WO2009081986A1 - 微細炭素繊維水分散液を用いて得られた面状発熱体及びその製造方法 - Google Patents

微細炭素繊維水分散液を用いて得られた面状発熱体及びその製造方法 Download PDF

Info

Publication number
WO2009081986A1
WO2009081986A1 PCT/JP2008/073628 JP2008073628W WO2009081986A1 WO 2009081986 A1 WO2009081986 A1 WO 2009081986A1 JP 2008073628 W JP2008073628 W JP 2008073628W WO 2009081986 A1 WO2009081986 A1 WO 2009081986A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar heating
heating element
carbon fiber
fine carbon
element according
Prior art date
Application number
PCT/JP2008/073628
Other languages
English (en)
French (fr)
Inventor
Bunshi Fugetsu
Naohiro Tarumoto
Yasuhito Yano
Jun Suzuki
Takayuki Tsukada
Fuminori Munekane
Original Assignee
Nano Carbon Technologies Co., Ltd.
National Univeristy Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Carbon Technologies Co., Ltd., National Univeristy Corporation Hokkaido University filed Critical Nano Carbon Technologies Co., Ltd.
Priority to US12/810,901 priority Critical patent/US20110036829A1/en
Priority to EP08865060.1A priority patent/EP2268102A4/en
Priority to JP2009547135A priority patent/JP5487502B2/ja
Publication of WO2009081986A1 publication Critical patent/WO2009081986A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/0652Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component containing carbon or carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06573Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
    • H01C17/06586Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/009Heaters using conductive material in contact with opposing surfaces of the resistive element or resistive layer
    • H05B2203/01Heaters comprising a particular structure with multiple layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/026Heaters specially adapted for floor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/034Heater using resistive elements made of short fibbers of conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base

Definitions

  • the present invention relates to a planar heating element using a conductive fine carbon fiber film obtained by using an aqueous dispersion of fine carbon fibers as a planar heating layer, and a method for producing the planar heating element. It can be used as a heating source for floor heating, wall heating equipment, snow melting on roads and roofs, mirror anti-fogging heaters, or heaters used for heating and heat retaining pipelines.
  • a planar heating element for floor heating, melting snow on roads, etc. is an exothermic composition obtained by mixing conductive particles such as carbon black in a thermoplastic resin such as ethylene-ethyl acrylate copolymer (EEA).
  • ESA ethylene-ethyl acrylate copolymer
  • An electrode is provided on a sheet heating plate formed by molding the sheet into a sheet, and when a current is passed through the electrode, the sheet heating layer generates heat due to its Joule heat.
  • Such a planar heating element radiates heat in two directions on the front and back in the central region, but in the central region, the heat is radiated in three directions including the side as well as the front and back.
  • the temperature is higher than that of the partial region.
  • PTC characteristic positive temperature coefficient characteristic
  • a soaking plate with a predetermined thickness must be adhered to either the front or back of the planar heating element, resulting in a complicated manufacturing process and a complicated adhesion operation. Furthermore, there is a problem that the manufacturing cost becomes higher. In addition, if the soaking plate is not attached to the entire surface of the planar heat generating layer and there is a portion where the planar heating layer is exposed, a temperature difference occurs between the exposed portion and the soaking plate. In addition, these techniques have a problem that only the specific resistance value of each region is made uniform, and local heat generation due to a difference in heat radiation amount of each region cannot be sufficiently prevented.
  • the carbon nanotube discovered in 1976 is a tube-like material having a diameter of 100 nm or less, and ideally, a carbon hexagonal mesh surface forms a tube parallel to the tube axis.
  • the tube may be double, triple, quadruple or multilayer.
  • These carbon nanotubes have different properties depending on the number of hexagonal meshes made of carbon and the thickness of the tube.
  • a planar heating element for example, Patent Documents 5, 6, 7, and 8 in which carbon black is replaced as a conductive particle with carbon nanotubes and kneaded in a binder resin
  • a planar heating element for example, Patent Documents 9 and 10 in which carbon nanotubes and conductive metal compounds or filamentary metal fine particles are mixed as conductive particles and kneaded into a binder resin has been reported.
  • a thin film resistive heating element using carbon nanotubes applied to a toner fixing member for example, Patent Document 11 has been reported.
  • planar heating layer for use in a planar heating element
  • the binder resin is a thermoplastic resin
  • a planar heating plate must be produced by compression, casting, injection, extrusion or stretching using a molding machine or the like, and many processes and time are required until production.
  • a carbon nanotube-containing resin plate having a desired low resistance value a large amount of carbon nanotubes are required, so that the material cost becomes high.
  • the carbon nanotube aggregates or carbon nanotubes form a bundle structure because the dispersion of carbon nanotubes in a pre-curing stage becomes a highly viscous paste.
  • the carbon nanotubes are not uniformly dispersed inside or on the surface of the planar heating plate after curing, so that uniform temperature control cannot be performed as a planar heating element.
  • a sheet heating element in which carbon nanotubes and a conductive metal compound or filamentary metal fine particles are mixed is prepared. It is very difficult to disperse uniformly in the heat generating layer.
  • carbon nanotubes have a very strong cohesive force (van der Waals force) between fibers as a characteristic, carbon nanotubes aggregate in a mixed state with an aqueous solution, organic solvent, resin solution or resin. Therefore, it is difficult to produce a solution, a resin solution or a resin in which carbon nanotubes are sufficiently dispersed. This is because the smooth surface at the atomic level of the carbon nanotube greatly reduces the affinity for the resin solution.
  • a water-soluble solvent, an organic solvent, or a mixed solvent thereof can be used as a dispersion solvent for carbon nanotubes.
  • a dispersion solvent for carbon nanotubes for example, water, acidic solution, alkaline solution, alcohol, ether, petroleum ether, benzene, ethyl acetate, chloroform, isopropyl alcohol, ethanol, acetone, toluene and the like (for example, see Patent Document 12).
  • a method of dispersing carbon nanotubes in a mixed solvent of N-methylpyrrolidone, which is an amide polar organic solvent, and polyvinylpyrrolidone, which is a polymer solvent is also disclosed (for example, see Patent Document 14).
  • the carbon nanotubes are well dispersed in an aggregated state, but many of the carbon nanotubes are not in a defibrated state.
  • organic solvent volatiles which are VOC components, are generated in the manufacturing process. Is hard to say.
  • the single-walled carbon nanotube is ultrasonically treated in an aqueous solution of an anionic surfactant SDS to adsorb the hydrophobic surface of the carbon nanotube and the hydrophobic portion of the surfactant, thereby forming a hydrophilic portion on the outside. Dispersion in an aqueous solution has also been reported (see, for example, Non-Patent Document 2).
  • the obtained carbon aqueous dispersion contains not only isolated and dispersed carbon nanotubes but also carbon nanotube aggregates and carbon nanotubes having a bundle structure, and requires separation and purification.
  • a high-performance centrifuge is required to separate and purify the carbon nanotube aggregates and carbon nanotubes in the form of a bundle structure as described above from the carbon nanotube aqueous dispersion. The separation process requires more time and equipment.
  • the present invention produces a conductive fine carbon fiber film using a fine carbon fiber aqueous dispersion in which fine carbon fibers having an unprecedented high cohesion force are uniformly dispersed in an aqueous solution, and the conductivity thereof.
  • An object of the present invention is to provide a planar heating element in which a fine carbon fiber film is applied to a heating layer and a method for manufacturing the planar heating element.
  • the present invention has been completed by finding a planar heating element using a conductive fine carbon fiber film obtained using a fine carbon fiber aqueous dispersion as a heat generating layer. It was. That is, the present invention has the following contents.
  • a planar heating element characterized by being obtained using a fine carbon fiber aqueous dispersion.
  • the planar heating element obtained by applying a fine carbon fiber aqueous dispersion to the surface of a substrate and drying it.
  • the planar heating element wherein the fine carbon fiber aqueous dispersion contains an amphoteric surfactant.
  • planar heating element wherein the fine carbon fiber aqueous dispersion is added with an amphoteric surfactant and a dispersion stabilizer.
  • planar heating element wherein the amphoteric surfactant contains an amphoteric hydrophilic group having a sulfobetaine skeleton.
  • the amphoteric surfactant is 3- (N, N-dimethylstearylammonio) propanesulfonate, 3- (N, N-dimethylmyristylammonio) propanesulfonate, 3-[(3-cholamidopropyl) dimethylammonio]
  • the planar heating element which is at least one selected from -2-hydroxypropane sulfonate, n-hexadecyl-N, and N'-dimethyl-3-ammonio-1-propane sulfonate.
  • the planar heat generation, wherein the dispersion stabilizer is at least one selected from a low molecular compound having an amino group or a hydroxyl group, an oligomer having an amino group or a hydroxyl group, and a water-soluble polymer having an amino group or a hydroxyl group. body.
  • the planar heating element wherein the dispersion stabilizer is sugar alcohol, glycerol, polyhydric alcohol, or polyvinyl alcohol.
  • the planar heating element wherein the fine carbon fibers are composed of fine carbon fibers having an outer diameter of 0.5 to 800 nm.
  • planar heating element wherein the fine carbon fiber is a single-layer, two-layer, three-layer, four-layer or multi-wall carbon nanotube.
  • a network-like carbon nanotube structure in which fine carbon fibers are composed of carbon nanotubes having an outer diameter of 15 to 100 nm, wherein the carbon nanotube structure is formed by extending a plurality of the carbon nanotubes.
  • a granular portion to be bonded, and the granular portion is formed in the growth process of the carbon nanotube, and has a size of 1.3 times or more of the outer shape of the carbon nanotube.
  • the planar heating element, wherein I D / I G measured at 514 nm by spectroscopic analysis is 0.1 or less.
  • planar heating element wherein the multi-walled carbon nanotube uses a high-purity product having a tar content of 0.5% or less.
  • the planar heating element wherein the fine carbon fiber aqueous dispersion contains 0.01 to 30% by mass of carbon nanotubes.
  • the planar heating element wherein the conductive fine carbon fiber film obtained using the fine carbon fiber aqueous dispersion becomes a planar heating layer.
  • planar heating element wherein the planar heating layer has a thickness of 0.4 mm or less.
  • planar heating element wherein the planar heating layer has an inter-electrode resistance value of 300 ⁇ or less.
  • planar heating element wherein electrodes are provided only at both ends of the planar heating layer.
  • planar heating element wherein the planar heating layer does not have PTC characteristics.
  • the planar heating element comprising an electrically conductive fine carbon fiber film obtained by using a fine carbon fiber aqueous dispersion and an electrode on an insulating substrate.
  • It is characterized in that it is composed of a conductive fine carbon fiber film obtained by using a fine carbon fiber aqueous dispersion on an insulating base material, an electrode, a conductive fine carbon fiber film and an insulating base material covering the electrode.
  • the planar heating element is composed of a conductive fine carbon fiber film obtained by using a fine carbon fiber aqueous dispersion on an insulating base material, an electrode, a conductive fine carbon fiber film and an insulating base material covering the electrode.
  • a method of manufacturing a planar heating element comprising: a planar heating layer forming step; and an electrode forming step of forming an electrode on the planar heating layer.
  • a planar heating layer is formed by applying a fine carbon fiber aqueous dispersion to the surface of the insulating base material and drying the fine carbon fiber aqueous dispersion applied on the insulating base base material.
  • a sheet heating layer forming step, an electrode forming step of forming an electrode on the sheet heating layer, and an insulating layer forming step of forming an insulating base material covering the heating layer and the electrode are provided.
  • a method of manufacturing the planar heating element is provided.
  • the conductive fine carbon fiber film obtained using the fine carbon fiber aqueous dispersion in which fine carbon fibers are uniformly dispersed is applied to the planar heating layer. Since the fine carbon fibers are present uniformly, it is easy to produce a planar heating element with little local heat generation.
  • the PTC characteristic is not shown, a soaking plate is not required unlike a planar heating element using the PTC characteristic, so that the manufacturing process can be simplified.
  • the carbon nanotube aqueous dispersion is used when the planar heating layer of the planar heating element is produced, no VOC component is generated in the manufacturing process. Furthermore, if carbon nanotubes with a small content of tar are used, the product can be made safer for the human body when used as a planar heating element product.
  • the present invention will be described in detail.
  • single-layer, double-layer, three-layer, four-layer, and multilayer carbon nanotubes are shown and can be used according to the purpose.
  • multi-walled carbon nanotubes are used.
  • the method for producing the carbon nanotube is not particularly limited, and any conventionally known production such as a vapor phase growth method using a catalyst, an arc discharge method, a laser evaporation method, and a HiPco method (High-pressure carbon monoxide process). The method may be used.
  • a method for producing a single-walled carbon nanotube by laser vapor deposition is shown below.
  • graphite powder and a mixed lot of nickel and cobalt fine powder were prepared. This mixed lot is heated to 1250 ° C. in an electric furnace under an argon atmosphere of 665 hPa (500 Torr), and irradiated with a second harmonic pulse of 350 mJ / Pulse Nd: YAG laser to evaporate carbon and metal fine particles.
  • a single-walled carbon nanotube can be produced.
  • the above manufacturing method is merely a typical example, and the metal type, gas type, electric furnace temperature, laser wavelength, and the like may be changed.
  • other than laser deposition methods for example, HiPco method, vapor phase growth method, arc discharge method, carbon monoxide thermal decomposition method, template method in which organic molecules are inserted into fine pores, thermal decomposition, fullerene -You may use the single-walled carbon nanotube produced by other methods, such as a metal co-evaporation method.
  • a method for producing a double-walled carbon nanotube by a constant temperature arc discharge method is shown below.
  • the substrate was a surface-treated Si substrate, and the treatment method was a solution obtained by immersing alumina powder in a solution in which the catalyst metal and the catalyst auxiliary metal were dissolved for 30 minutes, and then dispersing by ultrasonic treatment for 3 hours.
  • a substrate was installed in the reaction chamber of the carbon nanotube production apparatus, a mixed gas of hydrogen and methane was used as a reaction gas, the supply amount of gas was 500 sccm for hydrogen, 10 sccm for methane, and the pressure in the reaction chamber was 70 Torr.
  • the cathode part a rod-like discharge part made of Ta was used.
  • a DC voltage was applied between the anode part and the cathode part, and between the anode part and the substrate, and the discharge voltage was controlled so that the discharge current was constant at 2.5A.
  • the temperature of the cathode part is 2300 ° C. due to discharge, the normal glow discharge state is changed to an abnormal glow discharge state, and the discharge current is 2.5 A, the discharge voltage is 700 V, and the reaction gas temperature is 3000 ° C. for 10 minutes.
  • Single-walled and double-walled carbon nanotubes can be produced on the entire substrate.
  • the above manufacturing method is merely an example, and various conditions such as the type of metal and the type of gas may be changed. Moreover, you may use the single-walled carbon nanotube produced by production methods other than the arc discharge method.
  • a method for producing a multi-walled carbon nanotube having a three-dimensional structure by a vapor deposition method is shown below.
  • an organic compound such as hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further subjected to high-temperature heat treatment to produce a multilayer carbon.
  • Nanotubes can be made.
  • the raw material organic compound hydrocarbons such as benzene, toluene and xylene, and alcohols such as carbon monoxide and ethanol are used, but it is preferable to use at least two or more carbon compounds having different decomposition temperatures as the carbon source. .
  • at least two or more carbon compounds do not necessarily use two or more types of raw material organic compounds, and even when one type of raw material organic compound is used, the fiber structure In the body synthesis process, for example, a reaction such as hydrogen dealkylation of toluene or xylene occurs, and in the subsequent thermal decomposition reaction system, it becomes two or more carbon compounds having different decomposition temperatures. Including embodiments.
  • the atmosphere gas is an inert gas such as argon, helium, xenon or hydrogen
  • the catalyst is a transition metal such as iron, cobalt or molybdenum, or a transition metal compound such as ferrocene or metal acetate, and sulfur or thiophene or iron sulfide.
  • a mixture of sulfur compounds such as
  • the synthesis of the intermediate is carried out by using a CVD method such as hydrocarbon, which is usually performed, by evaporating a mixture of hydrocarbon and catalyst as raw materials and introducing hydrogen gas or the like into the reaction furnace as a carrier gas. Pyrolysis at a temperature of 1300 ° C. As a result, from several centimeters, a plurality of carbon nanotube structures (intermediates) having a sparse three-dimensional structure in which fibers having an outer diameter of 15 to 100 nm are bonded together by granular materials grown using the catalyst particles as nuclei. Synthesize an aggregate of several tens of centimeters.
  • the thermal cracking reaction of the hydrocarbon as a raw material mainly occurs on the surface of the granular particles grown using the catalyst particles or the core, and the recrystallization of carbon generated by the decomposition proceeds in a certain direction from the catalytic particles or granular materials. Grows in a fibrous form.
  • the carbon material is only in a one-dimensional direction. The carbon material is grown three-dimensionally around the granular material without growing the material.
  • the growth of such three-dimensional carbon nanotubes does not depend only on the balance between the thermal decomposition rate and the growth rate, but the crystal surface selectivity of the catalyst particles, the residence time in the reactor, and the furnace temperature.
  • the growth rate is faster than the pyrolysis rate as described above, the carbon material grows in a fibrous form, while the pyrolysis rate is faster than the growth rate.
  • the carbon material grows in the circumferential direction of the catalyst particles. Therefore, by intentionally changing the balance between the pyrolysis rate and the growth rate, it is possible to form a three-dimensional structure in the other direction under control without making the growth of the carbon material as described above constant. It is possible.
  • the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas temperature are used to easily form the three-dimensional structure as described above in which the fibers are bonded together by the granular material. Etc. are preferably optimized.
  • An intermediate obtained by heating and generating a mixed gas of catalyst and hydrocarbon at a constant temperature in the range of 800 to 1300 ° C. has a structure in which patch-like sheet pieces made of carbon atoms are bonded together, and Raman When spectroscopic analysis is performed, the D band is very large and there are many defects. Moreover, the produced
  • high-temperature heat treatment at 1500 to 3000 ° C. is performed by an appropriate method.
  • this intermediate is heated at 800 to 1300 ° C. to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 1500 to 3000 ° C. to prepare the desired structure.
  • the catalyst metal contained in the fiber is removed by evaporation.
  • a reducing gas or a small amount of carbon monoxide gas may be added to the inert gas atmosphere.
  • the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graphene sheet-like layers.
  • carbon nanotubes having a tar content of 0.5% or less When carbon nanotubes with few impurities such as tar are used when a planar heating element is manufactured or heated, emission of volatile organic compounds (VOC) can be reduced, which is convenient in terms of health and environment. For that purpose, carbon nanotubes annealed under the above temperature conditions may be used.
  • VOC volatile organic compounds
  • this heat generating body When manufacturing this heat generating body, it can also set so that there may be no PTC characteristic as needed.
  • the PTC function is derived from the fact that the thermal expansion coefficient of various conductive fillers is significantly smaller than the resin for immobilization, and the resin between the conductive fillers expands by heating and separates the conductive filler. For this reason, when the self-control function is developed, the conductive filler always comes in contact with and leaves, and thus easily causes contact destruction. In this case, a minute current causes partial carbonization of the resin and there is a risk of ignition.
  • a heat generating layer can be produced without adding a binder resin, and a planar heat generating element can be designed according to the purpose of use.
  • the dispersion stabilizer may not be added when the fine carbon fiber aqueous dispersion is stored for a short period of time.
  • yen average diameter is produced through the process of grind
  • the above manufacturing method is merely an example, and various conditions such as the type of metal and the type of gas may be changed. Moreover, you may use the multi-layered carbon nanotube produced by production methods other than a vapor phase growth method.
  • the content of fine carbon fibers in the fine carbon fiber aqueous dispersion of the present invention is in the range of 0.01 to 30% by mass, preferably 0.05 to 20% by mass, more preferably 0.1 to 15%. % By mass.
  • desired electroconductivity is difficult to be obtained.
  • carbon fiber is 30 mass% or more, since a fine carbon fiber is bulky, a low-viscosity fine carbon fiber aqueous dispersion cannot be produced.
  • amphoteric surfactants examples include distearoyl phosphatidylcholine, dimyristoyl phosphatidylcholine, dipalmitrylphosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, diphosphatidylglycerol, lysophosphatidylcholine, sphingomyelin, n-octylphosphocholine Phosphatylcholine amphoteric surfactants such as n-dodecylphosphocholine, n-tetradecylphosphocholine, n-hexadecylphosphocholine, 3- (N, N-dimethylstearylammonio) propanesulfonate, 3- (N N-dimethylmyristylammonio) propanesulfonate, 3- (N N-dimethylmyristylammonio
  • amphoteric surfactants include 3-[(3-colamidopropyl) dimethylamino] -2-hydroxy-1-propanesulfonic acid, and hydroxysulfobetaine-based products such as Amphital 20HD (trade name, manufactured by Kao Corporation).
  • Surfactant trade name: Amphitol 20BS, 24B, 86B (manufactured by Kao Corporation), Nissan Anon BDC-SF, BDF-R, BDF-SF, BDL-SF, BF, BL, BL-SF (Nippon Yushi Co., Ltd.) Carboxybetaine surfactants such as Amphithol 20AB and 55AB (manufactured by Kao Corporation), Amidobeta 20N (manufactured by Kao Corporation) as an amine oxide, and trade names Anhitoru 20YB (manufactured by Kao Corporation), Nissan Anon GLM-R, GLM R-LV (manufactured by NOF CORPORATION) imidazolium surfactants such as and the like.
  • the content of the amphoteric surfactant in the fine carbon fiber aqueous dispersion of the present invention is in the range of 0.001 to 50% by mass, preferably 0.005 to 40% by mass, more preferably 0.01 to 30% by mass.
  • 0.001 to 50% by mass preferably 0.005 to 40% by mass, more preferably 0.01 to 30% by mass.
  • the amphoteric surfactant is less than 0.001% by mass, a desired dispersion state cannot be obtained.
  • the amphoteric surfactant is 50% by mass or more, only the micelle structure is formed with the surfactants, and the effect of addition due to the increase cannot be expected.
  • dispersion stabilizer examples include low-molecular compounds such as alkylamines and sugar alcohols, water-soluble polymers having a weight average molecular weight of 10,000 to 50 million that form hydrogen bonds such as glycerol, polyhydric alcohols, polyvinyl alcohol, and ⁇ -carrageenan. It is done.
  • water-soluble polymer examples include alginic acid, propylene glycol alginate, gum arabian, xanthan gum, hyaluronic acid, chondroitin sulfate, cellulose acetate, hydroxymethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, chitosan, chitin, gelatin, collagen, polyoxy Examples include ethylene / polyoxypropylene block polymers.
  • the content of the dispersion stabilizer in the fine carbon fiber aqueous dispersion of the present invention is in the range of 0.001 to 50% by mass, preferably 0.005 to 40% by mass, more preferably 0.01 to 30%. % By mass.
  • a desired dispersion state is difficult to be obtained.
  • the dispersion stabilizer is 50% by mass or more, desired conductivity cannot be obtained.
  • a general disperser is used.
  • bead mill (Dynomill, Shinmaru Enterprise Co., Ltd.) TK Lab Disper, TK Philmix, TK Pipeline Mixer, TK Homomic Line Mill, TK Homo Jetter, TK Unimixer, TK Homomic Line Flow, TK Aji Homo Disper (Special Machine Industry Co., Ltd.), Homogenizer Polytron (Central Science Trade Co., Ltd.), Homogenizer Histron (Nihon Medical Science Equipment Co., Ltd.), Biomixer (Nippon Seiki Seisakusho Co., Ltd.), Examples include a turbo-type stirrer (Kodaira Seisakusho Co., Ltd.), Ultra Disper (Asada Steel Co., Ltd.), Ebara Mileser (Ebara Seisakusho Co., Ltd.), an ultrasonic device or an ultrasonic
  • the planar heating element of the present invention is preferably manufactured through an application process, a heating layer forming process, an electrode forming process, and an insulating layer forming process. Or when the insulating base material in which the electrode was formed previously was used, it can manufacture through the order of an application
  • a general coating method can be employed as a method for applying the fine carbon fiber aqueous dispersion to the insulating substrate.
  • a general coating method can be employed.
  • the example of the coating method is given to the following, it does not specifically limit to these. Examples thereof include a dropping method, a dipping method, a screen printing method, an air spray coating, an airless spray coating, a low pressure atomizing spray coating, a coating by a bar coder method, and a coating using a spin coater.
  • a heating element formation process is a drying process after apply
  • the drying temperature is preferably heated to 10 to 500 ° C, more preferably 50 to 250 ° C, and particularly preferably 70 to 100 ° C. If the drying temperature is less than 10 ° C, the drying may not proceed sufficiently. If the drying temperature exceeds 500 ° C, the insulating base material may be deformed.
  • the drying time can take any time depending on the area of the sheet heating layer and the drying temperature.
  • a general electrode material can be used to form the insulating base material, in the planar heating layer, and on the planar heating layer.
  • a general forming process can be used.
  • the base of the sheet heating element is preferably insulative, and ceramic, glass, rubber, thermosetting resin, thermoplastic resin, wood, paper, leather, bamboo, or the like can be used.
  • the planar heating element may have a flat or curved structure, or may be installed on a flexible material.
  • the film thickness of the planar heating element is not particularly limited, for example, 0.4 mm or less is preferable, 0.2 mm or less is more preferable, and 0.1 mm or less is more preferable. Although a minimum is not specifically limited, For example, it is 0.01 mm or more.
  • the inter-electrode resistance value is not particularly limited, but for example, 300 ⁇ or less is preferable, 200 ⁇ or less is more preferable, and 100 ⁇ or less is more preferable.
  • the lower limit is not particularly limited, but is, for example, 2 ⁇ or more.
  • the life of the planar heating element can be extended. Further, it is possible to prevent the fine carbon fibers from peeling off.
  • the power source either alternating current (AC) or voltage (DC) may be used.
  • Carbon fibers were synthesized using toluene as a raw material by the CVD method.
  • a mixture of ferrocene and thiophene was used as the catalyst, the mass ratio of the catalyst to carbon in the raw material was 150: 1, the raw material gas introduction rate into the reactor was 1300 NL / min, and the pressure was 1.03 atm.
  • the synthesis reaction was performed in a reducing atmosphere of hydrogen gas. Toluene and the catalyst were heated to 380 ° C. together with hydrogen gas, supplied to the production furnace, and pyrolyzed at 1250 ° C. to obtain a carbon fiber structure (first intermediate).
  • the outer diameter distribution of the carbon fibers was a minimum of 40 nm, a maximum of 90 nm, and an average outer diameter of 70 nm.
  • the synthesized intermediate was calcined at 900 ° C.
  • the second intermediate was heat treated at 2600 ° C. in argon at high temperature, and the resulting aggregate of carbon fiber structures was pulverized with an airflow pulverizer to obtain a carbon fiber structure according to the present invention.
  • FIGS. 5 and 6 show SEM and TEM photographs of the obtained carbon fiber structure dispersed in toluene with ultrasonic waves and observed after preparing a sample for an electron microscope.
  • FIG. 7 shows an SEM photograph of the obtained carbon fiber structure as it is placed on an electron microscope sample holder, and Table 1 shows the particle size distribution.
  • the circle-equivalent mean diameter of the obtained carbon fibrous structures 45.8Myuemu, bulk density 0.0057g / cm 3, Raman I D / I G ratio is 0.094, TG combustion temperature of 832 ° C., The face spacing was 3.384 ⁇ , the powder resistance value was 0.0122 ⁇ ⁇ cm, and the density after restoration was 0.18 g / cm 3 .
  • a transparent cylinder with an inner diameter of 70 mm is filled with 1 g of powder, and air with a pressure of 0.1 Mpa and a capacity of 1.3 liters is sent from the lower part of the dispersion plate to blow out the powder and let it settle naturally. At the time of blowing out 5 times, the height of the powder layer after settling is measured. At this time, the number of measurement points was six, and after calculating the average of the six points, the bulk density was calculated.
  • TG combustion temperature> Using TG-DTA manufactured by Mac Science, the temperature was increased at a rate of 10 ° C./min while air was circulated at a flow rate of 0.1 liter / min, and the combustion behavior was measured. During combustion, TG indicates a decrease in weight and DTA indicates an exothermic peak. Therefore, the top position of the exothermic peak was defined as the combustion start temperature.
  • Example 1 (1) Preparation of aqueous dispersion of carbon nanotubes Manufactured in 500 g of deionized water in which 1 g of 3- (N, N-dimethylmyristylammonio) propane sulfonate as an amphoteric surfactant and 2 g of ⁇ -carrageenan as a dispersion stabilizer are dissolved. 5 g of the carbon fiber structure of Example 1 ⁇ manufactured by Nanocarbon Technologies; MWNT-7 (multi-walled carbon nanotube: fiber outer diameter 40-90 nm) ⁇ was added and stirred for 1 hour.
  • 3- (N, N-dimethylmyristylammonio) propane sulfonate as an amphoteric surfactant
  • 2 g of ⁇ -carrageenan as a dispersion stabilizer
  • This aqueous solution was subjected to a bead mill dispersion treatment to obtain a carbon nanotube aqueous dispersion.
  • (2) Preparation of conductive carbon nanotube film A central portion of a substrate of the same size is formed on an insulating substrate made of a polycarbonate resin (Teijin Kasei Panlite L-1225) having a width of 190 mm and a length of 270 mm cut to a length of 270 mm. A substrate in which a substrate cut out with a width of 160 mm and a length of 240 mm was pasted together was produced. 35 ml of an aqueous carbon nanotube dispersion was dropped into the concave portion of the substrate and dried at 80 ° C.
  • a polycarbonate resin Teijin Kasei Panlite L-1225
  • the planar heat generating layer had a width of 160 mm, a length of 240 mm, and a thickness of 42 ⁇ m.
  • (3) Production of electrode In the above-mentioned planar heat generating layer, a silver paste was applied to both ends on the 160 mm width side, and a copper plate having a width of 4 mm, a length of 160 mm and a thickness of 1 mm was placed on it. And the copper plate electrode was fixed by apply
  • the measurement was not performed under an applied voltage higher than that.
  • the current value of the planar heating layer was measured using a current measuring device DIGITAL MULTITIMER (CUSTOM, CDM-17D) wired in series with the planar heating layer.
  • the evaluation of the heat generation characteristics of the sheet heating element was performed by changing the applied voltage to AC5, 10, 15, 20, 25, 30V using a variable voltage regulator (YAMABISHI ELECTRIC CO., LTD. S-130-10).
  • the surface temperature after 15 minutes was measured using a radiation thermometer. These measurements were performed in a constant temperature and humidity chamber (room temperature 23 ° C., humidity 27%). The results are shown in Table 3.
  • Example 2 A planar heating element was produced in the same manner as in Example 1 except that the planar heating layer had a width of 40 mm, a length of 40 mm, and a thickness of 57 ⁇ m, and electrodes were provided on both ends of the planar heating layer on the width 40 mm side. The results are shown in Table 4.
  • Example 3 A planar heating element was produced in the same manner as in Example 1 except that the planar heating layer had a width of 40 mm, a length of 80 mm, a thickness of 60 ⁇ m, and electrodes were provided at both ends of the planar heating layer on the width 40 mm side. . The results are shown in Table 5.
  • Example 4 A planar heating element was produced in the same manner as in Example 1 except that the planar heating layer had a width of 40 mm, a length of 120 mm, a thickness of 66 ⁇ m, and electrodes were provided at both ends of the planar heating layer on the width 40 mm side. . The results are shown in Table 6.
  • Example 5 A planar heating element was produced in the same manner as in Example 1 except that the amount of the multi-walled carbon nanotube added was 10 g.
  • the planar heating layer had a width of 160 mm, a length of 240 mm, and a thickness of 47 ⁇ m. The results are shown in Table 7.
  • Example 6 A planar heating element was produced in the same manner as in Example 1 except that the amount of the multi-walled carbon nanotube added was 25 g.
  • the planar heat generating layer had a width of 160 mm, a length of 240 mm, and a thickness of 83 ⁇ m.
  • the exothermic characteristic results are shown in Table 8.
  • Example 7 (6) Surface Temperature Change of Planar Heating Element Using the sheet heating element produced in Example 1, the surface temperature change at the central part of the sheet heating element when the applied voltage DC24V was applied was changed to 5, 10 after application. , 15, 30, 45, 60, 75, and 90 minutes were measured with a radiation thermometer. The results are shown in FIG.
  • Example 8 On-surface temperature uniformity of the planar heating element 11 portions of the planar heating element shown in FIG. 2 after 90 minutes using the planar heating element produced in Example 1 and applying an applied voltage of DC 24V The on-surface temperature was measured and the on-surface temperature uniformity was measured. The results are shown in Table 9.
  • Example 1 A planar heating element was produced in the same manner as in Example 1 except that the multi-walled carbon nanotube was changed to Ketjen Black [manufactured by Lion Corporation; EC600JD].
  • the planar heat generating layer had a width of 160 mm, a length of 240 mm, and a thickness of 41 ⁇ m. The results are shown in Table 10.
  • Example 2 A planar heating element was produced in the same manner as in Example 1 except that the multi-walled carbon nanotube was changed to Denka Black [manufactured by Electrochemical Industry Co., Ltd .; HS-100].
  • the planar heat generating layer had a width of 160 mm, a length of 240 mm, and a thickness of 43 ⁇ m. The results are shown in Table 11.
  • the conductive material used in the heating layer of the sheet heating element is not carbon black having a high powder resistivity but a fine carbon fiber having a low powder resistivity. It is obvious that a sheet heating element having excellent sheet heating characteristics has been obtained by using.
  • the sheet heating element does not have a large difference in the calculated inter-electrode resistance value even when the surface temperature is increased. Therefore, the sheet heating element exhibits PTC characteristics. It turns out not to show.
  • Example 7 it can be confirmed that the sheet heating element has a fast heat generation response, and it is understood that the sheet heating element is an excellent sheet heating element that does not increase in temperature over time.
  • the planar heating elements of Comparative Example 1 and Comparative Example 2 do not generate heat because no current flows even at an applied voltage of 30V.
  • the sheet heating element is a sheet heating element with high temperature uniformity.
  • the fine carbon fiber aqueous dispersion of the present invention By using the fine carbon fiber aqueous dispersion of the present invention, it is possible to obtain a conductive fine carbon fiber film that exhibits a planar heat generation effect. Therefore, it can be used as a heating source such as an electric carpet, floor heating, wall surface heating equipment, a snow melting or mirror defogging heater for roads and roofs, or a heating heater used for heating and keeping a pipeline.
  • a heating source such as an electric carpet, floor heating, wall surface heating equipment, a snow melting or mirror defogging heater for roads and roofs, or a heating heater used for heating and keeping a pipeline.
  • FIG. It is a time-dependent change graph of the surface temperature change of the planar heating element in Example 7 and Comparative Example 3. It is the figure which showed the site
  • FIG. It is a SEM photograph of the 1st intermediate body of the carbon fiber structure concerning the present invention. It is a TEM photograph of the 1st intermediate body of the carbon fiber structure concerning the present invention. It is a SEM photograph of the carbon fiber structure concerning the present invention. It is a TEM photograph of the carbon fiber structure concerning the present invention. It is a SEM photograph of the carbon fiber structure concerning the present invention. 1 is an X-ray diffraction chart of a carbon fiber structure according to the present invention and an intermediate of the carbon fiber structure. 1 is a Raman spectroscopic analysis chart of a carbon fiber structure according to the present invention and an intermediate of the carbon fiber structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Surface Heating Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】 発熱効率の高い面状発熱体を製造し、小エネルギー型の電気カーペット、床暖房、壁面暖房機器、道路や屋根の融雪用もしくは鏡の防曇用ヒーターを提供する。 【解決手段】 微細炭素繊維を、水溶液中に均一に分散した微細炭素繊維水分散液を用いて作製した導電性微細炭素繊維膜を、絶縁基板等に塗布することにより製造された面状発熱体を提供する。  

Description

微細炭素繊維水分散液を用いて得られた面状発熱体及びその製造方法
本発明は、微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜を面状発熱層とした面状発熱体及び面状発熱体の製造法に関するものであり、例えば、電気カーペット、床暖房、壁面暖房機器、道路や屋根の融雪用もしくは鏡の防曇用ヒーターまたはパイプラインの加熱や保温に用いられる加熱ヒーター等の加熱源として利用する事ができる。
従来、床暖房や道路の融雪等を目的とした面状発熱体は、エチレン-エチルアクリレート共重合体(EEA)等の熱可塑性樹脂にカーボンブラック等の導電性粒子を混和してなる発熱組成物を面状に成型して形成された面状発熱板に電極を設けたものであり、この電極に電流を流すと、そのジュール熱により面状発熱層が発熱する構造であった。
このような面状発熱体は、その中央部領域において表裏2方向に放熱されるが、その両端部においては表裏だけでなく側部を含む3方向に放熱される事から、中央部領域は両端部領域よりも高温となる傾向がある。このような傾向により、比抵抗値が温度上昇とともに増大するという正温度係数特性(以下、PTC特性と略称する)を有する面状発熱層では、中央部の温度が両端部より高くなり過ぎるという局所発熱が発生して、均一な温度制御が困難となる。
そのため、複数の面状発熱体を互いに所定間隔に配置して床暖房にした場合、面状発熱体同士の間の上部温度は面状発熱体の直上温度に比べて低くなる。この局所発熱及び温度むらを防止するため、従来では、面状発熱体にアルミ板からなる均熱板を装着しているもの(例えば、特許文献1)、また面状発熱体の厚みを変えて各領域の比抵抗値を均一化したもの(例えば、特許文献2)等がある。
しかし、面状発熱体の製造において、面状発熱体の表裏いずれか前面に所定厚さの均熱板を粘着しなければならず、製造工程の複雑さが生じ、また粘着作業が煩雑であり、更に製造コストが高くなるという問題がある。また面状発熱層の全面に均熱板が貼付されず、面状発熱層が露出している部分があると、その露出部分と均熱板との間で温度差が生じる。またこれらの技術は、各領域の比抵抗値を均一化するに止まり、各領域の放熱量の相違に起因する局所発熱を十分に防止できないという問題がある。更に、面状発熱体の厚みを変えて各領域の比抵抗値を均一化したものに関しては、厚み分布の傾きが発生するため、不具合が生じる。また導電性粒子としてカーボンブラックを用いた場合においては、所望の導電性を得るためには大量のカーボンブラックを必要とするため、発熱層に用いられる樹脂本来の特性を低下させる事が多い(例えば、特許文献3、4)。
一方で、1976年に発見されたカーボンナノチューブは直径100nm以下の太さのチューブ状材料であり、理想的なものとしては炭素6角網目の面がチューブの軸に平行な管を形成し、さらにこの管が二層、三層、四層又は多層になることもある。このカーボンナノチューブは炭素でできた6角網目の数や、チューブの太さによって異なる性質を有する。そのためそれらの化学的特性、電気的特性、機械的特性、熱伝導性、構造特性等の物性を利用して、電子デバイス、電気配線、電熱変換素子材料、熱電変換素子材料、建材用放熱材料、電磁波シールド材料、電波吸収材料、フラットパネルディスプレイ用電界放出陰極材料、電極接合材料、樹脂複合材料、透明導電膜、触媒担持材料、電極・水素貯蔵材、補強材料及び黒色顔料等への応用が期待されている。
そのため面状発熱体の問題を解決するために、導電性粒子としてカーボンブラックを、カーボンナノチューブに置き換えてバインダー樹脂に練り込んだ面状発熱体(例えば、特許文献5、6、7、8)、導電性粒子としてカーボンナノチューブと導電性金属化合物またはフィラメント状金属微粒子を混在させ、バインダー樹脂に練り込んだ面状発熱体(例えば、特許文献9、10)等が報告されている。またカーボンナノチューブを用いた薄膜抵抗性発熱体を、トナーの加熱定着用部材に応用したもの(例えば、特許文献11)等も報告されている。
しかしながら面状発熱体に用いる面状発熱層を作製する際、バインダー樹脂が熱可塑性樹脂である場合、薄膜化が困難であり、また混練機等を用いてカーボンナノチューブ樹脂複合体を作製後、射出成型機等を用いて圧縮、注型、射出、押出又は延伸方式により面状発熱板を作製しなければならず、製造までに多くの工程及び時間を要してしまう。更に所望される低い抵抗値を有したカーボンナノチューブ含有樹脂板を作製するためには、大量のカーボンナノチューブを必要とするため、材料費が高価になってしまう。また現行の技術においては、面状発熱体に要求される抵抗値を精密に制御したカーボンナノチューブ樹脂複合体の樹脂板を作製する事は非常に困難である。バインダー樹脂に熱硬化性樹脂を用いた場合においては、硬化前段階においてカーボンナノチューブを分散しようとする分散液が高粘度なペースト状になるため、カーボンナノチューブの凝集体またはカーボンナノチューブがバンドル構造を形成している態様にあるものが少ない分散液を作製する事が困難である。そのため硬化後の面状発熱板の内部又は表面において、カーボンナノチューブが均一に分散されていないため、面状発熱体として均一な温度制御ができない。また面状発熱体の導電性粒子としてカーボンナノチューブと導電性金属化合物もしくはフィラメント状金属微粒子を混在させた面状発熱体を作製しているものに関しては、比重差の大きく異なる導電性粒子を面状発熱層に均一に分散する事は非常に困難である。
そのためカーボンナノチューブを用いて面状発熱体を安定して製造するためには、カーボンナノチューブを均一に分散できる事が重要であり、それを安定して製造できる技術が重要となる。
しかしながらカーボンナノチューブは、特性として非常に強い繊維間相互の凝集力(ファンデルワールス力)を有しているため、水溶液、有機溶剤、樹脂溶液又は樹脂と混合した状態において、カーボンナノチューブ同士が凝集してしまい、カーボンナノチューブが十分に分散した溶液、樹脂溶液又は樹脂を製造しにくいのが現状である。これはカーボンナノチューブの原子レベルでの滑らかな表面が樹脂溶液に対する親和性を大きく低下させてしまうからである。
したがって、カーボンナノチューブは特異で有用な性質があるにもかかわらず、これを均一に分散した水溶液、有機溶剤または樹脂溶液分散液、ポリマー系ナノコンポジットなどを製造することは極めて困難であり、各種用途への応用を事実上困難にしている。以下に報告されている、いくつかの改善のための試みについて記述する。
カーボンナノチューブの分散溶媒としては、水溶性溶媒や有機溶媒あるいはそれらの混合溶媒が利用できることが開示されている。例えば、水、酸性溶液、アルカリ性溶液、アルコール、エーテル、石油エーテル、ベンゼン、酢酸エチル、クロロホルム、イソプロピルアルコール、エタノール、アセトン、トルエン等である(例えば、特許文献12参照)。
またアミド系極性有機溶媒であるN-メチルピロリドンとポリマー溶媒であるポリビニルピロリドンの混合溶媒中でカーボンナノチューブを分散する方法(例えば、特許文献13参照)も開示されている。さらに炭化水素系溶媒中に塩基性高分子としてポリエステル酸アマイドアミン塩を分散剤として用いたカーボンナノチューブの分散方法(例えば、特許文献14参照)等も開示されている。
しかしながら、上記の方法で得られたカーボンナノチューブ分散溶液はカーボンナノチューブが凝集物の状態で良好に分散しているが、カーボンナノチューブが解繊している状態ではないものが多い。また有機溶剤中にカーボンナノチューブを分散したカーボンナノチューブ分散溶液を用いて製膜を行った場合においては、製造工程においてVOC成分である有機溶剤揮発物が発生してしまい、環境に配慮した新技術とは言い難い。
そのためカーボンナノチューブを均一に分散する溶剤として水を用いた技術が注目を集めている。カーボンナノチューブ水分散液に関しては、非イオン性界面活性剤を用いたカーボンナノチューブの分散方法も開示されている。前記非イオン性界面活性剤としてはTergitol(商標)NP7を用いた提案であるが、カーボンナノチューブの配合量が増加すると、カーボンナノチューブが凝集してしまい、均一な分散液が得られない事が報告されている(例えば、非特許文献1参照)。また、単層のカーボンナノチューブを陰イオン性界面活性剤SDS水溶液中で超音波処理することにより、カーボンナノチューブの疎水性表面と界面活性剤の疎水部を吸着させ、外側に親水部を形成して水溶液中に分散することも報告されている(例えば、非特許文献2参照)。
これら従来の超音波処理等の物理的分散処理方法においては、カーボンナノチューブを分散するために多くの時間を要するという問題がある。これは非イオン性及び陰イオン性界面活性剤等を用いた場合においても同様である。すなわち、非イオン性及び陰イオン性界面活性剤など親溶媒性を高めるために用いられる物質は、カーボンナノチューブのバンドル構造を分散させるためには、単独では十分な力を備えていないためである。また、同じ極性を有する分子同士の斥力を利用した方法も超音波処理は必要であり、これらの分子は、バンドルを分散させるというよりは、分散しているカーボンナノチューブが再凝集しないように維持しているだけであるといえる。また得られた炭素水分散溶液には、孤立分散したカーボンナノチューブだけでなく、カーボンナノチューブ凝集体及びカーボンナノチューブがバンドル構造をとっている態様にあるものが混ざっており、分離精製が必要である。このようなカーボンナノチューブ水分散液から、以上のようなカーボンナノチューブ凝集体及びカーボンナノチューブがバンドル構造をとっている態様にあるものを分離精製するためには高性能な遠心分離機が必要であり、その分離工程には更に多くの時間と設備を要してしまう。
上記カーボンナノチューブの水分散液の作製における問題を解決した技術としては、両性界面活性剤を用いた、両性分子間の電気的斥力と引力を利用したカーボンナノチューブの水分散法がある。(例えば、特許文献15、16、17)つまり、非常に強い繊維間相互の凝集力(ファンデルワールス力)を有し、場合によっては複数のカーボンナノチューブのバンドルを形成している態様にあるものに対して、カーボンナノチューブの一部分に両性分子を付着させ、前記複数の凝集体及びバンドルのうち、一部分のカーボンナノチューブバンドルを構成するカーボンナノチューブに付着した両性分子が、隣接する他のカーボンナノチューブバンドルを構成するカーボンナノチューブに付着した両性分子の間の電気的な斥力と引力により、前記複数のカーボンナノチューブバンドルを構成する各カーボンナノチューブを孤立分散させる事によって、カーボンナノチューブが安定して均一に分散したカーボンナノチューブ水分散液を作製している。
しかしながら、上記に記したカーボンナノチューブが均一に分散したカーボンナノチューブ水分散液を用いて、カーボンナノチューブ特有の化学的特性、電気的特性、機械的特性、熱伝導性、構造特性等の物性を利用した応用技術についての詳細な報告はない。またカーボンナノチューブ水分散液を用いて得られた導電性カーボンナノチューブ膜を面状発熱層とした面状発熱体、カーボンナノチューブ水分散液を用いる事での製造工程の簡潔化についての技術もまだ十分に確立されていない。
特開2005-11651号公報 特開平1-151191号公報 特開平8-264268号公報 特開2006-202575号公報 特開2003-163104号公報 特開2007-109640号公報 特開2000-058228号公報 特開2002-075602号公報 特開2000-026760号公報 特開2004-103766号公報 特開2007-092234号公報 特開2000-72420号公報 特開2005-162877号公報 特開2006-63436号公報 特開2007-39623号公報 WO2004/060798号公報 特開2007-182363号公報 S.Cui et al. Carbon 41,2003,797-809 Michael J. O’Connel et al. SCIENCE VOL297 26 July 2002,593-596
本発明は、他に類を見ない程高い凝集力を有する微細炭素繊維を、水溶液中に均一に分散した微細炭素繊維水分散液を用いて導電性微細炭素繊維膜を作製し、その導電性微細炭素繊維膜を発熱層に応用した面状発熱体及び面状発熱体の製造方法を提供する事を目的とする。
上記課題を解決するため、鋭意検討した結果、微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜を発熱層とした面状発熱体を見出した事で本発明の完成に至った。即ち、本発明は、以下の内容で構成されている。
微細炭素繊維水分散液を用いて得られた事を特徴とする面状発熱体。
微細炭素繊維水分散液を基材表面に塗布し、乾燥して得られた事を特徴とする前記面状発熱体。
前記微細炭素繊維水分散液が、両性界面活性剤を含有することを特徴とする前記面状発熱体。
前記微細炭素繊維水分散液が、両性界面活性剤と分散安定剤を添加されてなることを特徴とする前記面状発熱体。
前記両性界面活性剤がスルホベタイン骨格である両性親水基を含有する事を特徴とする前記面状発熱体。
前記両性界面活性剤が3-(N,N-ジメチルステアリルアンモニオ)プロパンスルホネート、3-(N、N-ジメチルミリスチルアンモニオ)プロパンスルホネート、3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホネート、n-ヘキサデシル-N、およびN´-ジメチル-3-アンモニオ-1-プロパンスルホネートから選択される一種以上である事を特徴とする前記面状発熱体。
前記分散安定剤がアミノ基または水酸基を有する低分子化合物、アミノ基または水酸基を有するオリゴマーおよびアミノ基または水酸基を有する水溶性高分子から選択される一種以上である事を特徴とする前記面状発熱体。
前記分散安定剤が、糖アルコール、グリセロール、多級アルコール、またはポリビニルアルコールのいずれかである前記面状発熱体。
前記微細炭素繊維が外径0.5~800nmの微細炭素繊維から構成される事を特徴とする前記面状発熱体。
前記微細炭素繊維が単層、二層、三層、四層または多層カーボンナノチューブであることを特徴とする前記面状発熱体。
微細炭素繊維が外径15~100nmのカーボンナノチューブから構成されるネットワーク状のカーボンナノチューブ構造体であって、前記カーボンナノチューブ構造体は、前記カーボンナノチューブが複数延出する態様で、当該カーボンナノチューブを互いに結合する粒状部を有しており、かつ当該粒状部は前記カーボンナノチューブの成長過程において形成されてなるものであって前記カーボンナノチューブ外形の1.3倍以上の大きさを有するものであり、ラマン分光分析で514nmにて測定されるI/Iが0.1以下である事を特徴とする前記面状発熱体。
前記多層カーボンナノチューブが含有タール分0.5%以下の高純度な物を用いる事を特徴とする前記面状発熱体。
前記微細炭素繊維水分散液がカーボンナノチューブを質量比で0.01~30%含有する事を特徴とする前記面状発熱体。
微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜が面状発熱層となる事を特徴とする前記面状発熱体。
前記面状発熱層の膜厚が0.4mm以下である事を特徴とする前記面状発熱体。
前記面状発熱層の電極間抵抗値が300Ω以下である事を特徴とする前記面状発熱体。
前記面状発熱層の両端のみに電極を設置する事を特徴とする前記面状発熱体。
前記面状発熱層が、PTC特性を有さない事を特徴とする前記面状発熱体。
絶縁性基材上に微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜、電極から構成された事を特徴とする前記面状発熱体。
絶縁性基材上に微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜、電極、導電性微細炭素繊維膜及び電極を被覆する絶縁性基材から構成された事を特徴とする前記面状発熱体。
微細炭素繊維水分散液を用いて絶縁性基材の表面に塗布する塗布工程と、前記絶縁性基材上に塗布した微細炭素繊維水分散液を乾燥する事で面状発熱層を形成する面状発熱層形成工程と、前記面状発熱層に電極を形成する電極形成工程とを備えた事を特徴とする面状発熱体の製造方法。
微細炭素繊維水分散液を用いて絶縁性基材の表面に塗布する塗布工程と、前記絶縁性基基材上に塗布した微細炭素繊維水分散液を乾燥する事で面状発熱層を形成する面状発熱層形成工程と、前記面状発熱層に電極を形成する電極形成工程と、前記発熱層及び電極を被覆する絶縁性基材を形成する絶縁層形成工程とを備えた事を特徴とする前記面状発熱体の製造方法。
本発明の面状発熱体は、微細炭素繊維が均一に分散した微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜を面状発熱層に応用しているため、面全体に微細炭素繊維が均一に存在するため、局所発熱が少ない面状発熱体を作製する事が容易である。またPTC特性を示さないため、PTC特性を利用した面状発熱体のように均熱板が必要ではないため、製造工程を簡略化する事ができる。さらに面状発熱体の面状発熱層を作製する際、カーボンナノチューブ水分散液を使用しているため、製造工程においてVOC成分が発生しない事から、環境に配慮した環境調和型な技術といえる。更に含有タール分が少ないカーボンナノチューブを用いれば、面状発熱体製品として使用される場面において、人体に対しても、より安全な製品とする事が出来る。
以下、本発明について詳細に説明する。本発明の微細炭素繊維においては、単層、二層、三層、四層及び多層のカーボンナノチューブを示し、それぞれ目的に応じて用いる事が出来る。本発明においては、より好ましくは、多層のカーボンナノチューブが用いられる。カーボンナノチューブの製造方法に関しては、特に制限されるものではなく、触媒を用いる気相成長法、アーク放電法、レーザー蒸発法及びHiPco法(High-pressure carbon monoxide process)等、従来公知のいずれの製造方法でもよい。
例えば、レーザー蒸着法により単層のカーボンナノチューブを作製する方法を以下に示す。原料としてグラファイトパウダーと、ニッケル及びコバルト微粉末混合ロットを用意した。この混合ロットを665hPa(500Torr)のアルゴン雰囲気下、電気炉により1250℃に加熱し、そこに350mJ/PulseのNd:YAGレーザーの第二高調波パルスを照射し、炭素と金属微粒子を蒸発させることにより、単層のカーボンナノチューブを作製することができる。
以上の作製方法は、あくまで典型例であり、金属の種類、ガスの種類、電気炉の温度、レーザーの波長等を変更してもよい。また、レーザー蒸着法以外の作製法、例えばHiPco法、気相成長法、アーク放電法、一酸化炭素の熱分解法、微細な空孔中に有機分子を挿入して熱分解するテンプレート法、フラーレン・金属共蒸着法等、他の手法によって作製された単層のカーボンナノチューブを使用してもよい。
例えば、定温アーク放電法により二層のカーボンナノチューブを作製する方法を以下に示す。基板は表面処理されたSi基板を用い、処理方法としては触媒金属及び触媒助剤金属を溶解した溶液中に、アルミナ粉末を30分間浸し、さらに3時間超音波処理により分散させて得られた溶液をSi基板に塗布し、空気中において120℃で維持間乾燥させた。カーボンナノチューブ製造装置の反応室に基板を設置し、反応ガスとして水素とメタンの混合ガスを用い、ガスの供給量は水素を500sccm、メタンを10sccmとし、反応室の圧力を70Torrとした。陰極部はTaよりなる棒状の放電部を用いた。次に陽極部と陰極部及び陽極部と基板との間に直流電圧を印加し、放電電流が2.5Aで一定になるように放電電圧を制御した。放電により陰極部の温度が2300℃になると正規グロー放電状態から異常グロー放電状態になり、放電電流が2.5A、放電電圧が700V、反応ガス温度が3000℃の状態を10分間行うことで、基板全体に単層及び2層のカーボンナノチューブを作製することができる。
以上の作製方法は、あくまで一例であり、金属の種類、ガスの種類等、諸条件を変更してもよい。また、アーク放電法以外の作製法によって作製された単層のカーボンナノチューブを使用してもよい。
例えば、気相成長法により三次元構造を有した多層のカーボンナノチューブを作製する方法を以下に示す。基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物をCVD法で化学熱分解して繊維構造体(以下、中間体)を得、これをさらに高温熱処理することで多層のカーボンナノチューブを作製することができる。
原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭素、エタノール等のアルコール類が使用されるが、炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることが好ましい。なお、少なくとも2つ以上の炭素化合物とは、必ずしも原料有機化合物として2種以上のものを使用するというものではなく、原料有機化合物としては1種のものを使用した場合であっても、繊維構造体の合成過程においては、例えば、トルエンやキシレンの水素脱アルキル化などのような反応を生じて、その後の熱分解反応系においては分解温度の異なる2つ以上の炭素化合物となっているような態様を含むものである。雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用い、触媒としては鉄、コバルト、モリブデンなどの遷移金属あるいはフェロセン、酢酸金属塩などの遷移金属化合物と硫黄あるいはチオフェン、硫化鉄などの硫黄化合物の混合物を使用する。
中間体の合成は、通常行われている炭化水素などのCVD法を用い、原料となる炭化水素及び触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に導入し、800~1300℃の温度で熱分解する。これにより、外径が15~100nmの繊維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元構造を有するカーボンナノチューブ構造体(中間体)が複数集まった数センチから数十センチの大きさの集合体を合成する。
原料となる炭化水素の熱分解反応は、主として触媒粒子ないしこれを核として成長した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒子ないし粒状体より一定方向に進むことで、繊維状に成長する。しかしこの熱分解速度と成長速度とのバランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質を成長させることなく、粒状体を中心として三次元的に炭素物質を成長させる。もちろん、このような三次元的なカーボンナノチューブの成長は、熱分解速度と成長速度とのバランスにのみ依存するものではなく、触媒粒子の結晶面選択性、反応炉内における滞留時間、炉内温度分布等によっても影響を受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素物質は触媒粒子の周面方向に成長する。従って熱分解速度と成長速度とのバランスを意図的に変化させることで、上記したような炭素物質の成長を一定方向とすることなく、制御下に他方向として、三次元構造を形成することが出来るものである。なお、生成する中間体においては、繊維相互が粒状体により結合された前記したような三次元構造を容易に形成させる上では、触媒等の組成、反応炉内における滞留時間、反応温度及びガス温度等を最適化することが好ましい。
触媒及び炭化水素の混合ガスを800~1300℃の範囲の一定温度で加熱生成して得られた中間体は、炭素原子からなるパッチ状のシート片を貼り合わせたような構造を有し、ラマン分光分析をすると、Dバンドが非常に大きく、欠陥が多い。また、生成した中間体は、未反応原料、非繊維状炭素物、タール分及び触媒金属を含んでいる。
従って、このような中間体からこれら残留物を除去し、欠陥が少ない所期のカーボンナノチューブ構造体を得るためには、適切な方法で1500~3000℃の高温熱処理を行う。
すなわち、例えば、この中間体を800~1300℃で加熱して未反応原料やタール分などの揮発分を除去した後、1500~3000℃の高温でアニール処理することによって所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガス又は微量の一酸化炭素ガスを添加してもよい。
前記中間体を1500~3000℃の範囲の温度でアニール処理すると、炭素原子からなるパッチ状のシート片は、それぞれ結合して複数のグラフェンシート状の層を形成する。
本発明の面状発熱体を製造する際に、タール分が0.5%以下のカーボンナノチューブを用いることが好ましい。面状発熱体を製造もしくは加熱した際に、タールなどの不純物が少ないカーボンナノチューブを用いれば、揮発性有機化合物(VOC)の放出を低減させることができ、健康や環境面で利便性がある。そのために、前記の温度条件でアニール処理をしたカーボンナノチューブを利用してもよい。
本発熱体を製造する際に、必要に応じて、PTC特性がないように設定することもできる。PTC機能は、各種導電性フィラーの熱膨張率が固定化の為の樹脂より大幅に小さいことに由来し、加熱により導電フィラー間の樹脂が膨張し導電フィラーを引き離すことで生じるものである。そのため、自己制御機能の発現に際しては、常に導電フィラーの接触、離脱を伴い、故に接点破壊の原因と成りやすく、その際の微少電流で樹脂の部分炭化を引き起こし、引火の危険性もあった。本技術はバインダー樹脂を添加しなくても発熱層を作製することができ、使用目的に合わせた面状発熱体の設計が可能である。なお、分散安定剤は微細炭素繊維水分散液を短期間の保存の際は、添加しなくてもよい。
また、このような高温熱処理前もしくは処理後において、カーボンナノチューブ構造体の円相当平均径を数センチに解砕処理する工程と、解砕処理されたカーボンナノチューブ構造体の円相当平均径を50~100μmに粉砕処理する工程とを経ることで、所望の円相当平均径を有するカーボンナノチューブを作製する。
以上の作製方法は、あくまで一例であり、金属の種類、ガスの種類等、諸条件を変更してもよい。また、気相成長法以外の作製法によって作製された多層のカーボンナノチューブを使用してもよい。
本発明の微細炭素繊維水分散液における微細炭素繊維の含有量は、0.01~30質量%の範囲であり、好ましくは0.05~20質量%であり、より好ましくは0.1~15質量%である。このように微細炭素繊維が0.01質量%より少ない場合は、所望の導電性が得られにくい。また炭素繊維が30質量%以上である場合は、微細炭素繊維が嵩高いため、低粘度な微細炭素繊維水分散液が作製できなくなる。
両性界面活性剤について以下に例を示すが、これらに限定されるものではない。両性界面活性剤としては、例えば、ジステアロイルホスファチジルコリン、ジミリストイルホスファチジルコリン、ジパルミトリルホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルイノシトール、ホスファチジルセリン、ホスファチジルグリセロール、ジホスファチジルグリセロール、リゾホスファチジルコリン、スフィンゴミエリン、n-オクチルホスホコリン、n-ドデシルホスホコリン、n-テトラデシルホスホコリン、n-ヘキサデシルホスホコリン等のホスファチルコリン系両性界面活性剤、3-(N,N-ジメチルステアリルアンモニオ)プロパンスルホネート、3-(N、N-ジメチルミリスチルアンモニオ)プロパンスルホネート、3-[(3-コラミドプロピル)ジメチルアミノ]プロパンスルホン酸、3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホネート、n-ヘキサデシル-N、N´-ジメチル-3-アンモニオ-1-プロパンスルホネート等のスルホベタイン系両性界面活性剤が挙げられる。またその他の両性界面活性剤としては3-[(3-コラミドプロピル)ジメチルアミノ]-2-ヒドロキシ-1-プロパンスルホン酸、商品名としてアンヒトール20HD(花王株式会社製)等のヒドロキシスルホベタイン系界面活性剤、商品名としてアンヒトール20BS、24B、86B(花王株式会社製)、ニッサンアノンBDC-SF、BDF-R、BDF-SF、BDL-SF、BF、BL、BL-SF(日本油脂株式会社製)等のカルボキシベタイン系界面活性剤、商品名としてアンヒトール20AB、55AB(花王株式会社製)等のアミドベタイン系、商品名としてアンヒトール20N(花王株式会社製)等のアミンオキシド系、商品名としてアンヒトール20YB(花王株式会社製)、ニッサンアノンGLM-R、GLM-R-LV(日本油脂株式会社製)等のイミダゾリウム系界面活性剤等が挙げられる。
本発明の微細炭素繊維水分散液における両性界面活性剤の含有量は、0.001~50質量%の範囲であり、好ましくは0.005~40質量%であり、より好ましくは0.01~30質量%である。このように両性界面活性剤が0.001質量%より少ない場合は、所望の分散状態が得られない。また両性界面活性剤が50質量%以上である場合は、界面活性剤同士でミセル構造を作ってしまうだけで、増量による添加効果は期待できない。
分散安定剤としては以下に例を示すが、これに限定されるものではない。例えば、アルキルアミン、糖アルコール等の低分子化合物、グリセロール、多級アルコール、ポリビニルアルコール、κ―カラギーナン等の水素結合を形成する重量平均分子量1万~5千万である水溶性高分子等が挙げられる。
上記の水溶性高分子としては、例えば、アルギン酸、プロピレングリコールアルギネート、アラビアンゴム、キサンタンガム、ヒアルロン酸、コンドロイチン硫酸、酢酸セルロース、ヒドロキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、キトサン、キチン、ゼラチン、コラーゲン、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー等が挙げられる。
本発明の微細炭素繊維水分散液における分散安定剤の含有量は、0.001~50質量%の範囲であり、好ましくは0.005~40質量%であり、より好ましくは0.01~30質量%である。このように微細炭素繊維が0.001質量%より少ない場合は、所望の分散状態が得られにくい。また分散安定剤が50質量%以上である場合は、所望の導電性が得られない。
本発明の微細炭素繊維水分散液を製造する分散機においては、一般的な分散機が用いられる。例えば、ビーズミル(ダイノーミル、(株)シンマルエンタープライズ)TKラボディスパー、TKフィルミックス、TKパイプラインミクサー、TKホモミックラインミル、TKホモジェッター、TKユニミキサー、TKホモミックラインフロー、TKアジホモディスパー(以上、特殊機化工業(株))、ホモジナイザー・ポリトロン((株)セントラル科学貿易)、ホモジナイザー・ヒストロン((株)日音医理科機器製作所)、バイオミキサー((株)日本精機製作所)、ターボ型攪拌機((株)小平製作所)、ウルトラディスパー(浅田鉄鋼(株))、エバラマイルザー(荏原製作所(株))、超音波装置又は超音波洗浄機(アズワン(株))等が挙げられる。
本発明の面状発熱体は塗布工程、発熱層形成工程、電極形成工程、及び絶縁層形成工程の順を経て製造される事が好ましい。またはあらかじめ電極を形成された絶縁性基材を用いた場合は、塗布工程、発熱層形成工程、及び絶縁層形成工程の順を経て製造する事ができる。さらに、発熱層中に電極を形成する場合は、塗布工程、発熱層形成工程、電極形成工程、塗布工程、発熱層形成工程、絶縁層形成工程等の工程を経て面状発熱体を製造してもよい。したがって、本面状発熱体を製造するにあたっては、絶縁板の上に電極を直接配置もでき、該電極の上側や周辺に導電層を形成することが可能である。よって、電極間の距離や発熱の制御を容易に行うことができる。
微細炭素繊維水分散液を絶縁性基材に塗布するための方法としては、一般的な塗装方法を採用することができる。以下に塗装方法の例を挙げるが、特にこれらに限定するものではない。例えば、滴下法、ディッピング法、スクリーン印刷法、エアースプレー塗装、エアレススプレー塗装、低圧霧化スプレー塗装、バーコーダー法による塗装、スピンコーターを用いた塗装等が挙げられる。
発熱体形成工程とは、微細炭素繊維水分散液を上記の方法で絶縁性基材に塗布した後の乾燥工程の事であり、常温で塗膜を乾燥させることができる。塗膜を十分に乾燥させるためには、乾燥温度を10~500℃に加熱することが好ましく、より好ましくは50~250℃であり、特に好ましくは70~100℃である。乾燥温度が10℃未満であると乾燥が十分に進まないおそれがあり、500℃を超えると、絶縁性基材の素材によっては変形をおそれがある。乾燥時間は面状発熱層の面積、乾燥温度により任意の時間を要する事ができる。
電極形成工程においては、一般的な電極材料を用いて絶縁性基材、面状発熱層中及び面状発熱層上に形成する事ができる。絶縁層形成工程においても、一般的な形成工程を用いる事ができる。
本面状発熱体の基盤に関しては、絶縁性であれば好ましく、セラミック、ガラス、ゴム、熱硬化樹脂、熱可塑性樹脂、木材、紙、皮革、竹材などを用いる事ができる。
本面状発熱体は平面、曲面の構造でもよく、柔軟性のある材料に設置してもよい。
面状発熱体の膜厚は、特に限定されないが、例えば、0.4mm以下が好適であり、0.2mm以下がより好適であり、0.1mm以下が更に好適である。下限は特に限定されないが例えば、0.01mm以上である。
電極間抵抗値は、特に限定されないが、例えば、300Ω以下が好適であり、200Ω以下がより好適であり、100Ω以下が更に好適である。下限は特に限定されないが例えば、2Ω以上である。
発熱層を被膜することにより、面状発熱体の寿命を延ばすことができる。また微細炭素繊維の剥離等を予防することが可能である。電源に関しては、交流(AC)または電圧(DC)どちらでもよい。
以下に実施例を示し、本発明を具体的に説明するが、これらにより本発明が限定されるものではない。
[製造例1]
なお、本発明で用いた微細炭素繊維は、次のように合成を行なった。
CVD法によって、トルエンを原料として炭素繊維を合成した。
触媒としてフェロセン及びチオフェンの混合物を使用し、触媒と原料中の炭素との質量比は、150:1、反応炉への原料ガス導入速度は1300NL/min、圧力は1.03atmとした。合成反応は水素ガスの還元雰囲気で行なった。トルエン、触媒を水素ガスとともに380℃に加熱し、生成炉に供給し、1250℃で熱分解して、炭素繊維構造体(第一中間体)を得た。炭素繊維の外径分布は、最小で40nm、最大で90nm、平均外径は70nmであった。合成された中間体を窒素中で900℃で焼成して、タールなどの炭化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定のR値は0.98であった。また、この第一中間体をトルエン中に分散して電子顕微鏡用試料調製後に観察したSEMおよびTEM写真を図3、4に示す。
さらにこの第二中間体をアルゴン中で2600℃で高温熱処理し、得られた炭素繊維構造体の集合体を気流粉砕機にて粉砕し、本発明に係る炭素繊維構造体を得た。
得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調製後に観察したSEMおよびTEM写真を図5、6に示す。
また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して観察したSEM写真を図7に、またその粒度分布を表1に示した。
Figure JPOXMLDOC01-appb-T000001
さらに高温熱処理前後において、炭素繊維構造体のX線回折およびラマン分光分析を行い、その変化を調べた。結果を図8および図9に示す。
また、得られた炭素繊維構造体の円相当平均径は、45.8μm、嵩密度は0.0057g/cm、ラマンI/I比値は0.094、TG燃焼温度は832℃、面間隔は3.384オングストローム、粉体抵抗値は0.0122Ω・cm、復元後の密度は0.18g/cmであった。
上記炭素繊維構造体に係る各種パラメータは下記の方法に従って測定した。
<面積基準の円相当平均径>
まず、炭素繊維構造体の写真をSEMで撮影する。得られたSEM写真において、炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために対象としなかった。1視野で対象とできる炭素繊維構造体(60~80個程度)はすべて用い、3視野で約200個の炭素繊維構造体を対象とした。対象とされた各炭素繊維構造体の輪郭を、画像解析ソフトウェア WinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造体の円相当径を計算し、これを平均化した。
<嵩密度の測定>
内径70mmで分散板付透明円筒に1g粉体を充填し、圧力0.1Mpa、容量1.3リットルの空気を分散板下部から送り粉体を吹出し、自然沈降させる。5回吹出した時点で沈降後の粉体層の高さを測定する。このとき測定箇所は6箇所とることとし、6箇所の平均を求めた後、嵩密度を算出した。
<ラマン分光分析>
堀場ジョバンイボン製LabRam800を用い、アルゴンレーザーの514nmの波長を用いて測定した。
<TG燃焼温度>
マックサイエンス製TG-DTAを用い、空気を0.1リットル/分の流速で流通させながら、10℃/分の速度で昇温し、燃焼挙動を測定した。燃焼時にTGは減量を示し、DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義した。
<X線回折>
粉末X線回折装置(JDX3532、日本電子製)を用いて、アニール処理後の炭素繊維構造体を調べた。Cu管球で40kV、30mAで発生させたKα線を用いることとし、面間隔の測定は学振法(最新の炭素材料実験技術(分析・解析編)、炭素材料学会編)に従い、シリコン粉末を内部標準として用いた。
<粉体抵抗および復元性>
炭素繊維構造体の粉体1.0gを秤取り、樹脂製ダイス(内寸40リットル、10W、80Hmm)に充填圧縮し、変位および荷重を読み取る。4端子法で定電流を流して、そのときの電圧を測定し、0.9g/cmの密度まで測定したら、圧力を解除し復元後の密度を測定した。粉体抵抗については、0.5、0.8および0.9g/cmに圧縮したときの抵抗を測定することとする。
なお、実施例で測定した各種物性値を、表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
[実施例1]
(1)カーボンナノチューブ水分散液の調製
両性界面活性剤として3-(N、N-ジメチルミリスチルアンモニオ)プロパンスルホネート1g及び分散安定剤としてκ-カラギーナン2gを溶解させた脱イオン水500gに、製造例1の炭素繊維構造体{ナノカーボンテクノロジーズ株式会社製;MWNT-7(多層カーボンナノチューブ:繊維外径40-90nm)}5gを入れ、一時間攪拌した。この水溶液にビーズミル分散処理を施し、カーボンナノチューブ水分散液を得た。
(2)導電性カーボンナノチューブ膜の作製
幅190mm、長さ270mmに切断した厚さ3mmのポリカーボネート樹脂(帝人化成製パンライト L-1225)からなる絶縁性基板に、同一サイズの基板の中央部を幅160mm、長さ240mmで切り抜いた基板を張り合わせた基板を作製した。基板の凹部にカーボンナノチューブ水分散液35mlを滴下し、80℃にて60分乾燥を行い、面状発熱層である導電性カーボンナノチューブ膜を作製した。面状発熱層は幅160mm、長さ240mm、厚みは42μmであった。
(3)電極の作製
上記面状発熱層において、幅160mm側の両端に銀ペーストを幅5mm塗布後、その上にT字型に切断した幅4mm、長さ160mm、厚さ1mmの銅板を設置し、その上から再度銀ペーストを塗布する事で銅板電極を固定した。
(4)被覆用絶縁層の作製
幅155mm、長さ239mmに切断した厚さ2mmのポリカーボネート樹脂からなる絶縁性基材を面状発熱層上に設置し固定後、更にその上に幅190mm、長さ270mmに切断した厚さ3mmの絶縁性基板を接着固定して面状発熱体を作製した。
(5)面状発熱体の評価
電極間抵抗値の測定はDIGITAL MULTTIMETER(CUSTOM、CDM-17D)を用いて測定を行い、面状発熱体の面上温度は放射温度計(TASCO、THI-44NH)を用いて測定を行った。面状発熱温度測定においては、面状温度が100℃以上を示した場合においては、それ以上の印加電圧下での測定は行わなかった。面状発熱層の電流値は、面状発熱層と直列に配線した電流測定装置DIGITAL MULTTIMETER(CUSTOM、CDM-17D)を用いて測定を行った。面状発熱体の発熱特性評価は、可変電圧調整器(YAMABISHI ELECTRIC CO.,LTD.S-130-10)を用いて印加電圧をAC5、10、15、20、25、30Vと変圧し、変圧後15分後の面上温度を、放射温度計を用いて測定を行った。これらの測定は、恒温恒湿室(室温23℃、湿度27%)において行った。それらの結果を表3に示した。
[実施例2]
面状発熱層を幅40mm、長さ40mm、厚み57μmにし、面状発熱層の幅40mm側の両端に電極を設置した以外は、実施例1と同様な方法で面状発熱体を作製した。それらの結果を表4に示した。
[実施例3]
面状発熱層を幅40mm、長さ80mm、厚みは60μmにし、面状発熱層の幅40mm側の両端に電極を設置した以外は、実施例1と同様な方法で面状発熱体を作製した。それらの結果を表5に示した。
[実施例4]
面状発熱層を幅40mm、長さ120mm、厚みは66μmにし、面状発熱層の幅40mm側の両端に電極を設置した以外は、実施例1と同様な方法で面状発熱体を作製した。それらの結果を表6に示した。
[実施例5]
多層カーボンナノチューブの添加量を10gにした以外は、実施例1と同様な方法で面状発熱体を作製した。面状発熱層は幅160mm、長さ240mm、厚みは47μmであった。それらの結果を表7に示した。
[実施例6]
多層カーボンナノチューブの添加量を25gにした以外は、実施例1と同様な方法で面状発熱体を作製した。面状発熱層は幅160mm、長さ240mm、厚みは83μmであった。それらの発熱特性結果を表8に示した。
[実施例7]
(6)面状発熱体の表面温度変化
実施例1で作製した面状発熱体を使用し、印加電圧DC24Vを印加した際の面状発熱体中央部の表面温度変化を、印加後5、10、15、30、45、60、75、90分毎に放射温度計で測定を行った。それらの結果を図1に示した。
[実施例8]
(7)面状発熱体の面上温度均一性
実施例1で作製した面状発熱体を使用し、印加電圧DC24Vを印加して90分後における面状発熱体の図2に示した11部位の面上温度測定を行い、面上温度均一性の測定を行った。
それらの結果を表9に示した。
[比較例1]
多層カーボンナノチューブをケッチェンブラック[(株)ライオン(株)製;EC600JD]に変更した以外は実施例1と同様な方法で面状発熱体を作製した。面状発熱層は幅160mm、長さ240mm、厚みは41μmであった。それらの結果を表10に示した。
[比較例2]
多層カーボンナノチューブをデンカブラック[電気化学工業(株)社製;HS-100]に変更した以外は実施例1と同様な方法で面状発熱体を作製した。面状発熱層は幅160mm、長さ240mm、厚みは43μmであった。それらの結果を表11に示した。
[比較例3]
比較例1で作製したケッチェンブラック膜を用いて、実施例7に示した方法で、面状発熱体中央部の表面温度変化測定を行った。それらの面上温度均一性の結果を図1に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
実施例1~8と比較例1、2により、本面状発熱体の発熱層に用いられる導電性材料としては、粉体抵抗率の高いカーボンブラックではなく、粉体抵抗率が低い微細炭素繊維を用いた事で、優れた面状発熱特性を有した面状発熱体になった事は明白である。
実施例1~6により、本面状発熱体は、面上温度が上昇した状態においても、算出される電極間抵抗値に大きな差が生じる事はないため、本面状発熱体はPTC特性を示さないことがわかる。
実施例7により、本面状発熱体は発熱応答性が速い事が確認でき、また時間が経過しても、温度上昇がない優れた面状発熱体であることがわかる。一方、比較例1、比較例2の面状発熱体は印加電圧30Vにおいても電流が流れず、発熱しないことがわかる。
実施例8により、本面状発熱体は温度均一性が高い面状発熱体であることがわかる。
本発明の微細炭素繊維水分散液を用いることで、面状発熱効果を発現する導電性微細炭素繊維膜を得ることができる。そのため、電気カーペット、床暖房、壁面暖房機器、道路や屋根の融雪用もしくは鏡の防曇用ヒーターまたはパイプラインの加熱や保温に用いられる加熱ヒーター等の加熱源として利用する事ができる。
実施例7及び比較例3における面状発熱体の表面温度変化の経時変化グラフである。 実施例8における面状発熱体の温度均一性測定を行った部位を示した図である。 本発明に係る炭素繊維構造体の第一中間体のSEM写真である。 本発明に係る炭素繊維構造体の第一中間体のTEM写真である。 本発明に係る炭素繊維構造体のSEM写真である。 本発明に係る炭素繊維構造体のTEM写真である。 本発明に係る炭素繊維構造体のSEM写真である。 本発明に係る炭素繊維構造体および該炭素繊維構造体の中間体のX線回折チャートである。 本発明に係る炭素繊維構造体および該炭素繊維構造体の中間体のラマン分光分析チャートである。

Claims (22)

  1. 微細炭素繊維水分散液を用いて得られた事を特徴とする面状発熱体。
  2. 微細炭素繊維水分散液を基材表面に塗布し、乾燥して得られた事を特徴とする請求項1に記載の面状発熱体。
  3. 前記微細炭素繊維水分散液が、両性界面活性剤を含有することを特徴とする請求項1または2に記載の面状発熱体。
  4. 前記微細炭素繊維水分散液が、両性界面活性剤と分散安定剤を添加されてなることを特徴とする請求項1~3記載の面状発熱体。
  5. 前記両性界面活性剤がスルホベタイン骨格である両性親水基を含有する事を特徴とする請求項1~4に記載の面状発熱体。
  6. 前記両性界面活性剤が3-(N,N-ジメチルステアリルアンモニオ)プロパンスルホネート、3-(N、N-ジメチルミリスチルアンモニオ)プロパンスルホネート、3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホネート、n-ヘキサデシル-N、およびN´-ジメチル-3-アンモニオ-1-プロパンスルホネートから選択される一種以上である事を特徴とする請求項1~5に記載の面状発熱体。
  7. 前記分散安定剤がアミノ基または水酸基を有する低分子化合物、アミノ基または水酸基を有するオリゴマーおよびアミノ基または水酸基を有する水溶性高分子から選択される一種以上である事を特徴とする請求項4に記載の面状発熱体。
  8. 前記分散安定剤が、糖アルコール、グリセロール、多級アルコール、またはポリビニルアルコールのいずれかである請求項7に記載の面状発熱体。
  9. 前記微細炭素繊維が外径0.5~800nmの微細炭素繊維から構成される事を特徴とする請求項1~8に記載の面状発熱体。
  10. 前記微細炭素繊維が単層、二層、三層、四層または多層カーボンナノチューブであることを特徴とする請求項1~9に記載の面状発熱体。
  11. 微細炭素繊維が外径15~100nmのカーボンナノチューブから構成されるネットワーク状のカーボンナノチューブ構造体であって、前記カーボンナノチューブ構造体は、前記カーボンナノチューブが複数延出する態様で、当該カーボンナノチューブを互いに結合する粒状部を有しており、かつ当該粒状部は前記カーボンナノチューブの成長過程において形成されてなるものであって前記カーボンナノチューブ外形の1.3倍以上の大きさを有するものであり、ラマン分光分析で514nmにて測定されるI/Iが0.1以下である事を特徴とする請求項1~10に記載の面状発熱体。
  12. 前記多層カーボンナノチューブが含有タール分0.5%以下の高純度な物を用いる事を特徴とする請求項1~11記載の面状発熱体。
  13. 前記微細炭素繊維水分散液がカーボンナノチューブを質量比で0.01~30%含有する事を特徴とする請求項1~12に記載の面状発熱体。
  14. 微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜が面状発熱層となる事を特徴とする請求項1~13に記載の面状発熱体。
  15. 前記面状発熱層の膜厚が0.4mm以下である事を特徴とする請求項1~14に記載の面状発熱体。
  16. 前記面状発熱層の電極間抵抗値が300Ω以下である事を特徴とする請求項1~15に記載の面状発熱体。
  17. 前記面状発熱層の両端のみに電極を設置する事を特徴とする請求項1~16に記載の面状発熱体。
  18. 前記面状発熱層が、PTC特性を有さない事を特徴とする請求項1~17に記載の面状発熱体。
  19. 絶縁性基材上に微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜、電極から構成された事を特徴とする請求項1~18に記載の面状発熱体。
  20. 絶縁性基材上に微細炭素繊維水分散液を用いて得られた導電性微細炭素繊維膜、電極、導電性微細炭素繊維膜及び電極を被覆する絶縁性基材から構成された事を特徴とする請求項1~19に記載の面状発熱体。
  21. 微細炭素繊維水分散液を用いて絶縁性基材の表面に塗布する塗布工程と、前記絶縁性基材上に塗布した微細炭素繊維水分散液を乾燥する事で面状発熱層を形成する面状発熱層形成工程と、前記面状発熱層に電極を形成する電極形成工程とを備えた事を特徴とする面状発熱体の製造方法。
  22. 微細炭素繊維水分散液を用いて絶縁性基材の表面に塗布する塗布工程と、前記絶縁性基基材上に塗布した微細炭素繊維水分散液を乾燥する事で面状発熱層を形成する面状発熱層形成工程と、前記面状発熱層に電極を形成する電極形成工程と、前記発熱層及び電極を被覆する絶縁性基材を形成する絶縁層形成工程とを備えた事を特徴とする請求項21に記載の面状発熱体の製造方法。
PCT/JP2008/073628 2007-12-26 2008-12-25 微細炭素繊維水分散液を用いて得られた面状発熱体及びその製造方法 WO2009081986A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/810,901 US20110036829A1 (en) 2007-12-26 2008-12-25 Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
EP08865060.1A EP2268102A4 (en) 2007-12-26 2008-12-25 BY MEANS OF DISPERSION OF FINE CARBON FIBERS IN WATER, FLOOR HEATING ELEMENT AND METHOD OF PRODUCING THE FLOOR HEATING ELEMENT
JP2009547135A JP5487502B2 (ja) 2007-12-26 2008-12-25 微細炭素繊維水分散液を用いて得られた面状発熱体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007333547 2007-12-26
JP2007-333547 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081986A1 true WO2009081986A1 (ja) 2009-07-02

Family

ID=40801284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073628 WO2009081986A1 (ja) 2007-12-26 2008-12-25 微細炭素繊維水分散液を用いて得られた面状発熱体及びその製造方法

Country Status (4)

Country Link
US (1) US20110036829A1 (ja)
EP (1) EP2268102A4 (ja)
JP (1) JP5487502B2 (ja)
WO (1) WO2009081986A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068424A3 (en) * 2010-11-17 2012-09-27 Battelle Memorial Institute Carbon nanotube thin film laminate resistive heater
JP2015126180A (ja) * 2013-12-27 2015-07-06 株式会社 シリコンプラス 融雪太陽電池パネルおよび融雪パネル
JP2017004761A (ja) * 2015-06-10 2017-01-05 エコホールディングス株式会社 発熱体
JP2018190741A (ja) * 2013-12-27 2018-11-29 株式会社 シリコンプラス 融雪パネル
JP2020047519A (ja) * 2018-09-20 2020-03-26 株式会社樫の木製作所 フレキシブルシート状発熱素子

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004953A1 (de) * 2007-01-26 2008-07-31 Tesa Ag Heizelement
US8603620B2 (en) * 2008-07-04 2013-12-10 Hodogaya Chemical Co., Ltd. Carbon fiber and composite material
US20100258111A1 (en) * 2009-04-07 2010-10-14 Lockheed Martin Corporation Solar receiver utilizing carbon nanotube infused coatings
EP2421702A4 (en) * 2009-04-24 2013-01-02 Applied Nanostructured Sols NED SIGNATURE CONTROL MATERIAL
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
WO2010129234A2 (en) * 2009-04-27 2010-11-11 Lockheed Martin Corporation Cnt-based resistive heating for deicing composite structures
US20110089958A1 (en) * 2009-10-19 2011-04-21 Applied Nanostructured Solutions, Llc Damage-sensing composite structures
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9167736B2 (en) * 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
WO2011109480A2 (en) 2010-03-02 2011-09-09 Applied Nanostructed Solution, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8787001B2 (en) * 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
WO2013018153A1 (ja) * 2011-07-29 2013-02-07 富士通株式会社 グラフェンナノメッシュの製造方法及び半導体装置の製造方法
DE102011086448A1 (de) 2011-11-16 2013-05-16 Margarete Franziska Althaus Verfahren zum Herstellen eines Heizelements
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
CA2955361A1 (en) 2014-07-18 2016-01-21 Kim Edward ELVERUD Resistive heater
US10035918B2 (en) * 2014-09-05 2018-07-31 Nitto Denko Corporation Carbon nanotube coating composition
EP3245844B1 (en) 2015-01-12 2020-05-27 Laminaheat Holding Ltd. Fabric heating element
WO2017068416A1 (en) 2015-10-19 2017-04-27 Laminaheat Holding Ltd. Laminar heating elements with customized or non-uniform resistance and/or irregular shapes, and processes for manufacture
US11511996B2 (en) * 2018-09-03 2022-11-29 Sumitomo Electric Industries, Ltd. Carbon nanotube composite, method for manufacturing the same, and method for manufacturing refined carbon nanotube
USD911038S1 (en) 2019-10-11 2021-02-23 Laminaheat Holding Ltd. Heating element sheet having perforations
CN111542140B (zh) * 2020-06-08 2022-09-09 大连工业大学 一种基于碳纳米管膜的便携式电热元件的制备方法
US20220201803A1 (en) * 2020-12-17 2022-06-23 Thinnovations, LLC Thin film heater and method of making

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185737A (ja) * 1986-02-10 1987-08-14 Hitachi Cable Ltd 導電性樹脂組成物および導電性床シ−ト
JPH01151191A (ja) 1987-12-08 1989-06-13 Mitsubishi Electric Corp 自己温度制御形面発熱体
JPH08264268A (ja) 1995-03-23 1996-10-11 Idemitsu Kosan Co Ltd 面状発熱材料及び面状発熱体
JP2000026760A (ja) 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd 機能性コーティング剤組成物
JP2000058228A (ja) 1998-08-12 2000-02-25 Suzuki Sogyo Co Ltd 薄膜抵抗発熱体及びそれを用いたトナーの加熱定着用部材
JP2000072420A (ja) 1998-09-02 2000-03-07 Toyobo Co Ltd リン酸の回収方法およびそのリン酸を用いたポリベンザゾールの製造方法
JP2002075602A (ja) 2000-08-25 2002-03-15 Shimadzu Corp 面状発熱体
JP2003163104A (ja) 2001-11-28 2003-06-06 Mitsubishi Electric Corp 有機ptc組成物
JP2003276129A (ja) * 2002-03-26 2003-09-30 Osaka Gas Co Ltd 遠赤外線効果を有するコーティング構造
JP2004103766A (ja) 2002-09-09 2004-04-02 Toray Ind Inc 熱伝達体及びその製造方法
WO2004060798A1 (ja) 2002-12-06 2004-07-22 Hokkaido Technology Licensing Office Co., Ltd. ナノカーボン可溶化剤、その精製方法及び高純度ナノカーボンの製造方法
JP2005011651A (ja) 2003-06-18 2005-01-13 Idemitsu Kosan Co Ltd 面状発熱体、この面状発熱体を用いた暖房装置及び面状発熱体の製造方法
JP2005162877A (ja) 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
JP2006063436A (ja) 2004-07-27 2006-03-09 Nok Corp 炭素材料薄膜の製膜方法
JP2006202575A (ja) 2005-01-19 2006-08-03 Nippon Zeon Co Ltd 導電性組成物、導電性塗料、導電性繊維材料、及び面状発熱体
JP2007039623A (ja) 2005-07-08 2007-02-15 Hokkaido Univ カーボンナノチューブ分散ペースト、カーボンナノチューブ分散溶液およびその製造方法
JP2007092234A (ja) 2005-09-29 2007-04-12 Toray Ind Inc 導電性繊維およびそれを用いてなる繊維製品
JP2007109640A (ja) 2005-09-13 2007-04-26 Ist Corp 面状発熱体及びその製造方法
JP2007182363A (ja) 2005-03-24 2007-07-19 Hokkaido Technology Licence Office Co Ltd 微小カーボン分散物
JP2007272223A (ja) * 2006-03-10 2007-10-18 Ist Corp 発熱定着ベルト及びその製造方法並びに画像定着装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367851A (en) * 1964-04-09 1968-02-06 Minnesota Mining & Mfg Non-woven conductive paper mat
JPS61161686A (ja) * 1985-01-09 1986-07-22 徳丸 千之助 シ−ト状発熱体
US5879746A (en) * 1992-08-28 1999-03-09 Daikin Industries, Ltd. Aqueous dispersion compositions of fluorine-containing melt-processable resins
JP3962773B2 (ja) * 2002-12-05 2007-08-22 独立行政法人科学技術振興機構 原料吹き付け式カーボンナノ構造物の製造方法及び装置
JP4945888B2 (ja) * 2003-10-09 2012-06-06 富士ゼロックス株式会社 複合体およびその製造方法
JP2005310722A (ja) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp 色素増感型太陽電池
JP2007103625A (ja) * 2005-10-04 2007-04-19 Sony Corp 機能性デバイス及びその製造方法
KR100749886B1 (ko) * 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
JP2007237580A (ja) * 2006-03-09 2007-09-20 Mitsubishi Rayon Co Ltd 表面保護フィルム、その製造法およびそれを有する積層体

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185737A (ja) * 1986-02-10 1987-08-14 Hitachi Cable Ltd 導電性樹脂組成物および導電性床シ−ト
JPH01151191A (ja) 1987-12-08 1989-06-13 Mitsubishi Electric Corp 自己温度制御形面発熱体
JPH08264268A (ja) 1995-03-23 1996-10-11 Idemitsu Kosan Co Ltd 面状発熱材料及び面状発熱体
JP2000026760A (ja) 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd 機能性コーティング剤組成物
JP2000058228A (ja) 1998-08-12 2000-02-25 Suzuki Sogyo Co Ltd 薄膜抵抗発熱体及びそれを用いたトナーの加熱定着用部材
JP2000072420A (ja) 1998-09-02 2000-03-07 Toyobo Co Ltd リン酸の回収方法およびそのリン酸を用いたポリベンザゾールの製造方法
JP2002075602A (ja) 2000-08-25 2002-03-15 Shimadzu Corp 面状発熱体
JP2003163104A (ja) 2001-11-28 2003-06-06 Mitsubishi Electric Corp 有機ptc組成物
JP2003276129A (ja) * 2002-03-26 2003-09-30 Osaka Gas Co Ltd 遠赤外線効果を有するコーティング構造
JP2004103766A (ja) 2002-09-09 2004-04-02 Toray Ind Inc 熱伝達体及びその製造方法
WO2004060798A1 (ja) 2002-12-06 2004-07-22 Hokkaido Technology Licensing Office Co., Ltd. ナノカーボン可溶化剤、その精製方法及び高純度ナノカーボンの製造方法
JP2005011651A (ja) 2003-06-18 2005-01-13 Idemitsu Kosan Co Ltd 面状発熱体、この面状発熱体を用いた暖房装置及び面状発熱体の製造方法
JP2005162877A (ja) 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology カーボンナノチューブ分散極性有機溶媒及びその製造方法
JP2006063436A (ja) 2004-07-27 2006-03-09 Nok Corp 炭素材料薄膜の製膜方法
JP2006202575A (ja) 2005-01-19 2006-08-03 Nippon Zeon Co Ltd 導電性組成物、導電性塗料、導電性繊維材料、及び面状発熱体
JP2007182363A (ja) 2005-03-24 2007-07-19 Hokkaido Technology Licence Office Co Ltd 微小カーボン分散物
JP2007039623A (ja) 2005-07-08 2007-02-15 Hokkaido Univ カーボンナノチューブ分散ペースト、カーボンナノチューブ分散溶液およびその製造方法
JP2007109640A (ja) 2005-09-13 2007-04-26 Ist Corp 面状発熱体及びその製造方法
JP2007092234A (ja) 2005-09-29 2007-04-12 Toray Ind Inc 導電性繊維およびそれを用いてなる繊維製品
JP2007272223A (ja) * 2006-03-10 2007-10-18 Ist Corp 発熱定着ベルト及びその製造方法並びに画像定着装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MICHAEL, J. O'CONNEL ET AL., SCIENCE, vol. 297, 26 July 2002 (2002-07-26), pages 593 - 596
S. CUI ET AL., CARBON, vol. 41, 2003, pages 797 - 809
See also references of EP2268102A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068424A3 (en) * 2010-11-17 2012-09-27 Battelle Memorial Institute Carbon nanotube thin film laminate resistive heater
US20140034633A1 (en) * 2010-11-17 2014-02-06 Battelle Memorial Institute Carbon nanotube thin film laminate resistive heater
US9468043B2 (en) * 2010-11-17 2016-10-11 Battelle Memorial Institute Carbon nanotube thin film laminate resistive heater
US20160379740A1 (en) * 2010-11-17 2016-12-29 Battelle Memorial Institute Carbon Nanotube Thin Film Laminate Resistive Heater
US10109400B2 (en) * 2010-11-17 2018-10-23 Battelle Memorial Institute Carbon nanotube thin film laminate resistive heater
JP2015126180A (ja) * 2013-12-27 2015-07-06 株式会社 シリコンプラス 融雪太陽電池パネルおよび融雪パネル
JP2018190741A (ja) * 2013-12-27 2018-11-29 株式会社 シリコンプラス 融雪パネル
JP2017004761A (ja) * 2015-06-10 2017-01-05 エコホールディングス株式会社 発熱体
JP2020047519A (ja) * 2018-09-20 2020-03-26 株式会社樫の木製作所 フレキシブルシート状発熱素子
JP7265238B2 (ja) 2018-09-20 2023-04-26 株式会社樫の木製作所 フレキシブルシート状発熱素子

Also Published As

Publication number Publication date
US20110036829A1 (en) 2011-02-17
EP2268102A1 (en) 2010-12-29
JP5487502B2 (ja) 2014-05-07
EP2268102A4 (en) 2013-08-14
JPWO2009081986A1 (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5487502B2 (ja) 微細炭素繊維水分散液を用いて得られた面状発熱体及びその製造方法
JP3776111B1 (ja) 炭素繊維構造体
Atif et al. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers
KR101294596B1 (ko) 탄소나노튜브를 포함하는 면상 발열체 페이스트 조성물 및 그 제조방법
Meng et al. Polymer composites of boron nitride nanotubes and nanosheets
JP2010045025A (ja) 微細炭素繊維を用いた発熱体及びその製造方法
Moniruzzaman et al. Polymer nanocomposites containing carbon nanotubes
JP3962376B2 (ja) 極性重合体及び単層壁炭素ナノチューブを含有する複合体材料
EP2351704A1 (en) Aqueous dispersion of carbon microfibers, process for producing the aqueous dispersion, and article produced using same
WO2010002004A1 (ja) 炭素繊維及び複合材料
Park et al. Electrodeposition of exfoliated graphite nanoplatelets onto carbon fibers and properties of their epoxy composites
Pal et al. Synergistic effects of zirconia-coated carbon nanotube on crystalline structure of polyvinylidene fluoride nanocomposites: electrical properties and flame-retardant behavior
WO2011077784A1 (ja) カーボンナノチューブ複合構造体および粘着部材
AU2006292615A1 (en) Conductive silicone and methods for preparing same
KR101337867B1 (ko) 탄소나노물질-고분자 복합체 및 그 제조 방법
JP2007122927A (ja) 導電性シート
WO2007049588A1 (ja) 導電性コーティング材料
Leggiero et al. High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition
TWI339465B (en) Electromagnetic shielding layer and method for making the same
Zhu et al. Direct fabrication of single-walled carbon nanotube macro-films on flexible substrates
JP2007138039A (ja) リサイクル複合材料
JP2007119647A (ja) 複合材料
Khan et al. Research advancement towards polymer/nanodiamond composite in buckypaper: a review
JP2006183227A (ja) 炭素繊維構造体
JP2007119693A (ja) 着色高分子組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865060

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2009547135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008865060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12810901

Country of ref document: US