WO2009084151A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2009084151A1
WO2009084151A1 PCT/JP2008/003538 JP2008003538W WO2009084151A1 WO 2009084151 A1 WO2009084151 A1 WO 2009084151A1 JP 2008003538 W JP2008003538 W JP 2008003538W WO 2009084151 A1 WO2009084151 A1 WO 2009084151A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation axis
rotor
axis direction
stator
auxiliary groove
Prior art date
Application number
PCT/JP2008/003538
Other languages
English (en)
French (fr)
Inventor
Shinichi Yamaguchi
Hisashi Otsuka
Haruyuki Hasegawa
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to KR1020107014171A priority Critical patent/KR101196139B1/ko
Priority to US12/810,526 priority patent/US8421294B2/en
Priority to JP2009547875A priority patent/JP5021767B2/ja
Priority to CN2008801228658A priority patent/CN101911444B/zh
Priority to EP08865966.9A priority patent/EP2234250B1/en
Publication of WO2009084151A1 publication Critical patent/WO2009084151A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a rotating electrical machine including a permanent magnet, and more particularly to a rotating electrical machine including a rotor having a skew structure.
  • FIG. 18 is a schematic cross-sectional view in a direction perpendicular to the rotation axis of a conventional general rotating electric machine (referred to as “permanent magnet type synchronous motor” or “permanent magnet type motor”).
  • the rotating electrical machine includes a stator 70 and a rotor 80, and the rotor 80 is disposed inside the stator 70.
  • the stator 70 has a stator core 71 and a stator winding 76.
  • the stator core 71 is made of, for example, a laminate of a plurality of electromagnetic steel plates in the rotation axis direction or a dust core.
  • the stator iron core 71 has a plurality of tooth portions 72 each having a tip portion facing the rotor 80.
  • a winding 76 is wound around the tooth portions 72, and the tooth portions 72 serve as magnetic poles.
  • the rotor 80 has a rotor core 81 and a plurality of permanent magnets 82.
  • the permanent magnet 82 in FIG. 18 is embedded in the rotor core 81.
  • a configuration in which a segmented permanent magnet or a ring-shaped permanent magnet is attached to a rotor core is also known.
  • the rotating electrical machine generates rotational torque about the rotating shaft 90 by the interaction between the rotating magnetic field generated by the stator 70 and the magnetomotive force generated by the permanent magnet 82 of the rotor 80.
  • a rotating electric machine using a permanent magnet has a merit of generating a small torque and high torque, but has a problem that a pulsating torque is generated due to the interaction between the magnetic flux of the permanent magnet 82 and the tooth portion 72 of the stator 70. .
  • the pulsating torque at no load is called cogging torque, which may cause positioning accuracy and vibration noise.
  • a magnet-embedded rotary electric machine in which a permanent magnet is embedded in the rotor has a problem that the cogging torque is particularly large.
  • Patent Document 1 discloses in which cogging torque can be reduced by providing an auxiliary groove extending in the rotation axis direction in the tooth portion of the stator and changing the width of the auxiliary groove in the rotation axis direction.
  • Patent Document 1 discloses a configuration in which a stator having the auxiliary groove is combined with a rotor having a skew structure.
  • a technique using a pseudo skew rotor is disclosed in, for example, Patent Document 2.
  • the present invention has been made to solve the above-mentioned problems, and its main object is to reduce the cogging torque of a rotating electrical machine including a rotor having a skew structure.
  • a rotating electrical machine includes a rotor including a permanent magnet having a plurality of magnetic poles in the circumferential direction of the rotor core, and a stator having a plurality of teeth including tip portions facing the rotor.
  • the rotor has a skew structure including a changing portion in which a boundary of the magnetic pole changes in the rotation axis direction, and each of the tip portions of the plurality of tooth portions of the stator is
  • the auxiliary portion has an auxiliary groove that is selectively extended in a part of the rotational axis direction, with the position facing the rotational axis direction center of the changing portion as the substantially rotational axis direction center, and extends in the rotational axis direction of the auxiliary groove.
  • the portion is not provided with an auxiliary groove.
  • the cogging torque of a rotating electrical machine using a rotor having a skew structure can be reduced.
  • size of the 2nd harmonic component of cogging torque when changing the ratio (lamination ratio) of the axial length A of an iron core without an auxiliary groove and the axial length B of an iron core with an auxiliary groove is shown. It is a graph. It is a graph which shows the simulation result about the magnitude
  • FIG. 2 It is a partial expansion perspective view of the stator of the rotary electric machine by Embodiment 2 of this invention. It is a typical perspective view of the stator of the rotary electric machine by Embodiment 3 of this invention. It is a typical perspective view of the rotor of the rotary electric machine by Embodiment 4 of this invention. It is a typical perspective view of the rotor of the rotary electric machine by Embodiment 5 of this invention. It is a typical perspective view of the rotor of the rotary electric machine by Embodiment 5 of this invention. It is a typical perspective view of the rotor of the rotary electric machine by Embodiment 6 of this invention.
  • FIG. 1 The rotating electrical machine according to the first embodiment of the present invention has a stator 20A whose schematic perspective view is shown in FIG. 1 and a rotor 30A whose schematic perspective view is shown in FIG. 2, inside the stator 20A.
  • a rotor 30A is rotatably arranged.
  • FIG. 3A shows an enlarged perspective view of only a portion having three tooth portions of the stator 20A
  • FIG. 3B shows a modification of FIG. 3A.
  • the winding is omitted.
  • the stator 20A includes twelve tooth portions 22A having a tip portion 23A facing the rotor 30A disposed inside thereof.
  • the distal end portion 23A of each tooth portion 22A has at least one auxiliary groove 24A that is selectively disposed in a part in the rotation axis direction and extends in the rotation axis direction.
  • the configuration of the auxiliary groove 24A will be described in detail later.
  • the stator 20A of this example is formed by laminating a plurality of electromagnetic steel plates in the rotation axis direction, the stator 20A may be formed of a dust core or the like.
  • the rotor 30A is configured by stacking rotor cores 31A1 and 31A2 in which a plurality of permanent magnets 32A are embedded in the vicinity of the outer periphery thereof in two upper and lower stages.
  • a plurality of permanent magnets 32A are embedded in the vicinity of the outer periphery thereof in two upper and lower stages.
  • eight permanent magnets 32A are embedded so as to alternate between the N pole and the S pole in the circumferential direction of rotation, and the number of magnetic poles of the rotor 30A is eight.
  • the rotor cores 31A1 and 31A2 are each formed of laminated magnetic steel sheets or the like, but may be formed of a dust core or the like.
  • the rotor cores 31A1 and 31A2 are arranged with a predetermined angle ⁇ shifted in the circumferential direction of the rotor as shown in FIG.
  • a structure in which the arrangement of the magnets 32A attached to the rotor cores 31A1 and 31A2 is discontinuous in the direction of the rotation axis is referred to as a “step skew structure” in this specification.
  • the stage skew structure of the rotor 30A has a predetermined angle (hereinafter, referred to as “the angle between the boundary of the magnetic pole of the magnet 32A provided in the stator core 31A1” and the boundary of the magnetic pole of the magnet 32A provided in the stator core 31A2). It has a discontinuous change portion 33A that is shifted by ⁇ (referred to as a step skew angle).
  • the position of the auxiliary groove 24A provided in the tip portion 23A of the tooth portion 22A of the stator 20A in the rotational axis direction corresponds to the step skew structure of the rotor 30A shown in FIG.
  • the rotor 30A has a changing portion 33A in which the boundary of the magnetic poles changes discontinuously in the direction of the rotation axis, and the auxiliary groove 24A is located at a position facing the center of the changing portion 33A in the direction of the rotation axis. As a center of direction, it is selectively provided in a part of the rotation axis direction. Further, no auxiliary groove is formed in the other part of the auxiliary groove 24A extending in the direction of the rotation axis.
  • the number m of magnetic poles included in the rotor 30A of the rotating electric machine of this example is 8, and the number n of tooth portions 22A included in the stator 20A is 12.
  • the step skew angle ⁇ is set to 7.5 °.
  • the skew angle of the rotating electrical machine having the step skew structure is not limited to 7.5 ° theoretically obtained as described above, but is [360 ° / 24 (the least common multiple of m and n)] / 2.
  • a certain 7.5 ° or more is preferable. This is because the skew angle becomes larger than the theoretical angle when the leakage magnetic flux in the rotation axis direction cannot be sufficiently reduced in the rotating electrical machine having the step skew structure.
  • the inventors set the lower limit value of the step skew angle ⁇ e to a value larger than the theoretical angle ⁇ s obtained by the above theoretical formula, and set the upper limit value of the step skew angle ⁇ e as the cogging torque when no step skew is applied.
  • the cogging torque ratio at the theoretical angle ⁇ s is determined according to the magnetic flux density-magnetizing force characteristics of the stator core. It has been proposed that the maximum value of the step skew angle ⁇ e is within a range equal to or less than the obtained cogging torque ratio (see Japanese Patent Application Laid-Open No. 2004-159492).
  • two auxiliary grooves 24A are formed in the circumferential direction per tooth portion at the tip portion 23A of the tooth portion 22A. More specifically, two auxiliary grooves 24A are formed in each distal end portion 23A so as to divide the center of two adjacent slot opening portions 25A into three equal parts in the circumferential direction. The provision of the two auxiliary grooves 24A in this way reduces the second harmonic component of the cogging torque, which is a pulsation component twice the fundamental component of the cogging torque.
  • the auxiliary groove 24A is arranged so that the position facing the axial center (boundary) of the changing portion 33A of the rotor 30A is substantially the center in the rotational axis direction.
  • the auxiliary groove 24A is provided so that the position facing the boundary between the two steps of the step skew structure is the center in the rotational axis direction, but a deviation in assembly is allowed.
  • the gap in the auxiliary groove 24A becomes wide and the magnetic resistance increases. As a result, it is possible to reduce the leakage magnetic flux in the direction of the rotation axis caused by the step skew structure, and the effect of reducing the fundamental wave component of the cogging torque by the step skew structure can be sufficiently exhibited.
  • the second harmonic component of the cogging torque can be reduced by optimizing the length of the auxiliary groove 24A in the rotation axis direction.
  • the ratio of the length A in the rotation axis direction of the iron core without the auxiliary groove to the length B in the rotation axis direction of the iron core with the auxiliary groove is 1.0: 1.3.
  • the auxiliary groove 24A exemplified here is formed symmetrically at the center in the rotation axis direction.
  • stator 20A shown in FIG. 3A has a rotation axis with the position facing the rotation axis direction center of the change portion of the step skew structure (change portion 33A in FIG. 2) as the approximate rotation axis direction center.
  • auxiliary groove 24A that is selectively disposed in a part of the direction and extends in the direction of the rotation axis is provided, and the other part in the direction of the rotation axis is not provided with the auxiliary groove.
  • auxiliary grooves 24As having a width smaller than that of the auxiliary grooves 24A may be provided in other portions in the rotation axis direction.
  • the torque obtained when the auxiliary groove 24As having a narrow width is reduced, the structure shown in FIG.
  • FIGS. 1, 2, and 3A the embodiment according to the present invention
  • FIGS. 16 and 17 the reference example shown in FIGS. 16 and 17, and the cogging torque reduction effect according to the embodiment of the present invention will be described. .
  • the embodiment of the present invention to be compared here is a rotating electrical machine in which the rotor 30A shown in FIG. 2 is arranged inside the stator 20A shown in FIG. 1, and the stator 20A has an auxiliary groove shown in FIG. 24A is arranged at the center in the direction of the rotation axis.
  • the ratio of the axial length A of the iron core without the auxiliary groove and the axial length B of the iron core with the auxiliary groove is 1.0: 1.0.
  • the rotor 30A shown in FIG. 2 is arranged inside the stator core 71 shown in FIGS.
  • FIG. 16 is a perspective view of a stator core 71 of a reference example, and FIG.
  • FIG. 17 is an enlarged view of the stator core 71.
  • the auxiliary grooves 74 are arranged at the upper and lower ends in the rotation axis direction of the tip part of the tooth part 72, and the auxiliary grooves are arranged at the center part.
  • the ratio of the axial length A of the iron core without the auxiliary groove and the axial length B of the iron core with the auxiliary groove is 1.0: 1.0.
  • FIG. 4 shows the result of calculating the cogging torque waveform by the rotating electrical machine of the example of the present invention and the rotating electrical machine of the reference example by performing simulation by three-dimensional magnetic field analysis.
  • the horizontal axis in FIG. 4 represents the electrical angle, and the vertical axis represents the cogging torque ratio.
  • the cogging torque ratio on the vertical axis is based on the cogging torque amplitude value of the rotating electrical machine of the reference example.
  • the solid line shows the cogging torque ratio of the embodiment of the present invention
  • the dotted line shows the cogging torque ratio of the reference example, and it can be seen that the cogging torque can be greatly reduced by applying the structure of the present invention.
  • the ratio between the axial length A of the iron core without auxiliary grooves and the axial length B of the iron core with auxiliary grooves (hereinafter referred to as “lamination ratio”) And a three-dimensional simulation of the relationship between the cogging torque.
  • the axial length B of the iron core with auxiliary grooves is allocated and arranged at the upper and lower ends in the axial direction, and in the embodiment of the present invention, it is greatly different from being arranged in the central portion in the axial direction. It is.
  • FIG. 5 is a diagram showing the relationship between the lamination ratio of iron cores with auxiliary grooves and the fundamental wave component of cogging torque when the number of laminated iron cores without auxiliary grooves is 1.0.
  • FIG. 6 is a diagram showing the relationship between the lamination ratio of the iron cores with auxiliary grooves and the second harmonic component of the cogging torque when the number of laminated iron cores without auxiliary grooves is 1.0.
  • FIGS. 5 to 7 shows the lamination ratio of iron cores with auxiliary grooves and the Overall component (maximum value-minimum value) of cogging torque when the lamination of iron cores without auxiliary grooves is 1.0.
  • the vertical axis represents the ratio with reference to the cogging torque amplitude value of the reference example.
  • the fundamental wave component of the cogging torque can be sufficiently reduced by applying the embodiment of the present invention.
  • the auxiliary groove 24A is provided in a portion of the step skew structure changing portion (change portion 33A in FIG. 2) facing the center in the rotation axis direction, thereby reducing the leakage flux in the rotation axis direction generated by the step skew structure. It is thought that it is made.
  • the axial leakage magnetic flux generated inside the stator cannot be reduced due to the stage skew structure, so the fundamental wave component of the cogging torque cannot be reduced even if the lamination ratio is changed. I understand.
  • a position facing the center in the rotational axis direction of the changing portion of the step skew structure such as the stator 20A shown in FIGS. It can be seen that it is effective to provide an auxiliary groove at the tip 23A of the stator tooth portion 22A as the axial center.
  • the second harmonic component of the cogging torque can be minimized by changing the lamination ratio of the stator core, as can be seen from FIG. That is, the second harmonic component of the cogging torque can be reduced by optimizing the ratio (stacking ratio) of the axial length A of the iron core without auxiliary grooves and the axial length B of the iron core with auxiliary grooves.
  • FIG. 6 shows that in the embodiment of the present invention, the second harmonic component of the cogging torque can be reduced if the stacking ratio A: B is 1: 1.5.
  • the cogging torque Overall value in FIG. 7 is determined by the vector sum of the fundamental component of the cogging torque and the second harmonic component of the cogging torque, so the optimum stacking ratio A: B is about 1: 1.3. It is thought that.
  • the auxiliary groove 74 is disposed at the end of the tooth 72 in the direction of the rotation axis as in the reference example, the amount of leakage magnetic flux at the end in the direction of the rotation axis increases, leading to a decrease in torque. It becomes.
  • the auxiliary groove 24A is provided only in the central portion in the rotation axis direction and the auxiliary groove is not formed in other portions including the end portion, It becomes possible to reduce the magnetic flux leakage at the end in the rotation axis direction, and a high torque output can be obtained.
  • FIG. 2 a rotating electrical machine according to a second embodiment of the present invention will be described with reference to FIGS.
  • the rotating electrical machine of the second embodiment has a stator 20B whose schematic perspective view is shown in FIG. 8 and a rotor 30B whose schematic perspective view is shown in FIG. 9, and the rotor is placed inside the stator 20B. 30B is rotatably arranged.
  • FIG. 10 shows an enlarged perspective view of only a portion having three tooth portions of the stator 20B. 8 and 10, the winding is omitted.
  • the rotor 30B has a three-stage skew structure that is divided into three in the direction of the rotation axis, and has two changing portions 33B1 and 33B2.
  • the step skew angle ⁇ is set to 5 °.
  • the positions of the stator skew portions 22B of the stator skewed portions 22B are defined with the positions opposed to the rotation axis direction centers of the change portions 33B1 and 33B2 of the step skew structure as the approximate rotation axis direction centers.
  • Auxiliary grooves 24B1 and 24B2 are formed in the tip portion 23B. Also in the present embodiment, by providing the auxiliary grooves 24B1 and 24B2 as in the previous embodiment, the leakage magnetic flux in the rotation axis direction is reduced, and the fundamental wave component of the cogging torque is reduced.
  • the present invention is not limited to the above example, and even when a multi-stage skew structure of three or more stages is adopted, the position facing the rotation axis direction center of the change portion in the rotor stage skew structure is also substantially in the direction of the rotation axis.
  • the cogging torque can be reduced by providing an auxiliary groove at the tip of the tooth portion of the stator as the center. In general, the effect of reducing the cogging torque increases as the number of stages in the stage skew structure increases.
  • the position opposite the rotation axis direction center of the changed portion of the rotor step skew structure is set as the rotation axis direction center. It is effective to reduce the leakage magnetic flux in the direction of the rotation axis generated inside the stator core by providing an auxiliary groove at the tip of the stator tooth portion. Since the leakage magnetic flux in the direction of the rotation axis generated inside the stator core is manifested in a rotating electric machine (high magnetic loading) using a strong magnet, the present invention is particularly preferably used.
  • the present invention is particularly suitably used for a rotating electrical machine that uses a high magnetic flux density of 1T (Tesla) or more for the tooth portion.
  • the magnetic flux density of the tooth portion of the rotating electrical machine used in the simulation was assumed to be about 1.2T.
  • Embodiment 3 The structure of the stator (stator core) of the rotating electrical machine according to the present invention is not particularly limited to the above embodiment, and various known ones such as those having a split core structure or a thin-walled core structure are used. Can do.
  • a stator 20C having an iron core 21C divided for each tooth portion 22C shown in FIG. 11 may be used.
  • a stator 20C shown in FIG. 11 includes a plurality of iron cores 21C having a tooth portion 22C having a tip portion 23C and a core back portion 26C (in this example, twelve), and the plurality of iron cores 21C are adjacent to each other.
  • the portion 26C is arranged in an annular shape so that it abuts.
  • the auxiliary groove 24C is provided in the same manner as the auxiliary groove 24A in FIG.
  • auxiliary grooves can reduce the leakage magnetic flux in the direction of the rotation axis and reduce cogging torque. it can.
  • Embodiment 4 the magnet-embedded rotary electric machine has been described.
  • a structure in which a plurality of magnets 32C1 and 32C2 are attached to the outer peripheral surface of the iron core 31C is used.
  • the rotor 30C has a discontinuous skew structure in which the phase in the circumferential direction of the first-stage magnet 32C1 is shifted from the phase in the circumferential direction of the second-stage magnet 32C1. Even if the rotor 30 ⁇ / b> C shown in FIG. 12 is used, the same effect as that of the previous embodiment can be obtained.
  • Embodiment 5 FIG. In the above embodiment, the case of the rotor having the step skew structure is illustrated, but the embodiment of the present invention is not limited to this, and can be applied to the case of the rotor having the oblique skew structure.
  • the present invention can be applied even when the magnet 32D has a linear oblique skew structure, such as the rotor 30D shown in FIG.
  • a ring-shaped magnet 32D is mounted on the outer periphery of the rotor core 31D, and the magnet 32D has N and S poles alternately formed in the rotor circumferential direction, and the boundary between the N and S poles.
  • N and S poles alternately formed in the rotor circumferential direction, and the boundary between the N and S poles.
  • the stator 30D having such an oblique skew structure, a leakage magnetic flux in the rotation axis direction is generated at each part in the rotation axis direction of the magnet 32D, but the amount of leakage magnetic flux generated is the largest in the central portion in the rotation axis direction. Therefore, as the stator used in combination with the rotor 30D, the stator having the auxiliary groove 24A at the center in the rotation axis direction, such as the stator 20A shown in FIGS. 1 and 3, is used. The same effect as that of the embodiment can be obtained.
  • the entire length of the magnet 32D in the rotor direction corresponds to the changing portion of the rotor, and the center of the changing portion in the rotation axis direction is the center in the rotation axis direction of the magnet 32D.
  • the skew angle of a rotating electrical machine having an oblique skew structure may be set larger by a predetermined angle than the theoretical value as a reference, or may be set smaller by a predetermined angle. In either case, the present invention is applied. Can do.
  • a skew structure in which an oblique skew structure and a step skew structure are combined such as a rotor 30E shown in FIG.
  • the auxiliary groove is formed at the center in the rotation axis direction like the stator 20A shown in FIGS.
  • the stator having 24A By using the stator having 24A, the same effect as described above can be obtained.
  • an auxiliary groove having an axial center as a position corresponding to the center in the rotational axis direction may be further formed.
  • Embodiment 6 FIG.
  • the case of a rotor having a step skew structure or an oblique skew structure has been exemplified.
  • the embodiment of the present invention is not limited to this, and is applied to a rotor having a so-called pseudo skew structure as shown in FIG.
  • the structure and arrangement of each magnet 32F are constant in the direction of the rotation axis.
  • a notch 31a is provided in the vicinity of the magnetic pole boundary on the outer periphery of each of the iron cores 31F1 to 31F4, and the notch 31a is formed so as to be shifted by a predetermined angle for each of the plurality of iron cores 31F1 to 31F4. That is, a skew structure is provided by the notches 31a provided in the iron cores 31F1 to 31F4, and the rotor 30F has a so-called pseudo skew structure of four stages by the divided iron cores 31F1 to 31F4. Therefore, the same effect as that of the above-described embodiment can be obtained by using a stator in which three auxiliary grooves are formed with the position corresponding to the boundary of each step as the center in the rotation axis direction.
  • the present invention can be applied to all permanent magnet type rotating electrical machines such as servo motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 複数の磁極を有する永久磁石を備えた回転子30Aと、回転子に対向する先端部を備えた複数の歯部を有する固定子20Aを備え、回転子30Aは、回転軸方向に向かって磁極の境界が変化する変化部を含むスキュー構造を有し、固定子20Aの複数の歯部の先端部のそれぞれは、変化部の回転軸方向中心に対向する位置をその略回転軸方向中心として、回転軸方向の一部分に選択的に延設された補助溝24Aを有し、補助溝24Aの回転軸方向に延長した部分には補助溝が設けられていない。

Description

回転電機
 この発明は、永久磁石を備える回転電機に関し、特にスキュー構造を有する回転子を備える回転電機に関する。
 図18に従来の一般的な回転電機(「永久磁石式同期電動機」または「永久磁石型モータ」と呼ぶ)の回転軸に直交する方向における模式的な断面図を示す。
 図18に示すように、回転電機は固定子70と回転子80とを有し、回転子80は固定子70の内側に配置されている。
 固定子70は、固定子鉄心71と固定子巻線76とを有している。固定子鉄心71は、例えば複数の電磁鋼板を回転軸方向に積層したものや圧粉鉄心から形成されている。固定子鉄心71は回転子80に対向する先端部を備える複数の歯部72を有しており、歯部72に巻線76が巻かれており、歯部72が磁極となる。
 回転子80は、回転子鉄心81と複数の永久磁石82とを有している。図18の永久磁石82は、回転子鉄心81の内部に埋設されている。この他、セグメント状の永久磁石やリング状の永久磁石が回転子鉄心に貼り付けられた構成も知られている。回転電機は、固定子70が作る回転磁界と回転子80の永久磁石82が作る起磁力の相互作用により回転軸90を中心に回転トルクを発生させる。
 永久磁石を用いた回転電機は、小型で高トルクを発生させるというメリットがある反面、永久磁石82の磁束と固定子70の歯部72との相互作用によって、脈動トルクが発生するという問題がある。特に、無負荷時の脈動トルクはコギングトルクと呼ばれており、位置決め精度や振動騒音等の原因となることがある。永久磁石を回転子内部に埋設した磁石埋め込み型の回転電機では、特にコギングトルクが大きいという問題がある。
 そこで、コギングトルクを低減するために、スキュー構造を有する回転子を用いる、あるいは、固定子の歯部に補助溝を設けるなどの技術が開発されている。本出願人は、特許文献1に、固定子の歯部に回転軸方向に延びる補助溝を設け、補助溝の幅を回転軸方向において変化させることによってコギングトルクを低減できることを開示している。特許文献1には、上記補助溝を有する固定子とスキュー構造を有する回転子とを組み合わせた構成が開示されている。
 また、擬似スキュー構造の回転子を用いる技術が例えば特許文献2に開示されている。
特開2006-230116号公報 特開2001-231196号公報
 しかしながら、本発明者が、補助溝を有する固定子とスキュー構造を有する回転子とを組み合わせた構成について詳細に検討したところ、後に詳述するように、従来例に開示されている構成では、コギングトルクを十分に低減できないことが分かった。
 本発明は、上記の問題点を解決するためになされたものであり、その主な目的は、スキュー構造を有する回転子を備えた回転電機のコギングトルクを低減することにある。
 本発明の回転電機は、回転子鉄心の周方向に複数の磁極を有する永久磁石を備えた回転子と、上記回転子に対向する先端部を備えた複数の歯部を有する固定子を備えた回転電機であって、上記回転子は、回転軸方向に向かって上記磁極の境界が変化する変化部を含むスキュー構造を有し、上記固定子の上記複数の歯部の先端部のそれぞれは、上記変化部の回転軸方向中心に対向する位置をその略回転軸方向中心として、回転軸方向の一部分に選択的に延設された補助溝を有し、上記補助溝の回転軸方向に延長した部分には補助溝が設けられていないものである。
 本発明によると、スキュー構造を有する回転子を用いた回転電機のコギングトルクを低減することができる。
本発明の実施の形態1による回転電機の固定子の模式的な斜視図である。 本発明の実施の形態1による回転電機の回転子の模式的な斜視図である。 本発明の実施の形態1による回転電機の固定子の部分拡大斜視図である。 本発明の実施例と参考例によるコギングトルク波形の3次元シミュレーション結果を示すグラフである。 補助溝無し鉄心の軸方向長さAと補助溝有り鉄心の軸方向長さBの比(積層比)を変化させた場合のコギングトルクの基本波成分の大きさについてのシミュレーション結果を示すグラフである。 補助溝無し鉄心の軸方向長さAと補助溝有り鉄心の軸方向長さBの比(積層比)を変化させた場合のコギングトルクの第2高調波成分の大きさについてのシミュレーション結果を示すグラフである。 補助溝無し鉄心の軸方向長さAと補助溝有り鉄心の軸方向長さBの比(積層比)を変化させた場合のコギングトルクOverallの大きさについてのシミュレーション結果を示すグラフである。 本発明の実施の形態2による回転電機の固定子の模式的な斜視図である。 本発明の実施の形態2による回転電機の回転子の模式的な斜視図である。 本発明の実施の形態2による回転電機の固定子の部分拡大斜視図である。 本発明の実施の形態3による回転電機の固定子の模式的な斜視図である。 本発明の実施の形態4による回転電機の回転子の模式的な斜視図である。 本発明の実施の形態5による回転電機の回転子の模式的な斜視図である。 本発明の実施の形態5による回転電機の回転子の模式的な斜視図である。 本発明の実施の形態6による回転電機の回転子の模式的な斜視図である。 本発明の実施例と比較する参考例の回転電機の固定子の模式的な斜視図である。 本発明の実施例と比較する参考例の回転電機の固定子の拡大図である。 従来の回転電機の回転軸に直交する方向における模式的な断面図である。
 以下、図面を参照して本発明の実施の形態による回転電機を詳細に説明する。なお、本発明の実施形態は、以下に例示する実施の形態に限定されるものではない。
実施の形態1.
 本発明による実施の形態1の回転電機は、図1に模式的な斜視図を示す固定子20Aと図2に模式的な斜視図を示す回転子30Aとを有し、固定子20Aの内側に回転子30Aが回転自在に配置される。図3(a)は固定子20Aのうち3個の歯部を有する部分のみを拡大した斜視図を示し、図3(b)は図3(a)の変形例を示す。なお、図1および図3では巻線を省略している。
 図1に示すように、固定子20Aは、その内側に配置される回転子30Aに対向する先端部23Aを有する12個の歯部22Aを備えている。各歯部22Aの先端部23Aは、回転軸方向の一部分に選択的に配置された、回転軸方向に延びる少なくとも1つの補助溝24Aを有している。なお、補助溝24Aの構成については後ほど詳述する。また、本例の固定子20Aは複数の電磁鋼板を回転軸方向に積層することにより形成されているが、圧粉鉄心等から形成しても良い。
 図2に示すように、回転子30Aは、その外周付近に複数個の永久磁石32Aが埋め込まれた回転子鉄心31A1および31A2を上下2段に積み重ねることにより構成している。回転子鉄心31A1および31A2のそれぞれには、回転周方向にN極、S極と交互になるように8個の永久磁石32Aが埋設されており、この回転子30Aの磁極数は8である。なお、回転子鉄心31A1および31A2は、それぞれ積層された電磁鋼板等により形成されているが、圧粉鉄心等から形成されていても良い。
 回転子鉄心31A1および31A2は、図2に示すように回転子周方向に所定角度θずらして配置されている。このように、回転子鉄心31A1および31A2に取り付けられている磁石32Aの配置が、回転軸方向において不連続となる構造を、本明細書において「段スキュー構造」と呼ぶ。そして、回転子30Aの段スキュー構造は、固定子鉄心31A1に設けられた磁石32Aの磁極の境界と、固定子鉄心31A2に設けられた磁石32Aの磁極の境界との間で所定角度(以下、段スキュー角と呼ぶ)θずれる不連続な変化部33Aを有することになる。
 固定子20Aの歯部22Aの先端部23Aに設けられた補助溝24Aの回転軸方向の位置は、図2に示した回転子30Aの段スキュー構造に対応している。回転子30Aは、回転軸方向において磁極の境界が不連続に変化する変化部33Aを有しており、補助溝24Aは、変化部33Aの回転軸方向中心に対向する位置を、その略回転軸方向中心として、回転軸方向の一部分に選択的に設けられている。また、上記補助溝24Aを回転軸方向に延長したその他の部分には、補助溝は形成されていない。
 本例の回転電機の回転子30Aが有する磁極の数mは8であり、固定子20Aが有する歯部22Aの数nは12である。このとき、段スキュー構造の段スキュー角θ(図2参照)は、θ=[{360°/24(mとnとの最小公倍数)}/2(永久磁石の段数)]の理論式から7.5°となり、段スキュー角θを7.5°に設定している。段スキュー構造を有する回転電機のスキュー角は、上記のように理論的に求められた7.5°に限られないが、[360°/24(mとnとの最小公倍数)]/2である7.5°以上であることが好ましい。これは段スキュー構造を有する回転電機において回転軸方向の漏洩磁束を十分に低減できない場合にはスキュー角度は理論角度より大きくなることを考慮したものである。この点について、発明者らは段スキュー角θeの下限値を上記理論式で求められる理論角θsより大きな値とし、段スキュー角θeの上限値を、段スキューが施されていない場合のコギングトルクに対する段スキューを施した場合のコギングトルクの比で表わされるコギングトルク比と段スキュー角θeとの関係から、固定子鉄心の磁束密度-磁化力特性に応じて、理論角θsにおけるコギングトルク比を求め、該求めたコギングトルク比以下である範囲の段スキュー角θeの最大値とすることを提案している(特開2004-159492号公報参照)。
 図3(a)および(b)を参照して、固定子20Aの補助溝24Aの構成をさらに詳細に説明する。
 図3(a)に示すように、歯部22Aの先端部23Aには、1歯部当たり周方向に2本の補助溝24Aが形成されている。さらに詳しくは、隣接する2つのスロット開口部25Aの中心間を周方向に3等分するように、各先端部23Aに2本の補助溝24Aが形成されている。このように補助溝24Aを2本設けたのは、コギングトルクの基本波成分の2倍の脈動成分であるコギングトルクの第2高調波成分を低減するものである。
 また、補助溝24Aは、回転子30Aの変化部33Aの軸方向中心(境界)に対向する位置が、その回転軸方向の略中心となるように配置される。設計上は、段スキュー構造の2つの段の境界に対向する位置がその回転軸軸方向の中心となるように補助溝24Aを設けるが、組み立て上のずれは許容される。補助溝24Aを設けると、補助溝24Aにおけるギャップが広くなり磁気抵抗が増大する。その結果、段スキュー構造に起因して発生する回転軸方向の漏洩磁束を低減することが可能となり、段スキュー構造によるコギングトルクの基本波成分低減効果を十分に発揮させることができる。
 さらに、コギングトルクの第2高調波成分に関しては、補助溝24Aの回転軸方向長さを最適化することで低減させることができる。ここでは、補助溝無し鉄心の回転軸方向の長さAと補助溝有り鉄心の回転軸方向の長さBの比を1.0:1.3としている。図3(a)に示したように、ここで例示する補助溝24Aは、回転軸方向の中心に対称に形成されている。
 なお、図3(a)に示した固定子20Aは、段スキュー構造の変化部(図2の変化部33A)の回転軸方向中心に対向する位置を、その略回転軸方向中心として、回転軸方向の一部分に選択的に配置された、回転軸方向に延びる補助溝24Aのみを有し、回転軸方向におけるその他の部分には補助溝が設けられていない。しかし、図3(b)に示すように、回転軸方向におけるその他の部分に補助溝24Aよりも幅の狭い補助溝24Asを設けても良い。但し、幅の狭い補助溝24Asを設けると得られるトルクが減少するので、図3(a)の構造が好ましい。
 次に、本発明による実施例(図1、図2及び図3(a))と図16及び図17に示す参考例との比較を行い、本発明の実施例によるコギングトルク低減効果について説明する。
 ここで比較する本発明の実施例は、図1に示す固定子20Aの内側に図2に示す回転子30Aを配置した回転電機であり、固定子20Aには図3(a)に示す補助溝24Aが回転軸方向の中央部に配置されている。そして、補助溝無し鉄心の軸方向長さAと補助溝有り鉄心の軸方向長さBの比を1.0:1.0としている。一方、参考例の回転電機は、図16及び図17に示す固定子鉄心71の内側に図2に示す回転子30Aを配置したものである。図16は参考例の固定子鉄心71の斜視図を示し、図17は固定子鉄心71の拡大図を示す。図16及び図17に示すように、参考例の固定子鉄心71では、補助溝74が歯部72の先端部の回転軸方向の上下端部に配置され、中央部には補助溝が配置されていない。また、補助溝無し鉄心の軸方向長さAと補助溝有り鉄心の軸方向長さBの比を1.0:1.0としている。
 3次元磁界解析によりシミュレーションを行い、本発明の実施例の回転電機と参考例の回転電機によるコギングトルク波形を算出した結果を図4に示す。図4の横軸は電気角度、縦軸はコギングトルク比を示す。但し、縦軸のコギングトルク比は参考例の回転電機のコギングトルク振幅値を基準としている。図4において、実線が本発明の実施例のコギングトルク比、点線が参考例のコギングトルク比を示し、本発明の構造を適用することでコギングトルクを大幅に低減できていることが分かる。
 次に、本発明の実施例と参考例について更に詳細検討を行うべく、補助溝無し鉄心の軸方向長さAと補助溝有り鉄心の軸方向長さBの比(以下、「積層比」と呼ぶ。)とコギングトルクとの関係について3次元シミュレーションを行った。なお、参考例では、補助溝有り鉄心の軸方向長さBを軸方向上下端部に割り振って配置しており、本発明の実施例では、軸方向中央部に配置していることが大きな違いである。
 本発明の実施例と参考例において、補助溝有無の固定子鉄心の積層比を変化させた場合の解析結果を図5、図6、図7に示す。図5は、補助溝無し鉄心の積層を1.0とした場合の補助溝有り鉄心の積層比率と、コギングトルクの基本波成分との関係を示す図である。図6は、補助溝無し鉄心の積層を1.0とした場合の補助溝有り鉄心の積層比率と、コギングトルクの第2高調波成分との関係を示す図である。図7は、補助溝無し鉄心の積層を1.0とした場合の補助溝有り鉄心の積層比率と、コギングトルクのOverall成分(最大値‐最小値)を示したものである。なお、図5~図7についても図4と同様、縦軸は参考例のコギングトルク振幅値を基準とした場合の比率を示した。
 図5より、本発明の実施例を適用することにより、コギングトルクの基本波成分を十分に低減できていることが分かる。これは、段スキュー構造の変化部(図2の変化部33A)の回転軸方向中心に対向する部分に補助溝24Aを設けたことで、段スキュー構造によって発生する回転軸方向の漏洩磁束を低減できているためと考えられる。一方、参考例では、段スキュー構造の影響で固定子内部に発生する軸方向漏洩磁束を低減することができないため、積層比を変化させたとしてもコギングトルクの基本波成分が低減できていないことが分かる。従って、コギングトルクの基本波成分を低減するためには、図1および図3に示した固定子20Aのように、段スキュー構造の変化部の回転軸方向中心に対向する位置を、その略回転軸方向中心として、固定子歯部22Aの先端部23Aに補助溝を設けることが有効であることが分かる。
 一方、コギングトルクの第2高調波成分に関しては、図6から分かるように、固定子鉄心の積層比を変化させることで極小化が可能である。すなわち、補助溝無し鉄心の軸方向長さAと補助溝有り鉄心の軸方向長さBの比(積層比)を最適化すれば、コギングトルクの第2高調波成分の低減は可能である。図6から、本発明の実施例では、積層比A:Bを1:1.5とすればコギングトルクの第2高調波成分の低減が可能であることが分かる。
 また、図7のコギングトルクOverall値に関しては、コギングトルクの基本波成分とコギングトルクの第2高調波成分のベクトル和で決定されるため、積層比A:Bは1:1.3程度が最適であると考えられる。
 また、参考例のように補助溝74を歯部72の先端部の回転軸方向の端部に配置した場合には、回転軸方向の端部における漏れ磁束量が大きくなり、トルク低下を招くこととなる。これに対し、図3(a)に示したように、補助溝24Aを回転軸方向の中央部にのみ設け、端部を含むそれ以外の部分には補助溝を形成しない構成を採用すれば、回転軸方向端部での漏れ磁束を低減することが可能となり、高いトルク出力を得ることができる。
実施の形態2.
 次に、本発明による実施の形態2の回転電機について図8~図10を参照して説明する。
 実施の形態2の回転電機は、図8に模式的な斜視図を示す固定子20Bと、図9に模式的な斜視図を示す回転子30Bとを有し、固定子20Bの内側に回転子30Bが回転自在に配置される。図10は、固定子20Bのうち3個の歯部を有する部分のみを拡大した斜視図を示す。なお、図8および図10では巻線を省略している。
 本実施の形態では、回転子30Bは、回転軸方向に3分割された3段スキュー構造を有しており、2つの変化部33B1および33B2を有している。なお、3段スキュー構造の段スキュー角度θは、先に説明したθ=[{360°/24(mとnとの最小公倍数)}/2(永久磁石の段数)]の理論式から5°となり、段スキュー角θを5°に設定している。
 図10に示すように、固定子鉄心22Bには、段スキュー構造の変化部33B1および33B2のそれぞれの回転軸方向中心に対向する位置を、その略回転軸方向中心として、固定子歯部22Bの先端部23Bに補助溝24B1および24B2が形成されている。本実施の形態においても、先の実施の形態と同様に補助溝24B1および24B2を設けたことにより、回転軸方向における漏洩磁束が低減され、コギングトルクの基本波成分が低減される。
 もちろん、上記の例に限定されず、3段以上の複数段スキュー構造を採用しても、同様に回転子段スキュー構造における変化部の回転軸方向中心に対向する位置を、その略回転軸方向中心として、固定子の歯部先端部に補助溝を設けることでコギングトルクを低減することができる。一般に、段スキュー構造の段数が大きいほど、コギングトルクを低減する効果が増大する。
 上述したように、段スキュー構造を採用することによるコギングトルクの低減効果を最大限に引き出すためには、回転子段スキュー構造の変化部の回転軸方向中心に対向する位置を回転軸方向中心として固定子歯部先端部に補助溝を設けることによって、固定子鉄心内部に発生する回転軸方向の漏洩磁束を低減することが有効である。この固定子鉄心内部に発生する回転軸方向の漏洩磁束は、強力な磁石を用いた回転電機(高磁気装荷)である場合に顕在化するので、本発明が特に好適に用いられる。例えば、歯部の磁束密度が1T(テスラ)以上の高磁束密度を利用する回転電機に本発明は特に好適に用いられる。ここでシミュレーションに用いた回転電機の歯部の磁束密度は約1.2Tを想定した。
実施の形態3.
 本発明による回転電機の固定子(固定子鉄心)の構造は、特に上記実施の形態に限定されず、例えば、分割鉄心構造または薄肉連結鉄心構造を有するものなど、公知の種々のものを用いることができる。
 例えば、図1に示す固定子20Aに代えて、図11に示す歯部22C毎に分割されている鉄心21Cを有する固定子20Cを用いることもできる。図11に示す固定子20Cは、先端部23Cを有する歯部22Cとコアバック部26Cを有する鉄心21Cを複数個(本例の場合12個)備え、これら複数個の鉄心21Cを隣り合うコアバック部26Cが当接するように環状に配置されている。ただし、補助溝24Cは図1の補助溝24Aと同じ様に設けられている。また、図示はしないが、同じく歯部ごとに分割されている鉄心を環状に配置した固定子において、コアバック部の一部が連結されているものに適用しても良い。
 コアバック部の一部が連結された固定子鉄心を用いる回転電機(例えば特開平11-220844号公報(特許第3307888号)あるいは特開2000-201458号公報(特許第3279279号)参照)では、コアバック部の磁気特性が低下するので、回転軸方向における漏洩磁束が発生する。従って、補助溝を設けることによって回転軸方向の漏洩磁束を低減させ、コギングトルクの低減を図ることができる。
 また、固定子鉄心として圧粉鉄心を用いた場合にも回転軸方向の漏洩磁束が発生するので、補助溝を設けることによって回転軸方向の漏洩磁束を低減させ、コギングトルクの低減を図ることができる。
実施の形態4.
 上記の実施の形態では、磁石埋め込み型の回転電機について説明したが、図12に示す回転子30Cのように、鉄心31Cの外周表面に複数の磁石32C1および32C2を貼り付けたものを利用することもできる。回転子30Cは、第1段目の磁石32C1の周方向における配置と第2段目の磁石32C1の周方向における配置との位相がずれており、不連続なスキュー構造を有している。図12に示す回転子30Cを用いても、先の実施の形態と同様の効果を得ることができる。
実施の形態5.
 上記実施の形態では段スキュー構造を有する回転子の場合を例示したが、本発明の実施の形態はこれに限らず、斜めスキュー構造を有する回転子の場合にも適用することができる。
 例えば、図13に示す回転子30Dのように、磁石32Dに直線状の斜めスキュー構造を持たせた場合でも本発明を適用することができる。図13の回転子30Dは、回転子鉄心31Dの外周にリング状の磁石32Dが装着され、磁石32Dは回転子周方向にN極及びS極が交互に形成され、N極及びS極の境界が回転軸方向に直線状に斜めに形成されている。このような斜めスキュー構造を有する回転子30Dでは、磁石32Dの回転軸方向の各部位で回転軸方向の漏洩磁束が発生するが、漏洩磁束の発生量は回転軸方向の中央部が最も大きい。従って、回転子30Dと組み合わせて用いられる固定子としては、図1および図3に示した固定子20Aのように、回転軸方向の中央に補助溝24Aを有する固定子を用いることによって、上記実施の形態と同様の効果を得ることができる。すなわち、斜めスキュー構造を採用した場合、磁石32Dの回転子方向全長が回転子の変化部に対応し、変化部の回転軸方向中心は磁石32Dの回転軸方向の中心ということなる。
 斜めスキュー構造を有する回転電機の理論スキュー角は、回転子が有する磁極の数をm、固定子が有する歯部の数をnとするとき、スキュー角θ=[360/(mとnとの最小公倍数)]/(k+1)の式において、k=0として求められる。なお、斜めスキュー構造を有する回転電機のスキュー角を、上記理論値を基準としてそれよりも所定角度大きく設定する場合も所定角度小さく設定する場合もあるが、どちらの場合でも本発明を適用することができる。
 さらに、図14に示す回転子30Eのように、斜めスキュー構造と段スキュー構造とを組み合わせたスキュー構造を有しても良い。この場合は、磁石32E1と磁石32E2との境界が段スキュー構造の変化部(境界)に対応するので、図1および図3に示した固定子20Aのように、回転軸方向の中央に補助溝24Aを有する固定子を用いることによって、上記と同様の効果を得ることができる。さらに、各磁石32E1および32E2が斜めスキュー構造を有しているので、これらの回転軸方向の中心に対応する位置を軸方向中心とする補助溝をさらに形成してもよい。
実施の形態6.
 上記実施の形態では段スキュー構造又は斜めスキュー構造を有する回転子の場合を例示したが、本発明の実施の形態はこれに限らず、図15に示すようないわゆる擬似スキュー構造の回転子に適用することもできる。図15に示す回転子30Fは、複数段の鉄心31F1~31F4から回転子鉄心31Fが形成され、各鉄心31F1~31F4の内部に1枚の磁石32Fが埋設されている。各磁石32Fの構造および配置は回転軸方向に一定である。各鉄心31F1~31F4の外周の磁極境界付近に切欠き31aが設けられ、この切欠き31aが複数段の鉄心31F1~31F4毎に所定角度ずらされて形成されている。すなわち、鉄心31F1~31F4に設けた切欠き31aによってスキュー構造を持たせ、回転子30Fは31F1~31F4までの分割鉄心によって4段のいわゆる疑似スキュー構造を有している。従って、固定子としては、各段の境界に対応する位置を回転軸方向中心とする3つの補助溝を形成したものを用いることによって、上記実施の形態と同様の効果を得ることができる。
 但し、擬似的な段スキュー構造では、通電時に発生するトルクリップルは低減できないという問題があるので、磁石の構造または配置によってスキュー構造を形成することが好ましい。
 上記の説明においては、固定子の1つの歯部当たり、周方向に2個の補助溝を設けた構成を例示したが、周方向に設ける補助溝の個数はコギングトルクの第2高調波成分を低減するように決定すれば良い。補助溝の個数、周方向の位置等については、例えば特許文献1に記載されている。
 この発明は、例えばサーボモータ等の永久磁石式回転電機全般に適用できる。

Claims (10)

  1.  回転子鉄心の周方向に複数の磁極を有する永久磁石を備えた回転子と、
    上記回転子に対向する先端部を備えた複数の歯部を有する固定子を備えた回転電機であって、
    上記回転子は、回転軸方向に向かって上記磁極の境界が変化する変化部を含むスキュー構造を有し、
    上記固定子の上記複数の歯部の先端部のそれぞれは、上記変化部の回転軸方向中心に対向する位置をその略回転軸方向中心として、回転軸方向の一部分に選択的に延設された補助溝を有し、上記補助溝の回転軸方向に延長した部分には補助溝が設けられていない回転電機。
  2.  上記補助溝の回転軸方向に延長した部分には、上記補助溝より幅の狭い第2の補助溝が設けられている請求項1に記載の回転電機。
  3.  上記補助溝の回転軸方向における長さと、上記補助溝の回転軸方向に延長した部分の長さの比が、コギングトルクの第2高調波成分を低減するように設定されている請求項1に記載の回転電機。
  4.  上記変化部は、上記複数の永久磁石の配置または構造が回転軸方向において変化する部分を含む請求項1に記載の回転電機。
  5.  上記変化部は、上記回転子鉄心の配置または構造が回転軸方向において変化する部分を含む請求項1に記載の回転電機。
  6.  上記変化部は、上記回転子の磁極の境界が回転軸方向において不連続に変化する部分を含む請求項1に記載の回転電機。
  7.  上記変化部は、上記回転子の磁極の境界が回転軸方向において連続的に変化する部分を含む請求項1に記載の回転電機。
  8.  上記変化部において上記磁極の境界が回転軸方向において不連続に変化するとき、上記不連続に変化する部分の数をk、上記回転子が有する磁極の数をm、上記固定子が有する上記複数の歯部の数をnとするとき、上記スキュー構造のスキュー角θが[{360/(mとnとの最小公倍数)}/(k+1)]以上である請求項6に記載の回転電機。
  9.  上記変化部の数が2以上である請求項1に記載の回転電機。
  10.  上記回転子が有する磁極の数mと、上記固定子が有する上記複数の歯部の数nとの比が2:3である請求項1に記載の回転電機。
PCT/JP2008/003538 2007-12-28 2008-12-01 回転電機 WO2009084151A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107014171A KR101196139B1 (ko) 2007-12-28 2008-12-01 회전 전기 기계
US12/810,526 US8421294B2 (en) 2007-12-28 2008-12-01 Rotary electric machine including auxiliary slot with center opposed to specified rotor portion
JP2009547875A JP5021767B2 (ja) 2007-12-28 2008-12-01 回転電機
CN2008801228658A CN101911444B (zh) 2007-12-28 2008-12-01 旋转电机
EP08865966.9A EP2234250B1 (en) 2007-12-28 2008-12-01 Rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007339679 2007-12-28
JP2007-339679 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084151A1 true WO2009084151A1 (ja) 2009-07-09

Family

ID=40823887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003538 WO2009084151A1 (ja) 2007-12-28 2008-12-01 回転電機

Country Status (7)

Country Link
US (1) US8421294B2 (ja)
EP (1) EP2234250B1 (ja)
JP (1) JP5021767B2 (ja)
KR (1) KR101196139B1 (ja)
CN (1) CN101911444B (ja)
TW (1) TWI405386B (ja)
WO (1) WO2009084151A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226801A (ja) * 2009-03-19 2010-10-07 Alphana Technology Co Ltd ディスク駆動装置
DE102009048715A1 (de) 2009-10-08 2011-04-14 Daimler Ag Rotor einer elektrischen Maschine mit variabler Schränkung
WO2011064834A1 (ja) 2009-11-24 2011-06-03 三菱電機株式会社 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置
JP2011130537A (ja) * 2009-12-15 2011-06-30 Toshiba Corp 永久磁石式回転電機
JP2011188685A (ja) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp 永久磁石型電動機
WO2012032591A1 (ja) 2010-09-06 2012-03-15 三菱電機株式会社 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
JP2014180193A (ja) * 2013-02-15 2014-09-25 Fanuc Ltd 高い応答性を有する同期電動機
JP2014209847A (ja) * 2014-07-09 2014-11-06 三菱電機株式会社 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
JP2017505602A (ja) * 2014-01-14 2017-02-16 レトリカ ディー.ディー. 角部エアバリアを備える、分割ロータスタックの間隙
WO2018079088A1 (ja) * 2016-10-25 2018-05-03 アイシン精機株式会社 回転電機

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017072A (ja) * 2008-06-06 2010-01-21 Daikin Ind Ltd 電機子コア、電機子、電機子コアの製造方法及び電機子の製造方法
DE102011077217A1 (de) * 2011-06-08 2012-12-13 Aloys Wobben Polpaket, Rotor mit einer Mehrzahl von Polpaketen und Verfahren zum Herstellen eines Polpaketes
EP2721723B1 (de) 2011-06-17 2017-04-05 Sew-Eurodrive GmbH & Co. KG Synchronmotor
CN102255401A (zh) * 2011-06-29 2011-11-23 贵阳万江航空机电有限公司 一种降低永磁直流电机电磁噪声方法
US20130057104A1 (en) * 2011-09-02 2013-03-07 Steven Stretz Permanent magnet motors and methods of assembling the same
US20130057107A1 (en) * 2011-09-02 2013-03-07 Steven Stretz Permanent magnet motors and methods of assembling the same
CN102324827A (zh) * 2011-10-11 2012-01-18 中国矿业大学 一种无刷直流电机
US9991772B2 (en) 2011-12-31 2018-06-05 Philip Totaro Low axial force permanent magnet machine and magnet assembly for permanent magnet machine
US20130169097A1 (en) * 2011-12-31 2013-07-04 Danotek Motion Technologies, Inc. Low axial force permanent magnet machine
DK2654181T3 (en) * 2012-04-20 2016-05-23 Siemens Ag Rotor device and electromechanical transducer with non-parallel permanent magnets
JP2014003758A (ja) * 2012-06-15 2014-01-09 Fanuc Ltd 連続スキュー構造を有する埋め込み磁石型ロータ
JP2014068495A (ja) * 2012-09-27 2014-04-17 Hitachi Automotive Systems Ltd 回転電機およびそれを用いた電動パワーステアリング装置
DE102013206121A1 (de) 2013-04-08 2014-10-09 Wobben Properties Gmbh Synchrongenerator-Polpaket
JP5774081B2 (ja) * 2013-12-09 2015-09-02 三菱電機株式会社 回転電機
JP6280761B2 (ja) * 2014-02-10 2018-02-14 山洋電気株式会社 ステータコアおよび永久磁石型モータ
CN103904793A (zh) * 2014-03-28 2014-07-02 湖北立锐机电有限公司 整体式电机定子冲片、电机定子以及使用其的旋转电机
GB2527101B (en) 2014-06-12 2016-10-19 Jaguar Land Rover Ltd A switched reluctance motor with reduced torque ripple
NL2013403B1 (nl) * 2014-09-02 2016-09-26 Elsio Cicilia Beremundo Synchrone rotatiemotor of generator voorzien van verscheidene rotors en/of stators.
JP6256390B2 (ja) * 2015-03-13 2018-01-10 トヨタ自動車株式会社 ロータの製造方法
WO2017017716A1 (ja) * 2015-07-24 2017-02-02 株式会社日立製作所 磁場の解析計算方法、磁場の解析計算方法を用いた回路計算用モデルのプログラム及び当該プログラムの記録媒体
DE102015219488A1 (de) * 2015-10-08 2017-04-13 BSH Hausgeräte GmbH Elektrischer Antriebsmotor
CN105305670B (zh) * 2015-10-09 2017-10-31 清华大学 一种用于降低极频和槽频径向电磁激振力的电机
PL71919Y1 (pl) * 2016-04-29 2021-05-04 Politechnika Swietokrzyska Generator, zwłaszcza do mikroelektrowni wodnej
JP2017212867A (ja) * 2016-05-19 2017-11-30 三星電子株式会社Samsung Electronics Co.,Ltd. 埋込磁石型モータ及びこれを用いた圧縮機
US11196310B2 (en) * 2018-07-30 2021-12-07 Zunum Aero, Inc. Permanent magnet assemblies for a cylinder of an electrical machine
GB201900537D0 (en) * 2019-01-15 2019-03-06 Rolls Royce Plc Electromechanical system
DE102019202732A1 (de) * 2019-02-28 2020-09-03 Robert Bosch Gmbh Stator einer elektrischen Maschine
DE102019214076B3 (de) * 2019-09-16 2020-11-12 Magna powertrain gmbh & co kg Elektrische Maschine für ein Kraftfahrzeug
CN112803630B (zh) * 2021-03-22 2021-12-31 湖南科技大学 交流牵引电机降噪优化设计方法
FR3124902A1 (fr) * 2021-07-02 2023-01-06 Moteurs Leroy-Somer Machine électrique tournante

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220844A (ja) 1993-11-08 1999-08-10 Mitsubishi Electric Corp 回転電動機及びその製造方法
JP2000201458A (ja) 1998-06-30 2000-07-18 Mitsubishi Electric Corp 鉄心装置及びその製造方法
JP2000308286A (ja) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd 回転電気機械
JP2001231196A (ja) 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd 永久磁石ロータ及びその着磁方法
JP2004159492A (ja) 2002-10-18 2004-06-03 Mitsubishi Electric Corp 永久磁石式回転電機
JP2004248422A (ja) * 2003-02-14 2004-09-02 Moric Co Ltd 磁石界磁型回転電気機器
JP2006230116A (ja) 2005-02-18 2006-08-31 Mitsubishi Electric Corp 永久磁石型モータ及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773908A (en) * 1993-02-22 1998-06-30 General Electric Company Single phase motor with positive torque parking positions
US5523637A (en) * 1994-04-28 1996-06-04 Ford Motor Company Permanent magnet electrical machine with low reluctance torque
JP2001025182A (ja) * 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd 永久磁石モータ
US20030230947A1 (en) * 2002-06-14 2003-12-18 Islam Mohammad S. Fault tolerant motor actuator for steer by wire system
US7067948B2 (en) * 2002-10-18 2006-06-27 Mitsubishi Denki Kabushiki Kaisha Permanent-magnet rotating machine
JP2004180491A (ja) 2002-11-11 2004-06-24 Mitsubishi Electric Corp 永久磁石式回転電機
JP4836555B2 (ja) * 2005-11-24 2011-12-14 株式会社東芝 永久磁石型モータ
JP5036823B2 (ja) 2007-10-04 2012-09-26 三菱電機株式会社 リニアモータ
JP5123008B2 (ja) * 2008-03-05 2013-01-16 株式会社ミツバ ブラシレスモータ
US9350204B2 (en) * 2009-11-24 2016-05-24 Mitsubishi Electric Corporation Permanent magnet rotating electrical machine and electric power steering apparatus having a stator core with supplemental grooves

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220844A (ja) 1993-11-08 1999-08-10 Mitsubishi Electric Corp 回転電動機及びその製造方法
JP3307888B2 (ja) 1993-11-08 2002-07-24 三菱電機株式会社 回転電動機及びその製造方法及び巻線機
JP2000201458A (ja) 1998-06-30 2000-07-18 Mitsubishi Electric Corp 鉄心装置及びその製造方法
JP3279279B2 (ja) 1998-06-30 2002-04-30 三菱電機株式会社 鉄心装置
JP2000308286A (ja) * 1999-04-16 2000-11-02 Yamaha Motor Co Ltd 回転電気機械
JP2001231196A (ja) 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd 永久磁石ロータ及びその着磁方法
JP2004159492A (ja) 2002-10-18 2004-06-03 Mitsubishi Electric Corp 永久磁石式回転電機
JP2004248422A (ja) * 2003-02-14 2004-09-02 Moric Co Ltd 磁石界磁型回転電気機器
JP2006230116A (ja) 2005-02-18 2006-08-31 Mitsubishi Electric Corp 永久磁石型モータ及びその製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226801A (ja) * 2009-03-19 2010-10-07 Alphana Technology Co Ltd ディスク駆動装置
DE102009048715A1 (de) 2009-10-08 2011-04-14 Daimler Ag Rotor einer elektrischen Maschine mit variabler Schränkung
US9350204B2 (en) 2009-11-24 2016-05-24 Mitsubishi Electric Corporation Permanent magnet rotating electrical machine and electric power steering apparatus having a stator core with supplemental grooves
WO2011064834A1 (ja) 2009-11-24 2011-06-03 三菱電機株式会社 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置
US20120139372A1 (en) * 2009-11-24 2012-06-07 Mitsubishi Electric Corporation Permanent magnet rotating electrical machine and electric power steering apparatus using the same
EP2506398A4 (en) * 2009-11-24 2016-12-21 Mitsubishi Electric Corp ELECTRICAL PERMANENT MAGNETICIZATION MACHINE AND ELECTRICALLY OPERATED POWER STEERING DEVICE THEREFOR
JP2011130537A (ja) * 2009-12-15 2011-06-30 Toshiba Corp 永久磁石式回転電機
JP2011188685A (ja) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp 永久磁石型電動機
US20130154436A1 (en) * 2010-09-06 2013-06-20 Mitsubishi Electric Corporation Permanent magnet type rotary electric machine and electric power steering apparatus using the same
JPWO2012032591A1 (ja) * 2010-09-06 2013-12-12 三菱電機株式会社 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
EP2615721A4 (en) * 2010-09-06 2017-10-25 Mitsubishi Electric Corporation Permanent magnet type rotating electrical machine and electrical power steering device using same
CN103053094A (zh) * 2010-09-06 2013-04-17 三菱电机株式会社 永磁体型旋转电机及利用该永磁体型旋转电机的电动动力转向装置
JP5645940B2 (ja) * 2010-09-06 2014-12-24 三菱電機株式会社 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
US20150263571A1 (en) * 2010-09-06 2015-09-17 Mitsubishi Electric Corporation Permanent magnet type rotary electric machine and electric power steering apparatus using the same
US9172278B2 (en) 2010-09-06 2015-10-27 Mitsubishi Electric Corporation Permanent magnet type rotary electric machine and electric power steering apparatus using the same
WO2012032591A1 (ja) 2010-09-06 2012-03-15 三菱電機株式会社 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
JP2014180193A (ja) * 2013-02-15 2014-09-25 Fanuc Ltd 高い応答性を有する同期電動機
JP2017505602A (ja) * 2014-01-14 2017-02-16 レトリカ ディー.ディー. 角部エアバリアを備える、分割ロータスタックの間隙
JP2014209847A (ja) * 2014-07-09 2014-11-06 三菱電機株式会社 永久磁石型回転電機及びそれを用いた電動パワーステアリング装置
WO2018079088A1 (ja) * 2016-10-25 2018-05-03 アイシン精機株式会社 回転電機
JP2018074663A (ja) * 2016-10-25 2018-05-10 アイシン精機株式会社 回転電機

Also Published As

Publication number Publication date
US8421294B2 (en) 2013-04-16
JPWO2009084151A1 (ja) 2011-05-12
JP5021767B2 (ja) 2012-09-12
EP2234250A4 (en) 2014-03-19
TW200934053A (en) 2009-08-01
KR20100091231A (ko) 2010-08-18
EP2234250B1 (en) 2019-09-18
KR101196139B1 (ko) 2012-10-30
CN101911444B (zh) 2013-10-30
TWI405386B (zh) 2013-08-11
CN101911444A (zh) 2010-12-08
US20100277026A1 (en) 2010-11-04
EP2234250A1 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP5021767B2 (ja) 回転電機
JP5414887B2 (ja) 永久磁石式同期モータ
US7474027B2 (en) Permanent magnet motor
JP4269953B2 (ja) 回転電機
JP5703168B2 (ja) モータ
US8350435B2 (en) Interior magnet machine with reduced cogging
JP2007151232A (ja) 永久磁石型モータ及びそれを使用した電動パワーステアリング装置
US20160276880A1 (en) Transverse flux machine
JP2008301628A (ja) ハイブリッド式永久磁石回転電機
US7535149B2 (en) Permanent-magnet excited synchronous motor
JP2012110213A (ja) モータ
JP6651278B1 (ja) 回転電機
JP5609844B2 (ja) 電動機
Ueda et al. Cogging torque reduction on transverse-flux motor with multilevel skew configuration of toothed cores
JP5538984B2 (ja) 永久磁石式電動機
JP2007336624A (ja) 多相クローティース型永久磁石モータ
JP4309325B2 (ja) 複合3相ハイブリッド型回転電機およびその駆動方法
Dosiek et al. Cogging torque reduction in permanent magnet machines
Islam et al. Issues in reducing the cogging torque of mass-produced permanent magnet brushless DC motor
JP2005278268A (ja) 永久磁石式モータ
JP2006254621A (ja) 永久磁石型電動機
JPWO2016139991A1 (ja) リラクタンスモータ、およびリラクタンスモータに用いられるロータコアの製造方法
JP5352442B2 (ja) 永久磁石モータ
JP3280158B2 (ja) Dcブラシレスモータ
JP2002272029A (ja) ブラシレスdcモータ及びブラシレスdcモータの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122865.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547875

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008865966

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107014171

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12810526

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE