WO2009118784A1 - 発光素子およびその製造方法 - Google Patents

発光素子およびその製造方法 Download PDF

Info

Publication number
WO2009118784A1
WO2009118784A1 PCT/JP2008/000744 JP2008000744W WO2009118784A1 WO 2009118784 A1 WO2009118784 A1 WO 2009118784A1 JP 2008000744 W JP2008000744 W JP 2008000744W WO 2009118784 A1 WO2009118784 A1 WO 2009118784A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
thin film
silicon thin
type
quantum dots
Prior art date
Application number
PCT/JP2008/000744
Other languages
English (en)
French (fr)
Inventor
横山新
雨宮嘉照
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to US12/601,794 priority Critical patent/US8044382B2/en
Priority to JP2008548900A priority patent/JP4392052B2/ja
Priority to PCT/JP2008/000744 priority patent/WO2009118784A1/ja
Publication of WO2009118784A1 publication Critical patent/WO2009118784A1/ja
Priority to US13/237,449 priority patent/US8330141B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/962Quantum dots and lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • Y10S977/721On a silicon substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots

Definitions

  • the present invention relates to a light emitting device and a method for manufacturing the same, and more particularly to a light emitting device using quantum dots and a method for manufacturing the same.
  • a semiconductor light emitting device using a semiconductor island structure (quantum dot) is known (Japanese Patent Laid-Open No. 2003-332695).
  • This semiconductor light emitting device is composed of n-type AlGaAs / n-type GaAs / InGaAs island structure / compound semiconductor containing nitrogen / p-type GaAs / p-type AlGaAs.
  • the InGaAs island structure has an internal stress consisting of compressive stress.
  • a compound semiconductor containing nitrogen has a tensile stress. Therefore, the compound semiconductor containing nitrogen is arranged so as to be in contact with the InGaAs island structure, and the internal stress of the InGaAs island structure is reduced by the compound semiconductor containing nitrogen.
  • the conventional semiconductor light emitting element is formed on an expensive compound semiconductor substrate by heteroepitaxial growth, which is an advanced technique, and has a problem that the cost is higher than a device using a silicon substrate.
  • a conventional light emitting element using silicon dots has a problem in that light emission efficiency is lower than that of a light emitting element using a direct transition type compound semiconductor.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a light emitting element capable of improving the light emission efficiency.
  • Another object of the present invention is to provide a method for manufacturing a light emitting device capable of improving the light emission efficiency.
  • the light emitting element includes the first to third conductive members.
  • the first conductive member includes a first quantum dot having a first conductivity type.
  • the second conductive member is disposed in contact with the first conductive member and includes a second quantum dot.
  • the third conductive member is formed in contact with the second conductive member, includes a third quantum dot having a second conductivity type different from the first conductivity type, and has a barrier energy against electrons of the second It is larger than the conductive member.
  • the first conductive member includes a plurality of first quantum dots and a first insulating layer through which a tunnel current flows
  • the second conductive member includes a plurality of second quantum dots and a tunnel current
  • the third conductive member includes a plurality of third quantum dots and a third insulating layer through which a tunnel current flows.
  • the plurality of first quantum dots are randomly arranged in the film thickness direction of the first conductive member, and the plurality of second quantum dots are randomly arranged in the film thickness direction of the second conductive member.
  • the plurality of third quantum dots are randomly arranged in the film thickness direction of the third conductive member.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the barrier energy for holes is larger than the barrier energy for electrons
  • the barrier energy for electrons is larger than the barrier energy for holes
  • the first to third quantum dots are made of silicon dots
  • the first conductive member is made of a silicon oxide film containing more silicon than SiO 2
  • the second conductive member is made of Si 3 N a silicon nitride film containing more silicon than 4
  • the third conductive member SiO x N (4 / 3-2x / 3) a silicon oxynitride containing more silicon than (0 ⁇ x ⁇ 2) It consists of a membrane.
  • the light emitting element includes the light emitting layer and the first and second conductive members.
  • the light emitting layer includes quantum dots.
  • the first conductive member supplies electrons to the light emitting layer through n-type quantum dots.
  • the second conductive member supplies holes to the light emitting layer through the p-type quantum dots.
  • the first conductive member is made of a silicon oxide film containing more silicon than SiO 2
  • the second conductive member is SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2 ) And a silicon oxynitride film containing more silicon.
  • the manufacturing method of a light-emitting device includes a first step of depositing a first conductive member including quantum dots on one main surface of a semiconductor substrate, and a second conductive member including quantum dots.
  • Introducing conductivity type impurities The fifth step of introducing an impurity of the second conductivity type different from the first conductivity type into the third conductive member, the first conductive member containing the impurity of the first conductivity type, And a sixth step of heat-treating the third conductive member containing the second conductivity type impurity.
  • the ratio of the flow rate of the second material gas containing silicon to the flow rate of the first material gas containing oxygen is set to be equal to or higher than the first reference value, so that more silicon than SiO 2 is obtained.
  • a first conductive member made of a silicon oxide film containing is deposited on the one main surface.
  • the ratio of the flow rate of the second material gas to the flow rate of the third material gas containing nitrogen is set to be equal to or higher than the second reference value, and silicon nitride containing more silicon than Si 3 N 4
  • a second conductive member made of a film is deposited on the first conductive member.
  • the ratio of the flow rate of the second material gas to the flow rate of the first material gas is set to be equal to or higher than the first reference value, and the second material gas has a flow rate of the third material gas.
  • n-type impurities are introduced into the first conductive member
  • p-type impurities are introduced into the third conductive member.
  • the first conductive member containing n-type impurities and the third conductive member containing p-type impurities are heat-treated in a nitrogen atmosphere.
  • one of electrons and holes is supplied to the second conductive member via the quantum dots contained in either one of the first and third conductive members.
  • the other of the electrons and holes is supplied to the second conductive member through the quantum dots included in either one of the conductive members.
  • the electrons and holes supplied to the second conductive member are confined in the second conductive member and recombine to emit light. That is, in the light emitting device according to the present invention, both electrons and holes are supplied to the second conductive member to emit light.
  • the luminous efficiency can be increased.
  • FIG. 3 is a first process diagram for explaining a manufacturing method of the light-emitting element shown in FIG. 1.
  • FIG. 6 is a second process diagram for explaining the manufacturing method of the light emitting element shown in FIG. 1.
  • FIG. 9 is a first process diagram showing a method for manufacturing the semiconductor element shown in FIG. 8.
  • FIG. 9 is a second process diagram illustrating a method for manufacturing the semiconductor element illustrated in FIG. 8.
  • FIG. 10 is a third process diagram illustrating the method for manufacturing the semiconductor element illustrated in FIG. 8.
  • FIG. 10 is a fourth process diagram illustrating the method for manufacturing the semiconductor element illustrated in FIG. 8.
  • FIG. 10 is a fifth process diagram illustrating the method for manufacturing the semiconductor element illustrated in FIG. 8.
  • FIG. 10 is a sixth process diagram illustrating the method of manufacturing the semiconductor element illustrated in FIG. 8. It is sectional drawing of the further another light emitting element by embodiment of this invention. It is sectional drawing of the further another light emitting element by embodiment of this invention.
  • FIG. 1 is a sectional view of a light emitting device according to an embodiment of the present invention.
  • a light emitting device 10 according to an embodiment of the present invention includes a substrate 1, an n-type silicon thin film 2, a silicon thin film 3, a p-type silicon thin film 4, and p + -type polysilicon (poly-). Si) film 5 and electrodes 6 and 7 are provided.
  • the substrate 1 is made of n + type silicon (n + -Si) having a specific resistance of about 0.1 ⁇ ⁇ cm.
  • the n-type silicon thin film 2 contains n-type impurities and contains more Si and oxygen element (O) than SiO 2 . More specifically, the n-type silicon thin film 2 includes a plurality of quantum dots made of n-type Si and a silicon oxide film, as will be described later, and is formed on one main surface of the substrate 1.
  • the n-type silicon thin film 2 has a thickness of about 150 nm.
  • the silicon thin film 3 contains more Si and nitrogen element (N) than Si 3 N 4 . More specifically, the silicon thin film 3 includes a plurality of quantum dots made of Si and a silicon nitride film, and is formed on the n-type silicon thin film 2 in contact with the n-type silicon thin film 2. The silicon thin film 3 has a thickness of about 10 nm.
  • the p-type silicon thin film 4 is formed on the silicon thin film 3 in contact with the silicon thin film 3.
  • the p-type silicon thin film 4 contains p-type impurities and contains more Si, oxygen element (O), and nitrogen element (N) than SiO 2 and Si 3 N 4 .
  • the p-type silicon thin film 4 includes a plurality of quantum dots made of p-type Si and a silicon oxynitride film and has a composition of SiO 1 N 0.33 , as will be described later.
  • the p-type silicon thin film 4 has a thickness of about 100 nm.
  • the p + -type poly-Si film 5 is composed of p + -type poly-Si films 51 to 54 and is formed on the p-type silicon thin film 4 in contact with the p-type silicon thin film 4.
  • the p + type poly-Si film 5 includes a boron concentration of about 10 20 cm ⁇ 3 and a film thickness of about 50 nm.
  • the electrode 6 includes electrodes 61 to 64.
  • the electrodes 61 to 64 are formed on the p + type poly-Si films 51 to 54 in contact with the p + type poly-Si films 51 to 54, respectively.
  • Each of the electrodes 61 to 64 is made of aluminum (Al).
  • the electrode 7 is made of Al, and is formed on the back surface of the substrate 1 (the surface opposite to the surface on which the n-type silicon thin film 2 and the like are formed).
  • FIG. 2 is an enlarged cross-sectional view of the n-type silicon thin film 2, the silicon thin film 3, and the p-type silicon thin film 4 shown in FIG.
  • n-type silicon thin film 2 includes a plurality of quantum dots 21.
  • Each of the plurality of quantum dots 21 is made of n-type Si dots and includes a phosphorus (P) concentration of about 10 19 cm ⁇ 3 .
  • the plurality of quantum dots 21 are irregularly arranged in the n-type silicon thin film 2.
  • the silicon thin film 3 includes a plurality of quantum dots 31.
  • the plurality of quantum dots 31 are irregularly arranged in the silicon thin film 3.
  • the p-type silicon thin film 4 includes a plurality of quantum dots 41.
  • Each of the plurality of quantum dots 41 is made of p-type Si dots and includes a B concentration of about 10 19 cm ⁇ 3 .
  • the plurality of quantum dots 41 are irregularly arranged in the p-type silicon thin film 4.
  • the n-type silicon thin film 2 includes quantum dots 21 made of n-type Si dots
  • the silicon thin film 3 contains quantum dots 31 made of Si dots
  • the p-type silicon thin film 4 is made of p-type Si dots. Quantum dots 41 are included. Therefore, the n-type silicon thin film 2, the silicon thin film 3, and the p-type silicon thin film 4 form a pin junction.
  • the quantum dots 21, 31, and 41 have a diameter of 1 to 10 nm.
  • FIG. 3 is an energy band diagram at the time of zero bias of the light emitting element 10 shown in FIG. Referring to FIG. 3, conduction band Ec1 and valence band Ev1 exist in n + Si constituting substrate 1, and n + Si has an energy band gap Eg1 of 1.12 eV.
  • p + poly-Si film 5 has an energy band gap Eg1 of 1.12 eV.
  • n + Si constituting the substrate 1 is highly doped with P, and the p + poly-Si film 5 is highly doped with B, the end of the conduction band Ec1 of n + Si is p + Energy close to the end of the valence band Ev2 of the poly-Si film 5.
  • the n-type silicon thin film 2 includes the plurality of quantum dots 21 as described above, the n-type silicon thin film 2 has a stacked structure of the quantum dots 21 and the silicon dioxide (SiO 2 ) layer 22 that does not include the quantum dots 21. As a result, the quantum dots 21 are sandwiched between the SiO 2 layers 22.
  • the SiO 2 layer 22 has a film thickness through which a tunnel current flows and an energy band gap of about 9 eV. Further, since the quantum dot 21 is sandwiched between the two SiO 2 layers 22, the quantum level effect has a sub-level L sub 1 on the n + Si conduction band Ec 1 side due to the quantum size effect, and the n + Si valence electrons. The sub-level L sub 2 is provided on the band Ev1 side.
  • the sub-level L sub 1 is higher in energy than the conduction band Ec1 of n + Si, and the sub-level L sub 2 is higher in energy than the end of the valence band Ev1 of n + Si.
  • the energy difference between the sub-level L sub 1 and the sub-level L sub 2 is larger than the energy gap Eg1 of n + Si.
  • the silicon thin film 3 includes the plurality of quantum dots 31 as described above, the silicon thin film 3 has a stacked structure of the quantum dots 31 and the silicon nitride film (Si 3 N 4 ) layer 32 that does not include the quantum dots 31. As a result, the quantum dots 31 are sandwiched between the Si 3 N 4 layers 32.
  • the Si 3 N 4 layer 32 has a film thickness through which a tunnel current flows and an energy band gap of about 5.2 eV. Further, since the quantum dot 31 is sandwiched between the two Si 3 N 4 layers 32, the quantum dot 31 has a sub-level L sub 3 on the conduction band Ec 2 side of the p + poly-Si film 5 due to the quantum size effect. The p + poly-Si film 5 has a sublevel L sub 4 on the valence band Ev4 side.
  • the sub-level L sub 3 is energetically higher than the end of the conduction band Ec2 of the p + poly-Si film 5, and the sub-level L sub 4 is the end of the valence band Ev2 of the p + poly-Si film 5 Higher in energy.
  • the energy difference between the sub-level L sub 3 and the sub-level L sub 4 is larger than the energy gap Eg 1 of the p + poly-Si film 5.
  • the p-type silicon thin film 4 includes the plurality of quantum dots 41 as described above, the p-type silicon thin film 4 has a stacked structure of the quantum dots 41 and the silicon oxynitride film 42 that does not include the quantum dots 41. As a result, the quantum dots 41 are sandwiched between the silicon oxynitride films 42.
  • the silicon oxynitride film 42 has a film thickness through which a tunnel current flows, has a composition of SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2), and has an energy band of 5.2 to 9 eV. Has a gap.
  • the quantum dots 41 because it is sandwiched by two silicon oxynitride film 42, the quantum size effect, has a sub-level L sub 5 in the conduction band Ec2 side of p + Si, the valence of p + Si
  • the sub-level L sub 6 is provided on the electron band Ev2 side.
  • the sub-level L sub 5 is energetically higher than the conduction band Ec2 of p + Si, and the sub-level L sub 6 is energetically higher than the end of the valence band Ev2 of p + Si.
  • the energy difference between the sub-level L sub 5 and the sub-level L sub 6 is larger than the energy gap Eg1 of p + Si.
  • the energy difference ⁇ E5 the end of the conduction band edge and the silicon oxynitride film 42 of the conduction band Ec2 of p + Si is 2.32 ⁇ 3.2 eV
  • the energy difference ⁇ E6 between the silicon oxynitride film 42 and the edge of the valence band is about 1.78 to 4.65 eV.
  • the silicon oxynitride film 42 that satisfies ⁇ E5 ⁇ E6 can be formed.
  • FIG. 4 is an energy band diagram of the light emitting element 10 shown in FIG.
  • a voltage is applied between the electrodes 6 and 7 with the electrode 6 side being positive and the electrode 7 side being negative, as shown in FIG. 4, the energy band of n + Si constituting the substrate 1 is lifted, and electrons in n + Si 11 conducts through the n-type silicon thin film 2 through the plurality of quantum dots 21 in the n-type silicon thin film 2 and is injected into the silicon thin film 3.
  • the p-type silicon thin film 4 Since the p-type silicon thin film 4 has a larger barrier to electrons than the silicon thin film 3, the electrons injected into the silicon thin film 3 are blocked by the p-type silicon thin film 4, and the quantum dots of the silicon thin film 3 31 is accumulated.
  • the holes 12 in the p + poly-Si film 5 are conducted through the p-type silicon thin film 4 through the quantum dots 41 in the p-type silicon thin film 4 and are injected into the silicon thin film 3. Since the n-type silicon thin film 2 has a larger barrier against holes than the silicon thin film 3, the holes injected into the silicon thin film 3 are blocked by the n-type silicon thin film 2, and the silicon thin film 3 Accumulated in the quantum dots 31.
  • the electrons 13 accumulated in the quantum dots 31 recombine with the holes 14 accumulated in the quantum dots 31 to emit light.
  • the light emitting element 10 As described above, in the light emitting element 10, electrons injected from n + Si 1 into the silicon thin film 3 are confined in the silicon thin film 3 by the p-type silicon thin film 4, and injected from the p + poly-Si film 5 into the silicon thin film 3. The holes are confined in the silicon thin film 3 by the n-type silicon thin film 2. That is, the light emitting element 10 is characterized in that both holes and electrons are confined in the p-type silicon thin film 3. As a result, the light emission efficiency of the light emitting element 10 can be increased.
  • the n-type silicon thin film 2 includes a plurality of quantum dots 21 irregularly
  • the silicon thin film 3 includes a plurality of quantum dots 31 irregularly
  • the p-type silicon thin film 4 includes a plurality of quantum dots 41 irregularly. Since it is included in the rule, the injection efficiency of electrons and holes is improved by the electric field enhancement effect at the protrusions of the irregularly shaped quantum dots 21, 31, 41.
  • the luminous efficiency can be increased.
  • FIG. 5 is a schematic view of a plasma CVD (Chemical Vapor Deposition) apparatus used for manufacturing the light emitting element 10 shown in FIG.
  • a plasma CVD apparatus 100 includes a reaction chamber 101, an electrode plate 102, a sample holder 103, a heater 104, an RF (Radio Frequency) power source 105, pipes 106 to 108, and a gas cylinder 109 to 111.
  • RF Radio Frequency
  • the reaction chamber 101 is a hollow container and has an exhaust port 101A.
  • the electrode plate 102 and the sample holder 103 have a flat plate shape, and are disposed in the reaction chamber 101 substantially in parallel at an interval of 50 mm.
  • Each of the electrode plate 102 and the sample holder 103 has a diameter of 200 mm ⁇ .
  • the heater 104 is disposed in the sample holder 103.
  • the RF power source 105 is connected to the electrode plate 102 and the sample holder 103.
  • the pipe 106 has one end connected to the reaction chamber 101 and the other end connected to a gas cylinder 109.
  • the pipe 107 has one end connected to the reaction chamber 101 and the other end connected to the gas cylinder 110.
  • the pipe 108 has one end connected to the reaction chamber 101 and the other end connected to the gas cylinder 111.
  • the sample holder 103 holds the substrate 1.
  • the heater 104 heats the substrate 1 to a predetermined temperature.
  • the RF power source 105 applies 13.56 MHz RF power between the electrode plate 102 and the sample holder 103.
  • the gas cylinder 109 holds N 2 O (100%) gas, the gas cylinder 110 holds 10% SiH 4 gas diluted with hydrogen (H 2 ) gas, and the gas cylinder 111 contains NH 3 (100%). Hold the gas.
  • the pipe 106 supplies N 2 O gas into the reaction chamber 101.
  • the pipe 107 supplies SiH 4 gas into the reaction chamber 101.
  • the pipe 108 supplies NH 3 gas into the reaction chamber 101.
  • N 2 O gas, SiH 4 gas, and NH 3 gas supplied into the reaction chamber 101 are exhausted from the exhaust port 101A by an exhaust device (not shown) such as a rotary pump. As a result, the inside of the reaction chamber 101 is set to a predetermined pressure.
  • the plasma CVD apparatus 100 applies RF power between the electrode plate 102 and the sample holder 103 by the RF power source 105 in a state where N 2 O gas and SiH 4 gas are supplied into the reaction chamber 101, and a silicon-rich oxide film. Is deposited on the substrate 1.
  • the plasma CVD apparatus 100 applies silicon-rich silicon nitride by applying RF power between the electrode plate 102 and the sample holder 103 by the RF power source 105 in a state where NH 3 gas and SiH 4 gas are supplied into the reaction chamber 101. A film is deposited on the substrate 1.
  • the plasma CVD apparatus 100 applies RF power between the electrode plate 102 and the sample holder 103 by the RF power source 105 in a state where N 2 O gas, NH 3 gas, and SiH 4 gas are supplied into the reaction chamber 101. Then, a silicon rich oxynitride film is deposited on the substrate 1.
  • FIG. 6 and 7 are first and second process diagrams for explaining a method of manufacturing the light-emitting element 10 shown in FIG.
  • substrate 1 made of n + Si is prepared (see step (a)), and after cleaning substrate 1, sample holder of plasma CVD apparatus 100 A substrate 1 is set on 103.
  • a silicon thin film 11 containing more Si and oxygen element (O) than SiO 2 is deposited on one main surface of the substrate 1 under the reaction conditions shown in Table 1.
  • a silicon thin film 12 containing more Si than Si 3 N 4 and nitrogen element (N) is deposited on the silicon thin film 11 under the reaction conditions shown in Table 2.
  • a silicon thin film 13 containing more Si, oxygen element (O), and nitrogen element (N) than SiO 2 and Si 3 N 4 is deposited on the silicon thin film 12 under the reaction conditions shown in Table 3. To do.
  • amorphous silicon (a-Si) film 14 is deposited on the silicon thin film 13 under reaction conditions in which N 2 O gas and NH 3 gas are stopped under the reaction conditions shown in Table 3 (step (b) in FIG. )reference).
  • phosphorus ions P +
  • the acceleration voltage for ion implantation is set so that P + ions are implanted only into the silicon thin film 11.
  • the n-type silicon thin film 2 is formed (see step (d) in FIG. 6).
  • boron ions (B + ) are implanted into the silicon thin film 13 and the a-Si film 14 by ion implantation (see step (d) in FIG. 6).
  • the acceleration voltage for ion implantation is set so that B + ions are implanted into the silicon thin film 13 and the a-Si film 14.
  • the p-type silicon thin film 4 and the p-type a-Si film 14A are formed (see step (e) in FIG. 7).
  • the substrate 1 / n-type silicon thin film 2 / silicon thin film 3 / p-type silicon thin film 4 / p-type a-Si film 14A is annealed under the conditions shown in Table 4.
  • the p + poly-Si film 5 is patterned into p + poly-Si films 51 to 54 using a photolithography technique (see step (g) in FIG. 7).
  • electrodes 6 (61 to 64) are formed on the p + poly-Si films 51 to 54, respectively, and an electrode 7 is formed on the back surface of the substrate 1 (see step (h) in FIG. 7). ). Thereby, the light emitting element 10 is completed.
  • the silicon thin film 11 containing quantum dots is formed by using the reaction conditions shown in Table 1, and the silicon thin film 12 containing quantum dots is formed by using the reaction conditions shown in Table 2. Since the silicon thin film 13 including quantum dots is formed by using the reaction conditions shown, the silicon thin film 11, the silicon thin film 12, and the silicon thin film 13 including quantum dots can be formed by one film formation.
  • the silicon thin film 11 including the quantum dots made of Si dots is formed using the formation conditions when forming the silicon-rich oxide film, and the silicon thin film 12 containing the quantum dots made of Si dots is It is formed using the formation conditions when forming the silicon-rich nitride film, and the silicon thin film 13 including the quantum dots made of Si dots is formed using the formation conditions when forming the silicon-rich oxynitride film.
  • the quantum dots 31 in the silicon thin film 3 and the quantum dots 41 in the p-type silicon thin film 4 SiH against N 2 O gas and NH 3 gas is used.
  • the flow ratio of the four gases is relatively increased, and the heat treatment time in step (e) in FIG. 7 is shortened to about several seconds.
  • the quantum dots 31 in the silicon thin film 3 and the quantum dots 41 in the p-type silicon thin film 4 SiH against N 2 O gas and NH 3 gas is used.
  • the flow ratio of the four gases is relatively lowered, and the heat treatment time in step (e) in FIG.
  • the density of the quantum dots 21 in the n-type silicon thin film 2, the quantum dots 31 in the silicon thin film 3, and the quantum dots 41 in the p-type silicon thin film 4 is SiH 4 gas with respect to N 2 O gas and NH 3 gas.
  • the present invention is not limited to this, and the plasma CVD method is used for n The p-type silicon thin film 2 and the p-type silicon thin film 4 may be formed.
  • the n-type silicon thin film 2 is formed by the plasma CVD method using PH 3 gas as the P source gas, and the p-type silicon thin film 4 is formed using B 2 H 6 gas as the B source gas.
  • the reaction conditions for forming the n-type silicon thin film 2 are reaction conditions in which the flow rate of PH 3 gas is added to the reaction conditions shown in Table 1, and the reaction conditions for forming the p-type silicon thin film 4 are B 2 H 6. This is a reaction condition in which the gas flow rate is added to the reaction conditions shown in Table 3.
  • the n-type silicon thin film 2 is formed using P.
  • the present invention is not limited to this, and the n-type silicon thin film 2 may be formed using arsenic (As).
  • As ions are implanted only into the n-type silicon thin film 11.
  • AsH 3 gas is used as the source gas for As.
  • FIG. 8 is a cross-sectional view of another light emitting device according to the embodiment of the present invention.
  • the light emitting device according to the present invention may be a light emitting device 10A shown in FIG.
  • a light emitting device 10A includes an n-type silicon thin film 2 of the light emitting device 10 shown in FIG. The rest is the same as the light emitting element 10 except for 90.
  • the silicon thin film 70 is formed on the substrate 1.
  • the silicon thin film 80 is formed on the silicon thin film 70 in contact with the silicon thin film 7.
  • the silicon thin film 90 is formed on the silicon thin film 80 in contact with the silicon thin film 80.
  • the silicon thin film 70 includes a plurality of SiO 2 films 71 and a plurality of n-type silicon thin films 72.
  • the plurality of SiO 2 films 71 and the plurality of n-type silicon thin films 72 are alternately stacked in the thickness direction.
  • Each of the plurality of n-type silicon thin films 72 includes a plurality of n-type Si dots 73 and silicon oxide films that are irregularly arranged in the film thickness direction.
  • Each of the plurality of SiO 2 films 71 has a thickness of 1 to 5 nm, and each of the plurality of n-type silicon thin films 72 has a thickness of 3 to 10 nm.
  • the silicon thin film 80 includes a plurality of Si 3 N 4 films 81 and a plurality of silicon thin films 82.
  • the plurality of Si 3 N 4 films 81 and the plurality of silicon thin films 82 are alternately stacked in the thickness direction.
  • Each of the plurality of silicon thin films 82 includes a plurality of Si dots 83 and silicon nitride films that are irregularly arranged in the film thickness direction.
  • Each of the plurality of Si 3 N 4 films 81 has a thickness of 1 to 5 nm, and each of the plurality of silicon thin films 82 has a thickness of 3 to 10 nm.
  • the silicon thin film 90 includes a plurality of SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) films 91 and a plurality of p-type silicon thin films 92.
  • a plurality of SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) films 91 and a plurality of p-type silicon thin films 92 are alternately stacked in the thickness direction.
  • Each of the plurality of p-type silicon thin films 92 includes a plurality of p-type Si dots 93 and silicon oxynitride films that are irregularly arranged in the film thickness direction.
  • Each of the plurality of SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) films 91 has a thickness of 1 to 5 nm
  • each of the plurality of p-type silicon thin films 92 includes: It has a film thickness of 3 to 10 nm.
  • Each of the plurality of n-type Si dots 73 includes a P concentration substantially the same as the P concentration in the quantum dots 21.
  • Each of the plurality of p-type Si dots 93 includes substantially the same B concentration as the B concentration in the quantum dots 31.
  • the n-type silicon thin film 72 is sandwiched between the SiO 2 films 71 containing no dopant, the silicon thin film 82 is sandwiched between the Si 3 N 4 films 81 containing no dopant, and SiO x N containing no dopant.
  • the p-type silicon thin film 92 is sandwiched between the films 91. Therefore, the light-emitting device according to the present invention uses quantum dots (n-type Si dots 73 or Si dots 83 or p-type Si dots 93) as insulating members (SiO 2 film 71 or Si 3 N 4 film 81 or SiO x without dopant).
  • N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) film 91) may be used.
  • FIG. 9 to 14 are first to sixth process diagrams showing a method of manufacturing the semiconductor element 10A shown in FIG. 8, respectively.
  • substrate 1 is prepared (see step (a)), and after substrate 1 is cleaned, SiH 4 gas and N 2 O gas are used as source gases.
  • a SiO 2 film 71 is formed on the entire surface of the substrate 1 by plasma CVD (see step (b)). In this case, under the reaction conditions shown in Table 1, the SiO 2 film 71 is formed by setting the flow rate of SiH 4 gas to 86 sccm and the flow rate of N 2 O gas to 200 sccm.
  • SiO 2 film 71 Thereafter, using SiH 4 gas and N 2 O gas as raw materials, more Si and oxygen element (O) than SiO 2 are deposited on the SiO 2 film 71 by plasma CVD using the reaction conditions shown in Table 1. A silicon thin film 120 is deposited (see step (c) in FIG. 9).
  • step (b) and the step (c) are repeatedly executed, and a plurality of SiO 2 films 71 and a plurality of silicon thin films 120 are alternately formed on the substrate 1 (see step (d) in FIG. 9).
  • SiO 2 film 71 by plasma CVD using the reaction conditions shown in Table 2. Is deposited (see step (e) in FIG. 9).
  • an Si 3 N 4 film 81 is deposited on the silicon thin film 130 by plasma CVD using SiH 4 gas and NH 3 gas as raw materials (see step (f) in FIG. 10).
  • the Si 3 N 4 film 81 is formed by setting the flow rate of SiH 4 gas to 92 sccm and the flow rate of NH 3 gas to 150 sccm.
  • the step (e) and the step (f) are repeatedly executed, and a plurality of Si 3 N 4 films 81 and a plurality of silicon thin films 130 are alternately formed on the SiO 2 film 71.
  • a silicon thin film 140 is deposited on the Si 3 N 4 film 81 by plasma CVD using the reaction conditions shown in Table 3 using SiH 4 gas, N 2 O gas, and NH 3 gas as raw materials (step of FIG. 10). (See (g)).
  • a SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) film 91 is deposited on the silicon thin film 140 by plasma CVD using SiH 4 gas, N 2 O gas, and NH 3 gas as raw materials.
  • SiH 4 gas is set to 96 sccm
  • the flow rate of NH 3 gas is set to 150 sccm
  • the flow rate of N 2 O gas is set to 150 sccm
  • step (g) and the step (h) are repeatedly executed, and a plurality of SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) films 91 and a plurality of silicon thin films 140 are alternately formed into Si.
  • a 3 N 4 film 81 is formed.
  • the a-Si film 14 was formed into SiO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2 ) under the reaction conditions shown in Table 3 in which NH 3 gas and N 2 O gas were stopped. ) Deposit on the film 91 (see step (i) in FIG. 11).
  • P + ions are implanted into the silicon thin film 120 by ion implantation (see step (j) in FIG. 11).
  • the acceleration voltage for ion implantation is set so that P + ions are implanted only into the plurality of silicon thin films 120.
  • a plurality of n-type silicon thin films 72 are formed (see step (k) in FIG. 12).
  • B + ions are implanted into the silicon thin film 130 and the a-Si film 14 by ion implantation (see step (k) in FIG. 12).
  • the acceleration voltage for ion implantation is set so that B + ions are implanted into the plurality of silicon thin films 130 and the a-Si film 14.
  • a plurality of p-type silicon thin films 82, a plurality of silicon thin films 92, and a p-type a-Si film 14A are formed (see step (l) in FIG. 12).
  • the type a-Si film 14A is annealed under the conditions shown in Table 4.
  • the p + poly-Si film 5 is patterned into p + poly-Si films 51 to 54 using a photolithography technique (see step (n) in FIG. 13).
  • electrodes 6 (61 to 64) are formed on the p + poly-Si films 51 to 54, respectively, and an electrode 7 is formed on the back surface of the substrate 1 (see step (p) in FIG. 14). ). Thereby, the light emitting element 10A is completed.
  • the energy band diagram at zero bias of the light emitting element 10A shown in FIG. 8 is the energy band diagram shown in FIG. 3, and the energy band diagram of the light emitting element 10A shown in FIG. It becomes a figure.
  • the light emitting element 10A emits light by the same mechanism as the light emitting element 10 described above.
  • the light emission efficiency can be increased also in the light emitting element 10A.
  • FIG. 15 is a cross-sectional view of still another light emitting device according to the embodiment of the present invention.
  • the light emitting element according to the embodiment of the present invention may be a light emitting element 10B shown in FIG.
  • a light-emitting element 10B includes a silicon thin film 3 in place of the n-type silicon thin film 2 of the light-emitting element 10 shown in FIG. 1 in place of germanium thin film 2A containing more germanium than GeO 2 into which n-type impurities are introduced.
  • GeO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) into which p-type impurities are introduced.
  • the n-type germanium thin film 2A has a composition in which the silicon of the n-type silicon thin film 2 is replaced with germanium, and has the same film thickness as the n-type silicon thin film 2.
  • the germanium thin film 3A has a composition in which the silicon of the silicon thin film 3 is replaced with germanium, and has the same film thickness as the silicon thin film 3.
  • the p-type germanium thin film 4A has a composition in which the silicon of the p-type silicon thin film 4 is replaced with germanium, and has the same film thickness as the p-type silicon thin film 4.
  • the n-type germanium thin film 2A is formed under the reaction conditions shown in Table 1 in which the SiH 4 gas is replaced with the GeH 4 gas.
  • the germanium thin film 3A is formed under the reaction conditions shown in Table 2 in which the SiH 4 gas is replaced with the GeH 4 gas.
  • the p-type germanium thin film 4A is formed under the reaction conditions in which the SiH 4 gas is replaced with the GeH 4 gas under the reaction conditions shown in Table 3.
  • the light emitting element 10B is manufactured according to steps (a) to (h) shown in FIGS.
  • the energy band diagram of the light emitting element 10B at zero bias is the same as the energy band diagram shown in FIG. 3, and the energy band diagram of the light emitting element 10B at the time of current application is the same as the energy band diagram shown in FIG. is there.
  • the light emitting element 10B also has a high luminous efficiency in the same manner as the light emitting element 10.
  • FIG. 16 is a cross-sectional view of still another light emitting device according to the embodiment of the present invention.
  • the light emitting device according to the embodiment of the present invention may be a light emitting device 10C shown in FIG. Referring to FIG. 16, in light emitting element 10C, silicon thin film 70 of light emitting element 10A shown in FIG. 8 is replaced with germanium thin film 70A, silicon thin film 80 is replaced with germanium thin film 80A, and silicon thin film 90 is replaced with germanium thin film 90A. The others are the same as those of the light emitting element 10A.
  • the germanium thin film 70A includes a plurality of GeO 2 films 71A and a plurality of n-type germanium thin films 72A.
  • the plurality of GeO 2 films 71A and the plurality of n-type germanium thin films 72A are alternately stacked in the thickness direction.
  • Each of the plurality of n-type germanium thin films 72A includes a plurality of n-type Ge dots 73A and germanium oxide films that are irregularly arranged in the film thickness direction.
  • Each of the plurality of GeO 2 films 71A has a thickness of 1 to 5 nm, and each of the plurality of n-type germanium thin films 72A has a thickness of 3 to 10 nm.
  • the germanium nitride film 80A includes a plurality of Ge 3 N 4 films 81A and a plurality of germanium thin films 82A.
  • the plurality of Ge 3 N 4 films 81A and the plurality of germanium thin films 82A are alternately stacked in the thickness direction.
  • Each of the plurality of germanium thin films 82A includes a plurality of p-type Ge dots 83A and germanium nitride films that are irregularly arranged in the film thickness direction.
  • Each of the plurality of Ge 3 N 4 films 81A has a thickness of 1 to 5 nm, and each of the plurality of germanium thin films 82A has a thickness of 3 to 10 nm.
  • the germanium thin film 90A includes a plurality of GeO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) films 91A and a plurality of p-type germanium thin films 92A.
  • a plurality of GeO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) films 91A and a plurality of p-type germanium thin films 92A are alternately stacked in the thickness direction.
  • Each of the plurality of p-type germanium thin films 92A includes a plurality of p-type Ge dots 93A and germanium oxynitride films that are irregularly arranged in the film thickness direction.
  • Each of the plurality of GeO x N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) films 91A has a thickness of 1 to 5 nm
  • each of the plurality of p-type germanium thin films 92A includes: It has a film thickness of 3 to 10 nm.
  • Each of the plurality of n-type Ge dots 73A includes a P concentration substantially the same as the P concentration in the quantum dots 73.
  • Each of the plurality of p-type Ge dots 93 ⁇ / b> A includes a B concentration that is substantially the same as the B concentration in the quantum dots 93.
  • the n-type germanium thin film 72A is sandwiched between the GeO 2 films 71A not containing the dopant
  • the germanium thin film 82A is sandwiched between the Ge 3 N 4 films 81A not containing the dopant
  • GeO x not containing the dopant N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2)
  • the p-type germanium thin film 92A is sandwiched between the films 91.
  • the light-emitting device uses quantum dots (n-type Ge dots 73A or Ge dots 83A or p-type Ge dots 93A) as insulating members (GeO 2 film 71A or Ge 3 N 4 film 81A or GeO x without dopant). N (4 / 3-2x / 3) (0 ⁇ x ⁇ 2) The film may be sandwiched between the films 91A).
  • the light-emitting element includes a light-emitting layer that emits light by recombination of electrons and holes, a first conductive member that supplies electrons to the light-emitting layer through n-type quantum dots, and a p-type quantum element. What is necessary is just to provide the 2nd electrically-conductive member which supplies a hole to a light emitting layer through a dot. This is because if the first and second conductive members that supply both electrons and holes to the light emitting layer are provided, the light emission efficiency in the light emitting layer can be increased.
  • the light emitting device according to the present invention may be a light emitting device configured using an oxide film, a nitride film, and an oxynitride film containing an element constituting an organic semiconductor instead of the above-described silicon and germanium.
  • each of the n-type silicon thin films 2 and 2A constitutes a “first conductive member”, and each of the silicon thin films 3 and 3A constitutes a “second conductive member”.
  • Each of the thin films 4 and 4A constitutes a “third conductive member”.
  • the n-type silicon thin films 2 and 2A constitute a “first conductive member”, and each of the silicon thin films 3 and 3A constitutes a “light-emitting layer”.
  • Each of 4A constitutes a “second conductive member”.
  • each of the silicon thin films 70 and 70A constitutes a “first conductive member”
  • each of the silicon thin films 80 and 80A constitutes a “second conductive member”
  • the silicon thin film 90 , 90A constitute a “third conductive member”.
  • the silicon thin films 70 and 70A constitute the “first conductive member”
  • the silicon thin films 80 and 80A constitute the “light emitting layer”
  • the silicon thin films 90 and 90A respectively , “Second conductive member”.
  • each of the quantum dots 21 and 73 constitutes a “first quantum dot”
  • each of the quantum dots 31 and 83 constitutes a “second quantum dot”
  • the quantum dot 41 , 93 constitute a “third quantum dot”.
  • the quantum dot 73A constitutes a “first quantum dot”
  • the quantum dot 83A constitutes a “second quantum dot”
  • the quantum dot 93A constitutes a “third quantum dot”. Is configured.
  • the present invention is applied to a light emitting element capable of improving luminous efficiency.
  • the present invention is applied to a method for manufacturing a light emitting element capable of improving light emission efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

発光素子は、n型シリコン薄膜(2)と、シリコン薄膜(3)と、p型シリコン薄膜(4)とを備える。シリコン薄膜(3)は、n型シリコン薄膜(2)に接して形成され、p型シリコン薄膜(4)は、シリコン薄膜(3)に接して形成され、n型シリコン薄膜(2)、シリコン薄膜(3)およびp型シリコン薄膜(4)は、pin接合を形成する。n型シリコン薄膜(2)は、n型Siからなる複数の量子ドット(21)を含む。シリコン薄膜(3)は、p型Siからなる複数の量子ドット(31)を含む。p型シリコン薄膜(4)は、p型Siからなる複数の量子ドット(41)を含む。n型シリコン薄膜(2)側から電子を注入し、p型シリコン薄膜(4)側から正孔を注入することによって、シリコン窒化膜(3)で発光する。

Description

発光素子およびその製造方法
 この発明は、発光素子およびその製造方法に関し、特に、量子ドットを用いた発光素子およびその製造方法に関するものである。
 従来、半導体島構造(量子ドット)を用いた半導体発光素子が知られている(特開2003-332695号公報)。この半導体発光素子は、n型AlGaAs/n型GaAs/InGaAs島構造/窒素を含む化合物半導体/p型GaAs/p型AlGaAsからなる。
 そして、InGaAs島構造は、圧縮応力からなる内部応力を有する。また、窒素を含む化合物半導体は、引っ張り応力を有する。従って、窒素を含む化合物半導体をInGaAs島構造に接するように配置し、InGaAs島構造が有する内部応力を窒素を含む化合物半導体によって減少させる。
 その結果、発光層であるInGaAs島構造における内部応力が減少し、1.55μmの発光スペクトルが室温で得られている。
 しかし、従来の半導体発光素子は、高価な化合物半導体基板の上に、高度な技術であるヘテロエピタキシャル成長によって形成され、シリコン基板を用いるデバイスに比べてコストが高いという問題がある。また、従来のシリコンドットを用いる発光素子は、直接遷移型の化合物系半導体を用いる発光素子に比べ発光効率が低いという問題がある。
 そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、発光効率が向上可能な発光素子を提供することである。
 また、この発明の別の目的は、発光効率が向上可能な発光素子の製造方法を提供することである。
 この発明によれば、発光素子は、第1から第3の導電部材を備える。第1の導電部材は、第1の導電型を有する第1の量子ドットを含む。第2の導電部材は、第1の導電部材に接して配置され、第2の量子ドットを含む。第3の導電部材は、第2の導電部材に接して形成されるとともに、第1の導電型と異なる第2の導電型を有する第3の量子ドットを含み、電子に対する障壁エネルギーが第2の導電部材よりも大きい。
 好ましくは、第1の導電部材は、複数個の第1の量子ドットとトンネル電流が流れる第1の絶縁層とを含み、第2の導電部材は、複数個の第2の量子ドットとトンネル電流が流れる第2の絶縁層とを含み、第3の導電部材は、複数個の第3の量子ドットとトンネル電流が流れる第3の絶縁層とを含む。
 好ましくは、複数個の第1の量子ドットは、第1の導電部材の膜厚方向にランダムに配置され、複数個の第2の量子ドットは、第2の導電部材の膜厚方向にランダムに配置され、複数個の第3の量子ドットは、第3の導電部材の膜厚方向にランダムに配置される。
 好ましくは、第1の導電型は、n型であり、第2の導電型は、p型である。
 好ましくは、第1の導電部材において、正孔に対する障壁エネルギーは、電子に対する障壁エネルギーよりも大きく、第3の導電部材において、電子に対する障壁エネルギーは、正孔に対する障壁エネルギーよりも大きい。
 好ましくは、第1から第3の量子ドットは、シリコンドットからなり、第1の導電部材は、SiOよりも多くのシリコンを含むシリコン酸化膜からなり、第2の導電部材は、Siよりも多くのシリコンを含むシリコン窒化膜からなり、第3の導電部材は、SiO(4/3-2x/3)(0<x<2)よりも多くのシリコンを含むシリコン酸窒化膜からなる。
 また、この発明によれば、発光素子は、発光層と、第1および第2の導電部材とを備える。発光層は、量子ドットを含む。第1の導電部材は、n型の量子ドットを介して電子を発光層へ供給する。第2の導電部材は、p型の量子ドットを介して正孔を発光層へ供給する。
 好ましくは、第1の導電部材は、SiOよりも多くのシリコンを含むシリコン酸化膜からなり、第2の導電部材は、SiO(4/3-2x/3)(0<x<2)よりも多くのシリコンを含むシリコン酸窒化膜からなる。
 さらに、この発明によれば、発光素子の製造方法は、量子ドットを含む第1の導電部材を半導体基板の一主面に堆積する第1の工程と、量子ドットを含む第2の導電部材を第1の導電部材上に堆積する第2の工程と、量子ドットを含む第3の導電部材を第2の導電部材上に堆積する第3の工程と、第1の導電部材中へ第1の導電型の不純物を導入する第4
の工程と、第3の導電部材中へ第1の導電型と異なる第2の導電型の不純物を導入する第5の工程と、第1の導電型の不純物を含む第1の導電部材と、第2の導電型の不純物を含む第3の導電部材とを熱処理する第6の工程とを備える。
 好ましくは、第1の工程において、酸素を含む第1の材料ガスの流量に対するシリコンを含む第2の材料ガスの流量の比を第1の基準値以上に設定してSiOよりも多くのシリコンを含むシリコン酸化膜からなる第1の導電部材が前記一主面に堆積される。第2の工程において、窒素を含む第3の材料ガスの流量に対する第2の材料ガスの流量の比を第2の基準値以上に設定してSiよりも多くのシリコンを含むシリコン窒化膜からなる第2の導電部材が第1の導電部材上に堆積される。第3の工程において、第1の材料ガスの流量に対する第2の材料ガスの流量の比を第1の基準値以上に設定し、かつ、第3の材料ガスの流量に対する第2の材料ガスの流量の比を第2の基準値以上に設定してSiO(4/3-2x/3)(0<x<2)よりも多くのシリコンを含むシリコン酸窒化膜からなる第3の導電部材が第2の導電部材上に堆積される。
 好ましくは、第4の工程において、n型の不純物が第1の導電部材中へ導入され、第5の工程において、p型の不純物が第3の導電部材中へ導入される。
 好ましくは、第6の工程において、n型の不純物を含む第1の導電部材およびp型の不純物を含む第3の導電部材は、窒素雰囲気中で熱処理される。
 この発明による発光素子においては、第1および第3の導電部材のいずれか一方に含まれる量子ドットを介して電子および正孔の一方が第2の導電部材に供給され、第1および第3の導電部材のいずれか他方に含まれる量子ドットを介して電子および正孔の他方が第2の導電部材に供給される。そして、第2の導電部材に供給された電子および正孔は、第2の導電部材中に閉じ込められ、再結合して発光する。つまり、この発明による発光素子においては、電子および正孔の両方が第2の導電部材に供給されて発光する。
 したがって、この発明によれば、発光効率を高くできる。
この発明の実施の形態による発光素子の断面図である。 図1に示すn型シリコン酸化膜、シリコン薄膜およびp型シリコン薄膜の拡大断面図である。 図1に示す発光素子のゼロバイアス時のエネルギーバンド図である。 図1に示す発光素子の電流通電時のエネルギーバンド図である。 図1に示す発光素子の製造に用いるプラズマCVD(Chemical Vapor Deposition)装置の概略図である。 図1に示す発光素子の製造方法を説明するための第1の工程図である。 図1に示す発光素子の製造方法を説明するための第2の工程図である。 この発明の実施の形態による他の発光素子の断面図である。 図8に示す半導体素子の製造方法を示す第1の工程図である。 図8に示す半導体素子の製造方法を示す第2の工程図である。 図8に示す半導体素子の製造方法を示す第3の工程図である。 図8に示す半導体素子の製造方法を示す第4の工程図である。 図8に示す半導体素子の製造方法を示す第5の工程図である。 図8に示す半導体素子の製造方法を示す第6の工程図である。 この発明の実施の形態によるさらに他の発光素子の断面図である。 この発明の実施の形態によるさらに他の発光素子の断面図である。
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施の形態による発光素子の断面図である。図1を参照して、この発明の実施の形態による発光素子10は、基板1と、n型シリコン薄膜2と、シリコン薄膜3と、p型シリコン薄膜4と、p型ポリシリコン(poly-Si)膜5と、電極6,7とを備える。
 基板1は、約0.1Ω・cmの比抵抗を有するn型シリコン(n-Si)からなる。n型シリコン薄膜2は、n型不純物が導入されるとともに、SiOよりも多くのSiと、酸素元素(O)とを含む。より具体的には、n型シリコン薄膜2は、後述するように、n型Siからなる複数の量子ドットとシリコン酸化膜とを含み、基板1の一主面に形成される。そして、n型シリコン薄膜2は、約150nmの膜厚を有する。
 シリコン薄膜3は、後述するように、Siよりも多くのSiと、窒素元素(N)とを含む。より具体的には、シリコン薄膜3は、Siからなる複数の量子ドットとシリコン窒化膜とを含み、n型シリコン薄膜2に接してn型シリコン薄膜2上に形成される。そして、シリコン薄膜3は、約10nmの膜厚を有する。
 p型シリコン薄膜4は、シリコン薄膜3に接して、シリコン薄膜3上に形成される。そして、p型シリコン薄膜4は、p型不純物が導入されるとともに、SiOおよびSiよりも多くのSiと、酸素元素(O)および窒素元素(N)とを含む。より具体的には、p型シリコン薄膜4は、後述するように、p型Siからなる複数の量子ドットとシリコン酸窒化膜とを含み、SiO0.33の組成を有する。また、p型シリコン薄膜4は、約100nmの膜厚を有する。
 p型poly-Si膜5は、p型poly-Si膜51~54からなり、p型シリコン薄膜4に接してp型シリコン薄膜4上に形成される。そして、p型poly-Si膜5は、約1020cm-3のボロン濃度を含み、約50nmの膜厚を有する。
 電極6は、電極61~64からなる。そして、電極61~64は、それぞれ、p型poly-Si膜51~54に接してp型poly-Si膜51~54上に形成される。電極61~64の各々は、アルミニウム(Al)からなる。
 電極7は、Alからなり、基板1の裏面(n型シリコン薄膜2等が形成された面と反対面)に形成される。
 図2は、図1に示すn型シリコン薄膜2、シリコン薄膜3およびp型シリコン薄膜4の拡大断面図である。図2を参照して、n型シリコン薄膜2は、複数の量子ドット21を含む。複数の量子ドット21の各々は、n型Siドットからなり、約1019cm-3のリン(P)濃度を含む。そして、複数の量子ドット21は、n型シリコン薄膜2中に不規則に配置される。
 シリコン薄膜3は、複数の量子ドット31を含む。そして、複数の量子ドット31は、シリコン薄膜3中に不規則に配置される。
 p型シリコン薄膜4は、複数の量子ドット41を含む。複数の量子ドット41の各々は、p型Siドットからなり、約1019cm-3のB濃度を含む。そして、複数の量子ドット41は、p型シリコン薄膜4中に不規則に配置される。
 このように、n型シリコン薄膜2は、n型Siドットからなる量子ドット21を含み、シリコン薄膜3は、Siドットからなる量子ドット31を含み、p型シリコン薄膜4は、p型Siドットからなる量子ドット41を含む。したがって、n型シリコン薄膜2、シリコン薄膜3およびp型シリコン薄膜4は、pin接合を形成する。
 なお、量子ドット21,31,41は、1~10nmの直径を有する。
 図3は、図1に示す発光素子10のゼロバイアス時のエネルギーバンド図である。図3を参照して、基板1を構成するnSi中には、伝導帯Ec1および価電子帯Ev1が存在し、nSiは、1.12eVのエネルギーバンドギャップEg1を有する。
 また、ppoly-Si膜5中には、伝導帯Ec2および価電子帯Ev2が存在し、ppoly-Si膜5は、1.12eVのエネルギーバンドギャップEg1を有する。
 基板1を構成するnSiは、Pが高濃度にドーピングされ、ppoly-Si膜5は、Bが高濃度にドーピングされているため、nSiの伝導帯Ec1の端は、ppoly-Si膜5の価電子帯Ev2の端にエネルギー的に近い。
 n型シリコン薄膜2は、上述したように、複数の量子ドット21を含むため、量子ドット21と、量子ドット21を含まないシリコンダイオキサイド(SiO)層22との積層構造からなる。その結果、量子ドット21は、SiO層22によって挟み込まれる。
 SiO層22は、トンネル電流が流れる膜厚を有するとともに、約9eVのエネルギーバンドギャップを有する。また、量子ドット21は、2つのSiO層22によって挟み込まれているので、量子サイズ効果によって、nSiの伝導帯Ec1側にサブ準位Lsub1を有し、nSiの価電子帯Ev1側にサブ準位Lsub2を有する。
 サブ準位Lsub1は、nSiの伝導帯Ec1よりもエネルギー的に高く、サブ準位Lsub2は、nSiの価電子帯Ev1の端よりもエネルギー的に高い。その結果、サブ準位Lsub1とサブ準位Lsub2とのエネルギー差は、nSiのエネルギーギャップEg1よりも大きい。
 また、nSiの伝導帯Ec1の端とSiO層22の伝導帯の端とのエネルギー差ΔE1は、約3.23eVであり、nSiの価電子帯Ev1の端とSiO層22の価電子帯の端とのエネルギー差ΔE2は、約4.65eVである。したがって、n型シリコン薄膜2は、nSi中の正孔に対する障壁エネルギー(=ΔE2)よりも小さい障壁エネルギー(=ΔE1)をnSi中の電子に対して有する。
 シリコン薄膜3は、上述したように、複数の量子ドット31を含むため、量子ドット31と、量子ドット31を含まないシリコン窒化膜(Si)層32との積層構造からなる。その結果、量子ドット31は、Si層32によって挟み込まれる。
 Si層32は、トンネル電流が流れる膜厚を有するとともに、約5.2eVのエネルギーバンドギャップを有する。また、量子ドット31は、2つのSi層32によって挟み込まれているので、量子サイズ効果によって、ppoly-Si膜5の伝導帯Ec2側にサブ準位Lsub3を有し、ppoly-Si膜5の価電子帯Ev4側にサブ準位Lsub4を有する。
 サブ準位Lsub3は、ppoly-Si膜5の伝導帯Ec2の端よりもエネルギー的に高く、サブ準位Lsub4は、ppoly-Si膜5の価電子帯Ev2の端よりもエネルギー的に高い。その結果、サブ準位Lsub3とサブ準位Lsub4とのエネルギー差は、ppoly-Si膜5のエネルギーギャップEg1よりも大きい。
 p型シリコン薄膜4は、上述したように、複数の量子ドット41を含むため、量子ドット41と、量子ドット41を含まないシリコン酸窒化膜42との積層構造からなる。その結果、量子ドット41は、シリコン酸窒化膜42によって挟み込まれる。
 シリコン酸窒化膜42は、トンネル電流が流れる膜厚を有するとともに、SiO(4/3-2x/3)(0<x<2)の組成を有し、5.2~9eVのエネルギーバンドギャップを有する。また、量子ドット41は、2つのシリコン酸窒化膜42によって挟み込まれているので、量子サイズ効果によって、pSiの伝導帯Ec2側にサブ準位Lsub5を有し、pSiの価電子帯Ev2側にサブ準位Lsub6を有する。
 サブ準位Lsub5は、pSiの伝導帯Ec2よりもエネルギー的に高く、サブ準位Lsub6は、pSiの価電子帯Ev2の端よりもエネルギー的に高い。その結果、サブ準位Lsub5とサブ準位Lsub6とのエネルギー差は、pSiのエネルギーギャップEg1よりも大きい。
 また、pSiの伝導帯Ec2の端とシリコン酸窒化膜42の伝導帯の端とのエネルギー差ΔE5は、2.32~3.2eVであり、pSiの価電子帯Ev2の端とシリコン酸窒化膜42の価電子帯の端とのエネルギー差ΔE6は、約1.78~4.65eVである。組成比を調整することによって、ΔE5<ΔE6となるようなシリコン酸窒化膜42を形成することができる。したがって、p型シリコン薄膜4は、pSi中の電子に対する障壁エネルギー(=ΔE5)よりも小さい障壁エネルギー(=ΔE6)をpSi中の正孔に対して有する。
 図4は、図1に示す発光素子10の電流通電時のエネルギーバンド図である。電極6側をプラス、電極7側をマイナスとして電極6,7間に電圧を印加すると、図4に示すように、基板1を構成するnSiのエネルギーバンドが持ち上がり、nSi中の電子11は、n型シリコン薄膜2中の複数の量子ドット21を介してn型シリコン薄膜2中を伝導し、シリコン薄膜3中に注入される。
 そして、p型シリコン薄膜4は、電子に対してシリコン薄膜3よりも大きい障壁を有するので、シリコン薄膜3中に注入された電子は、p型シリコン薄膜4によってブロックされ、シリコン薄膜3の量子ドット31中に蓄積される。
 一方、ppoly-Si膜5中の正孔12は、p型シリコン薄膜4中の量子ドット41を介してp型シリコン薄膜4中を伝導し、シリコン薄膜3中に注入される。そして、n型シリコン薄膜2は、正孔に対してシリコン薄膜3よりも大きい障壁を有するので、シリコン薄膜3中に注入された正孔は、n型シリコン薄膜2によってブロックされ、シリコン薄膜3の量子ドット31中に蓄積される。
 そうすると、量子ドット31に蓄積された電子13は、量子ドット31に蓄積された正孔14と再結合して発光する。
 このように、発光素子10は、nSi1からシリコン薄膜3へ注入された電子をp型シリコン薄膜4によってシリコン薄膜3中に閉じ込め、ppoly-Si膜5からシリコン薄膜3へ注入された正孔をn型シリコン薄膜2によってシリコン薄膜3中に閉じ込めることを特徴とする。つまり、発光素子10は、正孔および電子の両方をp型シリコン薄膜3中に閉じ込めることを特徴とする。その結果、発光素子10の発光効率を高くできる。
 また、n型シリコン薄膜2は、複数の量子ドット21を不規則に含み、シリコン薄膜3は、複数の量子ドット31を不規則に含み、p型シリコン薄膜4は、複数の量子ドット41を不規則に含むので、不規則形状の量子ドット21,31,41の突起部における電界増強効果によって電子および正孔の注入効率が向上する。
 したがって、この発明によれば、発光効率を高くできる。
 図5は、図1に示す発光素子10の製造に用いるプラズマCVD(Chemical Vapor Deposition)装置の概略図である。図5を参照して、プラズマCVD装置100は、反応室101と、電極板102と、サンプルホルダー103と、ヒーター104と、RF(Radio Frequency)電源105と、配管106~108と、ガスボンベ109~111とを備える。
 反応室101は、中空の容器からなり、排気口101Aを有する。電極板102およびサンプルホルダー103は、平板形状からなり、反応室101内に50mmの間隔で略平行に配置される。そして、電極板102およびサンプルホルダー103の各々は、200mmφの直径を有する。ヒーター104は、サンプルホルダー103内に配置される。
 RF電源105は、電極板102とサンプルホルダー103とに接続される。配管106は、一方端が反応室101に接続され、他方端がガスボンベ109に接続される。また、配管107は、一方端が反応室101に接続され、他方端がガスボンベ110に接続される。さらに、配管108は、一方端が反応室101に接続され、他方端がガスボンベ111に接続される。
 サンプルホルダー103は、基板1を保持する。ヒーター104は、基板1を所定の温度に加熱する。RF電源105は、電極板102とサンプルホルダー103との間に、13.56MHzのRF電力を印加する。
 ガスボンベ109は、NO(100%)ガスを保持し、ガスボンベ110は、水素(H)ガスによって希釈された10%のSiHガスを保持し、ガスボンベ111は、NH(100%)ガスを保持する。
 配管106は、NOガスを反応室101内に供給する。配管107は、SiHガスを反応室101内に供給する。配管108は、NHガスを反応室101内に供給する。反応室101内に供給されたNOガス、SiHガスおよびNHガスは、ロータリーポンプ等の排気装置(図示せず)によって排気口101Aから排気される。その結果、反応室101内は、所定の圧力に設定される。
 プラズマCVD装置100は、NOガスおよびSiHガスが反応室101内に供給された状態でRF電源105によってRF電力を電極板102とサンプルホルダー103との間に印加してシリコンリッチ酸化膜を基板1上に堆積する。また、プラズマCVD装置100は、NHガスおよびSiHガスが反応室101内に供給された状態でRF電源105によってRF電力を電極板102とサンプルホルダー103との間に印加してシリコンリッチ窒化膜を基板1上に堆積する。さらに、プラズマCVD装置100は、NOガス、NHガスおよびSiHガスが反応室101内に供給された状態でRF電源105によってRF電力を電極板102とサンプルホルダー103との間に印加してシリコンリッチ酸窒化膜を基板1上に堆積する。
 図6および図7は、それぞれ、図1に示す発光素子10の製造方法を説明するための第1および第2の工程図である。図6を参照して、発光素子10の製造が開始されると、nSiからなる基板1が準備され(工程(a)参照)、基板1を洗浄した後、プラズマCVD装置100のサンプルホルダー103上に基板1をセットする。
 そして、表1に示す反応条件によって、SiOよりも多くのSiと、酸素元素(O)とを含むシリコン薄膜11を基板1の一主面に堆積する。
Figure JPOXMLDOC01-appb-T000001
 その後、表2に示す反応条件によって、Siよりも多くのSiと、窒素元素(N)とを含むシリコン薄膜12をシリコン薄膜11上に堆積する。
Figure JPOXMLDOC01-appb-T000002
 さらに、その後、表3に示す反応条件によって、SiOおよびSiよりも多くのSiと、酸素元素(O)および窒素元素(N)とを含むシリコン薄膜13をシリコン薄膜12上に堆積する。
Figure JPOXMLDOC01-appb-T000003
 引き続いて、表3に示す反応条件においてNOガスおよびNHガスを停止させた反応条件によって、アモルファスシリコン(a-Si)膜14をシリコン薄膜13上に堆積する(図6の工程(b)参照)。
 その後、リンイオン(P)をイオン注入によってシリコン薄膜11中へ注入する(図6の工程(c)参照)。この場合、Pイオンがシリコン薄膜11中にのみ注入されるように、イオン注入の加速電圧が設定される。これによって、n型シリコン薄膜2が形成される(図6の工程(d)参照)。
 そして、ボロンイオン(B)をイオン注入によってシリコン薄膜13およびa-Si膜14中へ注入する(図6の工程(d)参照)。この場合、Bイオンがシリコン薄膜13およびa-Si膜14中に注入されるように、イオン注入の加速電圧が設定される。これによって、p型シリコン薄膜4およびp型a-Si膜14Aが形成される(図7の工程(e)参照)。
 そして、基板1/n型シリコン薄膜2/シリコン薄膜3/p型シリコン薄膜4/p型a-Si膜14Aを表4に示す条件によってアニールする。
Figure JPOXMLDOC01-appb-T000004
 これによって、n型シリコン薄膜2中へイオン注入されたP原子が電気的に活性化され、p型シリコン薄膜4中へイオン注入されたB原子が電気的に活性化され、さらに、p型a-Si膜14Aがppoly-Si膜5になる(図7の工程(f)参照)。
 その後、フォトリソグラフィー技術を用いてppoly-Si膜5をppoly-Si膜51~54にパターンニングする(図7の工程(g)参照)。
 そして、Alのスパッタリングによって、電極6(61~64)をそれぞれppoly-Si膜51~54上に形成するとともに、電極7を基板1の裏面に形成する(図7の工程(h)参照)。これによって、発光素子10が完成する。
 上述したように、表1に示す反応条件を用いることによって量子ドットを含むシリコン薄膜11が形成され、表2に示す反応条件を用いることによって量子ドットを含むシリコン薄膜12が形成され、表3に示す反応条件を用いることによって量子ドットを含むシリコン薄膜13が形成されるので、1回の膜形成によって量子ドットを含むシリコン薄膜11、シリコン薄膜12およびシリコン薄膜13を形成できる。
 上述したシリコン薄膜11を形成する条件(表1)におけるNOガスに対するSiHガスの流量比は、絶縁膜としてのSiO膜を形成するときのNOガスに対するSiHガスの流量比(=基準流量比)よりも大きい。すなわち、この発明においては、シリコン薄膜11は、SiHガスの流量を基準よりも多くして形成され、所謂、シリコンリッチ酸化膜と呼ばれる。
 また、上述したシリコン薄膜12を形成する条件(表2)におけるNHガスに対するSiHガスの流量比は、絶縁膜としてのSi膜を形成するときのNHガスに対するSiHガスの流量比(=基準流量比)よりも大きい。すなわち、この発明においては、シリコン薄膜12は、SiHガスの流量を基準よりも多くして形成され、所謂、シリコンリッチ窒化膜と呼ばれる。
 さらに、上述したシリコン薄膜13を形成する条件(表3)におけるNOガスおよびNHガスに対するSiHガスの流量比は、絶縁膜としてのSiO(4/3-2x/3)(0<x<2)膜を形成するときのNOガスおよびNHガスに対するSiHガスの流量比(=基準流量比)よりも大きい。すなわち、この発明においては、シリコン薄膜13は、SiHガスの流量を基準よりも多くして形成され、所謂、シリコンリッチ酸窒化膜と呼ばれる。
 したがって、この発明においては、Siドットからなる量子ドットを含むシリコン薄膜11は、シリコンリッチ酸化膜を形成するときの形成条件を用いて形成され、Siドットからなる量子ドットを含むシリコン薄膜12は、シリコンリッチ窒化膜を形成するときの形成条件を用いて形成され、Siドットからなる量子ドットを含むシリコン薄膜13は、シリコンリッチ酸窒化膜を形成するときの形成条件を用いて形成されることを特徴とする。
 なお、n型シリコン薄膜2中の量子ドット21、シリコン薄膜3中の量子ドット31およびp型シリコン薄膜4中の量子ドット41の密度を高くするには、NOガスおよびNHガスに対するSiHガスの流量比を相対的に高くし、図7の工程(e)における熱処理時間を数秒程度に短くする。
 一方、n型シリコン薄膜2中の量子ドット21、シリコン薄膜3中の量子ドット31およびp型シリコン薄膜4中の量子ドット41の密度を低くするには、NOガスおよびNHガスに対するSiHガスの流量比を相対的に低くし、図7の工程(e)における熱処理時間を数十分以上に長くする。
 このように、n型シリコン薄膜2中の量子ドット21、シリコン薄膜3中の量子ドット31およびp型シリコン薄膜4中の量子ドット41の密度は、NOガスおよびNHガスに対するSiHガスの流量比および図7の工程(e)における熱処理時間によって制御され得る。
 また、図6および図7に示す発光素子10の製造方法においては、量子ドットを含むシリコン薄膜11、量子ドットを含むシリコン薄膜12および量子ドットを含むシリコン薄膜13をプラズマCVD法によって形成した後に、イオン注入によって、PイオンおよびBイオンを注入してn型シリコン薄膜2およびp型シリコン薄膜4を形成すると説明したが、この発明においては、これに限らず、プラズマCVD法を用いてn型シリコン薄膜2およびp型シリコン薄膜4を形成するようにしてもよい。
 この場合、PのソースガスとしてPHガスを用いてn型シリコン薄膜2がプラズマCVD法によって形成され、BのソースガスとしてBガスを用いてp型シリコン薄膜4が形成される。
 そして、n型シリコン薄膜2を形成する反応条件は、PHガスの流量を表1に示す反応条件に追加した反応条件であり、p型シリコン薄膜4を形成する反応条件は、Bガスの流量を表3に示す反応条件に追加した反応条件である。
 さらに、上記においては、Pを用いてn型シリコン薄膜2を形成すると説明したが、この発明においては、これに限らず、ヒ素(As)を用いてn型シリコン薄膜2を形成してもよい。この場合、図6の工程(c)において、Asイオンがn型シリコン薄膜11のみへイオン注入される。また、Asを用いてプラズマCVD法によってn型シリコン薄膜2を形成する場合、AsのソースガスとしてAsHガスが用いられる。
 図8は、この発明の実施の形態による他の発光素子の断面図である。この発明による発光素子は、図8に示す発光素子10Aであってもよい。図8を参照して、発光素子10Aは、図1に示す発光素子10のn型シリコン薄膜2をシリコン薄膜70に代え、シリコン薄膜3をシリコン薄膜80に代え、p型シリコン薄膜4をシリコン薄膜90に代えたものであり、その他は、発光素子10と同じである。
 シリコン薄膜70は、基板1上に形成される。シリコン薄膜80は、シリコン薄膜7に接してシリコン薄膜70上に形成される。シリコン薄膜90は、シリコン薄膜80に接してシリコン薄膜80上に形成される。
 シリコン薄膜70は、複数のSiO膜71と、複数のn型シリコン薄膜72とからなる。複数のSiO膜71および複数のn型シリコン薄膜72は、厚さ方向に交互に積層される。そして、複数のn型シリコン薄膜72の各々は、膜厚方向に不規則に配置された複数のn型Siドット73とシリコン酸化膜とを含む。複数のSiO膜71の各々は、1~5nmの膜厚を有し、複数のn型シリコン薄膜72の各々は、3~10nmの膜厚を有する。
 シリコン薄膜80は、複数のSi膜81と、複数のシリコン薄膜82とからなる。複数のSi膜81および複数のシリコン薄膜82は、厚さ方向に交互に積層される。そして、複数のシリコン薄膜82の各々は、膜厚方向に不規則に配置された複数のSiドット83とシリコン窒化膜とを含む。そして、複数のSi膜81の各々は、1~5nmの膜厚を有し、複数のシリコン薄膜82の各々は、3~10nmの膜厚を有する。
 シリコン薄膜90は、複数のSiO(4/3-2x/3)(0<x<2)膜91と、複数のp型シリコン薄膜92とからなる。複数のSiO(4/3-2x/3)(0<x<2)膜91および複数のp型シリコン薄膜92は、厚さ方向に交互に積層される。そして、複数のp型シリコン薄膜92の各々は、膜厚方向に不規則に配置された複数のp型Siドット93とシリコン酸窒化膜を含む。そして、複数のSiO(4/3-2x/3)(0<x<2)膜91の各々は、1~5nmの膜厚を有し、複数のp型シリコン薄膜92の各々は、3~10nmの膜厚を有する。
 複数のn型Siドット73の各々は、量子ドット21中のP濃度と略同じP濃度を含む。複数のp型Siドット93の各々は、量子ドット31中のB濃度と略同じB濃度を含む。
 このように、発光素子10Aは、ドーパントを含まないSiO膜71によってn型シリコン薄膜72を挟み込み、ドーパントを含まないSi膜81によってシリコン薄膜82を挟み込み、ドーパントを含まないSiO(4/3-2x/3)(0<x<2)膜91によってp型シリコン薄膜92を挟み込んだ構造からなる。したがって、この発明による発光素子は、量子ドット(n型Siドット73またはSiドット83またはp型Siドット93)をドーパントを含まない絶縁部材(SiO膜71またはSi膜81またはSiO(4/3-2x/3)(0<x<2)膜91)によって挟み込んだ構造によって構成されていてもよい。
 次に、発光素子10Aの製造方法について説明する。図9から図14は、それぞれ、図8に示す半導体素子10Aの製造方法を示す第1から第6の工程図である。図9を参照して、発光素子10Aの製造が開始されると、基板1が準備され(工程(a)参照)、基板1を洗浄した後、SiHガスおよびNOガスを原料ガスとしてプラズマCVD法によって基板1の全面にSiO膜71を形成する(工程(b)参照)。この場合、表1に示す反応条件において、SiHガスの流量を86sccm、NOガスの流量を200sccmに設定してSiO膜71が形成される。
 その後、SiHガスおよびNOガスを原料として、表1に示す反応条件を用いてプラズマCVD法によってSiO膜71上に、SiOよりも多くのSiと、酸素元素(O)とを含むシリコン薄膜120を堆積する(図9の工程(c)参照)。
 そして、工程(b)および工程(c)を繰り返し実行し、複数のSiO膜71と複数のシリコン薄膜120とを交互に基板1上に形成する(図9の工程(d)参照)。
 引き続いて、SiHガスおよびNHガスを原料として、表2に示す反応条件を用いてプラズマCVD法によってSiO膜71上に、Siよりも多くのSiと、窒素元素(N)とを含むシリコン薄膜130を堆積する(図9の工程(e)参照)。
 その後、SiHガスおよびNHガスを原料として、プラズマCVD法によってシリコン薄膜130上にSi膜81を堆積する(図10の工程(f)参照)。この場合、表2に示す反応条件において、SiHガスの流量を92sccm、NHガスの流量を150sccmに設定してSi膜81が形成される。そして、工程(e)および工程(f)を繰り返し実行し、複数のSi膜81と複数のシリコン薄膜130とを交互にSiO膜71上に形成する。
 その後、SiHガス、NOガスおよびNHガスを原料として、表3に示す反応条件を用いてプラズマCVD法によってSi膜81上にシリコン薄膜140を堆積する(図10の工程(g)参照)。
 そして、SiHガス、NOガスおよびNHガスを原料として、プラズマCVD法によってシリコン薄膜140上にSiO(4/3-2x/3)(0<x<2)膜91を堆積する(図10の工程(h)参照)。この場合、表3に示す反応条件において、SiHガスの流量を96sccm、NHガスの流量を150sccm、NOガスの流量を150sccmに設定してSiO(4/3-2x/3)(0<x<2)膜91が形成される。そして、工程(g)および工程(h)を繰り返し実行し、複数のSiO(4/3-2x/3)(0<x<2)膜91と複数のシリコン薄膜140とを交互にSi膜81上に形成する。
 引き続いて、表3に示す反応条件においてNHガスおよびNOガスを停止させた反応条件によって、a-Si膜14をSiO(4/3-2x/3)(0<x<2)膜91上に堆積する(図11の工程(i)参照)。
 その後、Pイオンをイオン注入によってシリコン薄膜120中へ注入する(図11の工程(j)参照)。この場合、Pイオンが複数のシリコン薄膜120中にのみ注入されるように、イオン注入の加速電圧が設定される。これによって、複数のn型シリコン薄膜72が形成される(図12の工程(k)参照)。
 そして、Bイオンをイオン注入によってシリコン薄膜130およびa-Si膜14中へ注入する(図12の工程(k)参照)。この場合、Bイオンが複数のシリコン薄膜130およびa-Si膜14中に注入されるように、イオン注入の加速電圧が設定される。これによって、複数のp型シリコン薄膜82、複数のシリコン薄膜92およびp型a-Si膜14Aが形成される(図12の工程(l)参照)。
 そして、基板1/SiO膜71/シリコン薄膜72/・・・/SiO膜71/シリコン薄膜82/Si膜81/・・・/Si膜81/p型シリコン薄膜92/SiO(4/3-2x/3)(0<x<2)膜91/・・・/SiO(4/3-2x/3)(0<x<2)膜91/p型a-Si膜14Aを表4に示す条件によってアニールする。
 これによって、n型シリコン薄膜72中へイオン注入されたP原子が電気的に活性化され、p型シリコン薄膜92中へイオン注入されたB原子が電気的に活性化され、さらに、p型a-Si膜14Aがppoly-Si膜5になる(図13の工程(m)参照)。
 その後、フォトリソグラフィー技術を用いてppoly-Si膜5をppoly-Si膜51~54にパターンニングする(図13の工程(n)参照)。
 そして、Alのスパッタリングによって、電極6(61~64)をそれぞれppoly-Si膜51~54上に形成するとともに、電極7を基板1の裏面に形成する(図14の工程(p)参照)。これによって、発光素子10Aが完成する。
 図8に示す発光素子10Aのゼロバイアス時のエネルギーバンド図は、図3に示すエネルギーバンド図になり、図8に示す発光素子10Aの電流通電時のエネルギーバンド図は、図4に示すエネルギーバンド図になる。その結果、発光素子10Aは、上述した発光素子10と同じ機構によって発光する。
 したがって、発光素子10Aにおいても、発光効率を高くできる。
 図15は、この発明の実施の形態によるさらに他の発光素子の断面図である。この発明の実施の形態による発光素子は、図15に示す発光素子10Bであってもよい。図15を参照して、発光素子10Bは、図1に示す発光素子10のn型シリコン薄膜2をn型不純物を導入したGeOよりも多くのゲルマニウムを含むゲルマニウム薄膜2Aに代え、シリコン薄膜3をGeよりも多くのゲルマニウムを含むゲルマニウム薄膜3Aに代え、p型シリコン薄膜4をp型不純物を導入したGeO(4/3-2x/3)(0<x<2)よりも多くのゲルマニウムを含むp型ゲルマニウム薄膜4Aに代えたものであり、その他は、発光素子10と同じである。
 n型ゲルマニウム薄膜2Aは、n型シリコン薄膜2のシリコンをゲルマニウムに代えた組成を有し、n型シリコン薄膜2と同じ膜厚を有する。
 また、ゲルマニウム薄膜3Aは、シリコン薄膜3のシリコンをゲルマニウムに代えた組成を有し、シリコン薄膜3と同じ膜厚を有する。
 さらに、p型ゲルマニウム薄膜4Aは、p型シリコン薄膜4のシリコンをゲルマニウムに代えた組成を有し、p型シリコン薄膜4と同じ膜厚を有する。
 したがって、n型ゲルマニウム薄膜2Aは、表1に示す反応条件においてSiHガスをGeHガスに代えた反応条件で形成される。また、ゲルマニウム薄膜3Aは、表2に示す反応条件においてSiHガスをGeHガスに代えた反応条件で形成される。さらに、p型ゲルマニウム薄膜4Aは、表3に示す反応条件においてSiHガスをGeHガスに代えた反応条件で形成される。
 なお、発光素子10Bは、図6および図7に示す工程(a)~工程(h)に従って作製される。
 また、発光素子10Bのゼロバイアス時のエネルギーバンド図は、図3に示すエネルギーバンド図と同じであり、発光素子10Bの電流通電時のエネルギーバンド図は、図4に示すエネルギーバンド図と同じである。
 したがって、発光素子10Bも、発光素子10と同じように高い発光効率を有する。
 図16は、この発明の実施の形態によるさらに他の発光素子の断面図である。この発明の実施の形態による発光素子は、図16に示す発光素子10Cであってもよい。図16を参照して、発光素子10Cは、図8に示す発光素子10Aのシリコン薄膜70をゲルマニウム薄膜70Aに代え、シリコン薄膜80をゲルマニウム薄膜80Aに代え、シリコン薄膜90をゲルマニウム薄膜90Aに代えたものであり、その他は、発光素子10Aと同じである。
 ゲルマニウム薄膜70Aは、複数のGeO膜71Aと、複数のn型ゲルマニウム薄膜72Aとからなる。複数のGeO膜71Aおよび複数のn型ゲルマニウム薄膜72Aは、厚さ方向に交互に積層される。そして、複数のn型ゲルマニウム薄膜72Aの各々は、膜厚方向に不規則に配置された複数のn型Geドット73Aとゲルマニウム酸化膜とを含む。複数のGeO膜71Aの各々は、1~5nmの膜厚を有し、複数のn型ゲルマニウム薄膜72Aの各々は、3~10nmの膜厚を有する。
 ゲルマニウム窒化膜80Aは、複数のGe膜81Aと、複数のゲルマニウム薄膜82Aとからなる。複数のGe膜81Aおよび複数のゲルマニウム薄膜82Aは、厚さ方向に交互に積層される。そして、複数のゲルマニウム薄膜82Aの各々は、膜厚方向に不規則に配置された複数のp型Geドット83Aとゲルマニウム窒化膜とを含む。そして、複数のGe膜81Aの各々は、1~5nmの膜厚を有し、複数のゲルマニウム薄膜82Aの各々は、3~10nmの膜厚を有する。
 ゲルマニウム薄膜90Aは、複数のGeO(4/3-2x/3)(0<x<2)膜91Aと、複数のp型ゲルマニウム薄膜92Aとからなる。複数のGeO(4/3-2x/3)(0<x<2)膜91Aおよび複数のp型ゲルマニウム薄膜92Aは、厚さ方向に交互に積層される。そして、複数のp型ゲルマニウム薄膜92Aの各々は、膜厚方向に不規則に配置された複数のp型Geドット93Aとゲルマニウム酸窒化膜とをを含む。そして、複数のGeO(4/3-2x/3)(0<x<2)膜91Aの各々は、1~5nmの膜厚を有し、複数のp型ゲルマニウム薄膜92Aの各々は、3~10nmの膜厚を有する。
 複数のn型Geドット73Aの各々は、量子ドット73中のP濃度と略同じP濃度を含む。複数のp型Geドット93Aの各々は、量子ドット93中のB濃度と略同じB濃度を含む。
 このように、発光素子10Cは、ドーパントを含まないGeO膜71Aによってn型ゲルマニウム薄膜72Aを挟み込み、ドーパントを含まないGe膜81Aによってゲルマニウムン薄膜82Aを挟み込み、ドーパントを含まないGeO(4/3-2x/3)(0<x<2)膜91によってp型ゲルマニウム薄膜92Aを挟み込んだ構造からなる。したがって、この発明による発光素子は、量子ドット(n型Geドット73AまたはGeドット83Aまたはp型Geドット93A)をドーパントを含まない絶縁部材(GeO膜71AまたはGe膜81AまたはGeO(4/3-2x/3)(0<x<2)膜91A)によって挟み込んだ構造によって構成されていてもよい。
 なお、この発明による発光素子は、電子と正孔との再結合により発光する発光層と、n型の量子ドットを介して発光層に電子を供給する第1の導電部材と、p型の量子ドットを介して発光層に正孔を供給する第2の導電部材とを備えていればよい。電子および正孔の両方を発光層に供給する第1および第2の導電部材を備えていれば、発光層における発光効率を高くできるからである。
 また、この発明による発光素子は、上述したシリコンおよびゲルマニウムに代えて、有機半導体を構成する元素を含む酸化膜、窒化膜および酸窒化膜を用いて構成された発光素子であってもよい。
 この発明においては、n型シリコン薄膜2,2Aの各々は、「第1の導電部材」を構成し、シリコン薄膜3,3Aの各々は、「第2の導電部材」を構成し、p型シリコン薄膜4,4Aの各々は、「第3の導電部材」を構成する。
 また、この発明においては、n型シリコン薄膜2,2Aは、「第1の導電部材」を構成し、シリコン薄膜3,3Aの各々は、「発光層」を構成し、p型シリコン薄膜4,4Aの各々は、「第2の導電部材」を構成する。
 さらに、この発明においては、シリコン薄膜70,70Aの各々は、「第1の導電部材」を構成し、シリコン薄膜80,80Aの各々は、「第2の導電部材」を構成し、シリコン薄膜90,90Aの各々は、「第3の導電部材」を構成する。
 さらに、この発明においては、シリコン薄膜70,70Aは、「第1の導電部材」を構成し、シリコン薄膜80,80Aの各々は、「発光層」を構成し、シリコン薄膜90,90Aの各々は、「第2の導電部材」を構成する。
 さらに、この発明においては、量子ドット21,73の各々は、「第1の量子ドット」を構成し、量子ドット31,83の各々は、「第2の量子ドット」を構成し、量子ドット41,93の各々は、「第3の量子ドット」を構成する。
 さらに、この発明においては、量子ドット73Aは、「第1の量子ドット」を構成し、量子ドット83Aは、「第2の量子ドット」を構成し、量子ドット93Aは、「第3の量子ドット」を構成する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 この発明は、発光効率が向上可能な発光素子に適用される。また、この発明は、発光効率が向上可能な発光素子の製造方法に適用される。

Claims (12)

  1.  第1の導電型を有する第1の量子ドットを含む第1の導電部材と、
     前記第1の導電部材に接して配置され、第2の量子ドットを含む第2の導電部材と、
     前記第2の導電部材に接して形成されるとともに、前記第1の導電型と異なる第2の導電方を有する第3の量子ドットを含み、電子に対する障壁エネルギーが前記第2の導電部材よりも大きい第3の導電部材とを備える発光素子。
  2.  前記第1の導電部材は、複数個の前記第1の量子ドットとトンネル電流が流れる第1の絶縁層とを含み、
     前記第2の導電部材は、複数個の前記第2の量子ドットとトンネル電流が流れる第2の絶縁層とを含み、
     前記第3の導電部材は、複数個の前記第3の量子ドットとトンネル電流が流れる第3の絶縁層とを含む、請求の範囲第1項に記載の発光素子。
  3.  前記複数個の第1の量子ドットは、前記第1の導電部材の膜厚方向にランダムに配置され、
     前記複数個の第2の量子ドットは、前記第2の導電部材の膜厚方向にランダムに配置され、
     前記複数個の第3の量子ドットは、前記第3の導電部材の膜厚方向にランダムに配置される、請求の範囲第2項に記載の発光素子。
  4.  前記第1の導電型は、n型であり、
     前記第2の導電型は、p型である、請求の範囲第1項に記載の発光素子。
  5.  前記第1の導電部材において、正孔に対する障壁エネルギーは、電子に対する障壁エネルギーよりも大きく、
     前記第3の導電部材において、電子に対する障壁エネルギーは、正孔に対する障壁エネルギーよりも大きい、請求の範囲第4項に記載の発光素子。
  6.  前記第1から第3の量子ドットは、シリコンドットからなり、
     前記第1の導電部材は、SiOよりも多くのシリコンを含むシリコン酸化膜からなり、
     前記第2の導電部材は、Siよりも多くのシリコンを含むシリコン窒化膜からなり、
     前記第3の導電部材は、SiO(4/3-2x/3)(0<x<2)よりも多くのシリコンを含むシリコン酸窒化膜からなる、請求の範囲第5項に記載の発光素子。
  7.  量子ドットを含む発光層と、
     n型の量子ドットを介して電子を前記発光層へ供給する第1の導電部材と、
     p型の量子ドットを介して正孔を前記発光層へ供給する第2の導電部材とを備える発光素子。
  8.  前記第1の導電部材は、SiOよりも多くのシリコンを含むシリコン酸化膜からなり、
     前記第2の導電部材は、SiO(4/3-2x/3)(0<x<2)よりも多くのシリコンを含むシリコン酸窒化膜からなる、請求の範囲第7項に記載の発光素子。
  9.  量子ドットを含む第1の導電部材を半導体基板の一主面に堆積する第1の工程と、
     量子ドットを含む第2の導電部材を前記第1の導電部材上に堆積する第2の工程と、
     量子ドットを含む第3の導電部材を前記第2の導電部材上に堆積する第3の工程と、
     前記第1の導電部材中へ第1の導電型の不純物を導入する第4の工程と、
     前記第3の導電部材中へ前記第1の導電型と異なる第2の導電型の不純物を導入する第5の工程と、
     前記第1の導電型の不純物を含む前記第1の導電部材と、前記第2の導電型の不純物を含む前記第3の導電部材とを熱処理する第6の工程とを備える発光素子の製造方法。
  10.  前記第1の工程において、酸素を含む第1の材料ガスの流量に対するシリコンを含む第2の材料ガスの流量の比を第1の基準値以上に設定してSiOよりも多くのシリコンを含むシリコン酸化膜からなる前記第1の導電部材が前記一主面に堆積され、
     前記第2の工程において、窒素を含む第3の材料ガスの流量に対する前記第2の材料ガスの流量の比を第2の基準値以上に設定してSiよりも多くのシリコンを含むシリコン窒化膜からなる前記第2の導電部材が前記第1の導電部材上に堆積され、
     前記第3の工程において、前記第1の材料ガスの流量に対する前記第2の材料ガスの流量の比を前記第1の基準値以上に設定し、かつ、前記第3の材料ガスの流量に対する前記第2の材料ガスの流量の比を前記第2の基準値以上に設定してSiO(4/3-2x/3)(0<x<2)よりも多くのシリコンを含むシリコン酸窒化膜からなる前記第3の導電部材が前記第2の導電部材上に堆積される、請求の範囲第9項に記載の発光素子の製造方法。
  11.  前記第4の工程において、n型の不純物が前記第1の導電部材中へ導入され、
     前記第5の工程において、p型の不純物が前記第3の導電部材中へ導入される、請求の範囲第10項に記載の発光素子の製造方法。
  12.  前記第6の工程において、前記n型の不純物を含む前記第1の導電部材および前記p型の不純物を含む前記第3の導電部材は、窒素雰囲気中で熱処理される、請求の範囲第11項に記載の発光素子の製造方法。
PCT/JP2008/000744 2008-03-26 2008-03-26 発光素子およびその製造方法 WO2009118784A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/601,794 US8044382B2 (en) 2008-03-26 2008-03-26 Light-emitting device and method for manufacturing the same
JP2008548900A JP4392052B2 (ja) 2008-03-26 2008-03-26 発光素子およびその製造方法
PCT/JP2008/000744 WO2009118784A1 (ja) 2008-03-26 2008-03-26 発光素子およびその製造方法
US13/237,449 US8330141B2 (en) 2008-03-26 2011-09-20 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000744 WO2009118784A1 (ja) 2008-03-26 2008-03-26 発光素子およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/601,794 A-371-Of-International US8044382B2 (en) 2008-03-26 2008-03-26 Light-emitting device and method for manufacturing the same
US13/237,449 Continuation US8330141B2 (en) 2008-03-26 2011-09-20 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2009118784A1 true WO2009118784A1 (ja) 2009-10-01

Family

ID=41113028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000744 WO2009118784A1 (ja) 2008-03-26 2008-03-26 発光素子およびその製造方法

Country Status (3)

Country Link
US (2) US8044382B2 (ja)
JP (1) JP4392052B2 (ja)
WO (1) WO2009118784A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
WO2009014590A2 (en) 2007-06-25 2009-01-29 Qd Vision, Inc. Compositions and methods including depositing nanomaterial
WO2009014707A2 (en) * 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
JP4445556B2 (ja) * 2008-02-18 2010-04-07 国立大学法人広島大学 発光素子およびその製造方法
TWI396294B (zh) * 2008-11-12 2013-05-11 Academia Sinica 量子點紅外線偵測器裝置
JP5704899B2 (ja) * 2010-11-16 2015-04-22 キヤノン株式会社 シリコン発光素子に用いる活性層およびその活性層の製造方法
KR101189686B1 (ko) * 2011-03-22 2012-10-10 한국표준과학연구원 실리콘 양자점에 의한 광활성층 및 이의 제조방법
US8455881B2 (en) * 2011-09-19 2013-06-04 Translucent, Inc. Ge quantum dots for dislocation engineering of III-N on silicon
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
CN106467608B (zh) * 2016-10-11 2018-05-01 浙江大学常州工业技术研究院 一种苝基甲氧基聚乙二醇、其制备方法及基于苝基聚乙二醇的石墨烯分散液制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102596A (ja) * 1995-10-04 1997-04-15 Fujitsu Ltd 量子ドットの製造方法及び量子ドット装置
JPH11266055A (ja) * 1998-03-18 1999-09-28 Ion Kogaku Kenkyusho:Kk 半導体発光素子およびその製造方法
JP2005347465A (ja) * 2004-06-02 2005-12-15 Sony Corp 半導体発光デバイスおよび半導体発光デバイス製造方法
JP2006228916A (ja) * 2005-02-17 2006-08-31 Sony Corp 発光素子
JP2006225258A (ja) * 2005-02-16 2006-08-31 Samsung Electronics Co Ltd シリコンナノワイヤおよびその製造方法
JP2007088311A (ja) * 2005-09-26 2007-04-05 Nissin Electric Co Ltd シリコンドット形成方法及びシリコンドット形成装置

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977357A (en) * 1988-01-11 1990-12-11 Shrier Karen P Overvoltage protection device and material
US5568504A (en) * 1992-12-03 1996-10-22 Siemens Aktiengesellschaft Surface-emitting laser diode
US5293050A (en) * 1993-03-25 1994-03-08 International Business Machines Corporation Semiconductor quantum dot light emitting/detecting devices
JP3572673B2 (ja) 1994-08-31 2004-10-06 ソニー株式会社 量子素子
US6358631B1 (en) * 1994-12-13 2002-03-19 The Trustees Of Princeton University Mixed vapor deposited films for electroluminescent devices
CA2239288A1 (en) * 1996-09-03 1998-03-12 Advanced Vision Technologies, Inc. Oxide based phosphors and processes therefor
JPH10155838A (ja) 1996-11-29 1998-06-16 Yamaha Motor Co Ltd 小型車両
US6236060B1 (en) * 1997-11-19 2001-05-22 International Business Machines Corporation Light emitting structures in back-end of line silicon technology
CA2268997C (en) * 1998-05-05 2005-03-22 National Research Council Of Canada Quantum dot infrared photodetectors (qdip) and methods of making the same
JP3660801B2 (ja) 1998-06-04 2005-06-15 三菱電線工業株式会社 GaN系半導体発光素子
US7442953B2 (en) * 1999-06-14 2008-10-28 Quantum Semiconductor Llc Wavelength selective photonics device
US6817466B2 (en) 2000-11-09 2004-11-16 Honeywell International, Inc. Apparatus for manufacturing filter cartridges, and method of using same
US20020136932A1 (en) * 2001-03-21 2002-09-26 Seikoh Yoshida GaN-based light emitting device
US20030021982A1 (en) * 2001-06-25 2003-01-30 Kotov Nicholas A. Preparation of graded semiconductor films by the layer-by-layer assembly of nanoparticles
NZ513637A (en) * 2001-08-20 2004-02-27 Canterprise Ltd Nanoscale electronic devices & fabrication methods
US6805904B2 (en) * 2002-02-20 2004-10-19 International Business Machines Corporation Process of forming a multilayer nanoparticle-containing thin film self-assembly
JP2003332695A (ja) 2002-05-07 2003-11-21 Ikuo Suemune ひずみ補償長波長半導体発光素子
GB2405262B (en) * 2002-05-07 2006-06-14 Agere Systems Inc A multi-layer inductor formed in a semiconductor substrate and having a core of ferromagnetic material
EP1388903B1 (en) 2002-08-09 2016-03-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
KR100866948B1 (ko) * 2003-02-07 2008-11-05 삼성전자주식회사 메모리 기능을 갖는 단전자 트랜지스터 및 그 제조방법
JP2004265740A (ja) * 2003-02-28 2004-09-24 Tdk Corp El機能膜及びel素子
EP1471582A1 (en) * 2003-03-31 2004-10-27 Ngk Insulators, Ltd. Substrate for semiconductor light-emitting element, semiconductor light-emitting element and its fabrication
US7138629B2 (en) * 2003-04-22 2006-11-21 Ebara Corporation Testing apparatus using charged particles and device manufacturing method using the testing apparatus
JP4526252B2 (ja) * 2003-08-26 2010-08-18 富士通株式会社 光半導体装置及びその製造方法
JP4781821B2 (ja) * 2004-01-23 2011-09-28 Hoya株式会社 量子ドット分散発光素子およびその製造方法
TWI229465B (en) * 2004-03-02 2005-03-11 Genesis Photonics Inc Single chip white light component
US7427782B2 (en) * 2004-03-29 2008-09-23 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
TWI243489B (en) * 2004-04-14 2005-11-11 Genesis Photonics Inc Single chip light emitting diode with red, blue and green three wavelength light emitting spectra
US7326908B2 (en) * 2004-04-19 2008-02-05 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
TWI281691B (en) * 2004-08-23 2007-05-21 Ind Tech Res Inst Method for manufacturing a quantum-dot element
JP3987519B2 (ja) * 2004-09-30 2007-10-10 株式会社東芝 屈折率変化装置及び屈折率変化方法
TWI249966B (en) * 2004-10-20 2006-02-21 Genesis Photonics Inc Light-emitting device having porous light-emitting layer
JP2006155838A (ja) 2004-12-01 2006-06-15 Sony Corp 光ディスクの製造方法、光ディスク、および光ディスク製造用スタンパ
KR100695143B1 (ko) * 2005-02-24 2007-03-14 삼성전자주식회사 나노입자 전기발광 소자 및 그 제조방법
US20090039764A1 (en) * 2005-03-17 2009-02-12 Cho Kyung Sang Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer
JP4639107B2 (ja) * 2005-03-31 2011-02-23 富士通株式会社 半導体レーザ及びその製造方法
US7265374B2 (en) * 2005-06-10 2007-09-04 Arima Computer Corporation Light emitting semiconductor device
US7180648B2 (en) * 2005-06-13 2007-02-20 Massachusetts Institute Of Technology Electro-absorption modulator device and methods for fabricating the same
US7795609B2 (en) * 2005-08-05 2010-09-14 Stc.Unm Densely stacked and strain-compensated quantum dot active regions
EP1755172A1 (en) * 2005-08-17 2007-02-21 Ngk Insulators, Ltd. Semiconductor layered structure and its method of formation, and light emitting device
US7358101B2 (en) * 2005-09-06 2008-04-15 Institute Of Nuclear Energy Research Method for preparing an optical active layer with 1˜10 nm distributed silicon quantum dots
TWI291247B (en) * 2005-11-11 2007-12-11 Univ Nat Chiao Tung Nanoparticle structure and manufacturing process of multi-wavelength light emitting devices
JP4435748B2 (ja) * 2005-12-09 2010-03-24 富士通株式会社 赤外線検知器
JP4704215B2 (ja) * 2005-12-22 2011-06-15 富士通株式会社 半導体量子ドット装置
US7679102B2 (en) * 2005-12-28 2010-03-16 Group Iv Semiconductor, Inc. Carbon passivation in solid-state light emitters
US8089080B2 (en) * 2005-12-28 2012-01-03 Group Iv Semiconductor, Inc. Engineered structure for high brightness solid-state light emitters
US7960721B2 (en) * 2006-05-19 2011-06-14 Siluria Technologies, Inc. Light emitting devices made by bio-fabrication
US8089061B2 (en) * 2006-06-05 2012-01-03 Hoya Corporation Quantum dot inorganic electroluminescent device
TWI395335B (zh) * 2006-06-30 2013-05-01 Applied Materials Inc 奈米結晶的形成
US8884511B2 (en) * 2006-07-10 2014-11-11 Hewlett-Packard Development Company, L.P. Luminescent materials having nanocrystals exhibiting multi-modal energy level distributions
US7615492B2 (en) * 2006-07-21 2009-11-10 Atomic Energy Council - Institute Of Nuclear Energy Research Preparing method of CNT-based semiconductor sensitized solar cell
ATE541023T1 (de) * 2006-11-01 2012-01-15 Univ Wake Forest Festkörperbeleuchtungszusammensetzungen und systeme
JP4749351B2 (ja) * 2007-01-30 2011-08-17 富士通株式会社 赤外線検出器
US7981710B2 (en) 2007-03-30 2011-07-19 Panasonic Corporation Light emitting device and manufacturing method
KR101453082B1 (ko) * 2007-06-15 2014-10-28 삼성전자주식회사 교류 구동형 양자점 전계발광소자
KR20090002787A (ko) * 2007-07-04 2009-01-09 삼성전자주식회사 트랜지스터 구조를 이용한 발광소자 및 수광소자
EP2171764A4 (en) * 2007-07-18 2012-06-27 Moylechester Ltd ENVELOPED SOLAR CELL
US7616272B2 (en) * 2007-08-17 2009-11-10 Group Iv Semiconductor Inc. Electroluminescent films for backlighting liquid crystal displays
US7851307B2 (en) * 2007-08-17 2010-12-14 Micron Technology, Inc. Method of forming complex oxide nanodots for a charge trap
US7777233B2 (en) * 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
US7989833B2 (en) * 2008-01-15 2011-08-02 Goeken Group Corp. Silicon nanoparticle white light emitting diode device
US7501294B1 (en) * 2008-02-18 2009-03-10 International Business Machines Corporation VCSEL for high speed lower power optical link
JP4445556B2 (ja) 2008-02-18 2010-04-07 国立大学法人広島大学 発光素子およびその製造方法
JP4392045B2 (ja) 2008-03-19 2009-12-24 国立大学法人広島大学 発光素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102596A (ja) * 1995-10-04 1997-04-15 Fujitsu Ltd 量子ドットの製造方法及び量子ドット装置
JPH11266055A (ja) * 1998-03-18 1999-09-28 Ion Kogaku Kenkyusho:Kk 半導体発光素子およびその製造方法
JP2005347465A (ja) * 2004-06-02 2005-12-15 Sony Corp 半導体発光デバイスおよび半導体発光デバイス製造方法
JP2006225258A (ja) * 2005-02-16 2006-08-31 Samsung Electronics Co Ltd シリコンナノワイヤおよびその製造方法
JP2006228916A (ja) * 2005-02-17 2006-08-31 Sony Corp 発光素子
JP2007088311A (ja) * 2005-09-26 2007-04-05 Nissin Electric Co Ltd シリコンドット形成方法及びシリコンドット形成装置

Also Published As

Publication number Publication date
US8330141B2 (en) 2012-12-11
US20120007043A1 (en) 2012-01-12
JP4392052B2 (ja) 2009-12-24
JPWO2009118784A1 (ja) 2011-07-21
US8044382B2 (en) 2011-10-25
US20100176370A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP4392052B2 (ja) 発光素子およびその製造方法
JP4881491B2 (ja) 半導体発光素子
CN110224047B (zh) 基于P型掺杂AlScN/AlScN超晶格势垒层的高效发光二极管及制备方法
TWI485882B (zh) 紫外發光元件及其製造方法
US7768032B2 (en) Light-emitting device with enhanced luminous efficiency and method of producing the same
CN107293622B (zh) 一种发光二极管的外延片及其制备方法
CN107293619B (zh) 一种发光二极管外延片及其制造方法
WO2021226867A1 (zh) 紫外led及其制作方法
CN106876530B (zh) 一种氮化镓基发光二极管的外延片及其制作方法
JP4445556B2 (ja) 発光素子およびその製造方法
CN115064620A (zh) 阶梯组分YAlN/AlGaN超晶格p型层的高效深紫外发光二极管及制备方法
WO2009122458A1 (ja) 量子ドットの製造方法
JP2002094112A (ja) 3族窒化物化合物半導体発光素子の製造方法
JP4392051B2 (ja) 発光素子およびその製造方法
CN103972332B (zh) 一种p型氮化镓材料空穴激活的方法
JP2013138090A (ja) 発光ダイオードの製造方法
CN109273568B (zh) 一种氮化镓基发光二极管外延片及其制作方法
CN113921617A (zh) 一种Ga2O3金属氧化物半导体场效应管及制备方法
JP5135465B2 (ja) 半導体発光素子及びその製造方法
Cheong et al. Visible Electroluminescence from spherical-shaped silicon nanocrystals
CN109768130A (zh) 一种氮化镓基发光二极管外延片及其制作方法
TWI394217B (zh) 雙極性電晶體的製造方法
CN115841950A (zh) 基于退火扩散的GaN增强型PMOS器件及其制备方法
TWI273727B (en) Method of fabricating light emitting diode with low operating voltage
JP5458162B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008548900

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12601794

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08720623

Country of ref document: EP

Kind code of ref document: A1