WO2009115053A1 - 可注射用缓释药物制剂及其制备方法 - Google Patents

可注射用缓释药物制剂及其制备方法 Download PDF

Info

Publication number
WO2009115053A1
WO2009115053A1 PCT/CN2009/070913 CN2009070913W WO2009115053A1 WO 2009115053 A1 WO2009115053 A1 WO 2009115053A1 CN 2009070913 W CN2009070913 W CN 2009070913W WO 2009115053 A1 WO2009115053 A1 WO 2009115053A1
Authority
WO
WIPO (PCT)
Prior art keywords
sustained release
release pharmaceutical
acid
pharmaceutical composition
composition according
Prior art date
Application number
PCT/CN2009/070913
Other languages
English (en)
French (fr)
Inventor
刘克良
全东琴
梁远军
孟庆斌
王晨宏
何军林
贾启燕
李思成
Original Assignee
中国人民解放军军事医学科学院毒物药物研究所
成都一平医药科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军军事医学科学院毒物药物研究所, 成都一平医药科技发展有限公司 filed Critical 中国人民解放军军事医学科学院毒物药物研究所
Priority to CN200980109804.2A priority Critical patent/CN102036653B/zh
Priority to US12/933,669 priority patent/US20110091420A1/en
Publication of WO2009115053A1 publication Critical patent/WO2009115053A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes

Definitions

  • the present invention relates to a sustained release pharmaceutical composition, particularly a sustained release composition of a hydrophilic biopharmaceutical such as a peptide, a protein, a nucleic acid, and a saccharide.
  • the present invention also relates to an injectable sustained release pharmaceutical preparation prepared from the sustained release pharmaceutical composition and a process for producing the injectable sustained release pharmaceutical preparation. Background technique
  • biopharmaceuticals such as peptides, proteins, nucleic acids and sugars are becoming a very important therapeutic agent.
  • biopharmaceuticals Although the efficacy of biopharmaceuticals has long been clinically proven, these drugs are poorly stable and inactivated compared to small molecule drugs. Moreover, these drugs are mostly hydrophilic macromolecular substances, and the monthly/water partition coefficient is small, which is not easily taken up by the lipophilic membrane and makes it difficult to pass the biological barrier. Therefore, the oral bioavailability of biopharmaceuticals is usually low.
  • biopharmaceuticals a preferred route of administration is by parenteral administration such as injection.
  • parenteral administration such as injection.
  • this mode of administration needs to be repeated. Therefore, in recent years, sustained release preparations of biopharmaceuticals have been developed with the aim of improving the rationality and efficiency of administration.
  • the suspension or solution of the drug in an oily solvent as a solvent has a sustained release effect.
  • a drug having a higher water solubility such as a biopharmaceutical
  • the drug easily enters the aqueous phase after reaching the oil I water interface. Therefore, for a biopharmaceutical having a high water solubility or a high polarity, it is difficult to achieve a desired sustained release effect by using a simple oily suspension.
  • liposomes have been successfully used as drug delivery vehicles for biopharmaceuticals.
  • liposomes as a sustained-release system still have some problems to be solved, such as poor sustained-release effect, low encapsulation efficiency, and poor physical and chemical stability in some cases.
  • the invention relates to a sustained release pharmaceutical composition
  • a sustained release pharmaceutical composition comprising a therapeutically effective amount of an active ingredient, an amphiphilic molecule, a poorly water-soluble organic acid and/or a salt thereof, and an oily solvent.
  • the present invention relates to an injectable sustained release pharmaceutical preparation prepared from the above sustained release pharmaceutical composition.
  • the present invention provides a method of preparing the sustained release pharmaceutical preparation for injectables, which comprises:
  • the present invention provides a sustained release pharmaceutical preparation for injectables comprising a therapeutically effective amount of an active ingredient, an amphiphilic molecule, a poorly water-soluble organic acid and/or a salt thereof, and an oily solvent, said injectable
  • the sustained release pharmaceutical preparation is prepared by the following steps:
  • a further aspect of the invention is a method of treating a condition in a subject comprising administering to the individual a therapeutically effective amount of a pharmaceutical composition or a sustained release pharmaceutical formulation of the invention.
  • sustained release pharmaceutical preparation of the invention has a good sustained release effect on hydrophilic biopharmaceuticals, particularly peptides, proteins, nucleic acids and saccharides. detailed description
  • One aspect of the present invention relates to a sustained release pharmaceutical composition
  • a sustained release pharmaceutical composition comprising a therapeutically effective amount of an active ingredient, an amphiphilic molecule, a poorly water-soluble organic acid and/or a salt thereof.
  • the active ingredient which can be used in the compositions of the present invention is a hydrophilic drug including, but not limited to, List of drugs:
  • Peptides protein drugs, such as pituitary polypeptides such as adrenocorticotropic hormone, gastrin, vasopressin, oxytocin, melanin, etc.; such as secretin, gastrin, biliary vasopressin, gastrin, blood vessels Digestive tract polypeptides such as active intestinal peptide, pancreatic polypeptide, neurotensin, frog peptide; such as gonadotropin releasing hormone, gonadotropin releasing hormone, somatostatin, growth hormone releasing hormone, and melanocyte stimulating hormone a hypothalamic polypeptide such as a hormone; a brain polypeptide such as an enkephalin, a neomorphin, an endorphin, a memory peptide, or the like; a kinin such as angiotensin I, II, III, etc.; glutathione; calcitonin; Sleep peptide; pinecone; hemin; thymosin;
  • Nucleic acid drugs such as DNA fragments such as DNA fragments containing 33 base pairs, chemically modified DNA fragments such as thio DNA fragments, RNA fragments, chemically modified RNA fragments, polyinosinic acid, thiol polycytidine, cAMP, CTP, CDP-choline, GMP, IMP, AMP, inosine, UTP, NAD, NADP, 2-mercaptofuranosinic acid, biguanide cAMP, 6-mercaptopurine, 6-mercaptopurine nucleoside, 6-thiopurine, 5-fluorouracil, furan fluorouracil, 2-deoxynucleoside, cytarabine hydrochloride, anti-virus enzyme plasmid gene, etc.;
  • a saccharide or non-peptide non-nucleic acid organic molecular drug for example, a polysaccharide drug such as heparin, velvet polysaccharide, sea cucumber polysaccharide, chitosan polysaccharide, dextran, mushroom polysaccharide, tremella polysaccharide, lycium polysaccharide, ganoderma lucidum polysaccharide, etc.; Chemically synthesized drugs such as naltrexone hydrochloride, morphine hydrochloride, mitoxantrone hydrochloride, cortisone acetate, and the like.
  • a polysaccharide drug such as heparin, velvet polysaccharide, sea cucumber polysaccharide, chitosan polysaccharide, dextran, mushroom polysaccharide, tremella polysaccharide, lycium polysaccharide, ganoderma lucidum polysaccharide, etc.
  • the active ingredients in the compositions of the present invention may include peptides, proteinaceous drugs.
  • the active ingredient in the compositions of the invention may be selected from the group consisting of thymopentin, bovine serum albumin, exenatide, pramlintide, somatostatin, omega-interferon, octreotide, Salmon calcitonin, insulin.
  • the active ingredient in the compositions of the invention may be a nucleic acid.
  • the active ingredient useful in the compositions of the present invention is selected from the group consisting of oligonucleotides.
  • the active ingredient in the compositions of the invention may be a saccharide, non-peptide non-nucleic acid organic drug.
  • the active ingredient useful in the compositions of the present invention is selected from the group consisting of naltrexone hydrochloride.
  • the active ingredient may be a pharmaceutically acceptable salt thereof or other neoplasm.
  • the pharmaceutically acceptable salts of the active ingredients are those well known to those skilled in the art, including exemplary acids which are added with acids or bases including inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, boric acid, phosphoric acid. Etc.; organic acids such as acetic acid, maleic acid, tartaric acid, salicylic acid, citric acid, benzoic acid, bishydroxycacilic acid, sulfonic acid, and the like.
  • Exemplary bases include inorganic bases and organic bases. Salts derived from inorganic bases are well known to those skilled in the art and include, but are not limited to, ammonium, sodium, potassium, calcium and magnesium salts and the like.
  • Salts derived from organic bases include, but are not limited to, salts of isopropylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, tridecylamine, dicyclohexylamine, choline, and caffeine.
  • the active ingredient in the compositions of the present invention may be leuprolide acetate, triptorelin acetate.
  • Prodrug means a compound which can be converted into a pharmaceutically active ingredient under physiological conditions or by solvolysis.
  • prodrug refers to a drug of the active ingredient in the composition of the present invention.
  • the alcohol functional group of acetic acid is cool, the acid is cool, the benzoic acid is cool, the acid is cool: the citric acid derivative, the amide derivative of the amine functional group, etc.; the carboxylic acid functional group ester, the amide derivative, and the like.
  • the amount of active ingredient contained in the compositions of the present invention is based on a therapeutically effective amount.
  • “Therapeutically effective amount” means the amount of the active ingredient in the composition of the present invention, when administered to a mammal, preferably a human, sufficient to effect treatment of the disease or condition to be treated/prevented in the mammal, preferably a human. /prevention.
  • the amount of the active ingredient in the composition of the present invention constituting the "therapeutically effective amount” varies depending on the kind of the active ingredient, the disease state and its severity, and the conditions of the subject to be administered, such as age, body weight, etc., but can be conventionally conventionally used in the art. The skilled person is determined based on his or her own knowledge and the disclosure of this application.
  • the active ingredient may be a single drug or a combination of one or more pharmaceutically compatible drugs.
  • the amount of active ingredient present in the compositions of the present invention is generally from about 0.0001% to about 50% by weight, w/w based on the total amount of the composition. In certain embodiments, the compositions of the present invention comprise the active ingredient in an amount of from about 0.0005% to about 30% (w/w) based on the total amount of the composition. In certain embodiments, the compositions of the present invention comprise the active ingredient in an amount of from about 0.0005% to about 10% (w/w) based on the total amount of the composition. In certain embodiments, the active ingredient is included in the compositions of the present invention in an amount of from about 0.0005% to about 5% (w/w) based on the total amount of the composition.
  • amphiphilic molecule of the present invention may be any fraction having both a hydrophilic group and a hydrophobic group. Fatty acid or fatty alcohol.
  • the amphiphilic molecule used in the present invention may be a surfactant.
  • the surfactant used in the present invention may be an ionic surfactant and a nonionic surfactant which are commonly used in the pharmaceutical field.
  • the ionic surfactants include anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • ionic surfactants those which are less water soluble are preferably used.
  • Exemplary ionic surfactants include, but are not limited to, anionic surfactants such as fatty acid salts, sulfates, sulfonates, and the like; cationic surfactants such as quaternary ammonium compounds; and such as amino acids, beets A zwitterionic surfactant such as a base.
  • nonionic surfactants include, but are not limited to, polyethylene glycols such as fatty alcohol polyoxyethylene ethers (AEO), alkylphenol ethoxylates, fatty acid polyoxyethylene esters, polyoxyethylene fatty amines, Ethylene oxide-propylene oxide block copolyether, etc.; polyols such as monohydric alcohol esters, ethylene glycol esters, glycerides, neopentyl polyol esters, sorbitol esters, sorbitan esters, sugars Esters, alkyl glycosides, etc.; nitrogen-containing nonionic surfactants such as alkyl alcohol amides, amine oxides, etc.; and sterol-derived nonionic surfactants.
  • polyethylene glycols such as fatty alcohol polyoxyethylene ethers (AEO), alkylphenol ethoxylates, fatty acid polyoxyethylene esters, polyoxyethylene fatty amines, Ethylene oxide-propylene oxide block cop
  • the surfactants used in the present invention may be phospholipids.
  • Phospholipids useful in the present invention are selected from the group consisting of natural phospholipids including, but not limited to, phosphatidic acid, phosphatidylglycerol (PG), cardiolipin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine (PS), phosphatidylinositol (PI), plasmalogens, ether lipids, cephalin (PE), soy lecithin (SPC) or egg yolk lecithin (EPC), phospholipid (PA), sphingomyelin (SPH), galactose Glycosides, glucocerebroside, brain sulphur, gangliosides, etc.; synthetic phospholipids, including but not limited to dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), di-
  • the surfactants used in the present invention may be cholesterol. In certain preferred embodiments, the surfactant used in the present invention is cholesterol.
  • amphiphilic molecule to be added to the composition of the present invention may be a mixture of one or a combination of the above surfactants.
  • the surfactant used in the present invention may also be a mixture of egg yolk lecithin (EPC) and cholesterol.
  • EPC egg yolk lecithin
  • amphiphilic molecule in the composition will depend on a variety of factors, such as the type of active molecule, polarity and pH, the type and concentration of other additives that may be present in the composition, and the like. However, those skilled in the art can grasp the specific conditions of the composition. The specific two The selection and addition amount of the affinity molecule is based on the formation of the lipid-drug composite microparticles.
  • the particular amphiphilic molecule is added in an amount of from about 0.0001% to about 30.0% by weight, w/w based on the total amount of the composition. In certain embodiments, the amphiphilic molecule is added in an amount of from about 0.005% to about 20% (w/w) based on the total amount of the composition. In certain embodiments, the amphiphilic molecule is added in an amount of from about 0.005% to about 10% (w/w) based on the total amount of the composition.
  • the sustained-release pharmaceutical composition of the present invention in addition to the amphiphilic molecule, an organic acid and/or a salt thereof which is poorly soluble in water is added. Thereby, the sustained release performance is remarkably improved.
  • the active ingredient and the poorly water-soluble organic acid and/or its salt molecule increase the lipophilicity and stability of the active ingredient by electrostatic force, hydrophobic interaction and coordination bond. Sex, thereby delaying the release of the drug.
  • the addition of a poorly water-soluble organic acid and/or a salt thereof to the composition contributes to the formation of the lipid-drug complex dispersed in an oily solvent.
  • the poorly water-soluble organic acid and/or its salt are preferably those which are solid in a pharmaceutical environment. In some embodiments, it is preferred to use an organic acid salt.
  • hardly soluble in water means that the organic acid or its salt has a solubility per 100 g of water at room temperature of less than or equal to 1 g.
  • the poorly water-soluble organic acid used in the compositions of the present invention may be selected from fatty acids or aromatic acids.
  • Exemplary organic acids include, but are not limited to, saturated or unsaturated fatty acids having more than 10 carbon atoms such as lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, palmitic acid, Arachidonic acid and the like.
  • Exemplary aromatic acids such as bishydroxycacia.
  • the poorly water-soluble organic acid salt may be selected from various salts of the poorly water-soluble organic acid, including but not limited to calcium, magnesium, barium, manganese, iron, copper, rhodium and aluminum salts, and the like. It may be a salt formed by any other organic acid, provided that it is poorly soluble in water and must be pharmaceutically acceptable (non-toxic).
  • a poorly water-soluble organic acid a poorly water-soluble organic acid salt or a mixture thereof can be used.
  • the poorly water-soluble organic acid and/or its salt may be a combination of one or more.
  • the water-insoluble organic acid and/or its salt is usually added in an amount of usually from about 0.0001% by weight to about 30% by weight based on the total amount of the composition. In certain embodiments, the water-insoluble organic acid and/or its salt is specifically added in an amount of from about 0.005% to about 20% (w/w) based on the total amount of the composition. In certain embodiments, the poorly water-soluble organic acid and/or salt thereof is added in an amount of from about 0.005% to about 10% (w/w) based on the total amount of the composition.
  • the sustained release pharmaceutical composition of the present invention may further comprise a pharmaceutically acceptable carrier or excipient.
  • the carrier or excipient is an oily solvent.
  • the oily solvent in the composition of the present invention is a pharmaceutical field well known to those skilled in the art. Those commonly used. Exemplary oily solvents include, but are not limited to, natural vegetable oils such as soybean oil, tea oil, sesame oil, garlic oil, walnut oil, olive oil, corn oil, peanut oil, coconut oil, cottonseed oil, castor oil, etc.; refined vegetable oil; long chain or Medium chain fatty acid glyceride; isopropyl myristate; ethyl oleate; polyoxyethylene oleic acid triglyceride; white oil; and benzyl benzoate.
  • natural vegetable oils such as soybean oil, tea oil, sesame oil, garlic oil, walnut oil, olive oil, corn oil, peanut oil, coconut oil, cottonseed oil, castor oil, etc.
  • refined vegetable oil long chain or Medium chain fatty acid glyceride
  • isopropyl myristate ethyl oleate
  • the oily solvent can be a combination of one or more of the foregoing.
  • the oily solvent uses soybean oil, long chain or medium chain fatty acid glycerides.
  • the amount of the oily solvent is not critical, and those skilled in the art can select an appropriate amount depending on the particular dosage form. It can generally range from about 5% to about 99% by weight, w/w by weight of the composition. In certain embodiments, the oily solvent is added in an amount of from about 30% to about 99% (w/w) based on the total amount of the composition. In certain embodiments, the oily solvent is added in an amount of from about 60% to about 99% (w/w) based on the total amount of the composition.
  • thickening agents may also be included in the sustained release formulations of the present invention.
  • Thickeners which can be used in the present invention include high molecular polymers such as PCL, PLGA, PLA and the like.
  • the thickener is added in an amount of from about 0.05% to about 10% (w/w), preferably from about 0.5% to about 3.0% (w/w), based on the total of the sustained release formulation.
  • an antioxidant may also be included in the sustained release formulation of the present invention to assure stability of the injectable oil.
  • the antioxidant which can be used in the present invention may be selected from the group consisting of VE (vitamin E), BHT (di-tert-butyl nonylphenol), BHA (tert-butylhydroxyanisole) or a mixture thereof and the like.
  • the antioxidant is added in an amount of from about 0.01% to about 2.0% (w/w), preferably from about 0.05% to about 1.0% (w/w), based on the total amount of the sustained release preparation.
  • the active ingredient, the amphiphilic molecule, the water-insoluble organic acid and/or its salt, and the type and content of the oily solvent in the composition of the present invention may be arbitrarily combined according to the above range, as long as The object of the present invention can be achieved.
  • the extended release pharmaceutical composition comprising from about 1 ⁇ ⁇ peptides to about 500 mg, protein drug, from about 1 to about 300 mg of surfactant, from about 1 to about 300 mg containing
  • the extended release pharmaceutical composition comprises from about 5 ⁇ ⁇ peptides to about 300 mg, protein drugs pharmaceutically acceptable salt thereof, from about 50 to about 200 mg of surfactant, from about 50 To about 200 mg of a poorly water-soluble salt of a saturated or unsaturated fatty acid having 10 or more carbon atoms, about 1 g of a long-chain or medium-chain fatty acid glyceride.
  • the extended release pharmaceutical composition comprises from about 5 ⁇ ⁇ to about lOO mg peptide, a protein drug, from about 50 to about 100 mg of a phospholipid surfactant, from about 50 to about 100 Mg contains more than 10 carbon atoms of saturated or unsaturated fatty acids, about 1 g of long or medium chain fatty acid glycerides.
  • the extended release pharmaceutical composition comprises from about 5 ⁇ ⁇ to about 50 mg nucleic acid drug, from about 1 to about 300 mg of phospholipids surfactant, from about 1 to about 300 mg hard Aromatic acid soluble in water, about 1 g long chain or medium chain fatty acid glyceride.
  • the extended release pharmaceutical composition comprising from about 1 to about 500 mg or a saccharide peptide non-nucleic acid-based organic drug, from about 50 ⁇ ⁇ to about 200 mg of a phospholipid surfactant A salt of about 50 to about 200 mg of a saturated or unsaturated fatty acid having more than 10 carbon atoms, about 1 g of natural vegetable oil.
  • the release pharmaceutical composition comprising from about 1 ⁇ ⁇ to about 500 mg of salmon calcitonin, from about 1 to about 200 mg of natural phospholipids, from about 1 to about 50 mg of cholesterol, about 1 to about 300 mg of a salt of a saturated or unsaturated fatty acid having 10 or more carbon atoms which is poorly soluble in water, and about lg of an oily solvent.
  • the extended release pharmaceutical composition comprising from about 1 ⁇ ⁇ to about 500 mg exenatide, from about 1 to about 200 mg of natural phospholipids, from about 1 to about 50 mg of cholesterol, about 1 A salt of about 300 mg of a saturated or unsaturated fatty acid having 10 or more carbon atoms which is poorly soluble in water, and about lg of an oily solvent.
  • the extended release pharmaceutical composition comprising from about 1 ⁇ ⁇ insulin to about 500 mg, from about 1 to about 200 mg of natural phospholipids, from about 1 to about 50 mg of cholesterol, from about 1 to about 300 A salt of a saturated or unsaturated fatty acid having 10 or more carbon atoms which is poorly soluble in water, and about 1 g of an oily solvent.
  • the present invention relates to a sustained-release pharmaceutical preparation prepared by the combination of sustained-release pharmaceuticals.
  • the sustained-release pharmaceutical preparation is a sustained-release pharmaceutical preparation for injectables. It will be understood by those skilled in the art that When the pharmaceutical preparation is administered by injection, the ingredients in the preparation should be injectable ingredients.
  • Another aspect of the invention provides a method of preparing a sustained release pharmaceutical formulation, comprising:
  • the steps (1), (2) in the above preparation method are not required to be carried out in the order.
  • the aqueous solvent used in the step (1) includes, but is not limited to, water, 0.9% aqueous sodium chloride solution, and any A suitable aqueous buffer solution for pharmaceutical use.
  • water for injection is used as the aqueous solvent.
  • a PBS buffer solution is used as the aqueous solvent.
  • the organic solvent used in the step (2) may be selected from any organic solvent which has a good solubility to an amphiphilic molecule and a poorly water-soluble organic acid and/or a salt thereof, and has a low boiling point and is easily removed.
  • organic solvents include, but are not limited to, dichlorodecane, chloroform, diethyl ether, ethanol, decyl alcohol, n-propanol, isopropanol, n-butanol, tert-butanol, acetone, acetonitrile, ethyl acetate.
  • Different organic solvents may be selected depending on the different structures of the amphiphilic molecule and the poorly water-soluble organic acid and/or its salt. The choice of solvent is well known to those skilled in the art.
  • dichlorodecane is used as the organic solvent.
  • the preparation of the lipid-drug composite microparticles may be performed by ultrasonic dispersion method, reverse evaporation method, film dispersion method, injection method, MVL preparation method, pH gradient method, ammonium sulfate gradient method or according to the properties of the active ingredient.
  • the preparation process such as the secondary encapsulation process encapsulates the active drug more completely in the lipid-drug composite microparticles. In this step, it is important to uniformly mix and disperse the aqueous solution with the organic solution. In certain preferred embodiments, ultrasonic dispersion is employed.
  • the operating temperature is selected in accordance with the kind of the amphiphilic molecule used and the boiling point of the organic solvent used. Usually the preparation process is at -40. C to 45. The temperature of C is carried out. In some embodiments, the amphiphilic molecule HSPC can be used at 40 ° C to 45 ° C.
  • the organic solvent is preferably removed by evaporation under reduced pressure to prevent the active ingredient in the preparation from being destroyed at a higher temperature.
  • a suitable amount of water may be added to the solid after removal of the solvent to effect a dispersion to obtain a homogeneous suspension, followed by drying in step (5).
  • the drying process in the step (5) may be freeze drying, spray drying or other suitable drying method.
  • the dried composition is present in solid form.
  • a lyophilized support agent In the freeze-drying method, in order to reduce the damage of the lipid-drug composite particles during the freezing and thawing process and to reduce the leakage of the drug during the freeze-drying process, a lyophilized support agent is usually used.
  • the role of the support agent not only reduces the breakage of the bilayer membrane during freeze-drying, but also allows the lyophilized lipid particles coated with the drug to be easily dispersed in the oily medium.
  • the addition of a poorly water-soluble organic acid salt in addition to the above-mentioned effects, functions as a lyophilized support agent.
  • additional lyophilized support may not be required.
  • the solid obtained in the above step (5) is dissolved or dispersed in an oily solvent to form a solution or an oily suspension.
  • the sustained release pharmaceutical preparation is preferably a sustained release preparation for injectable use.
  • the present invention is applicable to biopharmaceuticals, and can also be used for any hydrophilic injectable drug such as a small molecule compound. It is especially suitable for peptides, proteins, nucleic acids and carbohydrates that are highly polar, water soluble and unstable in water. We have used this technology to prepare a variety of peptides, proteins, and nucleic acid drugs.
  • the release preparation has a sustained release effect of 3 to 7 days in vitro.
  • the novel sustained release pharmaceutical preparation is preferably administered by intramuscular or subcutaneous injection to maintain the release of the active ingredient within 3 to 7 days.
  • Naltrexone hydrochloride presented by China Huasu Pharmaceutical
  • Thymopentin synthesized by the inventor's laboratory according to the literature method (G. Goldstein, et al. Science 1979, 204: 1309), HPLC purity > 98%;
  • Bovine serum albumin purchased from Sigma, USA;
  • D33 DNA fragment containing 33 base pairs: 5,-d (TGC TCT CCA GGC TAG CTA CAA CGA CCT GCA CCT)-3, by the inventor's laboratory according to the literature method (Naruhisa Ota, et al. Nucleic Acid Research, 1998, 26(4): 3385) Synthesis, HPLC purity > 98%; base pairs used in the synthesis of D33 were purchased from Proligo;
  • Pramlintide synthesized by the inventor's laboratory according to the literature method (US 5998367), HPLC purity > 98%;
  • Triptorelin acetate by the inventor's laboratory according to the literature method (D. H. Coy, et al. J
  • Octreotide by the inventor's laboratory according to the literature method (W. Bauer, et al. Life Sci.
  • Salmon calcitonin synthesized by the inventor's laboratory according to the literature method (US 3926938), HPLC purity > 98%;
  • Insulin purchased from China Tonghua Dongbao Pharmaceutical Co., Ltd.;
  • EPC Egg yolk lecithin
  • HSPC hydrogenated soybean lecithin
  • cholesterol all purchased from Shanghai Dongshang Industrial Co., Ltd., China;
  • Span 85 purchased from Fisher Company, USA;
  • Aluminum stearate purchased from Shanghai Bangcheng Chemical Co., Ltd., China;
  • Stearic acid purchased from Lishun Chemical Factory, Shunyi, Beijing, China;
  • Oleic acid purchased from Beijing Jinlong Chemical Reagent Co., Ltd., China;
  • Stearic acid word purchased from Tianjin Langhu Chemical Co., Ltd., China;
  • Ether purchased from Tianjin Chemical Reagent Third Factory, China;
  • PBS buffer solution Prepared according to the Chinese Pharmacopoeia 2005 appendix;
  • the active ingredient reference substance was added with water to prepare a standard active ingredient solution having a concentration of 10 g/mL, 20 g/mL, 30 g/mL, 50 g/mL, 100 g/mL, and 200 g/mL, respectively, using forinol.
  • the absorbance A was measured by the method, and the concentration was regressed by the absorbance A to establish a standard curve regression equation.
  • the prepared sustained-release pharmaceutical preparation was placed in a 50 mL stoppered conical flask, and 10 mL of a pH 7.10 phosphate buffer solution was added thereto. Place the Erlenmeyer flask at 37 ⁇ 1.
  • the C is shaken in a constant temperature shaker at an oscillation frequency of 70 r/m. Approximately 200 L of the solution was taken at different time points and 200 L of phosphate buffer solution of pH 7.10 was added. After centrifugation at 12,000 r/m for 10 minutes, the supernatant was taken as a sample solution.
  • the absorbance of the sample solution is determined by the same method, and the concentration of the active ingredient in the sample solution is obtained by substituting into the regression equation.
  • the cumulative cumulative drug amount is calculated as a cumulative cumulative drug release compared to the total amount of drug added.
  • the mixed liquid was distilled off under reduced pressure to an organic solvent, and then an appropriate amount of water was added and dispersed uniformly, and the obtained suspension was freeze-dried to remove water.
  • 1 g of a medium-chain oil for injection was added, and the mixture was stirred to be uniformly dispersed.
  • naltrexone hydrochloride 2 mg was dissolved in 5 mL of water for injection as an aqueous phase.
  • 20 mg of hydrogenated soy lecithin (HSPC), 5 mg of cholesterol, and 20 mg of aluminum stearate were dissolved in 20 mL of dichlorosilane as an organic phase.
  • HSPC hydrogenated soy lecithin
  • aluminum stearate 20 mg of dichlorosilane
  • Example 2 According to the same procedure as in Example 1, a sustained release preparation of different active ingredients was prepared using different amphiphilic molecules, different poorly water-soluble organic acids or salts, and different preparation conditions, as shown in Table 1. The in vitro cumulative release results within 7 days were determined as shown in Table 2. Table 1 sustained release preparations of different active ingredients
  • the sustained release pharmaceutical preparations were prepared using the same preparation conditions as in Experiment 1, using different amounts of aluminum stearate, and the cumulative release results in vitro were determined, as shown in Tables 3 and 4. .
  • amphiphilic molecules such as EPC, Span 85
  • the active drug was added, and the dispersion was uniform.
  • the cumulative release of the drug in vitro was determined by the same method. The results showed that the active drug was released more than 90% in one day, which was significantly lower than that of the preparation obtained through the preparation process. The results are shown in Table 5.
  • the animals used were wiste female rats weighing 160-200 g.
  • the instrument used was a bone density meter (LUNAR) manufactured by General Motors.
  • exenatide as an active ingredient, water for injection as an aqueous phase solvent, dichlorosilane as an organic solvent, and using a component as shown in Table 7, an exenatide was prepared in the same manner as in Example 1. Release preparation.
  • mice Male KK-Ay mice, 8-10 weeks, and were raised under conditions that met the corresponding criteria. Animal grouping and drug treatment
  • KK-Ay mice were randomly divided into a solvent control group, a positive control group, a preparation group 1, a preparation group 2, and a preparation group according to body weight and blood sugar level, and 5 animals in each group.
  • Solvent control group medium-chain oil for injection was given, 100 ⁇ /each of single-dose intramuscular injection and 50 ⁇ of each side of the hind leg;
  • Positive control group exenatide was administered in PBS buffer, subcutaneously administered to the neck, and administered 0.06 g/100 ⁇ M every day at 5:30 pm;
  • Formulation group 1, preparation group 2, preparation group 3 The preparations in the above table were respectively administered 1, 2, 3, 100 ⁇ /each with a single dose, and 50 ⁇ 1 for each of the hind legs.
  • Blood glucose changes are monitored daily from 8:30-9:00 AM.
  • the dose is administered once, the preparation Group 1 , Formulation 2, and Formulation 3 each gave 4 g/100 ⁇ , and the positive control group gave 0.6 g/100 ⁇ 1 each.
  • the positive control drug was administered at 0.18 g/100 ⁇ M twice daily.
  • Formulations 2 and 3 showed a significant effect of suppressing the amount of food (specific to the drug) on the first day of administration.
  • Formulation 2 exhibited a similar feeding inhibition effect as the positive control drug throughout the test.
  • mice were fasted for 24 hours and intraperitoneal injection of streptozotocin 160 mg/kg. 72 hours of fasting 6 hours of blood glucose, blood glucose 15-30 mmol / L is qualified for modeling, evenly distributed to each group. On the fourth day, insulin preparations 1-8 were injected subcutaneously, and the control group was given only the excipients. After the injection, blood glucose was measured once every 3 hours, 3 hours, 5 days, 3 days, 5 days, 7 days, and 9 days.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

可注射用緩释药物制剂及其制备方法 相关申请的引用
本申请要求于 2008年 3月 20 日提交的题为 "可注射用緩释制剂及其 制备方法" 并且申请号为 PCT/CN2008/000551的国际申请的全部权益, 在 此将该申请的全部内容并入本文作为参考。 技术领域
本发明涉及緩释药物组合物, 尤其是亲水性生物药物如肽、 蛋白、 核 酸及糖类等药物的緩释组合物。 本发明还涉及由所述緩释药物组合物制备 的可注射用緩释药物制剂以及所述可注射用緩释药物制剂的制备方法。 背景技术
随着生物技术的高速发展, 生物药物如肽、 蛋白、 核酸及糖类等药物 正在成为一类很重要的治疗剂。
尽管其生物药物的疗效早已为临床所证实, 但与小分子药物相比, 这 类药物稳定性差、 易失活。 而且这类药物多属于亲水性大分子物质, 月旨 / 水分配系数小, 不易被亲脂性膜所摄取而导致很难通过生物屏障。 因此生 物药物的口服生物利用度通常较低。
因而, 对生物药物而言, 较好的给药途径是通过非肠道用药如注射。 但是, 对于需维持一定的血药浓度的患者, 这种给药方式需反复进行。 因 此, 近年来开发了生物药物的緩释制剂, 旨在提高给药的合理性和效率。
将药物以油性溶剂为溶媒制成混悬液或溶液具有緩释效果。 然而当具 有较高水溶性的药物如生物药物混悬或部分溶解在油相中时, 药物到达油 I 水界面后易进入水相中。 因此对于具有较高水溶性或强极性的生物药物来 说, 采用单纯油性混悬剂很难达到理想的緩释效果。
在一些治疗领域中, 脂质体已被成功地用作生物药物的释药载体。 但 脂质体作为緩释体系仍有一些问题需要解决, 如在某些情况下緩释效果不 理想、 包封率较低、 物理及化学稳定性差等。
虽然对肽、 蛋白、 核酸及糖类药物的緩释制剂研究已取得了长足的进 展, 并且已有成功的注射用緩释制剂上市, 但现有技术中的这类制剂由于 其生产工艺复杂, 操作要求严格, 从而存在不同的问题需要解决。
因此, 仍然需要开发出各种新的緩释药物制剂, 以适应不同治疗目的 的要求。 发明内容
一方面, 本发明涉及一种緩释药物组合物, 该组合物包含治疗有效量 的活性成分, 两亲性分子, 难溶于水的有机酸和 /或其盐, 以及油性溶剂。
另一方面, 本发明涉及由上述緩释药物组合物制备的可注射用緩释药 物制剂。
另一方面, 本发明提供所述可注射用緩释药物制剂的制备方法, 其包 括:
(1) 将活性成分溶解或分散在水性溶剂中;
(2) 将两亲性分子和难溶于水的有机酸和 /或其盐溶解或分散在有机溶 剂中;
(3) 将步骤 (1)得到的活性成分水性混合液分散于步骤 (2)得到的有机混 合液中;
(4) 由步骤 (3)制得的混合液中除去有机溶剂;
(5) 将步骤 (4)得到的产物干燥形成固体; 以及
(6) 将步骤 (5)得到的固体溶解或分散于油性溶剂中。
另一方面, 本发明提供可注射用緩释药物制剂, 其包含治疗有效量的 活性成分、 两亲性分子、 难溶于水的有机酸和 /或其盐、 油性溶剂, 所述可 注射用緩释药物制剂通过下列步骤制备:
(1) 将活性成分溶解或分散在水性溶剂中;
(2) 将两亲性分子和难溶于水的有机酸和 /或其盐溶解或分散在有机溶 剂中;
(3) 将步骤 (1)得到的活性成分水性混合液分散于步骤 (2)得到的有机混 合液中;
(4) 由步骤 (3)得到的混合液中除去有机溶剂;
(5) 将步骤 (4)得到的产物干燥形成固体; 以及
(6) 将步骤 (5)得到的固体溶解或分散于油性溶剂中。
本发明再一方面是提供对个体病症的治疗方法, 包括对所述个体给予 治疗有效量的本发明的药物组合物或緩释药物制剂。
本发明的緩释药物制剂对亲水性生物药物, 特别是肽、 蛋白、 核酸及 糖类等药物具有较好的緩释作用。 具体实施方式
本发明的一方面涉及一种緩释药物组合物, 该组合物包含治疗有效量 的活性成分, 两亲性分子, 难溶于水的有机酸和 /或其盐。
可用于本发明组合物中的活性成分为亲水性药物, 其包括但不限于下 列药物:
肽、 蛋白类药物, 例如诸如促肾上腺皮质激素、 促胃液素、 加压素、 催产素、 促黑素等的垂体多肽; 诸如促胰液素、 胃泌素、 胆嚢收缩素、 抑 胃素、 血管活性肠肽、 胰多肽、 神经降压肽、 蛙皮肽等的消化道多肽; 诸 如促曱状腺素释放激素、 ***释放激素、 生长抑素、 生长激素释放 激素、 促黑细胞激素抑制激素等的下丘脑多肽; 诸如脑啡肽、 新啡肽、 内 啡肽、 记忆肽等的脑多肽; 诸如血管紧张肽 I、 II、 III等的激肽; 谷胱甘肽; 降钙素; 睡眠肽; 松果肽; 血活素; 胸腺素; 胸腺五肽; 奥曲肽; 艾塞那 肽; 普兰林肽; 纤维蛋白; 纤维蛋白原; 胃膜素; 明胶; 明胶海绵; 精蛋 白;抑素;唾液素;腮腺素;水蛭素;肝细胞生长因子;亮丙瑞林 (Leuprorelin); 曲普瑞林 (Triptorelin); 那法瑞林 (Nafarelin); 戈舍瑞林 (Goserelin); 布舍瑞 林 (Buserelin); 牛血清白蛋白; 胰岛素; 红细胞生成素 (EPO); 肿瘤坏死因 子; 疫苗; 生长素; 胰高血糖素; 血清白蛋白; 丙种球蛋白; 胰蛋白酶抑 制剂; 促红细胞生长素; 干扰素; 白介素; 集落刺激因子 (GM-CSF); 促黄 体激素、 植物凝集素、 天花粉蛋白、 植物毒蛋白; 抗体类等;
核酸类药物, 例如 DNA片段如含 33个碱基对的 DNA片段、 化学修饰的 DNA片段如硫代的 DNA片段、 RNA片段、化学修饰的 RNA片段、聚肌苷酸、 巯基聚胞苷酸、 cAMP、 CTP、 CDP-胆碱、 GMP、 IMP, AMP, 肌苷、 UTP、 NAD、 NADP、 2-曱巯基呋喃肌苷酸、 双曱酰 cAMP、 6-巯基嘌呤、 6-巯基 嘌呤核苷、 6-硫代嘌呤、 5-氟尿嘧啶、 呋喃氟尿嘧啶、 2-脱氧核苷、 盐酸阿 糖胞苷、 抗毒酶质粒基因等;
糖类、 非肽类非核酸类有机分子药物, 例如诸如肝素、 鹿茸多糖、 刺 参多糖、 壳聚多糖、 右旋糖苷、 蘑菇多糖、 银耳多糖、 茯苓多糖、 灵芝多 糖等的多糖类药物; 诸如盐酸纳曲酮、 盐酸***、 盐酸米托恩醌、 醋酸可 的松等的化学合成药物等。
在某些优选实施方案中, 本发明组合物中的活性成分可包括肽、 蛋白 类药物。 在某些更优选的实施方案中, 本发明组合物中的活性成分可以选 自胸腺五肽、 牛血清白蛋白、 艾塞那肽、 普兰林肽、 生长抑素、 ω-干扰素、 奥曲肽、 鮭鱼降钙素、 胰岛素。
在某些优选实施方案中,本发明组合物中的活性成分可为核酸类药物。 在某些更优选的实施方案中, 可用于本发明组合物中的活性成分选自寡聚 核苷酸。
在某些优选实施方案中, 本发明组合物中的活性成分可为糖类、 非肽 类非核酸类有机药物。 在某些更优选的实施方案中, 可用于本发明组合物 中的活性成分选自盐酸纳曲酮。 在本发明的某些实施方案中, 所述活性成分可以是其药物可接受的盐 或其它 †生物。
所述活性成分的药物可接受的盐为本领域所属技术人员所熟知的那 些, 包括与酸或碱加成的 例性的酸包括无机酸例如盐酸、 硫酸、 磷 酸、 氢溴酸、 硼酸、 磷酸等; 有机酸例如乙酸、 马来酸、 酒石酸、 水杨酸、 枸橼酸、 苯曱酸、 双羟蔡酸、 磺酸等。 示例性的碱包括无机碱和有机碱。 衍生自无机碱的盐是本领域所属技术人员所熟知的那些,包括但不限于铵、 钠、 钾、 钙及镁盐等。 衍生自有机碱的盐包括但不限于异丙胺、 二乙胺、 乙二胺、 乙醇胺、 二乙醇胺、 三曱胺、 二环己基胺、 胆碱及咖啡因等的盐。
在某些优选实施方案中, 本发明组合物中的活性成分可为醋酸亮丙瑞 林、 醋酸曲普瑞林。
所述活性成分的药物可接受的其它衍生物为本领域所属技术人员所熟 知的那些, 包括但不限于其前药。
"前药" 是指可在生理条件下或通过溶剂分解转化成药物活性成分的 化合物。 因此, 术语 "前药" 是指本发明的组合物中所述活性成分的药物
;的醇官能团的乙酸酷、、 酸酷、 苯曱酸酷、 騎酸酷: 橫酸酷衍生物等 胺官能团的酰胺衍生物等; 羧酸官能团的酯、 酰胺衍生物等。
本发明组合物中含有活性成分的量以达到治疗有效量为基准。
"治疗有效量" 是指本发明组合物中活性成分的量, 当其被给予哺乳 动物, 优选为人时, 足以在所述哺乳动物, 优选为人中实现待治疗 /预防的 疾病或疾病状态的治疗 /预防。 构成 "治疗有效量" 的本发明组合物中活性 成分的量, 根据活性成分的种类、 疾病状态及其严重性以及给药对象的条 件如年龄、 体重等而改变, 但可常规地由本领域一般技术人员根据其自有 知识及本申请公开内容而决定。
活性成分可以是单一药物, 也可以是一种或多种制药上相容药物的组 合。
本发明组合物中含有活性成分的量通常为基于组合物总量的约 0.0001 %至约 50% (重量百分比, w/w)。 在某些实施方案中, 本发明组合物 中含有活性成分的量为基于组合物总量的约 0.0005%至约 30% (w/w)。 在某 些实施方案中, 本发明组合物中含有活性成分的量为基于组合物总量的约 0.0005%至约 10% (w/w)。 在某些实施方案中, 本发明组合物中含有活性成 分的量为基于组合物总量的约 0.0005%至约 5% (w/w)。
本发明的两亲性分子可以是任何既具有亲水基团又具有疏水基团的分 肪酸或脂肪醇。
在某些优选实施方案中, 本发明使用的两亲性分子可为表面活性剂。 本发明中所使用的表面活性剂可以是制药领域常用的离子型表面活性 剂和非离子型表面活性剂。
离子型表面活性剂包括阴离子表面活性剂、 阳离子表面活性剂和两性 表面活性剂。
在本发明的某些实施方案中, 对于离子型表面活性剂, 优选使用水溶 解性较小的那些。
示例性的离子型表面活性剂包括但不限于诸如脂肪酸盐类、硫酸化物、 磺酸化物等的阴离子型表面活性剂; 诸如季铵类化合物等的阳离子型表面 活性剂; 以及诸如氨基酸类、 甜菜碱类等的两性离子型表面活性剂。
示例性的非离子型表面活性剂包括但不限于聚乙二醇类, 例如脂肪醇 聚氧乙烯醚 (AEO)、 烷基酚聚氧乙烯醚、 脂肪酸聚氧乙烯酯、 聚氧乙烯脂 肪胺、 环氧乙烷 -环氧丙烷嵌段共聚醚等; 多元醇类, 例如一元醇酯、 乙二 醇酯、 甘油酯、 新戊基型多元醇酯、 山梨醇酯、 失水山梨醇酯、 糖酯、 烷 基糖苷等; 含氮非离子表面活性剂, 例如烷基醇酰胺、 氧化胺等; 以及甾 醇衍生的非离子表面活性剂。
在某些实施方案中, 本发明所使用的表面活性剂可为磷脂类。 可用于 本发明的磷脂类选自天然磷脂类, 包括但不限于磷脂酸、磷脂酰甘油 (PG)、 心磷脂、磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸 (PS)、磷脂酰肌醇 (PI)、 缩醛磷脂类、醚脂质类、脑磷脂 (PE)、大豆卵磷脂(SPC)或蛋黄卵磷脂 (EPC)、 磷脂醇 (PA)、 神经鞘磷脂(SPH)、 半乳糖脑苷脂、 葡萄糖脑苷脂、 脑硫脂、 神经节苷脂等; 合成磷脂, 包括但不限于二棕榈酰磷脂酰胆碱 (DPPC)、 二 硬脂酰磷脂酰胆碱 (DSPC)、 二硬脂酰磷脂酰乙醇胺 (DSPE)、 氢化大豆卵磷 脂(HSPC)、 PEG化二硬脂酰磷脂酰乙醇胺 (DSPE-PEG)等。 在某些优选实施 方案中, 所述磷脂为蛋黄卵磷脂 (EPC)或氢化大豆卵磷脂 (HSPC)。
在某些实施方案中, 本发明所使用的表面活性剂可为胆固醇类。 在某 些优选的实施方案中, 本发明所使用的表面活性剂为胆固醇。
本发明组合物中所加入的两亲性分子可以是上述表面活性剂的一种或 其多种组合形成的混合物。
在某些实施方案中, 本发明所使用的表面活性剂还可为蛋黄卵磷脂 (EPC)与胆固醇的混合物。
所述组合物中具体两亲性分子的选择取决于多种因素, 如活性分子的 种类、 极性及 pH值、 组合物中可能存在的其它添加剂的种类和浓度等。 但 是, 本领域所属技术人员可根据组合物的具体情况予以掌握。 所述具体两 亲性分子的选择和加入量以可形成脂质-药物复合微粒为准。
通常具体两亲性分子的加入量为基于组合物总量的约 0.0001%至约 30.0% (重量百分比, w/w)。 在某些实施方案中, 两亲性分子的加入量为基 于组合物总量的约 0.005%至约 20% (w/w)。 在某些实施方案中, 两亲性分 子的加入量为基于组合物总量的约 0.005%至约 10% (w/w)。
在本发明的緩释药物组合物中, 除加入两亲性分子之外, 还加入了难 溶于水的有机酸和 /或其盐。 由此, 显著地改善了緩释性能。 虽然未经理论 上验证, 但可以预测, 一方面, 活性成分与难溶于水的有机酸和 /或其盐分 子间通过静电力、疏水作用、 配位键结合增加活性成分的亲脂性和稳定性, 从而延緩药物的释放。 另一方面, 组合物中加入难溶于水的有机酸和 /或其 盐有助于形成的脂质 -药物复合物在油性溶剂中分散。
在一些实施方案中,难溶于水的有机酸和 /或其盐优选是在制药环境下 为固态的那些。 在一些实施方案中, 优选使用有机酸盐。
本文所用的术语 "难溶于水" 是指所述有机酸或其盐在室温下每 100 g 水中的溶解度小于或等于 1 g。
在某些实施方案中, 本发明组合物中所使用的难溶于水的有机酸可选 自脂肪酸或芳香酸。
示例性的有机酸包括但不限于含 10个碳原子以上的饱和或不饱和的脂 肪酸如月桂酸、 豆蔻酸、 棕榈酸、 油酸、 亚油酸、 亚麻酸、 硬脂酸、 软脂 酸、 花生四烯酸等。 示例性的芳香酸如双羟蔡酸。
所述难溶于水的有机酸盐可以选自所述难溶于水的有机酸的各种盐, 包括但不限于钙、 镁、 钡、 锰、 铁、 铜、 辞和铝盐等, 也可以为其它任意 有机酸所形成的盐, 条件是其难溶于水并须是药物可接受的(无毒)。
在本发明的组合物中, 可使用难溶于水的有机酸、 难溶于水的有机酸 盐或者其混合物。
在某些实施方案中,所述难溶于水的有机酸和 /或其盐可以是一种或多 种的组合。
所述难溶于水的有机酸和 /或其盐的具体加入量通常为基于组合物总 量的约 0.0001%至约 30% (重量百分比, w/w)。 在某些实施方案中, 所述难 溶于水的有机酸和 /或其盐的具体加入量为基于组合物总量的约 0.005%至 约 20% (w/w)。 在某些实施方案中, 所述难溶于水的有机酸和 /或其盐的具 体加入量为基于组合物总量的约 0.005%至约 10% (w/w)。
本发明的緩释药物组合物中,还可以包含药物可接受的载体或赋形剂。 优选地, 所述载体或赋形剂为油性溶剂。
本发明组合物中的油性溶剂为本领域所属技术人员所熟知的制药领域 中常用的那些。 示例性的油性溶剂包括但不限于天然植物油如大豆油、 茶 油、 芝麻油、 大蒜油、 核桃油、 橄榄油、 玉米油、 花生油、 椰子油、 棉籽 油、 蓖麻油等; 精制植物油; 长链或中链脂肪酸甘油酯; 肉豆蔻异丙酯; 油酸乙酯; 聚氧乙烯油酸甘油三酯; 白油; 以及苯曱酸苄酯等。
在某些实施方案中, 所述油性溶剂可以是上述一种或多种的组合。 在某些优选实施方案中, 所述油性溶剂使用大豆油、 长链或中链脂肪 酸甘油酯。
油性溶剂的量要求并不严格, 本领域所属技术人员可根据具体剂型选 择适当的量。 通常可为占组合物重量的约 5%至约 99% (重量百分比, w/w)。 在某些实施方案中, 所述油性溶剂的加入量为基于组合物总量的约 30%至 约 99% (w/w)。在某些实施方案中, 所述油性溶剂的加入量为基于组合物总 量的约 60%至约 99% (w/w)。
在某些实施方案中, 本发明的緩释制剂中还可包含增稠剂。 可用于本 发明的增稠剂包括高分子聚合物如 PCL、 PLGA、 PLA等。 所述增稠剂的加 入量为基于所述緩释制剂总量的约 0.05%至约 10% (w/w) , 优选约 0.5%至约 3.0% (w/w) o
在某些实施方案中, 本发明的緩释制剂中还可包含抗氧化剂, 以保证 注射用油的稳定性。 可用于本发明的抗氧化剂可选自 VE (维生素 E), BHT (二叔丁基曱基苯酚), BHA (叔丁基羟基茴香醚)或其混合物等。 所述抗氧 剂的加入量为基于所述緩释制剂总量的约 0.01%至约 2.0% (w/w) , 优选约 0.05%至约 1.0% (w/w)。
本领域技术人员可以理解, 本发明组合物中的活性成分, 两亲性分子, 难溶于水的有机酸和 /或其盐, 以及油性溶剂的种类和含量可根据上述范围 进行任意组合, 只要可实现本发明的目的即可。
在本发明的某些实施方案中,所述緩释药物组合物包含约 1 μβ至约 500 mg肽、 蛋白类药物, 约 1 至约 300 mg表面活性剂, 约 1 至约 300 mg含
10个碳原子以上的饱和或不饱和脂肪酸, 约 1 g天然植物油。
在本发明的某些实施方案中,所述緩释药物组合物包含约 5 μβ至约 300 mg肽、 蛋白类药物的药物可接受的盐, 约 50 至约 200 mg表面活性剂, 约 50 至约 200 mg含 10个碳原子以上的饱和或不饱和脂肪酸的难溶于水 的盐, 约 1 g长链或中链脂肪酸甘油酯。
在本发明的某些优选实施方案中, 所述緩释药物组合物包含约 5 μβ至 约 lOO mg肽、蛋白类药物, 约 50 至约 100 mg磷脂类表面活性剂, 约 50 至约 100 mg含 10个碳原子以上的饱和或不饱和脂肪酸, 约 1 g长链或中链脂 肪酸甘油酯。 在本发明的某些优选实施方案中, 所述緩释药物组合物包含约 5 μβ至 约 50 mg核酸类药物,约 1 至约 300 mg磷脂类表面活性剂,约 1 至约 300 mg难溶于水的芳香酸, 约 1 g长链或中链脂肪酸甘油酯。
在本发明的某些优选实施方案中, 所述緩释药物组合物包含约 1 至 约 500 mg糖类或非肽类非核酸类有机药物,约 50 μβ至约 200 mg磷脂类表面 活性剂,约 50 至约 200 mg含 10个碳原子以上的饱和或不饱和的脂肪酸的 盐, 约 1 g天然植物油。
在本发明的某些实施方案中,所述緩释药物组合物包含约 1 μβ至约 500 mg鮭鱼降钙素, 约 1 至约 200 mg天然磷脂, 约 1 至约 50 mg胆固醇, 约 1 至约 300 mg难溶于水的含 10个碳原子以上的饱和或不饱和的脂肪酸的 盐, 约 l g油性溶剂。
在本发明的某些实施方案中,所述緩释药物组合物包含约 1 μβ至约 500 mg艾塞那肽,约 1 至约 200 mg天然磷脂,约 1 至约 50 mg胆固醇,约 1 至约 300 mg难溶于水的含 10个碳原子以上的饱和或不饱和的脂肪酸的盐, 约 l g油性溶剂。
在本发明的某些实施方案中,所述緩释药物组合物包含约 1 μβ至约 500 mg胰岛素, 约 1 至约 200 mg天然磷脂, 约 1 至约 50 mg胆固醇, 约 1 至约 300 mg难溶于水的含 10个碳原子以上的饱和或不饱和的脂肪酸的盐, 约 1 g油性溶剂。
、、 本发明另" 面涉及由 _ ^述緩释药物组合 制备的緩释药物制剂。 所 所述緩释药物制剂为可注射用緩释药物制剂。 本领域技术人员应当理解, 当所述緩释药物制剂通过注射方式给药时, 所述制剂中的各种成分均应当 是可注射用成分。
本发明另一方面提供緩释药物制剂的制备方法, 包括:
(1) 将活性成分溶解或分散在水性溶剂中;
(2) 将两亲性分子和难溶于水的有机酸和 /或其盐溶解或分散在有机溶 剂中;
(3) 将步骤 (1)得到的活性成分水性混合液分散于步骤 (2)得到的有机混 合液中;
(4) 由步骤 (3)制得的混合液中除去有机溶剂;
(5) 将步骤 (4)得到的产物干燥形成固体; 以及
(6) 将步骤 (5)中得到的固体溶解或分散于油性溶剂中。
可以理解, 上述制备方法中的步骤 (1)、 (2)并非需要按其次序进行。 步骤(1)中所用的水性溶剂包括但不限于水、 0.9%氯化钠水溶液及任何 制药上适当的水性緩沖溶液。 在某些优选实施方案中, 使用注射用水作为 水性溶剂。 在某些优选实施方案中, 使用 PBS緩沖溶液作为水性溶剂。
步骤 (2)中所用的有机溶剂可选自任何对两亲分子和难溶于水的有机 酸和 /或其盐具有较好溶解度, 并且沸点较低、 容易除去的有机溶剂。 示例 性的上述有机溶剂包括但不限于二氯曱烷、 氯仿、 ***、 乙醇、 曱醇、 正 丙醇、 异丙醇、 正丁醇、 叔丁醇、 丙酮、 乙腈、 乙酸乙酯。 根据所用的两 亲性分子和难溶于水的有机酸和 /或其盐的不同结构,可选择不同的有机溶 剂。 溶剂的选择是本领域技术人员熟知的。 在某些优选实施方案中, 使用 二氯曱烷作为有机溶剂。
在步骤 (3)中,脂质-药物复合微粒的制备可根据活性成分的性质采用超 声波分散法、 逆向蒸发法、 薄膜分散法、 注入法、 MVL制备法、 pH梯度法、 硫酸铵梯度法或二次包封工艺等制备工艺将活性药物较完全地包封于脂质 -药物复合微粒中。 在该步骤中, 很重要是将水性溶液与有机溶液的均匀混 合与分散。 在某些优选实施方案中, 采用超声波分散法。
在步骤 (3)中, 根据所用两亲性分子的种类、 所用有机溶剂的沸点选择 操作温度。通常制备过程是在如 -40。C至 45。C的温度下进行。在某些实施方 案中, 选用两亲性分子 HSPC时, 可在 40°C至 45°C下进行。
在步骤 (4)中, 优选采用减压蒸发的方法除去有机溶剂以防止制剂中的 活性成分在较高温度下被破坏。
在某些优选实施方案中, 可向除去溶剂后的固体中加入适量水进行分 散制得均匀混悬液, 然后再进行步骤 (5)的干燥。
步骤 (5)中的干燥过程可采用冷冻干燥、 喷雾干燥或其它适当的干燥方 法。 干燥后的组合物以固体形式存在。
在冷冻干燥法中,为了降低冷冻和融化过程对脂质 -药物复合微粒的损 害, 减少冷冻干燥过程中药物的渗漏, 通常需使用冻干支持剂。 支持剂的 作用不仅能够减少冷冻干燥过程中双分子层膜的破裂, 而且还使得包有药 物的冻干脂质微粒易于分散在油性介质中。 但在本发明的技术方案中, 加 入难溶于水的有机酸盐, 除可起到以上所述作用外, 可起到冻干支持剂的 作用。 因此在本发明的某些实施方案中, 可不需另外加入冻干支持剂。
将上述步骤 (5)中得到的固体溶解或分散于油性溶剂中形成溶液或油 性混悬液。
在上述制备方法中, 所述緩释药物制剂优选为可注射用緩释制剂。 本发明可用于生物药物, 也可用于任何亲水性可注射用药物如小分子 化合物。 尤其适用于强极性、 水溶性好、 在水中不稳定的肽、 蛋白类、 核 酸及糖类药物。 我们采用这项技术制备了多种肽、 蛋白、 核酸类药物的緩 释制剂, 在体外达到 3至 7天的緩释效果。 这种新型緩释药物制剂优选可 以肌肉或皮下注射给药, 能够在 3天至 7天内维持释放有效活性成分。
下面以具体实施例对本发明进行进一步说明。 必须理解, 这些实施例 并不构成对本发明范围的任何限制。 实施例 材料与试剂
活性成分
醋酸亮 丙瑞林: 由发明人的 实验室按照文献方法(J. A.
Vilchez-Martinez, et al. Biochem. Biophys. Res. Commun. 1974, 59: 1226)合 成, HPLC纯度〉 98% ;
盐酸纳曲酮: 中国华素制药赠送;
胸腺五肽: 由发明人的实验室按照文献方法(G. Goldstein, et al. Science 1979, 204: 1309)合成, HPLC纯度 >98% ;
牛血清白蛋白: 购自美国 Sigma公司;
D33 : 含 33个碱基对的 DNA片段: 5,-d(TGC TCT CCA GGC TAG CTA CAA CGA CCT GCA CCT)-3,, 由发明人的实验室按照文献方法 (Naruhisa Ota, et al. Nucleic Acid Research, 1998, 26(4):3385)合成, HPLC纯度 >98% ; D33的合成中所用的碱基对均购自 Proligo公司;
艾塞那肽: 由发明人的实验室按照文献方法 (US 6528486)合成, HPLC 纯度 >98%;
普兰林肽: 由发明人的实验室按照文献方法 (US 5998367)合成, HPLC 纯度 >98%;
醋酸曲普瑞林: 由发明人的实验室按照文献方法 (D. H. Coy, et al. J
Med. Chem. 1976, 19:423)合成, HPLC纯度 >98% ;
生长抑素: 由发明人的实验室按照文献方法 (A. M. Felix, et al. Int. J. Peptide Protein Res. 1980, 15 :342)合成, HPLC纯度〉 98% ;
ω-干扰素: 中国西南药业赠送;
奥曲肽: 由发明人的实验室按照文献方法(W. Bauer, et al. Life Sci.
1982, 3 1 : 1 133)合成, HPLC纯度〉 98% ;
鮭鱼降钙素: 由发明人的实验室按照文献方法 (US 3926938)合成, HPLC纯度〉 98%;
胰岛素: 购自中国通化东宝药业股份有限公司;
两亲分子 蛋黄卵磷脂 (EPC)、 氢化大豆卵磷脂 (HSPC)、 胆固醇: 均购自中国上 海东尚实业有限公司;
司盘 85 (Span 85): 购自美国 Fisher公司;
脂肪酸及其盐
硬脂酸铝: 购自中国上海邦成化工有限公司;
硬脂酸: 购自中国北京顺义李遂化工厂;
油酸: 购自中国北京金龙化学试剂有限公司;
硬脂酸辞: 购自中国天津市朗湖化工有限公司;
油性溶剂
注射用中链油、注射用大豆油, 均购自中国铁岭北亚药用油有限公司; 其它试剂
***: 购自中国天津市化学试剂三厂;
曱醇、 二氯曱烷: 购自中国北京化工厂;
PBS緩沖溶液: 按照中国药典 2005附录配制;
注射用水: 购自中国北京市亚华医药有限公司。 体外累积幹放的测定
取活性成分对照品加水配制成浓度分别为 10 g/mL、 20 g/mL、 30 g/mL、 50 g/mL、 100 g/mL、 200 g/mL的标准活性成分溶液, 采用福 林酚法测定吸光度 A, 以吸光度 A对浓度进行回归, 建立标准曲线回归方 程。
取制备的緩释药物制剂适量置于 50 mL具塞锥形瓶中, 并向其中加入 10 mL pH 7.10的磷酸盐緩沖溶液。将锥形瓶置于 37±1。C恒温摇床中振荡, 振荡频率为 70 r/m。分别于不同时间点定量取液 200 L, 同时补入 pH 7.10 的磷酸盐緩沖溶液 200 L。 在 12,000 r/m条件下离心 10分钟, 取上清液, 作为样品溶液。 同法测定样品溶液的吸光度, 代入回归方程计算即得样品 溶液中活性成分的浓度。
将计算的累积药物量与加入药物总量相比计算药物累积释放百分数。 实施例 1
可注射用醋酸亮丙瑞林緩释制剂的制备及緩释效果
将 1 mg醋酸亮丙瑞林溶于 5 mL pH 7.0的 10 mmol/L PBS緩沖溶液中, 作为水相。 将 20 mg蛋黄卵磷脂 (EPC)、 5 mg胆固醇以及 20 mg硬脂酸铝溶 于 20 mL*** -曱醇(10: 1)混合溶剂中,作为有机相。在 30。C和充分搅拌下将 上述水相緩慢滴加入上述有机相中, 然后在水浴型超声仪上超声处理至形 成均匀乳液体系。 将混合液减压蒸出有机溶剂后加入适量水并分散均匀, 得到的混悬液进行冷冻干燥除去水份。 向得到的固体产物中加入 1 g注射用 中链油, 搅拌使之分散均匀。
按照上述体外累积释放的测定方法, 测定制得的醋酸亮丙瑞林緩释制 剂在 7天内的体外累积释放结果, 如下所示:
1天 3天 5天 7天
20.6% 37.4% 76.0% 94.0%
实施例 2
可注射用盐酸纳曲酮緩释制剂的制备及緩幹效果
将 2 mg盐酸纳曲酮溶于 5 mL注射用水中, 作为水相。 将 20 mg氢化大 豆卵磷脂 (HSPC)、 5 mg胆固醇以及 20 mg硬脂酸铝溶于 20 mL二氯曱烷中, 作为有机相。 在 44。C和充分搅拌下将上述水相緩慢滴加入上述有机相中,
Figure imgf000013_0001
的混 液进行冷冻干燥 去水份 向得到的固 产物中 加入 1 g注射用中链油, 搅拌使之分散均匀。
按照上述体外累积释放的测定方法, 测定制得的盐酸纳曲酮緩释制剂 在 7天内的体外累积释放结果, 如下所示:
1天 3天 5天 7天
35.9% 56.4% 78.2% 96.3%
实施例 3
可注射用寡聚核苷酸緩释制剂的制备及緩释效果
将 2 mg D33溶于 5 mL注射用水中, 作为水相。 将 20 mg EPC、 5 mg胆 固醇以及 20 mg硬脂酸铝溶于 20 mL二氯曱烷中, 作为有机相。 在 30。C和充 分搅拌下将上述水相緩慢滴加入上述有机相中, 然后在水浴型超声仪上超 声处理至形成均勾乳液体系。 将混合液减压蒸出有机溶剂。 将得到的混悬 液进行冷冻干燥除去水份。 向得到的固体产物中加入 1 g注射用中链油, 搅 拌使之分散均匀。
按照上述体外累积释放的测定方法, 测定制得的寡聚核苷酸緩释制剂 在 7天内的体外累积释放结果, 如下所示:
1天 3天 5天 7天
38.8% 48.2% 54.1% 64.7%
实施例 4
按照与实施例 1相同的操作,使用不同的两亲性分子、不同的难溶于水 的有机酸或盐以及不同制备条件,制备了不同活性成分的緩释制剂,如表 1 所示。 并测定了其 7天内的体外累积释放结果, 如表 2所示。 表 1 不同活性成分的緩释制剂
活性成分 难溶于水的有机 有机溶剂 油 <] "生溶 实验 两亲性分子 水相溶剂及其加入 水相 /有机相
及其加入 酸或盐及其加入 及其加入 及其加 编号 及其加入量 里 混合温度 (;。 C)
里 里 里 里 醋酸亮丙 EPC 20 mg 硬脂酸 注射用水 注射用
1 20
瑞林 2 mg 胆固醇 5 mg 5 mg 20 mL 5 mL 豆油 1 醋酸亮丙 EPC 20 mg 油酸 二氯曱烷 10 mmol/L pH 7.0 注射用
2 30
瑞林 2 mg 胆固醇 5 mg 5 mg 20 mL PBS緩沖溶液 5 mL 豆油 1 胸腺五肽 HSPC 20 mg 硬脂酸辞 二氯曱烷 10 mmol/L pH 7.0 注射用
3 44
1 mg 胆固醇 5 mg 20 mg 20 mL PBS緩沖溶液 5 mL 链油 1 牛血清白 EPC 20 mg 硬脂酸铝 二氯曱烷 注射用水 注射用
4 30
蛋白 1 mg 胆固醇 5 mg 25 mg 20 mL 5 mL 链油 1 醋酸亮丙 司盘 85 20 mg 硬脂酸铝 10 mmol/L pH 7.0 注射用
5 20
瑞林 1 mg 胆固醇 5 mg 25 mg 20 mL PBS緩沖溶液 5 mL 豆油 1 艾塞那肽 EPC 20 mg 硬脂酸辞 二氯曱烷 注射用水 注射用
6 30
2 mg 胆固醇 5 mg 20 mg 20 mL 5 mL 链油 1 普兰林肽 EPC 20 mg 硬脂酸铝 二氯曱烷 注射用水 注射用
7 30
2 mg 胆固醇 5 mg 20 mg 20 mL 5 mL 链油 1
Figure imgf000015_0001
表 2 不同緩释药物制剂体外释放结果
Figure imgf000016_0001
表 2的数据表明通过本发明的方法制备的緩释药物制剂对多种活性成 分具有很好的緩释作用。 实施例 5
使用醋酸亮丙瑞林作为活性成分,采用与实验 1相同的制备条件,使用 不同量的硬脂酸铝, 制备了緩释药物制剂并测定了其体外累积释放结果, 列于表 3和表 4。 表 3 醋酸亮丙瑞林緩释制剂
Figure imgf000016_0002
表 4 醋酸亮丙瑞林緩释制剂体外累积释放结果
Figure imgf000016_0003
1 53.4 69.7 84.1 99.8
2 20.6 37.4 76.0 94.0
3 17.2 41.6 76.7 100.0 在制剂中加入少量硬脂酸铝, 可改善药物的释放性能, 但硬脂酸铝的 加入量过高, 反而会使药物的释放性能下降。
实施例 6
考察了制备方式对醋酸亮丙瑞林体外緩释效果的影响。
不经过制备过程, 将两亲性分子 (如 EPC、 司盘 85)直接加入油性溶剂 中, 再加入活性药物, 分散均匀, 用相同的方法测定药物体外累积释放。 结果表明, 活性药物在一天内已释放 90%以上, 比经过制备过程得到的制 剂的緩释效果显著下降。 结果见表 5。
Figure imgf000017_0001
Figure imgf000017_0002
结果显示, 通过本发明的制备过程, 得到的制剂稳定性更高, 緩释效 果更好。
实施例 7
考察了降钙素緩释制剂对去卵巢大鼠骨密度的影响。
所用动物为 wiste雌性大鼠, 体重 160-200 g。 所用仪器为美国通用公司 生产的骨密度仪 (LUNAR)。
实验步骤: 采用噻胺酮麻醉复方肌肉注射(10 mg/kg)进行麻醉,腹部去 毛, 沿下腹正中线剪开, 游离大鼠双侧卵巢并切除, 然后缝合腹部肌肉和 皮肤。 术后肌肉注射青霉素, 2次 /日, 连续 3天。 术后第 3天以 8 g/kg的剂 量单次皮下注射给予实施例 4中制备的制剂 12。分别在给药后第 3、 4周测量 腰推骨密度, 并与未切除卵巢的假手术组以及切除卵巢但未注射降钙素制 剂的模型组进行比较。
结果显示, 在给药后第 3周和第 4周时, 大鼠腰推骨密度与模型组比较 明显增加 (p<0.05)。 表 6 降钙素緩释制剂对去卵巢大鼠骨密度的影响
Figure imgf000018_0001
注: # ρ<0.05、 ## ρ<0.01与假手术组比较; * ρ<0.05与模型组比较; η=8 实施例 8
考察了艾塞那肽緩释制剂对小鼠血糖浓度的影响。
使用艾塞那肽作为活性成分, 注射用水作为水相溶剂, 二氯曱烷作为 有机溶剂, 并且使用如表 7所示的成分, 按照与实施例 1类似的操作, 制备 了艾塞那肽緩释制剂。 表 7 艾赛那肽緩释制剂
Figure imgf000018_0002
所用动物为雄性 KK-Ay小鼠, 8-10周, 饲养于符合相应标准的条件下。 动物分组与药物处理
将 KK-Ay小鼠按体重和血糖值随机分为溶剂对照组、 阳性对照组、 制 剂 1组、 制剂 2组、 制剂 3组, 每组 5只动物。
溶剂对照组: 给予注射用中链油, 采用单剂量肌肉注射 100 μΐ/每只, 双侧后腿各注射 50 μΐ;
阳性对照组: 给予艾塞那肽在 PBS緩沖液中溶液, 采用颈部皮下给药, 每天下午 5:30给药 0.06 g/100 μΐ;
制剂 1组、 制剂 2组、 制剂 3组: 分别给予上表中的制剂 1、 2、 3 , 采用 单剂量肌肉注射 100 μΐ/每只, 双侧后腿各注射 50 μ1。
每日上午 8:30-9:00监测血糖变化。 在药第 8天时, 增量给药一次, 制剂 1组、制剂 2组、制剂 3组每只给 4 g/100 μΐ,阳性对照组每只给 0.6 g/100 μ1。 从第 9日阳性对照药给 0.18 g/100 μΐ, 每日分两次给药。
测定了给药后 17-41天 KK-Ay小鼠禁食 4 h的血糖量 (表 8)以及给药后第 35天 KK-Ay小鼠禁食 12 h的血糖量 (表 9)。 从实验结果可以看出, 制剂 1、 2、 3均表现出明显的、 持续性的降低禁食后 4小时、 12小时 KK-Ay小鼠血糖的 效应, 可持续至给药后 24-27天, 其中制剂 2的作用更为明显。 表 8 给药后 17至 32天 KK-Ay小鼠禁食 4 h的血糖值
Figure imgf000019_0001
表 9. 给药后第 35天 KK-Ay小鼠禁食 12 h的血糖值
Figure imgf000019_0002
* p<0.05 , ** p<0.01 , 与对照组比 此外, 制剂 2、 3在给药首日表现出明显的抑制进食量的作用(该药物特 有的)。 在整个试验过程中, 制剂 2表现出与阳性对照药物类似的进食抑制 作用。
实施例 9
考察了胰岛素緩释制剂的体外释放及体内药效。
使用如表 10所示的溶剂量, 按照与实施例 1类似的操作, 使用 5.0 mg 胰岛素、 20 mg蛋黄卵磷脂、 10 mg胆固醇、 20 mg硬脂酸铝以及 1 g注射用 中链油制备了胰岛素緩释制剂, 并测定了其体外释放累积释放结果 (表 11)。 表 10 胰岛素緩释制剂
Figure imgf000020_0001
表 11. 胰岛素緩释制剂体外累积释放结果
Figure imgf000020_0002
表 1 1的数据表明, 所测试的制剂在体外至少可在 9天内緩慢释放。 胰岛素緩释制剂体内药效
实验方法: 基本根据文献方法 (宋立江等, 一种降糖保健品胶嚢对模型 小鼠的作用观察, 中华医学研究杂志, 6(1):53-55 , 2006)。 小鼠禁食给水 24小时, 腹腔注射链脲霉素 160mg/kg。 72小时测空腹 6小时血糖值, 血糖 15-30 mmol/L者为造模合格, 均匀分到各组。 第四日分别皮下注射胰岛素 制剂 1-8 , 对照组只给辅料。 注射后, 分别在 3、 24小时, 3日, 5日, 7日, 9日, 禁食给水 6小时后测血糖 1次。 所有动物均用断尾采血 1滴加在美国强 生集团理康公司稳捷基础型血糖监测仪葡萄糖氧化酶法试纸上测血糖水 平。 结果如下表 12-13所示。 表 12 胰岛素緩释制剂治疗小鼠链脲霉素糖尿病的效果
Figure imgf000021_0001
*P<0.05 由表 12的结果可见,胰岛素制剂 1皮下注射剂量 10 U/kg和 30 U/kg, 降血糖作用高峰在 24 h, 作用持续约 9-14 曰。 表 13 不同胰岛素緩释制剂治疗小鼠链脲霉素糖尿病的效果
Figure imgf000021_0002
*P<0.05 , 与模型对照比 由表 13的结果可见, 处方 3明显降糖作用可持续到 1天, 处方 2明显 降糖作用可持续到 3天, 处方 5明显降糖作用可持续到 7天。 本领域技术人员可以理解, 本文中所用的 "例如" 、 "诸如" 均表示 "包括但不限于" 。
虽然本发明已通过上述具体实施方式和具体说明予以描述, 但并不以 此作为限制。 本领域所属技术人员可以根据本申请的公开, 在不违背本发 明精神的情况下对上述实施方式中的技术特征进行改进和变换, 这些改进 和变换都应属于本发明的范围。

Claims

权利要求书
1. 緩释药物组合物, 其包含治疗有效量的活性成分、 两亲性分子、 难 溶于水的有机酸和 /或其盐、 油性溶剂。
2. 如权利要求 1所述的緩释药物组合物, 其中所述活性成分是亲水性 药物。
3. 如权利要求 2所述的緩释药物组合物, 其中所述亲水性药物选自肽、 蛋白类药物; 核酸类药物; 糖类、 非肽类非核酸类有机分子药物; 或其混 合物。
4. 如权利要求 3所述的緩释药物组合物, 其中所述肽、 蛋白类药物选 自: 诸如促肾上腺皮质激素、 促胃液素、 加压素、 催产素、 促黑素等的垂 体多肽; 诸如促胰液素、 胃泌素、 胆嚢收缩素、 抑胃素、 血管活性肠肽、 胰多肽、 神经降压肽、 蛙皮肽等的消化道多肽; 诸如促曱状腺素释放激素、 ***释放激素、 生长抑素、 生长激素释放激素、 促黑细胞激素抑制 激素等的下丘脑多肽; 诸如脑啡肽、 新啡肽、 内啡肽、 记忆肽等的脑多肽; 诸如血管紧张肽 I、 II、 III等的激肽; 谷胱甘肽; 降钙素; 睡眠肽; 松果肽; 血活素; 胸腺素; 胸腺五肽; 奥曲肽; 艾塞那肽; 普兰林肽; 纤维蛋白; 纤维蛋白原; 胃膜素; 明胶; 明胶海绵; 精蛋白; 抑素; 唾液素; 腮腺素; 水蛭素; 肝细胞生长因子; 亮丙瑞林 (Leuprorelin); 曲普瑞林 (Triptorelin); 那法瑞林 (Nafarelin); 戈舍瑞林 (Goserelin); 布舍瑞林 (Buserelin); 牛血清 白蛋白; 胰岛素; 红细胞生成素 (EPO); 肿瘤坏死因子; 疫苗; 生长素; 胰高血糖素; 血清白蛋白; 丙种球蛋白; 胰蛋白酶抑制剂; 促红细胞生长 素; 干扰素; 白介素; 集落刺激因子 (GM-CSF); 促黄体激素、植物凝集素、 天花粉蛋白、 植物毒蛋白; 抗体类。
5. 如权利要求 3所述的緩释药物组合物, 其中所述核酸类药物包括:
DNA片段如含 33个碱基对的 DNA片段、 化学修饰的 DNA片段如硫代的 DNA片段、 RNA片段、 化学修饰的 RNA片段、 聚肌苷酸、 巯基聚胞苷酸、 cAMP、 CTP、 CDP-胆碱、 GMP、 IMP, AMP, 肌苷、 UTP、 NAD、 NADP、 2-曱巯基呋喃肌苷酸、 双曱酰 cAMP、 6-巯基嘌呤、 6-巯基嘌呤核苷、 6-硫 代嘌呤、 5-氟尿嘧啶、 呋喃氟尿嘧啶、 2-脱氧核苷、 盐酸阿糖胞苷、 抗毒 酶质粒基因。
6. 如权利要求 3所述的緩释药物组合物, 其中所述糖类、 非肽类非核 酸类有机分子药物选自诸如肝素、 鹿茸多糖、 刺参多糖、 壳聚多糖、 右旋 糖苷、 蘑菇多糖、 银耳多糖、 茯苓多糖、 灵芝多糖等的多糖类药物; 诸如 盐酸纳曲酮、 盐酸***、 盐酸米托恩醌、 醋酸可的松等的化学合成药物。
7. 如权利要求 1至 6中任一权利要求所述的緩释药物组合物, 其中所述 活性成分的量基于所述緩释药物制剂总量为约 0.0001%至约 50% (重量百分 比, w/w) , 尤其是约 0.0005%至约 30% (w/w) , 尤其是约 0.0005%至约 10% (w/w) , 尤其是约 0.0005%至约 5% (w/w)。
8. 如权利要求 1至 7中任一权利要求所述的緩释药物组合物, 其中所述 两亲性分子为表面活性剂。
9. 如权利要求 1至 8中任一权利要求所述的緩释药物组合物, 其中所述 表面活性剂为非离子表面活性剂。
10. 如权利要求 9所述的緩释药物组合物,其中所述非离子表面活性剂 选自: 聚乙二醇类, 例如脂肪醇聚氧乙烯醚 (AEO)、 烷基酚聚氧乙烯醚、 脂肪酸聚氧乙烯酯、 聚氧乙烯脂肪胺、 环氧乙烷 -环氧丙烷嵌段共聚醚等; 多元醇类, 例如一元醇酯、 乙二醇酯、 甘油酯、 新戊基型多元醇酯、 山梨 醇酯、 失水山梨醇酯、 糖酯、 烷基糖苷等; 含氮非离子表面活性剂, 例如 烷基醇酰胺、 氧化胺等; 以及甾醇衍生的非离子表面活性剂。
1 1. 如权利要求 1至 8中任一权利要求所述的緩释药物组合物, 其中所 述表面活性剂为磷脂类。
12. 如权利要求 1 1所述的緩释药物组合物, 其中所述磷脂类选自: 天 然磷脂类, 包括但不限于磷脂酸、 磷脂酰甘油 (PG)、 心磷脂、 磷脂酰胆碱、 磷脂酰乙醇胺、 磷脂酰丝氨酸 (PS)、 磷脂酰肌醇 (PI)、 缩醛磷脂类、 醚脂质 类、 脑磷脂 (PE)、 大豆卵磷脂(SPC)或蛋黄卵磷脂 (EPC)、 磷脂醇 (PA)、 神 经鞘磷脂 (SPH)、 半乳糖脑苷脂、 葡萄糖脑苷脂、 脑硫脂、 神经节苷脂等; 合成磷脂, 包括但不限于二棕榈酰磷脂酰胆碱 (DPPC)、 二硬脂酰磷脂酰胆 碱 (DSPC)、 二硬脂酰磷脂酰乙醇胺 (DSPE)、 氢化大豆卵磷脂 (HSPC)、 磷脂 酰丝氨酸 (PS)、 PEG化二硬脂酰磷脂酰乙醇胺 (DSPE-PEG)。
13. 如权利要求 12所述的緩释药物组合物, 其中所述磷脂类选自蛋黄 卵磷脂 (EPC)或氢化大豆卵磷脂 (HSPC)。
14. 如权利要求 1至 8中任一权利要求所述的緩释药物组合物, 其中所 述表面活性剂为胆固醇类。
15. 如权利要求 1至 8中任一权利要求所述的緩释药物组合物, 其中所 述表面活性剂为非离子表面活性剂、 磷脂类、 胆固醇类的任意混合物。
16. 如权利要求 1至 15中任一权利要求所述的緩释药物组合物, 其中所 述两亲性分子的量基于所述緩释药物组合物总量为约 0.0001%至约 30.0% (重量百分比, w/w) , 尤其是约 0.005%至约 20% (w/w) , 尤其是约 0.005%至 约 10% (w/w)。
17. 如权利要求 1至 16中任一权利要求所述的緩释药物组合物, 其中所 述难溶于水的有机酸和 /或其盐选自月桂酸、 豆蔻酸、 棕榈酸、 油酸、 亚油 酸、 亚麻酸、 硬脂酸、 软脂酸、 花生四烯酸、 双羟蔡酸和 /或其盐。
18. 如权利要求 17所述的緩释药物组合物, 其中所述难溶于水的有机 酸盐选自所述难溶于水的有机酸的钙、 镁、 钡、 锰、 铁、 铜、 辞或铝盐。
19. 如权利要求 1至 18中任一权利要求所述的緩释药物组合物, 其中所 述难溶于水的有机酸和 /或其盐的量基于所述緩释药物组合物总量为约 0.0001%至约 30% (重量百分比, w/w) , 尤其是约 0.005%至约 20% (w/w) , 尤其是约 0.005%至约 10% (w/w)。
20. 如权利要求 1至 19中任一权利要求所述的緩释药物组合物, 其中所 述油性溶剂选自可注射用天然植物油、 精制植物油、 长链或中链脂肪酸甘 油酯、 苯曱酸苄酯、 以及其多种的混合物, 并且优选选自可注射用大豆油、 长链或中链脂肪酸甘油酯。
21. 緩释药物制剂, 其是由如权利要求 1-20中任一权利要求所述的緩 释药物组合物制备的。
22. 如权利要求 21所述的緩释药物制剂, 其为可注射用緩释药物制剂。
23. 緩释药物制剂的制备方法, 包括:
(1) 将活性成分溶解或分散在水性溶剂中;
(2) 将两亲性分子和难溶于水的有机酸和 /或其盐溶解或分散在有机溶 剂中;
(3) 将步骤 (1)得到的活性成分水性混合液分散于步骤 (2)得到的有机混 合液中;
(4) 由步骤 (3)得到的混合液中除去有机溶剂;
(5) 将步骤 (4)得到的产物干燥形成固体; 以及
(6) 将步骤 (5)得到的固体溶解或分散于油性溶剂中。
24. 如权利要求 23所述的制备方法, 其中在所述步骤 (4)中除去有机溶 剂后加入适量水进行分散制得均匀混悬液。
25. 如权利要求 23或 24所述的制备方法, 其中所述步骤 (5)中采用冷冻 干燥方法进行干燥。
26. 如权利要求 23-25中任一权利要求所述的制备方法, 其中所述緩释 药物制剂为可注射用緩释药物制剂。
PCT/CN2009/070913 2008-03-20 2009-03-20 可注射用缓释药物制剂及其制备方法 WO2009115053A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980109804.2A CN102036653B (zh) 2008-03-20 2009-03-20 可注射用缓释药物制剂及其制备方法
US12/933,669 US20110091420A1 (en) 2008-03-20 2009-03-20 Injectable Sustained-Release Pharmaceutical Formulation and the Preparation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2008/000551 WO2009114959A1 (zh) 2008-03-20 2008-03-20 可注射用缓释药物制剂及其制备方法
CNPCT/CN2008/000551 2008-03-20

Publications (1)

Publication Number Publication Date
WO2009115053A1 true WO2009115053A1 (zh) 2009-09-24

Family

ID=41090463

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2008/000551 WO2009114959A1 (zh) 2008-03-20 2008-03-20 可注射用缓释药物制剂及其制备方法
PCT/CN2009/070913 WO2009115053A1 (zh) 2008-03-20 2009-03-20 可注射用缓释药物制剂及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000551 WO2009114959A1 (zh) 2008-03-20 2008-03-20 可注射用缓释药物制剂及其制备方法

Country Status (3)

Country Link
US (1) US20110091420A1 (zh)
CN (1) CN102036653B (zh)
WO (2) WO2009114959A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102552169A (zh) * 2012-02-17 2012-07-11 深圳市健元医药科技有限公司 一种醋酸阿肽地尔缓释微球制剂及其制备方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450269B2 (en) * 2006-02-03 2013-05-28 Prolor Biotech Ltd. Long-acting growth hormone and methods of producing same
WO2011138802A1 (en) * 2010-05-07 2011-11-10 Sun Pharma Advanced Research Company Ltd., Injection solution
EA201391821A1 (ru) * 2011-06-09 2014-05-30 АМИЛИН ФАРМАСЬЮТИКАЛЗ, ЭлЭлСи Гелевые композиции
KR101494594B1 (ko) 2011-08-30 2015-02-23 주식회사 종근당 약리학적 활성물질의 서방성 지질 초기제제 및 이를 포함하는 약제학적 조성물
CN103163258B (zh) * 2011-12-09 2015-09-23 山东绿叶制药有限公司 一种测定痕量曲普瑞林的方法
WO2013101749A1 (en) * 2011-12-29 2013-07-04 Latitude Pharmaceuticals, Inc. Stabilized glucagon nanoemulsions
UA116217C2 (uk) 2012-10-09 2018-02-26 Санофі Пептидна сполука як подвійний агоніст рецепторів glp1-1 та глюкагону
JP2016503771A (ja) 2012-12-21 2016-02-08 サノフイ エキセンジン−4誘導体
KR101586791B1 (ko) 2012-12-28 2016-01-19 주식회사 종근당 GnRH 유도체의 서방성 지질 초기제제 및 이를 포함하는 약제학적 조성물
EP2832361A1 (en) * 2013-07-29 2015-02-04 Ipsen Pharma S.A.S. Aqueous sustained release compositions of LHRH analogs
EP3080149A1 (en) 2013-12-13 2016-10-19 Sanofi Dual glp-1/glucagon receptor agonists
EP3080150B1 (en) 2013-12-13 2018-08-01 Sanofi Exendin-4 peptide analogues as dual glp-1/gip receptor agonists
WO2015086729A1 (en) 2013-12-13 2015-06-18 Sanofi Dual glp-1/gip receptor agonists
TW201609796A (zh) 2013-12-13 2016-03-16 賽諾菲公司 非醯化之艾塞那肽-4(exendin-4)胜肽類似物
CN104292305B (zh) * 2014-01-17 2017-06-09 河南科技大学 一种多肽、制备方法及其应用
TW201625670A (zh) 2014-04-07 2016-07-16 賽諾菲公司 衍生自exendin-4之雙重glp-1/升糖素受體促效劑
TW201625668A (zh) 2014-04-07 2016-07-16 賽諾菲公司 作為胜肽性雙重glp-1/昇糖素受體激動劑之艾塞那肽-4衍生物
TW201625669A (zh) 2014-04-07 2016-07-16 賽諾菲公司 衍生自艾塞那肽-4(Exendin-4)之肽類雙重GLP-1/升糖素受體促效劑
EP3131532A1 (de) 2014-04-16 2017-02-22 Veyx-Pharma GmbH Veterinärpharmazeutische zusammensetzung und deren verwendung
US9932381B2 (en) 2014-06-18 2018-04-03 Sanofi Exendin-4 derivatives as selective glucagon receptor agonists
CN107106659B (zh) 2014-10-27 2022-07-08 莱迪杜德制药公司 肠胃外胰高血糖素制剂
AR105319A1 (es) 2015-06-05 2017-09-27 Sanofi Sa Profármacos que comprenden un conjugado agonista dual de glp-1 / glucagón conector ácido hialurónico
AR105284A1 (es) 2015-07-10 2017-09-20 Sanofi Sa Derivados de exendina-4 como agonistas peptídicos duales específicos de los receptores de glp-1 / glucagón
CN105076199A (zh) * 2015-08-31 2015-11-25 江苏七洲绿色化工股份有限公司 一种除草组合物及其制备方法
CN116270981B (zh) * 2016-01-15 2024-04-26 珠海贝海生物技术有限公司 包含卡巴他赛和人血清白蛋白的组合物和制剂
CA3013459C (en) 2016-02-04 2020-12-29 ALASTIN Skincare, Inc. Topical compositions comprising tripeptide-1 and hexapeptide-12
EP3518892B1 (en) * 2016-09-29 2023-06-21 Arecor Limited Pharmaceutical formulation comprising an insulin compound
EP3661538A4 (en) 2017-08-03 2021-07-14 Alastin Skincare, Inc. COMPOSITIONS AND METHODS FOR IMPROVING LAXITY OF THE SKIN AND THE CONTOUR OF THE BODY
US11103455B2 (en) 2018-08-02 2021-08-31 ALASTIN Skincare, Inc. Liposomal compositions and methods of use
GB202004115D0 (en) * 2020-03-20 2020-05-06 Invex Therapeutics Ltd Modified release formulations and dosage regimens
CN114916557A (zh) * 2022-05-07 2022-08-19 渭南东旺农华生物科技有限公司 一种包含卵磷脂和γ-氨基丁酸的农用组合物
CN115624533B (zh) * 2022-12-22 2023-04-07 山东则正医药技术有限公司 一种硝苯地平控释片、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055483A (zh) * 1990-04-12 1991-10-23 赫彻斯特股份公司 肽药物的长效脂质体制剂及其制备
WO2003015753A1 (fr) * 2001-08-20 2003-02-27 Terumo Kabushiki Kaisha Preparations de liposomes
CN101129375A (zh) * 2007-07-06 2008-02-27 浙江大学 长春瑞滨固体脂质纳米粒与其冻干制剂及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI9300468A (en) * 1992-10-14 1994-06-30 Hoffmann La Roche Injectable composition for the sustained release of biologically active compounds
GB9323588D0 (en) * 1993-11-16 1994-01-05 Cortecs Ltd Hydrophobic preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055483A (zh) * 1990-04-12 1991-10-23 赫彻斯特股份公司 肽药物的长效脂质体制剂及其制备
WO2003015753A1 (fr) * 2001-08-20 2003-02-27 Terumo Kabushiki Kaisha Preparations de liposomes
CN101129375A (zh) * 2007-07-06 2008-02-27 浙江大学 长春瑞滨固体脂质纳米粒与其冻干制剂及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102552169A (zh) * 2012-02-17 2012-07-11 深圳市健元医药科技有限公司 一种醋酸阿肽地尔缓释微球制剂及其制备方法

Also Published As

Publication number Publication date
WO2009114959A1 (zh) 2009-09-24
CN102036653A (zh) 2011-04-27
US20110091420A1 (en) 2011-04-21
CN102036653B (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2009115053A1 (zh) 可注射用缓释药物制剂及其制备方法
Haddadzadegan et al. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers
RU2632433C2 (ru) Липидный преконцентрат с замедленным высвобождением фармакологически активного вещества и фармацевтическая композиция, содержащая его
KR100508695B1 (ko) 인슐린의 경구투여용 제형과 그의 제조방법
RU2517135C2 (ru) Композиции пептидов и способы их получения
CA2657911C (en) Pharmaceutical compositions for sustained release delivery of peptides
JP4814107B2 (ja) 水溶性薬物を含有する経口投与用ナノ粒子組成物及びその製造方法
EP2938332B1 (en) Sustained-release lipid pre-concentrate of gnrh analogues and pharmaceutical composition comprising the same
Gill et al. Emulsomes: An emerging vesicular drug delivery system
JP2003534265A (ja) 生物学的に活性な親水性化合物を非経口的に投与するための徐放性薬剤組成物
KR20020066778A (ko) 체내 난흡수 물질의 흡수촉진용 조성물과 제형 및 그의제조방법
KR20070001876A (ko) 주사가능한 지속된 약물 전달 비히클로서의 계면활성제계겔
CN105055303A (zh) 含酸的脂质制剂
IL265535B (en) Mixtures and formulations containing alkyl ammonium salt edta
CN101670112A (zh) 一种稳定的白蛋白脂质载药***及其制备方法
JP3804452B2 (ja) 肝炎治療剤
WO2012113117A1 (zh) 一种含有蛋白质或多肽的口服制剂、其制备方法及用途
Kumar et al. Emulsomes: An emerging vesicular drug delivery system
CN1479609A (zh) 肽的经口递送
HUT75252A (en) Oral pharmaceutical compositions
US20030219473A1 (en) Cochleates made with purified soy phosphatidylserine
AU2018321260A1 (en) Compositions and methods of delivery of pharmacological agents
JP2817883B2 (ja) 高度に完全なリポソームおよびその製剤法と用途
CN104546719B (zh) 一种载Z‑GP‑Dox的混合胶束制剂及其制备方法
Erasmus Evaluation of the oral delivery of goserelin with Pheroid® technology

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109804.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12933669

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09722089

Country of ref document: EP

Kind code of ref document: A1