WO2009110529A1 - Squid磁気センサを用いる非破壊検査装置 - Google Patents

Squid磁気センサを用いる非破壊検査装置 Download PDF

Info

Publication number
WO2009110529A1
WO2009110529A1 PCT/JP2009/054125 JP2009054125W WO2009110529A1 WO 2009110529 A1 WO2009110529 A1 WO 2009110529A1 JP 2009054125 W JP2009054125 W JP 2009054125W WO 2009110529 A1 WO2009110529 A1 WO 2009110529A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
inspection apparatus
squid magnetic
sensor according
magnetized
Prior art date
Application number
PCT/JP2009/054125
Other languages
English (en)
French (fr)
Inventor
田中 三郎
好 廿日出
Original Assignee
国立大学法人 豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 豊橋技術科学大学 filed Critical 国立大学法人 豊橋技術科学大学
Priority to US12/919,227 priority Critical patent/US8330458B2/en
Priority to JP2010501941A priority patent/JP5229923B2/ja
Priority to EP20090717892 priority patent/EP2251684B1/en
Priority to CN200980107487.0A priority patent/CN101960301B/zh
Publication of WO2009110529A1 publication Critical patent/WO2009110529A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the present invention relates to a nondestructive inspection apparatus using a SQUID magnetic sensor that performs nondestructive inspection of an inspection object.
  • the above-described conventional eddy current flaw detection method has a problem that since it is necessary to induce a high-frequency eddy current in order to obtain high sensitivity, only a range of a few millimeters near the sample surface can be inspected. Further, the sensitivity is insufficient as compared with a SQUID magnetic sensor or the like.
  • the conventional ultrasonic test method is an excellent inspection method for uniform metal materials, but the composite material with a complex internal structure reflects or scatters ultrasonic waves at the interface. Therefore, precise inspection cannot be performed.
  • the conventional X-ray test method is also an excellent inspection method, but X-rays are generally difficult to handle and require special facilities and qualifications due to the problem of exposure, and are therefore less versatile.
  • the nondestructive inspection method using the SQUID magnetic sensor uses the SQUID magnetic sensor having very high sensitivity even in the low frequency band, it is possible to detect a deeper portion and a minute defect than the eddy current flaw detection method. It has also been proven that it is less susceptible to internal complex structures than ultrasonic testing methods and can be applied to composite materials. Furthermore, there is little danger like the X-ray test method, and there is no need for special facilities or qualifications. Further, a non-destructive inspection apparatus has been proposed in which a magnetic field generating means for magnetizing a long inspection object such as a linear body in the vertical direction is provided immediately before inspection (see Patent Document 2 above). This is to magnetize a long inspected object such as a linear body uniformly, and is not suitable for detecting a magnetized member mixed in an electronic device or the like.
  • the present invention provides a nondestructive inspection apparatus using a SQUID magnetic sensor capable of accurately detecting magnetic particles in an insulator such as an electronic device or a member capable of being magnetized in a nondestructive manner. The purpose is to do.
  • the present invention provides [1] In a nondestructive inspection apparatus using a SQUID magnetic sensor, a horizontal magnet for applying a magnetic field in the longitudinal direction of the inspection object and an inspection object horizontally magnetized in the longitudinal direction by the horizontal magnetization magnet are set.
  • the belt conveyor includes a first belt conveyor serving as a magnetic stage for applying a magnetic field to the object to be inspected, and the first belt. And a second belt conveyor which is arranged separately from the conveyor and serves as an inspection stage for inspecting the inspection object.
  • a cleaning means is provided for removing foreign matter adhering to the belt conveyor after application of the magnetic field.
  • the magnetizable member is arranged in a non-magnetized member.
  • the non-magnetized member is an insulating member.
  • the insulating member is ceramic.
  • the magnetizable member is a conductive foil coated with an active material.
  • the conductive foil is a copper foil or an aluminum foil.
  • the particles are located on or in the magnetizable member.
  • the particles are located in the non-magnetized member.
  • the particles are magnetic materials.
  • the magnetic body is iron, nickel, or cobalt, or an alloy containing any of iron, nickel, or cobalt.
  • the horizontal magnet is a permanent magnet.
  • one-dimensional scanning is performed by moving the horizontally magnetized inspection object in the X direction while the position of the gradiometer is fixed. It is characterized by performing.
  • a plurality of gradiometers are arranged in a direction orthogonal to a moving direction of the inspection object, and the width direction of the inspection object is It is characterized by carrying out the inspection at the same time.
  • FIG. 1 It is a schematic diagram of the nondestructive inspection apparatus using the SQUID magnetic sensor which shows the Example of this invention. It is a figure which shows the to-be-inspected object provided in order to perform one-dimensional scanning evaluation with the nondestructive inspection apparatus using the SQUID magnetic sensor which shows 1st Example of this invention. It is a figure which shows the state of the magnetization of the to-be-inspected object in 1st Example of this invention. It is a figure which shows the one-dimensional scan of the to-be-inspected object in 1st Example of this invention.
  • FIG. 1 It is a schematic diagram of a nondestructive inspection apparatus using a SQUID magnetic sensor (gradiometer) that performs two-dimensional scanning (X-axis and Y-axis direction scanning) of an inspection object according to a fourth embodiment of the present invention. It is a figure which shows the scanning result of the to-be-inspected object which shows 4th Example of this invention. Inspecting a ceramic electronic device (inspected object) with a gradiometer in the absence of magnetic particles provided for two-dimensional scanning evaluation by a nondestructive inspection apparatus using a SQUID magnetic sensor according to a fifth embodiment of the present invention It is a figure which shows a result.
  • a horizontal magnet for applying a magnetic field in the longitudinal direction of an object to be inspected, and an inspection unit in which the object to be horizontally magnetized in the longitudinal direction by the horizontal magnet is set
  • a belt conveyor that conveys the horizontally magnetized object to be inspected
  • a gradiometer that detects the horizontally magnetized particles together with the magnetizable member that is the horizontally magnetized object to be inspected.
  • Non-destructive particles mixed in the inspection object can be detected accurately including the position information.
  • the application of the magnetic field to the inspection object is performed on the first conveyor, and the inspection of the inspection object is performed on the second conveyor arranged separately from the first conveyor.
  • the magnetic noise in the inspection stage can be removed and an accurate inspection can be performed.
  • FIG. 1 is a schematic view of a nondestructive inspection apparatus using a SQUID magnetic sensor showing an embodiment of the present invention.
  • 1 is a control device
  • 2 is a first conveyor (magnetization stage)
  • 2A is a driving pulley with an electric motor on the driving side of the first conveyor
  • 2B is a driven pulley of the first conveyor
  • 3 ' Is an inspection object before magnetization
  • 4 is a magnet for horizontal magnetization (tunnel-shaped permanent magnet) for magnetizing the inspection object 3 'before magnetization in the longitudinal direction
  • 5 is a first conveyor (magnetization stage).
  • 5 A is a drive pulley with a motor on the drive side of the second conveyor
  • 5 B is a driven pulley of the second conveyor 5, and is magnetized.
  • the inspection object 3 is transported by the second conveyor 5 arranged separately from the first conveyor (magnetization stage) 2 and inspected on the second conveyor 5.
  • Reference numeral 6 denotes a magnetic shield
  • 7 denotes a SQUID cooling container
  • 8 denotes a SQUID magnetic sensor (gradiometer)
  • 9 denotes an inspection unit in which the magnetized inspection object 3 is inspected.
  • the magnetic shield 6 may be provided with an electromagnetic shield made of a conductive material such as aluminum.
  • the inspected object 3 ′ before magnetization is conveyed by the first conveyor 2 in the tunnel-like horizontal magnetized magnet 4 in which the S pole and N pole of the permanent magnet are arranged in the longitudinal direction, Continuously magnetized.
  • the magnetized inspection object 3 is conveyed to the inspection unit 9 of the SQUID magnetic sensor 8 by the second conveyor 5.
  • the tunnel-like horizontal magnet for magnetism 4 may be constituted by an electromagnet.
  • a semicircular tunnel-shaped permanent magnet or electromagnet having an S pole at one end and an N pole at the other end is formed, and the object to be inspected 3 is passed through the permanent magnet without being stopped. You may make it magnetize.
  • the first conveyor (magnetization stage) 2 and the second conveyor (inspection stage) 5 are divided.
  • an endless belt conveyor that is driven by a motor (not shown) is used. However, instead of this, it is used in rotating sushi.
  • a conveyor that conveys a horizontal plane may be used, and an electrostatic belt conveyor or the like may be used as a driving method.
  • the horizontal magnets and the gradiometer are arranged in the clean booth so that foreign matter adheres to the conveyor.
  • the cleaning means such as an adhesive roller is placed between the horizontal magnet and the gradiometer to remove the foreign matter adhering to the conveyor. It is desirable to consider so as to suppress the generation of magnetic noise.
  • FIG. 2 is a diagram showing an object to be inspected provided for one-dimensional scanning evaluation by a nondestructive inspection apparatus using a SQUID magnetic sensor according to the first embodiment of the present invention.
  • FIG. FIG. 2B is a top view of the object to be inspected
  • FIG. 2C is a front view of the object to be inspected
  • FIG. 3 is a diagram showing the state of magnetization of the object to be inspected.
  • 4 is a diagram showing one-dimensional scanning of the inspection object
  • FIG. 4A is a diagram showing a one-dimensional scanning result of the inspection object
  • FIG. 4B is a top view showing a one-dimensional scanning state
  • FIG. 4C is a front view thereof.
  • a stainless particle (SUS304 diameter ⁇ 0.3 mm sphere) 12 ′ is positioned on a brass plate 11 ′ (width 10 mm, length 54 mm) which is a magnetizable belt-like member.
  • the unmagnetized brass plate 11 'having the stainless particles 12' is magnetized by using two permanent magnets 13 and 14 having a surface magnetic flux density of 0.15T.
  • the brass plate 11 having the magnetized stainless steel particles 12 is conveyed on the second conveyor 15 and is one-dimensional by the gradiometer 16 whose position is fixed. Scanned. The scanning result is as shown in FIG. 4 (a).
  • a part and C part in FIG. 4 (a) correspond to the scanning result of the end portion of the magnetized brass plate 11, and B in FIG. 4 (a).
  • the part corresponds to the scanning result of the magnetized stainless steel particles 12. That is, here, the stainless particle 12 is located at a position of 26 mm in the longitudinal direction of the brass plate 11 from the A portion which is the end portion of the brass plate 11, and the longitudinal direction of the brass plate 11 from the C portion which is the end portion of the brass plate 11. It can be detected that it is present at a position of 28 mm in the direction. That is, it should be noted that the brass plate 11 has a function of a scale for measuring the presence position of the stainless particle 12.
  • the signal pattern of the inspection object that does not contain foreign matter (particles) is stored in advance, and the foreign matter (particles) By subtracting from the signal of the object to be inspected, the signal of the foreign matter can be detected.
  • FIG. 5 is a diagram showing an inspection object provided for one-dimensional scanning evaluation by a nondestructive inspection apparatus using a SQUID magnetic sensor according to a second embodiment of the present invention and the one-dimensional scanning evaluation result.
  • 5 (a) is a diagram showing the state of magnetization of the inspection object
  • FIG. 5 (b) is a schematic diagram showing the inspection object and its inspection result
  • FIG. 6 is a diagram showing a specific example thereof.
  • FIG. 6A is a diagram showing an actual measurement result
  • FIG. 6B is a diagram showing a magnetized test object which is a brass plate to which tungsten carbide (diameter 90 ⁇ m) as particles is attached.
  • the inspection object 22 'before magnetization is conveyed by the first belt conveyor 21, and is magnetized by passing through the tunnel-like horizontal magnet 23.
  • FIG. 5B when the inspection object 22 is composed of a magnetized brass plate and tungsten carbide (diameter 90 ⁇ m) 24 as particles adhering thereto, both end portions of the inspection object 22 are formed. A gradient magnetic field is detected at the position of tungsten carbide 24 as a particle.
  • the magnetically inspected object 22 has a gradient magnetic field like the A part in FIG. 6A at the S pole at the tip of the inspected object 22, and tungsten carbide (diameter) as particles of the inspected object 22. 90 ⁇ m) 24, a gradient magnetic field as shown in part B of FIG. 6A is observed, and at the N pole at the rear end of the inspection object 22, a gradient magnetic field as shown in part C of FIG. Is measured.
  • the gradient magnetic field similar to FIG. 5B was shown by measurement using the gradiometer.
  • FIG. 7 is a diagram showing an inspection object provided for one-dimensional scanning evaluation by a nondestructive inspection apparatus using a SQUID magnetic sensor according to a third embodiment of the present invention, and its one-dimensional scanning evaluation result.
  • 7 (a) is a diagram showing a measurement result
  • FIG. 7 (b) is a diagram showing a magnetized test object made of a brass plate to which nickel (50 ⁇ m ⁇ ) as particles is attached.
  • FIG. 7B A specific example is shown in FIG. 7B on the condition that the magnetization direction: horizontal magnetization, about 0.2 T, standoff: 3.3 mm, speed: 6 m / min, and magnetic flux conversion count: 3.4 nT / V.
  • FIG. 7 (a) when the inspection object magnetized by the brass plate 31 to which nickel (50 ⁇ m ⁇ ) 32 is adhered is inspected with a SQUID magnetic sensor (gradiometer), a gradient magnetic field is obtained. Appeared. That is, the A portion is a starting magnetic field of the brass plate 31, the B portion is a nickel 32, and the C portion is a gradient magnetic field corresponding to the terminal portion of the brass plate 31.
  • FIG. 8 is a diagram showing the state of magnetization of an inspection object provided for two-dimensional scanning evaluation by a nondestructive inspection apparatus using a SQUID magnetic sensor according to a fourth embodiment of the present invention.
  • FIG. FIG. 10 is a schematic diagram of a nondestructive inspection apparatus using a SQUID magnetic sensor (gradiometer) that performs two-dimensional scanning (X-axis and Y-axis direction scanning) of an inspection object
  • FIG. 10 is a diagram illustrating a scanning result of the inspection object. 10 (a) shows the results when no particles are present on the object to be inspected, and FIG. 10 (b) shows the respective results when particles are present on the object to be inspected.
  • the inspected object 41 'before magnetization is magnetized using two permanent magnets 42 and 43 having a surface magnetic flux density of 0.15T.
  • the inspected object 41 after magnetization is scanned by relatively scanning the gradiometer 44 in a direction (Y-axis direction) orthogonal to the moving direction of the inspected object 41 after magnetization.
  • the adhered and magnetized particles 45 are configured so that they can be inspected simultaneously in the width direction (Y-axis direction) as well as in the length direction (X-axis direction).
  • FIG. 11 is a non-destructive inspection apparatus using a SQUID magnetic sensor according to a fifth embodiment of the present invention, and the gladia of a ceramic electronic device (inspected object) when there is no magnetic particle provided for two-dimensional scanning evaluation.
  • FIG. 12 is a diagram showing inspection results by a meter
  • FIG. 12 is a diagram showing inspection results by a gradiometer of a ceramic electronic device (inspection object) when magnetic particles are present
  • FIG. 13 is an inspection object in which particles are present inside the ceramic.
  • 13A is a top view of the inspection object
  • FIG. 13B is a side view of the inspection object.
  • 51 is an electronic device (inspected object) sealed in ceramic as an insulating member
  • 52 is a magnetizable member provided in the electronic device (inspected object) 51
  • 53 is magnetizable. Co (diameter: 0.1 mm) as particles existing inside the member 52.
  • this magnetizable member is a ceramic member in which a magnetizable substance is mixed (that is, a ceramic member that is an insulator is a substance that can be magnetized).
  • the present invention is not limited to these.
  • FIG. 14 is a view showing a lithium battery electrode plate measured by a nondestructive inspection apparatus using the SQUID magnetic sensor of the present invention.
  • an active material coated copper foil (positive electrode) 61, Al foil (positive electrode) 62, Cu foil (negative electrode) 63, separator (resin sheet) 64 or the like used as a lithium battery electrode plate Even when particles are present, the presence of particles can be measured by the measurement method described above. In particular, even an insulator can be sufficiently magnetized as long as it is a member mixed with a magnetizable substance such as iron powder, and the presence of particles can be measured.
  • FIG. 15 is a view showing an object to be inspected provided for inspection by a nondestructive inspection apparatus using a SQUID magnetic sensor according to another embodiment of the present invention.
  • a magnetized object to be inspected 71 has a band-shaped magnetized member 73 located in a rectangular non-magnetized member 72 made of ceramic, which is an insulating member, for example.
  • magnetized particles (foreign substances) 74 are magnetized particles (foreign substances) 74 in the non-magnetized member 72 rather than on the member 73 or the band-like magnetized member 73.
  • FIG. 16 is a diagram showing comparison of inspection signals between the two-stage conveyor and the first-stage conveyor of the present invention (comparison of signals after 200 hours have elapsed from the start of belt use), and FIG. FIG. 16B is a diagram showing the case of a one-stage conveyor.
  • test conditions were as follows: magnetization direction: horizontal magnetization, approximately 0.1 T, distance between sensor belt surfaces: 5.5 mm, conveyor speed: 2.7 m / min, and magnetic flux conversion coefficient: 3.4 nT / V.
  • the first stage is a stage that applies a magnetic field to the inspection object.
  • a belt conveyor 2 (see FIG. 1) and a second belt conveyor 5 (see FIG. 1) which is arranged separately from the first belt conveyor 2 and serves as an inspection stage of the inspection object.
  • a so-called two-stage conveyor is used.
  • Magnetic noise is generated when metal powder in the rotating part such as the environment or conveyor roller adheres to the belt conveyor and is magnetized simultaneously when the belt conveyor passes under the magnet for magnetism. To do.
  • the magnetized metal powder is, for example, a fine particle of several tens of ⁇ m or less, and if it adheres to a conveyor belt or the like, it is difficult to remove by ordinary cleaning or washing.
  • the first belt conveyor 2 serving as a stage for applying a magnetic field to the object to be inspected and the second belt conveyor 5 are disposed separately from the first belt conveyor 2.
  • the second belt conveyor 5 is not involved in the magnetization, even if foreign matter adheres to the second belt conveyor 5, it is not magnetized, and an accurate inspection can be performed.
  • the above-described two-stage conveyor is effective.
  • FIG. 17 is a schematic view of a nondestructive inspection apparatus using a plurality of SQUID magnetic sensors (gradiometers) according to another embodiment of the present invention.
  • a plurality of SQUID magnetic sensors (gradiometers) 82 to 85 are arranged in a direction orthogonal to the moving direction of the set object 81 after magnetization, and the set magnetized object after magnetization is set.
  • the inspection of the magnetized particles 86 to 89 attached to the inspection object 81 in the width direction can be performed simultaneously.
  • the magnetizable member includes a magnetic body, a metal body coated with or mixed with a magnetizable member, a semiconductor, or an insulator.
  • the shape of the magnetizable member is not limited to a long body (rectangular body), but may be a quadrangular shape, a circular shape, or an elliptical shape.
  • this invention is not limited to the said Example, A various deformation
  • the nondestructive inspection apparatus using the SQUID magnetic sensor according to the present invention can accurately detect magnetized particles adhering to or inspected to be inspected and including position information thereof. It can be used as a possible inspection device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

 電子デバイスなどの絶縁物中や帯磁可能な部材中の磁性パーティクルを非破壊で、かつ的確に検出することができるSQUID磁気センサを用いる非破壊検査装置を提供する。  SQUID磁気センサを用いる非破壊検査装置において、被検査物3′の長手方向に磁場を印加する水平帯磁用磁石4と、この水平帯磁用磁石4により長手方向に水平磁化された被検査物3がセットされる検査部9と、前記水平磁化された被検査物3を搬送するベルトコンベア2,5と、前記水平磁化された被検査物3である磁化可能な部材とともに水平磁化されたパーティクルを検出するグラジオメータ8とを具備する。

Description

SQUID磁気センサを用いる非破壊検査装置
 本発明は、被検査物の非破壊検査を行うSQUID磁気センサを用いる非破壊検査装置に関するものである。
 金属材料や導電性複合材料などを用いた構造物における非破壊検査においては、渦電流を誘導して亀裂を検出する渦流探傷法、超音波を用いる超音波試験法、X線を用いるX線試験法がこれまでに実用化されており、さらにSQUID(超伝導量子干渉素子;Superconducting Quantum Interference Device)磁気センサを用いる非破壊検査方法も提案されている(下記特許文献1参照)。
特開平07-077516号公報 特許第3152074号公報
 上記した従来の渦流探傷法では、高い感度を得るのに高周波数の渦電流を誘導する必要があるため、試料表面近くのコンマ数mm程度の範囲しか検査が行えないという問題点がある。また、SQUID磁気センサなどと比較すると、感度が不十分である。また、従来の超音波試験法は、一様な金属材料に対しては優れた検査法であるが、内部が複雑な構造となっている複合材料は界面で超音波が反射したり散乱したりするため、精密な検査が行えない。従来のX線試験法も優れた検査法であるが、X線は一般的に扱いづらく、被爆の問題から特別な施設や資格を必要とするため、汎用性が低い。
 一方、SQUID磁気センサを用いた非破壊検査手法は、低周波数帯域においても大変高い感度を有するSQUID磁気センサを用いるため、渦流探傷法よりもはるかに深部および微小な欠陥の検出が可能となる。また、超音波試験法よりは内部の複雑構造の影響を受け難く、複合材料への適用が可能であることも証明されている。さらに、X線試験法のような危険性も少なく、特別な施設や資格の必要性もない。
また、検査直前に線状体のような長尺被検査物を垂直方向に磁化するための磁界発生手段を設けるようにした非破壊検査装置が提案されている(上記特許文献2参照)が、これは線状体のような長尺被検査物を均一に磁化するものであり、電子デバイスなどに混在する磁化された部材を検出するには適しないものであった。
 特に、電子デバイスなどの絶縁物中や帯磁可能な部材中の磁性パーティクルを非破壊で、かつ的確に検出することが強く要請されているが、かかる非破壊検査装置は未だ提案されていないのが現状である。
本発明は、上記状況に鑑みて、電子デバイスなどの絶縁物中や帯磁可能な部材中の磁性パーティクルを非破壊で、かつ的確に検出することができるSQUID磁気センサを用いる非破壊検査装置を提供することを目的とする。
 本発明は、上記目的を達成するために、
 〔1〕SQUID磁気センサを用いる非破壊検査装置において、被検査物の長手方向に磁場を印加する水平帯磁用磁石と、この水平帯磁用磁石により長手方向に水平磁化された被検査物がセットされる検査部と、前記水平磁化された被検査物を搬送するベルトコンベアと、前記水平磁化された被検査物である磁化可能な部材とともに水平磁化されたパーティクルを検出するグラジオメータとを具備することを特徴とする。
 〔2〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記ベルトコンベアは、前記被検査物に磁場を印加する帯磁ステージとなる第1のベルトコンベアと、この第1のベルトコンベアとは別個に配置され、前記被検査物が検査される検査ステージとなる第2のベルトコンベアとを具備することを特徴とする。
 〔3〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁場の印加後に前記ベルトコンベアへ付着した異物の除去を行うためのクリーニング手段を配置することを特徴とする。
 〔4〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁化可能な部材が磁化されない部材中に配置されることを特徴とする。
 〔5〕上記〔4〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁化されない部材が絶縁部材であることを特徴とする。
 〔6〕上記〔5〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記絶縁部材がセラミックスであることを特徴とする。
 〔7〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁化可能な部材が活物質が塗布された導電箔であることを特徴とする。
 〔8〕上記〔7〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記導電箔が銅箔又はアルミニウム箔であることを特徴とする。
 〔9〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記パーティクルは前記磁化可能な部材上または部材中に位置することを特徴とする。
 〔10〕上記〔4〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記パーティクルが前記磁化されない部材中に位置することを特徴とする。
 〔11〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記パーティクルが磁性体であることを特徴とする。
 〔12〕上記〔11〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁性体が鉄、ニッケル、若しくはコバルト、又は鉄、ニッケル、若しくはコバルトの何れかを含有する合金であることを特徴とする。
 〔13〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記水平帯磁用磁石が永久磁石であることを特徴とする。
 〔14〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記グラジオメータの位置は固定のまま、前記水平磁化された被検査物をX方向に移動させることにより1次元走査を行うことを特徴とする。
 〔15〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記被検査物の移動方向に直交する方向に複数個のグラジオメータを配置して、前記被検査物の幅方向の検査も同時に行うことを特徴とする。
本発明の実施例を示すSQUID磁気センサを用いる非破壊検査装置の模式図である。 本発明の第1実施例を示すSQUID磁気センサを用いる非破壊検査装置で1次元走査評価をするために提供される被検査物を示す図である。 本発明の第1実施例における被検査物の着磁の状態を示す図である。 本発明の第1実施例における被検査物の1次元走査を示す図である。 本発明の第2実施例を示すSQUID磁気センサを用いる非破壊検査装置で1次元走査評価をするために提供される被検査物とその1次元走査評価結果を示す図である。 本発明の第2実施例の具体例を示す図である。 本発明の第3実施例を示すSQUID磁気センサを用いる非破壊検査装置で1次元走査評価をするために提供される被検査物とその1次元走査評価結果を示す図である。 本発明の第4実施例を示すSQUID磁気センサを用いる非破壊検査装置で2次元走査評価をするために提供される被検査物の着磁の状態を示す図である。 本発明の第4実施例を示す被検査物の2次元走査(X軸およびY軸方向走査)を行うSQUID磁気センサ(グラジオメータ)を用いる非破壊検査装置の模式図である。 本発明の第4実施例を示す被検査物の走査結果を示す図である。 本発明の第5実施例を示すSQUID磁気センサを用いる非破壊検査装置で2次元走査評価をするために提供される磁性パーティクルが存在しない場合のセラミック電子デバイス(被検査物)のグラジオメータによる検査結果を示す図である。 本発明の第5実施例を示す磁性パーティクルが存在する場合のセラミック電子デバイス(被検査物)のグラジオメータによる検査結果を示す図である。 本発明の第5実施例を示すセラミック内部にパーティクルが存在する被検査物を示す図である。 本発明のSQUID磁気センサを用いる非破壊検査装置で測定されるリチウム電池電極板を示す図である。 本発明の他の実施例を示すSQUID磁気センサを用いる非破壊検査装置で検査するために提供される被検査物を示す図である。 本発明の2段コンベアと1段コンベアとによる検査信号の比較を示す図である。 本発明の他の実施例を示す複数個のSQUID磁気センサ(グラジオメータ)を用いる非破壊検査装置の模式図である。
 SQUID磁気センサを用いる非破壊検査装置において、被検査物の長手方向に磁場を印加する水平帯磁用磁石と、この水平帯磁用磁石により長手方向に水平磁化された被検査物がセットされる検査部と、前記水平磁化された被検査物を搬送するベルトコンベアと、前記水平磁化された被検査物である磁化可能な部材とともに水平磁化されたパーティクルを検出するグラジオメータとを具備する。
 本発明によれば、以下のような効果を奏することができる。
 (1)被検査物中に混在するパーティクルを非破壊で、かつその位置情報を含めて的確に検出することができる。
 (2)被検査物への磁場の印加は第1のコンベア上で行われ、その被検査物の検査は第1のコンベアとは別個に配置される第2のコンベアで行われるようにしたので、検査ステージにおける磁気ノイズを除去し、正確な検査を行うことができる。
 (3)水平磁化された被検査物中に強く磁化される鉄などの強磁性体があっても、被検査物が高温超電導SQUID磁気センサを通過したときに発生する磁界は強磁性体の両端部と磁化された異物(パーティクル)のみで発生するので、磁化された異物(パーティクル)を高精度に検出することができる非破壊検査が可能となる。この場合、異物(パーティクル)が磁性体の両端部付近に存在する場合はその検出が困難になるが、あらかじめ異物(パーティクル)を含まない被検査物の信号パターンを記憶して、異物(パーティクル)を含む被検査物の信号から差し引くことによって、異物の信号を検出することができる。
 以下、本発明の実施の形態について詳細に説明する。
 図1は本発明の実施例を示すSQUID磁気センサを用いる非破壊検査装置の模式図である。
 この図において、1は制御装置、2は第1のコンベア(着磁ステージ)、2Aは第1のコンベア2の駆動側の電動機付き駆動プーリー、2Bは第1のコンベア2の従動プーリー、3′は着磁前の被検査物、4は着磁前の被検査物3′を長手方向に磁化させるための水平帯磁用磁石(トンネル状の永久磁石)、5は第1のコンベア(着磁ステージ)2とは別個に配置される第2のコンベア(検査ステージ)、5Aは第2のコンベア5の駆動側の電動機付き駆動プーリー、5Bは第2のコンベア5の従動プーリーであり、着磁された被検査物3は第1のコンベア(着磁ステージ)2とは別個に配置される第2のコンベア5によって搬送され、第2のコンベア5上で検査される。6は磁気シールド、7はSQUID冷却容器、8はSQUID磁気センサ(グラジオメータ)、9は磁化された被検査物3が検査される検査部である。磁気シールド6には電磁波の影響を避けるため、アルミニウムなど導電性の材料で構成した電磁シールドを設けるようにしてもよい。
 このように、着磁前の被検査物3′は、第1のコンベア2によって、長手方向に永久磁石のS極とN極が配置されたトンネル状の水平帯磁用磁石4内を搬送され、連続的に着磁される。着磁された被検査物3は、第2のコンベア5によってSQUID磁気センサ8の検査部9へと搬送される。なお、トンネル状の水平帯磁用磁石4は、電磁石により構成するようにしてもよい。また、一端にS極、他端にN極を持つ半円トンネル状の永久磁石あるいは電磁石を構成し、その中に被検査物3を通過させて、コンベア2を停止させることなく連続的に着磁するようにしてもよい。
 このように、第1のコンベア(着磁ステージ)2と第2のコンベア(検査ステージ)5とを分割するように構成することが望ましい。このような構成とすることで、コンベアへの異物の付着によるコンベア自体への着磁の影響を最小にすることができるので、磁気ノイズが除去され、正確な検査を行うことができる。
 なお、上記した第1のコンベア及び第2のコンベアとしては、ここでは図示しないがモータで駆動されるエンドレスベルトコンベアを使用しているが、これに代えて、回転寿司で使用されているような水平面を搬送するコンベアを使用したり、駆動方式としては、静電式ベルトコンベアなどを用いるようにしてもよい。
 また、第1のコンベアと第2のコンベアに分離しない単一のベルトコンベアで構成する場合には、特に水平帯磁用磁石とグラジオメータとをクリーンブース内に配置して、コンベアへの異物の付着及び着磁を防止したり、水平帯磁用磁石とグラジオメータとの間に粘着ローラなどのクリーニング手段を配置して、コンベアへ付着した異物の除去を行うなどして、異物の付着による計測時の磁気ノイズの発生を抑えるように配慮することが望ましい。
 図2は本発明の第1実施例を示すSQUID磁気センサを用いる非破壊検査装置で1次元走査評価をするために提供される被検査物を示す図であり、図2(a)は被検査物を示す図面代用写真、図2(b)は被検査物の上面図、図2(c)は被検査物の正面図、図3はその被検査物の着磁の状態を示す図、図4はその被検査物の1次元走査を示す図であり、図4(a)はその被検査物の1次元走査結果を示す図、図4(b)は1次元走査状態を示す上面図、図4(c)はその正面図である。
 この第1実施例では、図2に示すように、磁化可能な帯状部材である真鍮板11′(幅10mm、長さ54mm)上にステンレスパーティクル(SUS304直径φ0.3mm球)12′が位置している。図3に示すように、このステンレスパーティクル12′を有する着磁前の真鍮板11′を表面磁束密度0.15Tの永久磁石2個13,14を用いて磁化する。次いで、図4(b)及び(c)に示すように、着磁されたステンレスパーティクル12を有する真鍮板11が第2のコンベア15上を搬送され、位置が固定されたグラジオメータ16により1次元走査される。その走査結果は図4(a)の通りであり、図4(a)のA部およびC部は着磁された真鍮板11の端部の走査結果に対応し、図4(a)のB部は着磁されたステンレスパーティクル12の走査結果に対応している。すなわち、ここでは、ステンレスパーティクル12は、真鍮板11の端部であるA部からは真鍮板11の長手方向に26mmの位置、真鍮板11の端部であるC部からは真鍮板11の長手方向に28mmの位置に存在していることを検出することができる。つまり、真鍮板11はステンレスパーティクル12の存在位置を計測する目盛りの機能を有していることが留意されるべきである。
 比較のため、ステンレスパーティクルが存在しない場合の被検査物の1次元走査結果も同時に示している。このように、本発明の第1実施例を示すSQUID磁気センサを用いる非破壊検査装置で1次元走査を行ったところ勾配磁界(Gradient Magnetic Field)が顕著に現れ、ステンレスパーティクル12が存在することが位置情報を含めて的確に計測される。
 なお、異物(パーティクル)が磁性体の両端部付近に存在する場合はその検出が困難になるが、あらかじめ異物(パーティクル)を含まない被検査物の信号パターンを記憶して、異物(パーティクル)を含む被検査物の信号から差し引くことによって、異物の信号を検出することができる。
 図5は本発明の第2実施例を示すSQUID磁気センサを用いる非破壊検査装置で1次元走査評価をするために提供される被検査物とその1次元走査評価結果を示す図であり、図5(a)はその被検査物の着磁の様子を示す図、図5(b)はその被検査物とその検査結果を示す模式図、図6はその具体例を示す図であり、図6(a)は実際の測定結果を示す図、図6(b)はパーティクルとしてのタングステンカーバイド(直径90μm)が付着している真鍮板である着磁された被検査物を示す図である。
 図5(a)に示すように、第1のベルトコンベア21により着磁前の被検査物22′が搬送され、トンネル状の水平帯磁用磁石23を通り抜けることにより着磁される。図5(b)に示すように、被検査物22が着磁された真鍮板とその上に付着しているパーティクルとしてのタングステンカーバイド(直径90μm)24からなる場合、被検査物22の両端部およびパーティクルとしてのタングステンカーバイド24の位置で勾配磁界が検出される。
 具体例を示すと、スタンドオフ:3.6mm、速度:2.7mm/分、磁界:0.2Tの場合、図6(b)に示すように、タングステンカーバイド(直径90μm)24が付着した着磁された被検査物22は、被検査物22の先端部のS極では、図6(a)のA部のような勾配磁界が見られ、被検査物22のパーティクルとしてのタングステンカーバイド(直径90μm)24の位置では、図6(a)のB部のような勾配磁界が見られ、被検査物22の後端部のN極では、図6(a)のC部のような勾配磁界が計測される。このように、グラジオメータを用いた計測により、図5(b)と同様の勾配磁界を示した。
 図7は本発明の第3実施例を示すSQUID磁気センサを用いる非破壊検査装置で1次元走査評価をするために提供される被検査物とその1次元走査評価結果を示す図であり、図7(a)は測定結果を示す図、図7(b)はパーティクルとしてのニッケル(50μm□)が付着している真鍮板からなる着磁された被検査物を示す図である。
 具体例を示すと、帯磁方向:水平帯磁、約0.2T、スタンドオフ:3.3mm、速度:6m/分、磁束換算計数:3.4nT/Vを条件として、図7(b)に示すように、ニッケル(50μm□)32が付着している真鍮板31からなる着磁された被検査物をSQUID磁気センサ(グラジオメータ)で検査すると、図7(a)に示すように、勾配磁界が現れた。つまり、A部が真鍮板31の始端部、B部がニッケル32、C部が真鍮板31の終端部に対応する勾配磁界となっている。
 図8は本発明の第4実施例を示すSQUID磁気センサを用いる非破壊検査装置で2次元走査評価をするために提供される被検査物の着磁の状態を示す図、図9はその被検査物の2次元走査(X軸およびY軸方向走査)を行うSQUID磁気センサ(グラジオメータ)を用いる非破壊検査装置の模式図、図10はその検査物の走査結果を示す図であり、図10(a)は被検査物上にパーティクルが存在しない場合を、図10(b)は被検査物上にパーティクルが存在する場合のそれぞれの結果を示す図である。
 この実施例では、図8に示すように、着磁前の被検査物41′を表面磁束密度0.15Tの2個の永久磁石42,43を用いて着磁する。図9に示すように、着磁後の被検査物41の移動方向に直交する方向(Y軸方向)にも相対的にグラジオメータ44を走査することにより、着磁後の被検査物41に付着し磁化されたパーティクル45を、長さ方向(X軸方向)と共に幅方向(Y軸方向)に対しても同時に検査することができるように構成した。
 すると、図10(a)に示すように、被検査物41上に磁性パーティクルが存在しない場合には、その被検査物41の走査結果には格別の勾配磁界は見られないが、パーティクル(SUS304)45が存在する場合には、図10(b)に示すようにその位置に強力な勾配磁界が見受けられ、被検査物41上のパーティクル45の存在が計測される。
 なお、上記実施例では、着磁後の被検査物41の移動方向に直交する方向の走査を行うようにしたので、被検査物41のどの位置にパーティクルが存在しても的確に検査することができる。
 図11は本発明の第5実施例を示すSQUID磁気センサを用いる非破壊検査装置で2次元走査評価をするために提供される磁性パーティクルが存在しない場合のセラミック電子デバイス(被検査物)のグラジオメータによる検査結果を示す図、図12は磁性パーティクルが存在する場合のセラミック電子デバイス(被検査物)のグラジオメータによる検査結果を示す図、図13はセラミック内部にパーティクルが存在する被検査物を示す図であり、図13(a)は被検査物の上面図、図13(b)は被検査物の側面図を示す。
 図13において、51は絶縁部材であるセラミックに封入される電子デバイス(被検査物)、52はこの電子デバイス(被検査物)51内に設けられた磁化可能な部材、53はその磁化可能な部材52の内部に存在するパーティクルとしてのCo(直径0.1mm)である。セラミック電子デバイス(被検査物)51の場合の典型例としては、この磁化可能な部材は、磁化可能な物質が混入しているセラミック部材(すなわち、絶縁物であるセラミック部材が磁化可能な物質の混入によって磁化可能となったもの)であるが、これらに限られるものではない。
 このように、パーティクル53が絶縁物であるセラミック電子デバイス内や磁化可能となったセラミック部材の内部に存在する場合でも、図12に示すように、グラジオメータにより計測するとパーティクル53の位置では顕著な勾配磁界54が見受けられ、パーティクルの存在が計測される。
 図14は本発明のSQUID磁気センサを用いる非破壊検査装置で測定されるリチウム電池電極板を示す図である。
 図14に示すような、リチウム電池電極板として用いられる活物質コーティング銅箔(正極)61や、Al箔(正極)62、Cu箔(負極)63、またはセパレータ(樹脂シート)64等の上にパーティクルが存在するような場合にも、上記した計測方法により、パーティクルの存在を計測することができる。特に、絶縁物であっても鉄粉などの磁化可能な物質が混入している部材であれば十分に磁化可能であり、パーティクルの存在が計測できる。
 図15は本発明の他の実施例を示すSQUID磁気センサを用いる非破壊検査装置で検査するために提供される被検査物を示す図である。
 この図において、磁化された被検査物71には、例えば、絶縁部材であるセラミックからなる長方形状の磁化されない部材72中に帯状の磁化された部材73が位置しており、この帯状の磁化された部材73上または帯状の磁化された部材73上ではなく磁化されない部材72中に磁化されたパーティクル(異物)74が存在している。
 このように、磁化されたパーティクル74が磁化されない部材72中に存在する場合でも、図4と同様に、磁化されたパーティクル(異物)74の存在を的確に検出することができる。
 次に、被検査物を搬送するベルトコンベアの配置について説明する。
 図16は本発明の2段コンベアと1段コンベアとによる検査信号の比較を示す図(ベルト使用開始から200時間経過後の信号の比較)であり、図16(a)は2段コンベアの場合を示す図、図16(b)は1段コンベアの場合を示す図である。
 ここで試験の条件としては、帯磁方向:水平帯磁、約0.1T、センサーベルト表面間距離:5.5mm、コンベア速度:2.7m/分、磁束換算係数:3.4nT/Vとした。
 単一のコンベアで被検査物の着磁とSQUID磁気センサ(グラジオメータ)による検査の両方を行う1段コンベアに対して、本発明においては、被検査物に磁場を印加するステージとなる第1のベルトコンベア2(図1参照)と、この第1のベルトコンベア2とは別個に配置される、被検査物の検査ステージとなる第2のベルトコンベア5(図1参照)とを配置する、所謂2段コンベアとするようにしている。
 1段コンベアの場合は、図16(b)に示すように、ベルト使用開始から200時間経過後の時点では検査ステージにおける磁気ノイズが見受けられた。つまり、コンベアに付着した異物によるノイズがおよそ0.2Vであり、それが背景ノイズになっている。これに対して、2段コンベアの場合は、図16(a)に示すように、同じくベルト使用開始から200時間経過後でも殆ど磁気ノイズは見受けられなかった。つまり、コンベアに付着した異物によるノイズはおよそ0.02V程度であり、背景ノイズが低く、検査を良好に行うことができる。両者を比較すると、2段コンベアの場合は、1段コンベアに比して背景のノイズの大きさを1/10倍程度に小さくできる利点がある。
 この点について詳述すると、磁気ノイズは、環境あるいはコンベアローラーなど回転部にある金属粉がベルトコンベアに付着して、帯磁用磁石の下をベルトコンベアが通過するときに同時に磁化されることによって発生する。
 その場合の帯磁した金属粉は例えば数10μm以下の微粒子であり、コンベアベルト等に付着すると通常の清掃や洗浄では除去し難い。
 このように、微粒子は、除去し難いので、被検査物に磁場を印加するステージとなる第1のベルトコンベア2と、この第1のベルトコンベア2とは別個に第2のベルトコンベア5を配置するようにすると、第2のベルトコンベア5は着磁に関与しないので、第2のベルトコンベア5上に異物が付着したとしても磁化されず、正確な検査を行うことができる。
 このように、2段コンベアを用いた計測装置とすることによって、磁気ノイズが低減され、パーティクルの有無とその位置のより正確な検査を行うことができる。
 また、本発明においては、上記した2段コンベアが有効であるが、1段コンベアの構成とする場合には、特に、被検査物のゴミの付着および着磁を防止し、被検査物の検査時のゴミによる磁気ノイズを低減するために、水平帯磁用磁石と前記グラジオメータとをクリーンブース内に配置したり、クリーニング手段を設けることが望ましい。
 図17は本発明の他の実施例を示す複数個のSQUID磁気センサ(グラジオメータ)を用いる非破壊検査装置の模式図である。
 この実施例では、セットされた着磁後の被検査物81の移動方向に直交する方向に複数個のSQUID磁気センサ(グラジオメータ)82~85を配置して、セットされた着磁後の被検査物81に付着した磁化されたパーティクル86~89の幅方向の検査も同時に行うことができる。
 上記したように、磁化可能な部材としては、磁性体や、磁化可能な部材が塗布されたり混入された金属体、半導体または絶縁体も含まれる。また、磁化可能な部材の形状は長尺体(矩形体)に限定するのではなく、四角形状や円形状、楕円形状であってもよい。
 なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
 本発明のSQUID磁気センサを用いる非破壊検査装置は、被検査物に付着したり、内在したりしている磁化されたパーティクルを非破壊で、かつその位置情報を含めて的確に検出することができる検査装置として利用可能である。

Claims (15)

  1. (a)被検査物の長手方向に磁場を印加する水平帯磁用磁石と、
    (b)該水平帯磁用磁石により長手方向に水平磁化された被検査物がセットされる検査部と、
    (c)前記水平磁化された被検査物を搬送するベルトコンベアと、
    (d)前記水平磁化された被検査物である磁化可能な部材とともに水平磁化されたパーティクルを検出するグラジオメータとを具備することを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  2.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記ベルトコンベアは、前記被検査物に磁場を印加する帯磁ステージとなる第1のベルトコンベアと、該第1のベルトコンベアとは別個に配置され、前記被検査物が検査される検査ステージとなる第2のベルトコンベアとを具備することを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  3.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁場の印加後に前記ベルトコンベアへ付着した異物の除去を行うためのクリーニング手段を配置することを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  4.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁化可能な部材が磁化されない部材中に配置されることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  5.  請求項4記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁化されない部材が絶縁部材であることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  6.  請求項5記載のSQUID磁気センサを用いる非破壊検査装置において、前記絶縁部材がセラミックスであることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  7.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁化可能な部材が活物質が塗布された導電箔であることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  8.  請求項7記載のSQUID磁気センサを用いる非破壊検査装置において、前記導電箔が銅箔又はアルミニウム箔であることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  9.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記パーティクルは前記磁化可能な部材上または部材中に位置することを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  10.  請求項4記載のSQUID磁気センサを用いる非破壊検査装置において、前記パーティクルが前記磁化されない部材中に位置することを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  11.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記パーティクルが磁性体であることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  12.  請求項11記載のSQUID磁気センサを用いる非破壊検査装置において、前記磁性体が鉄、ニッケル、若しくはコバルト、又は鉄、ニッケル、若しくはコバルトの何れかを含有する合金であることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  13.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記水平帯磁用磁石が永久磁石であることを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  14.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記グラジオメータの位置は固定のまま、前記水平磁化された被検査物をX方向に移動させることにより1次元走査を行うことを特徴とするSQUID磁気センサを用いる非破壊検査装置。
  15.  請求項1記載のSQUID磁気センサを用いる非破壊検査装置において、前記被検査物の移動方向に直交する方向に複数個のグラジオメータを配置して、前記被検査物の幅方向の検査も同時に行うことを特徴とするSQUID磁気センサを用いる非破壊検査装置。
PCT/JP2009/054125 2008-03-05 2009-03-05 Squid磁気センサを用いる非破壊検査装置 WO2009110529A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/919,227 US8330458B2 (en) 2008-03-05 2009-03-05 Nondestructive inspection apparatus using squid magnetic sensor
JP2010501941A JP5229923B2 (ja) 2008-03-05 2009-03-05 Squid磁気センサを用いる非破壊検査装置
EP20090717892 EP2251684B1 (en) 2008-03-05 2009-03-05 Nondestructive test equipment employing squid magnetic sensor
CN200980107487.0A CN101960301B (zh) 2008-03-05 2009-03-05 使用squid磁性传感器的无损检查设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-054360 2008-03-05
JP2008054360 2008-03-05

Publications (1)

Publication Number Publication Date
WO2009110529A1 true WO2009110529A1 (ja) 2009-09-11

Family

ID=41056081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054125 WO2009110529A1 (ja) 2008-03-05 2009-03-05 Squid磁気センサを用いる非破壊検査装置

Country Status (6)

Country Link
US (1) US8330458B2 (ja)
EP (1) EP2251684B1 (ja)
JP (1) JP5229923B2 (ja)
KR (1) KR101569951B1 (ja)
CN (1) CN101960301B (ja)
WO (1) WO2009110529A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10686336B2 (en) 2017-05-30 2020-06-16 Wireless Advanced Vehicle Electrification, Inc. Single feed multi-pad wireless charging
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255768A (ja) * 1992-03-12 1993-10-05 Nkk Corp 焼結原料の混合・造粒用ミキサーの操業方法
JPH0777516A (ja) 1993-07-12 1995-03-20 Sumitomo Electric Ind Ltd 非破壊検査装置
JPH1038854A (ja) * 1996-07-17 1998-02-13 Agency Of Ind Science & Technol 導電性材料の非破壊検査方法および装置
JPH10194425A (ja) * 1997-01-08 1998-07-28 Nisshin Plant Eng Kk 籠型プーリー及び籠型プーリーを使用した運搬装置
JPH1172479A (ja) * 1997-08-29 1999-03-16 Ykk Corp 非磁性製品中の磁性体の検知方法及び検知装置
JP2005183142A (ja) * 2003-12-18 2005-07-07 Mitsubishi Chemicals Corp リチウム二次電池用電極材料の異物の検出方法
JP2005351804A (ja) * 2004-06-11 2005-12-22 Sumitomo Denko Hightecs Kk 磁性異物検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2431505C2 (de) * 1974-07-01 1975-11-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren und Vorrichtung zur kontinuierlichen, kontaktlosen Prüfung eines langgestreckten, wenigstens teilweise aus Supraleitermaterial bestehenden Leiters
JPH01172479A (ja) * 1987-12-28 1989-07-07 Sumitomo Bakelite Co Ltd 銅張積層板用接着剤
US6984977B2 (en) * 2001-09-14 2006-01-10 University Of Maryland Scanning SQUID microscope with improved spatial resolution
DE102007050143A1 (de) * 2007-10-19 2009-04-23 Mtu Aero Engines Gmbh Sonde für ein Magnet-Remanenz-Messverfahren und Verfahren zur Detektion von Fremdmaterialablagerungen und Einschlüssen in Hohlräumen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255768A (ja) * 1992-03-12 1993-10-05 Nkk Corp 焼結原料の混合・造粒用ミキサーの操業方法
JPH0777516A (ja) 1993-07-12 1995-03-20 Sumitomo Electric Ind Ltd 非破壊検査装置
JP3152074B2 (ja) 1993-07-12 2001-04-03 住友電気工業株式会社 非破壊検査装置
JPH1038854A (ja) * 1996-07-17 1998-02-13 Agency Of Ind Science & Technol 導電性材料の非破壊検査方法および装置
JPH10194425A (ja) * 1997-01-08 1998-07-28 Nisshin Plant Eng Kk 籠型プーリー及び籠型プーリーを使用した運搬装置
JPH1172479A (ja) * 1997-08-29 1999-03-16 Ykk Corp 非磁性製品中の磁性体の検知方法及び検知装置
JP2005183142A (ja) * 2003-12-18 2005-07-07 Mitsubishi Chemicals Corp リチウム二次電池用電極材料の異物の検出方法
JP2005351804A (ja) * 2004-06-11 2005-12-22 Sumitomo Denko Hightecs Kk 磁性異物検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2251684A4

Also Published As

Publication number Publication date
US8330458B2 (en) 2012-12-11
EP2251684B1 (en) 2015-04-22
US20110031967A1 (en) 2011-02-10
KR20100127260A (ko) 2010-12-03
CN101960301A (zh) 2011-01-26
CN101960301B (zh) 2012-04-04
EP2251684A4 (en) 2014-05-14
KR101569951B1 (ko) 2015-11-17
EP2251684A1 (en) 2010-11-17
JP5229923B2 (ja) 2013-07-03
JPWO2009110529A1 (ja) 2011-07-14

Similar Documents

Publication Publication Date Title
Ramos et al. Present and future impact of magnetic sensors in NDE
CN103499636B (zh) 基于测静磁力的薄板类铁磁材料中微缺陷的无损检测方法
CN105510433B (zh) 一种基于动生涡电流的金属管件电磁无损检测装置
Hwang et al. The application of a differential-type Hall sensors array to the nondestructive testing of express train wheels
CN103675094A (zh) 一种无损探伤装置
JP5229923B2 (ja) Squid磁気センサを用いる非破壊検査装置
CN111929356B (zh) 钢材缺陷磁成像装置及方法
CN112444219A (zh) 一种非接触超声电磁涂层测厚方法及其检测装置
İzgi et al. Crack detection using fluxgate magnetic field sensor
Jun et al. A hand held magnetic camera system for real time crack inspection
Kloster et al. Linear magnetic stray flux array based on GMR gradiometers
JP2019020272A (ja) 表面きず検査装置
Nadzri et al. Development of ECT probe for back side crack evaluation
JP5326138B2 (ja) 粉体材料中の磁性異物の検査装置およびその検査方法
JP2022123902A (ja) 超伝導磁気センサを用いた検査装置及び検査方法。
JPH0439031B2 (ja)
JPH1123536A (ja) 金属材料の疲労診断方法
US9310337B2 (en) Non-destructive inspection device for pressure containers using leakage-flux measurement
JP2021001813A (ja) 非破壊検査用磁気センサ及び非破壊検査装置
Yamada et al. Metallic Bead Detection by Using Eddy‐Current Probe with SV‐GMR Sensor
JPH02236446A (ja) 漏洩磁束探傷方法及び装置
Hatsukade et al. SQUID NDE for in situ inspection of copper heat exchanger tubes
Ramos et al. A New Probe for Velocity Induced Eddy Current Inspection
JPH02310462A (ja) 非破壊検査装置
Blitz et al. Magnetic methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107487.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501941

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12919227

Country of ref document: US

Ref document number: 2009717892

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107022183

Country of ref document: KR

Kind code of ref document: A