WO2009081923A1 - クローラ型走行装置 - Google Patents

クローラ型走行装置 Download PDF

Info

Publication number
WO2009081923A1
WO2009081923A1 PCT/JP2008/073385 JP2008073385W WO2009081923A1 WO 2009081923 A1 WO2009081923 A1 WO 2009081923A1 JP 2008073385 W JP2008073385 W JP 2008073385W WO 2009081923 A1 WO2009081923 A1 WO 2009081923A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler
crawler belt
wheel
belt
track
Prior art date
Application number
PCT/JP2008/073385
Other languages
English (en)
French (fr)
Inventor
Shin-Ichiro Nishida
Sachiko Wakabayashi
Original Assignee
Japan Aerospace Exploration Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency filed Critical Japan Aerospace Exploration Agency
Priority to EP08863612.1A priority Critical patent/EP2226239B1/en
Priority to CN2008801275061A priority patent/CN101959748B/zh
Priority to US12/810,509 priority patent/US8657043B2/en
Priority to CA2710609A priority patent/CA2710609C/en
Publication of WO2009081923A1 publication Critical patent/WO2009081923A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • B62D55/253Tracks of continuously flexible type, e.g. rubber belts having elements interconnected by one or more cables or like elements

Definitions

  • the present invention relates to a crawler vehicle traveling device, and more particularly to a crawler type traveling device for a space robot, a space exploration vehicle, and a crawler type vehicle equipped with such a crawler type traveling device.
  • the surface of the moon and planets are not solid ground, and there are many grounds with weak supporting force covered with sand. Under the gravity lower than that of the earth, it is necessary to distribute the weight of the vehicle over a wide contact area and lower the contact pressure.
  • a conventional space exploration vehicle there is a vehicle using cylindrical 4 to 8 wheels for widening a contact area.
  • the contact surface pressure becomes maximum immediately below the wheel, and this portion is buried in the sand and slips, which may make it difficult to travel.
  • an endless track type crawler type vehicle that includes a drive wheel, a guide wheel, and a crawler belt (crawler) wound around the drive wheel and the guide wheel, and travels on the ground by the crawler belt.
  • the crawler type vehicle can have a large ground contact area and has excellent running performance even on soft ground.
  • a crawler type traveling device usually connects a large number of metal rigid body crawler plates with pins, and the adjacent crawler plate is movable at the pin portion, and the crawler belt circulates around the driving wheel and the guide wheel. It was. Or, instead of connecting the crawler plates with pins, a crawler track made of rubber itself is used.
  • the endless track mechanism requires a large number of wheel mechanisms to make the contact surface pressure to the ground of the crawler track uniform, and there is a problem that the mechanism is complicated, the weight increases, and the reliability decreases. It was.
  • Patent Document 1 discloses a crawler type traveling robot including a base, crawlers provided on both left and right sides of the base, and arms provided on the base. Each crawler is associated with a drive wheel provided at one end portion in the front-rear direction, a travel motor for driving the drive foil, a free wheel provided at the other end in the front-rear direction, and the drive wheel and the free wheel. It is composed of an endless track wound between the two wheels, a central wheel engaged with the endless track at the center of the crawler, and a central motor for driving the central foil.
  • the crawler type traveling robot of Patent Document 1 has a sufficiently uniform contact surface pressure.
  • sand, stones or the like may be caught between the crawler belt and the drive wheel.
  • An object of the present invention is to provide a crawler type traveling device that realizes a uniform contact surface pressure with a small number of wheel rolling mechanisms.
  • Another object of the present invention is to provide a crawler type traveling device in which stones and sand are less likely to enter the meshing portion between the crawler belt and the drive wheel.
  • Another object of the present invention is to provide a crawler type vehicle including such a crawler type traveling device.
  • the crawler belt has a double belt-like structure of the outer crawler belt and the inner crawler belt, and the outer crawler belt and the inner crawler belt are each made of a thin ring-shaped metal plate or resin plate and have flexibility in themselves. Further, the outer crawler belt and the inner crawler belt are connected by an elastic member having elasticity. The elastic member can be easily deformed so that the outer crawler belt and the inner crawler belt are close to each other. Therefore, the outer crawler belt is easily bent depending on the ground conditions, and a uniform contact surface pressure can be obtained.
  • One aspect of the present invention includes a drive wheel that is transmitted with a drive force by a drive shaft, a guide wheel having an axis parallel to the axis of the drive wheel, the drive wheel and the guide wheel wound around the drive wheel.
  • An endless track crawler type traveling device comprising a wheel and a crawler belt that circulates around the guide wheel, wherein the crawler belt is An inner crawler belt having a meshing structure with the driving wheel, and a driving force transmitted from the driving wheel; and an outer crawler belt that surrounds an outer side in a circumferential direction of the inner crawler belt; A plurality of elastic members connecting the inner crawler belt and the outer crawler belt over the entire circumference of the crawler belt,
  • the crawler type traveling device is characterized in that a plurality of crawler plates having a lug structure for engaging with the ground are attached to the outer crawler belt.
  • the crawler belt Since the crawler belt has a double structure of the inner crawler belt and the outer crawler belt, and the inner crawler belt and the drive wheel mesh with each other, the inner crawler belt hardly touches the ground. Is less likely to enter. In addition, since the crawler belt itself has elasticity in the thickness direction, the crawler belt is deformed into a shape along the ground and stones, thereby making the contact pressure to the ground uniform and obtaining a high propulsive force.
  • the inner crawler belt and the outer crawler belt are preferably made of a ring-shaped thin metal plate or resin plate that can be easily deformed. As a result, a crawler belt having no movable parts connected by pins or the like is obtained, and there is no problem of lubrication of the movable parts.
  • the elastic member that connects the inner crawler belt and the outer crawler belt is made of an elastic curved metal plate. Since the crawler belt is metallic, it does not generate gas and is suitable for use in space.
  • One end portion of the elastic member is connected to the widthwise end portion of the inner crawler belt, the other end portion is connected to the widthwise end portion of the outer crawler belt, and the intermediate portion is a concave curved shape toward the widthwise central portion. It is preferable that Thereby, a crawler belt with better elasticity can be obtained.
  • the drive wheel has protrusions at a constant interval in the widthwise central portion
  • the inner crawler belt has a recess in the widthwise central portion that meshes with the protrusion, and the protrusion meshes with the recess so that the drive wheel is in the inner side. It is preferable to drive the crawler belt.
  • the protrusion and the recess constitute a meshing structure.
  • the driving wheel has protrusions at a certain interval in the width direction end
  • the inner crawler belt has a recess that engages with the protrusion at the width direction end, and the driving wheel is engaged with the recess. It is preferable to drive the inner crawler belt.
  • the protrusion and the recess constitute a meshing structure. As a result, the crawler belt can be driven more reliably.
  • the outer crawler belt is a wire crawler belt composed of a plurality of metal wires extending in the circumferential direction of the outer crawler belt, and a plurality of crawler plates are preferably connected to the wire crawler belt at regular intervals.
  • the wire crawler belt is more easily deformed and can follow the change in the shape of the ground better.
  • the outer crawler track is a mesh crawler track made of a metal mesh in which a metal wire extends in the circumferential direction and the width direction of the outer crawler track, and a plurality of crawler plates are preferably connected to the mesh crawler track at regular intervals. .
  • the mesh crawler belt can obtain more stable performance than the wire crawler belt.
  • a side cover that covers the side surfaces of the driving wheel, the guide wheel, and the inner crawler belt, and that has a tip portion that enters between the inner crawler belt and the outer crawler belt. It is possible to prevent stones and sand from entering the meshing portion of the crawler type traveling device.
  • a wheel having an axis parallel to the axis of the driving wheel is provided, and the crawler belt is wound around the driving wheel, the guide wheel, and the wheel. Since the number of wheels engaged with the crawler belt is large, a more uniform contact pressure can be obtained.
  • a driving wheel transmitted with a driving force by a driving shaft, a guide wheel having an axis parallel to the axis of the driving wheel, the drive wheel and the guide wheel are wound around
  • a crawler type vehicle including a plurality of crawler type traveling devices of an endless track system including a driving wheel and a crawler belt that circulates around the guide wheel, and the crawler belt of the crawler type traveling device includes: An inner crawler belt having a meshing structure with the driving wheel, and a driving force transmitted from the driving wheel; An outer track that surrounds the outer side of the inner track in the circumferential direction; A plurality of elastic members connecting the inner crawler belt and the outer crawler belt over the entire circumference of the crawler belt,
  • the crawler type vehicle is characterized in that a plurality of crawler plates having a lug structure for engaging with the ground are attached to the outer crawler belt.
  • the crawler belt has a double structure of the outer crawler belt and the inner crawler belt, the outer crawler belt is in contact with the ground, and the inner crawler belt is engaged with the drive wheel. For this reason, the inner crawler belt is less likely to contact the ground, and stones and sand are less likely to enter the meshing portion between the inner crawler belt and the drive wheel.
  • the crawler belt itself has elasticity in the thickness direction, the crawler belt is deformed into a shape along the ground and stones, whereby the contact pressure to the ground is kept low, and at the same time a high propulsive force is obtained. Therefore, good running performance can be obtained without being buried in the ground even in sand.
  • the crawler belt itself has elasticity, it has a function of pressing the outer crawler belt against the ground. Therefore, it is possible to reduce the number of wheels that perform the function of pressing the crawler belt against the ground. Therefore, the structure can be simplified, the weight can be reduced, and the reliability is improved. Furthermore, since the elastic member that connects the outer crawler belt and the inner crawler belt is bent inward, there is little risk of breaking the ground on the side surface. Furthermore, since the rolling wheels do not touch the ground or stone directly, there are few structural restrictions on the rib structure of the rolling phosphorus for preventing the crawler belt from coming off.
  • a crawler-type traveling device that provides a crawler belt having no movable part coupled by pins or the like and has no problem of lubrication of the movable part. It is possible to provide a crawler type traveling device that realizes a uniform contact surface pressure with a small number of roller mechanisms. Moreover, a crawler type vehicle provided with such a crawler type traveling device can be provided.
  • a crawler type traveling device for a space robot and a space exploration vehicle will be described. can do.
  • FIG. 1A is a schematic end view showing one crawler unit 10 of a crawler type traveling apparatus according to the first embodiment of the present invention
  • FIG. 1B is a front view.
  • one crawler unit 10 is referred to as a crawler type traveling device (traveling device).
  • a cylindrical sprocket (drive wheel) 12 is attached to a rotary drive shaft 11 connected to an actuator (drive source) (not shown) such as a motor.
  • an actuator drive source
  • a protrusion 12a for engaging with the crawler belt is provided on the outer periphery of the sprocket 12.
  • a rib (flange) 12c that is one step higher is formed and held so that the crawler belt is not detached.
  • the diameter of the rib is too large, the rib protrudes from the crawler belt, and the rib easily comes into direct contact with the ground. Therefore, the diameter of the rib cannot be increased too much. Since the crawler belt of the present invention is double and thick, the protrusion of the rib can be increased.
  • the crawler unit 10 is a main structure portion of the crawler unit 10 and includes a holding structure 17 that holds each member of the crawler unit 10, and the holding structure 17 includes a cylindrical sprocket 12, a front guide wheel 13a, and a rear guide wheel. 13b, other components are installed.
  • a crawler belt is wound around the sprocket 12, the front guide wheel 13a, and the rear guide wheel 13b.
  • the crawler belt includes an inner crawler belt 18 that engages with the sprocket 12, the front guide wheel 13a, and the rear guide wheel 13b.
  • the inner crawler belt 18 is made of a thin ring-shaped (short cylindrical) metal plate or resin plate, and is flexible by itself, following the outer shape of the sprocket 12 and the guide wheels 13a and 13b. 12 and guide wheels 13a and 13b can be circulated.
  • the inner crawler belt 18 is provided with a hole that meshes with the protrusion 12 a of the sprocket 12, and the protrusion 12 a of the sprocket 12 meshes with the hole of the inner crawler belt 18 to drive the inner crawler belt 18.
  • the crawler unit 10 includes an outer crawler belt 19 that surrounds the outer periphery of the inner crawler belt 18.
  • the outer crawler belt 19 is made of a thin ring-shaped metal plate or resin plate, and is flexible in itself.
  • the outer crawler belt 19 is wider than the inner crawler belt 18.
  • the width of the outer crawler belt 19 may be substantially the same as the width of the inner crawler belt 18.
  • the inner crawler belt 18 and the outer crawler belt 19 are connected by an elastic member 20.
  • One end of the elastic member 20 is connected near the outside in the width direction of the inner crawler belt 18, and the other end of the elastic member 20 is connected near the outside in the width direction of the outer crawler belt 19.
  • the central portion of the elastic member 20 has a shape curved inward in the width direction of the crawler belt, is made of an elastic metal, and can be easily deformed in the thickness direction of the crawler belt.
  • the inner crawler belt 18, the outer crawler belt 19 and the elastic member 20 form a crawler as a unit, and are flexible by themselves, and the crawler belt can circulate around the sprocket 12 and the guide wheels 13a and 13b.
  • a crawler plate 21 is provided on the outer side of the outer crawler belt 19. The structure of the crawler belt will be described later with reference to FIGS.
  • the crawler unit 10 includes a tensioner 14.
  • the tensioner 14 pushes the inner crawler belt 18 outward from the inside, and holds the inner crawler belt 18 so as not to bend inward.
  • the crawler unit 10 includes a brush 15.
  • the brush 15 engages with the inner crawler belt 18 from the inside, and removes pebbles, sand, and the like attached to the inner crawler belt 18.
  • the crawler unit 10 further includes a side cover 16 (shown by a dotted line in FIG. 1A so that the inside can be seen).
  • the side cover 16 covers the side surfaces of the sprocket 12, the front guide wheel 13a, the rear guide wheel 13b, and the inner crawler belt 18, and prevents stones and sand from entering the meshed portion of the inner crawler belt and the sprocket.
  • the shape of the side cover 16 will be described later with reference to FIG.
  • FIG. 2 is a schematic view showing a crawler type vehicle in which a pair of the crawler units 10 are attached to the left and right sides of the vehicle body 30.
  • FIG. 3 is a schematic view showing a crawler type vehicle in which the crawler unit 10 is attached to the front of the vehicle body 30 as a pair and to the rear as a pair via a steering mechanism.
  • a swing hinge 34 that extends in the lateral direction of the vehicle body 30 is provided at the front and rear central portions of the vehicle body 30.
  • swing beams 33 that are substantially parallel to the side surface of the vehicle body 30 are attached to the left and right sides of the vehicle body 30.
  • the oscillating beam 33 can rotate about the axis of the oscillating hinge 34.
  • Steering mechanisms 32 are provided at both ends of each of the two oscillating beams 33.
  • the steering mechanism 32 can rotate the crawler unit 10 about the vertical axis of the vehicle body 30 in order to change the direction of the vehicle body 30.
  • the steering mechanism 32 can be provided only at one end.
  • FIG. 4A is a plan view showing the configuration of the crawler belt
  • FIG. 4B is a cross-sectional view taken along the line AA in FIG.
  • An outer crawler belt 19 surrounding the inner crawler belt 18 is wound around the outer periphery of the short cylindrical inner crawler belt 18.
  • the inner crawler belt 18 and the outer crawler belt 19 are connected by a plurality of elastic members 20.
  • the elastic members 20 are provided at regular intervals in the length direction of the inner crawler belt 18, connect the outer side in the width direction of the inner crawler belt 18 and the outer side in the width direction of the outer crawler belt 19, and are intermediate between the inner crawler belt 18 and the outer crawler belt 19.
  • the part has a concave shape at the center in the width direction. That is, a curved beam structure.
  • the elastic member 20 is made of a metal such as stainless steel and has a small thickness and can be easily bent. Therefore, the distance between the outer crawler belt 19 and the inner crawler belt 18 easily changes depending on the shape of the ground, and the outer crawler belt 19 can follow the change in the shape of the ground.
  • the shape of the elastic member 20 may be other than the shape shown here as long as it can be easily bent.
  • the elastic member 20 may be formed in an oblique direction with respect to the width direction of the inner crawler belt 18 instead of being parallel to the width direction of the inner crawler belt 18.
  • crawler plates 21 are provided at regular intervals in the length direction.
  • the footboard 21 is a metal rigid body.
  • the crawler plate 21 is for engaging the ground and obtaining a propulsive force.
  • the elastic member 20, the outer crawler belt 19, and the crawler plate 21 are fixed by bolts 25.
  • Each crawler plate 21 is attached to the outer crawler belt 19.
  • the shoeboards 21 are not fixed with pins.
  • FIG. 5 is a perspective view showing the shape of the crawler plate 21 disposed on the outer periphery of the outer crawler belt 19.
  • the width of the crawler plate 21 is substantially the same as the width of the outer crawler belt 19.
  • a lug 21a extends upward from one end of the base of the crawler plate 21 in contact with the outer crawler belt 19.
  • the width of the lug 21a is substantially equal to the width of the crawler plate 21, and the height is substantially constant.
  • the lug 21a is for reliably engaging with the ground, and may have any shape that engages with the ground, and the shape is not limited.
  • the crawler plate 21 has a recess 21b formed at the base.
  • the depression 21b is provided to prevent the crawler plate 21 from slipping and to obtain a driving force.
  • the shape of the recess 21b may be any shape as long as it can prevent sliding with the ground.
  • the recess 21b may not be optional.
  • the crawler plate 21 has a protrusion 21c.
  • the protrusion 21c is provided with a female screw (not shown) for fixing the crawler plate 21 to the outer crawler belt 19 at the same time as preventing the crawler plate 21 from slipping. It can be fixed to.
  • the protrusion 21c may not be arbitrary.
  • the outer crawler belt 19 is provided with a sand removal hole 19b.
  • FIG. 6A is a plan view showing meshing of the sprocket 12 and the inner crawler belt 18 of the second embodiment
  • FIG. 6B is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a diagram for explaining the meshing between the sprocket 12 and the inner crawler belt 18, and members such as the outer crawler belt 19 and the elastic member 20 are not shown.
  • Projections 12a are formed at regular intervals in the center of the outer periphery of the sprocket 12 in the width direction.
  • holes 18b into which the protrusions 12a of the sprocket 12 enter are formed at the same interval as the interval of the protrusions 12a.
  • the projection 12a of the sprocket 12 is engaged with the hole 18b of the inner crawler belt 18 to drive the crawler belt 18.
  • protrusions 12b are formed at regular intervals instead of ribs 12c having a constant height at both end portions in the width direction of the outer periphery of the sprocket 12.
  • Concave portions 18c into which the protrusions 12b of the sprocket 12 enter are formed at both ends in the width direction of the inner crawler belt 18 at the same interval as the interval between the protrusions 12b.
  • the protrusion 12b of the sprocket 12 engages with the recess 18c of the inner crawler belt 18 to drive the inner crawler belt 18.
  • the protrusion 12b of the sprocket 12 also functions to support the inner crawler belt 18 so that the inner crawler belt 18 is not displaced from the sprocket 12 and disengaged.
  • FIG. 7 is a perspective view showing a part of the crawler belt of the second embodiment. Concave portions 18 c are formed at both ends in the width direction of the inner crawler belt 18. In FIG. 7, the holes 18b of the inner crawler belt 18 are formed in two rows.
  • the elastic member 20 is connected to the outer crawler belt 19 with a bolt 25.
  • FIG. 8A is an end view showing that the side cover 16 covers the end surfaces of the sprocket 12 and the guide wheels 13a and 13b
  • FIG. 8B is a schematic sectional view of the second embodiment.
  • (A) also shows the brush 15.
  • the side cover 16 is the same in the first embodiment.
  • the side cover 16 is attached to the holding mechanism 17 and covers the side surfaces of the sprocket 12 and the guide wheels 13a and 13b.
  • the front end portion 16a of the side cover 16 extends to a portion where the elastic member 20 between the inner crawler belt 18 and the outer crawler belt 19 is concave. This prevents stones and sand from entering the meshed portion of the inner crawler belt 18 and the sprocket 12.
  • the protrusion 12 b of the sprocket 12 is engaged with the recess of the inner crawler belt 18.
  • the guide wheels 13a, b are provided with ribs 13c at the ends in the width direction of the outer peripheral portion, hold both ends of the inner crawler belt 18, and hold the inner crawler belt 18 so as not to be detached from the guide wheels 13a, b.
  • FIG. 9A is a schematic perspective view showing a wire crawler belt 23 which is an outer crawler track of the crawler unit of the third embodiment.
  • the outer crawler belt of the second embodiment is a wire crawler belt 23 composed of a plurality of wires parallel to the length direction of the outer crawler belt.
  • a crawler plate 21 is attached to the wire crawler belt 23 at regular intervals. Since the wire crawler belt 23 is more flexible than the outer crawler belt 19 of the embodiment of FIG. 1, it can follow the change in the shape of the ground better.
  • FIG. 9B is a schematic perspective view showing the mesh crawler belt 24.
  • a wire is also provided in a direction orthogonal to the wire of the wire crawler belt of (A), and the mesh crawler belt 24 is formed. Since the mesh crawler belt 24 is provided with wires in the vertical and horizontal directions, more stable performance can be obtained.
  • FIG. 10A is a schematic end view showing the crawler unit 10 ′ of the fourth embodiment
  • FIG. 10B is a front view.
  • the crawler unit 10 ′ is different from the crawler unit 10 of the first embodiment shown in FIG. 1 in that rollers 22a and 22b are provided in addition to the guide wheels 13a and b. Others are the same as the crawler unit 10 of FIG. That is, ribs 12c having a constant height are formed at both end portions in the width direction of the outer periphery of the sprocket 12. Since the crawler unit 10 'has a large number of wheels engaged with the crawler belt, a more uniform contact pressure can be obtained.
  • FIG. 11 is a perspective view of a prototype of the crawler unit 10 of the first embodiment shown in FIG. Ribs 12c having a constant height are formed at both end portions in the width direction of the outer periphery of the sprocket 12, and the protrusions 12b of the second embodiment shown in FIG. 4 are not formed.
  • the cover 16 is not attached to this prototype.
  • FIG. 12 is an external view photograph of a prototype of the crawler unit 10 of the first embodiment shown in FIG.
  • the sprocket and guide wheel are made of aluminum alloy (diameter: about 140 mm, thickness: about 3 mm)
  • the inner crawler belt 18 and outer crawler belt 19 are stainless steel (thickness 0.2 mm, width 65 mm)
  • the elastic member 20 is stainless steel ( Thickness 0.2mm, width 10mm)
  • the footwear used aluminum alloy (10 ⁇ 10 ⁇ 1.5mm aluminum angle material.
  • the elastic member 20 is formed in an oblique direction rather than perpendicular to the crawler belt direction.
  • the crawler type traveling device of the present invention it is possible to obtain a crawler type vehicle having a simple structure capable of obtaining a uniform contact surface pressure for space. Further, it can be widely used as a consumer crawler type vehicle.
  • (A) is a schematic end view (a cover is shown with a dotted line) which shows one crawler unit 10 of the crawler type traveling device by a 1st embodiment of the present invention
  • (B) is a front view. Schematic which shows the crawler type vehicle which attached one pair of crawler units to the left and right of the vehicle body.
  • 1 is a schematic diagram showing a crawler type vehicle in which a pair of crawler units is attached to the front of a vehicle body 30 and a pair is attached to the rear of a vehicle body 30 via a steering mechanism.
  • (A) is a plan view showing the configuration of the crawler belt
  • (B) is a cross-sectional view taken along line AA of (A).
  • (A) is a top view which shows meshing
  • (B) is sectional drawing along the AA of (A).
  • (A) is a schematic end view showing the shape of the side cover of the second embodiment
  • (B) is a schematic cross-sectional view.
  • (A) is a schematic end view showing the crawler unit of the fourth embodiment
  • (B) is a front view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Handcart (AREA)

Abstract

 ピン等で結合した可動部分がなく、また弾性のある履帯を提供し、少数の転輪機構で均一な接地面圧を実現するクローラ型走行装置を提供する。  駆動軸(11)により駆動力を伝達される駆動輪(12)と、前記駆動輪の軸と平行な軸を有する誘導輪(13)と、駆動輪と誘導輪とに巻き回された履帯とを備える無限軌道方式のクローラ型走行装置である。履帯は、駆動輪との噛み合い構造を有し、駆動輪から駆動力を伝達される内側履帯(18)と、内側履帯の周方向の外側を取り囲み、内側履帯とほぼ同じ幅の外側履帯(19)と、内側履帯と外側履帯とを履帯の全周にわたって接続する複数の弾性部材(20)とを備える。外側履帯には、地面と係合するためのラグ構造を有する複数の履板(21)が取り付けられている。

Description

クローラ型走行装置
 本発明は、履帯車両の走行装置に関し、特に、宇宙用ロボット、宇宙探査用車両のクローラ型走行装置と、このようなクローラ型走行装置を装備したクローラ型車両に関する。
 月や惑星の表面は堅固な地盤ではなく、砂に覆われた支持力の弱い地盤が多い。地球と比べて低い重力下では、車両の重量を広い接地面積に分散して、接地圧を低くして走行する必要がある。
 従来の宇宙探査用車両としては、接地面積を広くするため円筒形の4~8輪の車輪を使用した車両がある。しかし、このような車輪を使用する車両では、車輪の真下で接地面圧が最大となり、この部分が砂に埋もれて滑り、走行が困難になる場合があった。
 戦車や建設用車両として、駆動輪と、誘導輪と、駆動輪と誘導輪とに巻き回された履帯(クローラ)とを備え、履帯により地面上を走行する無限軌道方式のクローラ型車両がある。クローラ型車両は、接地面積を大きくとることができ、軟弱な地盤でも走行性能が優れている。
 クローラ型走行装置は、通常多数の金属性の剛体の履板をピンで結合し、ピン部分で隣接する履板が可動であり、履帯は駆動輪と誘導輪との周りを周回するようになっていた。又は、履板をピンで結合するのでなく、ゴム製のそれ自体で柔軟性のある履帯を使用していた。
 しかし、月や惑星の真空又は気圧の低い環境においては、履板を結合するピン部分の潤滑性が悪く、そのため摩耗が多くなり、耐久性が低下する。
 ゴム製の履帯はアウトガスが多く、変質し易いため、宇宙では使用するのが困難であった。
 また、無限軌道機構においては、履帯の地面への接地面圧を均一にするため、多数の転輪機構が必要であり、機構が複雑で重量が増加し、信頼性が低下するという問題があった。
 特許文献1は、ベースと、ベースの左右両側に設けたクローラと、ベース上に設けたアームからなるクローラ型走行ロボットを開示する。各クローラは、前後方向の一方の端部に設けられた駆動ホイルと、駆動ホイルを駆動する走行モータと、前後方向の他端に設けられた遊転ホイルと、駆動ホイル及び遊転ホイルに係合して両ホイル間に巻き渡されたエンドレストラックと、クローラ中央部でエンドレストラックに係合する中央ホイルと、中央ホイルを駆動する中央モータからなる。
 しかし、特許文献1のクローラ型走行ロボットは、十分に均一な接地面圧を有するとはいえない。また、履帯と駆動輪との噛み合い部分に砂、石等が挟まるおそれがある。
特開2005-111595号
 本発明の目的は、ピン等で結合した可動部分がない履帯を提供し、可動部分の潤滑の問題のないクローラ型走行装置を提供することである。
 本発明の目的は、少数の転輪機構で均一な接地面圧を実現するクローラ型走行装置を提供することである。
 本発明の他の目的は、履帯と駆動輪との噛み合い部分に石や砂が入り込むことが少ないクローラ型走行装置を提供することである。
 また、本発明の他の目的は、このようなクローラ型走行装置を備えるクローラ型車両を提供することである。
 本発明では、履帯を外側履帯と内側履帯の二重の帯状構造とし、外側履帯と内側履帯とはそれぞれ薄いリング状の金属板又は樹脂板で出来ていてそれ自体で屈曲性がある。また、外側履帯と内側履帯を弾性のある弾性部材で接続してある。弾性部材は、外側履帯と内側履帯とが近づき離れるように容易に変形することができる。そのため、地面の状況により外側履帯がたわみやすく、均一な接地面圧を得ることができる。
 本発明の1態様は、駆動軸により駆動力を伝達される駆動輪と、前記駆動輪の軸と平行な軸を有する誘導輪と、前記駆動輪と前記誘導輪とに巻き回され、前記駆動輪と前記誘導輪の周りを周回する履帯とを備える無限軌道方式のクローラ型走行装置であって、前記履帯は、
 前記駆動輪との噛み合い構造を有し、前記駆動輪から駆動力を伝達される内側履帯と、 前記内側履帯の周方向の外側を取り囲む外側履帯と、
 前記内側履帯と前記外側履帯とを前記履帯の全周にわたって接続する複数の弾性部材と、を備え、
 前記外側履帯には、地面と係合するためのラグ構造を有する複数の履板が取り付けられた、ことを特徴とするクローラ型走行装置である。
 履帯を内側履帯と外側履帯の二重構造とし、内側履帯と駆動輪とが噛み合う構造にしたので、内側履帯が地面に直接接することが少なく、内側履帯と駆動輪との噛み合い部分に石や砂が入り込むことが少ない。
 また、履帯自体が厚さ方向に弾性を有するので、履帯が地面や石に沿った形状に変形し、これにより地盤への接地圧が均一になり、また高い推進力が得られる。
 前記内側履帯と前記外側履帯とは、変形が容易なリング状の薄い金属板又は樹脂板でできていることが好ましい。
 これにより、ピン等で結合した可動部分がない履帯が得られ、可動部分の潤滑の問題はない。
 前記内側履帯と前記外側履帯とを接続する前記弾性部材は、弾性のある湾曲した形状の金属板からなることが好ましい。
 履帯は金属性なので、ガス等が発生せず、宇宙で使用するのに適している。
 前記弾性部材の一端部は前記内側履帯の幅方向端部に接続され、他端部は前記外側履帯の幅方向端部に接続され、中間部は幅方向中央部に向かって凹状の湾曲した形状であることが好ましい。
 これにより、より良い弾性を有する履帯を得ることができる。
 前記駆動輪は幅方向中央部に一定の間隔で突起を有し、前記内側履帯は幅方向中央部に前記突起と噛み合う凹部を有し、前記突起が前記凹部と噛み合って前記駆動輪が前記内側履帯を駆動することが好ましい。前記突起と前記凹部とは噛み合い構造を構成する。
 更に、前記駆動輪は幅方向端部に一定の間隔で突起を有し、前記内側履帯は幅方向端部に前記突起と噛み合う凹部を有し、前記突起が前記凹部と噛み合って前記駆動輪が前記内側履帯を駆動することが好ましい。前記突起と前記凹部とは噛み合い構造を構成する。
 これにより、より確実に履帯を駆動することができる。
 前記外側履帯は、前記外側履帯の周方向に延びる複数の金属ワイヤで構成されたワイヤ履帯であり、前記ワイヤ履帯に一定の間隔で複数の履板が接続されていることが好ましい。
 ワイヤ履帯は、より変形しやすく、地面の形状の変化によりよく追従することができる。
 前記外側履帯は、前記外側履帯の周方向と幅方向に金属ワイヤが延びる金属メッシュで構成されたメッシュ履帯であり、前記メッシュ履帯に一定の間隔で複数の履板が接続されていることが好ましい。
 メッシュ履帯は、ワイヤ履帯より安定した性能を得ることができる。
 前記駆動輪と前記誘導輪と前記内側履帯との側面を覆い、先端部が前記内側履帯と前記外側履帯の間に入りこむ側面カバーを備えることが好ましい。
 クローラ型走行装置の噛み合い部分に石や砂が入り込むのを防止することができる。
 更に、前記駆動輪の軸と平行な軸を有する転輪を備え、前記履帯は、前記駆動輪と前記誘導輪と、前記転輪とに巻き回されることが好ましい。
 履帯と係合する車輪の数が多いので、より均一な接地圧を得ることができる。
 本発明の他の態様は、駆動軸により駆動力を伝達される駆動輪と、前記駆動輪の軸と平行な軸を有する誘導輪と、前記駆動輪と前記誘導輪とに巻き回され、前記駆動輪と前記誘導輪の周りを周回する履帯とを備える無限軌道方式の複数のクローラ型走行装置を備えるクローラ型車両であって、前記クローラ型走行装置の前記履帯は、
 前記駆動輪との噛み合い構造を有し、前記駆動輪から駆動力を伝達される内側履帯と、
 前記内側履帯の周方向の外側を取り囲む外側履帯と、
 前記内側履帯と前記外側履帯とを前記履帯の全周にわたって接続する複数の弾性部材と、を備え、
 前記外側履帯には、地面と係合するためのラグ構造を有する複数の履板が取り付けられた、ことを特徴とするクローラ型車両である。
 本発明では、履帯を外側履帯と内側履帯の二重構造とし、外側履帯が地面に接し、内側履帯が駆動輪と噛みあう構造とした。そのため、内側履帯が地面に接することが少なく、内側履帯と駆動輪との噛み合い部分に石や砂が入り込むことが少ない。
 また、履帯自体が厚さ方向に弾性を有するので、履帯が地面や石に沿った形状に変形し、これにより地盤への接地圧が低く抑えられ、また同時に高い推進力が得られる。そのため、砂地などでも地面に埋もれることなく、良好な走行性能を得ることができる。
 履帯自体が弾性を有することにより、外側履帯を地面に押付ける機能を有する。そのため、履帯を地面に押付ける機能を果たす転輪の数を少なくすることができる。そのため、構造を簡単にし、軽量化を図ることができ、信頼性が向上する。
 更に、外側履帯と内側履帯を接続する弾性部材は、内側に曲がった構造なので、側面で地面を崩すおそれが少ない。
 更に、転輪が地面や石に直接触れることが少ないので、履帯外れ防止用の転リンのリブ構造の構造上の制約が少ない。
 本発明によれば、ピン等で結合した可動部分がない履帯を提供し、可動部分の潤滑の問題のないクローラ型走行装置を提供することができる。
 少数の転輪機構で均一な接地面圧を実現するクローラ型走行装置を提供することができる。
 また、このようなクローラ型走行装置を備えるクローラ型車両を提供することができる。
 以下、本発明の実施の形態を説明する。本実施の形態では、宇宙用ロボット、宇宙探査用車両のクローラ型走行装置について説明するが、本発明は宇宙用のクローラ型車両に限定されず、民生用の色々の用途のクローラ型車両に適用することができる。
 図1の(A)は、本発明の第1の実施形態によるクローラ型走行装置の1つのクローラユニット10を示す概略端面図、(B)は正面図である。なお、本明細書では、1つのクローラユニット10をクローラ型走行装置(走行装置)という。
 クローラ型走行装置のクローラユニット10は、モータ等のアクチュエータ(駆動源)(図示せず)に接続された回転駆動軸11に、円筒形のスプロケット(駆動輪)12が取り付けられている。スプロケット12の外周には、履帯と噛み合うための突起12aが設けられている。スプロケット12の外周部の幅方向外側は一段高いリブ(フランジ)12cが形成され、履帯が外れないように保持する。
 従来のクローラ機構では、リブの直径を大きくしすぎると、リブが履帯より出っ張り、リブが地面に直接接触しやすくなる。そのため、リブの直径を余り大きくできない。本発明の履帯は二重で厚みが厚いので、リブの出っ張りを大きくすることができる。
 また、円筒形の前側誘導輪13a、円筒形の後側誘導輪13bを備える。前側誘導輪13a、後側誘導輪13bの軸は、スプロケット12の軸と平行である。前側誘導輪13a,bの外周部の幅方向外側は一段高いリブ13cが形成され、履帯が外れないように保持する。
 クローラユニット10は、クローラユニット10の主構造部であり、クローラユニット10の各部材を保持する保持構造17を備え、保持構造17に、円筒形のスプロケット12、前側誘導輪13a、後側誘導輪13b、その他の構成部品が取り付けられている。
 スプロケット12と、前側誘導輪13aと、後側誘導輪13bの回りには、履帯が巻きまわされている。履帯は、スプロケット12、前側誘導輪13a、及び後側誘導輪13bと係合する内側履帯18を備える。内側履帯18は、薄いリング状(短円筒形)の金属板又は樹脂版でできていて、それ自体で屈曲性があり、スプロケット12と、誘導輪13a,bの外周の形状に追従してスプロケット12と誘導輪13a,bの周りを周回することができる。内側履帯18には、スプロケット12の突起12aと噛み合う孔が設けられ、スプロケット12の突起12aが内側履帯18の孔に噛み合って内側履帯18を駆動する。
 また、クローラユニット10は、内側履帯18の外周を取り囲む外側履帯19を備える。外側履帯19は、薄いリング状の金属板又は樹脂版でできていて、それ自体で屈曲性がある。外側履帯19の幅は内側履帯18の幅より広くなっている。外側履帯19の幅は内側履帯18の幅とほぼ同じとすることもできる。
 内側履帯18と外側履帯19とは、弾性部材20により接続されている。弾性部材20の一端部は内側履帯18の幅方向外側近くに接続され、弾性部材20の他端部は外側履帯19の幅方向外側近くに接続される。弾性部材20の中央部は履帯の幅方向内側に湾曲した形状で、弾性のある金属でできていて、履帯の厚さ方向に容易に変形することができる。
 内側履帯18と外側履帯19と弾性部材20とは、一体として履帯を構成し、それ自体で屈曲性があり、履帯はスプロケット12と誘導輪13a,bの周りを周回することができる。
 外側履帯19の外側には、履板21が設けられている。履帯の構造については、図4~5を参照して後述する。
 更にクローラユニット10は、テンショナ14を備える。テンショナ14は、内側履帯18を内側から外方に押し、内側履帯18が内側にたわまないように保持する。
 更にクローラユニット10は、ブラシ15を備える。ブラシ15は、内側履帯18に内側から係合し、内側履帯18に付いた小石、砂等を払い落とす。
 更にクローラユニット10は、側面カバー16を備える(図1(A)では内部が見えるよう点線で示す)。側面カバー16は、スプロケット12、前側誘導輪13a、後側誘導輪13b、内側履帯18の側面を覆い、内側履帯とスプロケットとの噛み合い部分に石や砂が入り込むのを防止する。側面カバー16の形状については、図8を参照して後述する。
 図2は、このクローラユニット10を車体30の左右に1対取り付けたクローラ型車両を示す概略図である。
 図3は、このクローラユニット10を操舵機構を介して、車体30の前方に1対、後方に1対取り付けたクローラ型車両を示す概略図である。車体30の前後の中央部に、車体30の横方向に延びる揺動ヒンジ34を備える。揺動ヒンジ34には、車体30の左右に車体30の側面とほぼ平行な揺動梁33が取り付けられている。揺動梁33は揺動ヒンジ34の軸を中心として、回転移動することができ、クローラ型車両が走行中に、地面の形状により、前方のクローラユニット10と後方のクローラユニット10の高さの差が生じたとき、地面の形状の変化に追従することができるようになっている。
 2つの揺動梁33のそれぞれの両端部には、操舵機構32が設けられる。操舵機構32は、車体30の方向転換のため、車体30の上下方向の軸を中心として、クローラユニット10を回転させることができる。操舵機構32は一端部のみに設けることもできる。
 図4の(A)は、履帯の構成を示す平面図であり、(B)は、(A)のA-A線に沿った断面図である。
 短い円筒形状の内側履帯18の外周に内側履帯18を取り囲む外側履帯19が巻きまわされている。内側履帯18と外側履帯19とは、複数の弾性部材20により接続されている。弾性部材20は、内側履帯18の長さ方向に一定の間隔で設けられ、内側履帯18の幅方向外側と、外側履帯19の幅方向外側とを接続し、内側履帯18と外側履帯19の中間部では、幅方向の中央部に凹状となっている。即ち、曲がり梁構造である。
 弾性部材20は、ステンレス鋼等の金属でできていて、厚さが薄く容易にたわむことができる。そのため、地面の形状により、外側履帯19と内側履帯18の間隔が容易に変化し、外側履帯19は地面の形状の変化に追従できるようになっている。
 弾性部材20の形状は、ここに示した以外に、容易にたわむことができる形状であれば他の形状でも良い。例えば、弾性部材20は、内側履帯18の幅方向に平行でなく、内側履帯18の幅方向に対して斜め方向に形成されていても良い。
 外側履帯19の外周部には、長さ方向に一定の間隔をおいて履板21が設けられている。履板21は金属製の剛体である。履板21は、地面と係合し、推進力を得るためのものである。
 弾性部材20と外側履帯19と履板21とは,ボルト25により固定される。各履板21は外側履帯19に取り付けられる。履板21同士がピンで固定されるのではない。
 図5は、外側履帯19の外周部に配置された履板21の形状を示す斜視図である。履板21の幅は、外側履帯19の幅とほぼ同じである。外側履帯19に接する履板21の基部の一端部から上方向にラグ21aが延びる。ラグ21aの幅は履板21の幅とほぼ等しく、高さはほぼ一定である。ラグ21aは地面と確実に係合するためのものであり、地面と係合する形状であればよく、形状は限定されない。
 履板21は基部に窪み21bが形成されている。窪み21bは、履板21が滑らないようにし、推進力を得るためのものである。窪み21bの形状は地面とのすべりを防止できる形状であれば、任意の形状でよい。窪み21bは任意でありなくてもよい。
 履板21は突起部21cを有する。突起部21cは、履板21が滑らないようにすると同時に、履板21を外側履帯19に固定するための雌ネジ(図示せず)がきってあり、ボルト25で履板21を外側履帯19に固定することができるようになっている。突起部21cは任意でありなくてもよい。
 外側履帯19には、砂抜き孔19bが設けられている。
 図6の(A)は、第2の実施形態のスプロケット12と内側履帯18との噛み合いを示す平面図であり、(B)は(A)のA-A線に沿った断面図である。図4は、スプロケット12と内側履帯18との噛み合いを説明するための図であり、履帯のうち外側履帯19、弾性部材20等の部材は図示していない。第2の実施形態では、内側履帯18の幅方向中央部だけでなく、内側履帯18の幅方向両端部でもスプロケット12と噛み合う。
 スプロケット12の外周の幅方向中央部には、一定の間隔で突起12aが形成されている。内側履帯18の幅方向中央部には、スプロケット12の突起12aが入り込む孔18bが突起12aの間隔と同じ間隔で形成されている。スプロケット12の突起12aが内側履帯18の孔18bに噛み合って履帯18を駆動するようになっている。
 第2の実施形態では、スプロケット12の外周の幅方向の両側端部には、高さが一定のリブ12cではなく一定の間隔で突起12bが形成されている。内側履帯18の幅方向両端部には、スプロケット12の突起12bが入り込む凹部18cが、突起12bの間隔と同じ間隔で形成されている。スプロケット12の突起12bが内側履帯18の凹部18cに噛み合って内側履帯18を駆動する。スプロケット12の突起12bは、また内側履帯18がスプロケット12からずれて外れることがないように内側履帯18を支持する作用をする。
 図7は、第2の実施形態の履帯の一部を示す斜視図である。内側履帯18の幅方向両端部には凹部18cが形成されている。図7では、内側履帯18の孔18bは、2列形成されている。弾性部材20は、ボルト25で、外側履帯19と接続されている。
 図8の(A)は第2の実施形態について、側面カバー16がスプロケット12と誘導輪13a,bの端面を覆っていることを示す端面図であり、(B)は概略断面図である。(A)にはブラシ15も示す。なお、側面カバー16については、第1の実施形態も同様である。側面カバー16は、保持機構17に取り付けられ、スプロケット12、誘導輪13a,bの側面を覆う。側面カバー16の先端部16aは、内側履帯18と外側履帯19の間の弾性部材20が凹状になった部分にまで延びている。これにより、内側履帯18とスプロケット12との噛み合い部分に石や砂が入り込むのを防止する。
 (B)の概略断面図に示すように、スプロケット12の突起12bは、内側履帯18の凹部と噛みあっている。誘導輪13a,bには、外周部の幅方向端部にリブ13cが設けられ、内側履帯18の両端を保持し、内側履帯18が誘導輪13a,bから外れないように保持する。
 図9の(A)は、第3の実施形態のクローラユニットの外側履帯であるワイヤ履帯23を示す概略斜視図である。第2の実施形態の外側履帯は、外側履帯の長さ方向に平行な複数のワイヤからなるワイヤ履帯23である。ワイヤ履帯23に一定の間隔で履板21が取り付けられている。
 ワイヤ履帯23は、図1の実施形態の外側履帯19と比較してよりたわみやすいので、より地面の形状の変化によりよく追従することができる。
 図9の(B)は、メッシュ履帯24を示す概略斜視図である。(A)のワイヤ履帯のワイヤと直交する方向にもワイヤが設けられ、メッシュ履帯24を形成する。メッシュ履帯24は縦横方向にワイヤが設けられるので、より安定した性能を得ることができる。
 図10の(A)は、第4の実施形態のクローラユニット10'を示す概略端面図、(B)は正面図である。クローラユニット10'が、図1に示す第1の実施形態のクローラユニット10と違う点は、誘導輪13a,bの他に転輪22a,22bが設けられていることである。他は図1のクローラユニット10と同様である。即ち、スプロケット12の外周の幅方向の両側端部には、高さが一定のリブ12cが形成されている。クローラユニット10'は履帯と係合する車輪の数が多いので、より均一な接地圧を得ることができる。
 図11は、図1に示す第1の実施形態のクローラユニット10の試作品の斜視図である。スプロケット12の外周の幅方向の両側端部には、高さが一定のリブ12cが形成されていて、図4に示す第2の実施形態の突起12bは形成されていない。この試作品には、カバー16は取り付けられていない。
 図12は、図1に示す第1の実施形態のクローラユニット10の試作品の外観写真である。この試作品では、スプロケットと誘導輪はアルミ合金(直径約140mm、厚さ約3mm)、内側履帯18と外側履帯19はステンレス鋼(厚さ0.2mm、幅65mm)、弾性部材20はステンレス鋼(厚さ0.2mm、幅10mm)、履板はアルミ合金(10×10×1.5mmアルミアングル材)を使用した。図12の試作品では、弾性部材20は、履帯の方向に対して垂直ではなく、斜め方向に形成されている。
 本発明のクローラ型走行装置を使用して、宇宙用の均一な接地面圧を得られる構造が簡単なクローラ型車両を得ることができる。また、広く民生用クローラ型車両として使用することができる。
(A)は本発明の第1の実施形態によるクローラ型走行装置の1つのクローラユニット10を示す概略端面図(カバーは点線で示す)、(B)は正面図。 クローラユニットを車体の左右に1対取り付けたクローラ型車両を示す概略図。 クローラユニットを操舵機構を介して、車体30の前方に1対、後方に1対取り付けたクローラ型車両を示す概略図。 (A)は履帯の構成を示す平面図、(B)は(A)のA-A線に沿った断面図。 外側履帯の外周部に設けられた履板の構成を示す斜視図。 (A)は第2の実施形態のスプロケットと内側履帯との噛み合いを示す平面図、(B)は(A)のA-A線に沿った断面図。 第2の実施形態の履帯の構成の一部を示す斜視図。 (A)は第2の実施形態の側面カバーの形状を示す概略端面図、(B)は概略断面図。 第3の実施形態のクローラユニットの外側履帯であるワイヤ履帯を示す概略斜視図。 (A)は第4の実施形態のクローラユニットを示す概略端面図、(B)は正面図。 図1に示す第1の実施形態のクローラユニットの試作品の概略斜視図。 図1に示す第1の実施形態のクローラユニットの試作品の外観写真。
符号の説明
10 クローラユニット
11 回転駆動軸
12 スプロケット
12a,b 突起
12c リブ
13a 前側誘導輪
13b 後側誘導輪
13c リブ
14 テンショナ
15 ブラシ
16 側面カバー
17 保持構造
18 内側履帯
18b 孔
18c 凹部
19 外側履帯
19b 砂抜き孔
20 弾性部材
20b 接続部
21 履板
21a ラグ
21b 窪み
21c 突起部
22 転輪
23 ワイヤ履帯
24 メッシュ履帯
25 ボルト
30 車体
31 走行装置
32 操舵機構
33 揺動梁
34 揺動ヒンジ
35 車体

Claims (11)

  1.  駆動軸により駆動力を伝達される駆動輪と、前記駆動輪の軸と平行な軸を有する誘導輪と、前記駆動輪と前記誘導輪とに巻き回され、前記駆動輪と前記誘導輪の周りを周回する履帯とを備える無限軌道方式のクローラ型走行装置であって、前記履帯は、
     前記駆動輪との噛み合い構造を有し、前記駆動輪から駆動力を伝達される内側履帯と、 前記内側履帯の周方向の外側を取り囲む外側履帯と、
     前記内側履帯と前記外側履帯とを前記履帯の全周にわたって接続する複数の弾性部材と、を備え、
     前記外側履帯には、地面と係合するためのラグ構造を有する複数の履板が取り付けられた、ことを特徴とするクローラ型走行装置。
  2.  前記内側履帯と前記外側履帯とは、変形が容易なリング状の薄い金属板又は樹脂板でできている請求項1に記載のクローラ型走行装置。
  3.  前記内側履帯と前記外側履帯とを接続する前記弾性部材は、弾性のある湾曲した形状の金属板又は樹脂板からなる請求項1に記載のクローラ型走行装置。
  4.  前記弾性部材の一端部は前記内側履帯の幅方向端部に接続され、他端部は前記外側履帯の幅方向端部に接続され、中間部は幅方向中央部に向かって凹状の湾曲した形状である請求項3に記載のクローラ型走行装置。
  5.  前記駆動輪は幅方向中央部に一定の間隔で突起を有し、前記内側履帯は幅方向中央部に前記突起と噛み合う凹部を有し、前記突起が前記凹部と噛み合って前記駆動輪が前記内側履帯を駆動する請求項1に記載のクローラ型走行装置。
  6.  前記駆動輪は幅方向端部に一定の間隔で突起を有し、前記内側履帯は幅方向端部に前記突起と噛み合う凹部を有し、前記突起が前記凹部と噛み合って前記駆動輪が前記内側履帯を駆動する請求項5に記載のクローラ型走行装置。
  7.  前記外側履帯は、前記外側履帯の周方向に延びる複数の金属ワイヤで構成されたワイヤ履帯であり、前記ワイヤ履帯に一定の間隔で複数の履板が接続されている請求項1に記載のクローラ型走行装置。
  8.  前記外側履帯は、前記外側履帯の周方向と幅方向に金属ワイヤが延びる金属メッシュで構成されたメッシュ履帯であり、前記メッシュ履帯に一定の間隔で複数の履板が接続されている請求項1に記載のクローラ型走行装置。
  9.  前記駆動輪と前記誘導輪と前記内側履帯との側面を覆い、先端部が前記内側履帯と前記外側履帯の間に入りこむ側面カバーを備える請求項1に記載のクローラ型走行装置。
  10.  更に、前記駆動輪の軸と平行な軸を有する転輪を備え、前記履帯は、前記駆動輪と前記誘導輪と、前記転輪とに巻き回される請求項1に記載のクローラ型走行装置。
  11.  駆動軸により駆動力を伝達される駆動輪と、前記駆動輪の軸と平行な軸を有する誘導輪と、前記駆動輪と前記誘導輪とに巻き回され、前記駆動輪と前記誘導輪の周りを周回する履帯とを備える無限軌道方式の複数のクローラ型走行装置を備えるクローラ型車両であって、前記クローラ型走行装置の前記履帯は、
     前記駆動輪との噛み合い構造を有し、前記駆動輪から駆動力を伝達される内側履帯と、 前記内側履帯の周方向の外側を取り囲む外側履帯と、
     前記内側履帯と前記外側履帯とを前記履帯の全周にわたって接続する複数の弾性部材と、を備え、
     前記外側履帯には、地面と係合するためのラグ構造を有する複数の履板が取り付けられた、ことを特徴とするクローラ型車両。
PCT/JP2008/073385 2007-12-26 2008-12-24 クローラ型走行装置 WO2009081923A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08863612.1A EP2226239B1 (en) 2007-12-26 2008-12-24 Crawler type travel device
CN2008801275061A CN101959748B (zh) 2007-12-26 2008-12-24 履带式行驶装置
US12/810,509 US8657043B2 (en) 2007-12-26 2008-12-24 Crawler type travelling device
CA2710609A CA2710609C (en) 2007-12-26 2008-12-24 A crawler type travelling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007334752A JP5261761B2 (ja) 2007-12-26 2007-12-26 クローラ型走行装置
JP2007-334752 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081923A1 true WO2009081923A1 (ja) 2009-07-02

Family

ID=40801223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073385 WO2009081923A1 (ja) 2007-12-26 2008-12-24 クローラ型走行装置

Country Status (6)

Country Link
US (1) US8657043B2 (ja)
EP (1) EP2226239B1 (ja)
JP (1) JP5261761B2 (ja)
CN (1) CN101959748B (ja)
CA (1) CA2710609C (ja)
WO (1) WO2009081923A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331769B2 (ja) * 2010-09-16 2013-10-30 トピー工業株式会社 クローラ装置およびクローラロボット
CN102114877A (zh) * 2011-01-30 2011-07-06 黄达峰 车辆无轮行走方法及装置
KR102003068B1 (ko) * 2012-12-26 2019-07-23 두산인프라코어 주식회사 굴삭기의 스프로킷
KR101393595B1 (ko) * 2013-02-05 2014-05-12 현대중공업 주식회사 가변 독립형 크롤러를 갖는 굴삭기
CN103646139B (zh) * 2013-12-03 2016-09-21 中国船舶重工集团公司第七一六研究所 履带车辆六自由度仿真方法
KR101592947B1 (ko) * 2014-06-12 2016-02-11 (주)제타크리젠 캐터필러를 이용한 바퀴구조
DE102016203381B3 (de) * 2016-03-02 2017-01-26 Kässbohrer Geländefahrzeug AG Siebbandsystem für ein Strandreinigungsfahrzeug und Strandreinigungsfahrzeug
FR3066171B1 (fr) * 2017-05-15 2020-05-15 Nexter Systems Chenille destinee a equiper un vehicule

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500165A (ja) * 1983-10-19 1986-01-30 バ−メイスタ−,フレデリツク クレルボ 車両のためのニユ−マチツクマツトレス軌道装置
JPS62214067A (ja) * 1986-03-13 1987-09-19 Morooka:Kk アミクロ−ラ
JPS63501356A (ja) * 1985-11-15 1988-05-26 アルトラック リミテッド 軌道付車両用無限軌道
JP2002006950A (ja) * 2000-06-21 2002-01-11 Babcock Hitachi Kk 走行装置
JP2005503961A (ja) * 2001-10-03 2005-02-10 ガリレオ モビリティ インスツルメンツ リミテッド 車両の可適応牽引システム
JP2005111595A (ja) 2003-10-07 2005-04-28 Rikogaku Shinkokai クローラ型走行ロボット
JP2006218977A (ja) * 2005-02-09 2006-08-24 Japan Aerospace Exploration Agency 履帯車両
JP2007238019A (ja) * 2006-03-10 2007-09-20 Yokohama Rubber Co Ltd:The 非空気入りタイヤ及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899242A (en) * 1959-08-11 Bombardier
GB721141A (en) * 1952-04-16 1954-12-29 James Archibald Cuthbertson Improvements relating to endless tracks for tractors and other vehicles
US3498684A (en) * 1967-06-28 1970-03-03 Goodrich Co B F Traction belt
US3495883A (en) * 1967-12-01 1970-02-17 Jacob Fischbach Track and tracked vehicle
US3682266A (en) * 1970-01-21 1972-08-08 Tri Lok Inc Track laying traction unit for replacing a road vehicle driving wheel
US3967721A (en) * 1974-07-08 1976-07-06 Fmc Corporation Belt drive conveyor system
US4056288A (en) * 1976-03-01 1977-11-01 Caterpillar Tractor Co. Endless track for crawler vehicles
EP0812758B1 (en) * 1995-12-12 2002-03-27 Babcock-Hitachi Kabushiki Kaisha Caterpillar type magnetic travelling device
US7597161B2 (en) * 2003-01-21 2009-10-06 Glen Brazier Terrain conforming track assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500165A (ja) * 1983-10-19 1986-01-30 バ−メイスタ−,フレデリツク クレルボ 車両のためのニユ−マチツクマツトレス軌道装置
JPS63501356A (ja) * 1985-11-15 1988-05-26 アルトラック リミテッド 軌道付車両用無限軌道
JPS62214067A (ja) * 1986-03-13 1987-09-19 Morooka:Kk アミクロ−ラ
JP2002006950A (ja) * 2000-06-21 2002-01-11 Babcock Hitachi Kk 走行装置
JP2005503961A (ja) * 2001-10-03 2005-02-10 ガリレオ モビリティ インスツルメンツ リミテッド 車両の可適応牽引システム
JP2005111595A (ja) 2003-10-07 2005-04-28 Rikogaku Shinkokai クローラ型走行ロボット
JP2006218977A (ja) * 2005-02-09 2006-08-24 Japan Aerospace Exploration Agency 履帯車両
JP2007238019A (ja) * 2006-03-10 2007-09-20 Yokohama Rubber Co Ltd:The 非空気入りタイヤ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2226239A4 *

Also Published As

Publication number Publication date
CN101959748A (zh) 2011-01-26
CA2710609C (en) 2017-10-24
EP2226239A4 (en) 2011-06-01
CN101959748B (zh) 2012-10-10
US8657043B2 (en) 2014-02-25
EP2226239B1 (en) 2013-10-23
JP2009154695A (ja) 2009-07-16
JP5261761B2 (ja) 2013-08-14
US20100282526A1 (en) 2010-11-11
CA2710609A1 (en) 2009-07-02
EP2226239A1 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5261761B2 (ja) クローラ型走行装置
CN101432186B (zh) 无芯骨橡胶履带
US9272742B2 (en) Crawler belt link and crawler belt apparatus
JP4183701B2 (ja) チェーン駆動を用いる芯金無しゴムクローラーを備えたアンダーキャリッジ{undercarriageequippedwithanon−steeltyperubbercrawlerusingchainaction}
EP2617631B1 (en) Crawler device and crawler robot
JPWO2006068080A1 (ja) 無端条体およびクローラ装置
JP2010047040A (ja) ゴムクローラ
JP5910426B2 (ja) 全方向車輪、全方向車輪ユニット及び移動体
CN104210570A (zh) 可伸缩变形的弹性履带
JP5606878B2 (ja) 走行用ホイール
JP5684493B2 (ja) 走行装置およびロボット
JP2006321387A (ja) 芯金レスクロ−ラの走行装置
RU2381944C1 (ru) Бесконечная гусеница для колесно-гусеничных средств передвижения
JP5801530B2 (ja) クローラ走行装置
JP6223278B2 (ja) クローラ走行装置
JP5265250B2 (ja) 天体走行車両用車輪
JP5984737B2 (ja) クローラ走行装置
JP2011088519A (ja) 弾性履帯車両
JP5271040B2 (ja) 小型走行装置
JP5208254B2 (ja) キャスタ
JP6479319B2 (ja) ゴムクローラ
JPS6157474A (ja) クロ−ラ
KR101878583B1 (ko) 탄성 크롤러 및 이를 구비한 크롤러 주행 장치
JP2006062391A (ja) ゴムクロ−ラ走行装置
JP2003072606A (ja) 履帯駆動機構の駆動輪

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127506.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2710609

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12810509

Country of ref document: US

Ref document number: 2008863612

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE