WO2009098751A1 - 空調給湯複合システム - Google Patents

空調給湯複合システム Download PDF

Info

Publication number
WO2009098751A1
WO2009098751A1 PCT/JP2008/051722 JP2008051722W WO2009098751A1 WO 2009098751 A1 WO2009098751 A1 WO 2009098751A1 JP 2008051722 W JP2008051722 W JP 2008051722W WO 2009098751 A1 WO2009098751 A1 WO 2009098751A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water supply
refrigerant
heat exchanger
air conditioning
Prior art date
Application number
PCT/JP2008/051722
Other languages
English (en)
French (fr)
Inventor
Satoshi Akagi
Kouji Yamashita
Kousuke Tanaka
Junichi Kameyama
Hironori Yabuuchi
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to PCT/JP2008/051722 priority Critical patent/WO2009098751A1/ja
Priority to JP2009552340A priority patent/JPWO2009098751A1/ja
Priority to US12/673,902 priority patent/US20110016897A1/en
Priority to EP08704399.8A priority patent/EP2184563A4/en
Priority to CN200880108728A priority patent/CN101809383A/zh
Publication of WO2009098751A1 publication Critical patent/WO2009098751A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to an air-conditioning and hot-water supply combined system that is equipped with a heat pump cycle and can simultaneously provide a cooling load, a heating load, and a hot water supply load, and in particular, an air conditioner that realizes energy saving while simultaneously satisfying the demand for high-temperature hot water supply.
  • the present invention relates to a hot water supply complex system.
  • the first compressor, the refrigerant distributor, the first heat exchanger, the second heat exchanger, the first expansion device, the outdoor heat exchanger, the four-way valve, and the first compressor are connected in this order.
  • the four-way valve, the indoor heat exchanger, and the second expansion device are interposed in this order from the refrigerant distribution device, and connected between the second heat exchanger and the first expansion device, and the first refrigerant
  • a low-stage refrigerant circuit through which the second refrigerant flows, a second compressor, a condenser, a third expansion device, the first heat exchanger, and the second compressor are connected in this order, and the second refrigerant flows.
  • a “heat pump type hot water supply apparatus including a stage-side refrigerant circuit, the second heat exchanger, and the condenser connected in this order, and a hot water supply path through which hot water flows through (for example, Patent Document 2). reference).
  • an air conditioner including an air conditioning refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected, a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchange.
  • a unit-type hot water supply device including a hot water supply refrigerant circuit filled with carbon dioxide refrigerant, and the first heat exchanger is connected to a hot water hot water circuit that generates hot water from water
  • the water in the hot water supply hot water circuit and the carbon dioxide refrigerant are configured to be capable of exchanging heat
  • the second heat exchanger includes a heat radiating unit connected in parallel with the indoor heat exchanger in the air conditioning refrigerant circuit.
  • an air-conditioning hot water supply system comprising a heat exchanger connected to a hot water supply refrigerant circuit and a cascade heat exchanger in which heat is exchanged between the refrigerant in the low-stage refrigerant circuit and the carbon dioxide refrigerant.
  • JP-A-11-270920 page 3-4, FIG. 1
  • Japanese Patent Laid-Open No. 4-263758 page 2-3, FIG. 1
  • JP 2004-132647 A page 6-8, FIG. 1
  • the multi-function heat pump system described in Patent Document 1 provides a cooling load, a heating load, and a hot water supply load simultaneously by a single refrigeration cycle, that is, one refrigeration cycle.
  • a single refrigeration cycle that is, one refrigeration cycle.
  • the temperature of the heat dissipation process for heating water and the temperature of the heat dissipation process for heating are substantially the same, so it becomes impossible to cover the hot water supply load, or In the heat dissipation process of the indoor unit that performs heating, the temperature has to be raised, and the COP (coefficient of performance) is extremely deteriorated.
  • the heat pump type hot water supply apparatus described in Patent Document 2 provides a cooling load, a heating load, and a hot water supply load simultaneously by two refrigeration cycles, that is, two refrigeration cycles.
  • the refrigerant circuit that performs air conditioning in the indoor unit and the refrigerant circuit that performs hot water supply are handled differently, and a hot water supply function cannot simply be added as an alternative to the indoor unit. There is a problem that it cannot be easily introduced into an existing air conditioner.
  • the air-conditioning hot-water supply system described in Patent Document 3 is also configured to provide a cooling load, a heating load, and a hot-water supply load simultaneously by two refrigeration cycles, that is, two refrigeration cycles.
  • a cooling load a heating load
  • a hot-water supply load a hot-water supply load simultaneously by two refrigeration cycles.
  • the heating load and the hot water supply load can be provided simultaneously, the heating load and the hot water supply load and the cooling load cannot be provided at the same time.
  • energy-saving operation cannot be performed by using one exhaust heat for the other heat source.
  • the present invention has been made to solve the above-described problem, and an object thereof is to provide an air conditioning and hot water supply combined system that can realize energy saving while simultaneously providing a cooling load, a heating load, and a high temperature hot water supply load. Yes. Another object of the present invention is to provide an air conditioning and hot water supply complex system that can be easily introduced into an existing air conditioner.
  • the combined air conditioning and hot water supply system includes an air conditioning compressor, a flow path switching means, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle means connected in series, and refrigerant-refrigerant heat exchange.
  • An air-conditioning refrigeration cycle in which an air conditioner and a hot water supply heat source throttle means are connected in series to circulate an air-conditioning refrigerant in a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and for hot water supply
  • the air-conditioning refrigeration cycle and the hot water supply refrigeration cycle are connected to perform heat exchange between the air conditioning refrigerant and the hot water supply refrigerant in the refrigerant-refrigerant
  • the combined air conditioning and hot water supply system while providing a cooling load, a heating load and a high temperature hot water supply load at the same time, the hot heat that has been exhausted to the atmosphere in the past is collected and reused to supply hot water.
  • System COP is greatly improved and energy saving can be realized.
  • FIG. It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the air-conditioning / hot-water supply combined system which concerns on Embodiment 1.
  • FIG. It is a Mollier diagram which shows the refrigerant
  • FIG. It is a Mollier diagram which shows the refrigerant
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air conditioning and hot water supply complex system according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air conditioning and hot water supply complex system according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning and hot water supply complex system according to Embodiment 3.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air conditioning and hot water supply complex system according to Embodiment 4.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during a cooling main operation) of the air-conditioning and hot water supply combined system 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the air conditioning and hot water supply complex system 100, particularly the refrigerant circuit configuration during cooling main operation, will be described.
  • This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates a refrigerant (air conditioning refrigerant). is there.
  • a refrigeration cycle heat pump cycle
  • refrigerant air conditioning refrigerant
  • the load on the cooling indoor unit B is larger than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 functions as a radiator.
  • the state of this cycle (referred to as cooling main operation for convenience) is shown.
  • the refrigeration cycle 1 for air conditioning, the refrigeration cycle 2 for hot water supply, and the water circulation cycle 3 for hot water supply are connected pipes such as the high pressure side connection pipe 106 and the low pressure side connection pipe 107.
  • the refrigeration cycle 1 for air conditioning and the refrigeration cycle for hot water supply 2 are refrigerant-refrigerant heat exchanger 41, and the refrigeration cycle for hot water supply 2 and the hot water circulation cycle 3 are heat medium-refrigerant heat exchange.
  • the container 51 is configured to perform heat exchange without mutual mixing of refrigerant and water.
  • the air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A.
  • the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D is the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D.
  • the heat source machine A is configured by connecting a compressor 101 for air conditioning, a four-way valve 102 that is a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series. It has the function of supplying cold heat to the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D.
  • a blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103.
  • the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are connected by the first connection pipe 130 and the second connection pipe 131.
  • connection portion a a connection portion between the high-pressure side connection pipe 106 and the first connection pipe 130 (hereinafter simply referred to as a connection portion a) is a connection portion between the high-pressure side connection pipe 106 and the second connection pipe 131 (hereinafter referred to as “connection portion a”).
  • connection portion c The connection portion between the low-pressure side connection pipe 107 and the first connection pipe 130 (hereinafter simply referred to as the connection portion c) is also upstream of the connection portion b). It is upstream of the connection portion with the pipe 131 (hereinafter simply referred to as the connection portion d).
  • the first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • a check valve 105a that allows the flow of air-conditioning refrigerant only in a predetermined direction (the direction from the heat source device A to the relay device E) between the connection portion a and the connection portion b of the high-pressure side connection pipe 106.
  • a check valve 105b that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay E to the heat source machine A). are provided respectively.
  • the air-conditioning compressor 101 sucks the air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state.
  • the air-conditioning compressor 101 may be configured of a type whose rotational speed is controlled by an inverter.
  • the four-way valve 102 switches the flow of the air conditioning refrigerant.
  • the outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid.
  • the accumulator 104 is disposed between the four-way valve 102 and the air conditioning compressor 101 during the cooling main operation, and stores excess air conditioning refrigerant.
  • the accumulator 104 may be any container that can store excess air-conditioning refrigerant.
  • the cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
  • the cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load
  • the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
  • the first embodiment shows a state in which it is determined by the relay device E that the cooling indoor unit B is in charge of the cooling load, and the heating indoor unit C is determined to be in charge of the heating load.
  • a blower such as a fan for supplying air to the indoor heat exchanger 118 may be provided in the vicinity of the indoor heat exchanger 118.
  • the connection pipe connected from the relay E to the indoor heat exchanger 118 is referred to as a connection pipe 133
  • the connection pipe connected from the relay E to the air conditioning throttle means 117 is referred to as a connection pipe 134. Shall be explained.
  • the air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant.
  • the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification.
  • the air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
  • the hot water supply heat source circuit D includes a hot water supply heat source throttling means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series, and the cold heat from the heat source unit A is transferred to the refrigerant-refrigerant heat exchanger 41. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41.
  • the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
  • the hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant.
  • the hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
  • the relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109.
  • the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 to be connected are determined to be a cooler (cooler) or a heater (hot water heater) by selectively opening or closing any of the above. It has a function to do.
  • the relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat.
  • the exchanger 113 and the second relay stop means 114 are configured.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe).
  • the pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108.
  • the valve means 109a is provided in the connection pipe 133a and the connection pipe 135a
  • the valve means 109b is provided in the connection pipe 133b and the connection pipe 135b.
  • connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe).
  • a pipe 136b) is connected at the second meeting part 116.
  • a check valve 110a is provided in the connection pipe 134a and the connection pipe 136a
  • a check valve 110b is provided in the connection pipe 134b and the connection pipe 136b.
  • the first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113.
  • the second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
  • the gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other.
  • the first distributor 115 is connected to the second distributor 110.
  • the first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes.
  • the 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
  • the first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched.
  • the first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. .
  • the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted.
  • the second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure.
  • the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
  • the refrigerant flow rate adjusting means may be used.
  • the air conditioning refrigeration cycle 1 includes the air conditioning compressor 101, the flow path switching unit 102, the outdoor heat exchanger 103, the indoor heat exchanger 118, and the air conditioning throttle unit 117 connected in series.
  • the refrigerant-refrigerant heat exchanger 41 and the hot water supply heat source throttle means 119 are connected in series, and the indoor heat exchanger 118 and the air conditioning throttle means 117 are connected to the refrigerant-refrigerant heat exchanger 41 and the hot water supply heat source throttle means.
  • 119 is connected in parallel to form a first refrigerant circuit, and air conditioning refrigerant is circulated through the first refrigerant circuit.
  • FIG. 2 is a Mollier diagram (PH diagram) showing the refrigerant state of the air-conditioning refrigeration cycle 1 during the cooling main operation. Based on FIG.1 and FIG.2, operation
  • the vertical axis represents absolute pressure (MPa) and the horizontal axis represents specific enthalpy (kJ / kg).
  • the air-conditioning refrigerant is in a gas-liquid two-phase state in the portion surrounded by the saturated liquid line and the saturated vapor line, in the liquid state on the left side of the saturated liquid line, and on the right side of the saturated vapor line.
  • Each represents a gas state.
  • R410A is used as the air-conditioning refrigerant is shown as an example.
  • the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101 and flows into the outdoor heat exchanger 103 via the four-way valve 102.
  • the outdoor heat exchanger 103 the flowing air-conditioning refrigerant exchanges heat with outdoor air to dissipate heat.
  • the air-conditioning refrigerant that has flowed out of the outdoor heat exchanger 103 passes through the check valve 105a, is guided to the high-pressure side connection pipe 106, and reaches the gas-liquid separator 108 of the relay E.
  • the air-conditioning refrigerant flowing into the gas-liquid separator 108 is separated into a gas-phase air-conditioning refrigerant and a liquid-phase air-conditioning refrigerant.
  • the saturated vapor (air-conditioning refrigerant in the gas phase) is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the saturated steam flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant that has flowed into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and merges at the first meeting unit 115.
  • the air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115.
  • the saturated liquid (liquid-phase air-conditioning refrigerant) exchanges heat with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111. Get the degree of supercooling. Then, the refrigerant passes through the first repeater throttle means 112 and flows into the refrigerant used for air conditioning (the heating indoor unit C and the hot water supply heat source circuit D, the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41. The first meeting part 115 merges with the air-conditioning refrigerant that has dissipated heat in step (1).
  • the air-conditioning refrigerant merged at the first meeting unit 115 is excessively exchanged by the second internal heat exchanger 113 by exchanging heat with the air-conditioning refrigerant expanded to a low temperature and low pressure by the second relay device throttle means 114. Get the degree of cooling.
  • This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B.
  • the air-conditioning refrigerant that has flowed into the cooling indoor unit B is expanded to low temperature and low pressure by the air-conditioning throttle means 117, evaporates in the indoor heat exchanger 118, and merges in the low-pressure side connection pipe 107 via the valve means 109b.
  • the air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107. It merges with the air conditioning refrigerant that has flowed out of the machine B. Then, the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is guided to the four-way valve 102 through the check valve 105d, and returns to the air-conditioning compressor 101 through the accumulator 104.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during a heating-main operation) of the air-conditioning and hot water supply complex system 100 according to Embodiment 1 of the present invention.
  • FIG. 4 is a Mollier diagram showing the refrigerant state of the air-conditioning refrigeration cycle 1 during heating-main operation. Based on FIG.3 and FIG.4, the heating main driving
  • the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 functions as an evaporator.
  • the cycle state (for convenience, referred to as heating-main operation) is shown.
  • the vertical axis represents absolute pressure (MPa) and the horizontal axis represents specific enthalpy (kJ / kg).
  • the air-conditioning refrigerant is in a gas-liquid two-phase state in the portion surrounded by the saturated liquid line and the saturated vapor line, in the liquid state on the left side of the saturated liquid line, and on the right side of the saturated vapor line. Each represents a gas state.
  • R410A is used as the air-conditioning refrigerant is shown as an example.
  • the air-conditioning refrigerant that has been heated to high temperature and pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, is connected to the check valve 105c via the four-way valve 102, and is connected to the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state.
  • the superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115.
  • the air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115.
  • a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111.
  • the degree of supercooling is obtained by heat exchange.
  • the air-conditioning refrigerant used for air-conditioning flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B.
  • the air-conditioning refrigerant that has flowed into the cooling indoor unit B is expanded to low temperature and low pressure by the air-conditioning throttle means 117, evaporates in the indoor heat exchanger 118, and merges in the low-pressure side connection pipe 107 via the valve means 109b.
  • the air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107. It merges with the air conditioning refrigerant that has flowed out of the machine B.
  • the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, the accumulator The process returns to the air conditioning compressor 101 via 104.
  • the hot water supply refrigeration cycle 2 will be described with reference to FIGS. 1 and 3.
  • the operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
  • the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, a refrigerant-refrigerant heat exchanger 41, It is constituted by.
  • the hot water supply compressor 21, the heat medium-refrigerant heat exchanger 51, the hot water supply throttle means 22, and the refrigerant-refrigerant heat exchanger 41 are connected in series to form a second refrigerant circuit. This is achieved by circulating hot water supply refrigerant in the second refrigerant circuit.
  • the hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant into a high temperature and high pressure state.
  • the hot water supply compressor 21 may be configured of a type whose rotation speed is controlled by an inverter.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between water (heat medium) circulating in the hot water supply water circulation cycle 3 and hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2.
  • the hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it.
  • the hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.
  • the hot water supply refrigeration cycle 2 will be described. 2 and 4 also illustrate a Mollier diagram (PH diagram) showing the refrigerant state of the hot water supply refrigeration cycle 2 during the cooling main operation and the heating main operation.
  • the operation of the hot water supply refrigeration cycle 2 in the air conditioning and hot water supply complex system 100 will be described with reference to FIGS.
  • the hot water supply refrigerant is in a gas-liquid two-phase state in the portion surrounded by the saturated liquid line and the saturated vapor line, in the liquid state on the left side of the saturated liquid line, and on the right side of the saturated vapor line. Each represents a gas state.
  • R134a is used as the hot water supply refrigerant in the hot water supply refrigeration cycle 2 is shown as an example.
  • the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51.
  • the flowing hot water supply refrigerant dissipates heat by heating the water circulating in the hot water supply water circulation cycle 3.
  • This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1.
  • the expanded hot water supply refrigerant receives heat from the air conditioning refrigerant flowing in the hot water supply heat source circuit D in the refrigerant-refrigerant heat exchanger 41, evaporates, and returns to the hot water supply compressor 21.
  • the hot water supply water circulation cycle 3 will be described with reference to FIGS. 1 and 3.
  • the operation of the hot water supply water circulation cycle 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed.
  • the hot water circulation cycle 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32.
  • the water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the water in the hot water supply water circulation cycle 3.
  • the rotation speed is controlled by an inverter. It is good to comprise.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between the water (heat medium) circulating in the hot water supply water circulation cycle 3 and the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2. Is.
  • the hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 by the water circulation pump 31 and obtains a water head.
  • the water that has obtained the water head flows into the heat medium-refrigerant heat exchanger 51 and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 in the heat medium-refrigerant heat exchanger 51. That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
  • the water passing through the water circulation pump 31 and the heat medium-refrigerant heat exchanger 51 is made a closed system independent of the water in the hot water storage tank 32, and the piping is passed through the hot water storage tank 32 to thereby store the hot water storage tank. It is good also as a structure which heats the water in 32.
  • the medium in the closed system may be brine (antifreeze) instead of water.
  • the check valve 105a, the check valve 105b, the check valve 105c, the check valve 105d, the check valve 110a, and the check valve 110b are configured by valve means such as an electromagnetic valve so that the refrigerant flow path can be more reliably Switching may be performed.
  • the air-conditioning compressor 101 and the hot water supply compressor 21 may be any of various types such as a reciprocating type, a rotary type, a scroll type, and a screw type, and are limited to those having a variable rotation speed. It does not matter if the rotational speed is fixed.
  • R410A is adopted as the air-conditioning refrigerant circulating in the air-conditioning refrigeration cycle 1 and R134a is adopted as the hot-water supply refrigerant circulating in the hot-water supply refrigeration cycle 2
  • the type of refrigerant is not particularly limited.
  • natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, helium
  • alternative refrigerants such as HFC410A, HFC407C, HFC404A, etc.
  • chlorine-free refrigerants or R22 and R134a used in existing products
  • Any of chlorofluorocarbon refrigerants such as the above may be used.
  • the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 have independent refrigerant circuit configurations, and the circulating refrigerant may be the same type or different types, but the refrigerants are not mixed. It is assumed that the refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 exchange heat with each other.
  • a refrigerant having a low critical temperature When a refrigerant having a low critical temperature is used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 becomes a supercritical state when hot water supply is performed.
  • the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and higher-level control is required for operation to obtain a high COP.
  • a refrigerant having a low critical temperature has a high saturation pressure with respect to the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
  • the target temperature of hot water supply be 60 ° C. or higher.
  • a refrigerant having a critical temperature of at least 60 ° C. as the hot water supply refrigerant. If such a refrigerant is employed as a hot water supply refrigerant of the hot water supply refrigeration cycle 2, it is assumed that a high COP can be obtained more stably at a lower cost.
  • the cooling indoor unit B and the heating indoor unit C show a case where two or more indoor heat exchangers 118 are mounted.
  • the present invention is not limited to this.
  • the indoor heat exchanger 118 of the cooling indoor unit B may be one, or the indoor heat exchanger 118 of the heating indoor unit C may be absent or may be one.
  • both the indoor heat exchanger 118 of the cooling indoor unit B and the heating indoor unit C may be absent or may be one.
  • the capacities of the indoor heat exchangers 118 of the cooling indoor unit B and the heating indoor unit C are not particularly limited, and the capacities of the indoor heat exchangers 118 may be different or the same.
  • the heat exchanger (outdoors) which removes the accumulator 104 and becomes a radiator in the refrigerating cycle 1 for an air conditioning
  • the excess refrigerant may be stored in the heat exchanger 103, the indoor heat exchanger 118, the refrigerant-refrigerant heat exchanger 41, or the like.
  • the hot water supply load system is configured by a dual cycle (air conditioning refrigeration cycle 1 and hot water supply refrigeration cycle 2), a hot water supply demand (for example, 80 ° C.)
  • a hot water supply demand for example, 80 ° C.
  • the temperature of the radiator (heat medium-refrigerant heat exchanger 51) of the hot water supply refrigeration cycle 2 may be set to a high temperature (for example, a condensing temperature of 85 ° C.). Therefore, when there is a request for a heating load in addition to the hot water supply demand, it is not necessary to increase the condensation temperature (for example, 50 ° C.) of the heating indoor unit C, and energy consumption can be reduced.
  • the air conditioning refrigeration cycle 1 that can be introduced into the air conditioning and hot water combined system 100 that exhibits the effects of the present invention is as follows.
  • the configuration is not limited to this, and any configuration may be used as long as the cooling function and the heating function can be supplied at the same time.
  • the configuration described in the second embodiment may be adopted.
  • FIG. FIG. 5 is a refrigerant circuit diagram showing a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during cooling main operation) of the combined air-conditioning and hot water supply system 100a according to Embodiment 2 of the present invention.
  • the air conditioning and hot water supply complex system 100a is installed in a building, a condominium, or the like, and can supply a cooling load, a heating load, and a hot water supply load at the same time by using a refrigeration cycle that circulates a refrigerant (air conditioning refrigerant).
  • the differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof will be omitted.
  • the heat source unit A 2 and the relay E 2 of the air conditioning refrigeration cycle 1a are used for air conditioning in the air conditioning and hot water supply complex system 100 according to the first embodiment.
  • the heat source machine A and the relay machine E of the refrigeration cycle 1 have different configurations.
  • the configuration other than the heat source unit A 2 and the relay unit E 2 that is, the cooling indoor unit B, the heating indoor unit C, the hot water supply heat source circuit D, the hot water supply refrigeration cycle 2 and the hot water supply water circulation cycle 3) is implemented.
  • the configuration is the same as in the first mode.
  • the heat source machine A 2 includes an air conditioning compressor 101, a four-way valve 102, an outdoor heat exchanger 103, a first heat source machine throttle means 124, and an accumulator 104.
  • the heat source machine A 2 Has the function of supplying cold heat to the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D, similarly to the heat source unit A.
  • the discharge side pipe 140 connected to the air conditioning compressor 101 branches between the air conditioning compressor 101 and the four-way valve 102, and one (discharge side pipe 140a) is connected to the four-way valve 102, while the other (Discharge side piping 140b) is connected to the discharge gas piping 125 for air conditioning.
  • a connection pipe between the four-way valve 102 and the outdoor heat exchanger 103 and another refrigerant flow path (four-way valve 102 and the outdoor heat exchanger 103 are directly connected to each other).
  • a bypass pipe 141 is provided for connecting a connection pipe to be a refrigerant path that is not connected). That is, the bypass pipe 141 is provided for directly connecting the four-way valve 102 and the outdoor heat exchanger 103.
  • the bypass pipe 141 is provided with a second heat source unit throttle means 128 and a check valve 105e from the upstream side where the air conditioning refrigerant flows.
  • the first heat source unit throttle unit 124 and the second heat source unit throttle unit 128 function as a pressure reducing valve or an expansion valve, and decompress the air conditioning refrigerant to expand it.
  • the first heat source unit throttle unit 124 and the second heat source unit throttle unit 128 are capable of variably controlling the opening, for example, a precise flow rate control unit using an electronic expansion valve, or an inexpensive refrigerant flow rate such as a capillary tube. It may be configured by adjusting means or the like.
  • the check valve 105e allows the flow of air-conditioning refrigerant only in a predetermined direction (the direction from the four-way valve 102 to the outdoor heat exchanger 103).
  • the relay unit E 2 has a function of connecting the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A 2, and the valve means 109 a or the valve of the first distribution unit 109.
  • the connected indoor heat exchanger 118 and refrigerant-refrigerant heat exchanger 41 are used as a cooler (cooler) or a heater (hot water heater). It has a function to determine.
  • This relay machine E 2 is provided with only the first distributor 109, the gas-liquid separator 108, the second distributor 110, the first internal heat exchanger 111, the first relay throttle means 112, the second This is different from the relay E according to the first embodiment in that the internal heat exchanger 113 and the second relay throttling means 114 are not provided.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (connection pipe 133b and connection pipe 135b) is connected to the discharge gas pipe 125 for air conditioning, and the other (connection pipe 133a and A connecting pipe 135a) is connected to the air-conditioning intake gas pipe 126.
  • connection pipe 134 and the connection pipe 136 are not branched, and the connection pipe 134 and the connection pipe 136 are connected to the air conditioning liquid pipe 127. It has become so.
  • the cooling main operation operation of the refrigeration cycle 1a for air conditioning will be described.
  • a part of the air-conditioning refrigerant heated to high temperature and high pressure by the air-conditioning compressor 101 is led to the air-conditioning discharge gas pipe 125 and flows into the relay E 2 , and the other is led to the four-way valve 102.
  • the air-conditioning refrigerant guided to the air-conditioning discharge gas pipe 125 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118, is depressurized by the air-conditioning throttle means 117, and merges in the air-conditioning liquid pipe 127.
  • the air conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41, is depressurized by the hot water supply heat source throttle means 119, and flows out of the heating indoor unit C and the air conditioning liquid pipe 127. Join at.
  • the air-conditioning refrigerant guided to the four-way valve 102 flows into the outdoor heat exchanger 103 via the four-way valve 102.
  • the flowing air-conditioning refrigerant exchanges heat with outdoor air to dissipate heat.
  • the air-conditioning refrigerant that has flowed out of the outdoor heat exchanger 103 is decompressed by the first heat source unit throttle means 124 and is joined by the air-conditioning liquid pipe 127.
  • the air-conditioning refrigerant merged in the air-conditioning liquid pipe 127 is distributed to a circuit in which the valve means 109a is open.
  • the air conditioning refrigerant flows into the cooling indoor unit B.
  • the air-conditioning refrigerant that has flowed into the cooling indoor unit B is expanded to a low temperature and low pressure by the air-conditioning throttle means 117, evaporates in the indoor heat exchanger 118, and merges in the air-conditioning intake gas pipe 126 via the valve means 109a.
  • a part of the air-conditioning refrigerant merged in the air-conditioning intake gas pipe 126 returns to the air-conditioning compressor 101 via the accumulator 104, and the other is led to the bypass pipe 141.
  • FIG. 6 is a refrigerant circuit diagram showing a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of the combined air-conditioning and hot-water supply system 100a according to Embodiment 2 of the present invention. Based on FIG. 6, the heating-main operation operation of the air-conditioning refrigeration cycle 1a in the air-conditioning and hot water supply complex system 100a will be described. First, most of the air-conditioning refrigerant heated to high temperature and high pressure by the air-conditioning compressor 101 is led to the air-conditioning discharge gas pipe 125 and distributed to the circuit in which the valve means 109b is open. Here, the air-conditioning refrigerant flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air conditioning refrigerant that has flowed into the heating indoor unit C dissipates heat in the indoor heat exchanger 118, is depressurized by the air conditioning throttle means 117, and merges in the air conditioning liquid pipe 127.
  • the air conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41, is depressurized by the hot water supply heat source throttle means 119, and flows out of the heating indoor unit C and the air conditioning liquid. Merge at pipe 127.
  • the air-conditioning refrigerant merged in the air-conditioning liquid pipe 127 is distributed to a circuit in which the valve means 109 a is open and a circuit led to the outdoor heat exchanger 103.
  • the air-conditioning refrigerant flows into the cooling indoor unit B and the outdoor heat exchanger 103.
  • the air-conditioning refrigerant distributed to the circuit in which the valve means 109a is opened is expanded to low temperature and low pressure by the air-conditioning throttle means 117, evaporated in the indoor heat exchanger 118 of the cooling indoor unit B, and the air-conditioning intake gas pipe 126. Join at.
  • the air conditioning refrigerant guided to the outdoor heat exchanger 103 expands to low temperature and low pressure by the first heat source unit throttle means 124, evaporates in the outdoor heat exchanger 103, is guided to the bypass pipe 141,
  • the refrigerant merges with the discharge gas refrigerant that has passed through the heat source device throttle means 128 and the check valve 105e.
  • the air-conditioning refrigerant merges with the air-conditioning refrigerant led to the cooling indoor unit B through the four-way valve 102 and the air-conditioning intake gas pipe 126.
  • the air-conditioning refrigerant merged in the air-conditioning intake gas pipe 126 returns to the air-conditioning compressor 101 via the accumulator 104.
  • the operation of the hot water supply refrigeration cycle 2 is not different depending on the operation state of the air conditioning refrigeration cycle 1a, that is, whether the cooling main operation is executed or the heating main operation is executed. This is as described in the first embodiment.
  • the operation of the hot water supply water circulation cycle 3 is not different depending on the operation state of the air-conditioning refrigeration cycle 1a, that is, whether the cooling main operation is executed or the heating main operation is executed. This is as described in the first embodiment.
  • the check valve 105e may be configured by valve means such as an electromagnetic valve, and the refrigerant flow path may be more reliably switched.
  • the type of air-conditioning refrigerant circulating in the air-conditioning refrigeration cycle 1a is not particularly limited.
  • R410A may be used as in the first embodiment, and includes chlorine such as natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, helium, and alternative refrigerants such as HFC410A, HFC407C, and HFC404A. Any refrigerant that is not used or a CFC-based refrigerant such as R22 or R134a used in existing products may be used.
  • the refrigeration cycle 1a for air conditioning and the refrigeration cycle 2 for hot water supply have independent refrigerant circuit configurations, and the circulating refrigerant may be the same type or different types. It is assumed that the heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 exchange heat with each other.
  • the cooling indoor unit B and the heating indoor unit C show a case where two or more indoor heat exchangers 118 are mounted.
  • the present invention is not limited to this.
  • both the indoor heat exchanger 118 of the cooling indoor unit B and the heating indoor unit C may be absent or may be one.
  • the hot water supply load system is constituted by a dual cycle (the air conditioning refrigeration cycle 1a and the hot water supply refrigeration cycle 2).
  • the temperature of the radiator (heat medium-refrigerant heat exchanger 51) of the hot water supply refrigeration cycle 2 may be set to a high temperature (for example, a condensing temperature of 85 ° C.). Therefore, when there is a request for a heating load in addition to the hot water supply demand, it is not necessary to increase the condensation temperature (for example, 50 ° C.) of the heating indoor unit C, and energy consumption can be reduced.
  • FIG. 7 is a refrigerant circuit diagram showing a refrigerant circuit configuration of an air conditioning and hot water supply complex system 100b according to Embodiment 3 of the present invention. Based on FIG. 7, the refrigerant circuit configuration of the combined air-conditioning and hot-water supply system 100b will be described.
  • This air conditioning and hot water supply complex system 100b is installed in a building, a condominium or the like, and can simultaneously supply a cooling load, a heating load, and a hot water supply load by using a refrigeration cycle that circulates a refrigerant (air conditioning refrigerant).
  • the difference from the first embodiment and the second embodiment described above will be mainly described, and the same parts as those in the first embodiment and the second embodiment are denoted by the same reference numerals. Therefore, the description will be omitted.
  • FIG. 7 shows an alternate long and short dash line representing the hot water supply refrigeration cycle housing 200. That is, a part of the air-conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a part of the hot water supply water circulation cycle 3 are accommodated in the hot water supply refrigeration cycle housing 200.
  • the connection portion between the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2, and the hot water supply refrigeration cycle 2 and the hot water supply water circulation cycle 3 A connection valve is attached to the connection part.
  • connection valves (a connection valve 201 and a connection valve 202, a connection valve 203 and a connection are connected to a connection portion between the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2, that is, the connection pipe 135 and the connection pipe 136, respectively.
  • Valve 204) is attached.
  • the connection valve 202 and the connection valve 203 are attached inside the hot water supply refrigeration cycle housing 200, and the connection valve 201 and the connection valve 204 are attached outside the hot water supply refrigeration cycle housing 200.
  • Two connection valves (a connection valve 205 and a connection valve 206, a connection valve 207 and a connection valve 208) are respectively attached to the water pipes connected to each other.
  • the connection valve 206 and the connection valve 207 are attached inside the hot water supply refrigeration cycle housing 200, and the connection valve 205 and the connection valve 208 are attached outside the hot water supply refrigeration cycle housing 200.
  • the air conditioning and hot water supply combined system 100b according to Embodiment 3 is different from the air conditioning and hot water supply combined system 100 according to Embodiment 1 in that a removable hot water supply refrigeration cycle housing 200 is provided.
  • the configuration other than the hot water supply refrigeration cycle housing 200 and the connection valve 201 to the connection valve 208 that is, the heat source unit A, the cooling indoor unit B, the heating indoor unit C, the hot water supply heat source circuit D, the relay unit E, the air conditioner
  • the refrigeration cycle 1 for hot water, the refrigeration cycle 2 for hot water supply, and the water circulation cycle 3 for hot water supply have the same configuration as that of the first embodiment.
  • the present invention can replace the general-purpose indoor units (such as the cooling indoor unit B and the heating indoor unit C) with respect to the general-purpose air-conditioning refrigeration cycle.
  • the combined air conditioning and hot water supply system 100b can be configured. Therefore, development investment for the dedicated air-conditioning refrigeration cycle can be suppressed, and the air-conditioning and hot water supply combined system 100b according to the present invention can be configured using the existing air-conditioning refrigeration cycle, so that energy saving can be realized more easily. .
  • FIG. FIG. 8 is a refrigerant circuit diagram showing a refrigerant circuit configuration of an air conditioning and hot water supply complex system 100c according to Embodiment 4 of the present invention. Based on FIG. 8, the refrigerant circuit structure of the air conditioning and hot water supply complex system 100c will be described.
  • the air conditioning and hot water supply complex system 100c is installed in a building, a condominium, or the like, and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle that circulates a refrigerant (air conditioning refrigerant).
  • the difference from the first to third embodiments will be mainly described, and the same parts as those in the first to third embodiments are denoted by the same reference numerals. Therefore, the description will be omitted.
  • the state of the four-way valve 102 in the cooling main operation is indicated by a solid line
  • the state of the four-way valve 102 in the heating main operation is indicated by a broken line.
  • the combined air-conditioning and hot water supply system 100c according to the fourth embodiment is basically the same as the combined air-conditioning and hot water supply system 100 according to the first embodiment. The difference is that a high pressure side pressure detection means 24, a tapping temperature detection means (heat medium temperature detection means) 33, a hot water supply control means 25, and an air conditioning control means 120 are provided.
  • the hot water supply low pressure side pressure detection means 23 is provided on the suction side of the hot water supply compressor 21 and detects the pressure of the air conditioning refrigerant sucked into the hot water supply compressor 21.
  • the hot water supply high pressure side pressure detection means 24 is provided on the discharge side of the hot water supply compressor 21 and detects the pressure of the air conditioning refrigerant discharged from the hot water supply compressor 21.
  • the hot water temperature detecting means 33 is provided on the water outlet side of the heat medium-refrigerant heat exchanger 51, and detects the temperature of the water stored in the hot water storage tank 32 and scheduled to be discharged. Further, detection information in the hot water supply low pressure side pressure detection means 23, the hot water supply high pressure side pressure detection means 24, and the tapping temperature detection means 33 is output to the hot water supply control means 25.
  • the hot water supply control means 25 includes a hot water supply communication means 26, a hot water supply calculation means 27, and a hot water supply storage means 28.
  • the hot water supply control means 25 is an ON / OFF state of the hot water supply refrigeration cycle 2 which is detection information from each of the detection means, for example, an ON / OFF state of the hot water supply compressor 21, a frequency, a discharge temperature, etc.
  • Hot water supply throttling means 22 and hot water supply such as the high-pressure side pressure and low-pressure side pressure of the hot water refrigerant circulating in the refrigeration cycle 2, the condensing temperature, the evaporating temperature, the incoming water temperature and the outgoing hot water temperature of the heat medium-refrigerant heat exchanger 51, etc.
  • At least one of the information such as the degree of restriction of the heat source restricting means 119 (number of pulses when an electronic expansion valve is used) is stored in the hot water storage means 28, and a hot water supply operation is performed based on the stored information.
  • the means 27 calculates and executes various controls.
  • the air conditioning control means 120 includes an air conditioning communication means 121, an air conditioning computing means 122, and an air conditioning storage means 123.
  • the air conditioning control means 120 and the hot water supply control means 25 communicate information with each other via the hot water supply communication means 26 included in the hot water supply control means 25 and the air conditioning communication means 121 included in the air conditioning control means 120. By doing so, coordinated control operations are possible. In this way, by enabling communication between the two control means, a more advanced and more stable energy saving system can be constructed.
  • the air-conditioning control means 120 is an ON / OFF state of the air-conditioning refrigeration cycle 1, which is detection information from various detection means (not shown), such as the ON / OFF state of the air-conditioning compressor 101, the frequency, the discharge temperature, etc.
  • Four-way valve such as high-pressure side pressure, low-pressure side pressure, condensing temperature, evaporation temperature, etc. of the air-conditioning refrigerant circulating in the refrigeration cycle 1, and the fan air volume, inlet temperature, outlet temperature, suction air temperature, etc.
  • At least one of the information such as the fan air volume of the indoor unit C and the indoor unit intake air temperature is stored in the air conditioning storage unit 123, and the air conditioning calculation unit 12 is based on the stored information. There has been so calculated, executes various controls.
  • the hot water supply compressor 21 is started after waiting for the stability of the air conditioning refrigeration cycle 1, whereby the hot water supply refrigerant in the hot water supply refrigeration cycle 2 is changed to the refrigerant-refrigerant heat exchanger 41.
  • the refrigeration cycle 1 can sufficiently absorb the heat of the air conditioning refrigeration cycle 1 and can evaporate, so that the hot water supply refrigeration cycle 2 can operate stably, increasing the reliability of the system, It is possible to save energy reliably.
  • the hot water supply compressor 21 when the air conditioning compressor 101 is temporarily stopped and then restarted due to a failure or underload, and the hot water supply compressor 21 is operating at a high frequency, the hot water supply compression is performed. If the hot water supply compressor 21 is operated at a high frequency without controlling the compressor 21 in conjunction with the air conditioning compressor 101, the low pressure side pressure of the hot water supply refrigeration cycle 2 is abnormally lowered while the air conditioning compressor 101 is stopped. It is assumed that a large heat shock is caused when the air conditioning compressor 101 is restarted. For this reason, when the air-conditioning compressor 101 stops while the hot water supply compressor 21 is in operation, for example, the control target of the hot water supply compressor 21 is that the low-pressure side pressure of the hot water supply refrigeration cycle 2 falls within a predetermined range. By adding, a large heat shock can be prevented, the reliability of the system can be increased over a longer period, and energy saving can be ensured.
  • the hot water supply computing means 27 calculates the hot water supply computing means 27 based on the outputs of the hot water supply low pressure side pressure detection means 23 and the hot water supply high pressure side pressure detection means 24 of the hot water supply refrigeration cycle 2 stored in the hot water supply control means 25.
  • the hot water supply refrigeration cycle 2 is controlled in the direction of increasing the compression ratio by restricting the hot water supply squeezing means 22, thereby improving the reliability of the system. It can be increased and energy saving can be ensured.
  • the hot water supply control means 25 and the hot water supply throttling means 22 may be connected by wire or wirelessly to give a signal directly (for example, when an electronic expansion valve is used, the pulse is reduced. Send a signal), the degree of supercooling of the hot water supply refrigerant at the outlet of the heat medium-refrigerant heat exchanger 51, or hot water supply at the outlet of the refrigerant-refrigerant heat exchanger 41, which is assumed as a control target value of the hot water supply throttling means 22
  • the hot water supply squeezing means 22 may be squeezed indirectly by increasing the degree of superheat of the hot water refrigerant to a value greater than the value when the compression ratio of the hot water supply refrigeration cycle 2 is within a predetermined range.
  • the evaporation heat source of the hot water supply refrigeration cycle 2 is reduced by giving a control signal to squeeze the hot water supply heat source throttle means 119, the low pressure side pressure of the hot water supply refrigeration cycle 2 is reduced. , The compression ratio can be increased.
  • the hot water supply control means 25 and the hot water supply heat source throttle means 119 may be connected by wire or wirelessly to give a direct throttle signal (for example, when an electronic expansion valve is used, a pulse is A signal to be reduced), the degree of supercooling of the air-conditioning refrigerant at the outlet of the refrigerant-refrigerant heat exchanger 41, which is assumed as a control target value of the hot water supply heat source throttle means 119, and the compression ratio of the hot water supply refrigeration cycle 2 is predetermined.
  • the hot water supply squeezing means 119 may be squeezed indirectly by increasing the value from the value in the range of.
  • the hot water supply heat source throttling means 119 is controlled by being connected to the hot water supply control means 25 by wire or wireless is shown, but the present invention is not limited to this, and the control is made with the air conditioning control means 120. You may go.
  • the low pressure side pressure detection means 23 for hot water supply detects the evaporation temperature by attaching a temperature detection means to a pipe between the hot water throttling means 22 and the refrigerant-refrigerant heat exchanger 41, for example, and is calculated from the output. It may be replaced by saturation pressure.
  • the heat medium-refrigerant heat exchanger 51 is a plate heat exchanger
  • the high-pressure side pressure detection means 24 for hot water supply may similarly be replaced with a saturation pressure calculated from the output of the condensation temperature detected by the temperature detection means.
  • the control of the hot water supply compressor 21 if the output of the hot water temperature detection means 33 is controlled as a target value, it will follow the user's demand directly, so there is no useless operation and energy saving.
  • the water side piping of the heat medium-refrigerant heat exchanger 51 is made of stainless steel from the viewpoint of corrosion resistance.
  • the hot water temperature can be estimated with a certain degree of accuracy from the condensing temperature of the hot water supply refrigerant exchanging heat with water.
  • the difference between the tapping temperature and the condensation temperature of the hot water supply refrigeration cycle 2 is 6 ° C, and even if the water circulation rate is reduced by a factor of 1/4, the value can only be reduced to 3 ° C. Has been confirmed by simulation.
  • the hot water temperature is estimated with a certain degree of accuracy based on the output of the hot water supply high pressure side pressure detecting means 24 of the hot water supply refrigeration cycle 2 without directly measuring the hot water temperature, and the estimated value is used for hot water supply.
  • the control target value of the compressor 21 can be set.
  • the hot water supply control means 25 includes the pressure on the high pressure side of the hot water supply refrigeration cycle 2, the condensation temperature, and the temperature at the position from the outlet of the hot water supply compressor 21 to the inlet of the heat medium-refrigerant heat exchanger 51. Based on at least one or more values, the temperature of the heat medium (here, water) on the outlet side of the heat medium-refrigerant heat exchanger 51 (here, water) is estimated, and this estimated value becomes a predetermined target value.
  • the hot water supply compressor 21 can be controlled so as to approach, and an energy saving system can be introduced without increasing the cost.
  • the amount of heat exchange in the heat medium-refrigerant heat exchanger 51 tends to increase.
  • the heating capacity required on the machine C side may not be obtained.
  • the heating capacity of the heating indoor unit C is controlled by controlling the upper limit value of the frequency of the hot water supply compressor 21 to be small. Therefore, a stable energy saving system can be realized without impairing user comfort. Further, in the present embodiment, when no heating indoor unit C is in operation, there is no need to worry about insufficient capacity of the heating indoor unit C, so the upper limit value of the frequency of the hot water supply compressor 21 is reduced. It is possible to control the system so that the system capacity can be utilized to the maximum. Note that the temperature of the water in the hot water storage tank 32 may be estimated using the incoming water temperature or the outgoing water temperature.
  • the system according to the present embodiment is a system that realizes energy saving by reducing exhaust heat by simultaneously providing a thermal load and a cold load by the air-conditioning refrigeration cycle.
  • the air conditioning load such as the load depends on the real-time demand by the user
  • the hot water supply load can be covered by the heat stored in the hot water storage tank 32, so that the refrigeration cycle for air conditioning as in the present embodiment.
  • a hot water supply refrigeration cycle that communicate with each other, for example, by operating the hot water supply refrigeration cycle 2 in accordance with the operation of the cooling indoor unit B, it is possible to operate to minimize waste heat. It becomes.
  • the air conditioning refrigeration cycle and the hot water supply refrigeration cycle communicate with each other, so that the amount of heat exchange in the outdoor heat exchanger 103 of the air conditioning refrigeration cycle is reduced.
  • the compressor 21 By controlling the compressor 21, it is possible to minimize exhaust heat.
  • the outdoor heat exchanger 103 is an air heat exchanger
  • the exhaust heat can be minimized by controlling the hot water supply compressor 21 so as to reduce the air volume of the fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 熱源側ユニット1台に対して1台又は複数台の負荷側ユニットを接続し、水を高温に加熱することを可能にしたヒートポンプ装置を提供する。  空調給湯複合システム100(ヒートポンプ装置)は、空調用圧縮機101と、四方弁102と、室外熱交換器103とを搭載した熱源側ユニット10と、空調用絞り手段117と、室内熱交換器118と、第2圧縮機53と、第2負荷側熱交換器54と、第2流量制御装置55とを搭載した負荷側ユニット50とを備え、空調用圧縮機101と、四方弁102と、室外熱交換器103と、空調用絞り手段117と、室内熱交換器118とを高圧側接続配管106及び低圧側接続配管107で順次接続し、主回路Aを構成し、第2圧縮機53と、第2負荷側熱交換器54と、第2流量制御装置55と、前記室内熱交換器118とを負荷側冷媒配管56で順次接続し、負荷側冷媒回路Bを構成した。

Description

空調給湯複合システム
 本発明は、ヒートポンプサイクルを搭載し、冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる空調給湯複合システムに関するものであり、特に、高温給湯の需要を同時に満たしつつ、省エネを実現する空調給湯複合システムに関するものである。
 従来から、一元の冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる空調給湯複合システムが存在する。そのようなものとして、「1台の圧縮機を備え、該圧縮機と、室外熱交換器、室内熱交換器、蓄冷熱槽および給湯熱交換器とを接続した冷媒回路により構成され、それぞれの熱交換器への冷媒の流れを切り換えることにより、冷暖房・給湯・蓄熱・蓄冷の単独運転およびそれらの複合運転を可能とする冷凍サイクルを構成してなる多機能ヒートポンプシステム」が提案されている(たとえば、特許文献1参照)。
 また、二元の冷凍サイクルによって高温の給湯と室内空調機能を同時に提供することができる空調給湯複合システムも存在している。そのようなものとして、「第1圧縮機、冷媒分配装置、第1熱交換器、第2熱交換器、第1絞り装置、室外熱交換器、四方弁および上記第1圧縮機をこの順に接続するとともに、上記冷媒分配装置から上記四方弁、室内熱交換器及び第2絞り装置をこの順に介装して上記第2熱交換器と上記第1絞り装置の間に接続し、第1の冷媒が流される低段側の冷媒回路と、第2圧縮機、凝縮器、第3の絞り装置、上記第1熱交換器および上記第2圧縮機をこの順に接続し、第2の冷媒が流れる高段側の冷媒回路と、上記第2熱交換器及び上記凝縮器をこの順に接続し、給湯水が流される給湯経路とを備えたヒートポンプ式給湯装置」が提案されている(たとえば、特許文献2参照)。
 さらに、「圧縮機と室外熱交換器と膨張機構と室内熱交換器とが接続された空調用冷媒回路を備えた空調装置と、圧縮機と第1熱交換器と膨張機構と第2熱交換器とが順に接続されるとともに二酸化炭素冷媒が充填された給湯用冷媒回路を備えたユニット型の給湯装置とを備え、第1熱交換器は、水から温水を生成する給湯用温水回路に接続されるとともに、該給湯用温水回路の水と上記二酸化炭素冷媒とが熱交換可能に構成され、第2熱交換器は、空調用冷媒回路の室内熱交換器と並列に接続される放熱部と、給湯用冷媒回路に接続された吸熱部とを有するとともに、該低段側冷媒回路の冷媒と上記二酸化炭素冷媒とが熱交換を行なうカスケード熱交換器により構成されている空調給湯システム」が提案されている(たとえば、特許文献3参照)。
特開平11-270920号公報(第3-4頁、図1) 特開平4-263758号公報(第2-3頁、図1) 特開2004-132647号公報(第6-8頁、図1)
 特許文献1に記載の多機能ヒートポンプシステムは、一元の冷凍サイクル、つまり1つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、水の加熱を行なう放熱過程の温度と、暖房を行なう放熱過程の温度とが、概同一となるため、高温の給湯負荷を賄うことができなくなってしまう、若しくは、暖房を行なう室内機の放熱過程も共に温度を上げなくてはならずCOP(成績係数)が非常に悪化してしまうという問題があった。
 特許文献2に記載のヒートポンプ式給湯装置は、二元の冷凍サイクル、つまり2つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、室内機にて空調を行なう冷媒回路と、給湯を行なう冷媒回路とが、異なる取り扱いとなっており、単純に室内機の代替として給湯機能を付加することができないため、既設の空気調和機に容易には導入できないという問題があった。
 特許文献3に記載の空調給湯システムも、二元の冷凍サイクル、つまり2つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、暖房負荷及び給湯負荷を同時に提供することができるようになっているものの、暖房負荷及び給湯負荷と、冷房負荷とを同時に提供することができない構成となっているため、一方の排熱を以って他方の熱源に充てることによる省エネ運転ができないという問題があった。
 本発明は、上記の課題を解決するためになされたもので、冷房負荷、暖房負荷及び高温の給湯負荷を同時に提供しつつ、省エネを実現可能にした空調給湯複合システムを提供することを目的としている。また、本発明は、既設の空気調和機に対しても容易に導入することのできる空調給湯複合システムを提供することを目的としている。
 本発明に係る空調給湯複合システムは、空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、冷媒-冷媒熱交換器及び給湯熱源用絞り手段が直列に接続されて前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、を備え、前記空調用冷凍サイクルと前記給湯用冷凍サイクルとは、前記冷媒-冷媒熱交換器で、前記空調用冷媒と前記給湯用冷媒とが熱交換を行なうように接続されていることを特徴とする。
 本発明に係る空調給湯複合システムによれば、冷房負荷、暖房負荷及び高温の給湯負荷を同時に提供しつつ、従来大気中に排出していた温熱を回収し、再利用して給湯を行うので、システムCOPが大幅に向上し、省エネを実現することができる。
実施の形態1に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。 冷房主体運転時における空調用冷凍サイクルの冷媒状態を示すモリエル線図である。 実施の形態1に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。 暖房主体運転時における空調用冷凍サイクルの冷媒状態を示すモリエル線図である。 実施の形態2に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。 実施の形態2に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。 実施の形態3に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。 実施の形態4に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。
符号の説明
 1 空調用冷凍サイクル、1a 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯用水循環サイクル、21 給湯用圧縮機、22 給湯用絞り手段、23 給湯用低圧側圧力検出手段、24 給湯用高圧側圧力検出手段、25 給湯用制御手段、26 給湯用通信手段、27 給湯用演算手段、28 給湯用記憶手段、31 水循環用ポンプ、32 貯湯タンク、33 出湯温度検出手段、41 冷媒-冷媒熱交換器、51 熱媒体-冷媒熱交換器、100 空調給湯複合システム、100a 空調給湯複合システム、100b 空調給湯複合システム、100c 空調給湯複合システム、101 空調用圧縮機、102 四方弁、103 室外熱交換器、104 アキュムレータ、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、105e 逆止弁、106 高圧側接続配管、107 低圧側接続配管、108 気液分離器、109 第1分配部、109a 弁手段、109b 弁手段、110 第2分配部、110a 逆止弁、110b 逆止弁、111 第1内部熱交換器、112 第1中継機用絞り手段、113 第2内部熱交換器、114 第2中継機用絞り手段、115 第1会合部、116 第2会合部、117 空調用絞り手段、118 室内熱交換器、119 給湯熱源用絞り手段、120 空調用制御手段、121 空調用通信手段、122 空調用演算手段、123 空調用記憶手段、124 第1熱源機用絞り手段、125 空調用吐出ガス配管、126 空調用吸入ガス配管、127 空調用液配管、128 第2熱源機用絞り手段、130 第1接続配管、131 第2接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、135 接続配管、135a 接続配管、135b 接続配管、136 接続配管、136a 接続配管、136b 接続配管、140 吐出側配管、140a 吐出側配管、140b 吐出側配管、141 バイパス管、200 給湯用冷凍サイクル筐体、201 接続用バルブ、202 接続用バルブ、203 接続用バルブ、204 接続用バルブ、205 接続用バルブ、206 接続用バルブ、207 接続用バルブ、208 接続用バルブ、A 熱源機、A 熱源機、B 冷房室内機、C 暖房室内機、D 給湯熱源用回路、E 中継機、E 中継機。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る空調給湯複合システム100の冷媒回路構成(特に、冷房主体運転時の冷媒回路構成)を示す冷媒回路図である。図1に基づいて、空調給湯複合システム100の冷媒回路構成、特に冷房主体運転時の冷媒回路構成について説明する。この空調給湯複合システム100は、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1では、空調用冷凍サイクル1において、暖房室内機Cと給湯熱源用回路Dとに対する負荷の合計よりも冷房室内機Bに対する負荷の方が大きく、室外熱交換器103が放熱器として働く場合のサイクルの状態(便宜上、冷房主体運転と称する)を示している。実施の形態1に係る空調給湯複合システム100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用水循環サイクル3とが、高圧側接続配管106や低圧側接続配管107等の接続配管で接続されて構成されており、空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒-冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用水循環サイクル3とは熱媒体-冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。
[空調用冷凍サイクル1]
 空調用冷凍サイクル1は、熱源機Aと、冷房負荷を担当する冷房室内機Bと、暖房負荷を担当する暖房室内機Cと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Dと、中継機Eと、によって構成されている。このうち、冷房室内機B、暖房室内機C及び給湯熱源用回路Dは、熱源機Aに対して並列となるように接続されて搭載されている。そして、熱源機Aと、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとの、間に設置される中継機Eが、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとしての機能を発揮させるようになっている。
[熱源機A]
 熱源機Aは、空調用圧縮機101と、流路切替手段である四方弁102と、室外熱交換器103と、アキュムレータ104とが直列に接続されて構成されており、この熱源機Aは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dに冷熱を供給する機能を有している。なお、室外熱交換器103の近傍に、この室外熱交換器103に空気を供給するためのファン等の送風機を設けるとよい。また、熱源機Aでは、高圧側接続配管106及び低圧側接続配管107が第1接続配管130及び第2接続配管131で接続されている。
 冷房主体運転において、高圧側接続配管106と第1接続配管130との接続部分(以下、単に接続部分aと称する)は、高圧側接続配管106と第2接続配管131との接続部分(以下、単に接続部分bと称する)よりも上流側であり、低圧側接続配管107と第1接続配管130との接続部分(以下、単に接続部分cと称する)も、低圧側接続配管107と第2接続配管131との接続部分(以下、単に接続部分dと称する)よりも上流側である。
 第1接続配管130には、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管131にも、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105dが設けられている。また、高圧側接続配管106の接続部分aと接続部分bとの間には、所定の方向(熱源機Aから中継機Eへの方向)のみに空調用冷媒の流れを許容する逆止弁105aが、低圧側接続配管107の接続部分cと接続部分dとの間には、所定の方向(中継機Eから熱源機Aへの方向)のみに空調用冷媒の流れを許容する逆止弁105bが、それぞれ設けられている。
 空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものであり、たとえばインバータにより回転数が制御されるタイプのもので構成するとよい。四方弁102は、空調用冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレータ104は、冷房主体運転時において、四方弁102と空調用圧縮機101との間に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレータ104は、過剰な空調用冷媒を貯留できる容器であればよい。
[冷房室内機B及び暖房室内機C]
 冷房室内機B及び暖房室内機Cには、空調用絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。また、冷房室内機B及び暖房室内機Cには、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。冷房室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当し、暖房室内機Cは、熱源機Aからの冷熱の供給を受けて暖房負荷を担当する機能を有している。
 つまり、実施の形態1では、中継機Eによって、冷房室内機Bが冷房負荷を担当するように決定され、暖房室内機Cが暖房負荷を担当するように決定された状態を示しているのである。なお、室内熱交換器118の近傍に、この室内熱交換器118に空気を供給するためのファン等の送風機を設けるとよい。また、便宜的に、中継機Eから室内熱交換器118に接続している接続配管を接続配管133と、中継機Eから空調用絞り手段117に接続している接続配管を接続配管134と称して説明するものとする。
 空調用絞り手段117は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風手段から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び室内熱交換器118は、直列に接続されている。
[給湯熱源用回路D]
 給湯熱源用回路Dは、給湯熱源用絞り手段119と、冷媒-冷媒熱交換器41とが、直列に接続されて構成されており、熱源機Aからの冷熱を冷媒-冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒-冷媒熱交換器41でカスケード接続されているのである。なお、便宜的に、中継機Eから冷媒-冷媒熱交換器41に接続している接続配管を接続配管135と、中継機Eから給湯熱源用絞り手段119に接続している接続配管を接続配管136と称して説明するものとする。
 給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2の冷凍サイクルを循環する給湯用冷媒と、空調用冷凍サイクル1の冷凍サイクルを循環する空調用冷媒との、間で熱交換を行なうようになっている。
[中継機E]
 中継機Eは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dのそれぞれと、熱源機Aとを、接続する機能を有すると共に、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、接続される室内熱交換器118及び冷媒-冷媒熱交換器41を冷房機(冷水器)とするか暖房機(給湯機)とするかを決定する機能を有している。この中継機Eは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とで、構成されている。
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が低圧側接続配管107に接続し、他方(接続配管133a及び接続配管135a)が気液分離器108に接続している接続配管(接続配管132と称する)に接続するようになっている。また、第1分配部109では、接続配管133a及び接続配管135aに弁手段109aが、接続配管133b及び接続配管135bに弁手段109bがそれぞれ設けられている。
 第2分配部110では、接続配管134及び接続配管136が2つに分岐されており、一方(接続配管134a及び接続配管136a)が第1会合部115で接続され、他方(接続配管134b及び接続配管136b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管134a及び接続配管136aに逆止弁110aが、接続配管134b及び接続配管136bに逆止弁110bがそれぞれ設けられている。
 第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。
 気液分離器108は、空調用冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒-冷媒熱交換器41に空調用冷媒を流入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、空調用冷媒の流れをいずれか一方に許容する機能を有している。
 第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、空調用冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 以上のように、空調用冷凍サイクル1は、空調用圧縮機101、流路切替手段102、室外熱交換器103、室内熱交換器118、及び、空調用絞り手段117が直列に接続されるとともに、冷媒-冷媒熱交換器41、及び、給湯熱源用絞り手段119が直列に接続され、室内熱交換器118及び空調用絞り手段117とに、冷媒-冷媒熱交換器41及び給湯熱源用絞り手段119が並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。
 ここで、空調用冷凍サイクル1の冷房主体運転動作について説明する。
 図2は、冷房主体運転時における空調用冷凍サイクル1の冷媒状態を示すモリエル線図(P-H線図)である。図1及び図2に基づいて、空調給湯複合システム100における空調用冷凍サイクル1の動作について説明する。図2では、縦軸が絶対圧力(MPa)を、横軸が比エンタルピ(kJ/kg)をそれぞれ示している。また、空調用冷媒は、飽和液線と飽和蒸気線とで囲まれた部分では気液二相状態であることを、飽和液線の左側では液状態であることを、飽和蒸気線の右側ではガス状態であることをそれぞれ表している。なお、空調用冷凍サイクル1には、空調用冷媒としてR410Aを使用している場合を例に示している。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、室外熱交換器103に流入する。この室外熱交換器103では、流入した空調用冷媒が、室外空気と熱交換して放熱する。室外熱交換器103から流出した空調用冷媒は、逆止弁105aを通過し、高圧側接続配管106に導かれ、中継機Eの気液分離器108へ到達する。この気液分離器108に流入した空調用冷媒は、気相状態の空調用冷媒と液相状態の空調用冷媒とに分離される。
 そして、飽和蒸気(気相状態の空調用冷媒)は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、飽和蒸気は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と第1会合部115で合流する。
 一方、飽和液(液相状態の空調用冷媒)は、第1内部熱交換器111にて、第2中継機用絞り手段114で低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。それから、第1中継機用絞り手段112を通過して、空調用として利用された冷媒(暖房室内機Cや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。その後、第1会合部115で合流した空調用冷媒は、第2内部熱交換器113で、第2中継機用絞り手段114で低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、冷房室内機Bに流入するようになっている。冷房室内機Bに流入した空調用冷媒は、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機Bを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って四方弁102に導かれ、アキュムレータ104を経て空調用圧縮機101へ戻る。
 次に、空調用冷凍サイクル1の暖房主体運転動作について説明する。
 図3は、本発明の実施の形態1に係る空調給湯複合システム100の冷媒回路構成(特に、暖房主体運転時の冷媒回路構成)を示す冷媒回路図である。図4は、暖房主体運転時における空調用冷凍サイクル1の冷媒状態を示すモリエル線図である。図3及び図4に基づいて、空調給湯複合システム100における空調用冷凍サイクル1の暖房主体運転動作について説明する。
 図3では、空調用冷凍サイクル1において、暖房室内機Cと給湯熱源用回路Dとに対する負荷の合計よりも冷房室内機Bに対する負荷の方が小さく、室外熱交換器103が蒸発器として働く場合のサイクルの状態(便宜上、暖房主体運転と称する)を示している。図4では、縦軸が絶対圧力(MPa)を、横軸が比エンタルピ(kJ/kg)をそれぞれ示している。また、空調用冷媒は、飽和液線と飽和蒸気線とで囲まれた部分では気液二相状態であることを、飽和液線の左側では液状態であることを、飽和蒸気線の右側ではガス状態であることをそれぞれ表している。なお、空調用冷凍サイクル1には、空調用冷媒としてR410Aを使用している場合を例に示している。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cと導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継機Eの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の空調用冷媒は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、過熱ガス状態の空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。
 暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と第1会合部115で合流する。一方、気液分離器108に流入した過熱ガス状態の空調用冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行うことにより過冷却度を得る。
 それから、第1中継機用絞り手段112を通過して、空調用として利用された空調用冷媒(暖房室内機Cや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の空調用冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。その後、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行うことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、冷房室内機Bに流入するようになっている。冷房室内機Bに流入した空調用冷媒は、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機Bを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレータ104を経て空調用圧縮機101へ戻る。
[給湯用冷凍サイクル2]
 図1及び図3に基づいて、給湯用冷凍サイクル2について説明する。なお、給湯用冷凍サイクル2の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。図1及び図3に示すように、給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体-冷媒熱交換器51と、給湯用絞り手段22と、冷媒-冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、冷媒-冷媒熱交換器41が直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。
 給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものであり、たとえばインバータにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、給湯用水循環サイクル3を循環する水(熱媒体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。給湯用絞り手段22は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。
 ここで、給湯用冷凍サイクル2の運転動作について説明する。
 図2及び図4には、冷房主体運転時及び暖房主体運転時における給湯用冷凍サイクル2の冷媒状態を示すモリエル線図(P-H線図)が併せて図示してある。図1~図4に基づいて、空調給湯複合システム100における給湯用冷凍サイクル2の動作について説明する。なお、給湯用冷媒は、飽和液線と飽和蒸気線とで囲まれた部分では気液二相状態であることを、飽和液線の左側では液状態であることを、飽和蒸気線の右側ではガス状態であることをそれぞれ表している。また、給湯用冷凍サイクル2には、給湯用冷媒としてR134aを使用している場合を例に示している。
 まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体-冷媒熱交換器51に流入する。この熱媒体-冷媒熱交換器51では、流入した給湯用冷媒が、給湯用水循環サイクル3を循環している水を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Dにおける冷媒-冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒-冷媒熱交換器41で、給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
[給湯用水循環サイクル3]
 図1及び図3に基づいて、給湯用水循環サイクル3について説明する。なお、給湯用水循環サイクル3の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。図1及び図3に示すように、給湯用水循環サイクル3は、水循環用ポンプ31と、熱媒体-冷媒熱交換器51と、貯湯タンク32と、によって構成されている。
 水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用水循環サイクル3内を循環させるものであり、たとえばインバータにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、上述したように、給湯用水循環サイクル3を循環する水(熱媒体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに、水頭を得る。水頭を得た水は、熱媒体-冷媒熱交換器51に流入し、この熱媒体-冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体-冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。
 なお、この実施の形態1では、図1及び図3に示すように、貯湯タンク32内の水を熱媒体-冷媒熱交換器51にて直接加熱する場合を例に説明したが、これに限定するものではなく、水循環用ポンプ31及び熱媒体-冷媒熱交換器51を通る水を貯湯タンク32内の水とは独立な閉鎖系として、その配管を貯湯タンク32内に通すことにより、貯湯タンク32内の水を加温する構成としてもよい。この場合、閉鎖系内の媒体は、水でなくブライン(不凍液)等でもよい。
 また、逆止弁105a、逆止弁105b、逆止弁105c、逆止弁105d、逆止弁110a及び逆止弁110bを電磁弁のような弁手段で構成し、より確実に冷媒流路の切り替えを行なうようにしてもよい。さらに、空調用圧縮機101及び給湯用圧縮機21は、レシプロタイプやロータリータイプ、スクロールタイプ、スクリュータイプ等の各種タイプのいずれのものを用いてもよく、回転数が可変可能のものに限定することなく、回転数固定のものでも構わない。
 空調用冷凍サイクル1を循環する空調用冷媒にR410Aを、給湯用冷凍サイクル2を循環する給湯用冷媒にR134aを採用した場合を例に説明したが、冷媒の種類を特に限定するものではない。たとえば、二酸化炭素(CO)や炭化水素、ヘリウム等のような自然冷媒や、HFC410A、HFC407C、HFC404A等の代替冷媒等の塩素を含まない冷媒、若しくは既存の製品に使用されているR22やR134a等のフロン系冷媒のいずれを採用してもよい。また、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、それぞれ独立した冷媒回路構成になっており、循環する冷媒は、同じ種類でもよいし、別の種類でもよいが、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51で互いに熱交換をしているものとする。
 給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行う際に熱媒体-冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行うためには、より高度な制御が要求される。また、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。
 さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が60℃以上であることを鑑みると、給湯の目標温度が最低でも60℃以上となることが望ましい。以上のことを踏まえ、給湯用冷媒は、最低でも60℃以上の臨界温度を持つ冷媒を採用することが望ましい。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができると想定される。
 この実施の形態1では、室外熱交換器103において空調用冷媒が空気と熱交換する場合を例に示しているが、これに限定するものではなく、水や冷媒、ブライン等と熱交換する構成としてもよい。また、実施の形態1では、図1及び図3に示すように、冷房室内機B及び暖房室内機Cには2台以上の室内熱交換器118が搭載されている場合を示しているが、これに限定するものではない。たとえば、図1に示す冷房主体運転の場合においては、冷房室内機Bの室内熱交換器118が1台、暖房室内機Cの室内熱交換器118が無いか若しくは1台であってもよい。また、たとえば、図3に示す暖房主体運転の場合においては、冷房室内機B及び暖房室内機Cの室内熱交換器118がともに無いか若しくは1台であってもよい。
 冷房室内機Bや暖房室内機Cのそれぞれの室内熱交換器118の容量を特に限定するものではなく、それぞれの室内熱交換器118の容量が異なっていてもよく、同一であってもよい。また、空調用冷凍サイクル1において余剰冷媒をアキュムレータ104によって貯留する場合を示したが、これに限定するものではなく、アキュムレータ104を取り除き、空調用冷凍サイクル1において放熱器となる熱交換器(室外熱交換器103や室内熱交換器118、冷媒-冷媒熱交換器41等)で余剰冷媒を貯留するようにしてもよい。
 この実施の形態1に係る空調給湯複合システム100では、給湯負荷系統を二元サイクル(空調用冷凍サイクル1及び給湯用冷凍サイクル2)で構成しているため、高温の給湯需要(たとえば、80℃以上の湯)を提供する場合に、給湯用冷凍サイクル2の放熱器(熱媒体-冷媒熱交換器51)の温度を高温(たとえば、凝縮温度85℃)に設定すれば済む。したがって、給湯需要の他に暖房負荷の要求がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むことになり、エネルギーの消費を低減することができる。
 また、たとえば、夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラー等を利用して給湯需要に対応する必要があったが、この実施の形態1に係る空調給湯複合システム100では、従来大気中に排出していた温熱を回収し、再利用して給湯を行うので、システムCOPが大幅に向上し、省エネとなる。以上のように、実施の形態1に係る空調給湯複合システム100に基づいて、本発明の一例を説明したが、本発明の効果を示す空調給湯複合システム100に導入可能な空調用冷凍サイクル1は、これに限るものではなく、冷房機能と暖房機能とを同時に供給可能な構成であればどのようなものでもよく、たとえば以下の実施の形態2に示す構成としてもよい。
実施の形態2.
 図5は、本発明の実施の形態2に係る空調給湯複合システム100aの冷媒回路構成(特に、冷房主体運転時の冷媒回路構成)を示す冷媒回路図である。図5に基づいて、空調給湯複合システム100aの冷媒回路構成、特に冷房主体運転時の冷媒回路構成について説明する。この空調給湯複合システム100aは、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクルを利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、この実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
 図5に示すように、実施の形態2に係る空調給湯複合システム100aでは、空調用冷凍サイクル1aの熱源機A及び中継機Eが実施の形態1に係る空調給湯複合システム100における空調用冷凍サイクル1の熱源機A及び中継機Eと異なる構成となっていることを特徴としている。なお、熱源機A及び中継機E以外の構成(つまり、冷房室内機B、暖房室内機C、給湯熱源用回路D、給湯用冷凍サイクル2及び給湯用水循環サイクル3)については、実施の形態1と同様の構成となっている。
[熱源機A
 熱源機Aは、空調用圧縮機101と、四方弁102と、室外熱交換器103と、第1熱源機用絞り手段124と、アキュムレータ104とで、構成されており、この熱源機Aは、熱源機Aと同様に、冷房室内機B、暖房室内機C及び給湯熱源用回路Dに冷熱を供給する機能を有している。また、空調用圧縮機101に接続している吐出側配管140が、空調用圧縮機101と四方弁102との間で分岐し、一方(吐出側配管140a)が四方弁102に接続し、他方(吐出側配管140b)が空調用吐出ガス配管125に接続している。
 さらに、熱源機Aでは、四方弁102と室外熱交換器103との間における接続配管と、四方弁102のもう一つの冷媒流路(四方弁102と室外熱交換器103とが直接接続していない方の冷媒流路)となる接続配管とを、接続するバイパス管141が設けられている。すなわち、バイパス管141は、四方弁102と室外熱交換器103とを直接接続するために設けられているのである。そして、バイパス管141には、空調用冷媒の流れる上流側から第2熱源機用絞り手段128、逆止弁105eが設置されている。
 第1熱源機用絞り手段124及び第2熱源機用絞り手段128は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第1熱源機用絞り手段124及び第2熱源機用絞り手段128は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。逆止弁105eは、所定の方向(四方弁102から室外熱交換器103への方向)のみに空調用冷媒の流れを許容するものである。
[中継機E
 中継機Eは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dのそれぞれと、熱源機Aとを、接続する機能を有すると共に、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、接続される室内熱交換器118及び冷媒-冷媒熱交換器41を冷房機(冷水器)とするか暖房機(給湯機)とするかを決定する機能を有している。この中継機Eは、第1分配部109のみが設けられており、気液分離器108、第2分配部110、第1内部熱交換器111、第1中継機用絞り手段112、第2内部熱交換器113及び第2中継機用絞り手段114が設けられていない点で実施の形態1に係る中継機Eと異なっている。
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が空調用吐出ガス配管125に接続し、他方(接続配管133a及び接続配管135a)が空調用吸入ガス配管126に接続するようになっている。また、中継機E2 では、第2分配部110が設けられていないため接続配管134及び接続配管136が分岐されておらず、接続配管134及び接続配管136は、空調用液配管127に接続されるようになっている。
 ここで、空調用冷凍サイクル1aの冷房主体運転動作について説明する。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、一部が空調用吐出ガス配管125へ導かれ中継機Eに流入し、他は四方弁102へ導かれる。空調用吐出ガス配管125へ導かれた空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。また、暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し、空調用絞り手段117で減圧され、空調用液配管127で合流する。給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と空調用液配管127で合流する。
 一方、四方弁102へ導かれた空調用冷媒は、四方弁102を経由し、室外熱交換器103に流入する。この室外熱交換器103では、流入した空調用冷媒が、室外空気と熱交換して放熱する。室外熱交換器103から流出した空調用冷媒は、第1熱源機用絞り手段124で減圧され、空調用液配管127で合流する。この空調用液配管127で合流した空調用冷媒は、弁手段109aが開いている回路に分配される。ここでは、空調用冷媒は、冷房室内機Bに流入するようになっている。冷房室内機Bに流入した空調用冷媒は、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109aを経て空調用吸入ガス配管126で合流する。空調用吸入ガス配管126で合流した空調用冷媒は、一部がアキュムレータ104を経て空調用圧縮機101へ戻り、他はバイパス管141に導かれる。
 次に、空調用冷凍サイクル1aの暖房主体運転動作について説明する。
 図6は、本発明の実施の形態2に係る空調給湯複合システム100aの冷媒回路構成(特に、暖房主体運転時の冷媒回路構成)を示す冷媒回路図である。図6に基づいて、空調給湯複合システム100aにおける空調用冷凍サイクル1aの暖房主体運転動作について説明する。まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、その大部分が空調用吐出ガス配管125へ導かれ、弁手段109bが開いている回路に分配される。ここでは、空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。
 暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し、空調用絞り手段117で減圧され、空調用液配管127で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と空調用液配管127で合流する。この空調用液配管127で合流した空調用冷媒は、弁手段109aが開いている回路と、室外熱交換器103に導かれる回路とに分配される。ここでは、空調用冷媒は、冷房室内機Bと、室外熱交換器103とに流入するようになっている。
 弁手段109aが開いている回路に分配された空調用冷媒は、空調用絞り手段117で低温・低圧に膨張され、冷房室内機Bの室内熱交換器118で蒸発し、空調用吸入ガス配管126で合流する。また、室外熱交換器103に導かれた空調用冷媒は、第1熱源機用絞り手段124で低温・低圧に膨張し、室外熱交換器103で蒸発し、バイパス管141に導かれ、第2熱源機用絞り手段128及び逆止弁105eを経た吐出ガス冷媒と合流する。この空調用冷媒は、四方弁102を経て、冷房室内機Bに導かれた空調用冷媒と空調用吸入ガス配管126で合流する。この空調用吸入ガス配管126で合流した空調用冷媒は、アキュムレータ104を経て空調用圧縮機101へ戻る。
 給湯用冷凍サイクル2の動作は、空調用冷凍サイクル1aの運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではなく、構成及び動作については実施の形態1で説明した通りである。給湯用水循環サイクル3の動作も、空調用冷凍サイクル1aの運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではなく、構成及び動作については実施の形態1で説明した通りである。
 なお、逆止弁105eを電磁弁のような弁手段で構成し、より確実に冷媒流路の切り替えを行なうようにしてもよい。また、空調用冷凍サイクル1aを循環する空調用冷媒は、種類を特に限定するものではない。たとえば、実施の形態1と同様にR410Aを使用してもよく、二酸化炭素(CO)や炭化水素、ヘリウム等のような自然冷媒や、HFC410A、HFC407C、HFC404A等の代替冷媒等の塩素を含まない冷媒、若しくは既存の製品に使用されているR22やR134a等のフロン系冷媒のいずれを採用してもよい。
 空調用冷凍サイクル1aと給湯用冷凍サイクル2とは、それぞれ独立した冷媒回路構成になっており、循環する冷媒は、同じ種類でもよいし、別の種類でもよいが、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51で互いに熱交換をしているものとする。また、実施の形態2では、図5及び図6に示すように、冷房室内機B及び暖房室内機Cには2台以上の室内熱交換器118が搭載されている場合を示しているが、これに限定するものではない。たとえば、図5に示す冷房主体運転の場合においては、冷房室内機Bの室内熱交換器118が1台、暖房室内機Cの室内熱交換器118が無いか若しくは1台であってもよい。また、たとえば、図6に示す暖房主体運転の場合においては、冷房室内機B及び暖房室内機Cの室内熱交換器118がともに無いか若しくは1台であってもよい。
 この実施の形態2に係る空調給湯複合システム100aでは、給湯負荷系統を二元サイクル(空調用冷凍サイクル1a及び給湯用冷凍サイクル2)で構成しているため、高温の給湯需要(たとえば、80℃以上の湯)を提供する場合に、給湯用冷凍サイクル2の放熱器(熱媒体-冷媒熱交換器51)の温度を高温(たとえば、凝縮温度85℃)に設定すれば済む。したがって、給湯需要の他に暖房負荷の要求がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むことになり、エネルギーの消費を低減することができる。
実施の形態3.
 図7は、本発明の実施の形態3に係る空調給湯複合システム100bの冷媒回路構成を示す冷媒回路図である。図7に基づいて、空調給湯複合システム100bの冷媒回路構成について説明する。この空調給湯複合システム100bは、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクルを利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、この実施の形態3では上述した実施の形態1及び実施の形態2との相違点を中心に説明するものとし、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略するものとする。
 この図7では、冷房主体運転における四方弁102の状態を実線で、暖房主体運転における四方弁102の状態を破線でそれぞれ示している。また、図7には、給湯用冷凍サイクル筐体200を表す一点鎖線を図示している。つまり、空調用冷凍サイクル1の一部、給湯用冷凍サイクル2、及び、給湯用水循環サイクル3の一部が、給湯用冷凍サイクル筐体200に収納されるようになっているのである。それに加え、給湯用冷凍サイクル筐体200の着脱を可能にするために、空調用冷凍サイクル1と給湯用冷凍サイクル2との接続部分、及び、給湯用冷凍サイクル2と給湯用水循環サイクル3との接続部分に接続用バルブが取り付けられている。
 空調用冷凍サイクル1と給湯用冷凍サイクル2との接続部分、つまり接続配管135及び接続配管136には、それぞれ2つの接続用バルブ(接続用バルブ201及び接続用バルブ202、接続用バルブ203及び接続用バルブ204)が取り付けられている。接続用バルブ202及び接続用バルブ203は、給湯用冷凍サイクル筐体200内に取り付けられており、接続用バルブ201及び接続用バルブ204は、給湯用冷凍サイクル筐体200外に取り付けられている。
 給湯用冷凍サイクル2と給湯用水循環サイクル3との接続部分、つまり熱媒体-冷媒熱交換器51と貯湯タンク32を接続している水配管及び水循環用ポンプ31と熱媒体-冷媒熱交換器51とを接続している水配管には、それぞれ2つの接続用バルブ(接続用バルブ205及び接続用バルブ206、接続用バルブ207及び接続用バルブ208)が取り付けられている。接続用バルブ206及び接続用バルブ207は、給湯用冷凍サイクル筐体200内に取り付けられており、接続用バルブ205及び接続用バルブ208は、給湯用冷凍サイクル筐体200外に取り付けられている。
 すなわち、実施の形態3に係る空調給湯複合システム100bでは、実施の形態1に係る空調給湯複合システム100の構成に加え、着脱可能な給湯用冷凍サイクル筐体200を設けた点が異なっている。なお、給湯用冷凍サイクル筐体200、接続用バルブ201~接続用バルブ208以外の構成(つまり、熱源機A、冷房室内機B、暖房室内機C、給湯熱源用回路D、中継機E、空調用冷凍サイクル1、給湯用冷凍サイクル2及び給湯用水循環サイクル3)については、実施の形態1と同様の構成となっている。
 空調給湯複合システム100bをこのような構成とすることにより、汎用の空調用冷凍サイクルに対して、汎用の室内機(冷房室内機Bや暖房室内機C等)を代替する形で、本発明に関わる空調給湯複合システム100bを構成することができる。したがって、専用の空調用冷凍サイクルに対する開発投資を抑制できるとともに、既設の空調用冷凍サイクルを用いて本発明による空調給湯複合システム100bを構成することができ、より容易に省エネを実現することができる。
実施の形態4.
 図8は、本発明の実施の形態4に係る空調給湯複合システム100cの冷媒回路構成を示す冷媒回路図である。図8に基づいて、空調給湯複合システム100cの冷媒回路構成について説明する。この空調給湯複合システム100cは、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクルを利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、この実施の形態4では上述した実施の形態1~実施の形態3との相違点を中心に説明するものとし、実施の形態1~実施の形態3と同一部分には、同一符号を付して説明を省略するものとする。
 この図8では、冷房主体運転における四方弁102の状態を実線で、暖房主体運転における四方弁102の状態を破線でそれぞれ示している。図8に示すように、実施の形態4に係る空調給湯複合システム100cは、基本的に実施の形態1に係る空調給湯複合システム100と同様であるが、給湯用低圧側圧力検出手段23、給湯用高圧側圧力検出手段24、出湯温度検出手段(熱媒体温度検出手段)33、給湯用制御手段25、及び、空調用制御手段120が設けられている点が異なっている。
 給湯用低圧側圧力検出手段23は、給湯用圧縮機21の吸入側に設けられており、給湯用圧縮機21に吸入される空調用冷媒の圧力を検出するものである。給湯用高圧側圧力検出手段24は、給湯用圧縮機21の吐出側に設けられており、給湯用圧縮機21から吐出された空調用冷媒の圧力を検出するものである。出湯温度検出手段33は、熱媒体-冷媒熱交換器51の水出口側に設けられており、貯湯タンク32に蓄えられ、出湯される予定の水の温度を検出するものである。また、給湯用低圧側圧力検出手段23、給湯用高圧側圧力検出手段24、及び、出湯温度検出手段33での検出情報は、給湯用制御手段25に出力されるようになっている。
 給湯用制御手段25は、給湯用通信手段26と、給湯用演算手段27と、給湯用記憶手段28とで構成されている。この給湯用制御手段25は、上記各検出手段からの検出情報である給湯用冷凍サイクル2のON/OFF状態、たとえば給湯用圧縮機21のON/OFF状態や周波数、吐出温度等や、給湯用冷凍サイクル2を循環している給湯用冷媒の高圧側圧力や低圧側圧力、凝縮温度、蒸発温度等、熱媒体-冷媒熱交換器51の入水温度や出湯温度等、給湯用絞り手段22及び給湯熱源用絞り手段119の絞り具合(電子膨張弁を用いた場合のパルス数)等の情報の内、少なくとも1つを給湯用記憶手段28で記憶し、この記憶された情報に基づいて給湯用演算手段27が演算し、各種制御を実行するようになっている。
 空調用制御手段120は、空調用通信手段121と、空調用演算手段122と、空調用記憶手段123とで構成されている。そして、空調用制御手段120及び給湯用制御手段25は、給湯用制御手段25の有する給湯用通信手段26と、空調用制御手段120の有する空調用通信手段121とを介して、互いに情報を通信することによって、連携した制御動作が可能となっている。このように、2つの制御手段を通信可能とすることで、より高度な、より安定性の増した、省エネシステムが構築できる。
 空調用制御手段120は、図示省略の各種検出手段からの検出情報である空調用冷凍サイクル1のON/OFF状態、たとえば空調用圧縮機101のON/OFF状態や周波数、吐出温度等や、空調用冷凍サイクル1を循環している空調用冷媒の高圧側圧力や低圧側圧力、凝縮温度、蒸発温度等、室外熱交換器103のファン風量や入口温度、出口温度、吸込空気温度等、四方弁102の切替状態、第1中継機用絞り手段112、第2中継機用絞り手段114、及び空調用絞り手段117の絞り具合、弁手段109a及び弁手段109bの切替状態、冷房室内機B及び暖房室内機Cのファン風量や室内機吸込空気温度等の情報の内、少なくとも一つ以上を空調用記憶手段123で記憶し、この記憶された情報に基づいて空調用演算手段122が演算し、各種制御を実行するようになっている。
 本実施の形態にて行なわれる制御の具体的態様を以下に挙げる。
 たとえば、空調用制御手段120から給湯用制御手段25へ、空調用圧縮機101のON/OFF状態を通信し、それに合わせて給湯用圧縮機21のON/OFFタイミングを制御すれば、給湯用圧縮機21の無駄な運転をしなくて済み、その分の省エネが実現できる。また、空調用圧縮機101の起動後、空調用冷凍サイクル1の安定を待ってから給湯用圧縮機21を起動させることにより、給湯用冷凍サイクル2の給湯用冷媒が冷媒-冷媒熱交換器41を通過する際に、空調用冷凍サイクル1の熱を十分吸熱でき、蒸発することができるため、給湯用冷凍サイクル2が安定して動作することができるようになり、システムの信頼性が増し、確実に省エネにすることができる。
 また、空調用圧縮機101が故障や負荷過小につき、一旦停止してから再び稼動するようなときであって、かつ給湯用圧縮機21が高周波数で運転している場合には、給湯用圧縮機21を空調用圧縮機101と連動して制御せずに、給湯用圧縮機21を高周波数で運転すると、空調用圧縮機101の停止中に給湯用冷凍サイクル2の低圧側圧力が異常低下を起こし、空調用圧縮機101の再稼動時に大きなヒートショックを起こすことが想定される。このため、給湯用圧縮機21が稼働中に空調用圧縮機101が停止した場合に、たとえば給湯用冷凍サイクル2の低圧側圧力が所定の範囲に収まることを給湯用圧縮機21の制御目標に追加することにより、大きなヒートショックを防止し、より長期にわたってシステムの信頼性が増し、確実に省エネにすることができる。
 また、実施の形態4に係る空調給湯複合システム100cでは、貯湯タンク32内の水が低温の状況において、給湯用圧縮機21の圧縮比が小さくなり易く、給湯用圧縮機21のストール等の恐れが生じる。このため、給湯用制御手段25が記憶している給湯用冷凍サイクル2の給湯用低圧側圧力検出手段23と給湯用高圧側圧力検出手段24の出力に基づいて、給湯用演算手段27によって算出される給湯用圧縮機21の圧縮比が所定の範囲を下回った時は、給湯用絞り手段22を絞ることによって、圧縮比を増加させる方向に給湯用冷凍サイクル2を制御し、システムの信頼性を増加させ、確実に省エネにすることができる。
 具体的には、給湯用制御手段25と給湯用絞り手段22とを有線又は無線にて接続し、直接的に信号を与えてもよいし(たとえば、電子膨張弁を用いる場合、パルスを減少させる信号を送る)、給湯用絞り手段22の制御目標値として想定される、熱媒体-冷媒熱交換器51の出口における給湯用冷媒の過冷却度、若しくは冷媒-冷媒熱交換器41の出口の給湯用冷媒の過熱度を、給湯用冷凍サイクル2の圧縮比が所定の範囲内にある場合の値よりも増加させることにより、間接的に給湯用絞り手段22を絞ってもよい。
 また、給湯熱源用絞り手段119に対して、絞る制御信号を与えることによっても、給湯用冷凍サイクル2の蒸発熱源が減少するため、給湯用冷凍サイクル2の低圧側圧力が減少し、以って、圧縮比を増加させることができる。具体的には、給湯用制御手段25と給湯熱源用絞り手段119とを有線または無線にて接続し、直接的に絞る信号を与えてもよいし(たとえば、電子膨張弁を用いる場合、パルスを減少させる信号を送る)、給湯熱源用絞り手段119の制御目標値として想定される、冷媒-冷媒熱交換器41出口の空調用冷媒の過冷却度を、給湯用冷凍サイクル2の圧縮比が所定の範囲内にある場合の値よりも増加させることにより、間接的に給湯用絞り手段119を絞ってもよい。
 なお、ここでは、給湯熱源用絞り手段119の制御を給湯用制御手段25と有線または無線にて接続して行う場合を示したが、これに限るものではなく、空調用制御手段120と接続して行ってもよい。また、給湯用低圧側圧力検出手段23は、たとえば給湯用絞り手段22と冷媒-冷媒熱交換器41の間の配管に温度検出手段を貼付して蒸発温度を検出し、その出力から算出される飽和圧力で以って代替してもよい。さらに、熱媒体-冷媒熱交換器51がプレート熱交換器の場合は困難であるが、たとえば二重管熱交換器で外側に冷媒を流す時のように、温度検出手段で凝縮温度を検出可能な場合は、給湯用高圧側圧力検出手段24も同様に、温度検出手段によって凝縮温度を検出し、その出力から算出される飽和圧力で以って代替してもよい。
 また、給湯用圧縮機21の制御に関しては、出湯温度検出手段33の出力を目標値として制御すると、直接ユーザーの需要に従うことになるので、無駄な運転が無く、省エネとなる。但し、熱媒体-冷媒熱交換器51の水側の配管は、耐腐食性の観点からステンレスが採用されることが想定され、この場合、出湯温度を検出するためには、出湯部の配管外部に温度検出手段を貼付する方法は採用できず、直接配管内部の水温を検出することが必要となり、コストアップの要因となり、省エネシステム導入の障害となる。
 しかしながら、熱媒体-冷媒熱交換器51の性能が事前に分かっていれば、水と熱交換を行っている給湯用冷媒の凝縮温度から出湯温度をある程度の精度で推測できることが分かっている。たとえば、ある組み合わせにおいて、出湯温度と給湯用冷凍サイクル2の凝縮温度との差は6℃であり、そこから水循環量を1/4倍に減じても、その値は3℃までしか小さくならないことがシミュレーションにより確認されている。したがって、直接出湯温度を測定せずとも、給湯用冷凍サイクル2の給湯用高圧側圧力検出手段24の出力に基づいて、ある程度の精度で出湯温度を推定し、当該推定値を以って給湯用圧縮機21の制御目標値とすることができる。
 すなわち、給湯用制御手段25は、給湯用冷凍サイクル2の高圧側の圧力、凝縮温度、及び、給湯用圧縮機21の出口から熱媒体-冷媒熱交換器51の入口までの位置における温度のうち、少なくとも1つ以上の値に基づいて、熱媒体-冷媒熱交換器51の出口側における熱媒体(ここでは、水)の温度(出湯温度)を推定し、この推定値が所定の目標値に近づくように、給湯用圧縮機21を制御することができ、コストアップすることなく、省エネシステムを導入することができる。
 また、貯湯タンク32内の水が低温の状況において、熱媒体-冷媒熱交換器51における熱交換量が増大する傾向にあり、たとえば同時に暖房室内機Cが稼働している場合には、暖房室内機C側で必要な加熱能力が得られないことがある。
 本実施の形態に関わるシステムでは、たとえば貯湯タンク32内の水が低温の場合に、給湯用圧縮機21の周波数の上限値が小さくなるように制御することによって、暖房室内機Cの加熱能力を確保することができ、ユーザの快適性を損なわずに安定的な省エネシステムを実現することができる。
 また、本実施の形態では、暖房室内機Cが1台も稼働していない時は、暖房室内機Cの能力不足を懸念する必要がないので、給湯用圧縮機21の周波数の上限値を減少させないという制御も可能で、システムの能力を最大限に活用することが可能となる。なお、貯湯タンク32内の水の温度を、入水温度や出水温度を用いて推測してもよい。
 また、本実施の形態に関わるシステムは、空調用冷凍サイクルが、温熱負荷と冷熱負荷とを同時に賄うことにより、排熱を減少させることによる省エネが実現されるシステムであるが、冷房負荷や暖房負荷といった空調負荷がユーザによるリアルタイムの需要に左右されるのに対し、給湯負荷は貯湯タンク32に貯めた温熱を以って賄うことが可能なので、本実施の形態のように、空調用冷凍サイクルと給湯用冷凍サイクルとが互いに通信を行なうシステムならば、たとえば冷房室内機Bの稼働に合わせて、給湯用冷凍サイクル2を稼働させることにより、排熱を最小化させるように運転させることが可能となる。
 また、排熱の最小化を図る際、空調用冷凍サイクルと給湯用冷凍サイクルとが通信を行なうことにより、空調用冷凍サイクルの室外熱交換器103での熱交換量が小さくなるように、給湯用圧縮機21を制御することで、排熱の最小化を図ることが可能となる。たとえば、室外熱交換器103が空気熱交換器の場合は、ファンの風量を小さくするように、給湯用圧縮機21を制御すれば、排熱の最小化を図ることが可能となる。

Claims (13)

  1.  空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、冷媒-冷媒熱交換器及び給湯熱源用絞り手段が直列に接続されて前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、
     給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、を備え、
     前記空調用冷凍サイクルと前記給湯用冷凍サイクルとは、
     前記冷媒-冷媒熱交換器で、前記空調用冷媒と前記給湯用冷媒とが熱交換を行なうように接続されている
     ことを特徴とする空調給湯複合システム。
  2.  情報を有線又は無線で通信する給湯用通信手段を有し、前記給湯用冷凍サイクルの状態に応じてこの給湯用冷凍サイクルの動作を制御する給湯用制御手段と、
     情報を有線又は無線で通信する空調用通信手段を有し、前記空調用冷凍サイクルの状態に応じてこの空調用冷凍サイクルの動作を制御する空調用制御手段と、を備え、
     前記給湯用制御手段及び前記空調用制御手段は、
     前記給湯用通信手段と前記空調用通信手段とが互いに通信することによって前記給湯用冷凍サイクルの動作と前記空調用冷凍サイクルの動作とを連携制御する
     ことを特徴とする請求項1に記載の空調給湯複合システム。
  3.  前記給湯用冷凍サイクルの高圧側の圧力を検出する圧力検出手段、及び、凝縮温度を検出する温度検出手段のうち少なくとも1つと、
     前記給湯用冷凍サイクルの低圧側の圧力を検出する圧力検出手段、及び、蒸発温度を検出する温度検出手段のうち少なくとも1つとを備え、
     前記給湯用制御手段及び前記空調用制御手段は、
     各検出手段からの検出情報を互いに通信することによって、前記空調用冷凍サイクルの動作と前記給湯用冷凍サイクルの動作とを連携制御する
     ことを特徴とする請求項2に記載の空調給湯複合システム。
  4.  前記給湯用制御手段は、
     前記各検出手段の検出情報から、前記給湯用圧縮機の圧縮比を演算し、この演算結果が所定の範囲に収まるように前記給湯用絞り手段を制御する
     ことを特徴とする請求項2又は3に記載の空調給湯複合システム。
  5.  前記給湯用制御手段は、
     前記演算結果に基づいて、前記給湯熱源用絞り手段を制御する
     ことを特徴とする請求項4に記載の空調給湯複合システム。
  6.  前記熱媒体-冷媒熱交換器の出口側における熱媒体の温度を検出する熱媒体温度検出手段を設け、
     前記給湯用制御手段は、
     前記熱媒体温度検出手段からの情報に基づいて、前記熱媒体-冷媒熱交換器の出口側における熱媒体の温度が所定の目標値に近づくように、前記給湯用圧縮機を制御する
     ことを特徴とする請求項2~5のいずれかに記載の空調給湯複合システム。
  7.  前記給湯用制御手段は、
     前記給湯用冷凍サイクルの高圧側の圧力、凝縮温度、及び、前記給湯用圧縮機出口から前記熱媒体-冷媒熱交換器入口までの位置における温度のうち、少なくとも1つ以上の値に基づいて、前記熱媒体-冷媒熱交換器の出口側における熱媒体の温度を推定し、この推定値が所定の目標値に近づくように、前記給湯用圧縮機を制御する
     ことを特徴とする請求項2~6のいずれかに記載の空調給湯複合システム。
  8.  前記熱媒体-冷媒熱交換器の出口側における熱媒体の温度に基づいて、前記給湯用圧縮機の周波数の上限値を変化させる
     ことを特徴とする請求項2~7のいずれかに記載の空調給湯複合システム。
  9.  前記室内熱交換器が稼働している場合にのみ、前記熱媒体-冷媒熱交換器の出口側における熱媒体の温度に基づいて、前記給湯用圧縮機の周波数の上限値を変化させる
     ことを特徴とする請求項2~8のいずれかに記載の空調給湯複合システム。
  10.  前記室外熱交換器での熱交換量が所定の範囲に収まるように、前記給湯用圧縮機を制御する
     ことを特徴とする請求項2~9のいずれかに記載の空調給湯複合システム。
  11.  水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続され、熱媒体として水を循環させる給湯用水循環サイクルを備え、
     前記熱媒体-冷媒熱交換器で前記給湯用冷媒と前記水が熱交換して前記水が加熱される ことを特徴とする請求項1~10のいずれかに記載の空調給湯複合システム。
  12.  前記給湯用冷凍サイクルを構成する各機器を同一筐体内に収容する
     ことを特徴とする請求項1~11のいずれかに記載の空調給湯複合システム。
  13.  前記給湯用冷媒には、臨界温度が60℃以上の冷媒を採用する
     ことを特徴とする請求項1~12のいずれかに記載の空調給湯複合システム。
PCT/JP2008/051722 2008-02-04 2008-02-04 空調給湯複合システム WO2009098751A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/051722 WO2009098751A1 (ja) 2008-02-04 2008-02-04 空調給湯複合システム
JP2009552340A JPWO2009098751A1 (ja) 2008-02-04 2008-02-04 空調給湯複合システム
US12/673,902 US20110016897A1 (en) 2008-02-04 2008-02-04 Air conditioning-hot water supply combined system
EP08704399.8A EP2184563A4 (en) 2008-02-04 2008-02-04 AIR CONDITIONING AND WATER HEATING COMPLEX SYSTEM
CN200880108728A CN101809383A (zh) 2008-02-04 2008-02-04 空调供热水复合***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051722 WO2009098751A1 (ja) 2008-02-04 2008-02-04 空調給湯複合システム

Publications (1)

Publication Number Publication Date
WO2009098751A1 true WO2009098751A1 (ja) 2009-08-13

Family

ID=40951839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051722 WO2009098751A1 (ja) 2008-02-04 2008-02-04 空調給湯複合システム

Country Status (5)

Country Link
US (1) US20110016897A1 (ja)
EP (1) EP2184563A4 (ja)
JP (1) JPWO2009098751A1 (ja)
CN (1) CN101809383A (ja)
WO (1) WO2009098751A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069529A (ja) * 2009-09-25 2011-04-07 Hitachi Ltd 空調給湯システム及びヒートポンプユニット
WO2011089637A1 (ja) * 2010-01-19 2011-07-28 三菱電機株式会社 空調給湯複合システム
WO2011089652A1 (ja) * 2010-01-22 2011-07-28 三菱電機株式会社 空調給湯複合システム
CN102162691A (zh) * 2010-02-23 2011-08-24 财团法人工业技术研究院 二氧化碳冷热多功装置
WO2011158305A1 (ja) * 2010-06-18 2011-12-22 三菱電機株式会社 冷凍空調装置
WO2012002248A1 (ja) * 2010-06-28 2012-01-05 三洋電機株式会社 冷凍装置
JP2012047375A (ja) * 2010-08-25 2012-03-08 Hitachi Appliances Inc 空気調和システム
WO2012032580A1 (ja) 2010-09-10 2012-03-15 三菱電機株式会社 空気調和装置
CN102770724A (zh) * 2010-02-10 2012-11-07 三菱电机株式会社 空调装置
WO2013046269A1 (ja) 2011-09-29 2013-04-04 三菱電機株式会社 空調給湯複合システム
JP2013068393A (ja) * 2011-09-26 2013-04-18 Noritz Corp 貯湯給湯システム
JP2013530375A (ja) * 2010-07-07 2013-07-25 ブラック ダイアモンド テクノロジーズ リミテッド ヒート・ポンプ・システム
WO2013111179A1 (ja) 2012-01-24 2013-08-01 三菱電機株式会社 空気調和装置
WO2013111180A1 (ja) 2012-01-24 2013-08-01 三菱電機株式会社 空気調和装置の冷媒充填方法、空気調和装置
JP2014055753A (ja) * 2012-09-14 2014-03-27 Hitachi Appliances Inc 二元冷凍装置
JP2014055707A (ja) * 2012-09-12 2014-03-27 Mitsubishi Heavy Ind Ltd パラレル型冷凍機の制御装置および方法並びにプログラム
WO2014049673A1 (ja) 2012-09-25 2014-04-03 三菱電機株式会社 空調給湯複合システム
JPWO2013046269A1 (ja) * 2011-09-29 2015-03-26 三菱電機株式会社 空調給湯複合システム
JP2017020684A (ja) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 熱生成ユニット
US9625187B2 (en) 2010-12-15 2017-04-18 Mitsubishi Electric Corporation Combined air-conditioning and hot-water supply system
EP3217118A1 (en) 2016-03-07 2017-09-13 Panasonic Intellectual Property Management Co., Ltd. Heat pump apparatus
JP2018189308A (ja) * 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 二元ヒートポンプ装置の熱媒体加熱モジュール

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198337B2 (ja) * 2009-03-25 2013-05-15 ホシザキ電機株式会社 自動製氷機
JP5042262B2 (ja) * 2009-03-31 2012-10-03 三菱電機株式会社 空調給湯複合システム
EP2309213B1 (en) * 2009-10-12 2013-05-01 LG Electronics Inc. Air conditioning system and method for controlling operation thereof
JP5729910B2 (ja) * 2010-03-05 2015-06-03 三菱重工業株式会社 温水ヒートポンプおよびその制御方法
EP2559953B1 (en) * 2010-04-15 2016-09-28 Mitsubishi Electric Corporation Hot water supply system and method for operating the system
KR101155497B1 (ko) * 2010-04-23 2012-06-15 엘지전자 주식회사 히트펌프식 급탕장치
KR101212698B1 (ko) 2010-11-01 2013-03-13 엘지전자 주식회사 히트 펌프식 급탕장치
KR101203579B1 (ko) * 2010-11-05 2012-11-21 엘지전자 주식회사 공조 겸용 급탕 장치 및 그 운전방법
CN102155819B (zh) * 2011-03-29 2013-11-27 海尔集团公司 空调热水***
ITMI20120500A1 (it) * 2012-03-28 2013-09-29 Argoclima S P A Apparecchiatura per il riscaldamento di acqua sanitaria contenuta in un boiler a partire da una unita' di condizionamento
WO2013171783A1 (ja) * 2012-05-14 2013-11-21 三菱電機株式会社 多室型空気調和装置
US9316421B2 (en) * 2012-08-02 2016-04-19 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity
JPWO2014054090A1 (ja) * 2012-10-01 2016-08-25 三菱電機株式会社 空気調和装置
WO2014054091A1 (ja) * 2012-10-01 2014-04-10 三菱電機株式会社 空気調和装置
WO2014057550A1 (ja) * 2012-10-10 2014-04-17 三菱電機株式会社 空気調和装置
JP5984965B2 (ja) * 2012-12-11 2016-09-06 三菱電機株式会社 空調給湯複合システム
US9488384B2 (en) * 2013-03-22 2016-11-08 Carrier Corporation Heat pump water module with condensing coil in water storage tank
US10006670B2 (en) * 2013-05-02 2018-06-26 Carrier Corporation Method for managing a refrigerant charge in a multi-purpose HVAC system
JP5892120B2 (ja) * 2013-08-02 2016-03-23 三菱電機株式会社 暖房給湯システム
US20150052914A1 (en) * 2013-08-22 2015-02-26 Carrier Corporation System and Method for Using an Electronic Expansion Valve to Control a Discharge Pressure in a Multi-Purpose HVAC System
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调***有限公司 热回收变频多联式热泵***及其控制方法
KR102243833B1 (ko) * 2015-01-28 2021-04-23 엘지전자 주식회사 히트펌프 급탕장치 및 그 제어방법
CN104764243B (zh) * 2015-03-31 2017-03-08 广东美的暖通设备有限公司 多联机***
CN104764242B (zh) * 2015-03-31 2017-03-08 广东美的暖通设备有限公司 多联机***
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机***
WO2016198258A1 (en) * 2015-06-08 2016-12-15 Danfoss A/S A method for operating a vapour compression system with heat recovery
JP2017161115A (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 空調給湯システム
JP2017161164A (ja) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 空調給湯システム
CN110762662A (zh) * 2019-10-12 2020-02-07 青岛海信日立空调***有限公司 一种co2热泵***
CN113551441A (zh) * 2021-08-02 2021-10-26 姜春辉 一种热泵机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263758A (ja) 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JPH11270920A (ja) 1998-03-20 1999-10-05 Mitsubishi Electric Corp 多機能ヒートポンプシステムおよびその運転制御方法
JP2004100978A (ja) * 2002-09-05 2004-04-02 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2004132647A (ja) 2002-10-11 2004-04-30 Daikin Ind Ltd 給湯装置、空調給湯システム、及び給湯システム
JP2005195212A (ja) * 2004-01-05 2005-07-21 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2006017376A (ja) * 2004-07-01 2006-01-19 Daikin Ind Ltd 給湯装置
JP2007139274A (ja) * 2005-11-16 2007-06-07 Hitachi Ltd 空気調和機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922876A (en) * 1974-11-21 1975-12-02 Energy Conservation Unlimited Energy conservation unit
US4238931A (en) * 1979-01-25 1980-12-16 Energy Conservation Unlimited, Inc. Waste heat recovery system controller
JPH11101523A (ja) * 1997-08-01 1999-04-13 Daikin Ind Ltd 蓄熱式空気調和装置
JP4556453B2 (ja) * 2004-03-15 2010-10-06 株式会社富士通ゼネラル ヒートポンプ給湯エアコン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263758A (ja) 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JPH11270920A (ja) 1998-03-20 1999-10-05 Mitsubishi Electric Corp 多機能ヒートポンプシステムおよびその運転制御方法
JP2004100978A (ja) * 2002-09-05 2004-04-02 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2004132647A (ja) 2002-10-11 2004-04-30 Daikin Ind Ltd 給湯装置、空調給湯システム、及び給湯システム
JP2005195212A (ja) * 2004-01-05 2005-07-21 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2006017376A (ja) * 2004-07-01 2006-01-19 Daikin Ind Ltd 給湯装置
JP2007139274A (ja) * 2005-11-16 2007-06-07 Hitachi Ltd 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2184563A4 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069529A (ja) * 2009-09-25 2011-04-07 Hitachi Ltd 空調給湯システム及びヒートポンプユニット
WO2011089637A1 (ja) * 2010-01-19 2011-07-28 三菱電機株式会社 空調給湯複合システム
CN102713451B (zh) * 2010-01-22 2015-11-25 三菱电机株式会社 空调供热水复合***
WO2011089652A1 (ja) * 2010-01-22 2011-07-28 三菱電機株式会社 空調給湯複合システム
JP5518102B2 (ja) * 2010-01-22 2014-06-11 三菱電機株式会社 空調給湯複合システム
JPWO2011089652A1 (ja) * 2010-01-22 2013-05-20 三菱電機株式会社 空調給湯複合システム
US9080778B2 (en) 2010-01-22 2015-07-14 Mitsubishi Electric Corporation Air-conditioning hot-water supply combined system
CN102713451A (zh) * 2010-01-22 2012-10-03 三菱电机株式会社 空调供热水复合***
CN102770724B (zh) * 2010-02-10 2014-12-17 三菱电机株式会社 空调装置
CN102770724A (zh) * 2010-02-10 2012-11-07 三菱电机株式会社 空调装置
CN102162691A (zh) * 2010-02-23 2011-08-24 财团法人工业技术研究院 二氧化碳冷热多功装置
WO2011158305A1 (ja) * 2010-06-18 2011-12-22 三菱電機株式会社 冷凍空調装置
JPWO2011158305A1 (ja) * 2010-06-18 2013-08-15 三菱電機株式会社 冷凍空調装置
WO2012002248A1 (ja) * 2010-06-28 2012-01-05 三洋電機株式会社 冷凍装置
JP2013530375A (ja) * 2010-07-07 2013-07-25 ブラック ダイアモンド テクノロジーズ リミテッド ヒート・ポンプ・システム
CN102401503A (zh) * 2010-08-25 2012-04-04 日立空调·家用电器株式会社 空调***
JP2012047375A (ja) * 2010-08-25 2012-03-08 Hitachi Appliances Inc 空気調和システム
US9335075B2 (en) 2010-09-10 2016-05-10 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012032580A1 (ja) 2010-09-10 2012-03-15 三菱電機株式会社 空気調和装置
US9625187B2 (en) 2010-12-15 2017-04-18 Mitsubishi Electric Corporation Combined air-conditioning and hot-water supply system
JP2013068393A (ja) * 2011-09-26 2013-04-18 Noritz Corp 貯湯給湯システム
EP2781848A4 (en) * 2011-09-29 2015-06-24 Mitsubishi Electric Corp AIR CONDITIONING SYSTEM / COMBINED HOT WATER SUPPLY
WO2013046269A1 (ja) 2011-09-29 2013-04-04 三菱電機株式会社 空調給湯複合システム
JPWO2013046269A1 (ja) * 2011-09-29 2015-03-26 三菱電機株式会社 空調給湯複合システム
WO2013111179A1 (ja) 2012-01-24 2013-08-01 三菱電機株式会社 空気調和装置
WO2013111180A1 (ja) 2012-01-24 2013-08-01 三菱電機株式会社 空気調和装置の冷媒充填方法、空気調和装置
US9599380B2 (en) 2012-01-24 2017-03-21 Mitsubishi Electric Corporation Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
US9816736B2 (en) 2012-01-24 2017-11-14 Mistubishi Electric Company Air-conditioning apparatus
EP2808622B1 (en) * 2012-01-24 2019-08-28 Mitsubishi Electric Corporation Air-conditioning device
US9453670B2 (en) 2012-09-12 2016-09-27 Mitsubishi Heavy Industries, Ltd. Control apparatus and method for parallel-type chiller, and computer-readable recording medium in which program for parallel-type chiller is stored
JP2014055707A (ja) * 2012-09-12 2014-03-27 Mitsubishi Heavy Ind Ltd パラレル型冷凍機の制御装置および方法並びにプログラム
JP2014055753A (ja) * 2012-09-14 2014-03-27 Hitachi Appliances Inc 二元冷凍装置
WO2014049673A1 (ja) 2012-09-25 2014-04-03 三菱電機株式会社 空調給湯複合システム
JP2017020684A (ja) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 熱生成ユニット
EP3217118A1 (en) 2016-03-07 2017-09-13 Panasonic Intellectual Property Management Co., Ltd. Heat pump apparatus
JP2018189308A (ja) * 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 二元ヒートポンプ装置の熱媒体加熱モジュール

Also Published As

Publication number Publication date
EP2184563A4 (en) 2016-02-17
JPWO2009098751A1 (ja) 2011-05-26
US20110016897A1 (en) 2011-01-27
CN101809383A (zh) 2010-08-18
EP2184563A1 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
WO2009098751A1 (ja) 空調給湯複合システム
JP5042262B2 (ja) 空調給湯複合システム
JP5121922B2 (ja) 空調給湯複合システム
JP5084903B2 (ja) 空調給湯複合システム
KR101366986B1 (ko) 히트 펌프 시스템
JP5984914B2 (ja) 空気調和装置
JP5518101B2 (ja) 空調給湯複合システム
JP5627606B2 (ja) ヒートポンプシステム
US9140459B2 (en) Heat pump device
WO2014083680A1 (ja) 空気調和装置
JP5264936B2 (ja) 空調給湯複合システム
US9816736B2 (en) Air-conditioning apparatus
JP5300806B2 (ja) ヒートポンプ装置
JP5955409B2 (ja) 空気調和装置
WO2011158305A1 (ja) 冷凍空調装置
JP5734424B2 (ja) 空調給湯複合システム
JP2015117902A (ja) 冷凍サイクル装置
JP4898025B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
JP2015124909A (ja) 給湯空調システム
JP2020051730A (ja) 空調システム
JP2008180435A (ja) 空気調和機
JP6062030B2 (ja) 空気調和装置
JP2004293889A (ja) 氷蓄熱ユニット、氷蓄熱式空調装置及びその運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108728.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552340

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12673902

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2008704399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008704399

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE