WO2009049042A1 - Coffrage isolé à face unique - Google Patents

Coffrage isolé à face unique Download PDF

Info

Publication number
WO2009049042A1
WO2009049042A1 PCT/US2008/079339 US2008079339W WO2009049042A1 WO 2009049042 A1 WO2009049042 A1 WO 2009049042A1 US 2008079339 W US2008079339 W US 2008079339W WO 2009049042 A1 WO2009049042 A1 WO 2009049042A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulated concrete
interior wall
wall portion
forming panel
concrete
Prior art date
Application number
PCT/US2008/079339
Other languages
English (en)
Inventor
Jay J. Bowman
Original Assignee
Accelerated Building Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accelerated Building Technologies Llc filed Critical Accelerated Building Technologies Llc
Publication of WO2009049042A1 publication Critical patent/WO2009049042A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8611Walls made by casting, pouring, or tamping in situ made in permanent forms with spacers being embedded in at least one form leaf
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2002/867Corner details
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2002/8682Mixed technique using permanent and reusable forms

Definitions

  • ICFs insulated concrete forms
  • ICFs are generally constructed of insulative polymer panels or interlocking blocks that provide a form for the poured concrete and also form a part of the outside and inside finished wall assembly. ICF techniques can be used to pre-fabricate building panels. Examples of such panels and methods of making such panels are contained in U.S. Patent Application Publication No. 2006/0251851 and U.S. Patent Application Publication No. 2006/0191232, both of which are incorporated herein by reference.
  • Concrete is the only structural material in a typical ICF and as such carries all of the weight, building and lateral loads imposed on a wall section. The forms do not contribute to the load carrying capacity of the complete wall.
  • the two exposed foam sections (interior and exterior) of a typical ICF must be covered with a fire resistant material in order to obtain required fire ratings.
  • the present invention is directed to single face insulated concrete forms in which an insulative polymer acts as one side of a form for fresh (uncured), or poured concrete and a removable concrete form acts as the other side of the form.
  • an insulative polymer acts as one side of a form for fresh (uncured), or poured concrete and a removable concrete form acts as the other side of the form.
  • embodiments of the present invention allow the typical three step construction process (forming, insulating and furring) to be combined into one step.
  • the modular nature and matching of connecting points and ties with industry standards for the systems and methods described herein require little or no additional worker skills as compared with using typical concrete forms.
  • the deformed section of the steel stud when extending into the concrete, supplements or replaces standard reinforcement of the concrete wall section. This allows the steel studs to supplement the concrete by creating a composite action within the wall structure and allows for the concrete section to be reduced in thickness while maintaining the load properties of the finished wall.
  • FIG. 1 illustrates a perspective view of an embodiment of an insulated concrete form system
  • FIG. 2 illustrates a side view of an embodiment of the insulated concrete form system of Fig. 1 ;
  • FIG. 3 illustrates a perspective view of an embodiment of the interior wall portion of the insulated concrete form system of Fig. 1;
  • FIG. 4 illustrates a perspective view of an embodiment of the interior wall portion of the insulated concrete form system of Fig. 1 ;
  • FIG. 5 illustrates an embodiment of a connector portion of the interior wall portion of the insulated concrete form system of Fig. 1;
  • FIG. 6 illustrates an embodiment of the connector portion of the interior wall portion of the insulated concrete form system of Fig. 1 having a reinforcing member extending therethrough;
  • Fig. 7 illustrates an embodiment of a locking mechanism for securing the reinforcing member to the connector portion of the interior wall portion of the insulated concrete form system of Fig. 1;
  • FIG. 8 illustrates an embodiment of the insulated concrete form system of Fig. 1 having reinforcing members located between the interior wall portion and the concrete form;
  • FIG. 9 illustrates an embodiment of an insulated concrete form system having a removable interior form
  • Fig. 10 illustrates an embodiment of an insulated concrete form system having exterior and interior concrete form portions configured in a modular fashion
  • FIG. 11 illustrates a side perspective view of an embodiment of an insulated concrete form system
  • Fig. 12 illustrates an embodiment of an insulated concrete form system that includes locking mechanisms
  • Fig. 13 illustrates an embodiment of a removable interior form that is attached to the interior wall portion of an insulated concrete form system
  • Fig. 14 illustrates an embodiment of a locking mechanism for securing the various portions of an insulated concrete form system that secures the removable interior form, the interior wall portion and the exterior removable form;
  • Fig. 15 illustrates a side view of an embodiment of a stud for an interior wall portion of an insulated concrete form system
  • Fig. 16 illustrates a perspective view of a stud for an interior wall portion of an insulated concrete form system
  • Fig. 17 illustrates a cross-sectional view of an embodiment of an insulated concrete form system after the forms have been removed;
  • Fig. 18 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed;
  • Fig. 19 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed;
  • Fig. 20 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed;
  • Fig. 21 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed.
  • Fig. 22 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed.
  • Various embodiments of the present invention are directed to an insulated concrete form system.
  • the system includes an insulated pre- studded portion that acts as both a form during the concrete pour and an attached interior wall portion after the pour and removal of an exterior form.
  • Various embodiments also include removable interior forms that may be constructed of a lightweight material.
  • the forms are designed to work with industry standard removable modular concrete forms, either in a double sided or single sided configuration.
  • the foam form panel contains structural members molded within an expandable foam body that fixes the position of and insulates the members which may be constructed of, for example, light gauge steel.
  • the expandable foam core body with the fixed members contributes to the structural integrity of the assembly during the concrete casting process. Embedding a portion of the members within the concrete portion of a wall allows a reduction in the concrete steel reinforcement.
  • the structural members may be of any length and orientation and are molded within the foam core using, for example, a continuous or semi-continuous process.
  • the exposed portion of the structural members extending from the bottom of the foam panel and running the length of the panel create a composite wall connection that allows the concrete and light gauge metal stud to better resist the forces of gravity, structural loading and soil pressures.
  • the opposing exposed steel member acts as a furring stud to allow for plumbing and electrical chases and as the attachment point for the modular concrete forms.
  • the structural metal studs also aid the modular concrete forms in resisting the forces applied when the concrete is poured.
  • the foam surface of the panel prevents the concrete core from contacting the interior portion of the modular forms, thereby extending their useful life and speeding the cleaning of the forms after use.
  • the foam surface also reduces the amount of temporary form bracing required to withstand the pouring forces of the concrete.
  • the opposing exposed stud is used to apply finishing materials such as drywall or other materials to provide the finishing of the interior walls.
  • the opposing flush surface of the steel member may be used to mechanically attach the concrete, window bucks, door bucks, concrete to panel tie steel, etc.
  • the molded portion of the stay in place form can vary in its depth to create the proper insulation based on the building design and intended use.
  • the foam depth can also vary (e.g., from 1 inch to 16 inches) to provide for differing concrete pour thickness support during the casting phase of construction while using the same modular concrete forms and ties.
  • the steel members can be varied in dimension (including the guage of steel used) depending on the concrete depth and reinforcement positioning required by structural engineers in the design of differing wall heights and loading requirements.
  • the panels can be reversed with the foam to the exterior and used as a foam surface to attach cost-effective foam architectural detailing.
  • Fig. 1 illustrates a perspective view of an embodiment of an insulated concrete form system 10.
  • the system 10 includes a removable concrete form 12 that may be constructed of any suitable material such as, for example, steel, plastic, wood, etc.
  • the system 10 also includes an interior wall portion 14.
  • the interior wall portion 14 may be constructed of an insulating material such as, for example, a polymer such as a matrix of molded expanded polystyrene (EPS) or any expandable or non-expandable material (e.g., foam based material) or plastic that may, in one embodiment, include one or more performance enhancing additives.
  • EPS molded expanded polystyrene
  • any expandable or non-expandable material e.g., foam based material
  • the interior wall portion 14 includes various embedded and exposed structural and non-structural members that are constructed of, for example, light gauge steel, wood, plastic, or a composite material of any natural or engineered composition.
  • the members include studs 16 that allow for utilities to be run in the interior of the finished wall and also allow for finish materials such as drywall to be attached to the interior of the finished wall.
  • Reinforcing members 18 connect the interior wall portion 14 and the concrete form 12 and provide either sole reinforcement or reinforcement that supplements conventional reinforcement of the concrete that is poured to fill void 20 between the interior wall portion 14 and the concrete form 12.
  • FIG. 2 illustrates a side view of an embodiment of the insulated concrete form system 10 of Fig. 1.
  • Fig. 3 illustrates a perspective view of an embodiment of the interior wall portion 14 of the insulated concrete form system 10 of Fig. 1.
  • Fig. 4 illustrates a perspective view of an embodiment of the interior wall portion 14 of the insulated concrete form system 10 of Fig. 1.
  • the embodiment shown in Fig. 4 includes reinforcement members 22 that further reinforce the interior wall portion 14.
  • FIG. 5 illustrates an embodiment of a connector portion 24 of the interior wall portion 14 of the insulated concrete form system 10 of Fig. 1.
  • the connector portion 24 is molded into the interior wall portion 14 and provides an attachment point for structural elements 16, 22 and provides points at which the reinforcing members 18 can pass through and be securely connected to the interior wall portion 14.
  • Fig. 6 illustrates an embodiment of the connector portion 24 of the interior wall portion 14 of the insulated concrete form system 10 of Fig. 1 having the reinforcing member 18 extending therethrough
  • Fig. 7 illustrates an embodiment of a locking mechanism 26 for securing the reinforcing member 18 to the connector portion 24 (not shown in Fig. 7) of the interior wall portion 14 of the insulated concrete form system 10 of Fig, 1.
  • the connector portion 24 has a stud 16 attached thereto and the reinforcing member 18 extends through the connector portion 24 and an opening in the stud 16.
  • the locking mechanism 26 secures the reinforcing member 18 to the interior wall portion 14 and prevents the interior wall portion 14 from separating from the concrete form 12 during the concrete pour.
  • the locking mechanism 26 includes a horizontal member 28 and a vertical member 31.
  • Fig. 8 illustrates an embodiment of the insulated concrete form system 10 of Fig. 1 having reinforcing members 30 located between the interior wall portion 14 and the concrete form 12.
  • the reinforcing members 30 are reinforcing bars (rebar) that are arranged in a grid.
  • the reinforcing members 30 may be made of any type of material, such as a metal or polymer.
  • Fig. 9 illustrates an embodiment of an insulated concrete form system 32 having a removable interior form 34.
  • the interior form 34 may be constructed of any suitable material such as, for example, steel, plastic, wood, etc.
  • the interior form 34 is constructed of molded polypropylene.
  • Fig. 10 illustrates an embodiment of an insulated concrete form system 36 having exterior and interior concrete form portions 12, 34 configured in a modular fashion such that the interior form portions 34 fit between the studs 16.
  • FIG. 11 illustrates a side perspective view of an embodiment of an insulated concrete form system 38 that is configured prior to a concrete pour.
  • Fig. 12 illustrates an embodiment of an insulated concrete form system 40 that includes locking mechanisms 26.
  • Fig. 13 illustrates an embodiment of a removable interior form 34 that is attached to the interior wall portion 14 of the insulated concrete form systems described herein.
  • the stud 16 includes a dimpled surface 17 adjacent the interior form 34.
  • the surface 17 facilitates removal of the interior form 34.
  • Fig. 14 illustrates an embodiment of the locking mechanism 26 for securing the various portions of the insulated concrete form systems described herein.
  • the locking mechanism includes the vertical member 28 and the horizontal member 31 and secures the removable interior form 34, the interior wall portion 14 and the exterior removable form (not shown in Fig. 14).
  • Fig. 15 illustrates a side view of an embodiment of a stud 16 for the interior wall portion 14 of the insulated concrete form systems described herein.
  • the stud 16 includes fusion slots 44 that facilitate anchoring the portion of the stud 16 that is contained in the interior wall portion 14.
  • the stud 16 also includes wiring chase slots 46 that facilitate the routing of wires, pipes, etc. through the stud 16 during the finishing process of the structure that includes the concrete wall that was constructed using the insulated concrete form systems.
  • the stud 16 further includes slots 48 that permit the reinforcing members 18 to extend through the stud 16.
  • the stud also includes wedge bolt punch holes 50.
  • Fig. 16 illustrates a perspective view of a stud 16 for the interior wall portion 14 of the insulated concrete form systems described herein.
  • the stud 16 includes a strip 52 that has fusion slots 44. When in use, the fusion slots 44 are embedded in the interior wall portion 14.
  • Fig. 17 illustrates a cross-sectional view of an embodiment of an insulated concrete form system after the forms have been removed and the concrete 54 is cured.
  • the stud 16 includes a portion with the strips 52 embedded in the interior wall portion 14.
  • the stud also includes the slots 48 for insertion of the reinforcing members 18.
  • Fig. 18 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed, In the embodiment of Fig. 18, the stud 16 extends further into the interior wall portion 14.
  • Fig. 19 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed.
  • the stud 16 extends through the interior wall portion 14 into the concrete 54 to provide further reinforcement of the system.
  • the interior wall portion 14 includes a V-shaped cutout section.
  • Fig. 20 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed.
  • the stud 16 includes extended strips 56 embedded in the interior wall portion 14 that provide further stability to the system.
  • Fig. 21 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed.
  • the interior wall portion 14 has a larger V-shaped cutout portion than the embodiment illustrated in Figs, 19 and 20.
  • Fig. 22 illustrates a cross-sectional view of another embodiment of an insulated concrete form system after the forms have been removed.
  • the stud does not extend beyond the interior wall portion 14, but is instead completely embedded in the interior wall portion 14 and the concrete 54.
  • the stud 16 acts as a reinforcing member in the concrete and can supplement or replace other reinforcing techniques.
  • the interior wall portion 14 may include panels that are oriented on different planes, thus creating walls for specific purposes, such as below-grade and above-grade walls, retaining walls with attached architectural details and sandwich insulated walls containing concrete on both exposed wall surfaces.
  • Various embodiments of the systems and methods described herein allow for concrete structures that use less concrete, thus reducing costs and the weight of the structure.
  • Various embodiments of the systems and methods described herein eliminates or reduces the amount of bracing necessary for creating poured concrete walls and allow for relatively easier installation than traditional concrete poured walls,

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

La présente invention concerne un panneau de coffrage isolé qui comprend une partie de paroi intérieure isolante qui fournit un coffrage pour supporter du béton non durci, le béton non durci formant une partie structurelle de béton lors du durcissement du béton non durci, et la partie de paroi intérieure isolante reste fixée à la partie structurelle de béton après la formation.
PCT/US2008/079339 2007-10-09 2008-10-09 Coffrage isolé à face unique WO2009049042A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US97854507P 2007-10-09 2007-10-09
US60/978,545 2007-10-09

Publications (1)

Publication Number Publication Date
WO2009049042A1 true WO2009049042A1 (fr) 2009-04-16

Family

ID=40266167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/079339 WO2009049042A1 (fr) 2007-10-09 2008-10-09 Coffrage isolé à face unique

Country Status (2)

Country Link
US (1) US20090218474A1 (fr)
WO (1) WO2009049042A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129906A1 (fr) * 2011-03-29 2012-10-04 洛阳师范学院 Mur de bâtiment présentant une légère isolation thermique et procédé de construction associé
EP2402525A4 (fr) * 2009-12-21 2016-01-27 Dahir Kurmanbievich Semenov Procédé d'édification d'un bâtiment à structure monolithique avec façade externe décorative
CN105804392A (zh) * 2016-05-11 2016-07-27 赵云川 一种石膏墙体模具及施工工艺
CN105839911A (zh) * 2016-05-19 2016-08-10 中国建筑第二工程局有限公司 一种定型化墙柱模板
WO2017066143A1 (fr) * 2015-10-14 2017-04-20 Illinois Tool Works Inc. Appareil de formation de paroi de bordure
CN112609959A (zh) * 2020-11-30 2021-04-06 广东简捷建筑技术有限公司 可正反打的三明治组合模具

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640425B2 (en) 1996-01-19 2020-05-05 Romeo Ilarian Ciuperca Method for predetermined temperature profile controlled concrete curing container and apparatus for same
US9016027B1 (en) 2010-03-03 2015-04-28 Kenneth Robert Kreizinger Method of building insulated concreted wall
US8555583B2 (en) 2010-04-02 2013-10-15 Romeo Ilarian Ciuperca Reinforced insulated concrete form
US20120186178A1 (en) * 2011-01-21 2012-07-26 Gregory Westra Wall insulation system and a method of installing the same
US8756890B2 (en) 2011-09-28 2014-06-24 Romeo Ilarian Ciuperca Insulated concrete form and method of using same
US8555584B2 (en) 2011-09-28 2013-10-15 Romeo Ilarian Ciuperca Precast concrete structures, precast tilt-up concrete structures and methods of making same
JP2014533213A (ja) 2011-11-11 2014-12-11 ロメオ, イラリアン チューペルカ, コンクリート混合組成物、モルタル混合組成物及びコンクリート又はモルタルの養生及び製造方法及びコンクリート又はコンクリート物/コンクリートオブジェクト及び構造物
US9458637B2 (en) 2012-09-25 2016-10-04 Romeo Ilarian Ciuperca Composite insulated plywood, insulated plywood concrete form and method of curing concrete using same
US8877329B2 (en) 2012-09-25 2014-11-04 Romeo Ilarian Ciuperca High performance, highly energy efficient precast composite insulated concrete panels
US8532815B1 (en) 2012-09-25 2013-09-10 Romeo Ilarian Ciuperca Method for electronic temperature controlled curing of concrete and accelerating concrete maturity or equivalent age of concrete structures and objects
US8636941B1 (en) 2012-09-25 2014-01-28 Romeo Ilarian Ciuperca Methods of making concrete runways, roads, highways and slabs on grade
US11566424B2 (en) 2012-12-07 2023-01-31 Precasteel, LLC Stay-in-place forms and methods and equipment for installation thereof
US10344474B2 (en) 2012-12-07 2019-07-09 Precasteel, LLC Stay-in-place forms and methods and equipment for installation thereof
US9783982B2 (en) 2012-12-07 2017-10-10 Precasteel, LLC Stay-in-place fascia forms and methods and equipment for installation thereof
US8844227B1 (en) 2013-03-15 2014-09-30 Romeo Ilarian Ciuperca High performance, reinforced insulated precast concrete and tilt-up concrete structures and methods of making same
US10065339B2 (en) 2013-05-13 2018-09-04 Romeo Ilarian Ciuperca Removable composite insulated concrete form, insulated precast concrete table and method of accelerating concrete curing using same
CA2911409C (fr) 2013-05-13 2021-03-02 Romeo Ilarian Ciuperca Moule de batterie en beton isole, systeme de durcissement du beton passif isole, appareil de durcissement accelere du beton, et procede d'utilisation associe
SE538828C2 (sv) * 2013-08-15 2016-12-20 Incoform Ab Betongform för bildande av en vägg eller liknande samt ett förfarande för att bilda en sagda vägg eller liknande samt ett stöd
US9776920B2 (en) 2013-09-09 2017-10-03 Romeo Ilarian Ciuperca Insulated concrete slip form and method of accelerating concrete curing using same
US9862118B2 (en) 2013-09-09 2018-01-09 Romeo Ilarian Ciuperca Insulated flying table concrete form, electrically heated flying table concrete form and method of accelerating concrete curing using same
CA2925625C (fr) * 2013-12-17 2022-06-14 Benjamin BAADER Coffrage en panneau a beton isole et son procede de fabrication
US8966845B1 (en) 2014-03-28 2015-03-03 Romeo Ilarian Ciuperca Insulated reinforced foam sheathing, reinforced vapor permeable air barrier foam panel and method of making and using same
US9574341B2 (en) 2014-09-09 2017-02-21 Romeo Ilarian Ciuperca Insulated reinforced foam sheathing, reinforced elastomeric vapor permeable air barrier foam panel and method of making and using same
CA2956649A1 (fr) 2016-01-31 2017-07-31 Romeo Ilarian Ciuperca Coffrages a beton autorecuits et methode de fabrication et d'utilisation
IT201700034762A1 (it) * 2017-03-29 2018-09-29 Anton Massimo Galluccio Pannello di armatura per strutture di cemento armato
US12017380B2 (en) 2019-01-18 2024-06-25 Benjamin Baader Adjustable apparatus, system and method for constructing insulated concrete forms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516372A (en) * 1981-08-14 1985-05-14 Grutsch George A Concrete formwork
US4885884A (en) * 1988-05-25 1989-12-12 Schilger Herbert K Building panel assembly
US5861105A (en) * 1996-07-25 1999-01-19 Martineau; Julien Concrete form system
US6314694B1 (en) * 1998-12-17 2001-11-13 Arxx Building Products Inc. One-sided insulated formwork
US20060201090A1 (en) * 2005-02-25 2006-09-14 Tricia Guevara Lightweight compositions and articles containing such

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967528A (en) * 1987-03-02 1990-11-06 Doran William E Construction block
US5065561A (en) * 1988-10-19 1991-11-19 American Construction Products, Inc. Form work system
US5409193A (en) * 1994-03-24 1995-04-25 Baxter; Kenneth I. Insulated concrete wall tie system
US5582388A (en) * 1994-03-24 1996-12-10 Baxter; Kenneth I. Insulated concrete wall tie system
US6178711B1 (en) * 1996-11-07 2001-01-30 Andrew Laird Compactly-shipped site-assembled concrete forms for producing variable-width insulated-sidewall fastener-receiving building walls
CA2191914C (fr) * 1996-12-03 1999-05-11 Geoffrey J. Blackbeard Coffrages a beton isoles
US6079176A (en) * 1997-09-29 2000-06-27 Westra; Albert P. Insulated concrete wall
US6279285B1 (en) * 1999-01-18 2001-08-28 K-Wall Poured Walls, Inc. Insulated concrete wall system
US6612083B1 (en) * 2001-03-27 2003-09-02 William J. Richards System of building construction
US6634148B2 (en) * 2001-11-29 2003-10-21 Edward C. Shidler Insulated poured wall system
US6625947B1 (en) * 2001-11-30 2003-09-30 Ferrall Burgett Insulated concrete wall system and method of making same
US7082731B2 (en) * 2002-09-03 2006-08-01 Murray Patz Insulated concrete wall system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516372A (en) * 1981-08-14 1985-05-14 Grutsch George A Concrete formwork
US4516372B1 (en) * 1981-08-14 2000-04-25 Ciu Corp Concrete formwork
US4885884A (en) * 1988-05-25 1989-12-12 Schilger Herbert K Building panel assembly
US5861105A (en) * 1996-07-25 1999-01-19 Martineau; Julien Concrete form system
US6314694B1 (en) * 1998-12-17 2001-11-13 Arxx Building Products Inc. One-sided insulated formwork
US20060201090A1 (en) * 2005-02-25 2006-09-14 Tricia Guevara Lightweight compositions and articles containing such

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402525A4 (fr) * 2009-12-21 2016-01-27 Dahir Kurmanbievich Semenov Procédé d'édification d'un bâtiment à structure monolithique avec façade externe décorative
WO2012129906A1 (fr) * 2011-03-29 2012-10-04 洛阳师范学院 Mur de bâtiment présentant une légère isolation thermique et procédé de construction associé
WO2017066143A1 (fr) * 2015-10-14 2017-04-20 Illinois Tool Works Inc. Appareil de formation de paroi de bordure
US9879422B2 (en) 2015-10-14 2018-01-30 Illinois Tool Works Inc. Curb wall forming apparatus and method of forming a curb wall
US9982432B1 (en) 2015-10-14 2018-05-29 Illinois Tool Works Inc. Curb wall forming apparatus and method of forming a curb wall
CN105804392A (zh) * 2016-05-11 2016-07-27 赵云川 一种石膏墙体模具及施工工艺
CN105839911A (zh) * 2016-05-19 2016-08-10 中国建筑第二工程局有限公司 一种定型化墙柱模板
CN112609959A (zh) * 2020-11-30 2021-04-06 广东简捷建筑技术有限公司 可正反打的三明治组合模具

Also Published As

Publication number Publication date
US20090218474A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US20090218474A1 (en) Single faced insulated concrete form
US6293063B2 (en) Cast-in-place hybrid building system
Losch et al. State of the art of precast/prestressed concrete sandwich wall panels
US6880304B1 (en) Structural thermal framing and panel system for assembling finished or unfinished walls with multiple panel combinations for poured and nonpoured walls
US8763331B2 (en) Wall molds for concrete structure with structural insulating core
EP2715004B1 (fr) Système mural plus solide
EP2456928B1 (fr) Module structural pour construction de bâtiments
US20080098676A1 (en) Connectors and Methods of Construction for a Precast Special Concrete Moment Resisting Shear Wall and Precast Special Concrete Moment Resisting Frame Building Panel System
US7946092B2 (en) Method of constructing a building, such building, and wall and floor elements for use therein
US9487943B2 (en) Component building system
CN111424849A (zh) 一种安装便捷型预制钢筋混凝土剪力墙及施工方法
US20100257805A1 (en) Concrete panel corner connection
KR102110559B1 (ko) 연결성능이 보강된 벽체구조물 및 그 시공방법
KR101178168B1 (ko) 건축물의 장스팬 고하중용 아이엠티 슬래브
KR100830241B1 (ko) 어댑터를 이용한 경량 합성구조 시스템의 상하층 경량합성벽체와 콘크리트 바닥 슬래브의 복합화방법
KR101407502B1 (ko) 모듈러 건축물의 접합구조 및 그 접합시공방법
EP3594425B1 (fr) Structure porteuse de paroi
EP1614822A2 (fr) Construction de mur et procédé associé
JP2002213193A (ja) コンクリート構造体の改修方法
CN212641827U (zh) 安装便捷型预制钢筋混凝土剪力墙
CN115142576A (zh) 预制双钢板混凝土组合剪力墙干式连接节点及施工方法
CN210117806U (zh) 一种墙体的层间连接节点、预制件及装配式建筑物
US20060185283A1 (en) Interlocking construction panel showing fabrication thereof and the building system
CN113389297A (zh) 一种维护、保温、结构一体化的钢混结构建筑体系
KR200423643Y1 (ko) 플레이트를 이용한 i-슬래브 접합구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08837263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08837263

Country of ref document: EP

Kind code of ref document: A1