WO2009107745A1 - 超音波検査装置 - Google Patents

超音波検査装置 Download PDF

Info

Publication number
WO2009107745A1
WO2009107745A1 PCT/JP2009/053600 JP2009053600W WO2009107745A1 WO 2009107745 A1 WO2009107745 A1 WO 2009107745A1 JP 2009053600 W JP2009053600 W JP 2009053600W WO 2009107745 A1 WO2009107745 A1 WO 2009107745A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
inspection
ultrasonic
distance
inspection object
Prior art date
Application number
PCT/JP2009/053600
Other languages
English (en)
French (fr)
Inventor
英夫 磯部
博一 唐沢
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CA2716419A priority Critical patent/CA2716419C/en
Priority to US12/918,904 priority patent/US8413515B2/en
Priority to KR1020107018845A priority patent/KR101138323B1/ko
Priority to EP09713946.3A priority patent/EP2251686A4/en
Publication of WO2009107745A1 publication Critical patent/WO2009107745A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2638Complex surfaces

Definitions

  • the present invention relates to an ultrasonic inspection apparatus, and more particularly to an ultrasonic inspection apparatus that performs high-accuracy scanning during ultrasonic flaw detection inspection.
  • an ultrasonic inspection apparatus capable of visualizing these states.
  • This ultrasonic inspection apparatus scans an object to be inspected by using an ultrasonic transducer composed of piezoelectric transducers formed in an array type such as a matrix or a linear shape, and inspects for defects or the like.
  • the ultrasonic inspection apparatus includes a scanner mechanism that drives an ultrasonic transducer.
  • This scanner mechanism requires X axis, Y axis, Z axis, A axis (X axis direction rotation axis), B axis (Y axis direction rotation axis), C axis (Z axis direction rotation axis), etc. It is composed of an orthogonal robot equipped with an axis and an industrial robot constructed based on an arm mechanism.
  • the scanner mechanism is driven based on the control of the control mechanism or the like, so that the ultrasonic transducer attached to the scanner mechanism automatically detects a predetermined range on the surface of the inspection object.
  • the scanning path information is generated based on the surface shape of the object to be inspected, for example, with the opening width of the ultrasonic transducer as one scanning width.
  • the inspection object is set at a predetermined position in the scanner mechanism. If the inspection object has a complicated shape, it should be set at a predetermined position with high accuracy reproducibility. Was difficult.
  • Another method for generating scanning path information is to teach and register each passing point on the actual scanning path by driving an ultrasonic transducer on the surface of the object to be inspected by a scanner mechanism.
  • This method requires enormous time and work to teach and register the scanning path of the scanner mechanism by driving the scanner mechanism for each passing point on the scanning path.
  • the configuration of the drive unit provided in the scanner mechanism is complicated, the method requires a very complicated procedure and operation.
  • This ultrasonic flaw detector provides a distance sensor at the lower end of the drive shaft in a direction substantially perpendicular to the scanning base of the scanner mechanism, and scans the distance sensor above the object to be inspected. Based on the measurement data of the distance between the object to be inspected and the distance sensor obtained by scanning, the shape data of the object to be inspected, which is the coordinate data of the scanner mechanism, is obtained and stored in the memory. Also, during scanning, scanning path information with each passing point on the shape data of the object to be inspected is created, and the drive mechanism is controlled in an open loop.
  • an ultrasonic flaw detection apparatus that takes into account an error from an ideal scanning path that occurs during ultrasonic flaw detection has been proposed.
  • ultrasonic flaw detection that improves flaw detection accuracy by performing a shape measurement operation that performs shape measurement and a flaw detection operation that performs flaw detection while performing the shape measurement operation using a distance sensor integrally coupled to the probe An apparatus has been proposed (see, for example, JP-A-3-77057).
  • an ultrasonic transducer is mounted on the scanner mechanism, the distance between the ultrasonic transducer and the inspection surface of the object to be inspected is measured, and the result is fed back to the control of the scanner mechanism to optimize the ultrasonic transducer for flaw detection.
  • An ultrasonic flaw detection system that can be controlled to a position has been proposed (see, for example, Japanese Patent Application Laid-Open No. 2005-300363).
  • the conventional scanner mechanism includes a drive mechanism that drives the ultrasonic transducer based on ideal scan path information generated in advance, and an ideal scan path where the scanning position of the ultrasonic transducer is based on errors that occur during ultrasonic flaw detection. It has been used as an adjustment mechanism for adjusting the error so that it is positioned above.
  • the scanner mechanism is used as the drive mechanism and adjustment mechanism described above, the control of the scanner mechanism becomes complicated, and the accuracy of scanning position control may be reduced. For this reason, in order to perform high-accuracy ultrasonic flaw detection while maintaining high-precision control over the scanner mechanism, there has been a problem that increase in scanning time and labor is inevitable.
  • An object of the present invention is to provide an ultrasonic inspection apparatus that performs high-accuracy ultrasonic flaw detection by detecting various errors with respect to a specific scanning position and autonomously adjusting the errors.
  • an ultrasonic inspection apparatus includes a plurality of piezoelectric vibrators, an ultrasonic wave that oscillates an inspection region of an object to be inspected, and receives a reflection echo thereof.
  • a flaw detection processing apparatus Generates flaw detection image information of the inspection region of the inspection object by oscillating ultrasonic waves to the transducer and the ultrasonic transducer, and detecting and processing an electric echo signal of the reflected echo received by the ultrasonic transducer
  • a flaw detection processing apparatus a scanner mechanism for driving the ultrasonic transducer on the inspection object based on scanning path information generated in advance, and a distance between the opening surface of the ultrasonic transducer and the inspection area of the inspection object
  • the distance / tilt calculation unit for obtaining at least one of the slope and the slope, and the distance and the slope obtained by the distance / tilt calculation unit.
  • the scanning position based on the scanning path information, the normal line of the inspection area of the inspection object, and the opening surface of the ultrasonic transducer are orthogonal to each other and the inspection of the ultrasonic transducer and the inspection object
  • An error from a predetermined scanning position where the area is a predetermined distance is calculated, and based on this error, at least one of a distance and an inclination between the opening surface of the ultrasonic transducer and the inspection area of the inspection object is calculated.
  • a control unit that generates a control signal for correcting to a predetermined scanning position; and a drive mechanism that drives the ultrasonic transducer to the predetermined scanning position based on the control signal generated by the control unit; At least the ultrasonic transducer and the drive mechanism are configured as an integrated ultrasonic transducer configured integrally. It is characterized in.
  • the ultrasonic inspection apparatus can detect various errors with respect to an ideal scanning position during ultrasonic flaw detection, and perform high-accuracy ultrasonic flaw inspection by autonomously adjusting the errors. it can.
  • 1 is a schematic overall configuration diagram showing a first embodiment of an ultrasonic inspection apparatus according to the present invention. It is a block diagram explaining the integrated ultrasonic transducer provided in an ultrasonic inspection apparatus. It is a functional block diagram explaining an ultrasonic transducer and a flaw detection processing apparatus. It is a block diagram explaining the scanner mechanism shown by 1st Embodiment. It is a flowchart explaining the flow of the ultrasonic flaw inspection including an error correction process. It is a schematic block diagram of the integrated ultrasonic transducer and flaw detection processing apparatus of 2nd Embodiment of the ultrasonic inspection apparatus which concerns on this invention.
  • FIG. (A) is a view showing a case where the ultrasonic transducer and the inspection object are held at an appropriate scanning position
  • (B) is an inspection area of each piezoelectric vibrator and inspection object obtained from the reflection echo of the piezoelectric vibrator.
  • FIG. (A) is a diagram showing a case where the ultrasonic transducer and the object to be inspected are held at positions close to each other.
  • FIG. (B) is a diagram showing the relationship between each piezoelectric vibrator obtained from the reflection echo of the piezoelectric vibrator and the inspection area of the object to be inspected. It is a figure which shows the distance D.
  • FIG. (A) is a diagram showing a case where the ultrasonic transducer and the object to be inspected are held at a distant position
  • (B) is a diagram of each piezoelectric vibrator obtained from the reflection echo of the piezoelectric vibrator and the inspection region of the object to be inspected. It is a figure which shows the distance D.
  • FIG. It is a schematic block diagram of the corner copying mechanism of 4th Embodiment of the ultrasonic inspection apparatus which concerns on this invention.
  • This ultrasonic inspection apparatus scans the surface of an inspection object with an ultrasonic transducer composed of a piezoelectric conversion unit formed in an array type such as a matrix or a linear shape, thereby causing internal defects or voids in the inspection object.
  • the peeling is visualized by using an aperture synthesis method.
  • FIG. 1 is a schematic overall configuration diagram showing a first embodiment of an ultrasonic inspection apparatus 1 according to the present invention.
  • the ultrasonic inspection apparatus 1 includes an actuator-integrated ultrasonic transducer (hereinafter referred to as an integrated ultrasonic transducer) 2, a scanner mechanism 3, an integrated ultrasonic transducer control device 6, a flaw detection processing device 7, and a scanner mechanism driving device 8. It is comprised from the apparatus main body 5 comprised from these.
  • the apparatus main body 5 includes a display device 9 for displaying a two-dimensional or three-dimensional flaw detection image obtained by ultrasonic flaw detection, and an input device 10 for receiving input of various instructions.
  • the display device 9 includes a display unit, a calculation unit, a storage unit, and the like, and is a flat such as a liquid crystal display, LED (light emitting diode), EL (Electro Luminescence), VFD (fluorescent display tube), PDP (plasma display panel).
  • a panel display can be used.
  • the input device 10 includes a keyboard and a mouse.
  • FIG. 2 is a configuration diagram for explaining the integrated ultrasonic transducer 2 provided in the ultrasonic inspection apparatus 1.
  • the integrated ultrasonic transducer 2 is fixed to a YZ drive shaft 3d of the scanner mechanism 3 to be described later, and a distance control actuator 15, an inclination control actuator 16 and an ultrasonic transducer 17 are sequentially connected. Further, distance measuring sensors 18 a and 18 b are provided at both ends of the ultrasonic transducer 17 in the width direction. The distance control actuator 15, the tilt control actuator 16, and the distance measurement sensors 18a and 18b are connected to the integrated ultrasonic transducer control device 6 for controlling them.
  • the ultrasonic transducer 17 moves on the inspection object 19 by driving the distance control actuator 15 and the tilt control actuator 16 based on the control signal transmitted from the integrated ultrasonic transducer control device 6 and the scanner mechanism 3. Scan.
  • Distance measuring sensors 18a and 18b are provided as a set of two.
  • the distance measuring sensors 18a and 18b use distances la and lb between the inspected object 19 and both ends in the width direction of the ultrasonic transducer 17 by using measuring means such as optical measurement using a laser beam or ultrasonic measurement. measure.
  • Measurement results obtained from the distance measurement sensors 18 a and 18 b are output to the integrated ultrasonic transducer control device 6.
  • the distance ls between the distance measuring sensors 18a and 18b is a known constant distance.
  • the tilt control actuator 16 rotates in the direction of the arrow on the axis perpendicular to the drawing based on the control signal transmitted from the integrated ultrasonic transducer control device 6.
  • the tilt control actuator 16 controls the tilt of the ultrasonic transducer 17 with respect to the inspection object 19.
  • the distance control actuator 15 is driven in the direction of the arrow on the vertical axis with respect to the drawing based on the control signal transmitted from the integrated ultrasonic transducer control device 6.
  • the distance control actuator 15 controls the distance of the ultrasonic transducer 17 with respect to the inspection object 19.
  • the scanner mechanism 3 drives the integrated ultrasonic transducer 2 on the inspection object 19 based on the previously generated scanning path information.
  • the distance control actuator 15 and the tilt control actuator 16 drive the ultrasonic transducer 17 in order to adjust the error of the scanning path based on the control signal transmitted from the integrated ultrasonic transducer control device 6.
  • the integrated ultrasonic transducer control device 6 includes a distance / tilt calculation unit 21 and a control amount calculation unit 22.
  • the distance / tilt calculation unit 21 calculates the distance lc between the center of the opening surface of the ultrasonic transducer 17 and the inspection object 19 based on the distances la and lb output from the distance measurement sensors 18a and 18b.
  • the distance / tilt calculation unit 21 is based on the distance lc between the center of the opening surface of the ultrasonic transducer 17 and the inspection object 19 calculated based on [Equation 1], and the inspection object on the opening surface of the ultrasonic transducer 17
  • the inclination ⁇ with respect to 19 is calculated.
  • the distance lc and the inclination ⁇ may be calculated by a calculation method other than [Equation 1] and [Equation 2].
  • control amount calculation unit 22 determines the distance based on the calculated distance lc between the central portion of the opening surface of the ultrasonic transducer 17 and the inspection object 19 and the inclination ⁇ of the opening surface of the ultrasonic transducer 17 with respect to the inspection object 19.
  • Control amounts of the control actuator 15 and the tilt control actuator 16 are calculated.
  • the control amounts of the distance control actuator 15 and the tilt control actuator 16 are such that the normal of the inspection region of the inspection object 19 and the opening surface of the ultrasonic transducer 17 are orthogonal to each other, and the ultrasonic transducer 17 and the inspection object 19 It is determined so that the ultrasonic transducer 17 is arranged at an ideal scanning position where the inspection area is a predetermined distance.
  • the integrated ultrasonic transducer control device 6 outputs the control amount thus acquired to the distance control actuator 15 and the tilt control actuator 16.
  • FIG. 3 is a schematic configuration diagram for explaining the ultrasonic transducer 17 constituting the integrated ultrasonic transducer 2 and the flaw detection processing device 7 connected to the ultrasonic transducer 17.
  • the flaw detection processing apparatus 7 includes a signal generation unit 30 that generates a drive signal, a drive element selection unit 31, a signal detection circuit 32, a signal processing unit 33, and a control circuit 34.
  • the signal generator 30 generates a drive signal for driving the ultrasonic transducer 17.
  • the drive element selection unit 31 selects a drive signal from the signal generation unit 30 and selectively drives the piezoelectric vibrator (piezoelectric conversion element) 35 of the ultrasonic transducer 17.
  • the signal detection circuit 32 irradiates the inspection area of the inspection object 19 with the ultrasonic wave oscillated from the ultrasonic transducer 17, and detects the reflected echo U from the inspection area as an electric echo signal via the ultrasonic transducer 17. .
  • the signal processing unit 33 performs a series of imaging operations such as amplification, A / D conversion, and visualization on the electric echo signal of the reflected echo U detected by the signal detection circuit 32, and generates flaw detection image information.
  • the display device 9 includes a display unit, a calculation unit, a storage unit, and the like, and generates a two-dimensional or three-dimensional flaw detection image as necessary based on flaw detection image information processed by the signal processing unit 33. indicate.
  • the control circuit 34 controls the operations of the signal generation unit 30, the drive element selection unit 31, the signal detection circuit 32, the signal processing unit 33, the display device 9, and the input device 10, and transmits, receives, and images ultrasonic waves. Controls a series of operations such as display.
  • the input device 10 causes the control circuit 34 to input instructions such as start and end of inspection, image switching, etc., or to input setting of inspection conditions, thereby causing the ultrasonic inspection apparatus 1 to be operated.
  • the ultrasonic transducer 17 has a piezoelectric transducer 36 in which a large number of piezoelectric transducers 35 as piezoelectric transducers are arranged in a matrix of m rows and n columns.
  • the piezoelectric conversion unit 36 constitutes an ultrasonic sensor that is a matrix sensor.
  • the drive signal generated by the signal generator 30 is selected by the drive element selector 31 and applied to each piezoelectric vibrator 35 of the ultrasonic transducer 17.
  • the drive order of each piezoelectric vibrator 35 is determined one by one or a plurality by the selection of the drive element selection unit 31, and each piezoelectric vibrator 35 is driven at a required drive timing to oscillate ultrasonic waves.
  • the ultrasonic waves oscillated from the respective piezoelectric vibrators 35 are irradiated onto the inspection region of the inspection object 19, and a part thereof is reflected from the density boundary layer of the inspection region to become a reflection echo U.
  • the reflected echo U is received by an ultrasonic transducer 17 (matrix sensor) which is an ultrasonic sensor.
  • the ultrasonic transducer 17 has a shoe member 40 that is a solid acoustic propagation medium in close contact with the transmitting / receiving surface side that is an ultrasonic sensor surface, specifically, the inspection object 19 side.
  • the shoe member 40 has a soft shoe insertion portion 40a that is a hollow portion in which the contact surface of the shoe member 40 with the object to be inspected 19 is hollowed out in a flat plate shape, for example.
  • a soft shoe 41 made of a relatively low-damping rubber such as silicon rubber is fitted into the soft shoe insertion portion 40a of the shoe member 40.
  • the soft shoe 41 is composed of a member that is softer than the shoe member 40, the soft shoe 41 is easily deformed according to the shape of the contact surface of the inspection object 19.
  • the soft shoe 41 has substantially the same shape as the soft shoe insertion portion. For this reason, the soft shoe 41 is tightly fixed so that it can partially protrude from the hollow portion of the shoe member 40. Further, since the soft shoe 41 deteriorates faster than the shoe member 40, the soft shoe 41 is configured to be detachable so that it can be replaced.
  • the thickness D1 of the shoe member 40 and the thickness D2 of the soft shoe 41 are determined based on the sound speed ratio. Specifically, the ratio between the thickness D1 of the shoe member 40 and the thickness D2 of the soft shoe 41 is determined to be a value that makes these sound speed ratios. As a result, multiple echoes obtained from the inspection object 19 are overlapped, and the inspectable depth can be optimized.
  • a contact surface between the shoe member 40, the object 19 to be inspected, and the soft shoe 41 is provided with a gel-like liquid coupling agent 42 having low volatility in order to achieve ultrasonic acoustic matching.
  • the shoe member 40 is tightly fixed to the contact surface with the object to be inspected 19 via the liquid coupling 42.
  • the soft shoe 41 is detachably attached to the soft shoe insertion portion 40a via a liquid coupling 42.
  • the ultrasonic waves sequentially oscillated from the piezoelectric vibrators 35 of the ultrasonic transducer 17 pass through the shoe member 40, the liquid coupling agent 42, the soft shoe 41, and the liquid coupling agent 42 as an acoustic propagation medium in order, and inspect the inspection object 19.
  • the light is incident on the inside of the region and reflected by each boundary layer of the inspection region.
  • the reflected echoes U of the ultrasonic waves reflected by the boundary layers such as the surface, boundary surface, bottom surface, and internal defect 43 of the inspection object 19 are liquid coupling agent 42, soft shoe 41, and liquid coupling agent 42 from the inspection object 19.
  • the signals are sequentially received by the piezoelectric vibrators 35 of the ultrasonic transducer 17 with a time difference through the shoe member 40.
  • the reflected echo U is converted into an electric signal (electric echo signal) by vibrating each piezoelectric vibrator 35.
  • the electrical echo signal is subsequently input to the signal detection circuit 32 via the signal cable 45 and detected for each piezoelectric vibrator 35.
  • the signal detection circuit 32 is connected to each piezoelectric vibrator 35 of the ultrasonic transducer 16 through the signal cable 45 in an aligned state.
  • the electrical echo signal generated by each piezoelectric vibrator 35 of the piezoelectric conversion unit 36 is guided to the signal detection circuit 32 via the signal cable 45.
  • the drive signal from the signal generation unit 30 is guided to each piezoelectric vibrator 35 of the piezoelectric conversion unit 36 via the drive element selection unit 31 using the signal cable 45.
  • the piezoelectric vibrator 35 When a drive signal is applied to the piezoelectric vibrator 35 in the m-th row and the n-th column among the piezoelectric vibrators 35 of the ultrasonic transducer 17, the piezoelectric vibrator 35 is activated to generate ultrasonic waves as a piezoelectric body. This ultrasonic wave is oscillated. The oscillated ultrasonic wave is irradiated to the inspection area of the inspection object 19 through the shoe member 40, the soft shoe 41, and the liquid coupler 42. At this time, the ultrasonic wave is irradiated to the inspection area of the inspection object 19 while maintaining a certain angle and a certain distance.
  • a part of the ultrasonic wave irradiated to the inspection area of the inspection object 19 is reflected from the density boundary layer of the inspection area to become a reflection echo U.
  • the reflected echo U is returned to the ultrasonic transducer 17 via the liquid coupling 42, the soft shoe 41, and the shoe member 40, and is received by each piezoelectric vibrator 35 with a time difference.
  • the reflected echo U is converted into an electric echo signal and sent to the signal detection circuit 32 via the signal cable 45 and detected.
  • the signal processing unit 33 performs a series of processes such as amplification, A / D conversion, and visualization on the derived electrical echo signal, and generates flaw detection image information.
  • the generated flaw detection image information is guided to the display device 9, and image-processed to display a two-dimensional or three-dimensional flaw detection image.
  • FIG. 4 is a configuration diagram for explaining the scanner mechanism 3.
  • the scanner mechanism 3 includes a scanning table 3a on which the object to be inspected 19 is placed, a fixing unit 3b that is fixed substantially perpendicular to one side of the scanning table 3a, and an X-axis driving unit 3c that drives the fixing unit 3b in the X-axis direction. And a YZ-axis drive unit 3d that drives in the Y-axis direction and the Z-axis direction. Further, the integrated ultrasonic transducer 2 shown in FIG. 2 is configured at the lower end of the YZ axis driving unit 3d.
  • the X-axis drive unit 3c and the YZ-axis drive unit 3d of the scanner mechanism 3 are driven in the X-axis, Y-axis, and Z-axis directions based on the control signal transmitted from the scanner mechanism drive device 8 of the apparatus body 5.
  • the X axis, the Y axis, and the Z axis are axes orthogonal to each other.
  • the scanner mechanism 3 may omit the scanning table 3a by directly fixing the fixing portion 3b to the inspection object 19.
  • the inspection object 19 is installed on the scanning stage 3a of the scanner mechanism 3.
  • the integrated ultrasonic transducer 2 performs scanning on the surface of the inspection object 19 in accordance with the driving of the X-axis drive unit 3c and the YZ-axis drive unit 3d.
  • the integrated ultrasonic transducer 2 In order for the integrated ultrasonic transducer 2 to scan the surface of the inspection object 19, it is necessary to create the scanning path information 50 in advance.
  • the scanning path information 50 is information on a path along which the integrated ultrasonic transducer 2 fixed to the lower end of the YZ axis driving unit 3d of the scanner mechanism moves when scanning the inspection object 19.
  • the scanning path information 50 is represented by arrows shown in the X-axis direction and the Y-axis direction shown on the inspection object 19 in FIG.
  • the scanning path information 50 scans a necessary length in the X-axis direction orthogonal to the opening width of the ultrasonic transducer, and then shifts in the Y-axis direction by the opening width of the ultrasonic transducer to reverse the X-axis direction. There is information about the path combined with the movement to scan the required length towards.
  • the scanner mechanism driving device 8 drives the X-axis driving unit 3c and the YZ-axis driving unit 3d based on the scanning path information 50. Thereby, the integrated ultrasonic transducer 2 automatically moves and scans on the inspection object 19.
  • the scanning path information 50 is a method of creating by computer software based on the shape design data of the object 19 to be inspected, or by teaching the passing points on the scanning path one by one by actually driving the scanner mechanism 3. It is generated by using a registration method.
  • this scanning path information 50 the normal line of the inspection area of the inspection object 19 and the opening surface of the ultrasonic transducer 17 are orthogonal to each other so that the ultrasonic wave can be incident on the inspection area of the inspection object 19 under almost constant conditions.
  • the distance between the opening surface of the ultrasonic transducer 17 and the surface of the inspection object 19 is generated to be constant. However, there are factors that cause various errors such as an error generated in the generation process of the scanning path information 50 and an installation error of the inspection object 19 to the scanner mechanism 3.
  • the ultrasonic inspection apparatus 1 is an integrated type in which the distance control actuator 15, the tilt control actuator 16, and the distance measurement sensors 18a and 18b are integrally configured.
  • An ultrasonic flaw detection inspection is performed using the ultrasonic transducer 2 while performing error correction processing.
  • the integrated ultrasonic transducer 2 detects an error with respect to an ideal scanning position.
  • the integrated ultrasonic transducer 2 performs self-adjustment by absorbing this error internally in real time using the distance control actuator 15 and the tilt control actuator 16, and performs high-accuracy ultrasonic flaw inspection. Can do.
  • the ultrasonic flaw inspection using the ultrasonic inspection apparatus 1 has various shapes such as a flat plate, a cylinder, and a sphere, and can be applied to an inspection object 19 made of a material such as a metal material or a resin material. Moreover, you may apply not only to what is comprised from a single material but the multilayered structure which piled up and welded two or more structures.
  • the inspection object 19 is placed on the scanning stage 3 a of the scanner mechanism 3.
  • the ultrasonic flaw detection inspection is started based on an inspection start instruction input from the input device 10, for example.
  • step S1 the scanner mechanism driving device 3 performs the X-axis driving unit 3c and YZ-axis driving unit 3d of the scanner mechanism 3 on the inspection object 19 installed on the scanning table 3a based on the scanning path information 50 generated in advance. Drive with.
  • step S2 the distance measuring sensors 18a and 18b measure the distances la and lb from the inspection object 19 using measuring means such as optical measurement using laser light or ultrasonic measurement.
  • the measurement result is output to the distance / tilt calculation unit 21 of the integrated ultrasonic transducer control device 6.
  • step S3 the distance / tilt calculation unit 21 of the integrated ultrasonic transducer control device 6 uses the [Equation 1] of the opening surface of the ultrasonic transducer 17 based on the distances la and lb measured in the distance measurement step S2. A distance lc between the center portion and the inspection object 19 is calculated.
  • the distance / inclination calculation unit 21 calculates the inclination ⁇ of the opening surface of the ultrasonic transducer 17 with respect to the inspection object 19 using [Equation 2] based on the calculated distance lc.
  • step S4 the control amount calculation unit 22 of the integrated ultrasonic transducer control device 6 performs the distance control actuator 15 and the inclination control actuator 16 based on the distance ls and the inclination ⁇ calculated in the distance / inclination calculation step S3. Calculate the control amount.
  • the calculated control amount is output to the distance control actuator 15 and the tilt control actuator 16.
  • the control amounts of the distance control actuator 15 and the tilt control actuator 16 are such that the normal of the inspection region of the inspection object 19 and the opening surface of the ultrasonic transducer 17 are orthogonal to each other, and the opening surface of the ultrasonic transducer 17 and the inspection object. It is determined so that the ultrasonic transducer 17 is arranged at an ideal scanning position where a predetermined distance from the 19 inspection regions is present.
  • step S5 the distance control actuator 15 and the tilt control actuator 16 move or rotate based on the control amount calculated in the control amount calculation step S4. Thereby, the ultrasonic transducer 17 is arranged at an ideal scanning position.
  • step S 6 the ultrasonic transducer 17 of the integrated ultrasonic transducer 2 scans the inspection area of the inspection object 19.
  • the ultrasonic transducer 17 moves and scans on the surface of the inspection object 19 based on the control performed by the flaw detection processing device 7 of the apparatus main body 5.
  • the flaw detection processing device 7 performs a series of processes such as amplification, A / D conversion, visualization, and the like using the reflected echo obtained by scanning as an electric echo signal, and generates flaw detection image information.
  • the generated flaw detection image information is guided to the display device 9 and then imaged, and a two-dimensional or three-dimensional flaw detection image is displayed. This completes the ultrasonic flaw detection inspection.
  • the scanner mechanism 3 is driven based on the scanning path information 50 generated in advance as described above, and the integrated ultrasonic transducer 2 is moved.
  • the scanner mechanism 3 is driven based on the error detected using the distance control actuator 15 and the tilt control actuator 16 to move the ultrasonic transducer 17 to an ideal scanning position.
  • scanning path information error correction processing is performed at the start of ultrasonic flaw detection and at regular intervals in ultrasonic flaw inspection, thereby reducing the work time of ultrasonic flaw detection and improving work efficiency. You can also.
  • an ideal scanning position and an actual scanning position are provided by providing the distance measuring sensors 18 a and 18 b, the distance controlling actuator 15, and the tilt controlling actuator 16 in the integrated ultrasonic transducer 2. Error can be detected. As a result, even if there is an error in the scanning path of the scanner mechanism 3 that is driven based on the scanning path information 50 generated in advance during the ultrasonic flaw detection, this error is absorbed in real time in an autonomous manner. By adjusting to, high-accuracy ultrasonic flaw detection inspection can be performed.
  • the ultrasonic inspection apparatus 1 detects an error between the ideal scanning position and the scanning position based on the scanning path information 50 and absorbs the error inside the distance control actuator 15 and the tilt control actuator 16. Can do. As a result, the ultrasonic inspection apparatus 1 can perform more precise error correction, the normal line of the inspection region of the inspection object 19 and the opening surface of the ultrasonic transducer 17 are orthogonal, and the ultrasonic transducer 17 The distance between the center of the opening surface and the surface of the inspection object 19 can be kept constant. Therefore, a highly accurate ultrasonic flaw detection inspection can be performed.
  • the acoustic propagation medium composed of the shoe member 40 in which the soft shoe 41 is inserted it is possible to improve the followability to the shape change of the inspection area of the inspection object 19 and to prevent the entry of bubbles. it can. For this reason, the performance of ultrasonic flaw detection inspection can be improved.
  • the soft shoe 41 that is rapidly deteriorated can be replaced, the maintainability of the ultrasonic inspection apparatus 1 can be improved.
  • the thickness D1 of the shoe member 40 and the thickness D2 of the soft shoe 41 based on the sound speed ratio between them, multiple echoes from the inspection object 19 are overlapped, and the inspectable depth is optimized. Can do.
  • the inspection object 19 configured in a flat plate has been described, but the present invention is not limited to this, and other shapes such as a spherical shape and a cylindrical shape may be used.
  • the scanner mechanism 3 may be provided with a rotating portion that rotates around the rotation axes in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • a control actuator for driving in another direction may be further provided.
  • the integrated ultrasonic transducer 2 may be configured to include the integrated ultrasonic transducer control device 6 or may be configured to be provided outside.
  • the present invention is not limited to this, and an acoustic propagation medium composed of the shoe member 40 alone may be used.
  • the distance control actuator 15 and the tilt control actuator 16 the distance lc between the central portion of the opening surface of the ultrasonic transducer 17 and the inspection object 19 and the inclination ⁇ of the opening surface of the ultrasonic transducer 17 with respect to the inspection object 19. Error correction processing was performed. However, an error correction process may be performed on one of the distance lc and the inclination ⁇ according to the shape of the inspection object 19. For example, when the inspection object 19 is a flat plate, a highly accurate ultrasonic flaw inspection can be realized by providing only the distance control actuator 15 and correcting only the distance. In addition, with such a configuration, the configuration of the ultrasonic inspection apparatus can be simplified.
  • the arrangement of the transducer groups of the matrix array type ultrasonic probe 2 is not limited to the matrix shape, but may be a linear shape, a honeycomb shape, a concentric circle shape, or a triangular shape.
  • the array of transducer groups may be a three-dimensional array.
  • the piezoelectric transducer 36 may be arranged in an array in a line or in a cross line (array) instead of arranging the piezoelectric vibrators 35 in a matrix form to constitute an array sensor.
  • the distance measurement sensors 18a and 18b are provided as a pair at both ends in the width direction of the ultrasonic transducer 17, but the distance measurement sensors 18a and 18b are close to the ultrasonic transducer 17. It may be arranged.
  • the distance measurement sensors 18a and 18b may be a set of two or more, such as a set of three.
  • FIG. 6 is a schematic configuration diagram of an integrated ultrasonic transducer 2A and a flaw detection processing apparatus 7A showing a second embodiment of the ultrasonic inspection apparatus according to the present invention.
  • the ultrasonic inspection apparatus is different from the ultrasonic inspection apparatus 1 according to the first embodiment in that the inspection surface of the opening surface of the ultrasonic transducer and the inspection object are inspected based on the flaw detection image information acquired by the flaw detection processing apparatus 7A. This is the point where the calculation for obtaining the distance and inclination with respect to the region is performed.
  • symbol is attached
  • the flaw detection processing device 7A connected to the ultrasonic transducer 17 is provided with a distance / tilt calculation unit 60 in addition to the configuration of the flaw detection processing device 7 shown in FIG.
  • the distance / inclination calculation unit 60 performs a series of imaging calculation processes such as amplification, A / D conversion, and visualization on the electric echo signal obtained from the reflected echo U detected by the signal detection circuit 32 in the signal processing unit 33.
  • a distance lc between the center of the opening surface of the ultrasonic transducer 17 and the inspection area of the inspection object 19 is calculated from the detected flaw detection image information.
  • the distance / inclination calculation unit 60 calculates the inclination ⁇ between the opening surface of the ultrasonic transducer 17 and the flaw detection surface of the object 19 to be opposed.
  • the distance lc and the inclination ⁇ between the opening surface of the ultrasonic transducer 17 and the flaw detection surface of the inspection object 19 are errors within a certain range from the scanning path information of the ultrasonic transducer 17 generated in advance, and from the image flaw detection information. It can be calculated when error can be obtained.
  • the flaw detection image information generated by the signal processing unit 33 is two-dimensional or three-dimensional image information.
  • the flaw detection image information includes distance information from the inspection region of the inspection object 19 obtained from each piezoelectric conversion unit 36 of the ultrasonic transducer 17, and the ultrasonic transducer 17 and the inspection object 19 are obtained from these distance information. And the distance lc and the inclination ⁇ can be obtained.
  • the flaw detection processing device 7A is connected to the integrated ultrasonic transducer control device 6A.
  • the integrated ultrasonic transducer control device 6A outputs the distance lc and the inclination ⁇ between the ultrasonic transducer 17 and the inspection area of the inspection object 19 calculated by the distance / inclination calculation unit 60 of the flaw detection processing apparatus 7A. It has become.
  • the integrated ultrasonic transducer control device 6A calculates the control amounts of the distance control actuator 15 and the tilt control actuator 16 by the control amount calculation unit 22 based on the distance lc and the inclination ⁇ output from the flaw detection processing apparatus 7A. .
  • control amounts of the distance control actuator 15 and the tilt control actuator 16 calculated by the control amount calculation unit 22 are output as control signals to the distance control actuator 15 and the tilt control actuator 16, respectively.
  • the control actuators 15 and 16 are driven based on this control signal.
  • the ultrasonic flaw inspection including the error correction process using the ultrasonic inspection apparatus according to the present embodiment will be described with reference to FIG.
  • the ultrasonic flaw detection inspection by the ultrasonic inspection apparatus is started based on the inspection start instruction input from the input device 10, for example, by placing the inspection object 19 on the scanning stage 3 a of the scanner mechanism 3.
  • step S11 the scanner mechanism driving device 3 uses the X-axis driving unit 3c and the YZ-axis driving unit 3d of the scanner mechanism 3 on the inspection object 19 installed on the scanning table 3a based on the scanning path information 50 generated in advance. Drive with.
  • step S12 the ultrasonic transducer 17 of the integrated ultrasonic transducer 2A scans the inspection area of the inspection object 19.
  • the ultrasonic transducer 17 moves and scans on the surface of the inspection object 19 based on the control performed by the flaw detection processing apparatus 7A of the apparatus body 5.
  • the flaw detection processing device 7A performs a series of processes such as amplification, A / D conversion, visualization, and the like by using the reflected echo obtained by scanning as an electric echo signal, and the signal processing unit 33 generates flaw detection image information.
  • the distance / tilt calculation unit 60 calculates the distance lc between the center of the opening surface of the ultrasonic transducer 17 and the inspection region of the inspection object 19 from the flaw detection image information generated by the signal processing unit 33.
  • the distance / inclination calculation unit 60 calculates an inclination ⁇ between the opening surface of the ultrasonic transducer 17 and the flaw detection surface of the object 19 to be inspected.
  • the distance lc and the inclination ⁇ between the ultrasonic transducer 17 and the inspection area of the inspection object 19 calculated by the distance / inclination calculation unit 60 are output to the integrated ultrasonic transducer control device 6A.
  • step S14 the control amount calculation unit 22 of the integrated ultrasonic transducer control device 6A controls the control amounts of the distance control actuator 15 and the tilt control actuator 16 based on the distance lc and the tilt ⁇ output from the flaw detection processing device 7A. Is calculated.
  • the control amount calculated by the control amount calculation unit 22 is output as a control signal to the distance control actuator 15 and the tilt control actuator 16, respectively.
  • step S15 the distance control actuator 15 and the tilt control actuator 16 are driven based on the control amount calculated by the control amount calculation unit 22. Accordingly, the integrated ultrasonic transducer 2A is arranged at an ideal scanning position.
  • the integrated ultrasonic transducer 2A arranged at an ideal scanning position performs a scanning process similar to the scanning step S12.
  • the ultrasonic inspection apparatus in addition to the effects exhibited by the ultrasonic inspection apparatus in the first embodiment, the distance between the ultrasonic transducer 17 and the flaw detection surface of the inspection object 19 without using the distance measurement sensors 18a and 18b. lc and slope ⁇ can be detected. For this reason, simplification of an apparatus can be achieved and productivity of an ultrasonic inspection apparatus can also be improved.
  • the ultrasonic inspection apparatus in the third embodiment is different from the ultrasonic inspection apparatus in the second embodiment in that the ultrasonic transducer 17B of the integrated ultrasonic transducer 2B is provided on an arc and a corner such as a pipe. This is a point used for ultrasonic flaw detection in which an inspection object 19B having an inner surface and an outer surface of a part is used as an inspection region.
  • FIG. 8 is a schematic configuration diagram of an integrated ultrasonic transducer 2B and a flaw detection processing apparatus 7B showing a third embodiment of the ultrasonic inspection apparatus according to the present invention.
  • symbol is attached
  • the ultrasonic transducer 17B of the integrated ultrasonic transducer 2B includes a piezoelectric conversion unit 36 in which piezoelectric vibrators 35 are arranged in an arc shape.
  • the center of curvature of the arc in which the piezoelectric vibrators 35 are arranged and the center of curvature of the arc on the surface of the corner portion, which is the inspection area of the inspection object 19B are arranged and scanned.
  • the ultrasonic wave irradiated from each piezoelectric vibrator 35 makes the distance between the center of the opening surface of the ultrasonic transducer 17B and the surface of the corner portion of the inspection object 19B constant. Can keep. As a result, an image similar to that obtained when a plane is flawed can be obtained.
  • the flaw detection processing device 7B is provided with a distance / tilt calculation unit 60.
  • the distance / tilt calculation unit 60 calculates the distance and tilt between the ultrasonic transducer 17 and the flaw detection surface of the inspection object 19.
  • the distance and the inclination are detected by a reflection echo which is an amplified electric signal detected by the signal detection circuit 32 in the signal processing unit 33, or a series of imaging calculation processing such as A / D conversion and visualization in the signal processing unit 33. Is performed based on the flaw detection image information generated.
  • the distance / inclination calculation unit 60 calculates the distance and inclination between the ultrasonic transducer 17B and the flaw detection surface of the inspection object 19B from the reflected echo in the error correction processing.
  • FIG. 9 to 11 are obtained from reflection echoes of n piezoelectric vibrators 351, 352,... 35i,..., 35n (hereinafter referred to as piezoelectric vibrators 35) arranged in the piezoelectric converter 36.
  • FIG. It is a figure which shows an example of the distance D of the measured piezoelectric vibrator 35 and the test
  • the horizontal axis indicates the piezoelectric vibrator 35
  • the maximum difference X is a difference in distance between the inspection region of the piezoelectric vibrator 35 and the inspection object 19B located substantially at the center and the inspection region of the piezoelectric vibrators 351 and 35n located at both ends and the inspection object 19B. is there.
  • FIG. 9A shows a case where the distance D between the ultrasonic transducer 17B and the inspection area of the inspection object 19B is appropriate. That is, a case is shown in which the center of curvature of the arc in which the piezoelectric vibrators 35 are arranged and the center of curvature of the arc on the surface of the corner portion, which is the inspection area of the inspection object 19B, substantially coincide.
  • the piezoelectric vibrator 35 and the inspection area of the inspection object 19B are separated.
  • the distance D is constant and the maximum difference X is zero.
  • FIG. 10A shows a case where the distance D between the ultrasonic transducer 17B and the inspection area of the inspection object 19B is short.
  • the distance D to the region is smaller than the appropriate position, and the maximum difference X is negative.
  • FIG. 11A shows a case where the distance D between the ultrasonic transducer 17B and the inspection area of the inspection object 19B is long.
  • the distance D between the ultrasonic transducer 17B and the inspection area of the inspection object 19B is long, as shown in FIG. 11B, the flaw detection of the piezoelectric vibrator 35i located at the center and the inspection object 19B.
  • the distance D to the surface is larger than the appropriate position, and the maximum difference X is positive.
  • the ultrasonic transducer 17B is obtained from an appropriate reflected echo as shown in FIG. 9B even when the ultrasonic transducer 17B does not have an appropriate inclination with respect to the inspection area of the inspection object 19. Since a diagram showing the distance D between the inspection area of the piezoelectric vibrator 35 and the inspection object 19B cannot be obtained, the inclination can be detected from here.
  • the distance / inclination calculation unit 60 calculates information on the distance and inclination between the piezoelectric vibrator 35 and the inspection area of the inspection object 19B detected from the reflection echo of the piezoelectric vibrator 35 in this way, and performs an integrated ultrasonic transducer. Output to the control device 6B.
  • the integrated ultrasonic transducer control device 6B calculates the control amounts of the distance control actuator 15 and the tilt control actuator 16 by the control amount calculation unit 22 based on the information regarding the distance and the tilt output from the flaw detection processing device 7B. .
  • control amounts of the distance control actuator 15 and the tilt control actuator 16 calculated by the control amount calculation unit 22 are output as control signals to the distance control actuator 15 and the tilt control actuator 16, respectively.
  • the control actuators 15 and 16 are driven based on this control signal.
  • the ultrasonic transducer 17B is provided in an arc shape, so that the inspection area of the inspection object 19B is a corner. Even in this case, an error from an ideal scanning position can be detected. Further, by absorbing the error inside the integrated ultrasonic transducer 2B, the ultrasonic wave can be reliably incident on the surface of the inspection object 19B at a fixed angle, and the opening surface center of the ultrasonic transducer 17 and the inspection object can be inspected. The distance from the surface of the object 19 can be kept constant. For this reason, in the ultrasonic inspection apparatus in this embodiment, a highly accurate ultrasonic flaw detection inspection can be performed.
  • the inside of the corner portion of the inspection object 19 has been described as the inspection area.
  • the ultrasonic inspection can be similarly performed on the outside of the corner portion of the inspection object 19.
  • the distance between the piezoelectric vibrator 35 and the flaw detection surface of the inspection object 19 was obtained from the reflection echo of the piezoelectric vibrator 35 of the ultrasonic transducer 17B.
  • a series of A / D conversion, visualization, and the like are performed in the signal processing unit 33. You may obtain
  • the ultrasonic inspection apparatus in the fourth embodiment is different from the ultrasonic inspection apparatus in the third embodiment in that a corner copying mechanism is provided in the scanner mechanism.
  • FIG. 12 is a schematic configuration diagram of a part of the corner copying mechanism 70 and the integrated ultrasonic transducer 2C in the fourth embodiment of the ultrasonic inspection apparatus according to the present invention.
  • symbol is attached
  • a corner copying mechanism 70 is provided in the scanner mechanism 3.
  • the ultrasonic flaw detector shown in the third embodiment detects an error between the scanning position based on the scanning path information of the ultrasonic transducer 17B and the ideal scanning position, and the error is detected inside the integrated ultrasonic transducer 2B. Absorbed.
  • the corner copying mechanism 70 provided in the ultrasonic flaw detector according to the present embodiment is provided to maintain the ultrasonic transducer 17C after the error correction processing held at an ideal scanning position. In other words, at the time of ultrasonic flaw inspection, it is provided to maintain the center of curvature of the arc in which the piezoelectric vibrators 35 are arranged and the center of curvature of the arc on the surface of the corner portion serving as the inspection area of the inspection object 19C at substantially the same position. It is done.
  • the corner copying mechanism 70 includes a corner copying section 71, a fulcrum position adjusting section 72, and a roller 73.
  • the fulcrum position adjustment unit 72 is provided in the scanner mechanism 3 (not shown), for example.
  • a set of two rollers 73 is provided at one end of the fulcrum position adjustment unit 72.
  • the two rollers 73 are fixed so as to sandwich the front and back surfaces of the flat portion of the inspection object 19C.
  • the roller 73 holds the flat part of the inspection object 19 ⁇ / b> C and the length direction of the fulcrum position adjustment part 72 perpendicularly.
  • a fulcrum 74 is provided at the other end of the fulcrum position adjustment unit 72.
  • the fulcrum position adjustment unit 72 adjusts and holds the inspection object 19C as appropriate so that the fulcrum 74 is positioned on the central axis C passing through the center of curvature of the corner portion of the inspection object 19C.
  • the corner copying portion 71 that rotates around the fulcrum 74 is connected to the fulcrum position adjusting unit 72.
  • the corner copying section 71 holds an integrated ultrasonic transducer 2C including the distance control actuator 15 and the ultrasonic transducer 17C with the fulcrum 74 as an axis.
  • a roller 75 is provided at the lower end of the corner copying portion 71.
  • the roller 75 rotates around an axis perpendicular to the longitudinal direction of the corner copying portion 71 (an axis extending in a direction perpendicular to the drawing).
  • the roller 75 is configured to be rotatable in contact with the surface (corner portion) of the inspection object 19C.
  • the integrated ultrasonic transducer 2 ⁇ / b> C and the roller 75 are positioned on the central axis C as the fulcrum 74 is adjusted by the fulcrum position adjusting unit 72 via the corner copying unit 71.
  • the corner copying mechanism 70 configured in this manner maintains the integrated ultrasonic transducer 2C in an appropriate arrangement by bringing the roller 75 into contact with the corner portion which is the inspection area of the inspection object 19C. For this reason, the ultrasonic wave irradiated from each piezoelectric vibrator 35 of the ultrasonic transducer 17C is orthogonal to the corner portion, which is the inspection area of the inspection object 19C, and the irradiation distance from each piezoelectric vibrator 35 to the corner surface. Can be made substantially the same.
  • the scanning position of the ultrasonic transducer 17C with respect to the inspection object 19C is orthogonal to the surface of the corner portion, and each piezoelectric vibrator. It is possible to maintain the distance from 35 to the corner portion surface at an appropriate position where the distances are all the same.
  • the inside of the corner portion of the inspection object 19C has been described as the inspection region.
  • the ultrasonic flaw inspection can be similarly performed on the outside of the corner portion of the inspection object 19C.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 理想的な走査位置に対する種々の誤差を検出し、この誤差を自立的に調整することにより高精度な超音波探傷検査を行うことができる超音波検査装置を提供する。本発明に係る超音波検査装置は、超音波トランスデューサと、一体型超音波トランスデューサ制御部と、距離制御用アクチュエータと、傾斜制御用アクチュエータと、距離計測用センサが一体に構成された一体型超音波トランスデューサを備える。この一体型超音波トランスデューサは、あらかじめ生成された走査経路情報に基づく走査位置と理想的な走査位置との誤差を算出し、この誤差に基づいて超音波トランスデューサの開口面と被検査物の検査領域との距離および傾きを自立的に制御し誤差補正処理を行う。

Description

超音波検査装置
 本発明は、超音波検査装置に係り、特に超音波探傷検査時において高精度な走査を行う超音波検査装置に関する。
 構造物や部品内の欠陥、ボイドや接合部の剥がれ等の状態の検査を行うため、これらの状態の可視化が可能な超音波検査装置が用いられる。この超音波検査装置は、マトリクス状やリニア状などのアレイ型に形成された圧電変換部から構成される超音波トランスデューサを用いて被検査物の走査を行い、欠陥などの検査を行う。
 超音波検査装置は、超音波トランスデューサを駆動させるスキャナ機構を備えている。このスキャナ機構は、X軸、Y軸、Z軸、およびA軸(X軸方向の回転軸)、B軸(Y軸方向の回転軸)、C軸(Z軸方向の回転軸)などの所要の軸を備えた直交ロボットや、アーム機構を基本に構成された産業用ロボットなどで構成される。スキャナ機構は制御機構などの制御に基づき駆動することで、スキャナ機構に取り付けられた超音波トランスデューサが被検査物表面上の所定範囲を自動的に探傷する。
 超音波トランスデューサによって自動的に所定範囲を探傷するためには、スキャナ機構の走査経路情報を事前に生成しておく必要がある。走査経路情報は、被検査物の表面形状に基づいて、例えば超音波トランスデューサの開口幅を1回の走査幅として生成される。
 走査経路情報の生成方法として、被検査物の形状設計データに基づいて、計算機ソフトウエアを用いて事前に生成する方法がある。この方法は、比較的容易に走査経路情報を作成することができるが、作成された走査経路情報は理想的な形状設計データに基づく走査経路情報であるため、被検査物の製造時における工作精度に起因して、実際の被検査物の形状と形状設計データ上の被検査物との不一致が発生する可能性がある。また、超音波探傷検査時においては、スキャナ機構内の所定位置に被検査物を設置して行うが、被検査物が複雑な形状である場合、高い精度の再現性で所定位置に設置することは困難であった。
 また、他の走査経路情報の生成方法として、被検査物の表面上でスキャナ機構によって超音波トランデューサを駆動させることにより、実際の走査経路上の通過点を一点ごと教示・登録し、このスキャナ機構の通過点を走査経路としてつなげたものを走査経路情報として生成する方法がある。この方法は、スキャナ機構を走査経路上の通過点ごとに駆動させることで、スキャナ機構の走査経路を教示・登録するため、膨大な時間および作業が必要であった。また、特にスキャナ機構に設けられた駆動部の構成が複雑である場合には、非常に複雑な手順および操作を要する方法であった。
 ここで、高精度な超音波探傷検査を行うためには、超音波トランスデューサが発信する超音波を被検査物の検査領域に一定角度で入射させる必要がある。また、開口合成法で探傷を行う超音波検査装置については、超音波トランスデューサと被検査物の表面との距離を一定に保つことが必要である。
 そこで、被検査物と超音波トランスデューサとを一定距離に保持しつつ、被検査物に対し一定角度で超音波を入射することができる超音波探傷装置が提案されている(例えば特開昭63-309852号公報参照)。
 この超音波探傷装置は、スキャナ機構の走査台に対し略垂直方向の駆動軸の下端に距離センサを設け、被検査物の上部で距離センサをスキャンさせる。スキャンにより得られた被検査物と距離センサとの距離の測定データに基づき、スキャナ機構の座標データである被検査物の形状データを求め、メモリに記憶する。また走査時においては被検査物の形状データの各点上を通過点とした走査経路情報を作成し、駆動機構をオープンループ制御するものであった。
 また、超音波探傷検査中に生じる理想的な走査経路との誤差について考慮した超音波探傷装置についても提案されている。例えば探触子と一体的に結合した距離センサを用いて、形状測定を行う形状測定動作と、形状測定動作をしながら探傷を行う探傷動作とを行うことにより、探傷精度を向上させる超音波探傷装置が提案されている(例えば特開平3-77057号公報参照)。
 さらに、スキャナ機構に超音波トランスデューサを搭載し、超音波トランスデューサと被検査物の探傷面との距離を計測して、その結果をスキャナ機構の制御にフィードバックすることにより超音波トランスデューサを探傷上最適な位置に制御することができる超音波探傷システムが提案されている(例えば特開2005-300363号公報参照)。
 従来のスキャナ機構は、あらかじめ生成された理想的な走査経路情報に基づき超音波トランスデューサを駆動させる駆動機構と、超音波探傷検査中に生じる誤差に基づき超音波トランスデューサの走査位置が理想的な走査経路上に位置するように誤差の調整を行う調整機構として用いられていた。
 しかし、スキャナ機構を上述した駆動機構および調整機構として用いると、スキャナ機構に対する制御が複雑となり、走査位置制御の精度が低下する可能性もある。このため、スキャナ機構に対する高精度な制御を維持しつつ高精度な超音波探傷検査を行うためには、走査時間や手間の増大が不可避であるという問題点があった。
発明の開示
 本発明は、このような事情を考慮してなされたもので、超音波探傷検査中において、あらかじめ作成された走査経路情報に含まれる誤差や超音波探傷検査中に生じる誤差などの理想的な走査位置に対する種々の誤差を検出し、この誤差を自律的に調整することにより高精度な超音波探傷検査を行う超音波検査装置を提供することを目的とする。
 本発明に係る超音波検査装置は、上述した課題を解決するために、複数の圧電振動子が配列され、被検査物の検査領域に対し超音波を発振し、その反射エコーを受信する超音波トランスデューサと、前記超音波トランスデューサに対し超音波を発振させ、かつ前記超音波トランスデューサが受信した前記反射エコーの電気エコー信号を検出し演算処理して前記被検査物の検査領域の探傷画像情報を生成する探傷処理装置と、あらかじめ生成された走査経路情報に基づき前記被検査物上で前記超音波トランスデューサを駆動するスキャナ機構と、前記超音波トランスデューサの開口面と前記被検査物の検査領域との距離および傾きのうち少なくとも一方を求める距離・傾き演算部と、前記距離・傾き演算部で求められた前記距離および傾きのうち少なくとも一方に基づき、前記走査経路情報に基づく走査位置と、前記被検査物の検査領域の法線と前記超音波トランスデューサの開口面とが直交しかつ前記超音波トランスデューサと前記被検査物の検査領域とが所定の距離である所定の走査位置との誤差を算出し、この誤差に基づいて前記超音波トランスデューサの開口面と前記被検査物の検査領域との距離および傾きのうち少なくとも一方を前記所定の走査位置に補正するための制御信号を生成する制御部と、前記制御部で生成された前記制御信号に基づき、前記超音波トランスデューサを前記所定の走査位置に駆動する駆動機構とを備え、少なくとも前記超音波トランスデューサと前記駆動機構とは、一体に構成された一体型超音波トランスデューサとして構成されたことを備えたことを特徴とする。
 本発明に係る超音波検査装置は、超音波探傷検査中において理想的な走査位置に対する種々の誤差を検出し、この誤差を自律的に調整することにより高精度な超音波探傷検査を行うことができる。
本発明に係る超音波検査装置の第1実施形態を示す概略的な全体構成図である。 超音波検査装置に設けられる一体型超音波トランスデューサを説明する構成図である。 超音波トランスデューサおよび探傷処理装置を説明する機能的な構成図である。 第1実施形態に示されたスキャナ機構を説明する構成図である。 誤差補正処理を含む超音波探傷検査の流れを説明するフローチャートである。 本発明に係る超音波検査装置の第2実施形態の一体型超音波トランスデューサおよび探傷処理装置の概略的な構成図である。 第2実施形態における誤差補正処理を含む超音波探傷検査の流れを説明するフローチャートである。 本発明に係る超音波検査装置の第3実施形態の一体型超音波トランスデューサおよび探傷処理装置の概略的な構成図である。 (A)は超音波トランスデューサと被検査物が適切な走査位置に保持された場合を示す図、(B)は圧電振動子の反射エコーから得られた各圧電振動子と被検査物の検査領域との距離Dを示す図である。 (A)は超音波トランスデューサと被検査物が近い位置で保持された場合を示す図、(B)は圧電振動子の反射エコーから得られた各圧電振動子と被検査物の検査領域との距離Dを示す図である。 (A)は超音波トランスデューサと被検査物が遠い位置で保持された場合を示す図、(B)は圧電振動子の反射エコーから得られた各圧電振動子と被検査物の検査領域との距離Dを示す図である。 本発明に係る超音波検査装置の第4実施形態のコーナ倣い機構の概略的な構成図である。
 本発明に係る超音波検査装置の実施形態を添付図面に基づいて説明する。
 この超音波検査装置は、マトリクス状やリニア状などのアレイ型に形成された圧電変換部から構成される超音波トランスデューサが被検査物の表面を走査することにより、被検査物の内部欠陥やボイド、剥離を開口合成法を用いて可視化するものである。
[第1の実施形態]
 図1は、本発明に係る超音波検査装置1の第1実施形態を示す概略的な全体構成図である。
 超音波検査装置1は、アクチュエータ一体型超音波トランスデューサ(以下、一体型超音波トランスデューサという。)2、スキャナ機構3、および一体型超音波トランスデューサ制御装置6と探傷処理装置7とスキャナ機構駆動装置8とから構成される装置本体5から構成される。
 また、装置本体5には超音波探傷検査により得られた2次元または3次元探傷画像などを表示する表示装置9、および各種指示の入力を受け付ける入力装置10が構成される。表示装置9は、表示部、演算部、記憶部等で構成されており液晶ディスプレイ、LED(発光ダイオード)、EL(Electro Luminescence)、VFD(蛍光表示管)、PDP(プラズマディスプレイパネル)などのフラットパネルディスプレイを使用することができる。また、入力装置10は、キーボードやマウスなどで構成される。
 図2は、超音波検査装置1に設けられる一体型超音波トランスデューサ2を説明する構成図である。
 一体型超音波トランスデューサ2は、後述するスキャナ機構3のYZ駆動軸3dに固定され、距離制御用アクチュエータ15、傾斜制御用アクチュエータ16および超音波トランスデューサ17が順次接続される。また、超音波トランスデューサ17の幅方向の両端には、距離計測用センサ18a、18bが設けられる。距離制御用アクチュエータ15、傾斜制御用アクチュエータ16および距離計測用センサ18a、18bには、これらを制御する一体型超音波トランスデューサ制御装置6が接続される。
 超音波トランスデューサ17は、一体型超音波トランスデューサ制御装置6から送信される制御信号に基づく距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の駆動とスキャナ機構3の駆動とにより、被検査物19上を走査する。
 距離計測用センサ18a、18bは2個一組で設けられる。距離計測用センサ18a、18bは、レーザ光などを用いた光学計測や超音波計測などの計測手段を用いて被検査物19と超音波トランスデューサ17の幅方向の両端部との距離laおよびlbを計測する。距離計測用センサ18a、18bから得られた計測結果は、一体型超音波トランスデューサ制御装置6に出力される。なお、距離計測用センサ18a、18b間の距離lsは既知である一定の距離とする。
 傾斜制御用アクチュエータ16は、一体型超音波トランスデューサ制御装置6から送信される制御信号に基づき、図面に対し垂直方向の軸上を矢印の方向に回動する。傾斜制御用アクチュエータ16は、被検査物19に対する超音波トランスデューサ17の傾きを制御する。また、距離制御用アクチュエータ15は、一体型超音波トランスデューサ制御装置6から送信される制御信号に基づき図面に対し上下方向の軸上を矢印の方向に駆動する。距離制御用アクチュエータ15は、被検査物19に対する超音波トランスデューサ17の距離を制御する。
 スキャナ機構3は一体型超音波トランスデューサ2をあらかじめ生成された走査経路情報に基づき被検査物19上を駆動させる。これに対して、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16は一体型超音波トランスデューサ制御装置6から送信される制御信号に基づき走査経路の誤差の調整を行うために、超音波トランスデューサ17を駆動させる。
 一体型超音波トランスデューサ制御装置6は、距離・傾き演算部21および制御量演算部22から構成される。
 距離・傾き演算部21は、距離計測用センサ18a、18bから出力された距離laおよびlbに基づき、超音波トランスデューサ17開口面の中心部と被検査物19との距離lcを算出する。距離lcの算出は、例えば以下の式で行う。  
  [数1]
  lc=(la+lb)/2
 また、距離・傾き演算部21は、[数1]に基づき算出された超音波トランスデューサ17開口面の中心部と被検査物19との距離lcに基づき、超音波トランスデューサ17開口面の被検査物19に対する傾きθを算出する。傾きの算出は、例えば以下の式で行う。  
  [数2]
  θ=tan-1((la-lb)/ls)
 なお、距離lcおよび傾きθは、[数1]および[数2]以外の算出方法で算出してもよい。
 また、制御量演算部22は、算出された超音波トランスデューサ17開口面の中心部と被検査物19との距離lc、および超音波トランスデューサ17開口面の被検査物19に対する傾きθに基づき、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量を算出する。距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量は、被検査物19の検査領域の法線と超音波トランスデューサ17の開口面とが直交し、かつ超音波トランスデューサ17と被検査物19の検査領域とが所定の距離となる理想的な走査位置に超音波トランスデューサ17が配置されるように決定される。一体型超音波トランスデューサ制御装置6は、このように取得された制御量を距離制御用アクチュエータ15および傾斜制御用アクチュエータ16に出力する。
 図3は、一体型超音波トランスデューサ2を構成する超音波トランスデューサ17および超音波トランスデューサ17に接続される探傷処理装置7を説明する概略的な構成図である。
 探傷処理装置7は、駆動信号を発生する信号発生部30、駆動素子選択部31、信号検出回路32、信号処理部33、制御回路34を備える。
 信号発生部30は、超音波トランスデューサ17を駆動させる駆動信号を発生する。
 駆動素子選択部31は、信号発生部30からの駆動信号を選択し、超音波トランスデューサ17の圧電振動子(圧電変換素子)35を選択的に駆動させる。
 信号検出回路32は、超音波トランスデューサ17から発振される超音波が被検査物19の検査領域に照射され、この検査領域からの反射エコーUを電気エコー信号として超音波トランスデューサ17を介して検出する。
 信号処理部33は、信号検出回路32で検出された反射エコーUの電気エコー信号を増幅、A/D変換、可視化などの一連の画像化演算処理を行い、探傷画像情報を生成する。
 表示装置9は、表示部、演算部、記憶部等で構成されており、信号処理部33で処理された探傷画像情報をもとに必要に応じた2次元または3次元探傷画像を生成して表示する。
 制御回路34は、信号発生部30と駆動素子選択部31と信号検出回路32と信号処理部33と表示装置9と入力装置10との動作を制御し、超音波の発信、受信、画像化、表示等の一連の動作を制御する。
 入力装置10は、制御回路34に検査の開始、終了、画像切り替え等の指示入力、あるいは検査条件の設定入力を行い超音波検査装置1の操作を実行させる。
 つぎに、超音波トランスデューサ17について説明する。
 超音波トランスデューサ17は、圧電変換素子としての多数の圧電振動子35をm行n列のマトリクス状に整列配置された圧電変換部36を有する。この圧電変換部36はマトリクスセンサである超音波センサを構成している。
 超音波トランスデューサ17の各圧電振動子35には、信号発生部30で発生した駆動信号が駆動素子選択部31により選択されて加えられる。駆動素子選択部31の選択により各圧電振動子35の駆動順序が1個ずつあるいは複数個ずつ決定され、各圧電振動子35は所要の駆動タイミングで駆動されて超音波を発振させる。
 また、各圧電振動子35から発振された超音波は、被検査物19の検査領域に照射され、検査領域の密度的境界層から一部が反射して反射エコーUとなる。この反射エコーUは、超音波センサである超音波トランスデューサ17(マトリクスセンサ)で受信される。
 超音波トランスデューサ17は超音波センサ面である発受信面側、具体的には、被検査物19側には固体の音響伝播媒体であるシュー部材40が密着される。シュー部材40は、シュー部材40の被検査物19との接触面が例えば平板状にくり抜かれた中空部であるソフトシュー挿入部40aを有している。シュー部材40のソフトシュー挿入部40aには、シリコンゴムなどの比較的低減衰のゴムからなるソフトシュー41がはめ込まれる。
 ソフトシュー41は、シュー部材40と比較し軟性を有する部材から構成されるため、被検査物19の接触面の形状に応じて変形しやすい。また、ソフトシュー41は、ソフトシュー挿入部とほぼ同形状を有する。このため、ソフトシュー41はシュー部材40の中空部から一部飛び出し可能なように密着固定される。また、ソフトシュー41はシュー部材40に比べ劣化が早いため、交換が可能なように着脱自在に構成される。
 また、シュー部材40の厚さD1とソフトシュー41の厚さD2は、これらの音速比に基づき決定される。具体的には、シュー部材40の厚さD1とソフトシュー41の厚さD2との比が、これらの音速比となるような値に決定する。この結果、被検査物19から得られる多重エコーが重なり、検査可能な深さを最適化することができる。
 シュー部材40と、被検査物19およびソフトシュー41との接触面には超音波の音響的整合をとるため揮発性の低いゲル状の液体カップラント42が設けられる。シュー部材40は、液体カップラント42を介して被検査物19との接触面に密着固定される。ソフトシュー41は、ソフトシュー挿入部40aに液体カップラント42を介して着脱可能に装着される。
 超音波トランスデューサ17の各圧電振動子35から順次発振された超音波は、音響伝播媒体としてのシュー部材40、液体カップラント42、ソフトシュー41および液体カップラント42を順次経て被検査物19の検査領域内部に入射され、検査領域の各境界層で反射する。
 被検査物19の表面、境界面、底面、内部欠陥43等の各境界層で反射された超音波の反射エコーUは、被検査物19から液体カップラント42、ソフトシュー41、液体カップラント42およびシュー部材40を順次経て、超音波トランスデューサ17の各圧電振動子35に時間差をもってそれぞれ受信される。反射エコーUは、各圧電振動子35を振動させて電気信号(電気エコー信号)に変換される。この電気エコー信号は、続いて信号ケーブル45を介して信号検出回路32に入力されて圧電振動子35毎に検出される。
 信号検出回路32は信号ケーブル45を介して超音波トランスデューサ16の各圧電振動子35に整列状態で接続される。圧電変換部36の各圧電振動子35で発生する電気エコー信号は、信号ケーブル45を介して信号検出回路32に導かれる。また、この信号ケーブル45を利用して信号発生部30からの駆動信号が駆動素子選択部31を介して圧電変換部36の各圧電振動子35に導かれる。
 この超音波検査装置1の探傷処理装置7の作用について説明する。
 超音波トランスデューサ17の各圧電振動子35のうち、m行n列目の圧電振動子35に駆動信号が加えられると、この圧電振動子35が作動して圧電体としての超音波が発生し、この超音波を発振させる。発振された超音波はシュー部材40、ソフトシュー41および液体カップラント42を経て被検査物19の検査領域に照射される。このとき超音波は、一定角度および一定距離を保って被検査物19の検査領域に照射される。
 被検査物19の検査領域に照射された超音波は、検査領域の密度的境界層から一部が反射して反射エコーUとなる。この反射エコーUは、液体カップラント42、ソフトシュー41およびシュー部材40を経て超音波トランスデューサ17に戻され、各圧電振動子35に時間差を持ってそれぞれ受信される。各圧電振動子35による圧電変換により、反射エコーUは電気エコー信号となって信号検出回路32に信号ケーブル45を介して送られ、検出される。
 信号検出回路32で検出された電気エコー信号のうち、検査に必要な複数の電気エコー信号は、信号処理部33に導かれる。信号処理部33は、導かれた電気エコー信号を増幅、A/D変換、可視化などの一連の処理を行い、探傷画像情報を生成する。生成された探傷画像情報は、表示装置9に導かれ、画像化処理され2次元または3次元探傷画像が表示される。
 図4は、スキャナ機構3を説明する構成図である。
 スキャナ機構3は、被検査物19を設置する走査台3aと、走査台3aの一辺に略垂直に固定される固定部3bと、固定部3b上をX軸方向に駆動するX軸駆動部3cと、Y軸方向およびZ軸方向に駆動するYZ軸駆動部3dとから構成される。また、YZ軸駆動部3dの下端には、図2に示した一体型超音波トランスデューサ2が構成される。スキャナ機構3のX軸駆動部3c、YZ軸駆動部3dは、装置本体5のスキャナ機構駆動装置8から送信された制御信号に基づき、X軸、Y軸およびZ軸方向に駆動する。なお、X軸、Y軸およびZ軸は、互いに直交する軸である。なお、スキャナ機構3は、固定部3bが直接被検査物19に固定されることにより、走査台3aを省略してもよい。
 スキャナ機構3の走査台3aには被検査物19が設置される。一体型超音波トランスデューサ2は、X軸駆動部3c、YZ軸駆動部3dの駆動に応じて、被検査物19の表面上の走査を行う。一体型超音波トランスデューサ2が被検査物19の表面上の走査を行うには、あらかじめ走査経路情報50を作成する必要がある。
 走査経路情報50は、スキャナ機構のYZ軸駆動部3dの下端に固定された一体型超音波トランスデューサ2が被検査物19の走査を行う際に移動する経路に関する情報である。走査経路情報50は、図4における被検査物19上に示されたX軸方向およびY軸方向に示された矢印によって表されたものである。
 走査経路情報50は、超音波トランスデューサの開口幅に直交するX軸方向に向かって必要な長さを走査した後、超音波トランスデューサの開口幅分Y軸方向にシフトして逆向きのX軸方向に向かって必要な長さを走査する動きが組み合わせられた経路に関する情報ある。
 スキャナ機構駆動装置8は、この走査経路情報50に基づきX軸駆動部3cおよびYZ軸駆動部3dを駆動させる。これにより、一体型超音波トランスデューサ2は被検査物19上を自動的に移動し走査する。
 走査経路情報50は、被検査物19の形状設計データに基づいて計算機ソフトウエアにより作成する方法、あるいは実際にスキャナ機構3を駆動させることで走査経路上の通過点の一点一点を教示・登録する方法などを用いて生成される。この走査経路情報50は、被検査物19の検査領域に対し超音波をほぼ一定条件で入射できるように、被検査物19の検査領域の法線と超音波トランスデューサ17の開口面が直交し、かつ超音波トランスデューサ17の開口面と被検査物19の表面との距離が一定となるように生成される。しかし、走査経路情報50の生成過程で生じた誤差や、被検査物19のスキャナ機構3への設置誤差など種々の誤差が発生する要因が存在する。
 本実施形態における超音波検査装置1は、このような種々の誤差に対処するため、距離制御用アクチュエータ15、傾斜制御用アクチュエータ16、および距離計測用センサ18a、18bが一体に構成された一体型超音波トランスデューサ2を用いて、誤差補正処理を行いながら超音波探傷検査を行う。一体型超音波トランスデューサ2は、理想の走査位置に対する誤差を検出する。一体型超音波トランスデューサ2は、この誤差を距離制御用アクチュエータ15、傾斜制御用アクチュエータ16を用いてリアルタイムに内部で吸収することで自立的に調整を行い、高精度な超音波探傷検査を行うことができる。
 図5を用いて本実施形態における超音波検査装置1を用いた誤差補正処理を含む超音波探傷検査について説明する。超音波検査装置1を用いた超音波探傷検査は、平板、円筒、球形などの種々の形状をもち、例えば金属材料や樹脂材料などの材料から構成される被検査物19に適用可能である。また、単一の材料から構成されるもののみならず、二以上の構造物を重ね合わせて溶接した多層構造物に適用してもよい。
 超音波検査装置1による超音波探傷検査は、被検査物19がスキャナ機構3の走査台3aに設置される。超音波探傷検査は、例えば入力装置10から入力された検査開始の指示に基づき開始される。
 ステップS1において、スキャナ機構駆動装置3は、あらかじめ生成された走査経路情報50に基づき、スキャナ機構3のX軸駆動部3cおよびYZ軸駆動部3dを走査台3aに設置された被検査物19上で駆動させる。
 ステップS2において、距離計測用センサ18a、18bは、レーザ光などを用いた光学計測や超音波計測などの計測手段を用いて被検査物19との距離laおよびlbを計測する。計測結果は、一体型超音波トランスデューサ制御装置6の距離・傾き演算部21に出力される。
 ステップS3において、一体型超音波トランスデューサ制御装置6の距離・傾き演算部21は、距離計測ステップS2において計測された距離laおよびlbに基づき、[数1]を用いて超音波トランスデューサ17開口面の中心部と被検査物19との距離lcを演算する。
 また、距離・傾き演算部21は、算出された距離lcに基づき[数2]を用いて超音波トランスデューサ17開口面の被検査物19に対する傾きθを演算する。
 ステップS4において、一体型超音波トランスデューサ制御装置6の制御量演算部22は、距離・傾き演算ステップS3において算出された距離lsおよび傾きθに基づき、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量を演算する。演算された制御量は、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16に出力される。距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量は、被検査物19の検査領域の法線と超音波トランスデューサ17の開口面とが直交し、かつ超音波トランスデューサ17開口面と被検査物19の検査領域とが所定の距離となる理想的な走査位置に超音波トランスデューサ17が配置されるように決定される。
 ステップS5において、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16は、制御量演算ステップS4において演算された制御量に基づき、移動または回動を行う。これにより、超音波トランスデューサ17を理想的な走査位置に配置する。
 ステップS6において、一体型超音波トランスデューサ2の超音波トランスデューサ17は、被検査物19の検査領域の走査を行う。超音波トランスデューサ17は、装置本体5の探傷処理装置7で行われる制御に基づき被検査物19の表面上を移動して走査する。探傷処理装置7は、走査により得られた反射エコーを電気エコー信号として増幅、A/D変換、可視化などの一連の処理を行い、探傷画像情報を生成する。生成された探傷画像情報は、表示装置9に導かれた後画像化処理され、2次元または3次元探傷画像が表示される。以上で超音波探傷検査は終了する。
 なお、距離計測ステップS2から制御ステップS5までの走査経路情報の誤差補正処理は、一体型超音波トランスデューサ2が移動するのと同時にリアルタイムに行われる。
 このようにあらかじめ生成された走査経路情報50に基づきスキャナ機構3を駆動させて、一体型超音波トランスデューサ2を移動させる。かつ距離制御用アクチュエータ15および傾斜制御用アクチュエータ16を用いて検出された誤差に基づきスキャナ機構3を駆動させて、理想的な走査位置に超音波トランスデューサ17を移動させる。これにより、スキャナ機構3に対する複雑な制御を伴うことなく高精度な超音波探傷検査を行うことができる。また、走査経路情報の誤差補正処理を超音波探傷検査の開始時や超音波探傷検査における一定周期で行うことで、超音波探傷検査の作業時間の短縮を図ることができ作業効率を向上させることもできる。
 この超音波検査装置1によれば、一体型超音波トランスデューサ2に距離計測用センサ18a、18bおよび距離制御用アクチュエータ15および傾斜制御用アクチュエータ16を設けることにより理想的な走査位置と現実の走査位置の誤差を検出することができる。この結果、超音波探傷検査中において、あらかじめ生成された走査経路情報50に基づき駆動するスキャナ機構3の走査経路に誤差が存在する場合であっても、この誤差をリアルタイムに内部で吸収し自律的に調整することにより高精度な超音波探傷検査を行うことができる。
 また、超音波検査装置1は、理想的な走査位置と走査経路情報50に基づく走査位置との誤差を検出し、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の内部でその誤差を吸収することができる。この結果、超音波検査装置1は、より精細な誤差補正を行うことが可能であり、被検査物19の検査領域の法線と超音波トランスデューサ17の開口面が直交し、かつ超音波トランスデューサ17の開口面中心と被検査物19の表面との距離を一定に保つことができる。ゆえに、高精度な超音波探傷検査を行うことができる。
 さらに、ソフトシュー41が挿入されたシュー部材40で構成された音響伝播媒体を用いることで、被検査物19の検査領域の形状変化に対する追従性を向上させるとともに、気泡の入り込みを防止することができる。このため、超音波探傷検査の性能の向上を図ることができる。また、劣化が速いソフトシュー41の交換が可能なように構成されるため、超音波検査装置1の保守性の向上を図ることができる。さらに、シュー部材40の厚さD1とソフトシュー41の厚さD2を両者の音速比に基づき決定することで、被検査物19からの多重エコーが重なり、検査可能な深さを最適化することができる。
 なお、被検査物19の一例として、平板に構成された被検査物19を適用して説明したが、これに限らず球形や円筒形状など他の形状であってもよい。
 また、スキャナ機構3にはX軸方向、Y軸方向およびZ軸方向の回転軸周りに回動する回動部をそれぞれ設けてもよい。また、一体型超音波トランスデューサ2に設けた距離制御用アクチュエータ15および傾斜制御用アクチュエータ16のみならず、他の方向に駆動する制御用アクチュエータをさらに設けてもよい。
 さらに、一体型超音波トランスデューサ2は、一体型超音波トランスデューサ制御装置6を含む構成であっても、外部に設ける構成であってもよい。
 さらにまた、ソフトシュー41が挿入されたシュー部材40で構成された音響伝播媒体を用いたが、これに限らずシュー部材40が単独で構成された音響伝播媒体を用いてもよい。
 また、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16を用いて超音波トランスデューサ17開口面の中心部と被検査物19との距離lcおよび超音波トランスデューサ17開口面の被検査物19に対する傾きθに対する誤差補正処理を行った。しかし、被検査物19の形状に応じて距離lcおよび傾きθのどちらか一方に対して誤差補正処理を行ってもよい。例えば、被検査物19が平板である場合には、距離制御用アクチュエータ15のみを設け、距離のみを補正することでも高精度な超音波探傷検査が実現できる。また、このような構成とすることで、超音波検査装置の構成を簡素化することができる。
 さらに、マトリックスアレイ型超音波探触子2の振動子群の配列は、マトリックス状に限らず、リニア状、ハニカム状、同心円状、三角形状であってもよい。また、振動子群の配列は、三次元的配列であってもよい。また、圧電変換部36は圧電振動子35をマトリクス状に配列する代りに、一列にあるいは十字のライン状(アレイ状)にアレイ配列し、アレイセンサを構成してもよい。
 さらにまた、本実施形態においては、距離計測用センサ18a、18bを2個一組として超音波トランスデューサ17の幅方向の両端に設けたが、超音波トランスデューサ17に距離計測用センサ18a、18bを近接配置させてもよい。距離計測用センサ18a、18bは、3個一組など、2個以上で一組としてもよい。
[第2の実施形態]
 本発明に係る超音波検査装置の第2実施形態について説明する。
 図6は、本発明に係る超音波検査装置の第2実施形態を示す一体型超音波トランスデューサ2Aおよび探傷処理装置7Aの概略的な構成図である。
 第2実施形態における超音波検査装置が第1実施形態における超音波検査装置1と異なる点は、探傷処理装置7Aで取得した探傷画像情報に基づき超音波トランスデューサの開口面と前記被検査物の検査領域との距離および傾きを求める演算を行った点である。なお、第1実施形態と対応する構成および部分については同一の符号を付し、重複する説明を省略する。
 超音波トランスデューサ17と接続された探傷処理装置7Aには、図2に示す探傷処理装置7の構成に加え、距離・傾き演算部60が設けられる。距離・傾き演算部60は、信号処理部33において信号検出回路32で検出された反射エコーUから得られる電気エコー信号を増幅、A/D変換、可視化などの一連の画像化演算処理を行い生成された探傷画像情報から、超音波トランスデューサ17の開口面中心部と被検査物19の検査領域との距離lcを演算する。また、距離・傾き演算部60は、超音波トランスデューサ17の開口面と、対向する被検査物19の探傷面との傾きθを演算する。なお、超音波トランスデューサ17の開口面と被検査物19の探傷面との距離lcおよび傾きθは、あらかじめ生成された超音波トランスデューサ17の走査経路情報から一定範囲内の誤差であり画像探傷情報から誤差の取得が可能な場合に演算できる。
 信号処理部33で生成される探傷画像情報は2次元または3次元の画像情報である。探傷画像情報は、超音波トランスデューサ17の各圧電変換部36から得られた被検査物19の検査領域からの距離情報が含まれており、これらの距離情報から超音波トランスデューサ17と被検査物19との距離lcおよび傾きθを取得することができる。
 探傷処理装置7Aは一体型超音波トランスデューサ制御装置6Aに接続されている。一体型超音波トランスデューサ制御装置6Aには、探傷処理装置7Aの距離・傾き演算部60で演算された超音波トランスデューサ17と被検査物19の検査領域との距離lcおよび傾きθが出力されるようになっている。一体型超音波トランスデューサ制御装置6Aは、探傷処理装置7Aから出力されたこの距離lcおよび傾きθに基づき、制御量演算部22で距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量を演算する。
 制御量演算部22で演算された距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量は、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16にそれぞれ制御信号として出力される。各制御用アクチュエータ15、16はこの制御信号に基づき駆動する。
 図7を用いて本実施形態における超音波検査装置を用いた誤差補正処理を含む超音波探傷検査について説明する。超音波検査装置による超音波探傷検査は、被検査物19がスキャナ機構3の走査台3aに設置され、例えば入力装置10から入力された検査開始の指示に基づき開始される。
 ステップS11において、スキャナ機構駆動装置3は、あらかじめ生成された走査経路情報50に基づき、スキャナ機構3のX軸駆動部3cおよびYZ軸駆動部3dを走査台3aに設置された被検査物19上で駆動させる。
 ステップS12において、一体型超音波トランスデューサ2Aの超音波トランスデューサ17は、被検査物19の検査領域の走査を行う。超音波トランスデューサ17は、装置本体5の探傷処理装置7Aで行われる制御に基づき被検査物19の表面上を移動して走査する。探傷処理装置7Aは、走査により得られた反射エコーを電気エコー信号として増幅、A/D変換、可視化などの一連の処理を行い、信号処理部33で探傷画像情報を生成する。
 ステップS13において、距離・傾き演算部60は、信号処理部33で生成された探傷画像情報から、超音波トランスデューサ17の開口面中心部と被検査物19の検査領域との距離lcを演算する。また、距離・傾き演算部60は、超音波トランスデューサ17の開口面と、対向する被検査物19の探傷面との傾きθを演算する。距離・傾き演算部60で演算された超音波トランスデューサ17と被検査物19の検査領域との距離lcおよび傾きθは、一体型超音波トランスデューサ制御装置6Aに出力される。
 ステップS14において、一体型超音波トランスデューサ制御装置6Aの制御量演算部22は、探傷処理装置7Aから出力された距離lcおよび傾きθに基づき、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量を演算する。制御量演算部22で演算された制御量は、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16にそれぞれ制御信号として出力される。
 ステップS15において、制御量演算部22で演算された制御量に基づき、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16は駆動する。これに伴い、一体型超音波トランスデューサ2Aは理想的な走査位置に配置される。理想的な走査位置に配置された一体型超音波トランスデューサ2Aは、走査ステップS12と同様の走査処理を行う。
 この超音波検査装置によれば、第1実施形態における超音波検査装置により奏する効果に加え、距離計測用センサ18a、18bを用いることなく超音波トランスデューサ17と被検査物19の探傷面との距離lcおよび傾きθを検出することができる。このため、装置の簡素化を図ることができ、超音波検査装置の生産性も向上させることができる。
[第3の実施形態]
 本発明に係る超音波検査装置の第3実施形態について説明する。
 第3実施形態における超音波検査装置が第2実施形態における超音波検査装置と異なる点は、一体型超音波トランスデューサ2Bの超音波トランスデューサ17Bが、円弧上に設けられた点、および配管などのコーナ部の内面および外面を有する被検査物19Bを検査領域とした超音波探傷検査に使用される点である。
 図8は、本発明に係る超音波検査装置の第3実施形態を示す一体型超音波トランスデューサ2Bおよび探傷処理装置7Bの概略的な構成図である。なお、第1実施形態および第2実施形態と対応する構成および部分については同一の符号を付し、重複する説明を省略する。
 一体型超音波トランスデューサ2Bの超音波トランスデューサ17Bは、圧電振動子35を円弧状に配列した圧電変換部36で構成される。超音波探傷検査時は、圧電振動子35を配列した円弧の曲率中心と、被検査物19Bの検査領域となるコーナ部表面の円弧の曲率中心がほぼ一致する位置に配置され走査される。このように超音波トランスデューサ17Bが配置されることにより、各圧電振動子35から照射される超音波は、超音波トランスデューサ17Bの開口面中心と被検査物19Bのコーナ部表面との距離を一定に保つことができる。この結果、平面を探傷した場合と同様な画像を得ることができる。
 探傷処理装置7Bには、距離・傾き演算部60が設けられている。距離・傾き演算部60は、超音波トランスデューサ17と被検査物19の探傷面との距離および傾きを演算する。距離および傾きの検出は、信号処理部33において信号検出回路32で検出された増幅された電気信号である反射エコー、または信号処理部33においてA/D変換、可視化などの一連の画像化演算処理を行い生成された探傷画像情報に基づいて行われる。
 ここで、誤差補正処理のうち、距離・傾き演算部60が反射エコーから超音波トランスデューサ17Bと被検査物19Bの探傷面との距離および傾きを演算する場合について説明する。
 図9~図11は、圧電変換部36に配列されたn個の圧電振動子351、352、・・・35i、・・・、35n(以下、圧電振動子35という。)の反射エコーから得られた圧電振動子35と被検査物19Bの検査領域との距離Dの一例を示す図である。また、図9(B)、図10(B)および図11(B)の横軸は圧電振動子35を、縦軸は圧電振動子35と被検査物19Bの検査領域との距離Dを示す。また、最大差Xは、ほぼ中心に位置する圧電振動子35と被検査物19Bの検査領域と、両端に位置する圧電振動子351および35nと被検査物19Bの検査領域との距離の差である。
 図9(A)は、超音波トランスデューサ17Bと被検査物19Bの検査領域との距離Dが適切な場合を示す。すなわち、圧電振動子35を配列した円弧の曲率中心と、被検査物19Bの検査領域となるコーナ部表面の円弧の曲率中心とがほぼ一致した場合を示す。このように超音波トランスデューサ17Bと被検査物19Bの検査領域との距離Dが適切である場合には、図9(B)に示すように圧電振動子35と被検査物19Bの検査領域との距離Dは一定であり、最大差Xは0となる。
 図10(A)は、超音波トランスデューサ17Bと被検査物19Bの検査領域との距離Dが近い場合を示している。このように超音波トランスデューサ17Bと被検査物19Bの検査領域との距離Dが近い場合には、図10(B)に示すようにほぼ中心に位置する圧電振動子35iと被検査物19Bの検査領域との距離Dは適正位置よりも小さくなり、最大差Xがマイナスとなる。
 また、図11(A)は、超音波トランスデューサ17Bと被検査物19Bの検査領域との距離Dが遠い場合を示している。このように超音波トランスデューサ17Bと被検査物19Bの検査領域との距離Dが遠い場合には、図11(B)に示すようにほぼ中心に位置する圧電振動子35iと被検査物19Bの探傷面との距離Dは適正位置よりも大きくなり、最大差Xがプラスとなる。
 また、図示はしないが、超音波トランスデューサ17Bが被検査物19の検査領域に対して適切な傾きを有していない場合においても、図9(B)のような適切な反射エコーから得られた圧電振動子35と被検査物19Bの検査領域の距離Dを示す図が得られないため、ここから傾きを検出することもできる。
 距離・傾き演算部60は、このようにして圧電振動子35の反射エコーから検出された圧電振動子35と被検査物19Bの検査領域との距離および傾きに関する情報を演算し一体型超音波トランスデューサ制御装置6Bに出力する。
 一体型超音波トランスデューサ制御装置6Bは、探傷処理装置7Bから出力されたこの距離および傾きに関する情報に基づき、制御量演算部22で距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量を演算する。
 制御量演算部22で演算された距離制御用アクチュエータ15および傾斜制御用アクチュエータ16の制御量は、距離制御用アクチュエータ15および傾斜制御用アクチュエータ16にそれぞれ制御信号として出力される。各制御用アクチュエータ15、16はこの制御信号に基づき駆動する。
 本実施形態における超音波検査装置を用いた超音波探傷検査は、第2実施形態において説明した超音波探傷検査とほぼ同様であるため、詳しい説明は省略する。
 この超音波検査装置によれば、第1実施形態および第2実施形態における超音波検査装置により奏する効果に加え、超音波トランスデューサ17Bを円弧状に設けることにより、被検査物19Bの検査領域がコーナ部であっても理想的な走査位置との誤差を検出することができる。また、その誤差を一体型超音波トランスデューサ2Bの内部で吸収することで、確実に被検査物19Bの表面に対し超音波を一定角度で入射でき、かつ超音波トランスデューサ17の開口面中心と被検査物19の表面との距離を一定に保つことができる。このため、本実施形態における超音波検査装置では、高精度な超音波探傷検査を行うことができる。
 なお、本実施形態においては被検査物19のコーナ部内側を検査領域として説明したが、被検査物19のコーナ部外側についても同様に超音波探傷検査を行うことができる。
 また、超音波トランスデューサ17Bの圧電振動子35の反射エコーから圧電振動子35と被検査物19の探傷面との距離を求めたが、信号処理部33においてA/D変換、可視化などの一連の画像化演算処理を行い生成された探傷画像情報を用いて求めてもよい。
[第4の実施形態]
 本発明に係る超音波検査装置の第4実施形態について説明する。
 第4実施形態における超音波検査装置が第3実施形態における超音波検査装置と異なる点は、スキャナ機構に、コーナ用倣い機構を設けた点である。
 図12は、本発明に係る超音波検査装置の第4実施形態におけるコーナ用倣い機構70および一体型超音波トランスデューサ2Cの一部の概略的な構成図である。なお、第1実施形態から第3実施形態に対応する構成および部分については同一の符号を付し、重複する説明を省略する。
 本実施形態における超音波検査装置は、スキャナ機構3にコーナ用倣い機構70が設けられている。
 第3実施形態に示した超音波探傷装置は、超音波トランスデューサ17Bの走査経路情報に基づく走査位置と理想的な走査位置との誤差を検出し、一体型超音波トランスデューサ2Bの内部でその誤差を吸収した。本実施形態における超音波探傷装置に設けられたコーナ用倣い機構70は、理想的な走査位置に保持された誤差補正処理後の超音波トランスデューサ17Cを維持するために設けられる。すなわち、超音波探傷検査時において圧電振動子35を配列した円弧の曲率中心と、被検査物19Cの検査領域となるコーナ部表面の円弧の曲率中心とをほぼ一致する位置に維持するために設けられる。
 コーナ用倣い機構70は、コーナ倣い部71、支点位置調整部72およびローラ73からなる。
 支点位置調整部72は、例えば図示しないスキャナ機構3に設けられる。支点位置調整部72の一端には、2個一組のローラ73が設けられている。この2個のローラ73は、被検査物19Cの平坦部の表裏面を挟むようにして固定される。ローラ73は、被検査物19Cの平坦部と支点位置調整部72の長さ方向とを垂直に保持する。支点位置調整部72の他端には、支点74が設けられる。支点位置調整部72は、被検査物19Cを適宜調整して保持することにより、支点74が被検査物19Cのコーナ部の曲率中心を通る中心軸C上に位置するように調整される。
 支点位置調整部72には、支点74を軸に回動するコーナ倣い部71が連結される。このコーナ倣い部71は、距離制御用アクチュエータ15および超音波トランスデューサ17Cなどからなる一体型超音波トランスデューサ2Cを支点74を軸に保持している。また、コーナ倣い部71の下端には、ローラ75が設けられる。ローラ75は、コーナ倣い部71の長手方向に垂直な軸(図に対する垂直方向に伸びた軸)周りに回動する。ローラ75は、被検査物19Cの表面上(コーナ部)に接触して回動自在に構成される。一体型超音波トランスデューサ2Cおよびローラ75は、コーナ倣い部71を介した支点位置調整部72による支点74位置の調整に伴い、中心軸C上に位置するようになっている。
 なお、一体型超音波トランスデューサ2Cは、図12においては一部の構成のみを図示したが、図示しない傾斜制御用アクチュエータ16および一体型超音波トランスデューサ制御装置6も設けてもよい。
 このように構成されるコーナ用倣い機構70は、被検査物19Cの検査領域であるコーナ部に対してローラ75を接触させ一体型超音波トランスデューサ2Cを適切な配置に維持する。このため、超音波トランスデューサ17Cの各圧電振動子35から照射される超音波は、被検査物19Cの検査領域であるコーナ部に直交し、かつ各圧電振動子35からコーナ部表面までの照射距離をほぼ同一とすることができる。
 この超音波検査装置1によれば、誤差補正処理後の一体型超音波トランスデューサ2Cに対し、超音波トランスデューサ17Cの被検査物19Cに対する走査位置を、コーナ部表面に直交し、かつ各圧電振動子35からコーナ部表面までの距離が全て同一となる適切な位置に維持することができる。
 なお、本実施形態においては被検査物19Cのコーナ部内側を検査領域として説明したが、被検査物19Cのコーナ部外側についても同様に超音波探傷検査を行うことができる。

Claims (6)

  1. 被検査物の検査領域に対し超音波を発振し、その反射エコーを受信する複数の圧電振動子が配列された超音波トランスデューサと、
     前記超音波トランスデューサに対し超音波を発振させ、かつ前記超音波トランスデューサが受信した前記反射エコーの電気エコー信号を検出し演算処理して前記被検査物の検査領域の探傷画像情報を生成する探傷処理装置と、
     あらかじめ生成された走査経路情報に基づき前記被検査物上で前記超音波トランスデューサを駆動するスキャナ機構と、
     前記超音波トランスデューサの開口面と前記被検査物の検査領域との距離および傾きのうち少なくとも一方を求める距離・傾き演算部と、
     前記距離・傾き演算部で求められた前記距離および傾きのうち少なくとも一方に基づき、前記走査経路情報に基づく走査位置と、前記被検査物の検査領域の法線と前記超音波トランスデューサの開口面とが直交しかつ前記超音波トランスデューサと前記被検査物の検査領域とが所定の距離である所定の走査位置との誤差を算出し、この誤差に基づいて前記超音波トランスデューサの開口面と前記被検査物の検査領域との距離および傾きのうち少なくとも一方を前記所定の走査位置に補正するための制御信号を生成する制御部と、
     前記制御部で生成された前記制御信号に基づき、前記超音波トランスデューサを前記所定の走査位置に駆動する駆動機構とを備え、
     少なくとも前記超音波トランスデューサと前記駆動機構とは、一体に構成された一体型超音波トランスデューサとして構成されたことを特徴とする超音波検査装置。
  2. 前記超音波トランスデューサには、光学計測または超音波計測により前記被検査物の検査領域との距離情報を出力する既知の間隔で設けられた複数個を一組とする距離計測用センサがさらに設けられ、
     前記距離・傾き演算部は、前記距離計測用センサから出力された前記距離情報に基づき、前記超音波トランスデューサの開口面中心と前記被検査物の検査領域との距離および傾きのうち少なくとも一方を求めることを特徴とする請求項1記載の超音波検査装置。
  3. 前記距離・傾き演算部は、前記探傷処理装置が検出した前記反射エコーの電気エコー信号および前記探傷処理装置で生成された前記被検査物の検査領域の探傷画像情報の少なくとも一方に基づき、前記超音波トランスデューサの開口面と前記被検査物の検査領域との距離および傾きのうち少なくとも一方を求めることを特徴とする請求項1記載の超音波検査装置。
  4. 前記制御部は、前記圧電振動子が円弧状に配列して構成された前記超音波トランスデューサの曲率中心と、前記被検査物の検査領域としてのコーナ部の曲率中心が一致した位置を前記所定の走査位置とし、前記走査経路情報に基づく走査位置と前記所定の走査位置との誤差を算出することを特徴とする請求項3記載の超音波検査装置。
  5. 前記コーナ部に接触して回動するローラと、
     前記ローラおよび前記超音波トランスデューサを支点を軸に保持するコーナ用倣い部と、
     前記支点を介して前記コーナ用倣い部と連結し、前記支点が前記コーナ部の曲率中心を通る中心軸上に保持されるように調整して前記被検査物を保持することで、連結された前記コーナ用倣い部に保持された前記ローラおよび前記超音波トランスデューサを前記中心軸上に位置させる支点位置調整部とをさらに備えたことを特徴とする請求項4記載の超音波検査装置。
  6. 前記被検査物との接触面に設けられたソフトシュー挿入部を備え、液体カップラントを介して前記被検査物との接触面に密着固定されたシュー部材と、
     前記シュー部材に比べ柔軟性を有し、かつ前記ソフトシュー挿入部とほぼ同形状であり、前記ソフトシュー挿入部に液体カップラントを介して着脱可能に装着されるソフトシューとを備え、
     前記シュー部材およびソフトシューの厚さは、前記シュー部材およびソフトシューの音速比に基づき決定されたことを特徴とする請求項1記載の超音波検査装置。
PCT/JP2009/053600 2008-02-26 2009-02-26 超音波検査装置 WO2009107745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2716419A CA2716419C (en) 2008-02-26 2009-02-26 Ultrasonic inspection apparatus
US12/918,904 US8413515B2 (en) 2008-02-26 2009-02-26 Ultrasonic inspection apparatus
KR1020107018845A KR101138323B1 (ko) 2008-02-26 2009-02-26 초음파 검사 장치
EP09713946.3A EP2251686A4 (en) 2008-02-26 2009-02-26 ULTRASONIC EXAMINATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008044307A JP5155692B2 (ja) 2008-02-26 2008-02-26 超音波検査装置
JP2008-044307 2008-02-26

Publications (1)

Publication Number Publication Date
WO2009107745A1 true WO2009107745A1 (ja) 2009-09-03

Family

ID=41016132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053600 WO2009107745A1 (ja) 2008-02-26 2009-02-26 超音波検査装置

Country Status (6)

Country Link
US (1) US8413515B2 (ja)
EP (1) EP2251686A4 (ja)
JP (1) JP5155692B2 (ja)
KR (1) KR101138323B1 (ja)
CA (1) CA2716419C (ja)
WO (1) WO2009107745A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273055B1 (ja) * 2017-01-31 2018-01-31 株式会社日立パワーソリューションズ 位置制御装置、位置制御方法、及び超音波映像システム

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306024B2 (ja) * 2009-04-02 2013-10-02 株式会社東芝 超音波検査装置及び超音波検査方法
KR101682578B1 (ko) * 2009-12-15 2016-12-20 삼성메디슨 주식회사 음파송수신부의 음향 성능 측정 장치 및 보상 방법
ES2745122T3 (es) * 2011-07-15 2020-02-27 Toshiba Kk Detector de defectos ultrasónico y método de detección ultrasónica de defectos para objetos que tienen una forma superficial compleja
US9451810B2 (en) 2011-11-18 2016-09-27 Nike, Inc. Automated identification of shoe parts
US8755925B2 (en) 2011-11-18 2014-06-17 Nike, Inc. Automated identification and assembly of shoe parts
US8958901B2 (en) 2011-11-18 2015-02-17 Nike, Inc. Automated manufacturing of shoe parts
US8849620B2 (en) 2011-11-18 2014-09-30 Nike, Inc. Automated 3-D modeling of shoe parts
US10552551B2 (en) 2011-11-18 2020-02-04 Nike, Inc. Generation of tool paths for shore assembly
JP5794478B2 (ja) * 2011-12-07 2015-10-14 新日鐵住金株式会社 鋼材の手入れ支援装置
WO2013139849A1 (en) * 2012-03-20 2013-09-26 Alstom Technology Ltd Ultrasonic ndt sensor arrangement and method for inspecting surfaces of variable geometry of metal bodies
US9188672B2 (en) * 2012-04-13 2015-11-17 Defelsko Corporation Ultrasonic measuring gauge
US8970233B2 (en) * 2012-11-12 2015-03-03 Spirit Aerosystems, Inc. Nondestructive inspection system controller with dynamic position correction
US9003880B2 (en) * 2012-12-31 2015-04-14 General Electric Company Reference speed measurement for a non-destructive testing system
CN103278562A (zh) * 2013-05-21 2013-09-04 河海大学常州校区 一种用于测量声场的二维扫描***
US9651525B2 (en) * 2013-06-27 2017-05-16 TecScan Systems Inc. Method and apparatus for scanning an object
FR3011635B1 (fr) * 2013-10-09 2017-01-27 Areva Sonde a ultrasons pour l'examen d'un objet par ultrasons et procede d'examen correspondant
JP6300225B2 (ja) * 2013-12-03 2018-03-28 東芝エネルギーシステムズ株式会社 タービン翼の検査装置及びその検査方法
JP6109780B2 (ja) * 2014-03-31 2017-04-05 大同特殊鋼株式会社 超音波探傷方法
CN104644214B (zh) * 2014-12-05 2017-04-12 广州丰谱信息技术有限公司 一种平面曲形轨道扫描的超声探测成像装置与方法
US10054436B2 (en) * 2015-09-17 2018-08-21 The Boeing Company Systems and methods for generating paths for processing physical profiles of parts
KR101736612B1 (ko) * 2015-12-07 2017-05-17 주식회사 포스코 높이 조절형 초음파 센서를 이용한 강판의 내부 결함 탐상 장치 및 방법
JP6674263B2 (ja) * 2016-01-22 2020-04-01 東芝テック株式会社 変状検出装置
FR3050283B1 (fr) * 2016-04-15 2018-04-20 Alessandro Manneschi Detecteur d'objets ou de matieres non autorisees dissimules dans une chaussure
JP6427533B2 (ja) * 2016-05-27 2018-11-21 日本原子力発電株式会社 放射能表面汚染密度測定装置および該測定装置による放射能表面汚染密度測定方法
CN107607626A (zh) * 2017-09-13 2018-01-19 中国石油天然气集团公司管材研究所 电磁超声换能器及用电磁超声换能器自动检测钢板的设备
JP6570600B2 (ja) 2017-11-15 2019-09-04 株式会社東芝 検査システム、制御装置、角度調整方法、プログラム、および記憶媒体
BE1026211B1 (nl) 2018-04-16 2019-11-18 Flexible Robotic Solutions Bvba Robotsysteem en methode voor niet-destructief testen
US11287507B2 (en) * 2018-04-30 2022-03-29 The Boeing Company System and method for testing a structure using laser ultrasound
US10794871B1 (en) * 2018-05-23 2020-10-06 The United States Of America As Represented By The Secretary Of The Air Force Elastomer ultrasonic coupling adaptor for focused transducers
JP6629393B1 (ja) * 2018-07-10 2020-01-15 株式会社東芝 制御方法、検査システム、プログラム、及び記憶媒体
US11931202B2 (en) * 2018-09-03 2024-03-19 Canon Medical Systems Corporation Ultrasound automatic scanning system, ultrasound diagnostic apparatus, ultrasound scanning support apparatus
KR101995418B1 (ko) * 2018-12-04 2019-07-02 주식회사 신영 용접부의 비파괴 검사 자동화 시스템
US11630083B2 (en) 2018-12-21 2023-04-18 The Boeing Company Location-based scanner repositioning using non-destructive inspection
KR102224825B1 (ko) * 2019-02-19 2021-03-09 전남대학교산학협력단 단일방향 초음파 트랜스듀서를 이용한 마이크로로봇 구동장치 및 이를 이용한 시스템
US11561204B2 (en) 2019-08-28 2023-01-24 Kabushiki Kaisha Toshiba Display control system, inspection control system, display control method, and storage medium
EP3798629A1 (en) 2019-09-24 2021-03-31 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium
US11320406B2 (en) 2020-03-31 2022-05-03 Baker Hughes Oilfield Operations Llc Methods and systems for adaptive accuracy control of ultrasonic non-destructive testing devices
JP7372209B2 (ja) 2020-06-01 2023-10-31 日立Geニュークリア・エナジー株式会社 超音波検査装置
JP7428597B2 (ja) * 2020-06-18 2024-02-06 株式会社アドバンテスト 光超音波測定装置、方法、プログラム、記録媒体
JP2022117854A (ja) * 2021-02-01 2022-08-12 株式会社東芝 検出装置、検出システム、伝搬部材、固定具、プログラム、及び記憶媒体
CA3138634C (en) 2021-03-04 2023-09-19 TecScan Systems Inc. System and method for scanning an object using an array of ultrasonic transducers
WO2023065045A1 (en) * 2021-10-21 2023-04-27 Evident Canada, Inc. Auto trajectory correction for non-destructive test

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166195U (ja) * 1982-04-30 1983-11-05 ティーディーケイ株式会社 超音波プロ−ブ
JPS63309852A (ja) 1987-06-12 1988-12-16 Nippon Steel Corp 超音波探傷装置
JPH0377057A (ja) 1989-08-21 1991-04-02 Hitachi Constr Mach Co Ltd 超音波探傷装置
JPH0545347A (ja) * 1991-08-14 1993-02-23 Nippon Steel Corp 自動超音波探傷方法
JP2005106654A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd 自動検査システム
JP2005300363A (ja) 2004-04-12 2005-10-27 Toshiba Corp 超音波探傷システムおよび超音波探傷試験方法
JP3766210B2 (ja) * 1998-07-10 2006-04-12 株式会社東芝 3次元超音波画像化装置
JP2006317417A (ja) * 2005-05-16 2006-11-24 Toshiba Corp 超音波検査装置およびこの検査装置に用いられる超音波プローブ装置
WO2007021541A2 (en) * 2005-08-17 2007-02-22 The Boeing Company Inspection system and associated method
JP2007192649A (ja) * 2006-01-19 2007-08-02 Toshiba Corp 3次元超音波検査装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678736A (en) * 1970-08-03 1972-07-25 Gen Electric Machine with improved operating head traversing workpieces with curved surfaces
FR2199887A5 (ja) * 1972-08-16 1974-04-12 Shraiber David
US3898838A (en) * 1973-11-01 1975-08-12 Int Harvester Co Ultrasonic scanning system
GB8423023D0 (en) * 1984-09-12 1984-10-17 Short Brothers Ltd Ultrasonic scanning system
EP0489161A4 (en) * 1989-08-21 1992-07-08 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
US5214616A (en) * 1991-08-15 1993-05-25 General Electric Company Nuclear reactor vessel inspection system and method with remote transducer positioning
JP3361692B2 (ja) * 1996-05-10 2003-01-07 ジーイー横河メディカルシステム株式会社 超音波診断装置
WO1998043234A1 (en) * 1997-03-21 1998-10-01 Life Imaging Systems Inc. Ultrasound transducer mounting assembly
KR100572236B1 (ko) * 2001-11-14 2006-04-19 가부시끼가이샤 도시바 초음파 검사 장치, 초음파 트랜스듀서 및 초음파 화상화 장치
JP4322620B2 (ja) * 2003-06-17 2009-09-02 株式会社東芝 3次元超音波画像化装置
DE10349948B3 (de) * 2003-10-24 2005-01-13 Nutronik Gmbh Verfahren und Vorrichtung zur Prüfung eines eine komplexe Oberflächenkontur aufweisenden Bauteils mittels Ultraschall
JP2005315583A (ja) * 2004-04-26 2005-11-10 Toshiba Corp 超音波検査用センサ装置
JP4542813B2 (ja) * 2004-04-26 2010-09-15 株式会社東芝 3次元超音波検査装置
WO2005103675A1 (ja) * 2004-04-26 2005-11-03 Kabushiki Kaisha Toshiba 3次元超音波検査装置
KR20060110465A (ko) * 2005-04-20 2006-10-25 주식회사 메디슨 초음파 진단기에서 송신 펄스 신호를 생성하기 위한 방법및 장치
GB0518153D0 (en) * 2005-09-07 2005-10-12 Rolls Royce Plc Apparatus for measuring wall thicknesses of objects
DE102006010010A1 (de) * 2006-03-04 2007-09-06 Intelligendt Systems & Services Gmbh & Co Kg Verfahren zur Ultraschallprüfung eines Werkstückes in einem gekrümmten Bereich seiner Oberfläche und zur Durchführung des Verfahrens geeignete Prüfanordnung
JP2009115782A (ja) * 2007-10-19 2009-05-28 Toshiba Corp 倣い装置
US8100015B2 (en) * 2007-11-20 2012-01-24 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus and ultrasonic probe used for same
US7921575B2 (en) * 2007-12-27 2011-04-12 General Electric Company Method and system for integrating ultrasound inspection (UT) with a coordinate measuring machine (CMM)
US8179132B2 (en) * 2009-02-18 2012-05-15 General Electric Company Method and system for integrating eddy current inspection with a coordinate measuring device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166195U (ja) * 1982-04-30 1983-11-05 ティーディーケイ株式会社 超音波プロ−ブ
JPS63309852A (ja) 1987-06-12 1988-12-16 Nippon Steel Corp 超音波探傷装置
JP2553867B2 (ja) * 1987-06-12 1996-11-13 新日本製鐵株式会社 超音波探傷装置
JPH0377057A (ja) 1989-08-21 1991-04-02 Hitachi Constr Mach Co Ltd 超音波探傷装置
JP2720077B2 (ja) * 1989-08-21 1998-02-25 日立建機株式会社 超音波探傷装置
JPH0545347A (ja) * 1991-08-14 1993-02-23 Nippon Steel Corp 自動超音波探傷方法
JP3766210B2 (ja) * 1998-07-10 2006-04-12 株式会社東芝 3次元超音波画像化装置
JP2005106654A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd 自動検査システム
JP2005300363A (ja) 2004-04-12 2005-10-27 Toshiba Corp 超音波探傷システムおよび超音波探傷試験方法
JP2006317417A (ja) * 2005-05-16 2006-11-24 Toshiba Corp 超音波検査装置およびこの検査装置に用いられる超音波プローブ装置
WO2007021541A2 (en) * 2005-08-17 2007-02-22 The Boeing Company Inspection system and associated method
JP2007192649A (ja) * 2006-01-19 2007-08-02 Toshiba Corp 3次元超音波検査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273055B1 (ja) * 2017-01-31 2018-01-31 株式会社日立パワーソリューションズ 位置制御装置、位置制御方法、及び超音波映像システム
JP2018124111A (ja) * 2017-01-31 2018-08-09 株式会社日立パワーソリューションズ 位置制御装置、位置制御方法、及び超音波映像システム

Also Published As

Publication number Publication date
US8413515B2 (en) 2013-04-09
JP5155692B2 (ja) 2013-03-06
KR20100110375A (ko) 2010-10-12
CA2716419C (en) 2014-02-18
EP2251686A4 (en) 2016-08-17
KR101138323B1 (ko) 2012-04-25
CA2716419A1 (en) 2009-09-03
JP2009204327A (ja) 2009-09-10
US20110000299A1 (en) 2011-01-06
EP2251686A1 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP5155692B2 (ja) 超音波検査装置
JP5155693B2 (ja) 超音波検査装置
US7454973B2 (en) Ultrasonic inspection method and ultrasonic inspection equipment
JP5306024B2 (ja) 超音波検査装置及び超音波検査方法
KR102121821B1 (ko) 리니어 스캔 초음파 탐상 장치 및 리니어 스캔 초음파 탐상 방법
JP5582689B2 (ja) 超音波検査装置、超音波検査装置に用いられる超音波プローブ装置、および超音波検査方法
JP2005351864A (ja) 3次元超音波画像化装置
JP4709640B2 (ja) 超音波探傷方法及び装置
US20110197679A1 (en) Ultrasonic inspection system and ultrasonic inspection method
WO1991002971A1 (en) Ultrasonic flaw detector
JP2010014626A (ja) 三次元超音波検査装置
JP2007046913A (ja) 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置
WO2012008144A1 (ja) 超音波探傷装置および超音波探傷方法
JP2009276085A (ja) 曲面に追随する超音波探傷装置
JP5292012B2 (ja) 超音波検査装置
JP2005351718A (ja) 全方位探傷プローブ
JP2005274583A (ja) 超音波探傷方法及びその装置
JP5890572B1 (ja) 水中用検査装置および方法
JP2002214205A (ja) 超音波探傷装置
JP6261699B1 (ja) 超音波エンコーダとこれを用いた位置検出方法
JP2001083123A (ja) 局部水浸式超音波プローブ及びこれを備えた超音波検査装置
JP2008139123A (ja) 超音波探傷装置および方法
JP2011169599A (ja) 超音波探傷システム及び超音波探傷方法
郝广平 et al. Inspection system for welded tubular joint based on ultrasonic phased array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2716419

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12918904

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107018845

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009713946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009713946

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE