WO2009084792A1 - Acier à haute teneur en manganèse, résistance élevée et excellente résistance à la rupture différée, et son procédé de fabrication - Google Patents

Acier à haute teneur en manganèse, résistance élevée et excellente résistance à la rupture différée, et son procédé de fabrication Download PDF

Info

Publication number
WO2009084792A1
WO2009084792A1 PCT/KR2008/004535 KR2008004535W WO2009084792A1 WO 2009084792 A1 WO2009084792 A1 WO 2009084792A1 KR 2008004535 W KR2008004535 W KR 2008004535W WO 2009084792 A1 WO2009084792 A1 WO 2009084792A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
steel
temperature
weight
Prior art date
Application number
PCT/KR2008/004535
Other languages
English (en)
Inventor
Gyo Sung Kim
Soo Chang Kang
Tae Kyo Han
Sung Kyu Kim
Il Ryoung Sohn
Min Hong Seo
Hyun Gyu Hwang
Original Assignee
Posco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco filed Critical Posco
Publication of WO2009084792A1 publication Critical patent/WO2009084792A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0431Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to high manganese steel having high strength, high elongation and excellent delayed fracture resistance and, more particularly, to high manganese steel having high strength, high elongation and excellent delayed fracture resistance, which can be applied to members such as automotive steel sheets and structural materials in which high formability as well as sufficient strength must be secured.
  • the field of automotive steel sheets requires steel having high formability and simultaneously excellent strength. Further, the automotive steel sheets are required to be sufficiently thin in order to reduce weight of an automotive body to increase fuel efficiency.
  • Multiphase steel capable of making up for the low strength of the ultra-low carbon steel is disclosed in US Patent No. 4,854,976.
  • This multiphase steel has poor formability through the influence of bainite and martensite structures, and thus is re- strictively used only for members that do not require high formability.
  • Embodiments of the present invention provide high manganese steel, which has high strength, high formability and excellent delayed fracture resistance so as to be able to be widely used for automotive steel materials, structural members, and so on.
  • high manganese steel contains, by weight, 0.3% to 0.9% carbon (C), 15% to 25% manganese (Mn), 0.01% to 2.0% silicon (Si), 0.01% to 4.0% aluminum (Al), 0.05% or less sulfur (S), 0.1% or less phosphor (P), inevitable impurities, and balance o iron (Fe).
  • C carbon
  • Mn manganese
  • Si silicon
  • Al aluminum
  • S sulfur
  • P phosphor
  • inevitable impurities and balance o iron (Fe).
  • Fe iron
  • Al and Si have relation of Al/Si > 2.
  • a method of manufacturing high manganese steel which includes: a reheating step of heating a steel slab at a temperature of 1200 0 C or less, the steel slab containing, by weight, 0.3% to 0.9% carbon (C), 15% to 25% manganese (Mn), 0.01% to 2.0% silicon (Si), 0.01% to 4.0% aluminum (Al), 0.05% or less sulfur (S), 0.1% or less phosphor (P), inevitable impurities, and balance iron (Fe), and Al and Si having relation of Al/Si > 2; a finish hot rolling step of finish hot rolling the steel slab into a steel sheet at a temperature of 95O 0 C or less; a coiling step of cooling the finish-hot-rolled steel sheet with water and coiling the cooled steel sheet at a temperature of 55O 0 C or less; a cold rolling step of pickling the hot-rolled steel sheet and cold rolling the pickled steel sheet at a rolling reduction of 40% or more; and an annea
  • a method of manufacturing a high manganese coated steel sheet which includes: a reheating step of heating a steel slab at a temperature of 1200 0 C or less, the steel slab containing, by weight, 0.3% to 0.9% carbon (C), 15% to 25% manganese (Mn), 0.01% to 2.0% silicon (Si), 0.01% to 4.0% aluminum (Al), 0.05% or less sulfur (S), 0.1% or less phosphor (P), inevitable impurities, and a balance of iron (Fe), and Al and Si having relation of Al/Si > 2; a finish hot rolling step of finish hot rolling the steel slab into a steel sheet at a temperature of 95O 0 C or less; a coiling step of cooling the finish- hot-rolled steel sheet with water and coiling the cooled steel sheet at a temperature of 55O 0 C or less; a cold rolling step of pickling the hot-rolled steel sheet and cold rolling the pickled steel sheet at a rolling reduction of 40% or
  • a method of manufacturing a high manganese coated steel sheet which includes: a reheating step of heating a steel slab at a temperature of 1200 0 C or less, the steel slab containing, by weight, 0.3% to 0.9% carbon (C), 15% to 25% manganese (Mn), 0.01% to 2.0% silicon (Si), 0.01% to 4.0% aluminum (Al), 0.05% or less sulfur (S), 0.1% or less phosphor (P), inevitable impurities, and a balance of iron (Fe), and Al and Si having relation of Al/Si > 2; a finish hot rolling step of finish hot rolling the steel slab into a steel sheet at a temperature of 95O 0 C or less; a coiling step of cooling the finish- hot-rolled steel sheet with water and coiling the cooled steel sheet at a temperature of 55O 0 C or less; a cold rolling step of pickling the hot-rolled steel sheet and cold rolling the pickled steel sheet at a rolling reduction of 40% or
  • the high manganese steel and the high manganese coated steel sheet may further include one or two or more selected from the group consisting of, by weight, 0.2% or less niobium (Nb), 0.5% less vanadium (V), 0.3% or less titanium (Ti), 1.0% or less tungsten (W), 1.0% or less molybdenum (Mo), and 1.0% or less chrome (Cr), and/or 0.005% or less antimony (Sb), and have tensile strength of 920 MPa or more and elongation of 55% or more.
  • Nb niobium
  • V vanadium
  • Ti titanium
  • W tungsten
  • Mo molybdenum
  • Cr chrome
  • Sb antimony
  • the high manganese steel has high strength and elongation as well as excellent delayed fracture resistance for use of automotive.
  • Exemplary embodiments of the present invention provide high manganese steel, which has proper stacking fault energy by means of addition of carbon (C), manganese (Mn), aluminum (Al), etc. and thus uses twinning created during deformation. Since the created twins exert the same effect as the effect refining a grain size, the steel has high elongation and such strength as to be used for automotive members. Furthermore, exemplary embodiments of the present invention provide high manganese steel, in which an Al-Si component is controlled to improve delayed fracture resistance.
  • C is an element required to secure an austenite structure in steel, and is added at an amount of 0.3% or more in order to contribute to increasing strength of the steel.
  • an amount of C exceeds 0.9%, carbide is excessively precipitated to degrade workability and castability.
  • the amount of C is limited to a range of 0.3% to 0.9%.
  • Mn is an important component that serves to improve strength and stabilize an austenite phase, and must be added at an amount of 15% or more.
  • Mn is added at an amount less than 15%, an ⁇ -martensite phase exists to reduce formability.
  • Mn is added at an amount exceeding 25%, this is economically unfavorable, and internal oxidation sharply occurs during heating in a hot rolling process to thereby deteriorate surface quality.
  • Mn is added at an amount of 15% to 25%.
  • Si is added at an amount of 0.01% or more in order to improve strength caused by means of deoxidation and solution hardening.
  • Si can reduce delayed fracture resistance and deteriorate coatability.
  • the added amount of Si is limited to a range of 0.01% to 2.0%.
  • Al contributes to an increase in stacking fault energy for stabilizing an austenite phase and formation of twins during press forming. Further, Al acts as an important element for improving delayed fracture resistance in an embodiment of the present invention, and must be added at an amount of 0.1% or more. However, when the added amount of Al exceeds 4.0%, Al can deteriorate coatability. Thus, the added amount of Al is limited to a range of 0.1% to 4.0%.
  • a ratio of Al and Si added to the steel must be 2 or more.
  • a study of inventors of the present invention shows that Al and Si serve as elements for improving delayed fracture resistance in the high manganese steel. Particularly, a test shows that, only when an added amount of Al is twice as much as that of Si, stability of twins is secured, and the delayed fracture resistance shows a remarkable synergy effect.
  • the ratio of Al/Si is preferably set to 2 or more. When the ratio of Al/Si is less than 2, the delayed fracture resistance is reduced, and coatability is deteriorated. Thus, it is necessary to control the added amounts of Al and Si within contents of Al and Si.
  • Niobium (Nb) is an element added to improve strength through refinement of a grain size and precipitation strengthening. When an added amount of Nb exceeds 0.2%, Nb causes cracks during hot rolling. Thus, the added amount of Nb has an upper limit of 0.2%.
  • Vanadium (V) is an added element for improving strength through precipitation strengthening.
  • V vanadium
  • the added amount of V has an upper limit of 0.5%.
  • Titanium (Ti) is an element that reacts with nitrogen (N) in steel and thus precipitates nitride, and can be added to secure strength and formability.
  • N nitrogen
  • Ti is an element that reacts with nitrogen (N) in steel and thus precipitates nitride, and can be added to secure strength and formability.
  • Ti excessively forms precipitates to cause fine cracks during cold rolling, and deteriorates formability and weldability.
  • the added amount of Ti has an upper limit to 0.3%.
  • S Sulfur
  • S is required to be controlled at an amount of 0.05% or less in order to control inclusions.
  • S causes hot shortness.
  • Phosphor (P) is an element that is vulnerable to segregation, and promotes cracks during casting. In order to prevent the cracks, P must be controlled at an amount of 0.1% or less. When an amount of P exceeds 0.1%, P can deteriorate castability. Thus, the amount of P has an upper limit to 0.1%.
  • Tungsten (W), molybdenum (Mo) and chrome (Cr) are elements added for precipitation strengthening, and each can be added up to 1%. When added amounts of W, Mo and Cr exceed 1%, the strengthening effect is not significantly increased, but manufacturing costs are increased.
  • Antimony (Sb) can be added up to 0.05% in order to improve hot dip coating characteristics. When an added amount of Sb exceeds 0.05%, Sb degrades hot workability to cause cracks during hot rolling.
  • the high manganese steel according to an embodiment of the present invention can be manufactured by performing continuous casting, hot rolling, cold rolling, etc. on a steel slab containing the above-mentioned composition.
  • the slab is reheated at a temperature of 1200 0 C or less until it is uniformly heated on the whole.
  • the heating temperature is high, the hot rolling is easy.
  • steel having a high content of Mn like the high manganese steel of the embodiment of the present invention is heated at a high temperature, internal oxidation severely occurs to deteriorate superficial quality.
  • the heating temperature is too low, a rolling load can be excessively applied during hot rolling.
  • the slab is preferably heated at a temperature of 1100 0 C or more.
  • the slab After the finish hot rolling, the slab is cooled with water. Then, the cooled strip is wound in a coil shape. After the coiling, a cooling speed is typically slow in most cases. Thus, when a coiling start temperature is high, an oxide film on a surface of the slab reacts with a matrix of the slab during cooling after the coiling, and thereby a pickling characteristic is deteriorated. Thus, the slab must be coiled at a temperature of 55O 0 C or less.
  • the high manganese steel according to an embodiment of the present invention can be manufactured through the above-mentioned processes.
  • an electroplating process or a hot dip coating process can be additionally carried out to manufacture a high manganese electroplated steel sheet.
  • An electroplating method that can be used in an embodiment of the present invention can be implemented with any electroplating method known in the related art can be applied and thus is not particularly limited.
  • the electroplating process can be carried out after the continuous annealing is completed in the method of manufacturing the high manganese steel.
  • the high manganese steel according to an embodiment of the present invention can be formed into a high manganese hot-dip coated steel sheet through a hot dip coating process.
  • the high manganese steel can be introduced into a continuous hot dip coating line instead of the continuous annealing process.
  • the high manganese steel is subjected to heat treatment at a temperature of 700 0 C to 83O 0 C in the continuous hot dip coating line, and then hot dip coating again.
  • the high manganese hot-dip coated steel sheet can be manufactured.
  • the continuous hot dip coating line can perform the hot dip coating on the high manganese steel according to an embodiment of the present invention does not p lace special restrictions on typical hot dip coating equipment in which the heat treatment is possible.
  • a composition of high manganese steel capable of securing high strength was set as follows. Tensile strength (TS, on the basis of MPa) and elongation (E, on the basis of %) were measured with respect to steel prepared with each composition, and the results were shown in Table 1 below.
  • Example 2 [77]
  • a composition of high manganese steel capable of securing high strength and excellent delayed fracture resistance was set as follows. Tensile strength (TS, on the basis of MPa), elongation (E, on the basis of %), and delayed fracture resistance were tested with respect to each steel, and the results were shown in Table 2 below.
  • IS is short for Inventive Steel
  • CS is short for Comparative Steel
  • DFR is short for Delayed Fracture Resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention porte sur un acier à haute teneur en manganèse qui contient, en poids, 0,3 % à 0,9 % de carbone (C), 15 % à 25 % de manganèse (Mn), 0,01 % à 2,0 % de silicium (Si), 0,01 % à 4,0 % d'aluminium (Al), 0,05 % ou moins de soufre (S), 0,1 % ou moins de phosphore (P), les impuretés inévitables, et le complément constitué par du fer (Fe). Al et Si ont une relation de Al/Si > 2. L'acier à haute teneur en manganèse contient en outre un ou deux éléments ou davantage choisis dans le groupe constitué par, en poids, 0,2 % ou moins de niobium (Nb), 0,5 % ou moins de vanadium (V), 0,3 % ou moins de titane (Ti), 1,0 % ou moins de tungstène (W), 1,0 % ou moins de molybdène (Mo), et 1,0 % ou moins de chrome (Cr). L'acier à haute teneur en manganèse présente une résistance à la traction de 920 MPa ou plus et un allongement de 55 % ou plus, et peut donc être utilisé de façon sûre et large pour fabriquer des éléments d'automobiles, des éléments structuraux, etc.
PCT/KR2008/004535 2007-12-28 2008-08-05 Acier à haute teneur en manganèse, résistance élevée et excellente résistance à la rupture différée, et son procédé de fabrication WO2009084792A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2007-0140119 2007-12-28
KR1020070140119A KR100985286B1 (ko) 2007-12-28 2007-12-28 내지연파괴 특성이 우수한 고강도 고망간강 및 제조방법

Publications (1)

Publication Number Publication Date
WO2009084792A1 true WO2009084792A1 (fr) 2009-07-09

Family

ID=40824484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/004535 WO2009084792A1 (fr) 2007-12-28 2008-08-05 Acier à haute teneur en manganèse, résistance élevée et excellente résistance à la rupture différée, et son procédé de fabrication

Country Status (2)

Country Link
KR (1) KR100985286B1 (fr)
WO (1) WO2009084792A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127704A (zh) * 2011-03-02 2011-07-20 武汉钢铁(集团)公司 900MPa级高强度高塑性中碳热轧钢及其制造方法
WO2011154153A1 (fr) * 2010-06-10 2011-12-15 Tata Steel Ijmuiden Bv Procédé de production d'acier austénitique
EP2402472A1 (fr) 2010-07-02 2012-01-04 ThyssenKrupp Steel Europe AG Acier à résistance élevée pouvant être déformé à froid et produit plat en acier constitué d'un tel acier
ITRM20100641A1 (it) * 2010-12-07 2012-06-08 Ct Sviluppo Materiali Spa Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile.
WO2013064202A1 (fr) 2011-11-03 2013-05-10 Tata Steel Nederland Technology B.V. Procédé de fabrication d'une tôle d'acier duplex ayant une aptitude au formage accrue
CN105779889A (zh) * 2016-04-06 2016-07-20 广东省材料与加工研究所 一种含钨钛高锰钢及其制备方法
CN105803322A (zh) * 2016-04-06 2016-07-27 广东省材料与加工研究所 一种高锰钢及其制备方法
DE102015111866A1 (de) * 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Umformbarer Leichtbaustahl mit verbesserten mechanischen Eigenschaften und Verfahren zur Herstellung von Halbzeug aus diesem Stahl
WO2017203309A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Tôle d'acier twip ayant une matrice austénitique
CN107675073A (zh) * 2016-12-05 2018-02-09 东北大学 一种新型轻质高锰钢耐磨材料
CN107675098A (zh) * 2016-12-05 2018-02-09 东北大学 一种轻质高锰钢材料的制备方法
CN108431270A (zh) * 2015-12-24 2018-08-21 Posco公司 镀覆粘附性优异的高锰热浸铝系镀覆钢板
CN108431269A (zh) * 2015-12-24 2018-08-21 Posco公司 镀覆性及焊接性优异的奥氏体系热浸镀铝钢板及其制造方法
CN109385508A (zh) * 2018-12-21 2019-02-26 昆明理工大学 一种用于薄壁管道的低温高锰钢材料的制备方法
CN111850419A (zh) * 2020-07-31 2020-10-30 燕山大学 一种高锰奥氏体钢及其制备方法
US20210012941A1 (en) * 2018-12-28 2021-01-14 Hyundai Electric & Energy Systems Co., Ltd. Transformer
US10995381B2 (en) 2016-05-24 2021-05-04 Arcelormittal Method for producing a TWIP steel sheet having an austenitic microstructure
EP3872214A4 (fr) * 2018-10-25 2021-09-01 Posco Acier à haute teneur en manganèse ayant d'excellentes propriétés de coupe à l'oxygène et procédé de fabrication s'y rapportant
US11486017B2 (en) 2016-05-24 2022-11-01 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
CN116043126A (zh) * 2023-01-09 2023-05-02 鞍钢股份有限公司 一种高强高韧高熵钢及制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360525B1 (ko) 2012-04-09 2014-02-10 주식회사 포스코 고망간강-일반강 접합부 및 고망간강 제조방법
KR101482325B1 (ko) * 2012-12-13 2015-01-13 주식회사 포스코 산세성 및 도금성이 우수한 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
KR101714922B1 (ko) * 2015-12-18 2017-03-10 주식회사 포스코 인성 및 내부품질이 우수한 내마모 강재 및 그 제조방법
MA45114A (fr) 2016-05-24 2019-04-10 Arcelormittal Procédé de fabrication d'une tôle d'acier twip ayant une matrice austénitique
KR102020390B1 (ko) * 2017-12-20 2019-09-10 주식회사 포스코 성형성이 우수한 고강도 강판 및 이의 제조방법
KR101999000B1 (ko) * 2017-12-21 2019-07-10 주식회사 포스코 용접강도가 우수한 고망간 강판 및 이의 제조방법
KR102020443B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 저온 피로강도가 우수한 스프링용 강선 및 그 제조방법
KR102065230B1 (ko) * 2017-12-26 2020-01-10 주식회사 포스코 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
KR102119962B1 (ko) * 2018-10-25 2020-06-05 주식회사 포스코 용접성이 우수한 고강도 및 고연성 비자성 강재 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013233A1 (fr) * 1991-12-30 1993-07-08 Pohang Iron & Steel Co., Ltd. Acier austenitique au manganese presentant une plasticite, une resistance et une soudabilite ameliorees, et son procede de fabrication
US5647922A (en) * 1994-03-25 1997-07-15 Pohang Iron & Steel Co., Ltd. Process for manufacturing high manganese hot rolled steel sheet without any crack
US5810950A (en) * 1995-12-30 1998-09-22 Pohang Iron & Steel Co., Ltd. Methods for annealing and pickling high manganic cold rolled steel sheet
WO2007075006A1 (fr) * 2005-12-26 2007-07-05 Posco Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci
WO2007074994A1 (fr) * 2005-12-24 2007-07-05 Posco Tole d'acier a forte teneur en mn, presentant une grande resistance a la corrosion et procede de galvanisation de la tole d'acier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641685A (ja) * 1992-07-28 1994-02-15 Kawasaki Steel Corp 高Mn非磁性冷延鋼板およびその製造方法
US5565483A (en) * 1995-06-07 1996-10-15 Bristol-Myers Squibb Company 3-substituted oxindole derivatives as potassium channel modulators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013233A1 (fr) * 1991-12-30 1993-07-08 Pohang Iron & Steel Co., Ltd. Acier austenitique au manganese presentant une plasticite, une resistance et une soudabilite ameliorees, et son procede de fabrication
US5647922A (en) * 1994-03-25 1997-07-15 Pohang Iron & Steel Co., Ltd. Process for manufacturing high manganese hot rolled steel sheet without any crack
US5810950A (en) * 1995-12-30 1998-09-22 Pohang Iron & Steel Co., Ltd. Methods for annealing and pickling high manganic cold rolled steel sheet
WO2007074994A1 (fr) * 2005-12-24 2007-07-05 Posco Tole d'acier a forte teneur en mn, presentant une grande resistance a la corrosion et procede de galvanisation de la tole d'acier
WO2007075006A1 (fr) * 2005-12-26 2007-07-05 Posco Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534566A (ja) * 2010-06-10 2013-09-05 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ オーステナイト鋼の製造方法
WO2011154153A1 (fr) * 2010-06-10 2011-12-15 Tata Steel Ijmuiden Bv Procédé de production d'acier austénitique
RU2524027C1 (ru) * 2010-07-02 2014-07-27 Тиссенкрупп Стил Юроп Аг Холоднодеформируемая сталь повышенной прочности и состоящее из нее плоское изделие
KR101604408B1 (ko) 2010-07-02 2016-03-17 티센크루프 스틸 유럽 악티엔게젤샤프트 냉간 성형 가능한 고강도 강 및 그 강으로 이루어진 강판 제품
WO2012001163A3 (fr) * 2010-07-02 2012-11-15 Thyssenkrupp Steel Europe Ag Acier hautement résistant formable à froid et produit plat en acier constitué d'un tel acier
WO2012001163A2 (fr) 2010-07-02 2012-01-05 Thyssenkrupp Steel Europe Ag Acier hautement résistant formable à froid et produit plat en acier constitué d'un tel acier
EP2402472A1 (fr) 2010-07-02 2012-01-04 ThyssenKrupp Steel Europe AG Acier à résistance élevée pouvant être déformé à froid et produit plat en acier constitué d'un tel acier
ITRM20100641A1 (it) * 2010-12-07 2012-06-08 Ct Sviluppo Materiali Spa Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile.
WO2012077150A3 (fr) * 2010-12-07 2012-11-22 Centro Sviluppo Materiali S.P.A. Procédé de fabrication d'un acier à haute teneur en manganèse présentant une résistance mécanique et une aptitude au formage élevées, et acier obtenu par le procédé
CN103339279A (zh) * 2010-12-07 2013-10-02 材料开发中心股份公司 具有高机械耐受性和成形性的高锰含量钢的制造方法以及可由此获得的钢
CN102127704A (zh) * 2011-03-02 2011-07-20 武汉钢铁(集团)公司 900MPa级高强度高塑性中碳热轧钢及其制造方法
WO2013064202A1 (fr) 2011-11-03 2013-05-10 Tata Steel Nederland Technology B.V. Procédé de fabrication d'une tôle d'acier duplex ayant une aptitude au formage accrue
DE102015111866A1 (de) * 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Umformbarer Leichtbaustahl mit verbesserten mechanischen Eigenschaften und Verfahren zur Herstellung von Halbzeug aus diesem Stahl
US11420419B2 (en) 2015-12-24 2022-08-23 Posco Austenite-based molten aluminum-plated steel sheet having excellent properties of plating and weldability
CN108431269A (zh) * 2015-12-24 2018-08-21 Posco公司 镀覆性及焊接性优异的奥氏体系热浸镀铝钢板及其制造方法
US10968506B2 (en) 2015-12-24 2021-04-06 Posco High-manganese hot-dip aluminum-coated steel sheet having excellent coating adhesion
EP3395982A4 (fr) * 2015-12-24 2018-11-21 Posco Tôle d'acier à haute teneur en manganèse revêtue d'aluminium par immersion à chaud ayant une excellente adhérence du revêtement
CN108431270A (zh) * 2015-12-24 2018-08-21 Posco公司 镀覆粘附性优异的高锰热浸铝系镀覆钢板
CN105779889A (zh) * 2016-04-06 2016-07-20 广东省材料与加工研究所 一种含钨钛高锰钢及其制备方法
CN105803322A (zh) * 2016-04-06 2016-07-27 广东省材料与加工研究所 一种高锰钢及其制备方法
WO2017203342A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Tôle d'acier twip ayant une matrice austénitique
CN109154046A (zh) * 2016-05-24 2019-01-04 安赛乐米塔尔公司 具有奥氏体基体的twip钢板
US10995381B2 (en) 2016-05-24 2021-05-04 Arcelormittal Method for producing a TWIP steel sheet having an austenitic microstructure
WO2017203309A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Tôle d'acier twip ayant une matrice austénitique
US11486017B2 (en) 2016-05-24 2022-11-01 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
CN107675098A (zh) * 2016-12-05 2018-02-09 东北大学 一种轻质高锰钢材料的制备方法
CN107675073A (zh) * 2016-12-05 2018-02-09 东北大学 一种新型轻质高锰钢耐磨材料
EP3872214A4 (fr) * 2018-10-25 2021-09-01 Posco Acier à haute teneur en manganèse ayant d'excellentes propriétés de coupe à l'oxygène et procédé de fabrication s'y rapportant
CN109385508A (zh) * 2018-12-21 2019-02-26 昆明理工大学 一种用于薄壁管道的低温高锰钢材料的制备方法
US20210012941A1 (en) * 2018-12-28 2021-01-14 Hyundai Electric & Energy Systems Co., Ltd. Transformer
US12020842B2 (en) * 2018-12-28 2024-06-25 Hyundai Electric & Energy Systems Co., Ltd. Transformer
CN111850419A (zh) * 2020-07-31 2020-10-30 燕山大学 一种高锰奥氏体钢及其制备方法
CN116043126A (zh) * 2023-01-09 2023-05-02 鞍钢股份有限公司 一种高强高韧高熵钢及制造方法

Also Published As

Publication number Publication date
KR100985286B1 (ko) 2010-10-04
KR20090072118A (ko) 2009-07-02

Similar Documents

Publication Publication Date Title
WO2009084792A1 (fr) Acier à haute teneur en manganèse, résistance élevée et excellente résistance à la rupture différée, et son procédé de fabrication
JP6654698B2 (ja) 成形性及び穴拡げ性に優れた超高強度鋼板及びその製造方法
JP7275137B2 (ja) 靭性、延性及び強度に優れた鋼板及びその製造方法
JP5393459B2 (ja) 衝突特性に優れた高マンガン型高強度鋼板
JP5042232B2 (ja) 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
JP7087078B2 (ja) 衝突特性及び成形性に優れた高強度鋼板及びその製造方法
KR101225246B1 (ko) 성형성이 우수한 자동차용 고강도 냉연 복합조직강판 및 그 제조 방법
JP6723377B2 (ja) 降伏比に優れた超高強度高延性鋼板及びその製造方法
CN112673122A (zh) 屈强比优异的超高强度高延展性钢板及其制造方法
WO2016135793A1 (fr) Tôle en acier laminée à froid hautement résistante, et procédé de fabrication de celle-ci
JP7502466B2 (ja) 点溶接性及び成形性に優れた超高張力冷延鋼板、超高張力メッキ鋼板及びその製造方法
JP4358418B2 (ja) 穴拡げ性に優れた低降伏比高強度冷延鋼板およびめっき鋼板とその製造方法
JP5993570B2 (ja) 焼付硬化性に優れた高強度冷間圧延鋼板、溶融メッキ冷間圧延鋼板及び冷間圧延鋼板の製造方法
JP7213973B2 (ja) 穴拡げ率の高い冷間圧延焼鈍鋼板及びその製造方法
KR101999000B1 (ko) 용접강도가 우수한 고망간 강판 및 이의 제조방법
CN111465710B (zh) 高屈强比型高强度钢板及其制造方法
JP7291788B2 (ja) 成形性に優れた高強度熱延鋼板
EP3708691B1 (fr) Procede de fabrication de tôle d'acier à très haute résistance et à haute ductilité ayant une excellente aptitude au formage à froid
JP2022540210A (ja) 高強度鋼板及びこの製造方法
JP2022540208A (ja) 高強度鋼板及びこの製造方法
JP2005179732A (ja) 冷延鋼板の製造方法
JP4930393B2 (ja) 冷延鋼板の製造方法
KR20120001877A (ko) 석출경화형 고강도 합금화용융아연도금강판 및 그 제조 방법
KR101400494B1 (ko) 고강도 석출경화형 열연도금강판 및 그 제조 방법
KR101615032B1 (ko) 냉연강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08793049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08793049

Country of ref document: EP

Kind code of ref document: A1