WO2009104396A1 - 光符号分割多重アクセスシステム - Google Patents

光符号分割多重アクセスシステム Download PDF

Info

Publication number
WO2009104396A1
WO2009104396A1 PCT/JP2009/000689 JP2009000689W WO2009104396A1 WO 2009104396 A1 WO2009104396 A1 WO 2009104396A1 JP 2009000689 W JP2009000689 W JP 2009000689W WO 2009104396 A1 WO2009104396 A1 WO 2009104396A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
input
encoder
slab coupler
output
Prior art date
Application number
PCT/JP2009/000689
Other languages
English (en)
French (fr)
Inventor
片岡伸元
和田尚也
ガブリエラ チンコッティ
王旭
北山研一
坂元明
Original Assignee
独立行政法人情報通信研究機構
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人情報通信研究機構, 株式会社フジクラ filed Critical 独立行政法人情報通信研究機構
Priority to CN200980105671.1A priority Critical patent/CN101953103B/zh
Priority to KR1020107018626A priority patent/KR20120085944A/ko
Priority to GB1013807.1A priority patent/GB2469604B/en
Priority to US12/918,322 priority patent/US20110013909A1/en
Publication of WO2009104396A1 publication Critical patent/WO2009104396A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes

Definitions

  • the present invention relates to an optical code division multiple access system and the like.
  • OCDMA optical code division multiple access
  • WDM wavelength division multiplexing
  • OCDMA encoder / decoder Many types have already been proposed.
  • a multi-port array waveguide grating (AWG) encoder / decoder for OCDMA has been proposed.
  • This multi-port AWG encoder / decoder has a unique capability of simultaneously processing multiple time-spread optical codes (OCs) with a single device (Non-Patent Document 1 and Non-Patent Document 2 below). Therefore, if the central station of the OCDMA network uses this multi-port AWG encoder, the number of encoders / decoders can be reduced. For this reason, even if the unit price of the multi-port AWG encoder / decoder is high, the overall cost can be reduced.
  • a decoder is a device having a symmetric configuration with an encoder. Therefore, when a multi-port AWG encoder is used as an encoder, a multi-port AWG decoder having the same configuration as the encoder is used as a decoder.
  • multi-port AWG encoder / decoder is expensive. Therefore, if individual user terminals are also decoded using a multi-port AWG decoder, a system using the AWG encoder generally does not penetrate. That is, although the multi-port AWG encoder / decoder has excellent performance, it can be said that it is poor at present. G. Cincotti, N. Wada, and K.-i.
  • Kitayama Charge-ayama ”Characterization of a full encoder / decoder in the AWG configuration for code-based photonicrouters.
  • Part I modeling and design,” IEEE J. Lightwave Technol., Vol. 24, n. 1, 2006. N. Wada, G. Cincotti, S. Yoshima, N. Kataoka, and K.-i. Kitayama ”Characterization of a full encoder / decoder in the AWG configuration for code-based photonic routers.
  • Part II experimental results” IEEE J. Lightwave Technol., Vol. 24, n. 1, 2006
  • An object of the present invention is to provide a versatile optical code division multiple access system (OCDMA).
  • OCDMA optical code division multiple access system
  • the central office generates an optical code using a multi-port AWG encoder, and each client decodes the optical code using a decoder including the SSFBG. This is based on the knowledge that an OCDMA system can be provided.
  • the first aspect of the present invention relates to an optical code division multiple access system (5) having a central office (2) that generates an optical code and a decoding unit (4) that decodes the encoded optical signal.
  • the central office (2) has a multi-port optical encoder (1), which generates an optical code.
  • the decoding unit (4) has a decoder (3).
  • the decoder (3) is designed so as to be able to decode the encoded optical signal.
  • the multi-port optical encoder (1) converts an input optical signal into an encoded optical signal having a wavelength different by a predetermined amount for each code pattern.
  • the optical encoders disclosed in Non-Patent Document 1 and Non-Patent Document 2 described above can be used.
  • the decoder (3) in the first aspect is a superstructured fiber Bragg grating (SSFBG) having a center wavelength corresponding to the encoded optical signal.
  • SSFBG superstructured fiber Bragg grating
  • encoding is achieved by optical signals having different wavelengths by a predetermined amount for each code pattern.
  • a decoder having the same configuration as the encoder.
  • a superstructured fiber grating (SSSFBG) encoder / decoder is known as a TS-OCDMA encoder / decoder.
  • SSFBG is inexpensive because it can be mass-produced.
  • SSFBG can perform ultra-long TS-OC processing without depending on polarization, has a characteristic of low loss and insertion loss independent of code length. Therefore, the decoder does not have a symmetric configuration with the encoder, and a versatile OCDMA system can be realized by using SSFBG as the decoder.
  • the multi-port optical encoder (1) includes an arrayed waveguide grating (AWG) (10).
  • the AWG (10) has a plurality of input ports (11), an input slab coupler (12), an output slab coupler (13), a plurality of optical waveguides (14), and a plurality of output ports (15). It is.
  • the input slab coupler (12) is a slab waveguide connected to the plurality of input ports (11).
  • the output slab coupler (13) is a slab waveguide into which light from the input slab coupler (12) is input.
  • the input slab coupler (12) and the output slab coupler (13) are optically connected by a plurality of optical waveguides (14).
  • Each optical waveguide (14) is different in length by a predetermined amount, and can be given to an optical signal passing through a time delay corresponding to the difference in path length.
  • the plurality of output ports (15) are connected to the output slab coupler (13) and output encoded signals.
  • the output port (15) is connected to the network.
  • the multi-port optical encoder as described above is also called a multi-port AWG encoder.
  • the multi-port AWG encoder is a highly flexible encoder as proposed in Non-Patent Document 1 and Non-Patent Document 2 described above.
  • the multi-port optical encoder (1) includes an arrayed waveguide grating (AWG) (10).
  • the AWG includes a plurality of input ports (11), an input slab coupler (12), an output slab coupler (13), a plurality of optical waveguides (14), and a plurality of output ports (15).
  • the input slab coupler (12) is a slab waveguide connected to the plurality of input ports (11).
  • the output slab coupler (13) is a slab waveguide into which light from the input slab coupler (12) is input.
  • the input slab coupler (12) and the output slab coupler (13) are optically connected by a plurality of optical waveguides (14).
  • Each optical waveguide (14) is different in length by a predetermined amount, and can be given to an optical signal passing through a time delay corresponding to the difference in path length.
  • the plurality of output ports (15) are connected to the output slab coupler (13) and output encoded signals.
  • the output port (15) is connected to the network.
  • the plurality of optical waveguides (14) includes a core having a higher refractive index than the surrounding clad.
  • the effective refractive index with respect to the light guided through the core of the optical waveguide (14) is n s
  • the interval between the portions where the plurality of output ports (15) are connected to the output slab coupler (13) is d. 0 [ ⁇ m]
  • the interval between the portions where the plurality of optical waveguides (14) are connected to the plurality of input slab couplers (12) is d [ ⁇ m]
  • the center wavelength of the input optical signal is ⁇ [nm]
  • the number of the plurality of output ports (15) is N [pieces].
  • the interval between the portions where the plurality of input ports (11) are connected to the input slab coupler (12) is d i [ ⁇ m]
  • d i and d 0 are the same.
  • the interval between the portions where the plurality of optical waveguides (14) are connected to the plurality of output slab couplers (13) is also d [ ⁇ m].
  • R is the focal length of the input slab coupler
  • the focal length of the output slab coupler is also R.
  • the SSFBG includes a plurality of chips. Then, the inter-chip phase of the periodic refractive index change in each chip is changed so that time diffusion and phase shift according to the encoded optical signal can be performed.
  • a decoder is a device having a symmetric configuration with an encoder. Therefore, when a multi-port AWG encoder is used as an encoder, a multi-port AWG decoder having a similar configuration is normally used. However, multi-port AWG encoder / decoder is expensive. Therefore, if individual user terminals are also decoded using a multi-port AWG decoder, a system using the AWG encoder generally does not penetrate. Therefore, in this preferred embodiment, inexpensive SSFBG is used. The refractive index of the chip was controlled so that the signal encoded by the multiport AWG encoder could be decoded. Thereby, even if inexpensive SSFBG is used, the optical signal encoded by the multi-port AWG encoder can be decoded.
  • the SSFBG includes a plurality of chips, and the plurality of chips selectively reflect light in the vicinity of the center wavelength corresponding to the encoded optical signal. Therefore, light near the center wavelength corresponding to the encoded optical signal is selectively reflected. Similar to the above-described aspect, even if an inexpensive SSFBG is used, an optical signal encoded by a multi-port AWG encoder can be decoded.
  • an optical code division multiplexing comprising: a code unit having an encoder; and a central station having a multiport optical decoder for decoding an optical signal encoded by the code unit. It relates to the access system.
  • the encoder is a superstructured fiber Bragg grating (SSSFBG) having a center wavelength corresponding to the multiport optical decoder.
  • the multi-port optical decoder has a function of converting an input optical signal into an optical signal having a wavelength different by a predetermined amount for each code pattern, and decodes the encoded optical signal by the encoder. It is.
  • information may be uplinked as well as downlink. That is, in the first aspect of the present invention, a configuration is defined when information is downlinked.
  • OCDMA optical code division multiple access
  • what was an encoder in the downlink functions as a decoder in the uplink.
  • what was a decoder in the downlink functions as an encoder in the uplink.
  • the encoder in the OCDMA system originally has a decoder function. Therefore, also in the 2nd side surface of this invention, the structure in the 1st side surface of this invention demonstrated previously is employable suitably. In this way, the user must have a small and inexpensive SSFBG encoder / decoder, and the central office must have a multiport decoder and encoder that can handle multiple users with a single device. it can.
  • the central station basically generates an optical code using a multi-port AWG encoder.
  • Each client then decodes the optical code using a decoder including SSFBG.
  • the number of expensive encoders in the central office can be reduced by using a multi-port AWG encoder that is effective but excellent in performance.
  • the cost of the multi-port AWG encoder can be reduced by sharing a plurality of clients.
  • a cheap SSFGB is used as a decoder as compared with a multi-port AWG encoder. Since the decoder has such an inexpensive SSFBG, the cost of the decoder can be suppressed and the number of users can be increased.
  • a versatile OCDMA system can be provided.
  • FIG. 1 is a block diagram for explaining an optical code division multiple access system of the present invention.
  • an optical code division multiple access (OCDMA) system decodes a coded optical signal and a central station (2) that generates the optical code.
  • a decoding unit (4) decodes a coded optical signal and a central station (2) that generates the optical code.
  • the central office (2) has a multi-port optical encoder (1), which generates an optical code.
  • the decoding unit (4) has a decoder (3).
  • the decoder (3) has an SSFBG designed to be able to decode the encoded optical signal.
  • the central office (2) and the decoding unit (4) are optically connected by an optical information communication network (6).
  • an optical information communication network As this optical information communication network, a star coupler type is preferable.
  • the multi-port optical encoder (1) converts an input optical signal into an encoded optical signal having a wavelength different by a predetermined amount for each code pattern.
  • the optical encoders disclosed in Non-Patent Document 1 and Non-Patent Document 2 described above can be used.
  • FIG. 2 is a diagram showing an example of the multi-port optical encoder of the present invention.
  • a preferred multiport optical encoder (1) in the present invention includes an arrayed waveguide grating (AWG) (10).
  • the AWG includes a plurality of input ports (11), an input slab coupler (12), an output slab coupler (13), a plurality of optical waveguides (14), and a plurality of output ports (15).
  • the input slab coupler (12) is a slab waveguide connected to a plurality of input ports (11).
  • the output slab coupler (13) is a slab waveguide into which light from the input slab coupler (12) is input.
  • the input slab coupler (12) and the output slab coupler (13) are optically connected by a plurality of optical waveguides (14).
  • Each optical waveguide (14) is different in length by a predetermined amount, and can be given to an optical signal passing through a time delay corresponding to the difference in path length.
  • the plurality of output ports (15) are connected to the output slab coupler (13) and output encoded signals.
  • the output port (15) is connected to the network.
  • the light input from the input port (11) to the input slab coupler (12) propagates to the plurality of waveguides (14).
  • the length of the waveguide (14) increases by a predetermined amount from the inside to the outside.
  • This waveguide is formed by a core having a higher refractive index than the substrate portion. Since the core has a higher refractive index than the surrounding portion (cladding), it is possible to prevent the light propagating through the waveguide from jumping out.
  • the light passing through each waveguide (14) reaches the output slab coupler (13). At this time, a delay difference corresponding to the optical path length by the waveguide (14) is given. In the output slab coupler (13), light propagated from the waveguide (14) is transmitted as ripples.
  • the output slab coupler (13) propagates to the exit portion of the output slab coupler (13) while canceling out the vertices of the ripples, and a light spot where the light becomes the strongest at the exit portion is formed.
  • the position of this light spot varies depending on the position of the input port and the wavelength of the input light.
  • an optical signal having a different pattern is output if the input / output ports are different. Due to the difference in pattern, the optical signal can be encoded.
  • the multi-port optical encoder as described above is also called a multi-port AWG encoder.
  • the multi-port AWG encoder is a highly flexible encoder as proposed in Non-Patent Document 1 and Non-Patent Document 2 described above.
  • a preferred multiport AWG encoder satisfies the following relationship: That is, the plurality of optical waveguides (14) includes a core having a higher refractive index than the surrounding clad.
  • the effective refractive index with respect to the light guided through the core of the optical waveguide (14) is n s, and the interval between the portions where the plurality of output ports (15) are connected to the output slab coupler (13) is d. 0 [ ⁇ m], the interval between the portions where the plurality of optical waveguides (14) are connected to the plurality of input slab couplers (12) is d [ ⁇ m], the center wavelength of the input optical signal is ⁇ [nm],
  • the number of the plurality of output ports (15) is N [pieces].
  • the interval between the portions where the plurality of input ports (11) are connected to the input slab coupler (12) is d i [ ⁇ m]
  • d i and d 0 are the same.
  • the interval between the portions where the plurality of optical waveguides (14) are connected to the plurality of output slab couplers (13) is also d [ ⁇ m].
  • R is the focal length of the input slab coupler
  • the focal length of the output slab coupler is also R.
  • FIG. 3 is a diagram for explaining an appearance example of a multi-port AWG encoder.
  • Such a multi-port AWG encoder / decoder is known as described in Non-Patent Document 1 and Non-Patent Document 2. The operation is also known as described in these documents.
  • FIG. 4 is a graph showing an example of an optical signal encoded by a multi-port AWG encoder. As shown in FIG. 4, by using a multi-port AWG encoder, an input optical signal can be converted into an encoded optical signal having a wavelength different by a predetermined amount for each code pattern.
  • the decoding unit (4) has a decoder (3).
  • the decoder (3) has an SSFBG designed to be able to decode the encoded optical signal.
  • the decoding unit (4) is a client connected to the central office through a network. There are a large number of normal decoding units.
  • the multiport AWG encoder / decoder described above When encoded by the multiport AWG encoder / decoder described above, it can be easily decoded by using the multiport encoder / decoder. That is, in order to decode the optical signal encoded as described above, in principle, a multiport AWG decoder having the same configuration as the multiport AWG encoder may be used. That is, a signal encoded at a certain input / output port is output as an autocorrelation waveform through the same input / output port. On the other hand, when it passes through an input / output port different from the input / output port at the time of encoding, it is output as a cross correlation waveform. Since the autocorrelation waveform and the cross-correlation waveform are completely different from each other, they can be easily decoded.
  • SSFBG designed to be able to decode an encoded optical signal is used without using a multi-port AWG decoder.
  • This SSFBG can encode / decode an optical pulse using an optical phase code.
  • This SSFBG is, for example, an optical pulse time having phase control means for expanding an optical pulse as a sequence of chip pulses sequentially arranged on a time axis, and generating and outputting such a sequence of chip pulses. It is a dilator.
  • the decoder (3) of the present invention is a superstructured fiber Bragg grating (SSSFBG) having a center wavelength corresponding to the encoded optical signal. “Having a center wavelength according to the encoded optical signal” means selectively reflecting or transmitting light of a specific wavelength, and this specific wavelength corresponds to the encoded optical signal. It means that the wavelength is in the central wavelength region.
  • SSSFBG superstructured fiber Bragg grating
  • SSFBG is used as an element of the decoder.
  • this SSFBG originally functions as an encoder and a decoder.
  • encoding is achieved by optical signals having different wavelengths by a predetermined amount for each code pattern.
  • a decoder having the same configuration as the encoder.
  • a superstructured fiber grating (SSSFBG) encoder / decoder is known as a TS-OCDMA encoder / decoder.
  • SSFBG is inexpensive because it can be mass-produced.
  • SSFBG can perform ultra-long TS-OC processing without depending on polarization, has a characteristic of low loss and insertion loss independent of code length. Therefore, the decoder does not have a symmetric configuration with the encoder, and a versatile OCDMA system can be realized by using SSFBG as the decoder.
  • FIG. 5 is a diagram illustrating an example of a decoder including SSFBG.
  • the decoder (3) includes an optical fiber (21, 22), a circulator (23) for inputting an optical signal, and an SSFBG (24).
  • the SSFBG (24) is an SSFBG configured by arranging a plurality of unit FBGs along the waveguide direction of the optical fiber.
  • the SSFBG described below is of an optical fiber type.
  • the optical fiber includes a core and a cladding.
  • the core is an optical waveguide of an optical fiber.
  • the SSFBG includes a plurality of unit FBGs arranged in series along the waveguide direction of the core.
  • Each unit FBG (25a, 25b, 25c, 25d...) Constituting the SSFBG (24) corresponds to each chip of the optical code.
  • a code value is determined using the phase relationship of Bragg reflected light reflected from adjacent unit FBGs.
  • the sign value can take not only 0 and 1, but also a negative number or a number between 0 and 1.
  • the phases of the Bragg reflected light reflected from the unit FBG corresponding thereto may be made the same.
  • the phases of the Bragg reflected light reflected from the corresponding unit FBG may be different.
  • the SSFBG includes a plurality of chips. Then, the inter-chip phase of the periodic refractive index change in each chip is changed so that time diffusion and phase shift according to the encoded optical signal can be performed.
  • the SSFBG includes a plurality of chips, and the plurality of chips selectively reflect light in the vicinity of the center wavelength corresponding to the encoded optical signal. Therefore, light near the center wavelength corresponding to the encoded optical signal is selectively reflected.
  • an optical signal encoded by a multi-port AWG encoder can be decoded.
  • the optical code generated by the multi-port optical encoder has the property that the wavelength is shifted by the code pattern. For this reason, by using the SSFBG as a narrow band filter specialized for the generated optical code, only a certain optical code can be extracted. As a result, a decoder can be created with a simple configuration.
  • Table 1 shows a design example of a 16-step phase shift SSFBG for optical signals of several central wavelengths.
  • FIG. 6 is a graph showing the light transmission characteristics of SSFBG manufactured according to the design example of Table 1. That is, light having a specific center wavelength can be selectively reflected by adjusting the phase of the unit FBG. For example, when the encoding is performed so as to include the above four center wavelengths, the encoded signal can be easily extracted by designing the SSFBG as described above. As a result, decoding can be effectively performed without using a multi-port AWG decoder.
  • FIG. 7 is a diagram showing an application example of the OCDMA system of the present invention.
  • This example is an example of a system that realizes WDM (wavelength division multiplexing) -OCDMA.
  • a multiplexed optical signal is output by an n-port WDM multiplexer (WDM-MUX).
  • WDM-MUX WDM multiplexer
  • the output optical signal is input to an m ⁇ m multi-port OCDMA encoder.
  • This m ⁇ m multi-port OCDMA encoder is, for example, the multi-port AWG encoder described above.
  • the input signal is encoded by this multi-port OCDMA encoder.
  • the encoded optical signal has a different frequency at the center wavelength for each encoding pattern. This encoded optical signal reaches the duplexer through the network.
  • the WDM-DEMUX which is a demultiplexer, demultiplexes the optical signal according to the destination. Then, an optical signal is output to a region such as LAN (LAN1... LANn) corresponding to the destination. Then, the optical signal is appropriately demultiplexed and propagates to the end device (ONU) of each user within the region.
  • the ONU functions as a decoding unit.
  • the decoding unit includes a decoder including SSFBG having characteristics corresponding to the encoding of the multiport encoder. For example, optical code portions, when encoded according to the optical signal to the pattern OC 1, ONU-1 with SSFBG corresponding to the pattern OC 1 becomes the ability to decode the signal. That is, a preferred mode of use of the present invention is a communication system using WDM and OCDMA.
  • an optical code division multiplexing comprising: a code unit having an encoder; and a central station having a multiport optical decoder for decoding an optical signal encoded by the code unit. It relates to the access system.
  • the encoder is a superstructured fiber Bragg grating (SSSFBG) having a center wavelength corresponding to the multiport optical decoder.
  • the multi-port optical decoder has a function of converting an input optical signal into an optical signal having a wavelength different by a predetermined amount for each code pattern, and decodes the encoded optical signal by the encoder. It is.
  • information may be uplinked as well as downlink. That is, in the first aspect of the present invention, a configuration is defined when information is downlinked.
  • OCDMA optical code division multiple access
  • what was an encoder in the downlink functions as a decoder in the uplink.
  • what was a decoder in the downlink functions as an encoder in the uplink.
  • the encoder in the OCDMA system originally has a decoder function. Therefore, also in the 2nd side surface of this invention, the structure in the 1st side surface of this invention demonstrated previously is employable suitably. In this way, the user must have a small and inexpensive SSFBG encoder / decoder, and the central office must have a multiport decoder and encoder that can handle multiple users with a single device. Can do.
  • FIG. 8 is a configuration diagram showing an experimental system used for adjusting an optical signal in the first embodiment.
  • a drive signal of 9.95328 GHz is obtained using a synthesizer.
  • This drive signal is input as a mode-locked laser diode.
  • the drive signal (C192) is input as a clock signal to the pulse pattern generator (PPG) / and the bit error rate tester (BERT).
  • PPG pulse pattern generator
  • BERT bit error rate tester
  • the output light from the mode-locked laser diode is appropriately amplified by an EDFA, passed through a band pass filter (BPF) of 7.8 nm, further through a polarization adjuster (PC), and input to a phase modulator (PM). .
  • BPF band pass filter
  • PC polarization adjuster
  • PM phase modulator
  • a bias voltage is applied to this phase modulator.
  • a drive signal from the PPG is input to this phase modulator.
  • the output signal from the phase modulator is appropriately amplified and enters the encoder through a filter and a polarization adjuster.
  • FIG. 9 is a photograph replacing a drawing for explaining an appearance example of the multi-port AWG encoder actually used in the present embodiment.
  • a multi-port AWG encoder as shown in FIGS. 2 and 3 was used.
  • a 16-chip multiport AWG encoder having a waveguide in a planar lightwave circuit was used.
  • the pulse interval was 5 ps and the chip rate was 200 Gchip / s.
  • Each optical signal from port 1 to port 8 had a time delay of 0, 5, 10,... 80 msec.
  • the light intensity was adjusted for each wavelength using a variable optical attenuator (VOA). Then, it was demultiplexed by a Mach-Zehnder interferometer, and a time delay of 93 ps was given to the light propagating through one waveguide. After that, balanced detection was performed using a dual pin photodetector. Thereafter, the BER was measured by BERT through a low-pass filter.
  • VOA variable optical attenuator
  • FIG. 10 is a diagram showing an experimental system in Example 1. Description of the same components as those in FIG. 8 is omitted.
  • SSFBG is used as the encoder.
  • the SSFBG used was 16 chips and 16 phase levels. Then, as shown in Table 1, the phase of each chip was adjusted according to the center wavelength to be transmitted.
  • FIG. 11 is a photograph replacing a drawing showing the appearance of the SSFBG used in this example.
  • FBG1-4 16-chip SSFBG decoders
  • These FBGs have 16 input ports and 16 output ports.
  • This FBG has a center wavelength of 1551 nm, a chip length of about 0.52 mm, and a total length of the grating of 8.32 mm by shifting the chip grating by +/ ⁇ ⁇ / 8 steps.
  • Two 16-level phase shift patterns were used for these gratings.
  • the patterns of FBG1 and 2 were OC-1
  • the patterns of FBG3 and 4 were OC-2.
  • OC-1 corresponds to the optical signal input from the first input port of the multi-port encoder and output from the third output port.
  • OC-2 corresponds to the optical signal input from the first input port of the multiport encoder and output from the seventh output port.
  • FIG. 12 is a graph showing the waveform of the input pulse.
  • 13A to 13C are graphs showing an optical code encoded by the FBG of the pattern OC-1 and an optical code encoded by an encoder using an AWG (AWG encoder).
  • FIG. 13A is a graph showing an optical signal encoded using FBG1.
  • FIG. 13B is a graph showing an optical signal encoded using FBG2.
  • FIG. 13C is a graph showing an optical signal encoded using an AWG encoder.
  • FIGS. 14A to 14C are graphs showing an optical code encoded by the FBG of the pattern OC-2 and an optical code encoded by an encoder using an AWG (AWG encoder).
  • FIG. 14A is a graph showing an optical signal encoded using FBG3.
  • FIG. 14B is a graph showing an optical signal encoded using FBG4.
  • FIG. 14C is a graph showing an optical signal encoded using an AWG encoder.
  • the optical code obtained using FBG1 has a duration of about 80 ps and a chip rate of 200 Gchip / s.
  • the time waveform of the optical code by SSFBG is different from the time waveform of the optical code by AWG. This is considered to be mainly due to the fact that the FBG is designed around the phase shift pattern, and a grating with a uniform refractive index distribution in the unit FBG is used. For example, by carefully designing the effective refractive index along the entire grating, the time waveform of the generated signal may be further improved.
  • the optical code peaks derived from the individual chips generated from the SSFBG of the pattern OC-2 are less clear than those of the OC-1 and clearer than those of the AWG. There wasn't.
  • FIGS. 15A to 15D are graphs showing autocorrelation waveforms when SSFBG of pattern OC-1 and AWG are combined as an encoder and a decoder.
  • FIG. 15A is a graph used for comparison, showing the encoder and decoder of AWG and AWG, respectively.
  • FIG. 15B is a graph showing that the encoder and the decoder are FBG1 and FBG2, respectively.
  • FIG. 15C is a graph showing encoders and decoders of AWG and FBG2, respectively.
  • FIG. 15D is a graph showing that the encoder and decoder are AWG and FBG1, respectively.
  • FIGS. 16A to 16D are graphs showing autocorrelation waveforms when SSFBG of pattern OC-1 and AWG are combined as an encoder and a decoder.
  • FIG. 16A is a graph used for comparison, showing the encoder and the decoder of AWG and AWG, respectively.
  • FIG. 16B is a graph showing that the encoder and decoder are FBG3 and FBG4, respectively.
  • FIG. 16C is a graph showing encoders and decoders of AWG and FBG3, respectively.
  • FIG. 16D is a graph showing encoders and decoders of AWG and FBG4, respectively.
  • FIG. 17 is a graph for comparing the power correlation ratio (PCR) of autocorrelation and cross-correlation of the AWG encoder and the SSFBG encoder.
  • FIG. 17A is a graph for comparing SSFBG and AWG of pattern OC-1.
  • FIG. 17B is a graph for comparing SSFBG and AWG of pattern OC-2. From FIG. 17A and FIG. 17B, an AWG encoder is used as the encoder. It can be seen that although the encoder and decoder are each AWG and the encoder is AWG and the decoder is SSFBG have similar performance, the latter performance is generally 1 to 5 dB lower.
  • PCR power correlation ratio
  • the SSFBG decoder is excellent in temperature change resistance.
  • the temperature change of the AWG encoder was 2 to 2.5 ° C., but the change of PCR was within 1 dB.
  • These performances can be achieved by a combination using a multi-port AWG type encoder and a multi-phase level phase shift SSFBG decoder.
  • a flexible and cost-effective OCDMA network can be constructed by combining the AWG encoder and the FBG decoder.
  • the performance of this network is further improved by apodizing the SSFBG (modulating the refractive index applied to both ends of the grating).
  • FIG. 18 is a diagram showing an experimental system when SSFBG is used for both the encoder and the decoder.
  • FIG. 19 is a block diagram showing an experimental system for demonstrating 10 Gbps, 8-user DPSK-OCDMA using a hybrid multi-port AWG encoder and SSFBG decoder.
  • FIG. 20 is a graph showing the wavelength, spectrum, and eye diagram at each point in the experimental system.
  • FIG. 20A is a graph regarding the point ⁇ .
  • FIG. 20B is a graph regarding the point ⁇ .
  • FIG. 20C is a graph regarding the point ⁇ .
  • FIG. 20D is a graph regarding the point ⁇ .
  • FIG. 20E is a graph regarding the point ⁇ .
  • FIG. 20F is a graph relating to the point ⁇ .
  • the mode-locked laser diode generates an optical pulse of about 1.8 ps with a center wavelength of 1550.8 nm and a repetition frequency of 9.95328 GHz (OC192).
  • the optical signal was adjusted by differential phase shift keying (DPSK) formed by a lithium niobate phase modulation circuit (LN-PM) (point ⁇ in FIG. 19).
  • DPSK differential phase shift keying
  • LN-PM lithium niobate phase modulation circuit
  • PRBS pseudo-random bit string
  • This signal was sent to the 8th port of a 16 ⁇ 16 port AWG encoder to obtain 8 different optical codes (point ⁇ in FIG. 19). These eight signals were multiplexed with equal power, random delay, random bit phase, and random polarization assuming an 8 ⁇ 10 Gps asynchronous OCDMA network (point ⁇ in FIG. 19). The measurement was performed assuming the worst condition. In other words, bit synchronization and the same polarization were assumed.
  • the 16-chip, 16-level phase shift SSFBG decoder decodes the received multiple OCDMA signal into the target signal (point ⁇ in FIG. 19).
  • a DPSK signal was detected using a fiber-based interferometer and a balanced detector (point ⁇ in FIG. 19).
  • Data was restored using a clock data recovery (CDR) circuit (point ⁇ in FIG. 19).
  • CDR clock data recovery
  • BER was measured using a bit error rate tester (BERT). As shown in FIGS. 20E and 20F, a clear eye opening was observed for 8-user OCDMA at point ⁇ and point ⁇ in FIG.
  • indicates back-to-back after phase modulation
  • black square is for G1429 (Code 1) as an encoder
  • one square is for G1429 (Code 1) as an encoder
  • the black diamond is for G1430 (Code 2) as an encoder and for 1 user
  • the hollow diamond is for G 1430 (Code 2) as an encoder.
  • black triangle is for G1431 (Code 2) as encoder and one user
  • hollow triangle is for G1431 (Code 2) as encoder and 8 users
  • X indicates a case where G1433 (Code 2) is used as an encoder and that of one user
  • G1433 ( ode2) a case where a shows the 8 user ones.
  • error-free was achieved for all four decoders.
  • the present invention can be suitably used in the field of optical information communication.
  • FIG. 1 is a block diagram for explaining an optical code division multiple access system of the present invention.
  • FIG. 2 is a diagram showing an example of the multi-port optical encoder of the present invention.
  • FIG. 3 is a diagram for explaining an appearance example of a multi-port AWG encoder.
  • FIG. 4 is a graph showing an example of an optical signal spectrum encoded by a multi-port AWG encoder.
  • FIG. 5 is a diagram illustrating an example of a decoder including an SSFBG.
  • FIG. 6 is a graph showing the light transmission characteristics of SSFBG manufactured according to the design example of Table 1.
  • FIG. 7 is a diagram showing an application example of the OCDMA system of the present invention.
  • FIG. 8 is a configuration diagram illustrating an experimental system used for adjusting an optical signal in the first embodiment.
  • FIG. 9 is a photograph replacing a drawing for explaining an appearance example of the multi-port AWG encoder actually used in this embodiment.
  • FIG. 10 is a diagram showing an experimental system in Example 1.
  • FIG. 11 is a photograph replacing a drawing showing the appearance of the SSFBG used in this example.
  • FIG. 12 is a graph showing the waveform of the input pulse.
  • 13A to 13C are graphs showing an optical code encoded by the FBG of the pattern OC-1 and an optical code encoded by an encoder using an AWG (AWG encoder).
  • FIG. 13A is a graph showing an optical signal encoded using FBG1.
  • FIG. 13B is a graph showing an optical signal encoded using FBG2.
  • FIG. 13C is a graph showing an optical signal encoded using an AWG encoder.
  • FIG. 14A to 14C are graphs showing an optical code encoded by the FBG of the pattern OC-2 and an optical code encoded by an encoder using an AWG (AWG encoder).
  • FIG. 14A is a graph showing an optical signal encoded using FBG3.
  • FIG. 14B is a graph showing an optical signal encoded using FBG4.
  • FIG. 14C is a graph showing an optical signal encoded using an AWG encoder.
  • FIG. 15 (FIGS. 15A to 15D) is a graph showing autocorrelation waveforms when SSFBG and AWG of pattern OC-1 are combined as an encoder and a decoder.
  • FIG. 15A is a graph used for comparison, showing the encoder and decoder of AWG and AWG, respectively.
  • FIG. 15A is a graph used for comparison, showing the encoder and decoder of AWG and AWG, respectively.
  • FIG. 15B is a graph showing that the encoder and the decoder are FBG1 and FBG2, respectively.
  • FIG. 15C is a graph showing encoders and decoders of AWG and FBG2, respectively.
  • FIG. 15D is a graph showing that the encoder and decoder are AWG and FBG1, respectively.
  • FIG. 16 (FIGS. 16A to 16D) is a graph showing autocorrelation waveforms when SSFBG and AWG of pattern OC-1 are combined as an encoder and a decoder.
  • FIG. 16A is a graph used for comparison, showing the encoder and the decoder of AWG and AWG, respectively.
  • FIG. 16B is a graph showing that the encoder and decoder are FBG3 and FBG4, respectively.
  • FIG. 16C is a graph showing encoders and decoders of AWG and FBG3, respectively.
  • FIG. 16D is a graph showing encoders and decoders of AWG and FBG4, respectively.
  • FIG. 17 (FIGS. 17A and 17B) is a graph for comparing the power correlation ratio (PCR) of the autocorrelation and cross-correlation of the AWG encoder and the SSFBG encoder.
  • FIG. 17A is a graph for comparing SSFBG and AWG of pattern OC-1.
  • FIG. 17B is a graph for comparing SSFBG and AWG of pattern OC-2.
  • FIG. 18 is a diagram showing an experimental system when SSFBG is used for both the encoder and the decoder.
  • FIG. 17 is a graph for comparing the power correlation ratio (PCR) of the autocorrelation and cross-correlation of the AWG encoder and the SSFBG encoder.
  • FIG. 17A is a graph for comparing SSFBG and AWG of
  • FIG. 19 is a block diagram showing an experimental system for demonstrating 10 Gbps, 8-user DPSK-OCDMA using a hybrid multi-port AWG encoder and SSFBG decoder.
  • FIG. 20 (FIGS. 20A to 20F) is a graph showing the wavelength, spectrum, and eye diagram at each point in the experimental system.
  • FIG. 20A is a graph regarding the point ⁇ .
  • FIG. 20B is a graph regarding the point ⁇ .
  • FIG. 20C is a graph regarding the point ⁇ .
  • FIG. 20D is a graph regarding the point ⁇ .
  • FIG. 20E is a graph regarding the point ⁇ .
  • FIG. 20F is a graph relating to the point ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 【課題】 本発明は,汎用性のある光符号分割多重アクセスシステム(OCDMA)を提供することを目的とする。  【解決手段】 上記課題は,マルチポート光符号器(1)を有する中央局(2)と,マルチポート光符号器(1)により符号化された光信号を復号化するための復号器(3)を有する復号部(4)とを有する,光符号分割多重アクセスシステム(5)により解決される。そして,このマルチポート光符号器(1)は,入力された光信号を,符号パターンごとに波長が所定量異なる符号化された光信号に変換するものであり,復号器(3)は,符号化された光信号に応じた中心波長を有するスーパーストラクチャードファイバブラッググレーティング(SSFBG)である。  

Description

光符号分割多重アクセスシステム
 本発明は,光符号分割多重アクセスシステムなどに関する。
 光符号分割多重アクセス(OCDMA)は,光層セキュリティーはもちろん,必要な場合には,完全非同期通信,低待ち時間アクセス,ソフトキャパシティという特有の特徴を有している。このためOCDMAは,次世代ブロードバンドアクセスネットワークの候補の1つとして期待されている。そして,OCDMAと波長分割多重(WDM)とを組み合わせることにより,アクセスネットワークにおいて高キャパシティを実現することができ,ギガビット対称ファイバートゥーザホーム(FTTH)を可能にすることが期待されている。
 すでに多くの種類のOCDMAの符号器/復号器が提案されている。干渉時間拡散(TS)OCDMAを実現するために,OCDMA用のマルチポートアレイ導波路グレーティング(AWG)符号器/復号器が提案されている。このマルチポートAWG符号器/復号器は,単一のデバイスで多重時間拡散光符号(OCs)を同時に処理するという特有の能力を有している(下記非特許文献1及び非特許文献2)。このため,OCDMAネットワークの中央局が,このマルチポートAWG符号器を用いると,符号器/復号器の数を減らすことができる。このためマルチポートAWG符号器/復号器の単価が高額であっても,全体として,低コストを実現できる。
 通常,光情報通信の分野において,復号器は,符号器と対称的な構成を有する装置である。よって,符号器としてマルチポートAWG符号器を用いた場合,通常であれば,復号器として,符号器と同様の構成を有するマルチポートAWG復号器を用いる。しかし,マルチポートAWG符号器/復号器は,高価である。よって,個別のユーザー端末も,マルチポートAWG復号器を用いて復号化するものとすると,AWG符号器を用いたシステムが一般に浸透しない。すなわち,マルチポートAWG符号器/復号器は優れた性能を有するものの,現時点では汎用性に乏しいといえる。
G. Cincotti, N. Wada, andK.-i. Kitayama "Characterizationof a full encoder/decoder in the AWG configuration for code-based photonicrouters. Part I: modelling and design," IEEE J.Lightwave Technol., vol. 24, n. 1, 2006. N. Wada, G. Cincotti, S.Yoshima, N. Kataoka, and K.-i. Kitayama "Characterization of a full encoder/decoder in the AWG configurationfor code-based photonic routers. Part II: experimental results" IEEE J. Lightwave Technol., vol. 24, n. 1, 2006
 本発明は,汎用性のある光符号分割多重アクセスシステム(OCDMA)を提供することを目的とする。
 本発明は,基本的には,中央局はマルチポートAWG符号器を用いて光符号を発生し,各クライアントはSSFBGを含む復号器を用いて光符号を復号化することで,汎用性のあるOCDMAシステムを提供できるという知見に基づくものである。
 本発明の第1の側面は,光符号を発生する中央局(2)と,符号化された光信号を復号化する復号部(4)とを有する,光符号分割多重アクセスシステム(5)に関する。中央局(2)は,マルチポート光符号器(1)を有しており,これにより光符号を発生する。復号部(4)は,復号器(3)を有する。そして,復号器(3)は,符号化された光信号を復号化できるように設計されている。
 そして,第1の側面におけるマルチポート光符号器(1)は,入力された光信号を,符号パターンごとに波長が所定量異なる符号化された光信号に変換するものである。具体的には,上記した非特許文献1及び非特許文献2に開示された光符号器を用いることができる。
 また,第1の側面における復号器(3)は,符号化された光信号に応じた中心波長を有するスーパーストラクチャードファイバブラッググレーティング(SSFBG)である。「符号化された光信号に応じた中心波長を有する」とは,特定の波長の光を選択的に反射又は透過することを意味し,この特定の波長が符号化された光信号に応じた中心波長領域の波長であることを意味する。
 第1の側面においては,符号パターンごとに波長が所定量異なる光信号により符号化が達成される。このような場合,符号器と同様の構成を有する復号器を用いるのが通常である。一方,スーパーストラクチャードファイバグレーティング(SSFBG)符号器/復号器は,TS-OCDMA符号器/復号器として知られている。SSFBGは,大量生産できるため低コストである。さらに,SSFBGは,分極に依存せず超長TS-OC処理を行うことができ,低損失であり,かつ符号長さに依存しない挿入損失という特質を有する。このため,復号器として符号器と対称の構成を有するものではなく,復号器として,SSFBGを用いることで,汎用性のあるOCDMAシステムを実現できる。
 本発明の第1の側面の好ましい態様は,マルチポート光符号器(1)が,アレイ導波路回折格子(AWG)(10)を含むものである。そして,AWG(10)は,複数の入力ポート(11)と,入力スラブカプラ(12)と,出力スラブカプラ(13)と,複数の光導波路(14)と複数の出力ポート(15)とを有するものである。そして,入力スラブカプラ(12)は,複数の入力ポート(11)と接続されたスラブ導波路である。また,出力スラブカプラ(13)は,入力スラブカプラ(12)からの光が入力するスラブ導波路である。そして,入力スラブカプラ(12)と出力スラブカプラ(13)とは,複数の光導波路(14)によって光学的に接続されている。また,それぞれの光導波路(14)は,所定量ずつ長さが異なっており,経路長の差に応じた時間遅延を通過する光信号に与えることができる。複数の出力ポート(15)は,出力スラブカプラ(13)に接続されており,符号化された信号が出力される。そして,この出力ポート(15)は,ネットワークと接続されている。
 上記のようなマルチポート光符号器をマルチポートAWG符号器ともよぶ。マルチポートAWG符号器は,上記の非特許文献1及び非特許文献2において提案されているように,柔軟性に優れた符号器である。
 本発明の第1の側面の好ましい態様は,マルチポート光符号器(1)が,アレイ導波路回折格子(AWG)(10)を含むものである。そして,AWGは,複数の入力ポート(11)と,入力スラブカプラ(12)と,出力スラブカプラ(13)と,複数の光導波路(14)と複数の出力ポート(15)とを有するものである。そして,入力スラブカプラ(12)は,複数の入力ポート(11)と接続されたスラブ導波路である。また,出力スラブカプラ(13)は,入力スラブカプラ(12)からの光が入力するスラブ導波路である。そして,入力スラブカプラ(12)と出力スラブカプラ(13)とは,複数の光導波路(14)によって光学的に接続されている。また,それぞれの光導波路(14)は,所定量ずつ長さが異なっており,経路長の差に応じた時間遅延を通過する光信号に与えることができる。複数の出力ポート(15)は,出力スラブカプラ(13)に接続されており,符号化された信号が出力される。そして,この出力ポート(15)は,ネットワークと接続されている。
 この態様において更に好ましい態様は,以下の関係を満たすものである。すなわち,複数の光導波路(14)が周囲に位置するクラッドより屈折率が高いコアを含む。そして,光導波路(14)のコアを導波する光に対する実効屈折率(effective refractive index)をnとし,複数の出力ポート(15)が出力スラブカプラ(13)と接続される部分の間隔をd[μm]とし,複数の光導波路(14)が複数の入力スラブカプラ(12)と接続される部分の間隔をd[μm]とし,入力される光信号の中心波長をλ[nm]とし,複数の出力ポート(15)の数をN[個]とする。
 そして,複数の入力ポート(11)が入力スラブカプラ(12)と接続される部分の間隔をd[μm]とした場合,dとdとは同じである。また,複数の光導波路(14)が前記複数の出力スラブカプラ(13)と接続される部分の間隔もd[μm]である。Rを前記インプットスラブカプラの焦点長さとすると,アウトプットスラブカプラの焦点長さもRである。さらに,λ,R,N,n,d及びdは,λR=Nnddの関係を満たす。
 上記の条件においては,効果的に光符号を得ることができる。
 本発明の第1の側面の好ましい態様は,SSFBGが,複数のチップを含む。そして,符号化された光信号に応じた時間拡散,及び位相シフトを行うことができるように,各チップにおける周期的屈折率変化のチップ間位相を変化させたものである。
 一般に,復号器は,符号器と対称的な構成を有する装置である。よって,符号器としてマルチポートAWG符号器を用いた場合,通常であれば,同様の構成を有するマルチポートAWG復号器を用いる。しかし,マルチポートAWG符号器/復号器は,高価である。よって,個別のユーザー端末も,マルチポートAWG復号器を用いて復号化するものとすると,AWG符号器を用いたシステムが一般に浸透しない。そこで,この好ましい態様では,廉価なSSFBGを用いる。そして,マルチポートAWG符号器によって符号化された信号を復号化できるように,チップの屈折率を制御した。これにより,廉価なSSFBGを用いても,マルチポートAWG符号器によって符号化された光信号を復号化できる。
 本発明の第1の側面の好ましい態様は,SSFBGは,複数のチップを含むものであり,複数のチップは,符号化された光信号に応じた中心波長付近の光を選択的に反射するような位相を有し,これにより,前記符号化された光信号に応じた中心波長付近の光を選択的に反射するものである。上記の態様と同様,廉価なSSFBGを用いても,マルチポートAWG符号器によって符号化された光信号を復号化できる。
 本発明の第2の側面は,符号器を有する符号部と,符号部により符号化された光信号を復号化するためのマルチポート光復号器を有する中央局と,を有する,光符号分割多重アクセスシステムに関する。そして,符号器は,マルチポート光復号器に応じた中心波長を有するスーパーストラクチャードファイバブラッググレーティング(SSFBG)である。また,マルチポート光復号器は,入力された光信号を,符号パターンごとに波長が所定量異なる光信号に変換する機能を有し,符号器により,符号化された光信号を復号化するものである。
 すなわち,光符号分割多重アクセス(OCDMA)システムにおいては,情報はダウンリンクされる場合のみならず,アップリンクされる場合もある。すなわち,本発明の第1の側面では,情報がダウンリンクされる場合の構成を規定している。しかしながら,OCDMAシステムでは,ダウンリンクの際に符号器だったものは,アップリンクの際には復号器として機能する。また,OCDMAシステムでは,ダウンリンクの際に復号器であったものは,アップリンクの際には符号器として機能する。すなわち,本来,OCDMAシステムにおける符号器は復号器の機能をも有するものである。よって,本発明の第2の側面においても,先に説明した本発明の第1の側面における構成を適宜採用できる。このようにすることで,ユーザー側に小型でかつ安価なSSFBGによる符号器/復号器を持たせ,中央局にひとつのデバイスで複数のユーザーを処理できるマルチポート復号器,符号器を持たせることできる。
 本発明は,基本的には,中央局はマルチポートAWG符号器を用いて光符号を発生する。そして,各クライアントはSSFBGを含む復号器を用いて光符号を復号化する。中央局では,効果であるが性能に優れたマルチポートAWG符号器を用いることで,中央局における高価な符号器の数を減らすことができる。また,マルチポートAWG符号器のコストは,複数のクライアントがシェアすることで,軽減できる。さらに,本発明では,復号器として,マルチポートAWG符号器に比べて安いSSFGBを用いる。このように廉価なSSFBGを復号器が有することで,復号器のコストを抑えることができ,ユーザー数を増加させることができる。このように,本発明によれば,汎用性のあるOCDMAシステムを提供できる。
 以下,図面を用いて本発明を説明する。図1は,本発明の光符号分割多重アクセスシステムを説明するためのブロック図である。図1に示されるように,本発明の第1の側面に係る光符号分割多重アクセス(OCDMA)システムは,光符号を発生する中央局(2)と,符号化された光信号を復号化する復号部(4)とを有する。そして,中央局(2)は,マルチポート光符号器(1)を有しており,これにより光符号を発生する。復号部(4)は,復号器(3)を有する。そして,復号器(3)は,符号化された光信号を復号化できるように設計されたSSFBGを有する。図1に示されるように,中央局(2)と,復号部(4)とは,光情報通信網(6)により,光学的に接続されている。この光情報通信網として,スターカプラ形式のものが好ましい。
 そして,第1の側面におけるマルチポート光符号器(1)は,入力された光信号を,符号パターンごとに波長が所定量異なる符号化された光信号に変換するものである。具体的には,上記した非特許文献1及び非特許文献2に開示された光符号器を用いることができる。
 図2は,本発明のマルチポート光符号器の例を示す図である。図2に示されるように,本発明における好ましいマルチポート光符号器(1)は,アレイ導波路回折格子(AWG)(10)を含むものである。そして,AWGは,複数の入力ポート(11)と,入力スラブカプラ(12)と,出力スラブカプラ(13)と,複数の光導波路(14)と複数の出力ポート(15)とを有する。入力スラブカプラ(12)は,複数の入力ポート(11)と接続されたスラブ導波路である。また,出力スラブカプラ(13)は,入力スラブカプラ(12)からの光が入力するスラブ導波路である。そして,入力スラブカプラ(12)と出力スラブカプラ(13)とは,複数の光導波路(14)によって光学的に接続されている。また,それぞれの光導波路(14)は,所定量ずつ長さが異なっており,経路長の差に応じた時間遅延を通過する光信号に与えることができる。複数の出力ポート(15)は,出力スラブカプラ(13)に接続されており,符号化された信号が出力される。そして,この出力ポート(15)は,ネットワークと接続されている。
 入力ポート(11)から入力スラブカプラ(12)に入力した光は複数の導波路(14)へと伝播する。そして,導波路(14)は,内側から外側になるにつれ所定量ずつ長さが長くなる。この導波路は,基板部分より屈折率が高いコアにより形成されている。コアが周囲部分(クラッド)よりも屈折率を高くすることで,導波路を伝播する光が外に飛び出す事態を防止できる。それぞれの導波路(14)を経た光は,出力スラブカプラ(13)へと到達する。この際に,導波路(14)による光路長に応じた遅延差が与えられることとなる。出力スラブカプラ(13)では,導波路(14)から伝播した光が波紋として伝わる。そして,波紋の頂点を打ち消しあいながら出力スラブカプラ(13)の出口部分まで伝播し,出口部分で最も光が強くなる光点ができる。この光点の位置は,入力ポートの位置や,入力光の波長などにより異なる。一方,ある波長の光を入力信号として用いた場合は,入出力ポートが異なると異なるパターンを有する光信号が出力される。このパターンの違いにより,光信号を符号化できることとなる。
 上記のようなマルチポート光符号器をマルチポートAWG符号器ともよぶ。マルチポートAWG符号器は,上記の非特許文献1及び非特許文献2において提案されているように,柔軟性に優れた符号器である。
 好ましいマルチポートAWG符号器は,以下の関係を満たすものである。すなわち,複数の光導波路(14)が周囲に位置するクラッドより屈折率が高いコアを含む。そして,光導波路(14)のコアを導波する光に対する実効屈折率(effective refractive index)をnとし,複数の出力ポート(15)が出力スラブカプラ(13)と接続される部分の間隔をd[μm]とし,複数の光導波路(14)が複数の入力スラブカプラ(12)と接続される部分の間隔をd[μm]とし,入力される光信号の中心波長をλ[nm]とし,複数の出力ポート(15)の数をN[個]とする。
 そして,複数の入力ポート(11)が入力スラブカプラ(12)と接続される部分の間隔をd[μm]とした場合,dとdとは同じである。また,複数の光導波路(14)が前記複数の出力スラブカプラ(13)と接続される部分の間隔もd[μm]である。Rを前記インプットスラブカプラの焦点長さとすると,アウトプットスラブカプラの焦点長さもRである。さらに,λ,R,N,n,d及びdは,λR=Nnddの関係を満たす。
 上記の条件においては,非特許文献1及び非特許文献2において説明されるように,効果的に光符号を得ることができる。
 図3は,マルチポートAWG符号器の外見例を説明するための図である。このようなマルチポートAWG符号器/復号器は,非特許文献1及び非特許文献2において説明されるとおり公知である。そして,その動作も,これらの文献において説明されるとおり公知である。
 図4は,マルチポートAWG符号器により符号化された光信号の例を示すグラフである。図4に示されるように,マルチポートAWG符号器を用いることで,入力された光信号を,符号パターンごとに波長が所定量異なる符号化された光信号に変換することができる。
 復号部(4)は,復号器(3)を有する。そして,復号器(3)は,符号化された光信号を復号化できるように設計されたSSFBGを有する。復号部(4)は,中央局とネットワークを通じて接続されたクライアントである。そして,通常復号部は,多数である。
 先に説明したマルチポートAWG符号器/復号器によって符号化された場合,マルチポート符号器/復号器を用いることで容易に復号化できる。すなわち,先に説明したようにして符号化された光信号を復号化するためには,原理的には,マルチポートAWG符号器と同じ構成を有するマルチポートAWG復号器を用いればよい。つまり,ある入出力ポートで符号化された信号は,同じ入出力ポートを経ることで自己相関波形として出力される。一方,符号化された際の入出力ポートと異なる入出力ポートを経た場合,相互相関波形として出力される。この自己相関波形と相互相関波形とでは,波形が全く異なるため,容易に復号化できることとなる。
 しかしながら,本発明では,マルチポートAWG復号器を用いずに,符号化された光信号を復号化できるように設計されたSSFBGを用いる。このSSFBGは,光パルスを,光位相符号を用いて符号化/復号化することができるものである。このSSFBGは,たとえば,光パルスを,時間軸上に順次配列したチップパルスの列として時間拡張して,そのようなチップパルスの列を生成して出力するための位相制御手段を有する光パルス時間拡張器である。
 本発明の復号器(3)は,符号化された光信号に応じた中心波長を有するスーパーストラクチャードファイバブラッググレーティング(SSFBG)である。「符号化された光信号に応じた中心波長を有する」とは,特定の波長の光を選択的に反射又は透過することを意味し,この特定の波長が符号化された光信号に応じた中心波長領域の波長であることを意味する。
 本発明では,SSFBGを復号器の要素として用いる。しかしながら,このSSFBGは,本来符号器及び復号器として機能するものである。
 第1の側面においては,符号パターンごとに波長が所定量異なる光信号により符号化が達成される。このような場合,符号器と同様の構成を有する復号器を用いるのが通常である。一方,スーパーストラクチャードファイバグレーティング(SSFBG)符号器/復号器は,TS-OCDMA符号器/復号器として知られている。SSFBGは,大量生産できるため低コストである。さらに,SSFBGは,分極に依存せず超長TS-OC処理を行うことができ,低損失であり,かつ符号長さに依存しない挿入損失という特質を有する。このため,復号器として符号器と対称の構成を有するものではなく,復号器として,SSFBGを用いることで,汎用性のあるOCDMAシステムを実現できる。
 図5は,SSFBGを含む復号器の例を示す図である。図5に示されるように,この復号器(3)は,光ファイバ(21,22)と,光信号が入力するサーキュレータ(23)と,SSFBG(24)とを有する。このSSFBG(24)は,光ファイバの導波方向に沿って複数の単位FBGが配列されて構成されたSSFBGである。以下説明する,SSFBGは,光ファイバ形式のものである。光ファイバは,コアと,クラッドとを含む。コアは,光ファイバの光導波路である。そして,SSFBGは,コアの導波方向に沿って直列に配置された複数の単位FBGを含む。
 SSFBG(24)を構成する単位FBG(25a,25b,25c,25d・・・)は,それぞれ光符号の各チップと対応する。通常のOCDMAに用いるSSFBGは,隣接する単位FBGから反射されるブラッグ反射光の位相関係を用いて符号値が決定される。本発明において,符号値は,0及び1のみではなく,負の数や,0と1の間の数も取りうる。たとえば,隣接するチップが同じ符号値をとる場合は,これに対応する単位FBGから反射されるブラッグ反射光の位相が同じくなるようにすればよい。一方,隣接するチップが異なる符号値をとる場合は,これに対応する単位FBGから反射されるブラッグ反射光の位相が異なるようにすればよい。
 本発明の第1の側面の好ましい態様は,SSFBGが,複数のチップを含む。そして,符号化された光信号に応じた時間拡散,及び位相シフトを行うことができるように,各チップにおける周期的屈折率変化のチップ間位相を変化させたものである。
 本発明の第1の側面の好ましい態様は,SSFBGは,複数のチップを含むものであり,複数のチップは,符号化された光信号に応じた中心波長付近の光を選択的に反射するような位相を有し,これにより,前記符号化された光信号に応じた中心波長付近の光を選択的に反射するものである。上記の態様と同様,廉価なSSFBGを用いても,マルチポートAWG符号器によって符号化された光信号を復号化できる。マルチポート光符号器によって生成された光符号は符号パターンによって波長がずれる性質を持っている。このため,SSFBGを生成された光符号に特化した狭帯域フィルタとして用いることにより,ある光符号のみを取り出すことができる。これにより,簡単な構成で復号器を作成できることとなる。
 表1に,いくつかの中心波長の光信号に対して,16段階位相シフトSSFBGの設計例を示す。
Figure JPOXMLDOC01-appb-T000001
 図6は,表1の設計例に従って製造したSSFBGの光透過特性を示すグラフである。すなわち,単位FBGの位相を調整することで,特定の中心波長を有する光を選択的に反射させることができる。たとえば,符号器として,上記の4つの中心波長を含むように符号化する場合,SSFBGを上記のように設計することで,符号化された信号を容易に抽出することができる。これにより,マルチポートAWG復号器を用いなくても,効果的に復号化することができることとなる。
 図7は,本発明のOCDMAシステムの応用例を示す図である。この例は,WDM(波長分割多重)-OCDMAを実現するシステムの例である。この例では,nポートのWDMマルチプレクサ(WDM-MUX)により,多重化された光信号が出力される。その出力された光信号はm×mマルチポートOCDMA符号器に入力する。このm×mマルチポートOCDMA符号器は,たとえば,先に説明したマルチポートAWG符号器である。入力信号は,このマルチポートOCDMA符号器にて符号化される。符号化された光信号は,符号化パターンごとに中心波長の周波数が異なる。この符号化された光信号は,ネットワークを通じて,分波器へと到達する。分波器であるWDM-DEMUXは,あて先に応じて光信号を分波する。そして,あて先に応じたLANなどの領域(LAN1・・・LANn)へ光信号が出力される。そして,光信号は,適宜分波され,領域内で各ユーザーの終端装置(ONU)へ伝播する。
 ONUは,復号部として機能する。復号部は,マルチポート符号器の符号化に対応した特性を有するSSFBGを含む復号器を有している。たとえば,光符号部が,光信号をパターンOCに応じて符号化した場合,そのパターンOCに対応したSSFBGを有するONU-1が,この信号を復号化できることとなる。すなわち,本発明の好ましい利用態様は,WDMかつOCDMAを用いた通信システムである。
 本発明の第2の側面は,符号器を有する符号部と,符号部により符号化された光信号を復号化するためのマルチポート光復号器を有する中央局と,を有する,光符号分割多重アクセスシステムに関する。そして,符号器は,マルチポート光復号器に応じた中心波長を有するスーパーストラクチャードファイバブラッググレーティング(SSFBG)である。また,マルチポート光復号器は,入力された光信号を,符号パターンごとに波長が所定量異なる光信号に変換する機能を有し,符号器により,符号化された光信号を復号化するものである。
 すなわち,光符号分割多重アクセス(OCDMA)システムにおいては,情報はダウンリンクされる場合のみならず,アップリンクされる場合もある。すなわち,本発明の第1の側面では,情報がダウンリンクされる場合の構成を規定している。しかしながら,OCDMAシステムでは,ダウンリンクの際に符号器だったものは,アップリンクの際には復号器として機能する。また,OCDMAシステムでは,ダウンリンクの際に復号器であったものは,アップリンクの際には符号器として機能する。すなわち,本来,OCDMAシステムにおける符号器は復号器の機能をも有するものである。よって,本発明の第2の側面においても,先に説明した本発明の第1の側面における構成を適宜採用できる。このようにすることで,ユーザー側に小型でかつ安価なSSFBGによる符号器/復号器を持たせ,中央局にひとつのデバイスで複数のユーザーを処理できるマルチポート復号器,符号器を持たせることができる。
 16レベル位相シフトSSFBG符号器/復号器の性能
 図8は,実施例1において,光信号を調整するために用いた実験系を示す構成図である。この例では,シンセサイザーを用いて,9.95328GHzの駆動信号を得る。この駆動信号を,モード同期レーザーダイオード入力する。これにより1.8psのパルス光を得る。一方,この駆動信号(C192)は,クロック信号として,パルスパターンジェネレータ(PPG)/及びビットエラーレートテスタ(BERT)へと入力される。モード同期レーザーダイオードの出力光は,適宜EDFAにより増幅されて,7.8nmのバンドパスフィルタ(BPF)を経て,さらに偏光調整器(PC)を経て,位相変調器(PM)へと入力される。この位相変調器には,バイアス電圧が印加される。さらに,この位相変調器には,PPGからの駆動信号が入力される。位相変調器からの出力信号は,適宜,増幅され,フィルタ及び偏光調整器を経て,符号器に入射する。
 図9は,本実施例において実際に用いたマルチポートAWG符号器の外観例を説明するための図面に替わる写真である。このマルチポートAWG符号器には,図2及び図3に示したようなマルチポートAWG符号器を用いた。具体的には,プレーナ光波回路に導波路を設けた16-チップマルチポートAWG符号器を用いた。パルス間隔は5psであり,チップレートは200Gchip/sであった。ポート1からポート8を経たそれぞれの光信号は,0,5,10,・・・・80m秒の時間遅延を有していた。
 観測系において,光可変アテネータ(VOA)を用いて波長ごとに光強度を調整した。そして,マッハツェンダー干渉計にて分波するとともに,一方の導波路を伝播する光に対して93psの時間遅延を与えた。その後,デュアルピンフォトディテクターを用いてバランスト検波を行った。その後,ローパスフィルターを経て,BERTにて,BERを測定した。
 図10は,実施例1における実験系を示す図である。図8と同じものは説明を省略する。図10では,符号器として,SSFBGを用いた。このSSFBGは,16チップ,16位相レベルのものを用いた。そして,表1に示したように,透過させる中心波長に応じて,各チップの位相を調整した。図11は,本実施例において用いたSSFBGの外観を示す図面に替わる写真である。
 本実施例では,4つの16チップのSSFBG復号器(FBG1-4)を用意した。これらのFBGは,16個の入力ポート及び16個の出力ポートを有する。このFBGは,+/-λ/8ステップでチップグレーティングをシフトさせることによって,中心波長が1551nm,チップ長が約0.52mm,グレーティングの全長が8.32mmとなった。これらのグレーティングには,2つの16レベル位相シフトパターンを用いた。FBG1及び2のパターンは,OC-1であり,FBG3及び4のパターンはOC-2とした。OC-1は,マルチポート符号器の第1番目の入力ポートから入力され,第3番目の出力ポートから出力された光信号に対応する。一方,OC-2は,マルチポート符号器の第1番目の入力ポートから入力され,第7番目の出力ポートから出力された光信号に対応する。
 図12は,入力パルスの波形を示すグラフである。図13A~図13Cは,パターンOC-1のFBGにより符号化された光符号と,AWGを用いた符号器(AWG符号器)により符号化された光符号とを示すグラフである。図13Aは,FBG1を用いて符号化した光信号を示すグラフである。図13Bは,FBG2を用いて符号化した光信号を示すグラフである。図13Cは,AWG符号器を用いて符号化した光信号を示すグラフである。図14A~図14Cは,パターンOC-2のFBGにより符号化された光符号と,AWGを用いた符号器(AWG符号器)により符号化された光符号とを示すグラフである。図14Aは,FBG3を用いて符号化した光信号を示すグラフである。図14Bは,FBG4を用いて符号化した光信号を示すグラフである。図14Cは,AWG符号器を用いて符号化した光信号を示すグラフである。
 図13Aに示されるとおり,FBG1を用いて得られた光符号の持続時間は約80psであり,チップレートは200Gchip/sであった。SSFBGによる光符号の時間波形は,AWGによる光符号の時間波形と異なる。これは,位相シフトパターンを中心にFBGを設計し,単位FBGにおける屈折率分布がほぼ一様な(ユニフォームな)グレーティングを用いたことが主な原因であると考えられる。たとえば,実効屈折率をグレーティング全体に沿って慎重に設計することにより,発生する信号の時間波形をさらに改善であろうと考えられる。
 図14A~図14Cに示されるように,パターンOC-2のSSFBGから発生した,個々のチップ由来の光符号ピークは,OC-1のものよりも明瞭でなく,またAWGのものよりも明瞭ではなかった。
 図15A~図15Dは,符号器及び復号器として,パターンOC-1のSSFBGとAWGとを組み合わせた場合の自己相関波形を示すグラフである。図15Aは,比較のために用いられるグラフであり,符号器及び復号器がそれぞれAWG及びAWGのものを示すグラフである。図15Bは,符号器及び復号器がそれぞれFBG1及びFBG2のものを示すグラフである。図15Cは,符号器及び復号器がそれぞれAWG及びFBG2のものを示すグラフである。図15Dは,符号器及び復号器がそれぞれAWG及びFBG1のものを示すグラフである。
 図16A~図16Dは,符号器及び復号器として,パターンOC-1のSSFBGとAWGとを組み合わせた場合の自己相関波形を示すグラフである。図16Aは,比較のために用いられるグラフであり,符号器及び復号器がそれぞれAWG及びAWGのものを示すグラフである。図16Bは,符号器及び復号器がそれぞれFBG3及びFBG4のものを示すグラフである。図16Cは,符号器及び復号器がそれぞれAWG及びFBG3のものを示すグラフである。図16Dは,符号器及び復号器がそれぞれAWG及びFBG4のものを示すグラフである。
 図15A~図15D及び図16A~図16Dに示されるとおり,得られた自己相関波形は極めて似ており,符号器及び復号器として,AWG及びSSFBGを任意に組み合わせても,適切に動作することがわかる。
 図17(図17A及び図17B)は,AWG符号器及びSSFBG符号器の自己相関と相互相関のパワーコントラスト比(PCR)を比較するためのグラフである。図17Aは,パターンOC-1のSSFBGとAWGとを比較するためのグラフである。図17Bは,パターンOC-2のSSFBGとAWGとを比較するためのグラフである。図17A及び図17Bから,符号器として,いずれもAWG符号器を用いたものである。符号器及び復号器がそれぞれAWGであるものと,符号器がAWGであって復号器がSSFBGであるものは,同様の性能を有するものの,後者の性能は概して1~5dB低いことがわかる。
 FGB1~FBG4はユニフォームドグレーティングを採用しており,かつ設計が必ずしも完全ではないことを考慮すれば,これらの結果はかなり良いものであるといえる。加えて,SSFBGの復号器は,温度変化耐性に優れる。この実験において,AWG符号器の温度変化は2~2.5℃であるが,PCRの変化は1dB以内であった。これらの性能は,マルチポートAWGタイプの符号器及び多重位相レベルの位相シフトSSFBG復号器を用いた組合せにより達成できるものである。すなわち,AWG符号器とFBG復号器の組合せにより,柔軟でコスト効果の良いOCDMAネットワークを構築できるといえる。また,このネットワークの性能は,SSFBGをアポダイズする(グレーティングの両端に加える屈折率変調する)ことによって,さらに向上すると考えられる。
 図18は,符号器及び復号器ともにSSFBGを用いた際の実験系を示す図である。
 マルチユーザーOCDMAの実験
 図19は,ハイブリッドマルチポートのAWG符号器及びSSFBG復号器を用いた,10Gbps,8ユーザーのDPSK-OCDMAを実証するための実験系を示すブロック図である。
 図20(図20A~図20F)は,実験系の各地点における,波長,スペクトル及びアイダイアグラムを示すグラフである。図20Aは,地点αに関するグラフである。図20Bは,地点βに関するグラフである。図20Cは,地点γに関するグラフである。図20Dは,地点πに関するグラフである。図20Eは,地点θに関するグラフである。図20Fは,地点ξに関するグラフである。
 この実験系において,モード同期レーザーダイオード(MLLD)は,中心波長1550.8nm,反復周波数9.95328GHz(OC192)の,約1.8psの光パルスを発生する。光信号を,ニオブ酸リチウム位相変調回路(LN-PM)により形成された差動位相シフトキーイング(DPSK)により調節した(図19のα地点)。そのデータは,223-1擬似ランダムビット列(PRBS)であった。
 この信号を,16×16ポートのAWG符号器の第8ポートに送り,8つの異なる光符号を得た(図19のβ地点)。これら8つの信号を,8×10Gps非同期OCDMAネットワークを想定した,等しいパワー,ランダム遅延,ランダムビット位相,及びランダム分極状態で,合波した(図19のγ地点)。その測定を,最も悪い状態を想定して行った。すなわち,ビット同期及び同一偏波を想定した。
 受信側では,16チップ,16レベル位相シフトSSFBG復号器が,受信した多重OCDMA信号を目標信号に復号した(図19のπ地点)。ファイバベースの干渉計とバランスト検波器とを用いて,DPSK信号を検出した(図19のθ地点)。データを,クロックデータリカバリー(CDR)回路を用いて復元した(図19の地点ξ)。また,ビットエラーレートテスター(BERT)を用いて,BERを測定した。図20E及び図20Fに示されるとおり,図19の地点θ及び地点ξにおいて,8ユーザーのOCDMAに対して,明確なアイ開口が観察された。
 図21は,異なるSSFBG復号器での1(K=1)及び8ユーザー(K=8)に対する,BER性能の測定結果を示すグラフである。図中○は,位相変調後のバックトゥバック,黒塗り四角は符号器としてG1429(Code1)を用いた場合であって1ユーザーのもの,中抜き四角は符号器としてG1429(Code1)を用いた場合であって8ユーザーのもの,黒塗りひし形は符号器としてG1430(Code2)を用いた場合であって1ユーザーのもの,中抜きひし形は符号器としてG1430(Code2)を用いた場合であって8ユーザーのもの,黒塗り三角は符号器としてG1431(Code2)を用いた場合であって1ユーザーのもの,中抜き三角は符号器としてG1431(Code2)を用いた場合であって8ユーザーのもの,×は符号器としてG1433(Code2)を用いた場合であって1ユーザーのもの,及び符号器としてG1433(Code2)を用いた場合であって8ユーザーのものを示す。どちらのケースにおいても4つ全ての復号器に対して,エラーフリーが達成された。一方,K=1と比べるとK=8のOCDMAでは,BER=10-9において,約4dBのパワー損失が観察された。
 本発明は,光情報通信の分野において好適に利用されうる。
図1は,本発明の光符号分割多重アクセスシステムを説明するためのブロック図である。 図2は,本発明のマルチポート光符号器の例を示す図である。 図3は,マルチポートAWG符号器の外見例を説明するための図である。 図4は,マルチポートAWG符号器により符号化された光信号スペクトルの例を示すグラフである。 図5は,SSFBGを含む復号器の例を示す図である。 図6は,表1の設計例に従って製造したSSFBGの光透過特性を示すグラフである。 図7は,本発明のOCDMAシステムの応用例を示す図である。 図8は,実施例1において,光信号を調整するために用いた実験系を示す構成図である。 図9は,本実施例において実際に用いたマルチポートAWG符号器の外観例を説明するための図面に替わる写真である。 図10は,実施例1における実験系を示す図である。 図11は,本実施例において用いたSSFBGの外観を示す図面に替わる写真である。 図12は,入力パルスの波形を示すグラフである。 図13A~図13Cは,パターンOC-1のFBGにより符号化された光符号と,AWGを用いた符号器(AWG符号器)により符号化された光符号とを示すグラフである。図13Aは,FBG1を用いて符号化した光信号を示すグラフである。図13Bは,FBG2を用いて符号化した光信号を示すグラフである。図13Cは,AWG符号器を用いて符号化した光信号を示すグラフである。 図14A~図14Cは,パターンOC-2のFBGにより符号化された光符号と,AWGを用いた符号器(AWG符号器)により符号化された光符号とを示すグラフである。図14Aは,FBG3を用いて符号化した光信号を示すグラフである。図14Bは,FBG4を用いて符号化した光信号を示すグラフである。図14Cは,AWG符号器を用いて符号化した光信号を示すグラフである。 図15(図15A~図15D)は,符号器及び復号器として,パターンOC-1のSSFBGとAWGとを組み合わせた場合の自己相関波形を示すグラフである。図15Aは,比較のために用いられるグラフであり,符号器及び復号器がそれぞれAWG及びAWGのものを示すグラフである。図15Bは,符号器及び復号器がそれぞれFBG1及びFBG2のものを示すグラフである。図15Cは,符号器及び復号器がそれぞれAWG及びFBG2のものを示すグラフである。図15Dは,符号器及び復号器がそれぞれAWG及びFBG1のものを示すグラフである。 図16(図16A~図16D)は,符号器及び復号器として,パターンOC-1のSSFBGとAWGとを組み合わせた場合の自己相関波形を示すグラフである。図16Aは,比較のために用いられるグラフであり,符号器及び復号器がそれぞれAWG及びAWGのものを示すグラフである。図16Bは,符号器及び復号器がそれぞれFBG3及びFBG4のものを示すグラフである。図16Cは,符号器及び復号器がそれぞれAWG及びFBG3のものを示すグラフである。図16Dは,符号器及び復号器がそれぞれAWG及びFBG4のものを示すグラフである。 図17(図17A及び図17B)は,AWG符号器及びSSFBG符号器の自己相関と相互相関のパワーコントラスト比(PCR)を比較するためのグラフである。図17Aは,パターンOC-1のSSFBGとAWGとを比較するためのグラフである。図17Bは,パターンOC-2のSSFBGとAWGとを比較するためのグラフである。 図18は,符号器及び復号器ともにSSFBGを用いた際の実験系を示す図である。 図19は,ハイブリッドマルチポートのAWG符号器及びSSFBG復号器を用いた,10Gbps,8ユーザーのDPSK-OCDMAを実証するための実験系を示すブロック図である。 図20(図20A~図20F)は,実験系の各地点における,波長,スペクトル及びアイダイアグラムを示すグラフである。図20Aは,地点αに関するグラフである。図20Bは,地点βに関するグラフである。図20Cは,地点γに関するグラフである。図20Dは,地点πに関するグラフである。図20Eは,地点θに関するグラフである。図20Fは,地点ξに関するグラフである。 図21は,異なるSSFBG復号器での1(K=1)及び8ユーザー(K=8)に対する,BER性能の測定結果を示すグラフである。
符号の説明
1 マルチポート光符号器;2 中央局(2); 3 復号器;4 復号部; 5光符号分割多重アクセスシステム

Claims (10)

  1.  マルチポート光符号器(1)を有する中央局(2)と,前記マルチポート光符号器(1)により符号化された光信号を復号化するための復号器(3)を有する復号部(4)とを有する,光符号分割多重アクセスシステム(5)であって,
     
     前記マルチポート光符号器(1)は,
      入力された光信号を,符号パターンごとに波長が所定量異なる符号化された光信号に変換するものであり,
     
     前記復号器(3)は,
      前記符号化された光信号に応じた中心波長を有するスーパーストラクチャードファイバブラッググレーティング(SSFBG)である,
     
     光符号分割多重アクセスシステム。
  2.  前記マルチポート光符号器(1)は,アレイ導波路回折格子(10)を含み,
      
     前記アレイ導波路回折格子(10)は,
      複数の入力ポート(11)と,
      前記複数の入力ポート(11)と接続された入力スラブカプラ(12)と,
      前記入力スラブカプラ(12)からの光が入力する出力スラブカプラ(13)と,
      前記入力スラブカプラ(12)と,前記出力スラブカプラ(13)とを接続する,複数の光導波路(14)であって,それぞれの光導波路は所定量ずつ長さが異なるものと,
      前記出力スラブカプラ(13)と接続された,複数の出力ポート(15)と,
     を含む,
     
     請求項1に記載の光符号分割多重アクセスシステム。
     
  3.  前記マルチポート光符号器(1)は,アレイ導波路回折格子(10)を含み,
      
     前記アレイ導波路回折格子(10)は,
      複数の入力ポート(11)と,
      前記複数の入力ポート(11)と接続された入力スラブカプラ(12)と,
      前記入力スラブカプラ(12)からの光が入力する出力スラブカプラ(13)と,
      前記入力スラブカプラ(12)と,前記出力スラブカプラ(13)とを接続する,複数の光導波路(14)であって,それぞれの光導波路は所定量ずつ長さが異なるものと,
      前記出力スラブカプラ(13)と接続された,複数の出力ポート(15)と,
     を含み,
     
     前記複数の光導波路(14)は,
      コアを含み,
      前記コアは,前記コアの周囲に位置するクラッドより屈折率が高く,
      前記光導波路(14)のコアを導波する光に対する実効屈折率をnとし,
     
     前記複数の出力ポート(15)間の間隔であって,前記複数の出力ポート(15)が前記出力スラブカプラ(13)と接続される部分の間隔をd[μm]とし,
     前記複数の光導波路(14)間の間隔であって,前記複数の光導波路(14)が前記複数の入力スラブカプラ(12)と接続される部分の間隔をd[μm]とし,
     入力される光信号の中心波長をλ[nm]とし,
     前記複数の出力ポート(15)の数をN[個]とした際に,
     
     前記複数の入力ポート(11)間の間隔であって,前記複数の入力ポート(11)が前記入力スラブカプラ(12)と接続される部分の間隔をd[μm]とした場合,前記dと前記dとは同じであり,
     
      前記複数の光導波路(14)間の間隔であって,前記複数の光導波路(14)が前記複数の出力スラブカプラ(13)と接続される部分の間隔は,前記d[μm]であり,
     
      前記インプットスラブカプラの焦点長さ及び前記アウトプットスラブカプラの焦点長さをともにRとし,
     
     前記λ,前記R,前記N,前記n,前記d及び前記dは,λR=Nnddの関係を満たす,
     
     請求項1に記載の光符号分割多重アクセスシステム。
     
  4.  前記SSFBGは,
      複数のチップを含むものであり,
      前記符号化された光信号に応じた時間拡散,及び位相シフトを行うことができるように,
      前記複数のチップを構成する各チップにおける周期的屈折率変化のチップ間位相を変化させたものである,
     
     請求項1又は請求項2に記載の光符号分割多重アクセスシステム。
  5.  前記SSFBGは,
      複数のチップを含むものであり,
      前記複数のチップは,符号化された光信号に応じた中心波長付近の光を選択的に反射するような位相を有し,
      これにより,前記符号化された光信号に応じた中心波長付近の光を選択的に反射する,
     
     請求項1又は請求項2に記載の光符号分割多重アクセスシステム。
     
  6.  符号器を有する符号部と,前記符号部により符号化された光信号を復号化するためのマルチポート光復号器を有する中央局と,を有する,光符号分割多重アクセスシステムであって,
     
     前記符号器は,
      前記マルチポート光復号器に応じた中心波長を有するスーパーストラクチャードファイバブラッググレーティング(SSFBG)であり,
     
     前記マルチポート光復号器は,
      入力された光信号を,符号パターンごとに波長が所定量異なる光信号に変換する機能を有し,
      前記符号器により,符号化された光信号を復号化するものである,
     
     光符号分割多重アクセスシステム。
  7.  前記マルチポート光復号器は,アレイ導波路回折格子を含み,
      
     前記アレイ導波路回折格子は,
      複数の入力ポートと,
      前記複数の入力ポートと接続された入力スラブカプラと,
      前記入力スラブカプラからの光が入力する出力スラブカプラと,
      前記入力スラブカプラと,前記出力スラブカプラとを接続する,複数の光導波路であって,それぞれの光導波路は所定量ずつ長さが異なるものと,
      前記出力スラブカプラと接続された,複数の出力ポートと,
     を含む,
     
     請求項6に記載の光符号分割多重アクセスシステム。
  8.  前記マルチポート光復号器は,アレイ導波路回折格子を含み,
      
     前記アレイ導波路回折格子は,
      複数の入力ポートと,
      前記複数の入力ポートと接続された入力スラブカプラと,
      前記入力スラブカプラからの光が入力する出力スラブカプラと,
      前記入力スラブカプラと,前記出力スラブカプラとを接続する,複数の光導波路であって,それぞれの光導波路は所定量ずつ長さが異なるものと,
      前記出力スラブカプラと接続された,複数の出力ポートと,
     を含み,
     
     前記複数の光導波路は,
      コアを含み,
      前記コアは,前記コアの周囲に位置するクラッドより屈折率が高く,
      前記光導波路のコアを導波する光に対する実効屈折率をnとし,
     
     前記複数の出力ポート間の間隔であって,前記複数の出力ポートが前記出力スラブカプラと接続される部分の間隔をd[μm]とし,
     前記複数の光導波路間の間隔であって,前記複数の光導波路が前記複数の入力スラブカプラと接続される部分の間隔をd[μm]とし,
     入力される光信号の中心波長をλ[nm]とし,
     前記複数の出力ポートの数をN[個]とした際に,
     
     前記複数の入力ポート間の間隔であって,前記複数の入力ポートが前記入力スラブカプラと接続される部分の間隔をd[μm]とした場合,前記dと前記dとは同じであり,
     
      前記複数の光導波路間の間隔であって,前記複数の光導波路が前記複数の出力スラブカプラと接続される部分の間隔は,前記d[μm]であり,
     
      前記インプットスラブカプラの焦点長さ及び前記アウトプットスラブカプラの焦点長さをともにRとし,
     
     前記λ,前記R,前記N,前記n,前記d及び前記dは,λR=Nnddの関係を満たす,
     
     請求項6に記載の光符号分割多重アクセスシステム。
     
  9.  前記SSFBGは,
      複数のチップを含むものであり,
      前記符号化された光信号に応じた時間拡散,及び位相シフトを行うことができるように,
      前記複数のチップを構成する各チップにおける周期的屈折率変化のチップ間位相を変化させたものである,
     
     請求項6又は請求項7に記載の光符号分割多重アクセスシステム。
  10.  前記SSFBGは,
      複数のチップを含むものであり,
      前記複数のチップは,符号化された光信号に応じた中心波長付近の光を選択的に反射するような位相を有し,
      これにより,前記符号化された光信号に応じた中心波長付近の光を選択的に反射する,
     
     請求項6又は請求項7に記載の光符号分割多重アクセスシステム。
PCT/JP2009/000689 2008-02-20 2009-02-19 光符号分割多重アクセスシステム WO2009104396A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980105671.1A CN101953103B (zh) 2008-02-20 2009-02-19 光码分多址***
KR1020107018626A KR20120085944A (ko) 2008-02-20 2009-02-19 광부호 분할 다중 액세스 시스템
GB1013807.1A GB2469604B (en) 2008-02-20 2009-02-19 An optical code division multiplexing access system
US12/918,322 US20110013909A1 (en) 2008-02-20 2009-02-19 Optical Code Division Multiplexing Access System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008039190A JP2009200733A (ja) 2008-02-20 2008-02-20 光符号分割多重アクセスシステム
JP2008-039190 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104396A1 true WO2009104396A1 (ja) 2009-08-27

Family

ID=40985284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000689 WO2009104396A1 (ja) 2008-02-20 2009-02-19 光符号分割多重アクセスシステム

Country Status (6)

Country Link
US (1) US20110013909A1 (ja)
JP (1) JP2009200733A (ja)
KR (1) KR20120085944A (ja)
CN (1) CN101953103B (ja)
GB (1) GB2469604B (ja)
WO (1) WO2009104396A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786333B2 (ja) * 2011-01-05 2015-09-30 日本電気株式会社 電気光学変調器
JP5287956B2 (ja) * 2011-09-05 2013-09-11 沖電気工業株式会社 受動光ネットワーク通信方法及び受動光ネットワーク通信システム
CN102752067B (zh) * 2012-06-08 2015-04-22 深圳大学 一种具有零相关窗的二维光正交码的形成方法及装置
CN105577281A (zh) * 2016-01-13 2016-05-11 深圳大学 一种移动节点之间的fso通信网络***
CN108471331A (zh) * 2018-03-30 2018-08-31 深圳大学 一种基于码移键控光编码和数据加密的光纤安全传输***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020447A (ja) * 2003-06-26 2005-01-20 Oki Electric Ind Co Ltd 光符号分割多重通信システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0005615D0 (en) * 2000-03-09 2000-05-03 Univ Southampton An optical processing device based on fiber grating
JP4561403B2 (ja) * 2005-02-25 2010-10-13 沖電気工業株式会社 光分割多重送受信方法及び光分割多重送受信装置
JP4655845B2 (ja) * 2005-09-15 2011-03-23 沖電気工業株式会社 光パルス時間拡散器
US7877013B2 (en) * 2006-08-24 2011-01-25 Futurewei Technologies, Inc. Method and system for random channel assignment in WDM based passive optical networks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020447A (ja) * 2003-06-26 2005-01-20 Oki Electric Ind Co Ltd 光符号分割多重通信システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MIDORI WATANABE ET AL.: "Kan'i Jikan Kakusan Shingo o Mochiita Hacho Taju Denso System", IEICE TECHNICAL REPORT, vol. 100, no. 379, 13 October 2000 (2000-10-13), pages 7 - 12 *
NAOYA WADA ET AL.: "Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-part I: modeling and design", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 24, no. ISSUE:, January 2006 (2006-01-01), pages 103 - 112 *
NAOYA WADA ET AL.: "Characterization of a full encoder/decoder in the AWG configuration for code-based photonic Routers-part II: experiments and applications", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 24, no. ISSUE:, January 2006 (2006-01-01), pages 113 - 121 *
NAOYA WADA ET AL.: "Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG en/decoder", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 24, no. ISSUE:, January 2006 (2006-01-01), pages 95 - 102 *

Also Published As

Publication number Publication date
JP2009200733A (ja) 2009-09-03
GB201013807D0 (en) 2010-09-29
GB2469604B (en) 2012-07-04
CN101953103A (zh) 2011-01-19
KR20120085944A (ko) 2012-08-02
US20110013909A1 (en) 2011-01-20
GB2469604A (en) 2010-10-20
CN101953103B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
Matsumoto et al. 40G-OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders
Sotobayashi et al. 1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4 OCDM x 40 WDM x 40 Gb/s) transmission experiment using optical hard thresholding
CA2330185C (en) Cdma communication system
US6956998B2 (en) Compact optical delay lines
KR100831916B1 (ko) 광펄스 시간 확산 장치
JP4977899B2 (ja) 光通信システム,光送信機,光受信機および方法ならびにこれらで用いる光相関器
WO2009104396A1 (ja) 光符号分割多重アクセスシステム
WO2009008154A1 (en) Optical multiport spectral phase encoder
JP3611302B2 (ja) Cdma変復調装置、cdma通信システム、および、wdm・cdma共用通信システム
US7130539B2 (en) All optical decoding systems for optical encoded data symbols
EP1700408B1 (en) Optical device for simultaneously generating and processing optical codes
JP4649582B2 (ja) 光符号分割多重パケット通信システム
Wang et al. Flexible 10 Gbps, 8-user DPSK-OCDMA system with 16× 16 ports encoder and 16-level phase-shifted SSFBG decoders
JP2006060658A (ja) 光符号多重通信方法、光符号多重通信システム、符号化装置、及び復号装置
JP4556780B2 (ja) 光導波路装置及び光符号分割多重通信システム
WO2008141442A1 (en) Transmitter and receiver for optical communication systems
Minato et al. Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder
Kravtsov et al. Self-clocked all-optical add/drop multiplexer for asynchronous CDMA ring networks
Chen Technologies for hybrid wavelength/time optical CDMA transmission
Takiguchi et al. Time-spreading/wavelength-hopping OCDMA experiment using PLC encoder/decoder with large spread factor
Ebrahimi et al. A 10-µs-tuning MEMS-actuated Gires-Tournois filter for use as a tunable wavelength demultiplexer and a tunable OCDMA encoder/decoder
JP2010004230A (ja) 光パルス時間拡散器
Matsumoto et al. Apodized SSFBG encoder/decoder for 40G-OCDMA-PON system
Tarhuni et al. Polarized optical orthogonal code for optical code division multiple access systems
Al-Junid et al. Design of encoder and decoder module for optical code division multiple access (ocdma) systems for zero cross correlation (zcc) code based on arrayed waveguide gratings (awgs)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105671.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1013807

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20090219

WWE Wipo information: entry into national phase

Ref document number: 1013807.1

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 20107018626

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12918322

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09713476

Country of ref document: EP

Kind code of ref document: A1