TWI339465B - Electromagnetic shielding layer and method for making the same - Google Patents

Electromagnetic shielding layer and method for making the same Download PDF

Info

Publication number
TWI339465B
TWI339465B TW96151262A TW96151262A TWI339465B TW I339465 B TWI339465 B TW I339465B TW 96151262 A TW96151262 A TW 96151262A TW 96151262 A TW96151262 A TW 96151262A TW I339465 B TWI339465 B TW I339465B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electromagnetic shielding
shielding layer
substrate
nanotube film
Prior art date
Application number
TW96151262A
Other languages
Chinese (zh)
Other versions
TW200929725A (en
Inventor
Feng Yuen Dai
Chi Chuang Ho
Ji-Hong Pan
Yong Zheng
Kai-Li Jiang
Liang Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96151262A priority Critical patent/TWI339465B/en
Publication of TW200929725A publication Critical patent/TW200929725A/en
Application granted granted Critical
Publication of TWI339465B publication Critical patent/TWI339465B/en

Links

Description

1339465 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種電磁屏蔽層及其製備方法,尤其涉及 一種基於奈米碳管的電磁屏蔽層及其製備方法。 【先前技術】 從漬年日本科學家Iijima首次發現奈米碳管以來 (請參見 Helical microtubules of graphitic carb〇n,Nature,1339465 IX. Description of the Invention: [Technical Field] The present invention relates to an electromagnetic shielding layer and a method of fabricating the same, and more particularly to an electromagnetic shielding layer based on a carbon nanotube and a preparation method thereof. [Prior Art] Since the first discovery of carbon nanotubes by Japanese scientist Iijima (see Helical microtubules of graphitic carb〇n, Nature,

SumioIijima’ vo丨 354, p56(199l)),以奈米碳管為代表 的奈米材料以其獨特的結構和性質引起了人們極大的關 注。近幾年來,隨著奈米碳管及奈米材料研究的不斷深入, 其廣闊的應用前景不斷顯現出來。如,由於奈米破管所且 有的獨特的電磁學、光學、力學、化學等性能,大量有關 其在電子發射裝置、感測器、新型光學材料、電磁屏蔽材 料等領域的應用研究不斷被報導。 、隨著電子工業的迅速發展,各種小型機電產品的電磁 ,干擾日益嚴重。4 了提高各種小型機電產品的安全性 能’該小㈣電產品巾各個電子料件與機殼均要有良好 的接地性能。A 了降低機殼的重量和便於製造,先前機殼 的材料一般均採用塑膠。因此必須在需要接地部位的機殼 上喷塗上導電塗料形成—電磁屏蔽層,如手機殼、刪、 數碼相機等產品f造過程中均涉及到機殼或機蓋等零部件 的導電塗料的喷塗問題。嘴塗導電塗料的方法與電渡、真 •X· /賤射等其他獲得表面導電層的方法相比,^備簡單,成 本低廉、知工方便’特別適用於形狀複雜的塑膠表面的塗 吻465 是,起到屏蔽電磁波的目的。此外,導電塗料塗覆在電視 •頁像嘗上,關閉電視機後可以消除靜電;利用導電塗料 的導電特性’可以將電能轉化成熱能,用於取暖和冬季汽 車坡螭的除霜等。SumioIijima' vo丨 354, p56 (199l)), nanomaterials represented by carbon nanotubes have attracted great attention due to their unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of nano-tubes, a large number of applications in the fields of electron-emitting devices, sensors, new optical materials, and electromagnetic shielding materials are constantly being studied. Report. With the rapid development of the electronics industry, the electromagnetic and interference of various small mechanical and electrical products has become increasingly serious. 4 Improve the safety of various small electromechanical products. The electronic parts and casing of the small (four) electric product towel must have good grounding performance. A. The weight of the casing is reduced and it is easy to manufacture. The materials of the previous casing are generally made of plastic. Therefore, it is necessary to spray a conductive coating on the casing that needs the grounding part to form an electromagnetic shielding layer, such as a mobile phone case, a blank, a digital camera, etc., which are involved in the conductive coating of the casing or the cover. Spraying problem. The method of coating the conductive coating on the mouth is simpler, cheaper, and more convenient than the methods of obtaining the surface conductive layer such as electric ferry, true X··贱, etc. It is especially suitable for the kiss of a plastic surface with complicated shapes. 465 is to shield electromagnetic waves. In addition, conductive coatings are applied to the TV page. When the TV is turned off, the static electricity can be eliminated. The conductive properties of the conductive coating can be used to convert electrical energy into heat for heating and defrosting of winter car slopes.

,先前技術中將導電塗料噴塗在需要接地部位的機殼上 形成一電磁屏蔽層。該電磁屏蔽層的係以含有粘合劑的聚 口物為主要成膜物質,在其中摻入金屬粉末、炭黑、石墨、 金屬氧化物等導電填料所形成的。為了應用於大多數的生 產工藝中,導電塗料所形成的電磁屏蔽層應該具有優良的 耐磨性以抵抗由後續各種小型機電產品加工所引起的到 傷。此外,該電磁屏蔽層還應該具有良好的粘附特性,以 防止電磁屏蔽層的剝離,而污染周圍電子元件導致其失 靈。目前所用的導電塗料種類較多,喷塗導電塗料所形成 的電磁屏蔽層厚度一般為20微米〜3〇微米。然導電塗料具 有以下缺點:其導電塗料在用作電磁屏蔽層時厚度太 薄,會達不到足夠的屏蔽性能,故先前的電磁屏蔽層具有 -定的厚度’但由於導電塗料成本較高,從而增加;電磁 屏蔽層的成本;其二,以導電塗料製備的電磁屏蔽層厚度 較厚時’會造成導電塗料的堆積密度過大,導致所形成 電磁屏蔽層導電性不穩定。 有鑒于此’提供-種具有優良的導電性能的電磁 層及其製備方法實為必要。 【發明内容】 包括一導電層和一奈米碳管薄膜結 一種電磁屏蔽層 1339465 構,所述導電層設置於所述奈米碳管薄膜結構的表面,並 '與泫奈米碳管薄膜結構表面電接觸。 ' 種電磁屏蔽層的製備方法,包括以下步驟:提供一 基體,該基體具有一表面,·製備一奈米碳管薄膜;在所述 基體的表面形成一奈米碳管薄膜結構;在所述奈米碳管薄 膜結構的表面形成-導電層,從而在所述基體的表面形成 一電磁屏蔽層。 • 與先前技術相比,本技術方案實施例提供的電磁屏蔽 層及其製備方法與先前技術中僅含導電塗料的電磁屏蔽層 及其製備方法相比,所制得的電磁屏蔽層中包括一導電層 和-奈米碳管薄膜結構’奈米碳管薄膜結構中奈米碳“ 勻分佈,導電性均-,可以有效提高所製備的電磁屏蔽層 導電性的穩定性。 【實施方式】 下面將結合附圖對本技術方案實施例作進一步的詳細 _說明。 請參考1,纟技術方案實施例提供一種電磁屏蔽層 10和一基體20。該基體20具有一表面2〇1,所述電磁屏 蔽層10設置在所述基體20的表面2〇1,用於屏蔽電磁波。 所述電磁屏蔽層10包括一第一導電層14、—第二導電屛 16和一奈米碳管薄膜結構12。所述第二導電層16設置於 所述基體20的表面201。所述奈米碳管薄膜結構12設置 ,於所述第一導電層14和第二導電層16之間,並分別與所 述第-導電層14和第二導電層16電接觸。所述電磁 1339465 層10的厚度為20微米〜30微米。 所述基體20為需要在其表面201形成電磁屏蔽層ι〇 的任意材料製成。如玻璃、石英、金剛石或塑膠等硬性材 料或柔性材料。其中,所述基體2〇的形狀大小不限,可依 據實際需要進行改變。本技術方案實施例的基體2〇優選^ 一塑膠基體。 、— 所述第一導電層14和第二導電層16的厚度均為ι〇 _微米〜15微米。所述第一導電層14和第二導電層16包括 導電金屬或者導電聚合物。本實施例中第一導電層14和第 二導電層16優選包括導電鎳。 所述奈米碳管薄膜結構12包括一奈米碳管層或者至 少兩個重疊設置的奈米碳管層,每個奈米碳管層中奈米碳 管沿同一方向定向排列。所述至少兩個重疊設置的奈米碳 管層中相鄰兩個奈米碳管層中的奈米碳管排列方向具有一 交叉角度a,0%ag〇。,具體可依據實際需求製備。相鄰 鲁兩個奈米碳管層之間通過凡德瓦爾力緊密結合。所述奈米 碳管層包括一奈米碳管薄膜或者至少兩個平行且無間隙鋪 設的奈米碳管薄膜。所述奈米碳管薄膜包括多個首尾相連 且定向排列的奈米碳管束’該奈米碳管束包括多個長度相 等且相互平行排列的奈米碳管。所述奈米碳管薄膜中的奈 米碳管束的長度基本相同,奈米碳管束之間通過凡德瓦爾 力緊途、連接。請參閱圖2’該奈米碳管薄膜包括多個奈米 ^碳管片段,每個奈米碳管片段具有大致相等的長度且每個 奈米碳管片段由多個相互平行的奈米碳管束構成,奈米碳 1339465 管片段兩端通過凡德瓦爾力相互連接。 本技術方案實施例中,由於採用氣相沈積法在4英寸 ^的基底生長超順排奈米碳管陣列,並進一步地處理得到一 奈米碳管薄膜,故該奈米碳管薄膜的寬度為〇 〇1厘米〜 厘米,厚度為10奈米〜1〇〇微米。上述奈米碳管薄臈中的 奈米碳管為單壁奈米碳管、雙壁奈米碳管或者多壁奈米碳 管。當奈米碳管薄膜中的奈米碳管為單壁奈米碳管時,該 鲁單壁奈米碳官的直徑為〇.5奈米〜5〇奈米。當奈米碳管薄 膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管的直 徑為1·0奈米〜50奈米。當奈米碳管薄膜中的奈米碳管為 多壁奈米碳管時,該多壁奈米碳管的直徑為15奈米〜5〇 奈米。 所述第二導電層16係一可選擇的結構。所述奈米碳管 薄膜結構12可以利用本身的粘性直接固定於所述基體 的表面。所述第-導電層14設置於所述奈米碳管薄膜結構 鳙12的表面,同時可進一步將所述奈米碳管薄膜結構12更 好地固定於所述基體2〇的表面201。 本技術方案實施例電磁屏蔽層1 〇的厚度優選為25微 米。該電磁屏蔽層1〇包括一第一導電層14、一第二導電 層16和一奈米碳管薄膜結構12。其中,該奈米碳管薄膜 結構12優選為五個奈米碳管層重疊設置,相鄰兩個奈米碳 S層中奈米碳官排列方向具有的交叉角度為〇度。每個奈 '米碳管層的厚度為100奈米。 請參考圖3,本技術方案實施例提供一種所述電磁屏In the prior art, a conductive coating is sprayed on a casing that requires a grounding portion to form an electromagnetic shielding layer. The electromagnetic shielding layer is formed by using a binder containing a binder as a main film-forming substance, and incorporating a conductive filler such as metal powder, carbon black, graphite, or metal oxide therein. In order to be used in most production processes, the electromagnetic shielding layer formed by the conductive coating should have excellent wear resistance to withstand the damage caused by subsequent processing of various small electromechanical products. In addition, the electromagnetic shielding layer should also have good adhesion characteristics to prevent peeling of the electromagnetic shielding layer, which contaminates surrounding electronic components and causes them to malfunction. At present, there are many types of conductive coatings, and the thickness of the electromagnetic shielding layer formed by spraying the conductive coating is generally 20 micrometers to 3 micrometers. However, conductive coatings have the following disadvantages: their conductive coatings are too thin when used as an electromagnetic shielding layer, and may not achieve sufficient shielding performance, so the previous electromagnetic shielding layer has a certain thickness 'but due to the high cost of conductive coatings, Therefore, the cost of the electromagnetic shielding layer is increased; secondly, when the thickness of the electromagnetic shielding layer prepared by the conductive coating is thick, the bulk density of the conductive coating is too large, resulting in unstable electrical conductivity of the formed electromagnetic shielding layer. In view of the above, it is necessary to provide an electromagnetic layer having excellent electrical conductivity and a method for preparing the same. SUMMARY OF THE INVENTION A conductive layer and a carbon nanotube film are formed as an electromagnetic shielding layer 1339465 structure, the conductive layer is disposed on the surface of the carbon nanotube film structure, and 'with a carbon nanotube film structure Surface electrical contact. A method for preparing an electromagnetic shielding layer, comprising the steps of: providing a substrate having a surface, preparing a carbon nanotube film; forming a carbon nanotube film structure on the surface of the substrate; The surface of the carbon nanotube film structure forms a conductive layer to form an electromagnetic shielding layer on the surface of the substrate. Compared with the prior art, the electromagnetic shielding layer provided by the embodiments of the present technical solution and the preparation method thereof are compared with the electromagnetic shielding layer containing only the conductive coating in the prior art and the preparation method thereof, and the electromagnetic shielding layer prepared includes one The conductive layer and the carbon nanotube film structure 'nanocarbon carbon film structure are uniformly distributed and the conductivity is uniform, which can effectively improve the stability of the prepared electromagnetic shielding layer. [Embodiment] The embodiment of the present technical solution will be further described in detail with reference to the accompanying drawings. Please refer to Fig. 1, an embodiment of the technical solution provides an electromagnetic shielding layer 10 and a substrate 20. The substrate 20 has a surface 2〇1, and the electromagnetic shielding The layer 10 is disposed on the surface 2〇1 of the substrate 20 for shielding electromagnetic waves. The electromagnetic shielding layer 10 includes a first conductive layer 14, a second conductive crucible 16 and a carbon nanotube film structure 12. The second conductive layer 16 is disposed on the surface 201 of the substrate 20. The carbon nanotube film structure 12 is disposed between the first conductive layer 14 and the second conductive layer 16, and respectively - Conductive 14 is in electrical contact with the second conductive layer 16. The thickness of the electromagnetic 1339465 layer 10 is from 20 micrometers to 30 micrometers. The substrate 20 is made of any material that needs to form an electromagnetic shielding layer on its surface 201. A rigid material or a flexible material such as quartz, diamond or plastic, wherein the shape of the substrate 2 is not limited, and may be changed according to actual needs. The substrate 2 of the embodiment of the present invention preferably has a plastic substrate. The thicknesses of the first conductive layer 14 and the second conductive layer 16 are both ι_μm to 15 μm. The first conductive layer 14 and the second conductive layer 16 comprise a conductive metal or a conductive polymer. A conductive layer 14 and a second conductive layer 16 preferably comprise conductive nickel. The carbon nanotube film structure 12 comprises a carbon nanotube layer or at least two overlapping carbon nanotube layers, each carbon nanotube The carbon nanotubes in the layer are aligned in the same direction. The arrangement of the carbon nanotubes in the adjacent two carbon nanotube layers in the at least two overlapping carbon nanotube layers has a cross angle a, 0 %ag〇., specific can be Prepared according to actual needs. The adjacent two carbon nanotube layers are closely combined by van der Waals force. The carbon nanotube layer comprises a carbon nanotube film or at least two parallel and gapless laying layers. The carbon nanotube film comprises a plurality of end-to-end and aligned carbon nanotube bundles. The carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and arranged in parallel with each other. The length of the carbon nanotube bundles in the carbon tube film is substantially the same, and the carbon nanotube bundles are closely connected and connected by the van der Waals force. Please refer to FIG. 2 'The carbon nanotube film includes a plurality of carbon nanotube segments Each of the carbon nanotube segments has substantially the same length and each of the carbon nanotube segments is composed of a plurality of mutually parallel carbon nanotube bundles, and the carbon carbon 1339465 tube segments are connected to each other by a van der Waals force. In the embodiment of the technical solution, the width of the carbon nanotube film is increased by using a vapor deposition method to grow a super-sequential carbon nanotube array on a 4 inch substrate and further processing to obtain a carbon nanotube film. For 〇〇 1 cm ~ cm, the thickness is 10 nm ~ 1 〇〇 micron. The carbon nanotubes in the above carbon nanotube thin crucible are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotubes in the carbon nanotube film are single-walled carbon nanotubes, the diameter of the single-walled nanocarbon is 〇5 nm to 5 〇 nanometer. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the diameter of the double-walled carbon nanotube is from 1.0 nm to 50 nm. When the carbon nanotube in the carbon nanotube film is a multi-walled carbon nanotube, the diameter of the multi-walled carbon nanotube is 15 nm to 5 Å. The second conductive layer 16 is an optional structure. The carbon nanotube film structure 12 can be directly fixed to the surface of the substrate by its own viscosity. The first conductive layer 14 is disposed on the surface of the carbon nanotube film structure ,12, and the carbon nanotube film structure 12 can be further fixed to the surface 201 of the substrate 2〇. The thickness of the electromagnetic shielding layer 1 〇 of the embodiment of the present technical solution is preferably 25 μm. The electromagnetic shielding layer 1 includes a first conductive layer 14, a second conductive layer 16, and a carbon nanotube film structure 12. Wherein, the carbon nanotube film structure 12 is preferably arranged in an overlapping manner of five carbon nanotube layers, and the intersection angle of the carbon nanotubes in the adjacent two nanocarbon S layers is a twist. The thickness of each nanocarbon tube layer is 100 nm. Please refer to FIG. 3 , the embodiment of the technical solution provides the electromagnetic screen

11 (S 1339465 蔽層10的製備方法,其包括以下步驟: 步驟―:提供一基體20,該基體2〇具有一表面2〇1。 所述基體20為需要在其表面2〇1形成電磁 =材料製成。如玻璃、石英、金剛石或塑膠等硬:生材 :或柔性材料。本技術方案實施例優選的基體2〇為一塑勝 基體。 〆 步驟二:製備一奈米碳管薄膜。 該奈米碳管薄膜的製備方法包括以下步驟: (1)提供—奈来碳管陣列形成於—基底,優選地,該 陣列為超順排奈米碳管陣列。 Μ 本實施例中,超順排奈米碳管陣列的製備方法採用化 子亂相沈積法’其具體步驟包括:(a)提供—平整基底, 該^可選用P型或㈣梦基底,或選用形成有氧二層的 石夕基底’本實施例優選為採用4英寸㈣基底;⑴在基 - 句勻形成一催化劑層,該催化劑層材料可選用鐵 (Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c) 將上述形成有催化劑層的基底在氣中退 火約^0分鐘〜90分鐘;(d)將處理過的基底置於反應爐令, 在保遵氣體環境下加_ 5⑽。c〜7俄,然後通人碳源氣 體,應約5分鐘〜3〇分鐘’生長得到超順排奈米碳管陣列, 其高度為細微米〜_微米。該超順排奈米碳管陣列為至 二::固彼此平仃且垂直於基底生長的奈米碳管形成的純奈 米碳管陣列。通過上述控制生長條件,該超順排奈米碳管 車列中基本不含有雜質’如無定型碳或殘留的催化劑金屬 12 丄 wy465 -Γΐί。該奈米碳管陣列令的奈米碳管彼此通過凡德瓦爾 、在接觸形成陣列。該奈米碳管陣列與上述基底面積基 - 本相同。 t述妷源氣可選用乙炔、乙烯、甲烷等化學性質較活 的,,化合物’本實施例優選的碳源氣為乙炔;保護氣 -為氣或f月性氣體,本實施例優選的保護氣體為氮氣。 ,可以理解,本實施例提供的奈米碳管陣列不限於上述 _製備方法也可為石墨電極恒流電弧放電沈積法、鐳射蒗 發沈積法等。 … ()採用拉伸工具拉取上述奈米碳管陣列從而獲得 一奈米碳管薄膜。 本實%例中,採用一拉伸工具拉取上述奈米碳管陣列 從而獲得一奈米碳管薄膜的方法包括以下步驟:(a )從上 述不米石反官陣列中選定一定寬度的多個奈米碳管束片斷; (b )以一定速度沿基本垂直于奈米碳管陣列生長方向拉伸 •=多個奈米碳管束片斷,獲得一連續的奈米碳管薄膜,該 不米碳官薄膜中奈米碳管的排列方向平行于奈米碳管薄膜 的拉伸方向。 在上述拉伸過程中’該多個奈米碳管束片斷在拉力作 用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用’該選定的多個奈米碳管束片斷分別與其他奈米碳管片 斷首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。 »亥奈米碳官溥膜為擇優取向排列的多個奈米碳管束首尾相 連形成的具有一定寬度的奈米碳管薄膜。11 (S1339465 The preparation method of the cover layer 10, comprising the following steps: Step:: providing a substrate 20 having a surface 2〇1. The substrate 20 is required to form an electromagnetic layer on its surface 2〇1 The material is made of a hard material such as glass, quartz, diamond or plastic: a raw material: or a flexible material. The preferred substrate 2 of the embodiment of the present technical solution is a plastic matrix. 〆 Step 2: preparing a carbon nanotube film. The method for preparing the carbon nanotube film comprises the following steps: (1) providing a carbon nanotube array formed on the substrate, preferably, the array is a super-sequential carbon nanotube array. Μ In this embodiment, the super The preparation method of the tandem carbon nanotube array adopts the chemical chaotic phase deposition method, and the specific steps thereof include: (a) providing a flat substrate, the P-type or (four) dream substrate, or the formation of the aerobic two-layer layer. The Shixi base is preferably a 4-inch (four) substrate; (1) a catalyst layer is formed in the base-sentence, and the catalyst layer material may be iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof. One of the alloys; (c) the catalyst formed above The substrate is annealed in the gas for about 0 minutes to 90 minutes; (d) the treated substrate is placed in a reaction furnace, and _ 5 (10) is added in a gas atmosphere, and then the carbon source gas is passed. It should be about 5 minutes to 3 minutes to grow to obtain a super-sequential carbon nanotube array with a height of fine micron ~ _ micron. The super-sequential carbon nanotube array is up to two:: solid and flat to each other A pure carbon nanotube array formed by a substrate-grown carbon nanotube. By controlling the growth conditions described above, the super-sequential carbon nanotube column contains substantially no impurities such as amorphous carbon or residual catalyst metal 12 丄 wy 465 The carbon nanotube array allows the carbon nanotubes to form an array by contacting them with van der Waals. The array of carbon nanotubes is the same as the base area of the substrate. If the chemical properties of ethylene, methane, etc. are relatively active, the preferred carbon source gas of the present embodiment is acetylene; the shielding gas is gas or f-month gas, and the preferred shielding gas of the present embodiment is nitrogen. It is understood that The carbon nanotube array provided by the embodiment is not limited The preparation method can also be a graphite electrode constant current arc discharge deposition method, a laser burst deposition method, etc. () A tensile tool is used to pull the above-mentioned carbon nanotube array to obtain a carbon nanotube film. In one embodiment, the method of drawing the carbon nanotube array by using a stretching tool to obtain a carbon nanotube film comprises the steps of: (a) selecting a plurality of nanometers of a certain width from the non-meter stone reverse array; a carbon tube bundle segment; (b) stretching at a certain speed along a growth direction substantially perpendicular to the growth direction of the carbon nanotube array, = a plurality of carbon nanotube bundle segments, to obtain a continuous carbon nanotube film, which is in the carbon nanotube film The arrangement direction of the carbon nanotubes is parallel to the stretching direction of the carbon nanotube film. During the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the tensile force, Devalli's action 'The selected plurality of carbon nanotube bundle segments are continuously pulled out end to end with other carbon nanotube segments to form a carbon nanotube film. »Hennemi carbon bureaucratic film is a carbon nanotube film with a certain width formed by a plurality of carbon nanotube bundles arranged in a preferred orientation.

13 C S 1339465 步驟二中直接拉伸獲得的定向排列的奈米碳管薄膜具 有較好的均勻性,即具有均勻的厚度及均勻的導電性能。 -同時該直接拉伸獲得奈米碳管薄膜的方法簡單快速,適宜 進行工業化應用。 步驟三:在所述基體20的表面201形成一奈米碳管薄 膜結構12。 所述在基體20的表面201形成一奈米碳管薄膜結構 鲁12的方法包括以下步驟:提供一基板;將至少一個奈米碳 官薄膜鋪設於基板表面,去除基板外多餘的奈米碳管薄 膜;移除基板,形成一自支撐的奈米碳管薄膜結構12 ;將 該奈米碳管薄膜結構12鋪設在所述基體20的表面2〇1。 由於本實施例提供的超順排奈米碳管陣列中的奈米碳管非 常純淨,且由於奈米碳管本身的比表面積非常大,故該奈 米碳管薄膜本身具有較強的粘性,該奈米碳管薄膜可利用 其本身的粘性直接粘附於基板。 鲁 上述基板也可選用一框架結構,上述奈米碳管薄膜可 利用其本身的粘性直接粘附於固定框架結構,使奈米碳管 薄膜的四周通過固定框架結構固定’該奈米碳管薄膜的中 間部分懸空;奈米碳管薄膜黏附在框架結構表面,框架結 構外多餘的奈米碳管薄膜部分可以用小刀到去;移除框架 結構,得到一自支撐的奈米碳管薄膜結構12 ;將該奈米碳 管薄膜結構12鋪設在所述基體20的表面201。 , 本實施例中,上述基板或框架結構的大小可依據實際 需求確定。當基板或框架結構的寬度大於上述奈米碳管薄 1339465 膜的寬度時,可以將至少兩個奈米碳管薄膜平行且無間隙 -或/和重疊鋪設於基板或框架結構上,形成一奈米碳管薄膜 . 結構12。 ' 可以理解,還可以將至少一個奈米碳管薄膜直接鋪設 在所述基體20的表面201,在所述基體2〇的表面2〇ι形 成一奈米碳管薄臈結構12。或者將至少兩個奈米碳管薄膜 平行且無間隙或/和重疊鋪設在所述基體2〇的表面2〇ι, 鲁也可在所述基體20的表面2〇1形成一奈米碳管薄膜結構 12。所述的奈米碳管薄膜結構12具有拫好的粘性故上述 不米反g 4膜結構12可以利用自身的钻性比較牢固地固 定於所述基體20的表面2〇卜進一步’還可以通過一導電 枯結劑將上述奈米碳管薄膜結構12固定於所述基體 表面201。 另外,上述奈米碳管薄膜結構12可直接使用,或者也 可使用有機溶劑處理後再㈣。使用有機溶劑處理所述夺 2管薄膜結構12的過程包括:通過試管將有機溶劑滴落 在丁水碳管薄膜結構12表面浸潤整個奈米碳管薄膜結構 二將整個奈米碳管薄膜結構12浸入盛有有機溶劑的 ^次潤。該有機溶劑為揮發性有機溶劑,如乙醇、甲 酮、二氣乙烧或氣仿,本技術方案實施例中採用乙 在掘终1的奈米碳^㈣結構12經有機溶劑浸潤處理後, 平行二太Ϊ機溶劑的表面張力的作用T ’奈米碳管薄膜中 奈米以碳管片斷會部分聚集成奈米碳管束。因此,該 /、反&相結構!2表面體積比小m且具有良好 15 (:S ) 1339465 的機械強度及韌性。 步驟四:在所述奈米碳管薄膜結構12的表面形成一第 -一導電層14,從而在所述基體20的表面201形成一電磁 屏蔽層10。 將含有導電金屬或者導電聚合物的導電塗料通過刷 塗、次潰或者噴塗的方法沈積在所述奈米碳管薄膜結構12 的表面,在4(TC〜70°C的溫度,固化該導電塗料,從而形 _成所述的第一導電層14,得到所述的電磁屏蔽層1〇。 進一步地,還可以在所述基體20的表面201預先形成 .一第二導電層再將上述奈米碳管薄膜結構12形成在所 述第二導電層16的表面,最後,在所述奈米碳管薄膜結構 工2的表面形成一第一導電層14,從而在所述基體的表 面201形成一電磁屏蔽層1〇。 本技術方案實施例的電磁屏蔽層10中採用了奈米碳 B溥臈結構12取代了先前技術中電磁屏蔽層的部分導電 _塗料’使得所制得的電磁屏蔽層1G具有較優異的電磁屏蔽 性能,能有效屏蔽電磁波。而且,所述奈米碳管薄膜結構 通過拉伸工具從奈米碳管陣列中直接拉取奈米碳管而獲 得,製備方法簡單、容易實現。因此,本技術方案實施例 的電磁屏蔽層1G能有效解決由各種設備如移動通訊終 端、筆記本電腦、汽車導航裝置、商業設備和醫療設備之 類的内部元件產生的電磁波引起的電磁干擾問題。 ^综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟’以上所述者僅為本發明之較佳實施例, 16 (S > 1339465 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本技術方案實施例的電磁屏蔽層的結構示意 圖。 圖2為本技術方案實施例的電磁屏蔽層中奈米碳管薄 膜的掃描電鏡照片。 圖3為本技術方案實施例的電磁屏蔽層的製備方法流 程示意圖。 【主要元件符號說明】 電磁屏蔽層 10 奈米碳管薄膜結構 12 第一導電層 14 第一導電層 16 鲁基體 20 基體表面 201 1713 C S 1339465 The oriented aligned carbon nanotube film obtained by direct stretching in the second step has good uniformity, that is, has a uniform thickness and uniform electrical conductivity. - At the same time, the direct stretching method for obtaining a carbon nanotube film is simple and rapid, and is suitable for industrial application. Step 3: Form a carbon nanotube film structure 12 on the surface 201 of the substrate 20. The method for forming a carbon nanotube film structure 12 on the surface 201 of the substrate 20 comprises the steps of: providing a substrate; laying at least one nano carbon film on the surface of the substrate to remove excess carbon nanotubes outside the substrate a film; the substrate is removed to form a self-supporting carbon nanotube film structure 12; and the carbon nanotube film structure 12 is laid on the surface 2〇1 of the substrate 20. Since the carbon nanotubes in the super-sequential carbon nanotube array provided by the embodiment are very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. The carbon nanotube film can be directly adhered to the substrate by its own viscosity. The above substrate may also be provided with a frame structure, and the above-mentioned carbon nanotube film can be directly adhered to the fixed frame structure by its own viscosity, so that the periphery of the carbon nanotube film is fixed by the fixed frame structure 'the carbon nanotube film The middle portion is suspended; the carbon nanotube film adheres to the surface of the frame structure, and the excess portion of the carbon nanotube film outside the frame structure can be removed by a knife; the frame structure is removed to obtain a self-supporting carbon nanotube film structure 12 The carbon nanotube film structure 12 is laid on the surface 201 of the substrate 20. In this embodiment, the size of the above substrate or frame structure can be determined according to actual needs. When the width of the substrate or the frame structure is larger than the width of the thin film of the above-mentioned carbon nanotubes 1339465, at least two carbon nanotube films may be laid in parallel and without gaps - or / and overlap on the substrate or the frame structure to form a Carbon tube film. Structure 12. It is understood that at least one carbon nanotube film can also be laid directly on the surface 201 of the substrate 20, and a carbon nanotube thin structure 12 is formed on the surface 2〇 of the substrate 2〇. Alternatively, at least two carbon nanotube films may be laid in parallel and without gaps or/and overlaps on the surface 2〇 of the substrate 2〇, and a carbon nanotube may be formed on the surface 2〇1 of the substrate 20. Film structure 12. The carbon nanotube film structure 12 has a good adhesion. Therefore, the above-mentioned non-reverse g 4 film structure 12 can be relatively firmly fixed to the surface of the substrate 20 by its own drilling property. A conductive binder is used to secure the carbon nanotube film structure 12 described above to the substrate surface 201. Further, the above-mentioned carbon nanotube film structure 12 may be used as it is, or may be treated with an organic solvent (4). The process of treating the 2 tube film structure 12 with an organic solvent comprises: dropping an organic solvent through a test tube onto the surface of the water tube carbon film structure 12 to infiltrate the entire carbon nanotube film structure 2 and the entire carbon nanotube film structure 12 Immerse in a moisturizer containing an organic solvent. The organic solvent is a volatile organic solvent, such as ethanol, ketone, ethylene bromide or gas imitation. In the embodiment of the technical solution, after the nano carbon (4) structure 12 of the boring 1 is treated by an organic solvent, Effect of Surface Tension of Solvents in Parallel Twisting Machines In the T'nanocarbon nanotube film, the carbon nanotube fragments are partially aggregated into a carbon nanotube bundle. Therefore, the /, anti & phase structure! 2 The surface volume ratio is small m and has good mechanical strength and toughness of 15 (:S ) 1339465. Step 4: forming a first conductive layer 14 on the surface of the carbon nanotube film structure 12, thereby forming an electromagnetic shielding layer 10 on the surface 201 of the substrate 20. A conductive coating containing a conductive metal or a conductive polymer is deposited on the surface of the carbon nanotube film structure 12 by brushing, secondary crushing or spraying, and the conductive coating is cured at a temperature of 4 (TC to 70 ° C). And forming the first conductive layer 14 to obtain the electromagnetic shielding layer 1 . Further, a second conductive layer may be formed on the surface 201 of the substrate 20 to further the above-mentioned nanometer. A carbon tube film structure 12 is formed on the surface of the second conductive layer 16, and finally, a first conductive layer 14 is formed on the surface of the carbon nanotube film structure 2, thereby forming a surface 201 on the surface of the substrate. The electromagnetic shielding layer 1 〇. The electromagnetic shielding layer 10 of the embodiment of the technical solution adopts a nano carbon B 溥臈 structure 12 instead of the partial conductive _ coating of the electromagnetic shielding layer in the prior art, so that the electromagnetic shielding layer 1G is obtained. It has excellent electromagnetic shielding performance and can effectively shield electromagnetic waves. Moreover, the carbon nanotube film structure is obtained by directly drawing a carbon nanotube from a carbon nanotube array by a stretching tool, and the preparation method is simple and easy. Therefore, the electromagnetic shielding layer 1G of the embodiment of the present technical solution can effectively solve the electromagnetic interference problem caused by electromagnetic waves generated by internal components such as mobile communication terminals, notebook computers, car navigation devices, commercial devices, and medical devices. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, 16 (S > 1339465 cannot be limited by this The scope of the patent application of the present invention is intended to be included in the scope of the following claims. FIG. 2 is a scanning electron micrograph of a carbon nanotube film in an electromagnetic shielding layer according to an embodiment of the present invention. FIG. 3 is a schematic flow chart of a method for preparing an electromagnetic shielding layer according to an embodiment of the present technology. Main component symbol description] Electromagnetic shielding layer 10 Carbon nanotube film structure 12 First conductive layer 14 First conductive 16 Luji base surface 20 20117

Claims (1)

丄339465 十、申請專利範圍 L -種電磁屏蔽層,包括一第一導電層,其改良在於, 磁屏蔽層進一步包括一奈米碳管薄獏結構,該奈米 石反官薄膜結構設置於所述第一導電層的表面,並盥該第 一導電層的表面電接觸。 2.如申請專利範圍第1項所述的電磁屏蔽層,其中,所述 電磁屏蔽層的厚度為2〇微米〜30微米。 3·如申請專利範圍第1項所述的電磁屏蔽層,其中,所述 第一導電層包括導電金屬或者導電聚合物。 4. 如申請專利範圍第1項所述的電磁屏蔽層,其中,所述 的奈米碳管薄膜結構包括一奈米碳管層或者至少兩個 重疊"又置的奈米碳管層’每個奈米碳管層包括多個沿 同一方向定向排列的奈米碳管。 5. 如申請專利範圍第4項所述的電磁屏蔽層,其甲,所述 至少兩個重疊設置的奈米碳管層中相鄰的兩個奈米碳 管層中的奈米碳管排列方向具有一交叉角度(X, 0ο$α$90ο 〇 6. 如申請專利範圍第4項所述的電磁屏蔽層,其中,所述 的奈米碳管層包括一奈米碳管薄膜或者至少兩個平行 且無間隙鋪設的奈米碳管薄膜。 7. 如申請專利範圍第6項所述的電磁屏蔽層,其中,所述 奈米碳管薄膜包括多個首尾相連且定向排列的奈米碳 管束’該奈米碳管束包括多個長度相等且相互平行排 列的奈米碳管。 18 8·如申凊專利㈣第6項所述的電磁屏蔽層,其中,所述 奈米碳管薄膜寬度為0.01厘米〜1〇厘米,#度為1〇奈米 〜100微米。 9.如申%專利範圍第i項所述的電磁屏蔽層,其中,所述 電磁屏蔽層進-步包括一第二導電層,所述奈米碳管 薄膜結構設置於所述第一導電層和第二導電層之間。 讥如申言青專利範圍第i項户斤述的電磁屏蔽層,其中,所述 電磁屏蔽層進一步設置在一基體表面,所述奈米礙管 薄膜結構與所述基體表面電接觸。 11,一種如申請專利範圍第1項所述的電磁屏蔽層的製備 方法’其具體包括以下步驟: 提供一基體’該基體具有一表面; 製備一奈米碳管薄膜; 在所述基體的表面形成一奈米碳管薄膜結構;及 在所述奈米碳管薄膜結構的表面形成一第一導電層, 從而在所述基體的表面形成一電磁屏蔽層。 12·如申清專利範圍第^項所述的電磁屏蔽層的製備方 法,其中,所述奈米碳管薄獏的製備方法包括以下步 驟· 提供一奈米碳管陣列形成於一基底; 從上述奈米碳管陣列中選定一定寬度的多個奈求碳管 束片斷;及 採用一拉伸工具以一定速度沿垂直于奈米碳管陣列生 長方向拉伸所述多個奈米碳管束片斷,獲得一連續的 1339465 奈米碳管薄膜。 如申請專利範圍第㈣所述的電磁屏蔽層的製備方 法,其中,所述在基體的表面形成一奈米碳營薄膜結 構的步驟具體包括以下步驟: 、 提供一支撐體; 將至少一奈米碳管薄膜鋪設於該支撐體表面,去除該 支撐體外多餘的奈米碳管薄膜; • 1除該支撐體’形成一自支撐的奈米碳管薄骐結構; 將該奈米碳管薄膜結構鋪設在所述基體的表面,在所 述基體的表面形成一奈米碳管薄膜結構。 14.如申請專利範圍第13項所述的電磁屏蔽層的製備方 法,其中,進一步包括將至少兩個奈米碳管薄膜平行 且無間隙或/和重疊鋪設在所述支撐體的表面,在所述 支撐體的表面形成-自支撑的奈米碳管薄膜結構 • 驟。 15·如申請專利範圍第21項所述的電磁屏蔽層的製備方 法,其中,所述在基體的表面形成一奈米碳管薄膜結 構的步驟係將至少一奈米碳管薄膜鋪設在所述基體的 表面,在所述基體的表面形成一奈米碳管薄膜結構。 16.如申請專利範圍第15項所述的電磁屏蔽層的製備方 法’其中,進一步包括將至少兩個奈米碳管薄膜平行 且無間隙或/和重疊鋪設在所述基體的表面,在所述基 體的表面形成一奈米碳管薄膜結構的步驟。 土 20 (S 1339465 構的;驟進-;包=用的=!二一奈米碳管薄棋結 / υ π K用有機溶劑處理該牟 膜結構的步驟。 h 丁、水杈官薄 ,申=利範圍第17項所述的電磁屏蔽層的製備方 中,該有機溶劑為乙醇、甲醇、丙綱、 烷和氣仿中的一種或幾種的混合。 、 19.如申%專利乾圍第17項所述的電磁屏蔽層的製備方 法其中,Λ述使用有機溶劑處理奈米碳管薄膜結構 的V驟為通過试官將有機溶劑滴落在奈米碳管薄膜结 構表面浸潤整個奈米碳管薄膜結構或者將整個奈米: 管薄膜結構浸到盛有有機溶劑的容器中浸潤。 20·如申請專利範圍第11項所述的電磁屏蔽層的製備方 法其中,所述在奈米碳管薄膜結構的表面形成第一 導電層的方法包括刷塗、浸潰或者喷塗。 21.如申請專利範圍第11項所述的電磁屏蔽層的製備方 法,其中,所述的電磁屏蔽層的製備方法進一步包括 在所述基體的表面預先形成一第二導電層的步驟。 21 f S )丄 339465 X. Patent Application Scope L-Electromagnetic Shielding Layer, comprising a first conductive layer, the improvement is that the magnetic shielding layer further comprises a carbon nanotube thin crucible structure, and the nano-stone anti-official film structure is disposed at The surface of the first conductive layer is electrically contacted with the surface of the first conductive layer. 2. The electromagnetic shielding layer of claim 1, wherein the electromagnetic shielding layer has a thickness of from 2 micrometers to 30 micrometers. 3. The electromagnetic shielding layer of claim 1, wherein the first conductive layer comprises a conductive metal or a conductive polymer. 4. The electromagnetic shielding layer of claim 1, wherein the carbon nanotube film structure comprises a carbon nanotube layer or at least two overlapping "reset carbon nanotube layers' Each of the carbon nanotube layers includes a plurality of carbon nanotubes oriented in the same direction. 5. The electromagnetic shielding layer according to claim 4, wherein the carbon nanotubes in the adjacent two carbon nanotube layers of the at least two overlapping carbon nanotube layers are arranged The direction of the electromagnetic shielding layer of claim 4, wherein the carbon nanotube layer comprises a carbon nanotube film or at least two The carbon nanotube film of the sixth aspect of the invention, wherein the carbon nanotube film comprises a plurality of end-to-end and aligned nanocarbons. The bundle of carbon nanotubes comprises a plurality of carbon nanotubes of equal length and arranged in parallel with each other. The electromagnetic shielding layer of the sixth aspect of the invention, wherein the carbon nanotube film width The electromagnetic shielding layer according to the item i of the invention, wherein the electromagnetic shielding layer further comprises a second a conductive layer, the carbon nanotube film structure is disposed on the first conductive layer Between the second conductive layer and the second conductive layer, such as the electromagnetic shielding layer of the invention, wherein the electromagnetic shielding layer is further disposed on a surface of the substrate, the nano-membrane structure and the substrate 11. A method of preparing an electromagnetic shielding layer according to claim 1, which specifically comprises the steps of: providing a substrate having a surface; preparing a carbon nanotube film; Forming a carbon nanotube film structure on the surface of the substrate; and forming a first conductive layer on the surface of the carbon nanotube film structure to form an electromagnetic shielding layer on the surface of the substrate. The method for preparing an electromagnetic shielding layer according to the above aspect, wherein the method for preparing the carbon nanotube thin layer comprises the following steps: providing a carbon nanotube array formed on a substrate; from the above carbon nanotube Selecting a plurality of carbon nanotube bundle segments of a certain width in the array; and stretching the plurality of nai in a direction perpendicular to the growth direction of the carbon nanotube array at a certain speed by using a stretching tool The carbon tube bundle segment obtains a continuous film of the 1339465 carbon nanotube film. The method for preparing the electromagnetic shielding layer according to the fourth aspect of the invention, wherein the step of forming a nanocarbon camp film structure on the surface of the substrate is specifically The method comprises the following steps: providing a support body; laying at least one carbon nanotube film on the surface of the support body to remove excess carbon nanotube film outside the support body; • 1 except the support body forming a self-supporting nai a carbon nanotube thin-walled structure; the carbon nanotube film structure is laid on the surface of the substrate, and a carbon nanotube film structure is formed on the surface of the substrate. 14. The invention as recited in claim 13 A method for preparing an electromagnetic shielding layer, further comprising: laying at least two carbon nanotube films in parallel and without gaps or/and overlapping on a surface of the support body, forming a self-supporting nai on the surface of the support body Carbon tube film structure • The method for preparing an electromagnetic shielding layer according to claim 21, wherein the step of forming a carbon nanotube film structure on the surface of the substrate is to lay at least one carbon nanotube film on the The surface of the substrate forms a carbon nanotube film structure on the surface of the substrate. 16. The method of preparing an electromagnetic shielding layer according to claim 15, wherein the method further comprises laying at least two carbon nanotube films in parallel and without gaps or/and overlapping on the surface of the substrate. The step of forming a carbon nanotube film structure on the surface of the substrate. Soil 20 (S 1339465 constructed; Spur--; package = used =! Two-nano carbon tube thin chess knot / υ π K The step of treating the ruthenium membrane structure with an organic solvent. In the preparation of the electromagnetic shielding layer described in Item 17 of the claim, the organic solvent is a mixture of one or more of ethanol, methanol, propyl, alkane and gas. The method for preparing an electromagnetic shielding layer according to Item 17, wherein the V-step of treating the carbon nanotube film structure using an organic solvent is performed by injecting an organic solvent onto the surface of the carbon nanotube film structure to infiltrate the entire nanometer by a tester. The carbon nanotube film structure or the entire nano: tube film structure is immersed in a container containing an organic solvent. The method for preparing the electromagnetic shielding layer according to claim 11, wherein the carbon nano-carbon The method of forming the first conductive layer on the surface of the tube film structure comprises brushing, dipping or spraying. The method for preparing an electromagnetic shielding layer according to claim 11, wherein the electromagnetic shielding layer The preparation method further includes A second step of the surface of the conductive layer formed in advance. 21 f S)
TW96151262A 2007-12-31 2007-12-31 Electromagnetic shielding layer and method for making the same TWI339465B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151262A TWI339465B (en) 2007-12-31 2007-12-31 Electromagnetic shielding layer and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151262A TWI339465B (en) 2007-12-31 2007-12-31 Electromagnetic shielding layer and method for making the same

Publications (2)

Publication Number Publication Date
TW200929725A TW200929725A (en) 2009-07-01
TWI339465B true TWI339465B (en) 2011-03-21

Family

ID=44864621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151262A TWI339465B (en) 2007-12-31 2007-12-31 Electromagnetic shielding layer and method for making the same

Country Status (1)

Country Link
TW (1) TWI339465B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452648B (en) 2010-10-27 2013-09-25 北京富纳特创新科技有限公司 Carbon nanotube film carrying structure and use method thereof
CN102452647B (en) 2010-10-27 2013-06-19 北京富纳特创新科技有限公司 Carbon nanotube film carrying structure and use method thereof
US8854275B2 (en) 2011-03-03 2014-10-07 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US9055667B2 (en) 2011-06-29 2015-06-09 Tangitek, Llc Noise dampening energy efficient tape and gasket material
US8692137B2 (en) 2011-06-29 2014-04-08 Tangitek, Llc Noise dampening energy efficient tape and gasket material
JP5707216B2 (en) * 2011-04-26 2015-04-22 藤森工業株式会社 Electromagnetic wave shielding material for FPC
US8657066B2 (en) 2011-06-29 2014-02-25 Tangitek, Llc Noise dampening energy efficient enclosure, bulkhead and boot material
US8658897B2 (en) 2011-07-11 2014-02-25 Tangitek, Llc Energy efficient noise dampening cables
US20170021380A1 (en) 2015-07-21 2017-01-26 Tangitek, Llc Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials

Also Published As

Publication number Publication date
TW200929725A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
TWI339465B (en) Electromagnetic shielding layer and method for making the same
CN101466252B (en) Electromagnetic shielding layer and preparation method thereof
TWI312165B (en)
Kaushik et al. Carbon nanotube: Properties and applications
Dervishi et al. Carbon nanotubes: synthesis, properties, and applications
US8048256B2 (en) Carbon nanotube film structure and method for fabricating the same
Kaempgen et al. Transparent carbon nanotube coatings
Yu et al. Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications
Zhang et al. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams
JP4589439B2 (en) Method for producing carbon nanotube composite
JP4617479B2 (en) Touch panel using transparent conductive carbon nanotube film
JP5542829B2 (en) Method for producing carbon nanotube, fullerene and / or graphene-containing coating
JP4589438B2 (en) Carbon nanotube composite
US9398733B2 (en) Electromagnetic shielding composite
Atthipalli et al. Nickel catalyst-assisted vertical growth of dense carbon nanotube forests on bulk copper
WO2009139331A9 (en) Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
JP2009184910A (en) Linear carbon nanotube structure
JP2009184909A (en) Method for producing linear carbon nanotube structure
Liu et al. Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene
Yun et al. High-performance field-emission properties of boron nitride nanotube field emitters
KR100675334B1 (en) Carbon nanotube films and their manufacturing process
Hines et al. Growth and mechanics of heterogeneous, 3D carbon nanotube forest microstructures formed by sequential selective-area synthesis
TWI233425B (en) Aggregation of radially-protruding sharp end multi-layer carbon nanotubes and method for producing thin same
TW200929292A (en) Super capacitor
TWI337172B (en) Method of making high-density carbon nanotube array