒31が高温により損傷することを防止できる。また、速やかに通常制御に復帰させるため、排気ガス温度Tの異常上昇を防止できる。
 図3を用いて、実施形態3であるエンジン102について説明する。エンジン102は、実施形態1のエンジン101に対し、吸入量調整手段としての流量調整弁42w・42x及び当量比検出手段としてのOセンサー43を追加したエンジンである。そのため、これらの手段以外については説明を省略する。また、エンジン102は、実施形態1同様に減筒時-ポスト噴射制御を行うものとする。
 流量調整弁42wは、吸気管11wに設けられている。吸気管11wとは、吸気管11a・11b・11cのそれぞれの分岐以前までの吸気管である。流量調整弁42xは、吸気管11xに設けられている。吸気管11xとは、吸気管11d・11e・11fのそれぞれの分岐以前までの吸気管である。流量調整弁42w・42xは、吸気管11w・11xを通過する空気量を調整する機能を有する。なお、吸入量調整手段は、流量調整弁42w・42xに限定されることなく、開閉機構のみを有する弁であっても良い。
 Oセンサー43は、酸化触媒31とDPF32との間に設けられている。Oセンサー43は、排気ガス中におけるO濃度を検出する機能を有する。また、コントローラ50は、Oセンサー43によって検出されるO濃度から、当量比を算出する機能を有する。なお、当量比検出手段は、Oセンサー43に限定されることなく、同等の機能を有するセンサーであっても良い。
 コントローラ50は、減筒-ポスト噴射制御を行う機能を有する。また、コントローラ50は、流量調整弁42を調整する機能を有する。
 減筒-ポスト噴射制御を行う場合、休止気筒6a・6b・6cには外気の冷たい空気がそのまま排気管12a・12b・12cへ導かれるため酸化触媒31入口の排気ガス温度は急激に冷却されることとなる。
 そこで、実施形態3では、流量調整弁42wによって、休止気筒6a・6b・6cに流入する吸気空気を低下させる。同時に、酸化触媒31において反応するのに必要十分な空気量を提供するように、流量調整弁42wによって、休止気筒6a・6b・6cを通過する空気量を調整する。
 このような構成とすることで、減筒時-ポスト噴射制御よりも、さらに排気ガス温度を上昇させることができる。言い換えれば、減筒時-ポスト噴射制御は、流入空気を抑制することによる排気ガス温度上昇分に対し、ポスト噴射量を低減できる。そのため、燃費を低減することができる。また、当量比に基づいて、休止気筒への流入空気を遮断又は抑制するため、ポスト噴射量を最適化し、燃費を低減することができる。
 図4を用いて、実施形態4であるエンジン103について説明する。エンジン103は、実施形態1のエンジン101に対し可変動弁装置65を追加したエンジンである。そのため、可変動弁装置65以外については説明を省略する。また、エンジン103は、実施形態1同様に減筒時-ポスト噴射制御を行うものとする。
 可変動弁装置65a・65bは、吸気弁21又は排気弁22のリフト量又は開閉タイミングを変更する装置である。実施形態4では公知の可変動弁装置を用いるものとする。
 コントローラ50は、減筒-ポスト噴射制御を行う機能を有する。また、コントローラ50は、可変動弁装置65a・65bを用いて可変動弁制御を行う機能を有する。以下に、2つの可変動弁制御について説明する。
 図5を用いて、可変動弁制御である可変動弁リフト量変更制御について説明する。図5(a)は本制御との比較のための通常の弁リフト量dを示す図であり、図5(b)は本制御の弁リフト量dを示す図である。また、図5(a)及び(b)は、横軸を1燃焼サイクルにおけるクランク角θとし、グラフの右側の破線は吸気弁21のリフト量dを、グラフの左側の実線は排気弁22のリフト量dを表している。図5に示すように、本制御では、休止気筒6a・6b・6cに対し、それぞれの吸気弁21のリフト量をΔdに制限している。
 このような構成とすることで、減筒時-ポスト噴射制御よりも、さらに排気ガス温度を上昇させることができる。このとき、減筒時-ポスト噴射制御は、流入空気を抑制することによる排気ガス温度上昇分に対し、ポスト噴射量を低減できる。そのため、燃費を低減することができる。また、当量比に基づいて、休止気筒への流入空気を遮断又は抑制するため、ポスト噴射量を最適化し、燃費を低減することができる。なお、吸気弁21のリフト量を制限する代わりに排気弁22のリフト量を制限する構成とすることも可能であり、この場合にも同様の効果が得られる。
 図6を用いて、可変動弁制御である可変動タイミング変更制御について説明する。なお、図6(a)は本制御との比較のための通常の弁タイミング(吸気工程a1、圧縮工程a2、燃焼行程a3、排気工程a4)を示す図であり、図6(b)は本制御の可変動タイミング(吸気工程b1、圧縮工程b2、燃焼行程b3、排気工程b4)を示す図である。図6に示すように、本制御では、休止気筒6a・6b・6cに対し、それぞれの排気弁22を開くタイミングを通常よりαだけ進角させている。
 このような構成とすることで、休止気筒6a・6b・6cの空気は圧縮され高温の空気が排出される。このようにして、通常の弁タイミングに比べて休止気筒6a・6b・6cの排気温度を上昇させることができる。
 本発明は、低温始動時に減筒運転を行うエンジンに利用可能である。

Claims (6)

  1.  複数の気筒を備えるエンジン本体と、
     前記各気筒に燃料を噴射する燃料噴射装置と
     前記エンジン本体の排気経路に設けられ、酸化触媒を備える排気浄化装置と、
     前記燃料噴射装置による燃料噴射量及び燃料噴射時期を調整する制御手段と、を具備し、
     前記制御手段は、低温始動時には、特定気筒に対して燃料噴射を休止させる減筒運転を行うエンジンにおいて、
     前記制御手段は、低温始動時の前記減筒運転を行うときには、前記燃料噴射を休止した特定気筒以外の気筒に対して、該運転気筒の1燃焼サイクルの上死点以降に少なくとも1回燃料を噴射するポスト噴射を行うことを特徴とするエンジン。
  2.  前記酸化触媒の上流又は下流に排気ガス温度を検出する排気ガス温度検出手段を具備し、
     前記制御手段は、前記排気ガス温度に基づいて前記ポスト噴射の燃料噴射量を調整することを特徴とする請求項1記載のエンジン。
  3.  前記制御手段は、前記排気ガス温度が第一所定温度以上となったときには、前記ポスト噴射を停止することを特徴とする請求項2に記載のエンジン。
  4.  前記制御手段は、前記排気ガス温度が第一所定温度以上よりも高い第二所定温度以上となったときには、前記減筒運転を中止することを特徴とする請求項3に記載のエンジン。
  5.  前記各気筒の空気流入を遮断又は抑制する流量制御手段を具備し、
     前記制御手段は、前記流量制御手段によって、前記減筒運転中の燃料噴射を休止した特定気筒に対し、空気流入を遮断又は抑制することを特徴とする請求項1乃至4のいずれか1項に記載のエンジン。
  6.  前記排気経路の当量比を検出する当量比検出手段を備え、
     前記制御手段は、前記当量比に基づいて、前記流量制御手段によって、前記減筒運転中の燃料噴射を休止した特定気筒に対し、空気流入を遮断又は抑制することを特徴とする請求項5記載のエンジン。
PCT/JP2009/052141 2008-03-24 2009-02-09 エンジン WO2009119165A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801099327A CN101978149A (zh) 2008-03-24 2009-02-09 发动机
EP09724482A EP2275657A1 (en) 2008-03-24 2009-02-09 Engine
US12/934,059 US20110023824A1 (en) 2008-03-24 2009-02-09 Engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008076436A JP2009228602A (ja) 2008-03-24 2008-03-24 エンジン
JP2008-076436 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119165A1 true WO2009119165A1 (ja) 2009-10-01

Family

ID=41113373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052141 WO2009119165A1 (ja) 2008-03-24 2009-02-09 エンジン

Country Status (6)

Country Link
US (1) US20110023824A1 (ja)
EP (1) EP2275657A1 (ja)
JP (1) JP2009228602A (ja)
KR (1) KR20100134026A (ja)
CN (1) CN101978149A (ja)
WO (1) WO2009119165A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067032A1 (en) * 2010-09-22 2012-03-22 Winsor Richard E Particulate filter regeneration
US10344702B2 (en) * 2012-07-16 2019-07-09 Ford Global Technologies, Llc Differential fuel injection
US8931255B2 (en) 2012-10-03 2015-01-13 Cummins Inc. Techniques for raising exhaust temperatures
WO2014151082A1 (en) * 2013-03-15 2014-09-25 Tula Technology, Inc. Engine diagnostics with skip fire control
CN103742274B (zh) * 2013-12-13 2017-06-27 潍柴动力股份有限公司 一种发动机节流阀的控制方法和装置
JP6855811B2 (ja) * 2017-01-26 2021-04-07 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP6972809B2 (ja) * 2017-09-12 2021-11-24 いすゞ自動車株式会社 車輌
US11499496B2 (en) 2018-01-16 2022-11-15 Caterpillar Inc. Engine control system and method
JP7234996B2 (ja) * 2020-04-10 2023-03-08 トヨタ自動車株式会社 エンジン装置およびこれを備えるハイブリッド自動車
US11873774B2 (en) * 2021-10-27 2024-01-16 Ford Global Technologies, Llc Method and system for reactivating a catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059432A (ja) 1999-08-20 2001-03-06 Toyota Motor Corp 内燃機関の供給燃料制御装置
JP2002339764A (ja) * 2001-03-13 2002-11-27 Komatsu Ltd ディーゼルエンジン
JP2004360577A (ja) * 2003-06-04 2004-12-24 Toyota Motor Corp 可変気筒エンジンの制御装置
JP2005220880A (ja) * 2004-02-09 2005-08-18 Toyota Motor Corp 多気筒内燃機関の制御装置
JP2006105055A (ja) * 2004-10-07 2006-04-20 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2007239605A (ja) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd 燃料噴射装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994593B2 (ja) * 1999-08-18 2007-10-24 セイコーエプソン株式会社 薄膜素子の転写方法
US20060168945A1 (en) * 2005-02-02 2006-08-03 Honeywell International Inc. Aftertreatment for combustion engines
US20110203258A1 (en) * 2010-02-25 2011-08-25 International Engine Intellectual Property Company , Llc Exhaust valve actuation system for diesel particulate filter regeneration
JP5585246B2 (ja) * 2010-06-30 2014-09-10 マツダ株式会社 自動車搭載用ディーゼルエンジン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059432A (ja) 1999-08-20 2001-03-06 Toyota Motor Corp 内燃機関の供給燃料制御装置
JP2002339764A (ja) * 2001-03-13 2002-11-27 Komatsu Ltd ディーゼルエンジン
JP2004360577A (ja) * 2003-06-04 2004-12-24 Toyota Motor Corp 可変気筒エンジンの制御装置
JP2005220880A (ja) * 2004-02-09 2005-08-18 Toyota Motor Corp 多気筒内燃機関の制御装置
JP2006105055A (ja) * 2004-10-07 2006-04-20 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2007239605A (ja) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd 燃料噴射装置

Also Published As

Publication number Publication date
US20110023824A1 (en) 2011-02-03
CN101978149A (zh) 2011-02-16
KR20100134026A (ko) 2010-12-22
EP2275657A1 (en) 2011-01-19
JP2009228602A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
WO2009119165A1 (ja) エンジン
JP5585246B2 (ja) 自動車搭載用ディーゼルエンジン
US9422848B2 (en) Internal combustion engine and control method for same
EP3090155A1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
JP2009085053A (ja) 圧縮着火内燃機関の制御装置
US20080148719A1 (en) Engine system and a method for a combustion inhibition regeneration of an exhaust gas treatment device in a such system
US20190264591A1 (en) Regeneration control device for exhaust purification device
US20190093571A1 (en) Engine control device
JP2006152841A (ja) 内燃機関の排気浄化装置
JP5287797B2 (ja) エンジンの制御方法及び制御装置
WO2014125870A1 (ja) エンジンの排気浄化装置
EP2642102B1 (en) Control device for internal combustion engine
US10392984B2 (en) NOx reduction control method for exhaust gas aftertreatment device
CN109690040A (zh) 车辆用的后处理***及车辆的后处理方法
EP1936160B1 (en) Exhaust gas treatment device regeneration inhibiting fuel combustion in an engine cylinder
JP2018096264A (ja) 内燃機関の燃料噴射制御装置
JP2006250029A (ja) ディーゼルエンジン及びその燃焼制御方法
JP2012167562A (ja) ディーゼルエンジン
JP5811319B2 (ja) エンジンの排気浄化装置
JP4779386B2 (ja) ディーゼルエンジン
JP5888149B2 (ja) ディーゼルエンジン
CN110030062B (zh) 用于在内燃机的冷启动时减少颗粒排放的方法
JP2006105057A (ja) ディーゼルエンジンの排気浄化装置
JP2006300025A (ja) ディーゼルエンジン
JP2017227169A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109932.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12934059

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6718/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009724482

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107022675

Country of ref document: KR

Kind code of ref document: A