WO2009090993A1 - 搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法 - Google Patents

搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法 Download PDF

Info

Publication number
WO2009090993A1
WO2009090993A1 PCT/JP2009/050462 JP2009050462W WO2009090993A1 WO 2009090993 A1 WO2009090993 A1 WO 2009090993A1 JP 2009050462 W JP2009050462 W JP 2009050462W WO 2009090993 A1 WO2009090993 A1 WO 2009090993A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
furnace
impact
transport
heat
Prior art date
Application number
PCT/JP2009/050462
Other languages
English (en)
French (fr)
Inventor
Masahiro Kuchi
Hajime Ishii
Hisashi Honjou
Original Assignee
Ihi Metaltech Co., Ltd.
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008008136A external-priority patent/JP5134979B6/ja
Application filed by Ihi Metaltech Co., Ltd., Ihi Corporation filed Critical Ihi Metaltech Co., Ltd.
Priority to BRPI0907164-4A priority Critical patent/BRPI0907164A2/pt
Priority to EP09701772.7A priority patent/EP2246130B1/en
Priority to CN2009801027719A priority patent/CN101939119B/zh
Priority to US12/863,301 priority patent/US8402802B2/en
Publication of WO2009090993A1 publication Critical patent/WO2009090993A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • F27B9/2407Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor the conveyor being constituted by rollers (roller hearth furnace)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/02Skids or tracks for heavy objects
    • F27D3/026Skids or tracks for heavy objects transport or conveyor rolls for furnaces; roller rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0035Forging or pressing devices as units
    • B21B15/005Lubricating, cooling or heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product

Definitions

  • the present invention relates to a conveying device, a hot rolling device, a conveying method, and a hot rolling method.
  • a hot rolling apparatus that performs hot rolling of a workpiece such as a steel plate has a roughing mill and a finish rolling mill, and further has a heating furnace, a holding furnace, a shearing machine, a winder, and the like. ing.
  • the hot rolling apparatus as described above first heats the work piece in a heating furnace, then roughly rolls the work piece in a rough rolling machine, and conveys the work piece while reheating and keeping the temperature in a heat holding furnace. Then, the tip and end of the workpiece are cut off by a shearing machine, the workpiece is finish-rolled by a finish rolling mill, and wound by a winder.
  • the conveyance roller in the heat-retaining furnace is made of heat-resistant steel so as to withstand high temperatures.
  • the transport roller in the heat-retaining furnace receives an impact from the workpiece.
  • the internal temperature of the heat-retaining furnace is set so as not to impair the strength of the conveying roller, and the work-conveying speed in the heat-retaining furnace is affected by an impact that exceeds the impact that the conveying roller can withstand. It is set so as not to be applied to the roller.
  • the internal temperature is set to 1000 ° C. or less, and the conveyance speed is set to about 100 m / min.
  • the internal temperature of the heat-retaining furnace and the conveying speed are limited, and the heat-retaining furnace has not been increased in temperature and speed, but from a metallurgical standpoint, it can be higher than the current set temperature. It is desirable to increase the conveyance speed from the viewpoint of work efficiency. However, if the conveyance speed in the heat-retaining furnace is increased, there arises a problem that the impact received by the conveyance roller from the deformed portion of the workpiece increases. Moreover, when the inside of a heat-retaining furnace is made high temperature, the problem that the intensity
  • the present invention has been made in view of the above-described circumstances, and is capable of preventing the conveyance roller from being damaged while increasing the temperature and speed of hot rolling, as well as the conveying method and hot rolling.
  • the purpose is to propose a method.
  • a conveying device that has a plurality of conveying rollers supported in parallel at a predetermined interval, and conveys a workpiece from a rolling mill into a heat insulation furnace by the conveying rollers.
  • An impact prediction data collection unit that acquires data for predicting the magnitude of impact exerted by the workpiece on the in-furnace roller, which is the transport roller in the incubator, upstream of the incubator. And the impact prediction data collecting unit predicts the magnitude of the impact, and adjusts the conveyance speed of the workpiece in the heat insulating furnace according to the magnitude of the impact. And a control unit.
  • the impact prediction data collection unit is provided in a bearing unit that supports at least one of the transport rollers, and is at least one of deformation and vibration of the bearing unit.
  • the data for obtaining the data as the data was adopted.
  • the impact prediction data collection unit includes an imaging device, and the imaging device captures an image of the workpiece transported upstream of the heat-retaining furnace, as the data. Adopted what to get as.
  • the heat-retaining furnace employs a heat-retaining furnace that retains the workpiece at a temperature of 1000 ° C. or higher.
  • a maximum conveyance speed of the workpiece by the in-furnace roller is 200 m / min or more.
  • the workpiece heated in a heating furnace is rolled in a roughing mill, conveyed to a finishing mill while adjusting the temperature in a holding furnace, and rolled by the finishing mill.
  • a hot rolling apparatus is provided that includes the conveying apparatus according to the first aspect of the present invention.
  • a transport method for transporting a workpiece from a rolling mill to a heat-retaining furnace by moving on a plurality of transport rollers supported in parallel at a predetermined interval. Predict the magnitude of impact that the workpiece gives to the in-furnace roller, which is the transport roller in the incubator, upstream of the incubator, and in accordance with the predicted magnitude of the incubator.
  • a method characterized by adjusting the conveying speed of the workpiece in the furnace was adopted.
  • a method is used in which the impact is predicted based on at least one of deformation and vibration of a bearing portion that supports at least one of the transport rollers.
  • the method of keeping the workpiece at a temperature of 1000 ° C. or higher is adopted as the holding furnace.
  • the maximum conveyance speed of the workpiece by the in-furnace roller is 200 m / min or more.
  • a fourth aspect of the present invention is a hot rolling method for hot rolling a workpiece, wherein the workpiece is conveyed by the conveying method according to the third invention. did.
  • the magnitude of the impact that the in-furnace roller receives from the work piece is estimated upstream of the heat-retaining furnace, and the work piece in the heat-retaining furnace is determined according to the predicted magnitude of the shock. Therefore, when the impact is predicted to be small, the transport speed can be increased, and when the impact is predicted to be large, the transport speed can be decreased. Therefore, even if the internal temperature of the heat-retaining furnace is increased and the strength of the in-furnace roller is weaker than in the case of the conventional set temperature, the magnitude of impact that the strength of the in-furnace roller can withstand is grasped, By adjusting the conveyance speed so that no further impact is applied, the conveyance speed can be appropriately increased. Therefore, in hot rolling, especially after rough rolling and before finishing rolling, the processing temperature is increased and the conveying speed is appropriately increased, so that the hot rolling is generally performed at a higher temperature and speed, The inner roller can be prevented from being damaged.
  • FIG. 1 It is a figure which shows schematic structure and functional structure of the conveying apparatus in one Embodiment of this invention, and a hot rolling apparatus provided with the same. It is a perspective view of a rear surface table and a heat-retaining furnace in the embodiment. It is the front view and side view of the axle box in the said embodiment. It is a perspective view which shows the data collection part for impact prediction in the modification of the said embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration and a functional configuration of a conveying device 20 and a hot rolling device 1 including the same according to an embodiment of the present invention.
  • the hot rolling apparatus 1 of the present embodiment includes a heating furnace 2, a front table 3, a roughing mill 4, a rear table 5, a heat holding furnace 6, a shearing machine 7, a finishing mill 8, and a cooling apparatus. 9, a winder 10, a control unit 11, and an impact prediction data collecting unit 12.
  • the heating furnace 2 heats the slab X (workpiece) containing copper and made of steel as a main component to a temperature suitable for the rough rolling process before rolling by the rough rolling mill 4.
  • the front table 3 is disposed at the rear stage of the heating furnace 2 and includes a plurality of conveying rollers 3a arranged in the line direction. This front table 3 conveys the slab X carried out from the heating furnace 2 to the roughing mill 4 and moves the slab X downward when the slab X is reciprocated and repeatedly rolled by the roughing mill 4 described later. It is to support from.
  • the rough rolling mill 4 includes a pair of rotating rolling rollers 41 and 42, and rolling the slab X between the rolling rollers 41 and 42 to form the slab X into a metal plate Y (workpiece). To do. Although the rolling rollers 41 and 42 are rotationally driven in synchronization, the rotation direction is reversible. For this reason, it is possible to repeatedly perform the rolling process while reciprocating the slab X.
  • FIG. 2 is a perspective view of the rear table 5 and the heat-retaining furnace 6.
  • the rear table 5 includes a plurality of conveying rollers 5a, shaft boxes 50 and 51, a drive shaft 52, a motor 53, and a gear box 54 arranged in the line direction. While being conveyed to the heat-retaining furnace 6 and repeatedly rolling the slab X reciprocated by the rough rolling mill 4, the slab X is supported from below.
  • the axle boxes 50 and 51 rotatably support the transport roller 5a.
  • the drive shaft 52 is connected to the conveyance roller 5 a, and the driving force of the motor 53 is transmitted to the drive shaft 52 via a gear housed in the gear box 54.
  • the length of the rear table 5 is set to be longer than the length of the slab X protruding from the rough rolling mill 4 in the final reciprocating movement of the slab X from the rough rolling mill 4 toward the heat-retaining furnace 6.
  • the final reciprocation refers to a reciprocation (pass before the final pass) before the slab X is finally sent from the roughing mill 4 to the finishing mill 8. That is, the length that the slab X protrudes from the rough rolling mill 4 in the final reciprocating movement is the rough rolling before the slab X is finally sent from the rough rolling mill 4 to the finishing mill 8 (pass before the final pass). This is the length of the slab X protruding from the machine 4.
  • the length of the rear surface table 5 is longer than the protruding length of the slab X when the slab X protrudes most from the roughing mill 4 toward the heat-retaining furnace 6 in the final reciprocation. It is set long. For this reason, in the rolling process of the slab X in the rough rolling mill 4, the tip of the slab X does not reach the heating furnace 6, and the slab X is maintained in the rolling process period of the slab X in the rough rolling mill 4. There is no exposure to the internal atmosphere of the heating furnace 6.
  • the holding furnace 6 includes a tunnel furnace 61 and a heating burner 62, and holds and holds the metal plate Y separately from the heating furnace 2.
  • the temperature is about 1100 ° C.
  • This heat-retaining furnace 6 has a length (for example, 60 to 70 m) close to the entire length of the metal plate Y carried out from the rough rolling mill 4 and can keep the metal plate Y without bending.
  • a plurality of transport rollers 6a are arranged in the line direction inside the heat insulating furnace 6, and the metal plate Y is movably supported by these transport rollers 6a.
  • the transport roller 6a is rotationally driven by the driving force of the driving motor 6b.
  • the conveyance speed of the metal plate Y in the heat-retaining furnace 6 is about 300 m / min when the metal plate Y has little swell and warp, and most when the swell and warp are large. It is about 100 m / min at the latest.
  • the conveying roller 6a is made of heat-resistant steel that maintains a predetermined strength even at 1100 ° C.
  • conveying apparatus 20 with which this hot rolling apparatus 1 is provided is comprised by the front table 3, the rear surface table 5, the conveyance roller 6a, and the drive motor 6b.
  • the shearing machine 7 is installed at the rear stage of the heat-retaining furnace 6 and is for cutting the front end of the metal plate Y carried out of the heat-retaining furnace 6.
  • the finish rolling mill 8 is configured by arranging a plurality of rolling mills 81 constituted by a plurality of rolling rollers 8 a along the line, and further rolling the metal plate Y carried out from the heat-retaining furnace 6. By adjusting the shape.
  • the cooling device 9 is installed in the subsequent stage of the finish rolling mill 8 and cools the metal plate Y whose shape is adjusted by the finish rolling mill 8.
  • the metal plate Y is cooled by water cooling. Cool down.
  • the winder 10 is installed in the subsequent stage of the cooling device 9 and winds up the metal plate Y cooled by the cooling device 9.
  • the control unit 11 supervises the entire operation of the hot rolling apparatus 1, and includes a heating furnace 2, a front table 3, a roughing mill 4, a rear table 5, a heating furnace 6, a shearing machine 7, and a finishing mill. 8, the cooling device 9, the winder 10, and the impact prediction data collecting unit 12 are electrically connected.
  • the control unit 11 includes a data processor 111 and a data storage unit 112 as shown in FIG.
  • the data processor 111 determines the rotational speed of the transport roller 6a based on the data input from the impact prediction data collection unit 12, and controls the drive motor 6b.
  • the data storage 112 stores data input from the impact prediction data collecting unit 12 via the data processor 111.
  • FIG. 3 is a front view (FIG. 3A) and a side view (FIG. 3B) of the axle box 50 (bearing portion).
  • the impact prediction data collection unit 12 includes a shaft box 50, a plate detection HMD (Hot Metal Detector) 121, and a speed detector 122.
  • HMD Hot Metal Detector
  • the axle box 50 includes an annular portion 501 and a pedestal portion 502.
  • the annular portion 501 is an annular portion that grips the end portion of the transport roller 5a.
  • the pedestal portion 502 has a substantially trapezoidal shape that extends in the width direction of the shaft from the lower portion of the annular portion 501, and is a portion that supports the annular portion 501.
  • the pedestal portion 502 is formed thin by forming a recess 502a on the lower surface.
  • the central portion of the recess 502 a is formed substantially along the curvature of the annular portion 501.
  • the pedestal portion 502 includes detachable support bolts 502b for reinforcing the thin pedestal portion 502 as needed on both sides of the recess 502a.
  • the pedestal 502 includes a strain gauge 502c attached to the center of the recess 502a and an accelerometer 502d disposed at a position that does not overlap the strain gauge 502c in the recess 502a.
  • the strain gauge 502c outputs a signal corresponding to the strain generated in the central portion of the recess 502a to the data processor 111.
  • the accelerometer 502d outputs the measurement value to the data processor 111.
  • the plate detection HMD 121 is installed upstream of the axle box 50 and outputs a signal indicating that the metal plate Y has approached the axle box 50 to the data processor 111 when the metal plate Y is detected.
  • the speed detector 122 is attached to the gear box 54 and detects the rotational speed of the drive shaft and outputs it to the data processor 111.
  • the data processor 111 calculates the transport speed of the metal plate Y based on the rotational speed of the drive shaft input from the speed detector 122.
  • the heated slab X is supplied to the roughing mill 4.
  • the slab X supplied to the rough rolling mill 4 is reciprocated a plurality of times (for example, three times) by the rough rolling mill 4 and is repeatedly rolled to be formed into the metal plate Y.
  • the hot rolling apparatus 1 while the slab X is being rolled by the rough rolling mill 4, the slab X is supported from below by the front table 3 or the rear table 5, and the slab X advances. It is possible to move left and right with respect to the direction.
  • the metal plate Y formed by the roughing mill 4 is supplied to the heat-retaining furnace 6 through the rear table 5 at a rate of 100 to 300 m / min and is kept at a temperature of about 1100 ° C.
  • the metal plate Y unloaded from the heat-retaining furnace 6 is cut at the tip by the shearing machine 7 and then further rolled by the finishing mill 8 to a desired thickness.
  • the metal plate Y rolled by the finish rolling mill 8 is cooled by the cooling device 9 and then wound by the winder 10.
  • the conveyance speed of the metal plate Y in the heat-retaining furnace 6 is controlled by the control unit 11. The process will be described in detail below.
  • the control unit 11 predicts the magnitude of the impact that the metal plate Y conveyed on the rear table 5 gives to the conveyance roller 5 a.
  • the plate detection HMD 121 detects the metal plate Y and outputs a signal to the data processor 111
  • the data processor 111 is generated in the pedestal portion 502 by a signal input from the strain gauge 502c. While calculating a distortion, the vibration which has arisen in the base part 502 is calculated with the signal input from the accelerometer 502d.
  • the data processor 111 calculates the magnitude of the impact that the metal plate Y gives to the transport roller 5a from the strain and vibration, and uses the calculated value as the magnitude of the impact that the metal plate Y gives to the transport roller 6a. This is the predicted value.
  • the data processor 111 determines an appropriate value for the conveyance speed of the metal plate Y in the heat insulating furnace 6 based on the predicted value. And the data processor 111 adjusts the conveyance speed of the metal plate Y in the heat-retaining furnace 6 by controlling the drive motor 6b, and is calculated from the rotational speed input from the speed detector 122 together with this. The motor 53 is controlled so that the transport speed is close to the appropriate value.
  • the inside of the heat-retaining furnace 6 is set to a higher temperature than the conventional value of 1100 ° C., and the conveyance speed of the metal plate Y is set to a high speed of about 3 times the conventional value of 300 m / min.
  • the transport speed of the metal plate Y is decreased. By doing so, the magnitude of the impact applied to the transport roller 6a can be reduced.
  • the magnitude of the impact received by the transport roller 6a from the metal plate Y is predicted upstream of the heat insulating furnace 6, and the metal plate Y is transported in the heat insulating furnace 6 according to the predicted magnitude of the impact. Since the speed is adjusted, the transport speed can be increased when the impact is predicted to be small, and the transport speed can be decreased when the impact is predicted to be large. Therefore, even if the internal temperature of the heat-retaining furnace 6 is increased and the strength of the transport roller 6a becomes weaker than the conventional set temperature, the magnitude of impact that the strength of the transport roller 6a can withstand is grasped. By adjusting the conveyance speed so that no further impact is applied, the conveyance speed can be appropriately increased. Therefore, in hot rolling, especially after rough rolling and before finishing rolling, the processing temperature is increased and the conveying speed is appropriately increased, so that the hot rolling is generally performed at a higher temperature and speed, The inner roller can be prevented from being damaged.
  • FIG. 4 is a perspective view showing the impact prediction data collecting unit 212 in the modified example.
  • the impact prediction data collection unit 212 in this modification includes an imaging device 212a instead of the axle box 50 and the plate detection HMD 121 provided in the impact prediction data collection unit 12 of the above embodiment.
  • the impact prediction data collection unit 212 includes a speed detector 122 similar to that included in the impact prediction data collection unit 12 of the above embodiment, in addition to the imaging device 212a.
  • the difference with the said embodiment in this modification is above, and the other part is the same as that of the said embodiment.
  • the imaging device 212 a captures the rear table 5 and outputs the captured video to the data processor 111.
  • the data processor 111 analyzes the undulation, warpage, and vibration state of the metal plate Y based on the image input from the imaging device 212a, and based on the analysis result, the data processor Y of the metal plate Y in the heat insulating furnace 6 is analyzed. Determine an appropriate value for the transport speed. According to such a configuration, the same effect as in the above embodiment can be obtained.
  • the hot rolling is generally performed at a high temperature and high speed by increasing the processing temperature and appropriately increasing the conveying speed in the hot rolling, particularly after rough rolling and before finishing rolling.
  • damage to the in-furnace roller can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Rolling (AREA)

Abstract

 所定間隔で並列に支持された複数本の搬送ローラを有し、該搬送ローラによって、圧延機から保加熱炉内へと被工作物を搬送する搬送装置であって、前記搬送ローラのうち該保加熱炉内のものである炉内ローラに前記被工作物が与える衝撃の大きさを予測するためのデータを、前記保加熱炉の上流で取得する衝撃予測用データ採集部と、前記衝撃予測用データ採集部が取得した前記データから衝撃の大きさを予測し、該衝撃の大きさに応じて、前記保加熱炉内での前記被工作物の搬送速度を調節する制御部と、を備えることを特徴とする搬送装置。

Description

搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法
 本発明は、搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法に関する。
 本願は、2008年1月17日に日本国に出願された特願2008-008136号に基づき優先権を主張し、その内容をここに援用する。
 従来、鋼板等の被工作物の熱間圧延を行う熱間圧延装置は、粗圧延機及び仕上圧延機を有し、更に、加熱炉や保加熱炉、シャーリングマシン、巻取機等を有している。
 上記のような熱間圧延装置は、まず被工作物を加熱炉で加熱し、続いて被工作物を粗圧延機で粗圧延し、被工作物を保加熱炉で再加熱・保温しながら搬送し、被工作物の先端及び終端をシャーリングマシンで切り落とし、仕上圧延機で被工作物を仕上圧延して、巻取機で巻き取る。
 ところで、保加熱炉内の搬送ローラは、高温に耐えるよう耐熱鋼製とされている。
 しかしながら、粗圧延後の被工作物(特に先端部)には、うねりや反り等の変形があるため、保加熱炉内の搬送ローラは、被工作物から衝撃を受ける。
 このため、保加熱炉の内部温度は、搬送ローラの強度を損なわない程度に設定され、且つ、保加熱炉内での被工作物の搬送速度は、搬送ローラが耐え得る衝撃を上回る衝撃が搬送ローラに加わらない程度に設定される。具体的には、内部温度が1000℃以下、搬送速度が100m/分程度とされている。
特開平7-88528号公報
 従来は、上記事情から、保加熱炉の内部温度及び搬送速度が制限され、保加熱炉を高温・高速化できていないが、冶金的見地からすると、現在の設定温度よりも高温化することが望ましく、また、作業効率の観点からは、搬送速度を高速化することが望ましい。
 しかし、仮に、保加熱炉内の搬送速度を速くすると、被工作物の変形部分から搬送ローラが受ける衝撃が大きくなってしまうという問題が生じる。また、保加熱炉内を高温にすると、搬送ローラの強度が弱まってしまうという問題が生じる。
 本発明は、上述した事情に鑑みてなされたもので、熱間圧延を高温・高速化しつつも、搬送ローラの破損を防ぐことができる搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法を提案することを目的とする。
 上記課題を解決するために、本発明に係る搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法では、以下の手段を採用した。
 本発明の第一の態様としては、所定間隔で並列に支持された複数本の搬送ローラを有し、該搬送ローラによって、圧延機から保加熱炉内へと被工作物を搬送する搬送装置であって、前記保加熱炉の上流で、該保加熱炉内の前記搬送ローラである炉内ローラに前記被工作物が与える衝撃の大きさを予測するためのデータを取得する衝撃予測用データ採集部と、前記衝撃予測用データ採集部が取得した前記データから衝撃の大きさを予測し、該衝撃の大きさに応じて、前記保加熱炉内での前記被工作物の搬送速度を調節する制御部と、を備えることを特徴とするものを採用した。
 次に、上記発明の態様において、前記衝撃予測用データ採集部は、前記搬送ローラのうちの少なくとも1本を支持する軸受部に設けられて、該軸受部の変形及び振動の少なくともいずれか一つに関するデータを、前記データとして取得するものを採用した。
 また、上記発明の態様において、前記衝撃予測用データ採集部は、撮像装置を有し、該撮像装置によって、前記保加熱炉の上流を搬送される前記被工作物を撮影した映像を、前記データとして取得するものを採用した。
 また、上記発明の態様において、前記保加熱炉は、1000℃以上の温度で前記被工作物を保加熱するものを採用した。
 また、上記発明の態様において、前記炉内ローラによる前記被工作物の最高搬送速度は、200m/分以上であるものを採用した。
 本発明の第二の態様として、加熱炉にて加熱された被工作物を、粗圧延機で圧延し、保加熱炉にて温度調節しつつ仕上圧延機に搬送し、該仕上圧延機によって圧延する熱間圧延装置であって、上記第1の発明に係る搬送装置を備えることを特徴とするものを採用した。
 本発明の第三の態様として、所定間隔で並列に支持された複数本の搬送ローラ上を移動させることにより、圧延機から保加熱炉へと被工作物を搬送する搬送方法であって、前記保加熱炉の上流で、該保加熱炉内の前記搬送ローラである炉内ローラに前記被工作物が与える衝撃の大きさを予測し、当該予測した衝撃の大きさに応じて、前記保加熱炉内での前記被工作物の搬送速度を調節することを特徴とする方法を採用した。
 次に、上記発明の態様において、前記衝撃の予測は、前記搬送ローラのうち少なくとも1本を支持する軸受部の変形及び振動の少なくともいずれか一つに基づいて行う方法を採用した。
 また、上記発明の態様において、前記衝撃の予測は、前記保加熱炉の上流を搬送される前記被工作物を撮影した撮影映像に基づいて行う方法を採用した。
 また、上記発明の態様において、前記保加熱炉は、1000℃以上の温度で前記被工作物を保加熱する方法を採用した。
 また、上記発明の態様において、前記炉内ローラによる前記被工作物の最高搬送速度は、200m/分以上である方法を採用した。
 本発明の第四の態様として、被工作物を熱間圧延する熱間圧延方法であって、上記第3の発明に係る搬送方法により前記被工作物を搬送することを特徴とする方法を採用した。
 本発明によれば、保加熱炉の上流で、炉内ローラが被工作物から受ける衝撃の大きさを予測し、この予測した衝撃の大きさに応じて、保加熱炉内での被工作物の搬送速度を調節するので、衝撃が小さいと予測された場合には搬送速度を速め、衝撃が大きいと予測された場合には搬送速度を遅くすることができる。
 したがって、保加熱炉の内部温度を高温化して、仮に炉内ローラの強度が従来の設定温度の場合よりも弱くなったとしても、炉内ローラの強度が耐え得る衝撃の大きさを把握し、それ以上の衝撃が加わることのないように搬送速度を調節することにより、適切に搬送速度を高速化できる。
 よって、熱間圧延の特に粗圧延後から仕上圧延前までにおいて、処理温度を高温化し、搬送速度を適切に高速化することにより、熱間圧延を全体的には高温・高速化しつつも、炉内ローラの破損を防ぐことができる。
本発明の一実施形態における搬送装置及びこれを備える熱間圧延装置の概略構成及び機能構成を示す図である。 上記実施形態における後面テーブルと保加熱炉の斜視図である。 上記実施形態における軸箱の正面図及び側面図である。 上記実施形態の変形例における衝撃予測用データ採集部を示す斜視図である。
符号の説明
1…熱間圧延装置
2…加熱炉
3…前面テーブル
3a…搬送ローラ
4…粗圧延機
5…後面テーブル
5a…搬送ローラ
50…軸箱(軸受部)
6…保加熱炉
6a…搬送ローラ(炉内ローラ)
6b…駆動モータ
11…制御部
12…衝撃予測用データ採集部
20…搬送装置
X…スラブ(被工作物)
Y…金属板(被工作物)
212…衝撃予測用データ採集部
212a…撮像装置
 以下、本発明の一実施形態について図面を参照して説明する。
 図1は、本発明の一実施形態である搬送装置20及びこれを備える熱間圧延装置1の概略構成及び機能構成を示す図である。
 この図に示すように本実施形態の熱間圧延装置1は、加熱炉2、前面テーブル3、粗圧延機4、後面テーブル5、保加熱炉6、シャーリングマシン7、仕上圧延機8、冷却装置9、巻取機10、制御部11及び衝撃予測用データ採集部12を備えている。
 加熱炉2は、粗圧延機4にて圧延する前に、銅を含有すると共に主成分が鋼からなるスラブX(被工作物)を粗圧延処理に適した温度に加温するものである。
 前面テーブル3は、加熱炉2の後段に配置されており、ライン方向に配列された複数の搬送ローラ3aを備えている。
 この前面テーブル3は、加熱炉2から搬出されたスラブXを粗圧延機4に搬送すると共に、後述する粗圧延機4にてスラブXが往復されて繰り返し圧延される際に、スラブXを下方から支持するものである。
 粗圧延機4は、回転される一対の圧延ローラ41,42を備えており、圧延ローラ41,42間にてスラブXを圧延することによって、スラブXを金属板Y(被工作物)に成形するものである。圧延ローラ41,42は同期して回転駆動されるが、その回転方向は可逆とされている。このため、スラブXを往復させながら、繰り返し圧延処理することが可能とされている。
 ここで、図1に加えて図2をも参照して説明を続ける。図2は、後面テーブル5と保加熱炉6の斜視図である。
 後面テーブル5は、ライン方向に配列された複数の搬送ローラ5a、軸箱50,51、駆動軸52、モータ53及び歯車箱54を備えており、粗圧延機4から搬出される金属板Yを保加熱炉6に搬送すると共に、粗圧延機4にてスラブXが往復された繰り返し圧延される際に、スラブXを下方から支持するものである。
 軸箱50,51は、搬送ローラ5aを回転自在に支持する。駆動軸52は、搬送ローラ5aに連結されており、この駆動軸52に、モータ53の駆動力が、歯車箱54に収納されている歯車を介して伝達される。
 後面テーブル5の長さは、粗圧延機4から保加熱炉6に向かうスラブXの最終往復移動における粗圧延機4からスラブXが突出する長さよりも長く設定されている。
 なお、ここで言う最終往復移動とは、粗圧延機4から仕上圧延機8に最後にスラブXが送られる前の往復移動(最終パスの前のパス)のことを言う。即ち、最終往復移動における粗圧延機4からスラブXが突出する長さとは、粗圧延機4から仕上圧延機8に最後にスラブXが送られる前(最終パスの前のパス)において、粗圧延機4から突出されるスラブXの長さである。
 つまり、本熱間圧延装置1では、最後往復移動において、スラブXが粗圧延機4から保加熱炉6方向に最も突出された場合のスラブXの突出長さよりも、後面テーブル5の長さが長く設定されている。
 このため、粗圧延機4におけるスラブXの圧延処理において、スラブXの先端が保加熱炉6に到達されることはなく、粗圧延機4におけるスラブXの圧延処理期間にて、スラブXが保加熱炉6の内部雰囲気に晒されることがない。
 保加熱炉6は、トンネル炉61及び加熱バーナー62を備えており、加熱炉2とは別に金属板Yを保加熱保持するものであって、本熱間圧延装置1においては、1100℃程度にて金属板Yの保温を行う。
 この保加熱炉6は、粗圧延機4から搬出される金属板Yの全長に近い長さ(例えば60~70m)で、金属板Yを曲げることなく保温することが可能となっている。
 なお、保加熱炉6の内部には、ライン方向に複数の搬送ローラ6a(炉内ローラ)が配列されており、これらの搬送ローラ6aによって金属板Yが移動可能に支持されている。
 搬送ローラ6aは、駆動モータ6bの駆動力により回転駆動される。また、本熱間圧延装置1においては、保加熱炉6内での金属板Yの搬送速度は、金属板Yのうねりや反りが少ないとき300m/分程度であり、うねりや反りが多いときには最も遅くて100m/分程度である。
 上記搬送ローラ6aは、1100℃でも所定の強度を保つ耐熱鋼製である。
 そして、本熱間圧延装置1が備える搬送装置20は、前面テーブル3、後面テーブル5、搬送ローラ6a及び駆動モータ6bにより構成されている。
 図1に戻り、シャーリングマシン7は、保加熱炉6の後段に設置されており、保加熱炉6から搬出される金属板Yの先端を切断するためのものである。
 仕上圧延機8は、複数の圧延ローラ8aによって構成される圧延機81がラインに沿って複数配列されることによって構成されており、保加熱炉6から搬出された金属板Yをさらに圧延処理することによって形状を整えるものである。
 冷却装置9は、仕上圧延機8の後段に設置されており、仕上圧延機8によって形状が整えられた金属板Yを冷却処理するものであり、本実施形態においては、水冷によって金属板Yを冷却処理する。
 巻取機10は、冷却装置9の後段に設置されており、冷却装置9によって冷却された金属板Yを巻き取るものである。
 制御部11は、本熱間圧延装置1の動作全体を統括するものであり、加熱炉2、前面テーブル3、粗圧延機4、後面テーブル5、保加熱炉6、シャーリングマシン7、仕上圧延機8、冷却装置9、巻取機10及び衝撃予測用データ採集部12と、電気的に接続されている。
 この制御部11は、図2に示すように、データ処理器111及びデータ格納器112を備えている。
 データ処理器111は、衝撃予測用データ採集部12から入力されるデータによって、搬送ローラ6aの回転速度を決定し、駆動モータ6bを制御する。データ格納器112は、データ処理器111を介して、衝撃予測用データ採集部12から入力されるデータを格納する。
 次に、衝撃予測用データ採集部12について、図3をも参照して説明する。図3は、軸箱50(軸受部)の正面図(図3の(a))及び側面図(図3の(b))である。
 衝撃予測用データ採集部12は、図2に示すように、軸箱50、板検知用HMD(Hot Metal Detector)121及び速度検出器122からなる。
 軸箱50は、環状部501及び台座部502とからなる。
 環状部501は、搬送ローラ5aの端部を把持する環状の部分である。
 台座部502は、環状部501の下部から軸の幅方向へ延出した略台形の形状であって、環状部501を支える部分である。この台座部502は、下面に凹部502aが形成されることにより、肉薄に形成されている。
 凹部502aの中央部は、環状部501の曲率に略沿って形成されている。また、台座部502は、凹部502aの両脇に、肉薄な台座部502を必要に応じて補強するための着脱自在な支持ボルト502bを備えている。
 そして、台座部502は、凹部502aの中央部に貼付された歪ゲージ502cと、凹部502a内の歪ゲージ502cと重ならない位置に配された加速度計502dとを備えている。
 歪ゲージ502cは、凹部502aの中央部に生じる歪に応じた信号を、データ処理器111に出力する。加速度計502dは、測定値をデータ処理器111に出力する。
 板検知用HMD121は、軸箱50の上流に設置され、金属板Yを検知すると、軸箱50に金属板Yが近づいてきたことを示す信号をデータ処理器111に出力するものである。
 速度検出器122は、歯車箱54に取り付けられており、駆動軸の回転速度を検知してデータ処理器111に出力するものである。データ処理器111は、速度検出器122から入力される駆動軸の回転速度に基づいて、金属板Yの搬送速度を算出する。
 次に、このようにして構成された本実施形態の熱間圧延装置1の動作について説明する。なお、熱間圧延装置1の動作は、上述の制御部11が主体となって行われる。
 まず、加熱炉2においてスラブXが所定温度まで加熱されると、加熱されたスラブXは、粗圧延機4に供給される。
 粗圧延機4に供給されたスラブXは、粗圧延機4にて複数回(例えば3回)往復移動され、繰り返し圧延されることによって金属板Yに成形される。
 ここで、本熱間圧延装置1では、粗圧延機4にてスラブXが圧延処理されている間、スラブXは、前面テーブル3あるいは後面テーブル5によって下方から支持されると共に、スラブXの進行方向に対して左右に移動可能とされている。
 粗圧延機4にて成形された金属板Yは、後面テーブル5を介して保加熱炉6に100~300m/分で供給されて1100℃程度にて保温される。
 保加熱炉6から搬出された金属板Yは、シャーリングマシン7にて先端部が切断された後、仕上圧延機8によってさらに圧延処理されて所望の厚さとされる。
 そして、仕上圧延機8によって圧延処理された金属板Yは、冷却装置9にて冷却処理された後、巻取機10にて巻き取られる。
 保加熱炉6内での金属板Yの搬送速度は、制御部11により制御される。その過程を以下に詳述する。
 まず、後面テーブル5を搬送されてくる金属板Yが搬送ローラ5aに与える衝撃の大きさを、衝撃予測用データ採集部12により採集したデータに基づいて、制御部11が予測する。
 具体的には、板検知用HMD121が金属板Yを検知し、データ処理器111に信号を出力すると、データ処理器111は、歪ゲージ502cから入力される信号により、台座部502に生じている歪を算出すると共に、加速度計502dから入力される信号により、台座部502に生じている振動を算出する。そして、データ処理器111は、上記歪及び振動から、金属板Yが搬送ローラ5aに与えている衝撃の大きさを算出し、該算出値を、搬送ローラ6aに金属板Yが与える衝撃の大きさの予測値とする。
 次に、データ処理器111は、上記予測値に基づいて、保加熱炉6内での金属板Yの搬送速度の適正値を決定する。
 そして、データ処理器111は、駆動モータ6bを制御することにより、保加熱炉6内での金属板Yの搬送速度を調節し、これと共に、速度検出器122から入力される回転速度から算出される搬送速度が上記適正値に近づくように、モータ53を制御する。
 このような実施形態によれば、保加熱炉6内が1100℃という従来よりも高温に設定されると共に、金属板Yの搬送速度が300m/分という従来の約3倍の高速に設定されていても、金属板Yによって搬送ローラ6aに与えられる衝撃の大きさが、1100℃に保温(ないし加熱)された搬送ローラ6aが耐え得る値を超える場合には、金属板Yの搬送速度を遅くすることによって、搬送ローラ6aに与えられる衝撃の大きさを小さくすることができる。
 つまり、保加熱炉6の上流で、搬送ローラ6aが金属板Yから受ける衝撃の大きさを予測し、この予測した衝撃の大きさに応じて、保加熱炉6内での金属板Yの搬送速度を調節するので、衝撃が小さいと予測された場合には搬送速度を速め、衝撃が大きいと予測された場合には搬送速度を遅くすることができる。
 したがって、保加熱炉6の内部温度を高温化して、仮に搬送ローラ6aの強度が従来の設定温度の場合よりも弱くなったとしても、搬送ローラ6aの強度が耐え得る衝撃の大きさを把握し、それ以上の衝撃が加わることのないように搬送速度を調節することにより、適切に搬送速度を高速化できる。
 よって、熱間圧延の特に粗圧延後から仕上圧延前までにおいて、処理温度を高温化し、搬送速度を適切に高速化することにより、熱間圧延を全体的には高温・高速化しつつも、炉内ローラの破損を防ぐことができる。
 以上、図面を参照しながら本発明に係る熱間圧延装置の好適な実施形態について説明したが、本発明は上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 上記実施形態の変形例として、図4に示す次のようなものが考えられる。図4は、該変形例における衝撃予測用データ採集部212を示す斜視図である。
 この変形例における衝撃予測用データ採集部212は、上記実施形態の衝撃予測用データ採集部12が備える軸箱50及び板検知用HMD121に代えて、撮像装置212aを備えている。また、衝撃予測用データ採集部212は、撮像装置212aの他に、上記実施形態の衝撃予測用データ採集部12が備えるものと同様の速度検出器122を備えている。
 そして、この変形例における上記実施形態との差異は以上であって、その他の部分は上記実施形態と同様である。
 撮像装置212aは、後面テーブル5上を撮影し、撮影した映像をデータ処理器111に出力するものである。
 データ処理器111は、撮像装置212aから入力された映像に基づいて、金属板Yのうねりや反り、振動状態を分析し、該分析結果に基づいて、保加熱炉6内での金属板Yの搬送速度の適正値を決定する。
 このような構成によれば、上記実施形態と同様の効果を得ることができる。
 本発明によれば、熱間圧延の特に粗圧延後から仕上圧延前までにおいて、処理温度を高温化し、搬送速度を適切に高速化することにより、熱間圧延を全体的には高温・高速化しつつも、炉内ローラの破損を防ぐことができる。 

Claims (12)

  1.  所定間隔で並列に支持された複数本の搬送ローラを有し、該搬送ローラによって、圧延機から保加熱炉内へと被工作物を搬送する搬送装置であって、
     前記搬送ローラのうち該保加熱炉内のものである炉内ローラに前記被工作物が与える衝撃の大きさを予測するためのデータを、前記保加熱炉の上流で取得する衝撃予測用データ採集部と、
     前記衝撃予測用データ採集部が取得した前記データから衝撃の大きさを予測し、該衝撃の大きさに応じて、前記保加熱炉内での前記被工作物の搬送速度を調節する制御部と、を備えることを特徴とする搬送装置。
  2.  前記衝撃予測用データ採集部は、前記搬送ローラのうちの少なくとも1本を支持する軸受部に設けられて、該軸受部の変形及び振動の少なくともいずれか一つに関するデータ前記データとして取得することを特徴とする請求項1に記載の搬送装置。
  3.  前記衝撃予測用データ採集部は、撮像装置を有し、該撮像装置によって、前記保加熱炉の上流を搬送される前記被工作物を撮影した映像を、前記データとして取得することを特徴とする請求項1に記載の搬送装置。
  4.  前記保加熱炉は、1000℃以上の温度で前記被工作物を保加熱することを特徴とする請求項1から3のいずれかに記載の搬送装置。
  5.  前記炉内ローラによる前記被工作物の最高搬送速度は、200m/分以上であることを特徴とする請求項1に記載の搬送装置。
  6.  加熱炉にて加熱された被工作物を、粗圧延機で圧延し、保加熱炉にて温度調節しつつ仕上圧延機に搬送し、該仕上圧延機によって圧延する熱間圧延装置であって、
     請求項1に記載の搬送装置を備えることを特徴とする熱間圧延装置。
  7.  所定間隔で並列に支持された複数本の搬送ローラ上を移動させることにより、圧延機から保加熱炉へと被工作物を搬送する搬送方法であって、
     前記保加熱炉の上流で、該保加熱炉内の前記搬送ローラである炉内ローラに前記被工作物が与える衝撃の大きさを予測し、当該予測した衝撃の大きさに応じて、前記保加熱炉内での前記被工作物の搬送速度を調節することを特徴とする搬送方法。
  8.  前記衝撃の予測は、前記搬送ローラのうち少なくとも1本を支持する軸受部の変形及び振動の少なくともいずれか一つに基づいて行うことを特徴とする請求項7に記載の搬送方法。
  9.  前記衝撃の予測は、前記保加熱炉の上流を搬送される前記被工作物を撮影した撮影映像に基づいて行うことを特徴とする請求項7に記載の搬送方法。
  10.  前記保加熱炉は、1000℃以上の温度で前記被工作物を保加熱することを特徴とする請求項7に記載の搬送方法。
  11.  前記炉内ローラによる前記被工作物の最高搬送速度は、200m/分以上であることを特徴とする請求項7に記載の搬送方法。
  12.  被工作物を熱間圧延する熱間圧延方法であって、
     請求項7に記載の搬送方法により前記被工作物を搬送することを特徴とする熱間圧延方法。
PCT/JP2009/050462 2008-01-17 2009-01-15 搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法 WO2009090993A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0907164-4A BRPI0907164A2 (pt) 2008-01-17 2009-01-15 Dispositivo de transporte, aparelho de laminação a quente, método de trasnporte e método de laminação a quente
EP09701772.7A EP2246130B1 (en) 2008-01-17 2009-01-15 Carrying apparatus and hot-rolling apparatus, and carrying method and hot-rolling method
CN2009801027719A CN101939119B (zh) 2008-01-17 2009-01-15 输送装置和热轧装置以及输送方法和热轧方法
US12/863,301 US8402802B2 (en) 2008-01-17 2009-01-15 Conveying device, hot rolling apparatus, conveying method, and hot rolling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-008136 2008-01-17
JP2008008136A JP5134979B6 (ja) 2008-01-17 搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法

Publications (1)

Publication Number Publication Date
WO2009090993A1 true WO2009090993A1 (ja) 2009-07-23

Family

ID=40885379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050462 WO2009090993A1 (ja) 2008-01-17 2009-01-15 搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法

Country Status (5)

Country Link
US (1) US8402802B2 (ja)
EP (1) EP2246130B1 (ja)
CN (1) CN101939119B (ja)
BR (1) BRPI0907164A2 (ja)
WO (1) WO2009090993A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910071B1 (ja) * 2011-04-28 2012-04-04 昭男 平根 板金修復治具
CN102527865A (zh) * 2011-12-20 2012-07-04 中国科学院宁波材料技术与工程研究所 一种热塑性复合材料的成型输送装置
US8662289B2 (en) * 2012-06-26 2014-03-04 Shenzhen China Star Optoelectronics Technlogy co., Ltd. Glass substrate transmission device and method for detecting the rotational synchronization of driven shafts
CN103331302B (zh) * 2013-07-12 2015-07-15 山西太钢不锈钢股份有限公司 一种提高取向硅钢终轧温度的装置及其方法
CN107497865A (zh) * 2017-09-22 2017-12-22 浙江金康铜业有限公司 钢板热轧机构
CN107838192A (zh) * 2017-11-23 2018-03-27 鹤山市顺亿达铜业制品有限公司 一种铜板自动热轧装置
CN110411223B (zh) * 2019-07-10 2020-12-29 东南大学 一种可调节炉辊支撑装置
CN113145641B (zh) * 2021-03-19 2023-05-23 兴化市广福金属制品有限公司 一种不锈钢热轧成型装置
CN113369303B (zh) * 2021-06-09 2022-07-19 燕山大学 一种用于复合板自动化真空涂覆及热轧的***及其方法
JP2023088719A (ja) * 2021-12-15 2023-06-27 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質の製造装置及び製造方法
CN117735152B (zh) * 2024-02-20 2024-05-28 泰州市宏华冶金机械有限公司 一种全自动辊道输送线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266593A (ja) * 1985-09-19 1987-03-26 川崎製鉄株式会社 誘導加熱制御方法
JPH0788528A (ja) 1993-09-20 1995-04-04 Hitachi Ltd 熱間圧延設備及び熱間圧延方法
JP2002019947A (ja) * 2000-07-07 2002-01-23 Sumitomo Metal Ind Ltd 鋼材の搬送方法
JP2004160531A (ja) * 2002-11-15 2004-06-10 Nippon Steel Corp 圧延機前後面搬送テーブルロールの速度制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2056510A (en) * 1934-01-24 1936-10-06 Fallon John Conveyer furnace for heating metal sheets or plates
EP0721813B1 (de) * 1995-01-16 1999-01-27 MANNESMANN Aktiengesellschaft Vorrichtung zum Führen von warmgewalztem Band durch einen Induktor
CN2734345Y (zh) * 2004-09-29 2005-10-19 宝山钢铁股份有限公司 采用电磁技术抑制带钢抖动的装置
JP5271512B2 (ja) * 2007-06-18 2013-08-21 Ihiメタルテック株式会社 熱間圧延装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266593A (ja) * 1985-09-19 1987-03-26 川崎製鉄株式会社 誘導加熱制御方法
JPH0788528A (ja) 1993-09-20 1995-04-04 Hitachi Ltd 熱間圧延設備及び熱間圧延方法
JP2002019947A (ja) * 2000-07-07 2002-01-23 Sumitomo Metal Ind Ltd 鋼材の搬送方法
JP2004160531A (ja) * 2002-11-15 2004-06-10 Nippon Steel Corp 圧延機前後面搬送テーブルロールの速度制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246130A4 *

Also Published As

Publication number Publication date
CN101939119B (zh) 2013-05-29
CN101939119A (zh) 2011-01-05
JP5134979B2 (ja) 2013-01-30
EP2246130A4 (en) 2014-10-29
EP2246130B1 (en) 2015-12-16
US20100294009A1 (en) 2010-11-25
BRPI0907164A2 (pt) 2015-07-07
US8402802B2 (en) 2013-03-26
EP2246130A1 (en) 2010-11-03
JP2009166102A (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
WO2009090993A1 (ja) 搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法
RU2679810C1 (ru) Системы и способы заправки металлической основы на прокатном стане
US8945319B2 (en) Manufacturing method and manufacturing apparatus of hot-rolled steel sheet
KR102018370B1 (ko) 열간 압연 이전에 강 스톡을 제조하는 방법 및 장치
KR101320930B1 (ko) 슬래브 가공 방법 및 장치
JP2010530807A (ja) 鋼鉄製ストリップの熱間圧延及び熱処理法
US9248482B2 (en) Magnesium roll mill
RU2493925C2 (ru) Способ и устройство для непрерывного литья сляба
JP2010530807A5 (ja)
JP4946516B2 (ja) 熱間圧延設備およびそれを用いた熱間圧延方法
JP5134979B6 (ja) 搬送装置及び熱間圧延装置、並びに搬送方法及び熱間圧延方法
JP2846168B2 (ja) ストリップの蛇行修正装置
KR102448748B1 (ko) 빌렛 형상교정방법 및 형상교정장치
JP4885040B2 (ja) 圧延材の圧延方法
JP6003849B2 (ja) レールの製造方法及び製造装置
JP6168006B2 (ja) 連続焼鈍炉用ハースロール設備およびその制御方法
JP6733612B2 (ja) 圧延ラインの制御装置
JP2006026808A (ja) 連続熱間圧延ラインにおけるシャー切断制御方法
JP5114745B2 (ja) 熱間圧延設備における鋼材の搬送制御装置及び方法
Romano et al. Innovations in the Process Technology for Manufacturing Magnesium Alloy Sheet
JP4161453B2 (ja) 熱間材料の板厚プレス装置
JP3829746B2 (ja) 熱延鋼板の製造方法
JP2011200885A (ja) 棒鋼の圧延方法
JP2005272909A (ja) 連続焼鈍ラインのルーパにおける鋼帯の張力制御方法
JP2010137253A (ja) 圧延材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102771.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12863301

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5336/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009701772

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0907164

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100714