WO2009100575A1 - 有阻交叉网络实现源路由的方法和装置 - Google Patents

有阻交叉网络实现源路由的方法和装置 Download PDF

Info

Publication number
WO2009100575A1
WO2009100575A1 PCT/CN2008/000305 CN2008000305W WO2009100575A1 WO 2009100575 A1 WO2009100575 A1 WO 2009100575A1 CN 2008000305 W CN2008000305 W CN 2008000305W WO 2009100575 A1 WO2009100575 A1 WO 2009100575A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
link
constraint
wavelength
path
Prior art date
Application number
PCT/CN2008/000305
Other languages
English (en)
French (fr)
Inventor
Zhihong Kang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to US12/865,862 priority Critical patent/US8665749B2/en
Priority to PCT/CN2008/000305 priority patent/WO2009100575A1/zh
Priority to EP08706483A priority patent/EP2247013A4/en
Priority to CN200880127996.5A priority patent/CN101981844B/zh
Publication of WO2009100575A1 publication Critical patent/WO2009100575A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/03Topology update or discovery by updating link state protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/34Source routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for implementing source routing in a cross-over network in an optical transmission device network.
  • the scheduling of wavelength services has certain constraint characteristics on the physical link layer and the wavelength channel layer. Multiple physical transmission links in each node have certain constraint characteristics on service scheduling, not nodes. Service scheduling can be performed between all physical transmission links.
  • the scheduling of the wavelength service is basically up-and-down or straight-through on each node, and there is no wavelength conversion capability.
  • a ROADM Reconfigurable Optical
  • WB Widelength Blocker
  • WSS Widelength Selective Switch
  • TMUX Sub-Transparent Multiplexing
  • DWDM Dense Wavelength Division Multiplexing
  • the exchangeable constraint feature between links only indicates whether there is a possibility of exchange between links. It has the possibility of service schedulability at the link level. As for whether the service can be scheduled, it is also necessary to look at the wavelength channel in the link. Constraint characteristics. Business schedulability needs to be analyzed from two levels of constraint characteristics:
  • a DWDM device network implemented by multi-dimensional ROADM technology
  • two nodes within a node The directional links have the possibility of scheduling services at the link level, and the links between the two directions are internally connected by optical fibers. If the links in these two directions are not connected through the fiber interconnection, there is no service scheduling capability on the two links.
  • the links in each direction of the system are grouped into one group, and the service scheduling capability of each group is represented by the bit.
  • the value of 1 indicates that the two links in the group have the service scheduling capability at the physical link level, which is 0. Indicates that there is no service scheduling capability between the two links in the group at the physical link level.
  • the fixed combination shows that the transmission links in the specific two directions are available at the link level.
  • Table 1 below illustrates this combination.
  • the resistive crossover network model in which the digital cross connect equipment (DXC) is an electrical cross or an optical cross.
  • the west (TE) TE (Terminal Equipment) link passes through the DWDM demultiplexer to distribute the wavelengths in the link among different switching units.
  • the eastward (East) TE link is also the same.
  • the westbound TE chain The wavelengths in the TE and eastbound TE links are in one switching unit to complete the wavelength switching.
  • the wavelength is basically up and down or straight through at each node, and there is no wavelength exchange capability.
  • the wavelength set in each link in a wavelength switching group can achieve wavelength conversion, not in one wavelength group.
  • Wavelength conversion cannot be completed between wavelengths.
  • the same wavelength is a wavelength switching group (or wavelength group).
  • the technical problem to be solved by the present invention is to provide a method and a device for implementing source routing in a blocked cross-network, which overcomes the problem that the available bandwidth of the link is considered as a condition of route calculation in the prior art, and the service path is in the process of establishing a call connection.
  • Wavelength selection requires constant experimentation, causing problems that are too complex to control.
  • the present invention provides a method for implementing source routing in a blocked cross-network, in which the link state advertisement information diffused in the network carries cross-binding characteristic information, and the node that initiates the call according to the link state advertisement information in the network.
  • the cross-constraint characteristic information check path tree obtains a service path; the cross-constraint characteristic information includes physical transport link layer constraint information of the link within the node, which is called link exchange constraint information, and each wavelength channel in the link The constraint information is called wavelength constraint characteristic information.
  • the method includes the following steps:
  • the node uses the link exchange constraint information in the link state advertisement information and the wavelength constraint characteristic information check path tree to select a qualified service path from the path tree.
  • the link exchange constraint information is represented by a working direction and link constraint characteristic information corresponding to the working direction, and the link constraint characteristic information uses the link and a corresponding working party in the system. Whether there is a service scheduling capability indication to the link;
  • the wavelength constraint characteristic information includes resource state information and cross-constraint information of each wavelength channel, and specifically includes a signal type carried by each wavelength channel, a wavelength switch group identifier, a resource state, and a signal cascade multiplexing type.
  • the node that initiates the call obtains the service path according to the cross-constraint characteristic information in the network, and includes: the node-by-node path on each path tree, and the node-by-node verifies the path according to the cross-constraint characteristic information of the link.
  • the segment-by-segment link of each path on the tree determines whether the wavelength-switching capability of the end-to-end service is established one by one.
  • the qualified service path is selected from the path tree to obtain the source routing information.
  • the present invention further provides a method for implementing source routing in a blocked cross-network, in which the link state advertisement information diffused in the network carries constraint information of each wavelength channel in the link;
  • the physical transport link layer constraint information of the link in the node; the physical transport link layer constraint information of the link in the node is called link exchange constraint information; the constraint information of each wavelength channel in the link is called The wavelength constraint characteristic information; the link exchange constraint information and the wavelength constraint characteristic information are collectively referred to as cross constraint characteristic information.
  • the method includes the following steps:
  • the node uses the link exchange constraint information and the wavelength constraint characteristic information to verify the path tree to obtain a qualified service path.
  • the summary information is represented by link constraint characteristic information corresponding to each working direction; and the link constraint characteristic information is represented by whether the link has a service scheduling capability between the corresponding working direction links in the system;
  • the wavelength constraint characteristic information includes resource state information and cross-constraint information of each wavelength channel, and specifically includes a signal type carried by each wavelength channel, a wavelength switch group identifier, a resource state, and a signal cascade multiplexing type.
  • the node that initiates the call obtains the service path according to the cross-constraint characteristic information in the network to verify the path tree, including:
  • the node checks the path-by-segment of each path in the path tree according to the cross-constraint characteristic information of the link, and the wavelength-switching capability of the end-to-end service establishment is satisfied by the wavelength-by-node.
  • the device selects a qualified service path from the path tree, so as to obtain a source routing information if, in order to solve the above problem, the present invention further provides a device for implementing source routing in a blocked cross-network, including a link state advertisement information encapsulating unit, a diffusion information transmitting unit, a path tree calculating unit, a diffusion information receiving unit, and a path tree verifying unit;
  • the link state advertisement information encapsulating unit is configured to write the cross-constraint characteristic information of the local node into the link state advertisement information, and send the encapsulated link state advertisement information to the diffusion information sending unit;
  • the information sending unit is configured to: diffuse the link state advertisement information into the network;
  • the path tree calculating unit is configured to calculate a path tree according to the link available bandwidth information, and send the path tree information to the path tree check unit;
  • the diffusion information receiving unit is configured to receive link state advertisement information in the network, and send the cross constraint characteristic information to the path tree check unit;
  • the path tree check unit is configured to verify the path according to the cross constraint characteristic information a tree, selecting a qualified service path from the path tree;
  • the cross-constraint characteristic information includes physical transport link layer constraint information of the link within the node, which is called link exchange constraint information, and constraint information of each wavelength channel in the link, which is called wavelength constraint characteristic information.
  • the present invention further provides a device for implementing source routing in a blocked cross-network, which comprises: a link state advertisement information encapsulating unit, a summary information encapsulating unit, a diffusion information sending unit, a path tree calculating unit, a diffusion information receiving unit, a path tree checking unit, wherein the link state advertisement information encapsulating unit is configured to write all the wavelength constraint characteristic information of each link in the local node into the link state advertisement information, and package the information Link status notification information Sending to the diffusion information sending unit, the summary information encapsulating unit is configured to encapsulate the physical transport link layer constraint information of each link in the local node as summary information, and send the information to the diffusion information sending unit; The unit is configured to diffuse the link state advertisement information and the summary information into the network; the path tree calculation unit is configured to calculate a path tree according to the link available bandwidth information, and send the path tree information to the path tree check a unit; the diffusion information receiving unit is configured to receive link state advertisement information in the
  • the physical transport link layer constraint information of the link in the node is called link switch constraint information; the constraint information of each wavelength channel in the link is called wavelength constraint characteristic information.
  • the invention mainly carries the cross-constraint characteristic information of the link in the node in the link state advertisement information, and the cross-constraint characteristic information mainly includes two layers, a physical transport link layer and a wavelength channel layer; or
  • the constraint characteristics of the physical transport link layer are spread as separate summary information in the network; in the process of calculating the service path, one or more nodes are calculated one by one according to the constraint characteristic information of the link for each path tree. Qualified service path; In this way, when the control connection request is initiated, the first node can calculate the end-to-end complete path and the recommended wavelength of each link according to the link state advertisement information, and support multi-level service scheduling.
  • Figure 1 shows a model of a resistive crossover network
  • FIG. 3 is a schematic diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an apparatus according to another embodiment of the present invention. Preferred embodiment of the invention
  • the core idea of the present invention is to carry the chain by spreading link state announcement information in the network.
  • the cross-constraint characteristic information of the W 200 channel (mainly including the physical transport link layer constraint information of the link in the node and the constraint information of each wavelength channel in the link), so that the node that initiates the call can be based on the cross constraint in the network.
  • the feature information verifies the path tree to obtain a qualified service path.
  • the cross-constraint characteristic information mainly includes information of two levels, that is, information of a physical transport link layer and a wavelength channel layer; wherein, the constraint characteristic information of the physical transport link layer is link exchange constraint information;
  • the constraint characteristic information is wavelength constraint characteristic information, including resource state information and cross constraint information of each wavelength channel;
  • the link exchange constraint information and the wavelength constraint characteristic information may be carried by the link state advertisement information diffused in the network; or the link exchange constraint information may be spread as the summary information in the control domain, and the link state advertisement information carries Wavelength constraint characteristic information.
  • the embodiment of the present invention includes the following steps:
  • Step 201 In a network with resistance crossing, each node writes cross-constraint feature information of the link in the node into the link state advertisement information;
  • the written cross-constraint characteristic information may be link exchange constraint information and wavelength constraint characteristic information, or wavelength constraint characteristic information;
  • the link exchange constraint information may be represented by a working direction and link constraint characteristic information corresponding to the working direction; or may be represented by summary information of link constraint characteristic information between transmission links in the node, that is, a chain of each working direction
  • the road constraint characteristic information if it is the summary information, it is not written in the link state announcement information;
  • the link constraint characteristic information is represented by whether the link has a service scheduling capability between the link and the corresponding working direction link in the system;
  • the wavelength constraint characteristic information includes a signal type carried by each wavelength channel, and a wavelength switch group identifier of the wavelength switch group. Resource status, signal cascade multiplexing type;
  • Step 202 Spread link state advertisement information in the network.
  • Step 203 When the node initiates a call connection establishment request, according to the available bandwidth information of the link. Calculate the path tree;
  • the calculation path tree may adopt a traditional route calculation algorithm SPF (Shortest Path First) algorithm
  • Step 204 Verify the path tree by using the cross-binding characteristic information in the link state advertisement information to obtain a qualified service path.
  • each node checks the link-by-segment link of each path on the path tree according to the cross-constraint characteristic information of the link, and whether the wavelength-by-wavelength meets the end-to-end service establishment.
  • the wavelength switching capability calculates one or more qualified paths to obtain source routing information.
  • the source routing information can provide available wavelengths of links in the qualified path to provide reliable routing guarantee for call connection control.
  • each device has a device for implementing source routing in the obstructive crossover network according to the embodiment of the present invention.
  • the device in one of the nodes is The method includes: a link state advertisement information encapsulating unit, a diffusion information sending unit, a path tree calculating unit, a diffusion information receiving unit, and a path tree verifying unit;
  • the link state advertisement information encapsulating unit is configured to write the cross-constraint characteristic information of the local node into the link state advertisement information, and send the encapsulated link state advertisement information to the diffusion information sending unit.
  • the unit is generally implemented by an LRM (Local Resource Management) module;
  • the diffusion information sending unit is configured to diffuse link state advertisement information into the network; in practical applications, the unit is generally implemented by an OSPF-TE (Open Shortest Path First Traffic Engineering) module;
  • OSPF-TE Open Shortest Path First Traffic Engineering
  • the path tree calculation unit is configured to calculate a path tree according to link available bandwidth information, and send the path tree information to the path tree check unit.
  • the diffusion information receiving unit is configured to receive link state advertisement information in the network, and send the cross-binding characteristic information to the path tree check unit;
  • the path tree check unit is configured to verify the path tree according to the cross constraint characteristic information, and select a qualified service path from the path tree.
  • the schematic diagram includes a link state advertisement information encapsulation unit, a summary information encapsulation unit, a diffusion information transmission unit, a path tree calculation unit, a diffusion information receiving unit, and a path tree verification unit.
  • the link state advertisement information encapsulating unit is configured to write all the wavelength constraint characteristic information of each link in the local node into the link state advertisement information, and send the encapsulated link state advertisement information to the diffusion information transmission.
  • the summary information encapsulating unit is configured to encapsulate the physical transport link layer constraint information of each link in the node as summary information, and send the information to the diffusion information sending unit;
  • the diffusion information sending unit is configured to diffuse link state notification information and summary information into the network end;
  • the path tree calculation unit is configured to calculate a path tree according to link available bandwidth information, and send the path tree information to the path tree check unit.
  • the diffusion information receiving unit is configured to receive link state advertisement information in the network, and summarize information, and send the cross-binding characteristic information to the path tree check unit;
  • the path tree check unit is configured to verify the path tree according to the cross constraint characteristic information, and select a qualified service path from the path tree.
  • the link exchange constraint information of each transmission link in the node can be expressed as:
  • the preceding bits represent the service scheduling capability between the link and other links in the system.
  • a value of 0 indicates that the link and the corresponding link do not have the capability of service scheduling.
  • a value of 1 indicates that the link and the corresponding link are first.
  • the physical link layer has the ability to schedule, and the fixed bits represent the constraint relationship between the working link in the direction and the working link in the fixed direction.
  • the wavelength constraint characteristic information in the link that is, the resource state information and the cross constraint information of each wavelength channel can be expressed as:
  • Signal Type Signal type, mainly including:
  • OCh light path
  • ODU1 2.5Gbps
  • OCh is lOGbps ( ODU2 )
  • OCh is 40Gbps ( ODU3 )
  • the wavelength-switching group identifier is: the wavelength-switching group identifier of the wavelength in the node, and each wavelength in the same wavelength-switching group in each link in the node can implement wavelength switching, which is an identifier of the wavelength switching capability in the node;
  • Idle resource indicates that the wavelength channel carries the idle number of the basic unit in the physical signal multiplexing structure. 3: 1 indicates that the wavelength channel signal is multiplexed by the 40G signal (ie, ODU3);
  • the Signal Type is a 40G signal, indicating that the wavelength channel is a single wavelength channel. It cannot be subdivided.
  • the value of the idle resource can only be 0 and 1, 0 means that the wavelength channel is occupied, and 1 means that the wavelength channel is idle.
  • K2: 1 indicates that the wavelength channel signal is multiplexed by the 10G signal (ie, ODU2);
  • the Signal Type is a 40G signal, indicating that the wavelength channel is multiplexed by four 10G signal sub-wavelength channels; the value of the idle resource is between 0 and 4, 0 means that the wavelength channel resources are all occupied; 1 to 4 represent the idle sub-wavelength. Number of channels;
  • the Signal Type is a 10G signal, indicating that the wavelength channel is a single wavelength channel. It cannot be subdivided.
  • the value of the idle resource can only be 0 and 1, 0 means that the wavelength channel is occupied, 1 means the wavelength channel is idle, and K1: indicates the wavelength channel signal. It is multiplexed by 2.5G signal (ie ODU1);
  • the Signal Type is a 40G signal, indicating that the wavelength channel is multiplexed by 16 2.5G signal sub-wavelength channels; the value of the idle resource is between 0 and 16, and 0 indicates that the wavelength channel resources are all occupied. Use 1 to 16 to indicate the number of idle sub-wavelength channels;
  • the Signal Type is a 10G signal, indicating that the wavelength channel is multiplexed by four 2.5G signal sub-wavelength channels; the value of the idle resource is between 0 and 4, 0 means that the wavelength channel resources are all occupied; 1 to 4 are idle. Number of wavelength channels;
  • the Signal Type is a 2.5G signal, indicating that the wavelength channel is a single wavelength channel. It cannot be subdivided.
  • the value of the idle resource can only be 0 and 1, 0 means that the wavelength channel is occupied, and 1 means that the wavelength channel is idle.
  • K0 indicates that the wavelength channel signal is multiplexed by GE (Gigabit Ethernet) (ie, ODU0) signal;
  • the Signal Type is a 40G signal, indicating that the wavelength channel is multiplexed by 32 GE signal sub-wavelength channels; the value of the idle resource is between 0 and 32, where 0 indicates that the wavelength channel resources are all occupied; 1 to 32 indicates the idle sub-wavelength. Number of channels;
  • the Signal Type is a 10G signal, indicating that the wavelength channel is multiplexed by 8 GE signal sub-wavelength channels; the value of the idle resource is between 0 and 8, 0 means that the wavelength channel resources are all occupied; 1 to 8 represent idle sub-wavelengths. Number of channels;
  • the Signal Type is a 2.5G signal, indicating that the wavelength channel is a multiplexing of two GE signal sub-wavelength channels; the value of the idle resource can only be between 0 and 2, 0 means that the wavelength channel resources are all occupied; 1 to 2 means idle. Number of sub-wavelength channels;
  • K3, K2, Kl, K0 can only have one bit of 1;
  • the above transmission contains link resource information of link exchange constraint information by LRM in the control plane
  • the (Local Resource Management, Local Resource Management) module is responsible for management; the link exchange constraint information can be carried and transmitted in the following manner:
  • the diffusion link state advertisement information carries the transport link exchange constraint information;
  • the extension in TLV (LINK Type-Length-Value) defines the Interface Switching Capability Descriptor (Sub-TLV) to carry various cross-constraints in the node of the transport link. information.
  • the original definition format is:
  • the switch When the Switching Cap type is LSC, the switch is defined as the link working direction of the transit link in the Switching Capability-specific information (Variable), the link constraint characteristic information of the link in the node, and the signal carried by each wavelength channel. Type, the wavelength switch group ID, the resource status, and the signal cascade multiplexing type. The information of each wavelength channel is arranged in order.
  • n in the LENGTH field is the number of wavelength channels in the transmission link;
  • two new Sub-TLVs are defined in the LINK TLV carried in the OSPF-TE-distributed link state advertisement information on the entire network to carry the link-switching constraint information of the transport link. And resource status information of the wavelength channel in the link, and cross-constraint information of the wavelength channel.
  • the new Sub-TLV format defined by the link exchange constraint information is:
  • the resource status information of the wavelength channel is:
  • the link exchange constraint information between the transmission links in the node is represented as summary information, and the summary information between the transmission links in the eight working directions is expressed as:
  • the fixed bit corresponds to the fixed constraint capability between the two directions. 1 indicates that the links in the two directions can be scheduled at the physical link level, and 0 indicates that the links in the two directions are at the physical link level. It is not possible to schedule. This information can be spread through the various control domains within the intelligent control network.
  • the wavelength constraint characteristic information of each transmission link is carried in the transmission link state advertisement (LSA) information, and the carrying manner can be performed on the basis of the implementation of mode 1 and mode 2, and is extended in the Interface Switching Capability Descriptor Sub-TLV.
  • the resource status information and cross-constraint information of each wavelength channel are in the working direction of the link:
  • the resource status information of the wavelength channel is:
  • the node that initiates the call may use the link state advertisement information in the network, or according to the link state advertisement information and the summary information, according to the link available bandwidth information, on the calculated path trees through the SPF algorithm.
  • the link exchange constraint information the resource status information of the wavelength channel, and the cross-constraint information of the wavelength channel, the link-by-segment link of each path in the path tree is verified, and the wavelengths of the end-to-end service establishment are satisfied one by one.
  • the switching capability calculates the qualified path and gives the available wavelengths of the links on the path to provide reliable routing guarantee for call connection control.
  • the present invention provides a method for implementing source routing in a blocked cross-network.
  • the node initiating the call can verify the path tree according to the cross-constraint characteristic information in the network, and obtain a qualified service path.
  • the head node can calculate the end-to-end complete path and the recommended wavelength of each link according to the link state advertisement information, and support multi-level service scheduling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

有阻交叉网络实现源路由的方法和装置
技术领域
本发明涉及通信领域,尤其涉及一种光传输设备网络中有阻交叉网络实 现源路由的方法和装置。
背景技术
波分设备组成的传输网络上,波长业务的调度在物理链路层和波长通道 层上存在一定的约束特性,各节点内多条物理传送链路在业务调度上存在一 定约束特性, 不是各节点上所有的物理传送链路间可以进行业务调度。
波长业务的调度在各节点上基本是上下或直通, 没有波长变换的能力, 目前以 WB ( Wavelength Block, 波长阻断器), WSS ( Wavelength Selective Switch , 波长选择开关) 器件构成的 ROADM ( Reconfigurable Optical Add-Drop Multiplexer, 可重构光分插复用器)***上就是这种情况。 TMUX ( Sub-Transparent Multiplexing,子速率透明复用)和 ROADM应用的 DWDM ( Dense Wavelength Division Multiplexing, 密集波分复用) 波分设备上, 由 于物理硬件条件的限制, TMUX 的交叉能力设计通常不能满足全交叉的能 力, 节点内链路间的各波长通道不能实现全波长交叉。 无论 DWDM波分设 备, 还是 SDH ( Synchronous Digital Hierarchy, 同步数字体系) , SONET ( Synchronous Optical Network, 光纤同步网络)及 OTN ( Optical Transport Network, 光传送网) 网络, 在面对网络设备多层次有阻交叉网络模型时, 目前的标准实现对这种应用都没有 ί艮好的支持。
链路间的可交换约束特性只是说明链路间是否有可交换的可能,在链路 层面上具有了业务可调度的可能,至于业务是否可以实现调度还需要看链路 中波长通道这个层面上的约束特性。业务可调度能力需要从两个层面的约束 特性来分析:
1、 节点内链路间的可交换约束能力
以多维 ROADM技术实现的 DWDM设备网络中, 一般来说, 节点内两 个方向链路间具备了在链路层面上调度业务的可能,那么这两个方向链路间 在内部有光纤相连。如果这两个方向链路间没有通过光纤互连相通, 这两条 链路上没有具备业务调度的能力。将***中每两个方向的链路组成一组, 通 过比特位来表示各组的业务调度能力,为 1表示该组中两个链路间在物理链 路层面具备了业务调度能力,为 0表示该组中两个链路间在物理链路层面不 具备业务调度能力。 以 8维 ROADM为例, ***中将每两个方向的链路组 成一组, 共有 7 x 8/2 = 28组, 通过固定组合说明了特定两个方向传送链路 间在链路层面具备了业务调度的可能性, 下面的表 1说明这种组合情况。
表 1 节点内链路分组与比特位对应关系
Figure imgf000004_0001
2、 节点内各链路上的波长间的调度能力
如图 1所示的有阻交叉网络模型, 其中, 交换单元 DXC ( Digital cross connect equipment, 数字交叉连接设备) 为电交叉或光交叉。 西向 (West ) 的 TE ( Terminal Equipment, 终端设备)链路经过 DWDM分波器将链路中 的波长分布在不同的交换单元中, 东向 (East ) 的 TE链路也是如此, 西向 的 TE链路和东向的 TE链路中的波长处于一个交换单元中才能完成波长交 换。 同时对于传统的 ROADM技术实现的 DWDM设备中, 波长在各节点上 基本上是上下或者直通, 没有波长交换能力。对于链路中这种具有波长交换 约束的集合定义为波长交换组(或波长组), 处于一个波长交换组(或波长 组)中各链路中的波长集合可以实现波长变换, 不在一个波长组的各链路上 波长间不能完成波长变换。对于只有上下或者直通能力的链路波长, 同一个 波长就是一个波长交换组(或波长组) 。
但是, 现有技术中, 在有阻交叉的网络中只考虑链路可用带宽信息作为 路由计算的通用条件,这样, 呼叫连接建立控制过程中在业务路径和波长选 择上会面临不断尝试的过程,这在信令控制上都带来了复杂的控制过程, 在 业务建立和恢复上带来了时间的不确定性。
发明内容
本发明所要解决的技术问题是提供一种有阻交叉网络实现源路由的方 法和装置,克服现有技术中只考虑链路可用带宽信息作为路由计算的条件造 成呼叫连接建立过程中在业务路径和波长选择需要不断尝试,造成控制过于 复杂的问题。
为了解决上述问题, 本发明提供了一种有阻交叉网络实现源路由的方 法,在网络中扩散的链路状态通告信息中携带交叉约束特性信息,发起呼叫 的节点根据网络中链路状态通告信息的交叉约束特性信息校验路径树得到 业务路径;所述交叉约束特性信息包括链路在节点内的物理传送链路层约束 信息, 称为链路交换约束信息, 以及该链路中各波长通道的约束信息, 称为 波长约束特性信息。
进一步地, 所述方法包括如下步骤:
( A )在有阻交叉的网络中, 将各链路在节点内的链路交换约束信息以 及各链路中的所有波长约束特性信息写入各链路状态通告信息中;
( B )在网络中扩散所述链路状态通告信息;
( C ) 当节点发起呼叫连接建立请求时, 根据链路可用带宽信息计算路 径树;
( D )所述节点使用链路状态通告信息中链路交换约束信息以及波长约 束特性信息校验路径树, 从所述路径树中选出合格的业务路径。
进一步地,所述链路交换约束信息由工作方向以及该工作方向对应的链 路约束特性信息表示,所述链路约束特性信息用该链路与***中相应工作方 向链路间的是否具备业务调度能力表示;
所述波长约束特性信息包括各波长通道的资源状态信息和交叉约束信 息,具体包括各波长通道承载的信号类型,所属波长交换组标识,资源状态, 信号级联复用类型。
进一步地,所述发起呼叫的节点根据网络中交叉约束特性信息校验路径 树得到业务路径包括: 所述节点对各路径树上逐条路径,逐个节点根据链路的交叉约束特性信 息来校验路径树上每条路径的逐段链路,逐个波长是否满足端到端的业务建 立的波长交换能力,从所述路径树中选出合格业务路径,从而获得源路由信 息。
为了解决上述问题,本发明还提供了一种有阻交叉网络实现源路由的方 法, 在网络中扩散的链路状态通告信息中携带链路中各波长通道的约束信 息; 并在网络中扩散各链路在节点内的物理传送链路层约束信息; 所述链路 在节点内的物理传送链路层约束信息,称为链路交换约束信息; 链路中各波 长通道的约束信息,称为波长约束特性信息; 链路交换约束信息和波长约束 特性信息统称为交叉约束特性信息。
进一步地, 所述方法包括如下步骤:
( a )在有阻交叉的网络中, 将各链路在节点内的所有波长约束特性信 息写入链路状态通告信息中;
( b )在网络中扩散所述链路状态通告信息; 将链路交换约束信息作为 汇总信息, 并将该信息在网络中扩散;
( c ) 当节点发起呼叫连接建立请求时, 根据链路可用带宽信息计算路 径树;
( d ) 所述节点使用链路交换约束信息以及波长约束特性信息校验路径 树, 得到合格的业务路径。
进一步地, 所述汇总信息由各个工作方向对应的链路约束特性信息表 示;所述链路约束特性信息用该链路与***中相应工作方向链路间的是否具 备业务调度能力表示; 所述波长约束特性信息包括各波长通道的资源状态信息和交叉约束信 息,具体包括各波长通道承载的信号类型,所属波长交换组标识,资源状态, 信号级联复用类型。
进一步地,所述发起呼叫的节点根据网络中交叉约束特性信息校验路径 树得到业务路径包括:
所述节点对各路径树上逐条路径,逐个节点根据链路的交叉约束特性信 息来校验路径树上每条路径的逐段链路,逐个波长是否满足端到端的业务建 立的波长交换能力,从所述路径树中选出合格业务路径, 从而获得源路由信 if, 为了解决上述问题,本发明还提供了一种有阻交叉网络实现源路由的装 置, 包括链路状态通告信息封装单元、扩散信息发送单元、路径树计算单元、 扩散信息接收单元、 路径树校验单元;
其中,所述链路状态通告信息封装单元用于将本节点的交叉约束特性信 息写入链路状态通告信息中,并将封装好的链路状态通告信息发送给扩散信 息发送单元; 所述扩散信息发送单元用于将链路状态通告信息扩散到网络 中; 所述路径树计算单元用于根据链路可用带宽信息计算路径树, 并将所述 路径树信息发送给路径树校验单元;所述扩散信息接收单元用于接收网络中 的链路状态通告信息, 并将其中的交叉约束特性信息发送给路径树校验单 元; 所述路径树校验单元用于根据交叉约束特性信息校验路径树, 从所述路 径树中选出合格的业务路径;
所述交叉约束特性信息包括链路在节点内的物理传送链路层约束信息, 称为链路交换约束信息, 以及该链路中各波长通道的约束信息,称为波长约 束特性信息。
为了解决上述问题,本发明还提供了一种有阻交叉网络实现源路由的装 置, 其特征在于, 包括链路状态通告信息封装单元、 汇总信息封装单元、 扩 散信息发送单元、 路径树计算单元、 扩散信息接收单元、 路径树校验单元; 其中,所述链路状态通告信息封装单元用于各链路在本节点内的所有波 长约束特性信息写入链路状态通告信息中,并将封装好的链路状态通告信息 发送给扩散信息发送单元;所述汇总信息封装单元用于将各链路在本节点内 的物理传送链路层约束信息作为汇总信息进行封装,并发送给扩散信息发送 单元;所述扩散信息发送单元用于将所述链路状态通告信息以及汇总信息扩 散到网络中; 所述路径树计算单元用于根据链路可用带宽信息计算路径树, 并将所述路径树信息发送给路径树校验单元;所述扩散信息接收单元用于接 收网络中的链路状态通告信息, 以及汇总信息, 并将其中的波长约束特性信 息和物理传送链路层约束信息, 统称为交叉约束特性信息,发送给路径树校 验单元; 所述路径树校验单元用于根据交叉约束特性信息校验路径树, 从所 述路径树中选出合格的业务路径;
所述链路在节点内的物理传送链路层约束信息, 称为链路交换约束信 息; 链路中各波长通道的约束信息, 称为波长约束特性信息。
本发明主要是通过在链路状态通告信息中携带链路在节点内的交叉约 束特性信息, 这种交叉约束特性信息主要包括两个层面, 物理传送链路层和 波长通道层;或者将节点内的物理传送链路层的约束特性作为单独的汇总信 息在网络中扩散; 在业务路径计算的过程中, 对各路径树上逐条路径, 逐个 节点根据链路的约束特性信息计算出一条或多条合格的业务路径; 这样, 在 发起控制连接请求时,在首节点可以根据链路状态通告信息计算出端到端的 完备路径和各链路的建议波长, 同时支持对多层次的业务调度。 附图概述
图 1为有阻交叉网络模型;
图 2为本发明实施例的流程图;
图 3为本发明实施例的装置示意图;
图 4为本发明另一实施例的装置示意图。 本发明的较佳实施方式
本发明的核心思想是:通过在网络中扩散链路状态通告信息中携带该链 W 200 路的交叉约束特性信息(主要包括该链路在节点内的物理传送链路层约束信 息和该链路中各波长通道的约束信息), 使发起呼叫的节点可以根据网络中 的交叉约束特性信息校验路径树, 从而得到合格的业务路径。
其中, 所述交叉约束特性信息主要包括两个层面的信息, 即物理传送链 路层和波长通道层的信息; 其中, 物理传送链路层的约束特性信息为链路交 换约束信息; 波长通道层的约束特性信息为波长约束特性信息, 包括各波长 通道的资源状态信息和交叉约束信息;
所述链路交换约束信息和波长约束特性信息可以由在网络中扩散的链 路状态通告信息携带;也可以是链路交换约束信息作为汇总信息在控制域中 扩散, 而链路状态通告信息携带波长约束特性信息。 一 下面结合附图对本发明的优选实施例进行详细说明:
如图 2所示, 本发明实施例包括如下步骤:
步骤 201 , 在有阻交叉的网络中, 各节点将链路在节点内的交叉约束特 性信息写入链路状态通告信息中;
其中,所述写入的交叉约束特性信息可以是链路交换约束信息以及波长 约束特性信息, 或者波长约束特性信息;
所述链路交换约束信息可以由工作方向以及该工作方向对应的链路约 束特性信息表示;也可以由节点内传送链路间的链路约束特性信息的汇总信 息表示, 即各个工作方向的链路约束特性信息; 若是作为汇总信息, 则不写 入链路状态通告信息中;
所述链路约束特性信息用该链路与***中相应工作方向链路间的是否 具备业务调度能力表示; 所述波长约束特性信息包括各波长通道承栽的信号类型,所属波长交换 组标识, 资源状态, 信号级联复用类型;
步骤 202, 在网络中扩散链路状态通告信息;
若链路交换约束信息作为汇总信息, 则单独在网络中扩散, 或在控制域 内洪泛; 步骤 203, 当节点发起呼叫连接建立请求时, 根据链路可用带宽信息计 算路径树;
所述计算路径树可以采用传统的路由计算算法 SPF ( Shortest Path First, 最短路径优先) 算法;
步骤 204, 使用链路状态通告信息中交叉约束特性信息校验路径树, 得 到合格的业务路径;
在计算路径树的过程中, 对各路径树上逐条路径, 逐个节点根据链路的 交叉约束特性信息来校验路径树上每条路径的逐段链路,逐个波长是否满足 端到端的业务建立的波长交换能力,计算出一条或多条合格路径, 从而获得 源路由信息, 同时, 所述源路由信息可以提供合格路径上各段链路的可用波 长, 为呼叫连接控制提供可靠的路由保证。
在本发明的网络中, 包括多个节点, 针对每个节点, 均具有本发明实施 例的有阻交叉网络实现源路由的装置,如图 3所示, 为其中一个节点中的所 述装置, 包括: 链路状态通告信息封装单元、 扩散信息发送单元、 路径树计 算单元、 扩散信息接收单元、 路径树校验单元;
其中,所述链路状态通告信息封装单元用于将本节点的交叉约束特性信 息写入链路状态通告信息中,并将封装好的链路状态通告信息发送给扩散信 息发送单元; 在实际应用中, 该单元一般由 LRM ( Local Resource Management, 本地资源管理)模块实现;
所述扩散信息发送单元用于将链路状态通告信息扩散到网络中;在实际 应用中, 该单元一般由 OSPF-TE (开放式最短路径优先一流量工程)模块 实现;
所述路径树计算单元用于根据链路可用带宽信息计算路径树,并将所述 路径树信息发送给路径树校验单元;
所述扩散信息接收单元用于接收网络中的链路状态通告信息,并将其中 的交叉约束特性信息发送给路径树校验单元;
所述路径树校验单元用于根据交叉约束特性信息校验路径树,从所述路 径树中选出合格的业务路径。
如图 4所示,为本发明另外一个实施例的有阻交叉网络实现源路由的装 置示意图, 包括链路状态通告信息封装单元、 汇总信息封装单元、 扩散信息 发送单元、 路径树计算单元、 扩散信息接收单元、 路径树校验单元;
其中,所述链路状态通告信息封装单元用于各链路在本节点内的所有波 长约束特性信息写入链路状态通告信息中,并将封装好的链路状态通告信息 发送给扩散信息发送单元;
所述汇总信息封装单元用于将各链路在本节点内的物理传送链路层约 束信息作为汇总信息进行封装, 并发送给扩散信息发送单元;
所述扩散信息发送单元用于将链路状态通告信息以及汇总信息扩散到 网终中;
所述路径树计算单元用于根据链路可用带宽信息计算路径树,并将所述 路径树信息发送给路径树校验单元;
所述扩散信息接收单元用于接收网络中的链路状态通告信息,以及汇总 信息, 并将其中的交叉约束特性信息, 发送给路径树校验单元;
所述路径树校验单元用于根据交叉约束特性信息校验路径树,从所述路 径树中选出合格的业务路径。
下面以具体的应用实例进一步进行描述:
以***中 8个工作方向工作的传送链路为例,各传送链路在节点内的链 路交换约束信息可以表示为:
A B C D E F G H
+ -+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I工作方向 I
+-+-+-+-+-+-+-+-+-+-+-+-+
前面的各个比特表示该链路与***中其它方向链路间的业务调度能力, 为 0表示该链路与对应链路不具备业务调度的能力,为 1表示该链路与对应 链路首先在物理链路层面上具备了调度的能力,固定的比特位表示该方向的 工作链路与固定方向的工作链路之间的约束关系。
链路中波长约束特性信息,即各波长通道的资源状态信息和交叉约束信 息可以表示为:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Signal Type |波长交换组标识 | Reserved | 空闲资源 | Κ3 |Κ2 |Κ1 |Μ ! +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 各字段的定义为:
Signal Type: 信号类型, 主要包括:
OCh (光通路)为 2.5Gbps ( ODU1 )
OCh 为 lOGbps ( ODU2 )
OCh 为 40Gbps ( ODU3 )
波长交换组标识: 该波长在节点内所属的波长交换组标识, 节点内各链 路中在同一个波长交换组中的各波长可以实现波长交换,是节点内波长交换 能力的一种标识;
Reserved: 作为保留字段;
空闲资源: 表示波长通道承载物理信号复用结构中基本单元的空闲数 3: 1表示波长通道信号由 40G信号 (即 ODU3 ) 复用而成;
Signal Type为 40G信号, 说明波长通道就是一个单独的波长通道, 不 可细分, 空闲资源的值只能是 0和 1, 0表示波长通道已占用, 1表示波长 通道空闲;
K2: 1表示波长通道信号由 10G信号 (即 ODU2 ) 复用而成;
Signal Type为 40G信号,说明波长通道由 4个 10G信号子波长通道 复用而成; 空闲资源的值为 0到 4之间, 0表示波长通道资源已经全部占用; 1到 4表示空闲的子波长通道数目;
Signal Type为 10G信号, 说明波长通道就是一个单独的波长通道, 不可细分, 空闲资源的值只能是 0和 1, 0表示波长通道已占用, 1表示波 长通道空闲; K1 : 表示波长通道信号由 2.5G信号 (即 ODU1 ) 复用而成;
Signal Type为 40G信号, 说明波长通道由 16个 2.5G信号子波长通道 复用而成; 空闲资源的值为 0到 16之间, 0表示波长通道资源已经全部占 用; 1到 16表示空闲的子波长通道数目;
Signal Type为 10G信号, 说明波长通道由 4个 2.5G信号子波长通道复 用而成; 空闲资源的值为 0到 4之间, 0表示波长通道资源已经全部占用; 1到 4表示空闲的子波长通道数目;
Signal Type为 2.5G信号, 说明波长通道就是一个单独的波长通道, 不 可细分, 空闲资源的值只能是 0和 1, 0表示波长通道已占用, 1表示波长 通道空闲;
K0: 表示波长通道信号由 GE ( Gigabit Ethernet, 千兆位以太网) (即 ODU0 )信号复用而成;
Signal Type为 40G信号, 说明波长通道由 32个 GE信号子波长通道复 用而成; 空闲资源的值为 0到 32之间, 0表示波长通道资源已经全部占用; 1到 32表示空闲的子波长通道数目;
Signal Type为 10G信号,说明波长通道由 8个 GE信号子波长通道复用 而成; 空闲资源的值为 0到 8之间, 0表示波长通道资源已经全部占用; 1 到 8表示空闲的子波长通道数目;
Signal Type为 2.5G信号, 说明波长通道就是 2个 GE信号子波长通道 复用而成; 空闲资源的值只能是 0到 2之间, 0表示波长通道资源已经全部 占用; 1到 2表示空闲的子波长通道数目;
K3, K2, Kl , K0只能有一个比特为 1;
上述传输包含链路交换约束信息的链路资源信息由控制平面中 LRM
( Local Resource Management, 本地资源管理)模块负责管理; 可以使用下述方式携带并传输链路交换约束信息:
方式 1:
以 ASON ( Automatic Switched Optical Network, 自动交换光网络) 和 GMPLS ( Generalized Multi Protocol Label Switching, 通用多协议标记交 换)路由体系为框架, 在全网基于 OSPF-TE (开放式最短路径优先一流量 工程)扩散链路状态通告信息中来携带传送链路交换约束信息; 在 LINK TLV( LINK Type-Length- Value,链路类型 -长度 -值)中扩展定义了 Interface Switching Capability Descriptor (接***换能力描述符) Sub-TLV来携带该 传送链路在节点内的各种交叉约束特性信息。 原来的定义格式为:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +— + +_+—— + +—— + +—— +
1 Switching Cap | Encoding | Reserved I +—+_+—+_+—+— + +— +-+— + +_+— +——— + +—+— +
I Max LSP Bandwidth at priority 0 I
+— +_+— +_+— +_+— +_+—— +—— +— +— +— +_+— +— +— +— +— +—— +_+— +—— +— +—十一 +_+_+
I Max LSP Bandwidth at priority 1 |
+—+— +_+_+ +— + +—+_+—+ +—+ t Max LSP Bandwidth at priority 2 | +—+— +—+—+— +— + +— + +-+— + +—+— +—+— +
I Max LSP Bandwidth at priority 3 |
+— + +—+— + +—— + +—+_+—+—+— +
I Max LSP Bandwidth at priority 4 |
+—+— +—+_+—+_+ +— + +— +_+_+
I Max LSP Bandwidth at priority 5 |
+— +— +— +_+— +—十一 +—十一 +— +_+— +— +— +—+— +— +— +— +— +— +— +— +— +_+— +— +— +—+— +— +— +
I Max LSP Bandwidth at priority 6 |
+— +— +—— +—— +— +—十一 +— +—+— +— +— +— +_+— +— +— +— +— +— +— +— +_+— +— +— +—+— +—+— +
I Max LSP Bandwidth at priority 7 |
+—— +—— + +—+— + +—+— +
I Switching Capability - specif ic information |
I (variable) |
+— +—— +— +— +— +—+—十一 +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +—+— +— +— + 新定义的格式为:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +—+—— +—+_+—+
I TYPE I LENGTH=44+n*4 |
I Switching Cap | Encoding | Reserved | —— +_+—+ +—+
I Max LSP Bandwidth at priority 0 |
+—
I Max LSP Bandwidth at priority 1 |
—— +—
I Max LSP Bandwidth at priority 2 |
+— +— —— ——
I Max LSP Bandwidth at priority 3 |
——
I Max LSP Bandwidth at priority 4 |
+—+ ——
I Max LSP Bandwidth at priority 5 |
—— —— +—+_+_+
I Max LSP Bandwidth at priority 6 |
+— +— +— +一 +— +— 一— +—
I Max LSP Bandwidth at priority 7 | —— ——
1 链路工作方向 I —— —— +— —— —— +—— +—+_+—+
I 链路约束特性信息 I
+—+— +—+_+—+ +—+— +—+_+—+ —— —— +—+_+—+
I Signal Type |波长交换组标识 | Reserved | 空闲资源 1K3|K2|K1 。1 —— —— —— —+—
I Signal Type |波长交换组标识 | Reserved | 空闲资源 | K3 |K2 |K1 | κο |
- + - + - +— - + - + - + - + - + - +—- + - +_+ - + - +_+ - +_+ - + - +_+
I I
// // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Signal Type |波长交换组标识 | Reserved | 空闲资源
Figure imgf000016_0001
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
当 Switching Cap 类型为 LSC 时, 在 Switching Capability-specific information ( Variable )中扩展定义为该传送链路的链路工作方向, 链路在该 节点内的链路约束特性信息,各波长通道承载的信号类型, 所属波长交换组 标识,资源状态,信号级联复用类型,各波长通道信息按顺序排列。 LENGTH 字段中 n为传送链路中的波长通道数目;
方式 2:
以 ASON和 GMPLS路由体系为框架, 在全网基于 OSPF-TE扩散链路 状态通告信息中携带的 LINK TLV中定义两个新的 Sub-TLV用来分别携带 传送链路的链路交换约束信息, 和链路中波长通道的资源状态信息, 波长通 道的交叉约束信息。
链路交换约束信息定义的新 Sub-TLV格式为:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1 TYPE I LENGTH |
+-+-+^+-+-+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I 链路工作方向 I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I 链路约束特性信息 I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 波长通道的资源状态信息, 波长通道的交叉约束信息定义的 Sub-TLV 为:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I TYPE I LENGTH = n*4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Signal Type |波长交换组标识 | Reserved | 空闲资源 | K3| iu |K0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Signal Type |波长交换组标识 | Reserved | 空闲资源 |K3|K2|K1 |κ0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I II II
I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Signal Type |波长交换組标识 | Reserved | 空闲资源 |Κ3|Κ2|Κ1 |κ0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
方式 3:
将节点内传送链路间的链路交换约束信息作为汇总信息表示, 8个工作 方向的传送链路间的汇总信息表示为:
AB AC AD AE AF AG AH BC BD BE BF BG BH CD CE CF CC CH DE DF DG DH EF EG EH FG FH GH
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+一" h- + ~" h- +一" h— +—+—+—+—" I— +-+-+— +一" h- +— +-+一" h- + -+-+-+-+-+-+―" V
固定比特对应固定两个方向链路间的约束能力, 1表示这两个方向的链 路间在物理链路层面上是可以调度的, 0表示这两个方向的链路间在物理链 路层面上是不可以调度的。该信息可以通过在智能控制网络内的各控制域内 进行扩散。
各传送链路的波长约束特性信息通过传送链路状态通告(LSA)信息中 携带,携带的方式可以采用在方式 1和方式 2实现的基础上进行,在 Interface Switching Capability Descriptor Sub-TLV中扩展定以链路的工作方向, 各波 长通道的资源状态信息和交叉约束信息:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+— +— +_+— +_+— +— +— +— +— +— +— +_+— +_+—+— +— +— +— +一 一 +一 一 +— +一 一 +
TYPE LENGTH-40+n*4
+— +— +— +— +— +_+— +— +— +— +— +— +— +— +— +— +— +—+— +_+— +— +— +— +— +一 +一 一 +一+一 +— +
I Switching Cap | Encoding Reserved
+—— +—— + +_+_+— +—+—+— +
I Max LSP Bandwidth at priority 0 |
+—— + +— +
I Max LSP Bandwidth at priority 1 | —— +—+ +— +_+ —+ _+_+ +— — +
I Max LSP Bandwidth at priority 2 |
+—+ +_+— + +—— +— +
I Max LSP Bandwidth at priority 3 | +—— +— +
I Max LSP Bandwidth at priority 4 ! +— +_+ +— —+— +_+
I Max LSP Bandwidth at priority 5 | +_+— —+—
I Max LSP Bandwidth at priority 6 | +— +— +_+— +
I Max LSP Bandwidth at priority 7 |
+一 +一 +_+— +一 +_+一 +一 +一 +一 +一 +一 +一 +一 +_+一 +一 +一 +一 +一 +一 +_+一 +一 +一 +一 +_+一 +一 +一 +一 +_+ 链路工作方向
+一 +一 +一 +一 +_+一 +一 一 +— +一 +— +— +— +_+— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +_+
I Signal Type |波长交换组标识 | Reserved | 空闲资源
+_+一 一 一 +— +— +— +— +— +— +— +— +— +— +— +— +— +— +_+— +— +— +— +— +— +— +_+— +_+
Signal Type 1波长交换组标识 | Reserved | 空闲资源
+一 +一 一 +一 +—+一 +— +— +— +_+— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +_+
// // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Signal Type |波长交换组标识 | Reserved | 空闲资源 kkl |κο| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 或者定义两个 Sub-TLV, —个用于说明链路的工作方向, 一个用于说明 传送链路中波长约束特性信息;
链路的工作方向的 Sub-TLV:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1 TYPE I LENGTH |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I 链路工作方向 I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 波长通道的资源状态信息, 波长通道的交叉约束信息定义的 Sub-TLV 为:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I TYPE I LENGTH = n*4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1 Signal Type |波长交换组标识 | Reserved | 空闲资源 |Κ3|Κ2|Κ1|Κ0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Signal Type |波长交换组标识 | Reserved | 空闲资源 |κ3|Κ2|κ1|Κ0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I
II II
I I
+—— + +—+— +_+ +_+—— +
I Signal Type |波长交换组标识 | Reserved | 空闲资源 |Κ3|Κ2|κ】|κο| +_+一 + +一 +一 + +一 +一 +— +— +— +— +— +— +— +— +— +— +— +— +_+— +— +— +— +— +— +— +— +— +_+— + 在发起呼叫连接建立请求时,发起呼叫的节点可以根据网络中链路状态 通告信息, 或者根据链路状态通告信息以及汇总信息,根据链路可用带宽信 息通过 SPF 算法在计算出的各路径树上, 逐点根据链路交换约束信息, 波 长通道的资源状态信息,以及波长通道的交叉约束信息来校验路径树上每条 路径的逐段链路,逐个波长是否满足端到端的业务建立的波长交换能力, 计 算出合格路径, 同时给出该路径上各段链路的可用波长, 为呼叫连接控制提 供可靠的路由保证。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 情况下, 熟悉本领域的技术人员可根据本发明做出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用,
本发明提供了一种有阻交叉网络实现源路由的方法,通过在网络中扩散 交叉约束特性信息,使发起呼叫的节点可以根据网络中的交叉约束特性信息 校验路径树,得到合格的业务路径, 克服了现有技术中只考虑链路可用带宽 信息作为路由计算的条件造成呼叫连接建立过程中在业务路径和波长选择 需要不断尝试, 造成控制过于复杂的问题, 在发起控制连接请求时, 在首节 点可以根据链路状态通告信息计算出端到端的完备路径和各链路的建议波 长, 同时支持对多层次的业务调度。

Claims

权 利 要 求 书
1、 一种有阻交叉网络实现源路由的方法, 其特征在于, 在网络中扩散 的链路状态通告信息中携带交叉约束特性信息,发起呼叫的节点根据网络中 链路状态通告信息的交叉约束特性信息校验路径树得到业务路径;所述交叉 约束特性信息包括链路在节点内的物理传送链路层约束信息,称为链路交换 约束信息, 以及该链路中各波长通道的约束信息, 称为波长约束特性信息。
2、 如权利要求 1所述的方法, 其特征在于, 所述方法包括如下步骤:
( A )在有阻交叉的网络中, 将各链路在节点内的链路交换约束信息以 及各链路中的所有波长约束特性信息写入各链路状态通告信息中;
( B )在网络中扩散所述链路状态通告信息;
( C ) 当节点发起呼叫连接建立请求时, 根据链路可用带宽信息计算路 径树;
( D )所述节点使用链路状态通告信息中链路交换约束信息以及波长约 束特性信息校验路径树, 从所述路径树中选出合格的业务路径。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述链路交换约束信 息由工作方向以及该工作方向对应的链路约束特性信息表示,所述链路约束 特性信息用该链路与***中相应工作方向链路间的是否具备业务调度能力 表示;
所述波长约束特性信息包括各波长通道的资源状态信息和交叉约束信 息,具体包括各波长通道承载的信号类型,所属波长交换组标识,资源状态, 信号级联复用类型。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述发起呼叫的节点 根据网络中交叉约束特性信息校验路径树得到业务路径包括:
所述节点对各路径树上逐条路径,逐个节点根据链路的交叉约束特性信 息来校验路径树上每条路径的逐段链路,逐个波长是否满足端到端的业务建 立的波长交换能力,从所述路径树中选出合格业务路径, 从而获得源路由信 息。
5、 一种有阻交叉网络实现源路由的方法, 其特征在于, 在网絡中扩散 的链路状态通告信息中携带链路中各波长通道的约束信息;并在网络中扩散 各链路在节点内的物理传送链路层约束信息;所述链路在节点内的物理传送 链路层约束信息, 称为链路交换约束信息; 链路中各波长通道的约束信息, 称为波长约束特性信息;链路交换约束信息和波长约束特性信息统称为交叉 约束特性信息。
6、 如权利要求 5所述的方法, 其特征在于, 所述方法包括如下步骤:
( a )在有阻交叉的网络中, 将各链路在节点内的所有波长约束特性信 息写入链路状态通告信息中;
( b )在网络中扩散所述链路状态通告信息; 将链路交换约束信息作为 汇总信息, 并将该信息在网络中扩散;
( c ) 当节点发起呼叫连接建立请求时, 根据链路可用带宽信息计算路 径树;
( d )所述节点使用链路交换约束信息以及波长约束特性信息校验路径 树, 得到合格的业务路径。
7、 如权利要求 6所述的方法, 其特征在于, 所述汇总信息由各个工作 方向对应的链路约束特性信息表示;所述链路约束特性信息用该链路与*** 中相应工作方向链路间的是否具备业务调度能力表示;
所述波长约束特性信息包括各波长通道的资源状态信息和交叉约束信 息,具体包括各波长通道承栽的信号类型,所属波长交换组标识,资源状态, 信号级联复用类型。
8、 如权利要求 5或 6所述的方法, 其特征在于, 所述发起呼叫的节点 根据网络中交叉约束特性信息校验路径树得到业务路径包括:
所述节点对各路径树上逐条路径,逐个节点根据链路的交叉约束特性信 息来校验路径树上每条路径的逐段链路,逐个波长是否满足端到端的业务建 立的波长交换能力,从所述路径树中选出合格业务路径,从而获得源路由信
9、 一种有阻交叉网络实现源路由的装置, 其特征在于, 包括链路状态 通告信息封装单元、 扩散信息发送单元、 路径树计算单元、 扩散信息接收单 元、 路径树校验单元;
其中,所述链路状态通告信息封装单元用于将本节点的交叉约束特性信 息写入链路状态通告信息中,并将封装好的链路状态通告信息发送给扩散信 息发送单元; 所述扩散信息发送单元用于将链路状态通告信息扩散到网络 中; 所述路径树计算单元用于根据链路可用带宽信息计算路径树, 并将所述 路径树信息发送给路径树校验单元;所述扩散信息接收单元用于接收网络中 的链路状态通告信息, 并将其中的交叉约束特性信息发送给路径树校验单 元; 所述路径树校验单元用于根据交叉约束特性信息校验路径树, 从所述路 径树中选出合格的业务路径;
所述交叉约束特性信息包括链路在节点内的物理传送链路层约束信息, 称为链路交换约束信息, 以及该链路中各波长通道的约束信息, 称为波长约 束特性信息。
10、 一种有阻交叉网络实现源路由的装置, 其特征在于, 包括链路状态 通告信息封装单元、 汇总信息封装单元、 扩散信息发送单元、 路径树计算单 元、 扩散信息接收单元、 路径树校验单元;
其中,所述链路状态通告信息封装单元用于各链路在本节点内的所有波 长约束特性信息写入链路状态通告信息中,并将封装好的链路状态通告信息 发送给扩散信息发送单元;所述汇总信息封装单元用于将各链路在本节点内 的物理传送链路层约束信息作为汇总信息进行封装,并发送给扩散信息发送 单元;所述扩散信息发送单元用于将所述链路状态通告信息以及汇总信息扩 散到网络中; 所述路径树计算单元用于根据链路可用带宽信息计算路径树, 并将所述路径树信息发送给路径树校验单元;所述扩散信息接收单元用于接 收网络中的链路状态通告信息, 以及汇总信息, 并将其中的波长约束特性信 息和物理传送链路层约束信息, 统称为交叉约束特性信息,发送给路径树校 验单元; 所述路径树校验单元用于根据交叉约束特性信息校验路径树, 从所 述路径树中选出合格的业务路径;
所述链路在节点内的物理传送链路层约束信息, 称为链路交换约束信 息; 链路中各波长通道的约束信息, 称为波长约束特性信息。
PCT/CN2008/000305 2008-02-04 2008-02-04 有阻交叉网络实现源路由的方法和装置 WO2009100575A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/865,862 US8665749B2 (en) 2008-02-04 2008-02-04 Method and apparatus for realizing source routing in a blocking cross network
PCT/CN2008/000305 WO2009100575A1 (zh) 2008-02-04 2008-02-04 有阻交叉网络实现源路由的方法和装置
EP08706483A EP2247013A4 (en) 2008-02-04 2008-02-04 METHOD AND APPARATUS FOR REALIZING SOURCE ROUTING IN BLOCKED INTERCONNECTED NETWORK
CN200880127996.5A CN101981844B (zh) 2008-02-04 2008-02-04 有阻交叉网络实现源路由的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/000305 WO2009100575A1 (zh) 2008-02-04 2008-02-04 有阻交叉网络实现源路由的方法和装置

Publications (1)

Publication Number Publication Date
WO2009100575A1 true WO2009100575A1 (zh) 2009-08-20

Family

ID=40956610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000305 WO2009100575A1 (zh) 2008-02-04 2008-02-04 有阻交叉网络实现源路由的方法和装置

Country Status (4)

Country Link
US (1) US8665749B2 (zh)
EP (1) EP2247013A4 (zh)
CN (1) CN101981844B (zh)
WO (1) WO2009100575A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439999A (zh) * 2011-11-01 2012-05-02 华为技术有限公司 限制自动交换光网络的域规模的方法和***、节点设备
WO2016086636A1 (zh) * 2014-12-03 2016-06-09 中兴通讯股份有限公司 信息更新方法、装置及终端

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998184B (zh) * 2009-08-12 2015-04-01 中兴通讯股份有限公司 适配装置及方法
CN102572618B (zh) * 2010-12-17 2015-09-16 中兴通讯股份有限公司 一种基于g.709的多级复用路由控制方法和网关网元
CN102316390B (zh) * 2011-09-07 2018-03-02 中兴通讯股份有限公司 利用虚拟拓扑提高约束条件下路径计算效率的方法及装置
US9167318B1 (en) * 2012-08-07 2015-10-20 Ciena Corporation Bandwidth advertisement systems and methods for optical transport network
CN110737627B (zh) * 2019-10-11 2023-10-03 苏州盛科通信股份有限公司 一种数据处理方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954829A (en) * 1996-12-30 1999-09-21 Mci Communications Corporation System, method, and computer program product for digital cross connect testing
CN1486012A (zh) * 2003-08-18 2004-03-31 烽火通信科技股份有限公司 一种三级克洛斯矩阵无阻塞扩展方法
CN1678127A (zh) * 2005-05-25 2005-10-05 烽火通信科技股份有限公司 一种大容量多播严格无阻塞交叉矩阵结构
CN1726683A (zh) * 2002-12-18 2006-01-25 思科技术公司 用于提供连接以作为分组网络上的分布式数字交叉连接的***和方法
US20060067236A1 (en) * 2004-09-30 2006-03-30 Sanyogita Gupta Determining and provisioning paths in a network

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433624B2 (ja) * 2001-02-28 2010-03-17 日本電気株式会社 通信ネットワーク、集中制御装置、通信ノード装置及びそれらに用いる状態通知情報相互交換方法
US7388872B2 (en) * 2001-04-06 2008-06-17 Montgomery Jr Charles D Dynamic communication channel allocation method and system
US7499468B2 (en) * 2001-04-06 2009-03-03 Montgomery Jr Charles Donald Method of adapting an optical network to provide lightpaths to dynamically assigned higher priority traffic
JP3830953B2 (ja) * 2002-10-02 2006-10-11 富士通株式会社 伝送システム
JP2004297230A (ja) 2003-03-26 2004-10-21 Nec Corp 光ネットワーク、光ネットワーク伝送装置及びそれに用いる分散型経路制御方法並びにそのプログラム
US7164679B2 (en) * 2004-01-12 2007-01-16 Ciena Corporation Scalable abstraction of topology across domain boundaries
JP2007243567A (ja) * 2006-03-08 2007-09-20 Fujitsu Ltd 通信パス計算方法及び装置
CN1878047A (zh) * 2006-07-19 2006-12-13 华为技术有限公司 扩散波分设备的交叉限制信息的方法
CN1929690B (zh) * 2006-09-27 2011-11-02 华为技术有限公司 光通道建立方法、波分设备及波分***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954829A (en) * 1996-12-30 1999-09-21 Mci Communications Corporation System, method, and computer program product for digital cross connect testing
CN1726683A (zh) * 2002-12-18 2006-01-25 思科技术公司 用于提供连接以作为分组网络上的分布式数字交叉连接的***和方法
CN1486012A (zh) * 2003-08-18 2004-03-31 烽火通信科技股份有限公司 一种三级克洛斯矩阵无阻塞扩展方法
US20060067236A1 (en) * 2004-09-30 2006-03-30 Sanyogita Gupta Determining and provisioning paths in a network
CN1678127A (zh) * 2005-05-25 2005-10-05 烽火通信科技股份有限公司 一种大容量多播严格无阻塞交叉矩阵结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2247013A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439999A (zh) * 2011-11-01 2012-05-02 华为技术有限公司 限制自动交换光网络的域规模的方法和***、节点设备
WO2016086636A1 (zh) * 2014-12-03 2016-06-09 中兴通讯股份有限公司 信息更新方法、装置及终端

Also Published As

Publication number Publication date
EP2247013A1 (en) 2010-11-03
CN101981844A (zh) 2011-02-23
EP2247013A4 (en) 2012-10-24
US20100329155A1 (en) 2010-12-30
US8665749B2 (en) 2014-03-04
CN101981844B (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
US7315693B2 (en) Dynamic route discovery for optical switched networks
US7266296B2 (en) Architecture and method for framing control and data bursts over 10 Gbit Ethernet with and without WAN interface sublayer support
CN1754352B (zh) 用于进行通信网络中的通道的故障救济的装置和方法
Zhu et al. Traffic engineering in multigranularity heterogeneous optical WDM mesh networks through dynamic traffic grooming
US7352758B2 (en) Dynamic bandwidth management using signaling protocol and virtual concatenation
US7272310B2 (en) Generic multi-protocol label switching (GMPLS)-based label space architecture for optical switched networks
CN106803814A (zh) 一种灵活以太网路径的建立方法、装置及***
US7526202B2 (en) Architecture and method for framing optical control and data bursts within optical transport unit structures in photonic burst-switched networks
CN100525165C (zh) 波分复用光突发交换网络中成帧和格式化的方法
EP2774301B1 (en) Wson restoration
US20050030951A1 (en) Reservation protocol signaling extensions for optical switched networks
US20050063701A1 (en) Method and system to recover resources in the event of data burst loss within WDM-based optical-switched networks
WO2009100575A1 (zh) 有阻交叉网络实现源路由的方法和装置
EP1890436B1 (en) Method and apparatus for managing and transmitting fine granularity services
Gumaste et al. Mesh implementation of light-trails: a solution to IP centric communication
WO2007085173A1 (fr) Procédé de traitement d'une ressource de réseau et unité de réseau d'un réseau optique intelligent associé
WO2021238195A1 (zh) 业务资源预配置方法、设备和***
CN102143410B (zh) 一种光网络中的路径计算方法及路径计算单元
CN101764732B (zh) 建立以太网虚拟连接的方法、网络和节点设备
WO2011029347A1 (zh) 实现节点发布链路信息的方法和装置
CN102318293A (zh) 建立标签交换路径的方法、设备和***
JP5027776B2 (ja) 通信ノード装置及び通信システム及び通信路制御プログラム
Miyazawa et al. OpenFlow-based Automatic Wavelength Selection for an Optical Packet and Circuit Integrated Network
CN105915643B (zh) Wson中使用电中继建立跨层通道的信令扩展的实现方法
Saracino Which core technology for your network?

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127996.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12865862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008706483

Country of ref document: EP