CN116043126A - 一种高强高韧高熵钢及制造方法 - Google Patents

一种高强高韧高熵钢及制造方法 Download PDF

Info

Publication number
CN116043126A
CN116043126A CN202310024647.7A CN202310024647A CN116043126A CN 116043126 A CN116043126 A CN 116043126A CN 202310024647 A CN202310024647 A CN 202310024647A CN 116043126 A CN116043126 A CN 116043126A
Authority
CN
China
Prior art keywords
steel
percent
entropy
toughness
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310024647.7A
Other languages
English (en)
Other versions
CN116043126B (zh
Inventor
朱莹光
杨军
王飞龙
陈军平
渠秀娟
侯家平
张宏亮
杜林�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202310024647.7A priority Critical patent/CN116043126B/zh
Publication of CN116043126A publication Critical patent/CN116043126A/zh
Application granted granted Critical
Publication of CN116043126B publication Critical patent/CN116043126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种高强高韧高熵钢及制造方法,化学成分按重量百分比计为:C:0.45%~0.80%,Si:4.5%~6.0%,Mn:21.0%~25.0%,Cr:1.0%~3.0%,Al:4.0%~6.0%,S≤0.005%,P≤0.010%,余量为Fe及不可避免的杂质。工艺流程:转炉冶炼、LF、VD、连铸、板坯缓冷、板坯加热、控制轧制、固溶处理,板坯加热:将连铸板坯加热至1230~1270℃;控制轧制:一阶段开轧温度为1050~1100℃,前三个道次的压下率为20%~23%;二阶段开轧温度≥920℃,控制终轧温度850±20℃,轧后空冷。优点是:钢板具有良好的综合性能。

Description

一种高强高韧高熵钢及制造方法
技术领域
本发明属于高熵钢制造领域,尤其涉及一种高强高韧高熵钢及制造方法。
背景技术
目前对于高熵合金的定义主要有两种:基于成分的定义和基于混合熵的定义。基于成分的定义认为高熵合金是包含5种或以上的主要元素,且每种主要元素的摩尔百分比介于5%到35%之间的一类合金。高熵合金主要的合金体系包括以3d过渡族金属元素(Cr,Mn,Fe,Co,Ni等)为主的3d过渡族高熵合金系列、以难熔金属元素(Nb,Mo,Ta,W,V等)为主的难熔高熵合金系列、轻质高熵合金系列、贵金属高熵合金系列和稀土高熵合金系列等。
受到高熵合金的启发,我们研究了以高构型熵为基础的钢的设计思想,以确立一种单相固溶体基体,研究的目标是Fe-Mn-Al-Si-C系。不同于传统的高熵合金那样使用5种或5种以上的等原子比的成分,我们将平面构型熵转化为金属混合物,确定出固溶体体系,即非等原子比体系。在高熵合金当中,没有任何元素是占主导地位的,但是,在我们这里,我们将这样的概念转化为铁基材料,我们称之为高强高韧高熵钢。
为克服现有技术的不足,本发明的目的是提供一种高强高韧高熵钢及制造方法,成分设计简单,以Mn为主,成本较低,抗拉强度≥800MPa,-60℃V型冲击功≥100J,在满足使用性能的条件下显著降低成本。
为实现上述目的,本发明通过以下技术方案实现:
一种高强高韧高熵钢,化学成分按重量百分比计为:C:0.45%~0.80%,Si:4.5%~6.0%,Mn:21.0%~25.0%,Cr:1.0%~3.0%,Al:4.0%~6.0%,S≤0.005%,P≤0.010%,余量为Fe及不可避免的杂质。
一种高强高韧高熵钢的制造方法,工艺流程包括:转炉冶炼—LF—VD—连铸—板坯缓冷—板坯加热—控制轧制—固溶处理,具体包括以下工艺步骤:
1)板坯加热:将连铸板坯加热至1230~1270℃,保温时间4~6h;
2)控制轧制:控制一阶段开轧温度为1050~1100℃,钢板轧制时前三个道次的压下率为20%~23%;二阶段开轧温度≥920℃,控制终轧温度850±20℃,轧后空冷;
3)固溶处理:将室温钢板进加热炉,在1000~1100℃保温3~5min/mm,出炉后立即水冷淬火。
在转炉+LF+VD精炼过程中,LF炉造还原渣脱硫,钢液在VD真空炉内脱气,VD炉的保压时间为20~25min,[H]≤2ppm,[O]≤20ppm。
在连铸过程中全程保护浇注。
所述的板坯缓冷:连铸坯进缓冷坑缓冷。
所述的缓冷的时间≥48小时。
与现有技术相比,本发明的有益效果是:
高熵合金当中很少使用间隙元素,这里,我们却需要重视C在面心立方固溶体相中的作用。高强高韧高熵钢具有优异的机械性能,如:非常好的延展性和低温韧性,强度超过800MPa。通过调整堆垛层错能,可以获得非常好的组织稳定性。考虑到高强高韧高熵钢具有成本低、易加工、力学性能突出以及适用范围广等优点,这种具有高延展性的钢铁结构/功能一体化材料将具有广阔的应用前景。具优点是:
1)采用发明方法制造的高强高韧高熵钢,其屈服强度≥400MPa,抗拉强度≥800MPa,延伸率≥70%,-60℃V型冲击功≥100J;钢板具有良好的综合性能,满足用户的使用要求;
2)本发明成分设计简单,以Mn为主,成本较低,添加少量的Si、Al、Cr元素,产生固溶强化和沉淀强化效果,提高钢的强度,Al的加入降低了钢的密度;
3)采用洁净钢冶炼工艺,降低钢中气体、P、S及非金属夹杂物含量,结合铸坯缓冷工艺,获得了内外部质量优良的连铸坯;
4)采用控制轧制工艺,有效细化轧态组织;
5)本发明方法形成单一的面心立方组织,轧后固溶处理大幅度提高了钢的综合性能。
具体实施方式
下面对本发明进行详细地描述,但是应该指出本发明的实施不限于以下的实施方式。
高强高韧高熵钢,化学成分按重量百分比计为:C:0.45%~0.80%,Si:4.5%~6.0%,Mn:21.0%~25.0%,Cr:1.0%~3.0%,Al:4.0%~6.0%,S≤0.005%,P≤0.010%,余量为Fe及不可避免的杂质。
根据对固溶体价电子浓度VEC的观察结果统计,VEC≥8形成稳定的面心立方相。非等原子比Fe-Mn基高熵钢在只计算置换元素时其价电子浓度为7-8,但是,如果计算时加上间隙元素,如C,高熵钢的价电子浓度将大于8。
高强高韧高熵钢中:
碳:间隙元素C可以提高面心立方固溶体的稳定性,其原理就是其对价电子浓度的影响,同时C直接影响钢的强度,但是,碳含量过高对钢的冷脆性及焊接性能影响不利,综合考察,将碳含量控制在0.45%~0.80%;
硅:硅元素一是对于提高钢的价电子浓度有很大的作用,二是可提高钢的淬透性和基体强度,三是Si会对奥氏体产生固溶强化作用,过冷奥氏体的切变强度增强,引起Ms点降低,本发明添加适量Si元素,一方面避免出现比较严重的偏析情况,另一方面增强奥氏体的稳定性,将其含量控制在4.5%~6.0%;
锰:独立元素的VEC值Mn是7,Mn是形成面心立方相的主导元素,也是高熵钢获得高延展性和低温韧性的主要来源,将锰含量应控制在21.0%~25.0%;
铬:Cr可以提高钢的强度和耐蚀性能,将铬含量控制在1.0%~3.0%;
铝:铝可以产生明显的沉淀强化效果,并降低钢的密度,将铝含量控制在4.0%~6.0%;
硫:硫在钢中易形成FeS和MnS夹杂,MnS在热轧过程中沿着轧制方向伸长,使得硫易切削钢的横向力学性能显著降低,加剧了钢材的各向异性,同时它导致基体内部产生空洞并成为氧化向纵深发展的通道,显著降低钢的韧性,因此,应尽量降低钢中的硫含量;
磷:磷容易在奥氏体晶界发生偏析使基体材料晶界上原子间结合力减弱,破坏基体的连续性,显著降低钢的韧性,使焊接性能变坏,易产生冷脆,应尽量降低钢中的磷含量。
高强高韧高熵钢的生产工艺:转炉冶炼—LF—VD—连铸—板坯缓冷—板坯加热—控制轧制—固溶处理,具体包括以下步骤:
1)转炉+LF+VD精炼:LF炉造还原渣脱硫,减少夹杂,调整成分。然后,钢液在VD真空炉内脱气,保证VD炉的保压时间为20~25min。测定H、O含量,保证[H]≤2ppm,[O]≤20ppm;
2)连铸:全程保护浇注,减少连铸过程的二次氧化,降低钢中的夹杂物含量,提高钢的纯净度;
3)板坯缓冷:连铸坯进缓冷坑缓冷,使铸坯中的气体得到充分的扩散排出,最大程度降低铸坯气体含量,缓冷时间≥48小时;
4)板坯加热:将连铸板坯加热至1230~1270℃,保温时间4~6h,合金含量高通常需要高加热温度、长保温时间使合金元素在基体中充分固溶,改善板坯成分不均匀性,减轻成分偏析;
5)控制轧制:控制一阶段开轧温度为1050~1100℃,钢板轧制时前三个道次的压下率为20%~23%,采用大压下率可以提高变形渗透深度,使粗大的柱状晶得以破碎,形成细小均匀的晶粒,二阶段开轧温度≥920℃,为避免终轧温度过高导致轧态组织粗大,控制终轧温度850±20℃,轧后空冷;
6)固溶处理:将室温钢板进加热炉,在1000~1100℃保温3~5min/mm,出炉后立即水冷淬火,可消除沿晶界分布的未溶碳化物和带状碳化物,细化晶粒,得到组织和成分均匀一致的全奥氏体组织。
高强高韧高熵钢的冶炼采用转炉+LF+VD精炼,保证了对钢成分和钢中气体含量的精确控制;连铸过程全程保护浇注和板坯缓冷,保证了铸坯的内部质量;控制轧制细化热轧态组织;离线固溶处理可以大幅度提高钢的综合性能。
实施例
高强高韧高熵钢及制造方法,表1为高强高韧高熵钢冶炼、连铸、缓冷工艺,表2为高强高韧高熵钢化学成分,表3为高强高韧高熵钢轧制工艺,表4为高强高韧高熵钢固溶工艺,表5为高强高韧高熵钢性能。
钢的冶炼、连铸、缓冷见表1。
表1高强高韧高熵钢冶炼、连铸、缓冷
钢板成分见表2。
表2高强高韧高熵钢化学成分(余量为Fe及杂质)wt%
C Si Mn Cr Al P S
实施例1 0.52 5.03 22.5 2.60 4.50 0.0060 0.0020
实施例2 0.65 4.68 23.6 2.05 5.50 0.0055 0.0017
实施例3 0.78 5.56 24.6 1.55 5.80 0.0056 0.0018
实施例4 0.45 4.50 21.0 2.78 4.30 0.0056 0.0020
实施例5 0.49 5.72 25.0 2.22 4.90 0.0058 0.0019
实施例6 0.66 5.16 24.5 1.85 5.65 0.0060 0.0019
轧制工艺见表3。
表3高强高韧高熵钢轧制工艺
钢的固溶工艺见表4。
表4高强高韧高熵钢固溶工艺
钢板性能见表5。
表5高强高韧高熵钢性能

Claims (6)

1.一种高强高韧高熵钢,其特征在于,化学成分按重量百分比计为:C:0.45%~0.80%,Si:4.5%~6.0%,Mn:21.0%~25.0%,Cr:1.0%~3.0%,Al:4.0%~6.0%,S≤0.005%,P≤0.010%,余量为Fe及不可避免的杂质。
2.根据权利要求1所述的一种高强高韧高熵钢的制造方法,其特征在于,工艺流程包括:转炉冶炼—LF—VD—连铸—板坯缓冷—板坯加热—控制轧制—固溶处理,具体包括以下工艺步骤:
1)板坯加热:将连铸板坯加热至1230~1270℃,保温时间4~6h;
2)控制轧制:控制一阶段开轧温度为1050~1100℃,钢板轧制时前三个道次的压下率为20%~23%;二阶段开轧温度≥920℃,控制终轧温度850±20℃,轧后空冷;
3)固溶处理:将室温钢板进加热炉,在1000~1100℃保温3~5min/mm,出炉后立即水冷淬火。
3.根据权利要求2所述的一种高强高韧高熵钢的制造方法,其特征在于,在转炉+LF+VD精炼过程中,LF炉造还原渣脱硫,钢液在VD真空炉内脱气,VD炉的保压时间为20~25min,[H]≤2ppm,[O]≤20ppm。
4.根据权利要求2所述的一种高强高韧高熵钢的制造方法,其特征在于,在连铸过程中全程保护浇注。
5.根据权利要求2所述的一种高强高韧高熵钢的制造方法,其特征在于,所述的板坯缓冷:连铸坯进缓冷坑缓冷。
6.根据权利要求5所述的一种高强高韧高熵钢的制造方法,其特征在于,所述的缓冷的时间≥48小时。
CN202310024647.7A 2023-01-09 2023-01-09 一种高强高韧高熵钢及制造方法 Active CN116043126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310024647.7A CN116043126B (zh) 2023-01-09 2023-01-09 一种高强高韧高熵钢及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310024647.7A CN116043126B (zh) 2023-01-09 2023-01-09 一种高强高韧高熵钢及制造方法

Publications (2)

Publication Number Publication Date
CN116043126A true CN116043126A (zh) 2023-05-02
CN116043126B CN116043126B (zh) 2024-06-18

Family

ID=86132733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310024647.7A Active CN116043126B (zh) 2023-01-09 2023-01-09 一种高强高韧高熵钢及制造方法

Country Status (1)

Country Link
CN (1) CN116043126B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084792A1 (en) * 2007-12-28 2009-07-09 Posco High manganese steel having high strength and excellent delayed fracture resistance and manufacturing method thereof
WO2009090231A1 (de) * 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Bauteile aus höher kohlenstoffhaltigem austenitischem stahlformguss, verfahren zu deren herstellung und deren verwendung
EP2090668A1 (en) * 2008-01-30 2009-08-19 Corus Staal BV Method of producing a high strength steel and high strength steel produced thereby
CN101798658A (zh) * 2010-04-12 2010-08-11 中国石油天然气集团公司 一种含Mn24~30%的合金管材及其制造方法
CN105209668A (zh) * 2013-03-21 2015-12-30 萨尔茨吉特法特尔有限公司 改善高锰钢带的可焊性的方法和经涂覆的钢带
US20180036840A1 (en) * 2016-08-04 2018-02-08 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
CN108660354A (zh) * 2018-08-20 2018-10-16 太原理工大学 一种Fe-Mn-Cr-Ni系高熵不锈钢及其制备方法
CN108823481A (zh) * 2018-07-10 2018-11-16 东北大学 一种高熵合金及其制备方法
WO2019057798A1 (de) * 2017-09-25 2019-03-28 Thyssenkrupp Steel Europe Ag Monolithische eisenbasierte abschirmprodukte
US20190218638A1 (en) * 2016-05-24 2019-07-18 Arcelormittal Method for the manufacture of twip steel sheet having an austenitic matrix
US20190292617A1 (en) * 2016-05-24 2019-09-26 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2019214901A1 (de) * 2018-05-09 2019-11-14 Thyssenkrupp Steel Europe Ag Hybrides stahl-kunststoffgehäuse für leistungselektronik
US20200056272A1 (en) * 2018-08-14 2020-02-20 The Industry & Academic Cooperation In Chungnam National University(Iac) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
KR20200040970A (ko) * 2018-10-10 2020-04-21 충남대학교산학협력단 석출경화형 고엔트로피 강 및 그 제조방법
CN115418578A (zh) * 2022-09-16 2022-12-02 常州工学院 一种基于亚快速凝固+轧制工艺的高强塑积的低密度钢带及其制造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084792A1 (en) * 2007-12-28 2009-07-09 Posco High manganese steel having high strength and excellent delayed fracture resistance and manufacturing method thereof
WO2009090231A1 (de) * 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Bauteile aus höher kohlenstoffhaltigem austenitischem stahlformguss, verfahren zu deren herstellung und deren verwendung
EP2090668A1 (en) * 2008-01-30 2009-08-19 Corus Staal BV Method of producing a high strength steel and high strength steel produced thereby
CN101798658A (zh) * 2010-04-12 2010-08-11 中国石油天然气集团公司 一种含Mn24~30%的合金管材及其制造方法
CN105209668A (zh) * 2013-03-21 2015-12-30 萨尔茨吉特法特尔有限公司 改善高锰钢带的可焊性的方法和经涂覆的钢带
US20190218638A1 (en) * 2016-05-24 2019-07-18 Arcelormittal Method for the manufacture of twip steel sheet having an austenitic matrix
US20190292617A1 (en) * 2016-05-24 2019-09-26 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
US20180036840A1 (en) * 2016-08-04 2018-02-08 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
WO2019057798A1 (de) * 2017-09-25 2019-03-28 Thyssenkrupp Steel Europe Ag Monolithische eisenbasierte abschirmprodukte
WO2019214901A1 (de) * 2018-05-09 2019-11-14 Thyssenkrupp Steel Europe Ag Hybrides stahl-kunststoffgehäuse für leistungselektronik
CN108823481A (zh) * 2018-07-10 2018-11-16 东北大学 一种高熵合金及其制备方法
US20200056272A1 (en) * 2018-08-14 2020-02-20 The Industry & Academic Cooperation In Chungnam National University(Iac) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
CN108660354A (zh) * 2018-08-20 2018-10-16 太原理工大学 一种Fe-Mn-Cr-Ni系高熵不锈钢及其制备方法
KR20200040970A (ko) * 2018-10-10 2020-04-21 충남대학교산학협력단 석출경화형 고엔트로피 강 및 그 제조방법
CN115418578A (zh) * 2022-09-16 2022-12-02 常州工学院 一种基于亚快速凝固+轧制工艺的高强塑积的低密度钢带及其制造方法

Also Published As

Publication number Publication date
CN116043126B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2022011936A1 (zh) 一种具有优良低温韧性的高强度容器板及制造方法
CN114657472B (zh) 一种疲劳性能优异的船用超高强低温钢及制造方法
CN110747409B (zh) 一种低温储罐用低镍钢及其制造方法
CN110863135B (zh) 一种低温容器用高镍钢及其制造方法
CN101948987A (zh) 一种高强度高韧性钢板及其制造方法
CN117210771B (zh) 核电用厚规格高性能含氮奥氏体不锈钢及其制造方法
CN113699463A (zh) 一种多相强化超高强马氏体时效不锈钢及其制备方法
CN113774280A (zh) 一种2400MPa级高塑韧性高耐蚀马氏体时效不锈钢及其制备方法
CN113774289A (zh) 一种2700MPa级高塑韧性高耐蚀马氏体时效不锈钢及其制备方法
CN114717486A (zh) 一种超高强高性能马氏体时效不锈钢及其温轧制备方法
CN103361573A (zh) 一种420MPa级含矾氮钢及其生产方法
CN114752864B (zh) 一种低密度超高强度高塑性钢及其制备方法和应用
CN113373370A (zh) 一种1100MPa级桥壳钢及其制造方法
CN113604736B (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
CN116043126B (zh) 一种高强高韧高熵钢及制造方法
CN116497268A (zh) 一种免退火高淬透性高强度紧固件用盘条及其制造方法
CN116287975A (zh) 一种高熵钢及制造方法
CN115948694B (zh) 一种45mm以下高性能奥氏体不锈钢板及其制造方法
CN104630628B (zh) 一种抗拉强度≥800MPa级焊接结构钢及生产方法
CN111074158B (zh) 一种抗震耐火钢及其制备方法
CN116397161B (zh) 一种厚度方向性能均匀的正火钢板及其制备方法
CN114752867B (zh) 一种高强韧轻质钢及其制备方法和应用
CN113718169B (zh) 一种焊接结构用高强度无缝钢管及其制造方法
CN115652210B (zh) 一种超低碳化物含量奥氏体不锈钢坯及其制造方法
CN116219289A (zh) 一种1000MPa级高韧性水电用钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant