WO2009043946A1 - Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas - Google Patents

Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas Download PDF

Info

Publication number
WO2009043946A1
WO2009043946A1 PCT/ES2007/070165 ES2007070165W WO2009043946A1 WO 2009043946 A1 WO2009043946 A1 WO 2009043946A1 ES 2007070165 W ES2007070165 W ES 2007070165W WO 2009043946 A1 WO2009043946 A1 WO 2009043946A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
ppm
additive
less
agent
Prior art date
Application number
PCT/ES2007/070165
Other languages
English (en)
French (fr)
Inventor
Cosme Llop
Antonio Manrique
Teresa P. Karjala
Brian W. Walther
Jiaxing Chen
Original Assignee
Dow Global Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc. filed Critical Dow Global Technologies Inc.
Priority to PCT/ES2007/070165 priority Critical patent/WO2009043946A1/es
Priority to MX2010003688A priority patent/MX2010003688A/es
Priority to ARP080104297A priority patent/AR068654A1/es
Priority to PCT/ES2008/070179 priority patent/WO2009043957A1/es
Priority to RU2010117361/05A priority patent/RU2010117361A/ru
Priority to EP08835316A priority patent/EP2233520A1/en
Priority to CN200880118747XA priority patent/CN101883813A/zh
Priority to JP2010527476A priority patent/JP5366956B2/ja
Priority to US12/680,970 priority patent/US20120046401A1/en
Priority to TR2010/02739T priority patent/TR201002739T2/xx
Priority to TW097137712A priority patent/TW200922985A/zh
Publication of WO2009043946A1 publication Critical patent/WO2009043946A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/40Mixtures based upon bitumen or asphalt containing functional additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention refers to a method for reducing the amount of polar additives necessary for use in polyolefin resin materials.
  • the method includes the incorporation into the resin of materials having the formula Ri (OCH 2 CH 2 ) x OH, where R) is a linear or branched chain of alkyl of 20 to 60 carbon atoms, and x varies between 2 and 100.
  • the co-additive materials used in the present invention are especially indicated for use with fatty amide additives used as antifriction agents for polyolefin resins such as low linear low density polyethylene, substantially linear ethylene polymers and oleophonic copolymers of block.
  • the additives are used with polyolefin materials to confer various properties to the resin, in order to make it more suitable for its intended use.
  • plasticizers e.g., hindered phenolics (e.g., Irganox 1M 1010 manufactured by Ciba Specialty Ch.)
  • antioxidants e.g., hindered phenolics (e.g., Irganox 1M 1010 manufactured by Ciba Specialty Ch.)
  • Adhesion additives e.g., polyisobutylene (PIB)
  • stabilizers of heat e.g., phosphites (e.g.,
  • Irgafos TM 168) pigments
  • light stabilizers eg, benzophenon Cyasorb TM UV 531 manufactured by Cytec Industries and obstructed amine light stabilizer Tinuvin TM 622 manufactured by Ciba Specialty Ch.
  • Technological auxiliaries eg ., polyethylene glycols, fluoropolymers, fluoroelastimers, waxes, flame retardants (eg, flame retardant based on Amgard TM CPC 102 phosphorus base manufactured by Albright and Wilson Americas).
  • lubricants e.g., waxes, stearates, mineral oils
  • anti-friction agents e.g., erucamide, oleamide
  • cross-linking agents e.g., peroxides, (e.g., Booster TM manufactured by DuPont )
  • fogging agents e.g., Atmer TM 100 sorbitan ester manufactured by Uniqema
  • impact modifiers e.g., Paxon TM Pax Plus rubber modified film resin manufactured by Allied Corp.
  • antistatic agents eg, Armostat tertiary ethoxylated amine 410 manufactured by Akzo Chemicals, Inc.
  • the additives can be easily separated from the resin during the process, they can potentially cause undesirable accumulations in the equipment, the stop being necessary for cleaning, and diluting the desired effects of said additives in the final film. Consequently, it would be desirable to improve the strength of one or more additives of the resin material.
  • one or more of said targets can be extended by adding at least one component with the formula Ri (OCH 2 CH 2 ) x OM to the polyolefin resin, where Ri is a linear or branched alkyl chain of 20 to 60 atoms carbon, and x is between 2 and 100.
  • Ri is a linear or branched alkyl chain of 20 to 60 atoms carbon
  • x is between 2 and 100.
  • one aspect of the present invention is the use of a compound of formula Ri (OCH 2 CHi) x OH as a co-additive for polar additives in a polyolefin resin, where Ri is a linear or branched alkyl chain of 20 to 60 carbon atoms, and is between x 2 and 100.
  • the co-additives of the present invention have a greater capacity to remain bound to the polyolefin resin. This phenomenon is considered to be, in paite, the result of resistance to movement given the relatively high molecular weight of the materials and. in part, the increase in Van der Waal forces resulting from the relatively long non-polar tail.
  • the OH groups at the end of these glues can be used as hydrogen bonds to fix polar additives, such as fatty amides, such as erucamide, which is commonly used as an antifriction agent in polyolefins.
  • polar additives particularly those that function as surface modifiers, such as antifriction agents, are obtained with less material when the additive is on the surface, the ideal position for it to be effective. Also, the effects are maintained over a longer period of time, since the additive adheres to the resin to a greater extent than other commonly used additives.
  • the co-additives do not adversely affect the performance of the products manufactured with the resins that include the co-additive. For example, it is desirable that the sealability of films made of resin incorporating the co-additives does not deteriorate substantially.
  • the present invention refers to the use as a co-additive for use with any polar additive, the co-additive being a compound with the formula Ri (OCH 2 CH 2 ) X OH, where Ri is a linear chain or branched alkyl of 20 to 100 carbon atoms, and x is between 2 and 100.
  • Ri is a linear chain or branched alkyl of 20 to 100 carbon atoms
  • x is between 2 and 100.
  • Rj is an alkyl linear chain with an average value of 30 carbon atoms
  • x has an average value of approximately 5.
  • Rj is a branched chain, or that Ri thong from 20 to 60 carbon atoms.
  • Such compounds are more fully described for use as hydrophilic agents for the improvement of wettability in WO02 / 42530, which is incorporated herein by reference in its entirety.
  • An example of such a compound is commercially available as a transport polypropylene concentrate from Ciba Specialty Chemicals, Inc. under the trade name Irgasurf TM HL 560.
  • Other examples are commercially available through Baker Petrolite, under the trade name ethoxylates UNITHOX.
  • the co-additive of the present invention will preferably be added to the resin in an amount of about 200 ppm, alternatively 500 ppm, or 1000 ppm to about 3000 ppm, alternatively 2500 ppm, or 2000 ppm, depending on the
  • SUBSTITUTE SHEET (RULE 26) Total resin or resin mix.
  • additives within the aforementioned range of variation (for example, from about 200 ppm to about 1000 ppm) to avoid problems in fiber spinning.
  • These materials can be used with any polyolefin resin, or with a polyolefin resin that contains a mixture.
  • the recommended polyolefin materials are plastomers and / or elastomers.
  • polyethylene elastomers polypropylene plastomers, block olefinic copolymers (also called multi-block statistical olefinic copolymers), linear low density polyethylene, very high density polyethylene Low density, low density and high pressure polyethylene, and high density polyethylene.
  • polyethylene-based elastomers and plastomers there may be mentioned homogeneously branched linear ethylene polymers such as those of U.S. Patent No. 3,645,992, and substantially linear ethylene polymers such as those described in U.S. Patent 5,272,236, in which U.S. Patent 5,278,272. in U.S.
  • Patent 5,582,923 and in U.S. Patent 5,733,155, and / or mixtures thereof (such as those disclosed in U.S. Patents 3,914,342 or 5,854,045). These references are incorporated in their entirety to this document by reference.
  • high pressure ethylene copolymers such as the ethylene vinyl acetate interpolymer, the ethylene acrylic acid interpolymer, the ethylene ethyl acetate interpolymer, the ethylene methacrylic acid interpolymer, the ionomer of ethylene methacrylic acid, etc.
  • Substantially linear ethylene polymers are preferable.
  • Substantially linear ethylene polymers are commercially available through Dow Chemical Company, under the trade name AFFINITY TM.
  • propylene-based elastomers and plastomers mention may be made of the propylene-based plastomers and elastomers described in WO03 / 040442, and in US patent application 60/709688 filed on August 19, 2005 (both of which are incorporated herein in their entirety document by reference - some of these materials are commercially available through The Dow Chemical Company under the trade name of VERSIFY TM), and plastomers and elastomers based on
  • Segmented ethylene block alpha-olefin copolymers include those described, for example, in WO 2005/090427, WO 2005/090425 and WO 2005/090426, all of which are incorporated herein by reference in their entirety. Some of these resins are commercially available through The Dow Chemical Company under the trade name of INFUSE TM.
  • the polymers recommended for use in the present invention are those containing a polymeric structure that contains a minimum of 50% carbon atoms, 65% of carbon atoms being more recommended, and 75% of atoms being more recommended. carbon.
  • the polymers that benefit most from using the present invention are those with a relatively low surface energy.
  • the surface energy can be measured using various conventional techniques, and they are known by specialists in this discipline, such as the measurement of the contact angle of water (ASTM D 2578) or direct measurement using a stylus measuring in dynes (ASTM D 2578) , such as the ACCU D YNE TES ⁇ M markers sold by Diversified Enterprises, Claremont, NH.
  • a base resin having a density (determined according to ASTM D-792) of 0.87 g / cm 3 , 0.90 g / cm 3 , 0.91 g / cm 3 or 0.92 g / cm 3 at about 0.96 g / cm 3 , 0.95 g / cm 3 or 0.94 g / cm 3 .
  • a base resin that has a melt index (determined according to ASTM D-1238, Condition 190 C / 2.16 kilogram (kg)) of 0.5 g / 10 min, preferably 1, 0 g / 10 min., More preferably 2 g / 10 min. At about 20 g / 10 min., Preferably 18 g / 10 min. More preferably 15 g / 10 min.
  • the polar additive of the present invention can be any additive commonly used with polyolefin resins.
  • the functional additives are plaslifiers, antioxidants (e.g., hindered phenolics (e.g., Irganox TM 1010 manufactured by Ciba Specialty Ch.)), Heat stabilizers (e.g., phosphites (e.g. ., Irgafos TM 168)), adhesion additives (eg, polyisobutylene (PIB)), pigments, light stabilizers (eg, benzophenon Cyasorb TM UV 531 manufactured by Cytec Industries and
  • SUBSTITUTE SHEET (RULE 26) Obstructed amine light stabilizer Tinuvin TM 622 manufactured by Ciba Specialty Ch.), technical complements (eg ... polyethylene glycols, fluoropollmeres, fluoroelastimers, waxes), flame retardants (eg flame retardant with Amgard TM CPC 102 phosphorus base manufactured by Albright and Wilson Americas), lubricants (e.g., waxes, stearates, mineral oils), anti-friction agents (e.g., erucamide, oleamide), bonding agents (e.g.
  • peroxides eg, Booster TM manufactured by DuPont
  • fogging agents eg, Atmer TM 100 sorbitan ester manufactured by Uniqema
  • impact modifiers eg modified film resin Paxon TM Pax Plus rubber manufactured by Allied Corp.
  • antistatic agents eg, armostat tertiary ethoxylated amine manufactured by Akzo Chemicals, Inc.
  • antifriction agents are often polar and, therefore, are effectively adapted to the present invention.
  • the antifriction agent is an organic compound (including metal salts thereof) with a wax or chain type hydrocarbon component, and is semi-compatible with the polyolefin.
  • the antifriction agents can be amides of a mono or dicarboxylic fatty acid having a number of carbon atoms between 8 and 30, and in particular having between 12 and 24 carbon atoms that can be saturated or unsaturated with ethylene, with ammonia or mono or diamines having between 2 and 10 carbon atoms, such as alkyl primary amines or alkylene diamines.
  • anti-friction agents may be mentioned oleamide, behenamide, stearamide, erucamide and diamine NN 'alkylene bis stearamide, bis oleamide or bis erucamide, oleyl palmitamide, stearyl erucamide, ethylene bis bis stearamide and ethylene bis oleamide.
  • the antifriction agent may be mine hydrocarbon wax. Because the co-additives of the present invention allow the use of less polar additive without a proportional loss of efficiency, additives can be added in amounts less than those generally observed. For erucamide in films, fibers or manufactured articles, it can be effectively added in a range of 250 ppm to 2% by weight. For numerous applications, it will be preferable that the co-additive is added in an amount of 1500 ppm or less, for example 1000 ppm or less, 750 ppm or less, 500 ppm or less or even less than 200 ppm.
  • the additive (s) and co-additive of the present invention can be added using any procedure known in this discipline, such as by concentrating
  • SUBSTITUTE SHEET (RULE 26) and mixed product mix.
  • Polypropylene can be used effectively as a polymer transport agent to form a concentrate for the co-additive.
  • non-polar additives can be added to the polyolefin materials, depending on the intended use. While it has been found that the co-additives themselves object of the present invention possess some anti-blocking activity, it may be desirable to add additional anti-blocking agents, for example, silicon anti-blocking agents such as silicon dioxide. This may be particularly desirable for use in films.
  • an additive package suitable for use in the manufacture of polyolefin films may include silicon dioxide, erucamide and Irgasurf TM HL 560.
  • the additive and co-additive containing resins, object of the present invention can be used in any application in which polyolefmas are currently used.
  • the invention may have a special utility in fibers and films.
  • films containing at least approximately 300 ppm of anti-blocking agent can be obtained and, nevertheless, are characterized with a brightness (determined at 45 ° using ASTM D2457-90) greater than about 50, together with a total optical clarity (determined using ISO 14782, with a film thickness of 50 microns) less than approximately 14%.
  • Films manufactured using the present invention can be manufactured according to the standard processes of the sector. Accordingly, they can be used, for example, with mono or coextruded films that can optionally be subjected to corona treatment.
  • each example contains a unique combination of additives, which is shown in Table 1.
  • comparative example 1 contained 750 ppm of erucamide, 0 ppm of IrgasurF M and 2500 ppm of silica. The silica used in these examples
  • SUBSTITUTE SHEET (RULE 26) it was a flux type of calcined diatomaceous earth, with a particle size distribution of 90% less than 20.2 ⁇ rn and less than 10% less than 2.3 ⁇ m.
  • the film specimens were removed from the roll according to the elapsed time, as indicated in the tables.
  • the integrity of the specimens was optimized using thorough laboratory techniques, such as the use of gloves to cut the films of the roll, and minimizing contact with the test surface.
  • the exact geometry of the specimens remained uniform, since all samples were reduced from a larger sample using a die cutter.
  • the coefficient of friction (COF) was measured in static mode and in dynamic mode, using a universal meter (Instron 5564) according to the test method of ASTM 1894-06. Experiments were carried out on the film by moving it along an aluminum surface, as well as a film-against-film test. In general, a dynamic film COF against film less than or equal to about 0.3, preferably less than or equal to 0.2, is desirable.
  • Table 2 shows the COF data generated while the film is in contact with itself when moving (that is, the inner layer of the film bubble is in contact with the outer layer of the bubble).
  • Table 3 shows the COF data generated while the outer layer of the film bubble moves over a metal surface.
  • Example 2 The film with Irgasurf at 2500 ppm (Example 2) obtained the lowest dynamic COF for both film-film and film-metal.
  • a second set of experiments was performed on monolayer films, which was prepared as indicated above, except that a 45mm-28D Covex extruder was used.
  • Table 4 shows the COF data of these films generated while the film is in contact with itself when it moves (that is, the inner layer of the film bubble is in contact with the outer layer of the bubble).
  • Table 5 shows
  • SUBSTITUTE SHEET (RULE 26) they present the generated COF data while the outer layer of the film bubble moves over a metal surface.
  • This second set of films was also tested according to the same test method of ASTM 1894-06 using a slip / friction coefficient monitor purchased from Testing Machines, Inc. (TMI).
  • Table 6 shows the COF data generated while the film is in contact with itself when it moves (that is, the inner layer of the film bubble is in contact with the outer layer of the bubble).
  • Table 7 shows the COF data generated while the outer layer of the film bubble moved over a metal surface.
  • the base resin for Examples 11 and 13 was a copolymer of ethylene 1-octene with a density of 0.919 and a melt index (2.16 kg 190 ° C) of 1.05 g / 10 min.
  • the base resin for Examples 12 and 14 was a copolymer of ethylene 1-oct ⁇ no with a density of 0.921 with the same melt index (1.05 g / 10 min).
  • the compositions tested are presented in the
  • SUBSTITUTE SHEET (RULE 26) Table 8. Films were produced on the Covex monolayer line (45 mm 25D). The COF in the Instron equipment was measured again following the ISO 8295: 1995 standard. Table 9 shows the COF data generated while the film is in contact with itself when moving (that is, the inner layer of the film bubble is in contact with the outer layer of the bubble). Table 10 shows the COF data generated while the outer layer of the film bubble moves over a metal surface. Table 8
  • Example 14 had a higher brightness and a total optical clarity lower than that of Example 12, despite similar erucamide and slightly higher levels of CaCO 3 .
  • Table 11

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Se divulga un método para mejorar la eficacia de los aditivos polares utilizados en las poliolefínas. El método hace referencia a la incorporación de una cantidad efectiva de compuesto de co-aditivo con la fórmula R1(OCH2CH2)XOH a la poliolefina antes de formar el filme, donde R1 es una cadena lineal o ramificada alkil de 20 a 60 átomos de carbono y x varía entre 2 y 100. La presencia de estos materiales en las resinas de poiiolefina permite utilizar una cantidad inferior de aditivos polares sin perder su eficacia, y conlleva asimismo una mejora de las propiedades ópticas para los filmes fabricados con dichas resinas.

Description

MÉTODOS TARA LA REDUCCIÓN DE ADITIVOS POLARES NECESARIOS PARA USO EN POLIOLEFINAS CAMPO DE LA INVENCIÓN
La presente invención hace referencia a un método para reducir la cantidad de aditivos polares necesarios para uso en materiales resina de poliolefina. Ei método incluye la incorporación a la resina de materiales que presentan la fórmula Ri(OCH2CH2)xOH, donde R) es una cadena lineal o ramificada de alkil de 20 a 60 átomos de carbono, y x varía entre 2 y 100. Los materiales co-aditivos utilizados en la presente invención están especialmente indicados para su uso con aditivos de amidas grasas utilizados como agentes antifricción para las resinas de poliolefina como el polietileno lineal bajo de baja densidad, sustancialmente los polímeros de etileno lineal y los copolírneros oleofϊnicos de bloque.
Antecedentes y resumen de la invención
Generalmente, los aditivos se utilizan con materiales de poliolefina para conferir diversas propiedades a la resina, con el fin de que resulte más adecuada para su uso previsto. Entre dichos aditivos pueden citarse plastificantes, antioxidantes (p.ej., fenólicos obstaculizada (p.ej., Irganox1M 1010 fabricado por Ciba Specialty Ch.)), aditivos de adherencia (p.ej., poliisobutileno (PIB)), estabilizadores de calor (p.ej., fosfitos (p.ej.,
Irgafos™ 168)), pigmentos, estabilizadores de luz (p.ej., benzofenon Cyasorb™ UV 531 fabricado por Cytec Industries y estabilizador de luz de amina obstaculizada Tinuvin™ 622 fabricado por Ciba Specialty Ch.), auxiliares tecnológicos (p.ej., glicoles de polietileno. fluoropolimeros, fluoroelastímeros, ceras), retardantes de llama (p.ej., retardante de llama con base de fósforo Amgard™ CPC 102 fabricado por Albright and Wilson Americas). lubricantes (p.ej., ceras, estearatos, aceites minerales), agentes antifricción (p.ej., erucamida, oleamida), agentes de reticulado (p.ej., peróxidos, (p.ej., Booster™ fabricado por DuPont)), agentes antiniebla (p.ej., éster de sorbitán Atmer™ 100 fabricado por Uniqema), modificadores de impacto (p.ej., resina de filme modificada con goma Paxon™ Pax Plus fabricada por Allied Corp.), agentes antiestáticos (p.ej., amina etoxilada terciaria Armostat 410 fabricada por Akzo Chemicals, Inc.), etc.
-1-
HOJA DE SUSTITUCIÓN (REGLA 26) Si bien estos materiales puede aportar características beneficiosas a la resina, añaden un gasto. Por ello, sería beneficioso reducir el volumen de aditivos utilizados, manteniendo al mismo tiempo con carácter general la eficacia del aditivo.
Asimismo, si los aditivos pueden separarse fácilmente de la resina durante el proceso, pueden causar potencialmente acumulaciones no deseables en los equipos, siendo necesaria la parada para su limpieza, y diluyendo los efectos deseados de dichos aditivos en el filme final. En consecuencia, sería deseable mejorar la resistencia de uno o más aditivos del material de resina.
Se ha descubierto que uno o más de dichos objetivos pueden be ampliarse añadiendo al menos un componente con la fórmula Ri(OCH2CH2)xOM a la resina de poliolefina, donde Ri es una cadena lineal o ramificada alkil de 20 a 60 átomos de carbono, y x está entre 2 y 100. Por consiguiente, un aspecto de la presente invención es la utilización de un compuesto con la fórmula Ri(OCH2CHi)xOH como co-aditivo para aditivos polares en una resina de poliolefina, donde Ri es una cadena lineal o ramificada alkil de 20 a 60 átomos de carbono, y está entre x 2 y 100.
Se ha observado que los co-aditivos de la presente invención cuentan con mayor capacidad para permanecer unidos a la resina de poliolefina. Se considera que este fenómeno es, en paite, el resultado de la resistencia al movimiento dado el peso molecular relativamente elevado de los materiales y. en parte, del incremento de las fuerzas de Van der Waal resultantes de la cola no polar relativamente larga. Asimismo, se considera que los grupos OH al final de estas colas pueden utilizarse como enlaces de hidrógeno para fijar aditivos polares, como las amidas grasas, como las erucamida, que se utiliza comúnmente como agente antifricción en poliolefinas. Por consiguiente, los efectos de los aditivos polares, en particular de los que funcionan como modificar de superficie, como los agentes antifricción, se obtienen con menos material cuando el aditivo se encuentra en la superficie, la posición ideal para que resulte eficaz. Asimismo, los efectos se mantienen a lo largo de un período de tiempo mayor, ya que el aditivo se adhiere a la resina en mayor grado que otros aditivos de uso común.
Asimismo, es importante que los co-aditivos no afecten negativamente al rendimiento de los productos fabricados con las resinas que incluyen el co-aditivo. Por ejemplo, es deseable que la sellabilidad de los filmes fabricados con resina que incorpora los co-aditivos no se deteriore sustancialmente.
-2-
HOJA DE SUSTITUCIÓN (REGLA 26) Descripción detallada de la invención
Por un lado, la presente invención hace referencia al uso como co-aditivo para su empleo con cualquier aditivo polar, siendo el co-aditivo un compuesto con la fórmula Ri(OCH2CH2)XOH, donde Ri es una cadena lineal o ramificada alkil de 20 a 100 átomos de carbono, y x está entre 2 y 100. En numerosas aplicaciones, es preferible que Rj sea una cadena lineal alkil con un valor medio de 30 átomos de carbono, y x presente un valor medio de aproximadamente 5. En otras aplicaciones, puede resultar beneficioso contar con cadenas de óxido de etileno más cortas, en las que x sea de 2 a 25, ó incluso de 2 a 10. Asimismo, para otras aplicaciones puede ser preferible que Rj sea una cadena ramificada, o que Ri tanga de 20 a 60 átomos de carbono. Dichos compuestos se describen más ampliamente para su uso como agentes hidrofílicos para la mejora de la humectabilidad en WO02/42530, que se incorpora en su integridad al presente documento por referencia. Un ejemplo de dichos compuesto está disponible comercialmente como concentrado en polipropileno de transporte de Ciba Specialty Chemicals, Inc. con el nombre comercial de Irgasurf™ HL 560. Están disponibles comercialmente otros ejemplos a través de Baker Petrolite, con el nombre comercial de etoxilatos UNITHOX.
Sin pretender limitarse a la teoría, se considera que la adición de compuestos con la fórmula R](OCH2CH2)XOH peπnite que los grupos OH de cola se fijen a la superficie del polímero debido a su peso molecular relativamente elevado y a la compatibilidad frente a los aditivos antifricción convencionales. Estos grupos OH polares pueden utilizarse como fuente de enlaces de hidrógeno, con el fin de proporcionar anclajes químicos de agrupamiento para aditivos polares que pueden ser amidas grasas, como la erucamida, que se utiliza comúnmente como agente antifricción en poliolefinas. Por consiguiente, los efectos de los aditivos polares, en particular de los realizan una función de modificador de superficie, como los agentes antifricción, se obtienen con menos material, ya que el aditivo se mantiene en la posición ideal para resultar eficaz. Asimismo, los efectos se mantienen a lo largo de un período de tiempo mayor, ya que el aditivo se mantiene en la superficie y no se pierde durante las etapas de proceso. El co-aditivo de la presente invención se añadirá preferiblemente a la resina en una cantidad de aproximadamente 200 ppm, alternativamente 500 ppm, o de 1000 ppm a aproximadamente 3000 ppm, alternativamente 2500 ppm, ó 2000 ppm, en función de la
-3-
HOJA DE SUSTITUCIÓN (REGLA 26) resina total o de la mezcla de resina. Para las fibras, como es bien conocido en el sector, generalmente es preferible utilizar cantidades inferiores de aditivos dentro de la gama de variación mencionada (por ejemplo, de aproximadamente 200 ppm a aproximadamente 1000 ppm) para evitar problemas en el hilado de la fibra. Estos materiales pueden utilizarse con cualquier resina de poliolefina, o con una resina de poliolefina que contenga una mezcla. Los materiales de poliolefina recomendados son los plastómeros y/o los elastómeros. Entre los plastómeros y/o elastómeros basados en poliolefina recomendados pueden citarse los plastómeros y elastómeros de polieüleno, los plastómeros de polipropileno, los copolímeros oleofínicos de bloque (también denominados copolímeros oleofínicos estadísticos multibloque), el polietileno lineal de baja densidad, el polietileno de muy baja densidad, el polietileno de baja densidad y alta presión, y el polietileno de alta densidad. Entre los elastómeros y plastómeros basados en polietileno pueden citarse los polímeros de etileno lineal homogéneamente ramificado como los de la patente estadounidense núm.. 3.645.992, y los polímeros de etileno sustancialmente lineales como los descritos en la patente estadounidense 5.272.236, en la patente estadounidense 5.278.272. en la patente estadounidense 5.582.923 y en la patente estadounidense 5.733.155, y/o mezclas de los mismos (como las reveladas en las patentes estadounidenses 3.914.342 ó 5.854.045). Dichas referencias se incorporan en su integridad al presente documento por referencia. Asimismo, entre los polímeros con base de polietileno están los copolímeros de etileno de alta presión, como el interpolímero de etileno vinil acetato, el interpolímero de ácido acrílico de etileno, el interpolímero etileno etil acetato, el interpolímero de ácido metacrílico etileno, el ionómero de ácido metacrílico etileno, etc. Son preferibles los polímeros de etileno sustancialmente lineales. Los polímeros de etileno sustancialmente lineales están disponibles comercialmente a través de Dow Chemical Company, con el nombre comercial de AFFINITY™.
Entre los elastómeros y plastómeros con base de propileno pueden citarse los plastómeros y elastómeros con base de propileno descritos en WO03/040442, y en la solicitud de patentes estadounidense 60/709688 presentada el 19 de agosto de 2005 (incorporándose ambas en su integridad al presente documento por referencia - algunos de estos materiales están disponibles comercialmente a través de The Dow Chemical Company con el nombre comercial de VERSIFY™), y los plastómeros y elastómeros con base de
-4-
HOJA DE SUSTITUCIÓN (REGLA 26) propileno que comercializa ExxonMobil Chemical con el nombre comercial de VISTAMAXX™.
Entre los copolímeros alfaoleofínicos de bloque de etileno segmentados se incluyen los descritos, por ejemplo, en WO 2005/090427, WO 2005/090425 y WO 2005/090426, incorporándose todos ellos en su integridad al presente documento por referencia. Algunas de dichas resinas están disponibles comercialmente a través de The Dow Chemical Company con el nombre comercial de INFUSE™.
Los polímeros recomendados para su uso en la presente invención son los que contienen una estructura polimérica que contenga un mínimo de 50% de átomos de carbono, siendo más recomendable un 65% de átomos de carbono, y siendo más recomendable un 75% de átomos de carbono. Los polímeros que más se benefician de utilizar la presente invención son aquellos con una energía superficial relativamente baja. La energía superficial puede medirse utilizando diversas técnicas convencionales, y son conocidos por los especialistas de esta disciplina, como la medida del ángulo de contacto del agua (ASTM D 2578) o la medición directa utilizando un estilete de medida en dinas (ASTM D 2578), como los marcadores ACCU D YNE TESπM que comercializa Diversified Enterprises, Claremont, NH.
En ciertos modos de realización, puede resultar beneficioso seleccionar una resina base que tenga una densidad (determinada con arreglo a ASTM D-792) de 0,87 g/cm3, 0,90 g/cm3, 0,91 g/cm3 ó 0,92 g/cm3 a aproximadamente 0,96 g/cm3, 0,95 g/cm3 ó 0,94 g/cm3. Asimismo, puede resultar beneficioso para determinadas aplicaciones seleccionar una resina base que présenle un índice de fusión (determinado con arreglo a ASTM D-1238, Condición 190 C/2.16 kilogramo (kg)) de 0,5 g/10 min, preferiblemente 1,0 g/10 min., más preferentemente 2 g/10 min a aproximadamente 20 g/10 min, preferiblemente 18 g/10 min.. más preferentemente 15 g/10 min.
El aditivo polar de la presente invención puede ser cualquier aditivo comúnmente utilizado con resinas de poliolefina. Entre los aditivos funcionales se encuentran los plaslificantes, antioxidantes (p.ej., fenólicos obstaculizados (p.ej., Irganox™ 1010 fabricado por Ciba Specialty Ch.)), estabilizadores de calor (p.ej., fosfitos (p.ej., Irgafos™ 168)), aditivos de adherencia (p.ej,, poliisobutileno (PIB)), pigmentos, estabilizadores de luz (p.ej., benzofenon Cyasorb™ UV 531 fabricado por Cytec Industries y
-5-
HOJA DE SUSTITUCIÓN (REGLA 26) estabilizador de luz de amina obstaculizada Tinuvin™ 622 fabricado por Ciba Specialty Ch.), complementos técnicos (p.ej... glicoles de polietileno, fluoropollmeros, fluoroelastímeros, ceras), retardantes de llama (p.ej., retardante de llama con base de fósforo Amgard™ CPC 102 fabricado por Albright and Wilson Americas), lubricantes (p.ej., ceras, estearatos, aceites minerales), agentes antifricción (p.ej., erucamida, oleamida), agentes de enlace (p.ej., peróxidos, (p.ej., Booster™ fabricado por DuPont)), agentes antiniebla (p.ej., éster de sorbitán Atmer™ 100 fabricado porUniqema), modificadores de impacto (p.ej.. resina de filme modificada de goma Paxon™ Pax Plus fabricada por Allied Corp.), agentes antiestáticos (p.ej., amina etoxilada terciaria Armostat 410 fabricada por Akzo Chemicals, Inc.). etc.
Un tipo de aditivo añadido comúnmente a las poliolefiυas para su uso en filmes son los agentes antifricción. Los agentes anti fricción son con frecuencia polares y, por ello se adaptan eficazmente a la presente invención. Preferiblemente, el agente antifricción es un compuesto orgánico (incluyendo las sales de metales del mismo) con un componente de hidrocarburo de tipo cera o cadena, y es semi -compatible con la poliolefina. Los agentes antifricción pueden ser amidas de un ácido graso mono o dicarboxílico que presentan un número de átomos de carbono de entre 8 y 30, y en particular cuentan con entre 12 y 24 átomos de carbono que pueden estar saturados o insaturados de etileno, con amoniaco o mono o diaminas que presentan entre 2 y 10 átomos de carbono, como las aminas primarias alkil o las diaminas alkilen. Como ejemplos de dichos agentes antifricción pueden citarse la oleamida, behenamida, estearamida, erucamida y diamina NN' alkilen bis estearamida, bis oleamida o bis erucamida, oleil palmitamida, estearil erucamida, etilen-bis-estearamida y etilen-bis-oleamida. Asimismo, el agente antifricción puede ser mía cera de hidrocarburo. Debido a que los co-aditivos de la presente invención permiten la utilización de menos aditivo polar sin una pérdida proporcional de eficacia, pueden añadirse aditivos en cantidades inferiores a las observadas con carácter general. Para la erucamida en filmes, fibras o artículos fabricados, puede añadirse de modo efectivo en un rango de 250 ppm a 2% en peso. Para numerosas aplicaciones, será preferible que el co-aditivo se añada en una cantidad de 1500 ppm o inferior, por ejemplo 1000 ppm o menos, 750 ppm o menos, 500 ppm o menos o, incluso, menos de 200 ppm.
El aditivo(s) y el co-aditivo de la presente invención puede añadirse utilizando cualquier procedimiento conocido en esta disciplina, como mediante concentrado
-6-
HOJA DE SUSTITUCIÓN (REGLA 26) y mezcla de productos combinados. Puede utilizarse de modo efectivo polipropileno como agente de transporte de polímeros para formar un concentrado para el co-aditivo.
Asimismo, pueden añadirse otros aditivos no polares a los materiales de poliolefina, en función del uso previsto. Si bien se ha hallado que los propios co-aditivos objeto de la presente invención poseen cierta actividad antibloqueo, puede ser deseable añadir agentes antibloqueo adicionales, por ejemplo, agentes antibloqueo de silicio como el dióxido de silicio. Ello puede resultar en particular deseable para el uso en filmes. Por ejemplo, un paquete de aditivos apropiado para su uso en la fabiicación de filmes de poliolefina puede incluir dióxido de silicio, erucamida e Irgasurf™ HL 560. El aditivo y el co-aditivo que contienen resinas, objeto de la presente invención, pueden utilizarse en cualquier aplicación en la que se utilicen poliolefmas actualmente. La invención puede tener una utilidad especial en fibras y en filmes.
Los volúmenes inferiores de aditivos que permite la utilización del co-aditivo da como resultado la capacidad de producir filmes que presentan mejores propiedades ópticas que los disponibles anteriormente. Por consiguiente, pueden obtenerse filmes que contienen al menos 300 ppm aproximadamente de agente antibloqueo y, a pesar de ello, estén caracterizados con un brillo (determinado a 45° utilizando ASTM D2457-90) superior a 50 aproximadamente, junto con una claridad óptica total (determinada utilizando la norma ISO 14782, con un espesor del filme de 50 micrones) inferior al 14% aproximadamente. Los filmes fabricados utilizando la presente invención pueden fabricarse según los procesos normalizados del sector. Por consiguiente, pueden utilizarse por ejemplo con filmes mono o coextruidos que pueden someterse opcionalmente a un tratamiento corona.
Se aportan los ejemplos siguientes para ilustrar con mayor detalle la presente invención, si bien no tienen por objeto limitar la invención a las configuraciones específicas descritas.
EJEMPLOS
Para los ejemplos siguientes, se ha utilizado un plastómero de copolímero etileno/1-octeno con una densidad de 0,904 g/cm3 y un índice de fusión de 1,0 g/10 min como resina base. Por ello, cada ejemplo contiene una combinación única de aditivos, que se muestra en la Tabla 1. Por ejemplo, el ejemplo comparativo 1 contenía 750 ppm de erucamida, 0 ppm de IrgasurFM y 2500 ppm de sílice. El sílice utilizado en estos ejemplos
-7-
HOJA DE SUSTITUCIÓN (REGLA 26) era de tipo fundente de tierra de diatomeas calcinada, con una distribución de tamaño de partículas del 90% inferior a 20.2 μrn y menos del 10% inferior a 2.3 μm .
A continuación, dichos materiales se conformaron en filmes utilizando una línea de filme inyectado convencional de laboratorio, con un extrusor de husillo sencillo de 30 mm de diámetro. El polímero y los aditivos se mezclaron con granulos fuera de línea y se añadieron a la sección de alimentación del extrusor a través de una unidad de alimentación automatizada. Se preparó una burbuja monocapa con un índice de inyección de 2.5:1. que se enfrió a temperatura ambiente. La burbuja se hizo colapsar y se enrolló con una tensión mínima para ayudar a retirar del rollo las muestras de prueba. Los rollos se almacenaron a temperatura ambiente y en un ambiente predominantemente a salvo de la luz.
Las probetas de filme se retiraron del rollo en función del tiempo transcurrido, como se indicaba en las tablas. La integridad de las probetas se optimizó utilizando técnicas de laboratorio minuciosas, como el uso de guantes para cortar los filmes del rollo, y reduciendo al mínimo el contacto con la superficie de prueba. La geometría exacta de las probetas se mantuvo uniforme, ya que todas las muestras se redujeron a partir de una muestra más grande utilizando una troqueladora.
Se midió el coeficiente de fricción (COF) en modo estático y en modo dinámico, utilizando un medidor universal (Instron 5564) con arreglo al método de ensayo de ASTM 1894-06. Se realizaron experimentos sobre el filme desplazándolo por una superficie de aluminio, así como una prueba de filme contra filme. En general, es deseable un COF dinámico de filme contra filme inferior o igual a aproximadamente 0,3, preferiblemente inferior o igual a 0,2.
En la Tabla 2 se presentan los datos de COF generados mientras el filme está en contacto consigo mismo al moverse (es decir, la capa interior de la burbuja de filme está en contacto con la capa exterior de la burbuja). En la Tabla 3 se presentan los datos de COF generados mientras la capa exterior de la burbuja de filme se desplaza sobre una superficie metálica. Tabla 1
Figure imgf000009_0001
HOJA DE SUSTITUCIÓN (REGLA 26)
Figure imgf000010_0001
Tabla 2
Tiempo (horas)
COF dinámico 0,5 24 48 168 840
Ejemplo 1 0 197 0 ,283 0 ,288 0 ,189
Ejemplo 2 0 182 0 ,122 0 ,108 0 142 0 ,141
Ejemplo 3 0,2 0 ,199 0 ,192 0 211 0 ,385
Figure imgf000010_0002
Tabla 3 Tiempo horas
Figure imgf000010_0003
El filme con Irgasurf a 2500 ppm (Ejemplo 2) obtuvo el menor COF dinámico tanto para filme-filme como para filme-metal. Se realizó un segundo conjunto de experimentos sobre filmes monocapa, que se preparó según se ha indicado más arriba, excepto que se utilizó un extrusor Covex de 45mm-28D. En la Tabla 4 se presentan los datos de COF de estos filmes generados mientras el filme está en contacto consigo mismo cuando se desplaza (es decir, la capa interior de la burbuja del filme está en contacto con la capa exterior de la burbuja). En la Tabla 5 se
-9-
HOJA DE SUSTITUCIÓN (REGLA 26) presentan los datos de COF generados mientras la capa exterior de la burbuja del filme se desplaza sobre una superficie metálica.
-10-
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 4
Tiempo 7 semanas + horas 2 días
Figure imgf000012_0001
Tabla 5
Tiempo
(horas)
Figure imgf000012_0002
Este segundo conjunto de filmes se probaron también con arreglo al mismo método de ensayo de ASTM 1894-06 utilizando un monitor de deslizamiento / coeficiente de fricción adquirido a Testing Machines, Inc. (TMI). En la Tabla 6 se presentan los datos de COF generados mientras el filme está en contacto consigo mismo cuando se desplaza (es decir, la capa interior de la burbuja de filme está en contacto con la capa exterior de la burbuja). En la Tabla 7 se presentan los datos de COF generados mientras la capa exterior de la burbuja de filme se desplazaba sobre una superficie metálica.
-11-
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 6
Figure imgf000013_0001
-12-
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 7
Figure imgf000014_0001
De nuevo, la muestra con 1000 ppm de Irgasurf y 500 ppm (Ejemplo 7) de erucamida obtuvo los mismos resultados que la muestra con 50% más de erucamida, pero sin Irgasurf (Ejemplo 8)
Se realizaron pruebas adicionales en una serie de mateiiales fabricados con resina de LLDPE de alta densidad, utilizando catalizadores Ziegler-Natta. La resina base para los Ejemplos 11 y 13 fue un copolímero de etileno 1-octeno con una densidad de 0.919 y un índice de fusión (2, 16 Kg 190°C) de 1 ,05 g/10 min. La resina base para los Ejemplos 12 y 14 era un copolímero de etileno 1-octεno con una densidad de 0,921 con el mismo índice de fusión (1.05 g/10 min). Las composiciones sometidas a prueba se presentan en la
-13-
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 8. Los filmes se produjeron en la línea Covex monocapa (45 mm 25D). Volvió a medirse el COF en el equipo Instron siguiendo la norma ISO 8295:1995. En la Tabla 9 se presentan los datos de COF generados mientras el filme está en contacto consigo mismo al desplazarse (es decir, la capa interior de la burbuja de filme está en contacto con la capa exterior de la burbuja). En la Tabla 10 se presentan los datos de COF generados mientras la capa exterior de la burbuja de filme se desplaza sobre una superficie metálica. Tabla 8
Figure imgf000015_0001
Tabla 9
Figure imgf000015_0002
Figure imgf000015_0003
Tabla 10
Tiempo (horas)
Figure imgf000015_0004
Figure imgf000015_0005
-14-
HOJA DE SUSTITUCIÓN (REGLA 26) En esta serie, la muestra con Irgasurf a 1000 ppm y sólo 350 ppm de erucamida (es decir, Ejemplo 13) presentó un COF superior al del ejemplo comparativo 12, demostrando el efecto que la densidad de la resina base tiene sobre el COF. Obsérvese de la comparación de los Ejemplos 13 y 14 que con el Irgasurf, incluso el filme con la mitad del nivel de erucamida siguió ofreciendo valores de COF inferiores a 0,2 para el COF de filme- filme.
Asimismo, se realizó un estudio de la óptica del Ejemplo comparativo 12 y el Ejemplo 14, que se presenta en la Tabla 11. El brillo se midió a 45° con arreglo a ASTM D2457-y se midió la claridad óptica total con arreglo a ISO 14782. Las muestras tenían un espesor de 50 micrones. El Ejemplo 14 tenía un brillo superior y una claridad óptica total inferior a la del Ejemplo 12, a pesar de los niveles similares de erucamida y ligeramente superiores de CaCO3. Tabla 11
Figure imgf000016_0001
-15-
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

SE REIVINDICA:
1. Un método para mejorar la eficacia de un aditivo polar para su uso con poliolefinas que comprende la incorporación de un volumen efectivo de al menos un compuesto de co-aditivo con la fórmula Ri(OCH2CH2)xOH a la poliolefina antes de formar el filme, donde Ri es una cadena lineal o ramificada alkil con un número de átomos de carbono de entre 20 y 60, y x varía entre 2 y 100.
2. El método de la reivindicación 1 donde el aditivo polar es un agente anti fricción.
3. El método de la reivindicación 2 donde se añaden dos o más agentes antifricción.
4. El método de la reivindicación 2 donde el agente antifricción es una amida grasa.
5. El método de la reivindicación 4 donde la amida grasa es erucamida.
6. El método de la reivindicación 2 donde el agente antifricción se añade en una cantidad de 1000 ppm o inferior.
7. El método de la reivindicación 6 donde el agente antifricción se añade en una cantidad de 500 ppm o inferior.
8. El método de la reivindicación 1 donde el compuesto de co- aditivo se añade en una cantidad de 200 ppm a 1500 ppm.
9. El método de la reivindicación 1 donde el co-aditivo es Irgasurf™ HL 560.
10. El método de la reivindicación 1 que comprende además la incorporación de un agente antibloqueo.
11. El método de la reivindicación 10 donde el agente antibloqueo es sílice.
12. El método de la reivindicación 11 donde el sílice se añade en una cantidad inferior a 3000 ppm aproximadamente.
13. Una composición de aditivo que comprende un agente polar de deslizamiento y un compuesto con la fórmula RI(OCH2CH2)XOH a la poliolεfina antes de formar el filme, donde Ri es una cadena lineal o ramificada alkil con un número de átomos de carbono de 20 a 60, y x varía entre 2 y 100.
-16-
HOJA DE SUSTITUCIÓN (REGLA 26)
14. Una capa de filme caracterizada por la combinación de brillo superior a aproximadamente 50 junto con una claridad óptica inferior a aproximadamente el 14% y un coeficiente de fricción dinámico filme a filme inferior a 0,3.
15. La capa de filme de la reivindicación 14 donde el coeficiente de fricción dinámico filme a filme es inferior a 0,2.
16. La capa de filme de la reivindicación 14 donde la capa de filme se caracteriza asimismo por la presencia de al menos un compuesto con la fórmula Rι(OCH2CH2)xOH junto a la poliolefina antes de formar el filme, donde Ri es una cadena lineal o ramificada alkil de 20 a 60 átomos de carbono y x varía entre 2 y 100, en una cantidad efectiva para permitir utilizar menos de 3000 ppm de un agente antibloqueo de sílice.
-17-
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2007/070165 2007-10-02 2007-10-02 Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas WO2009043946A1 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/ES2007/070165 WO2009043946A1 (es) 2007-10-02 2007-10-02 Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas
MX2010003688A MX2010003688A (es) 2007-10-02 2008-10-01 Metodo para la reduccion de aditivos polares necesarios para uso en poliolefinas.
ARP080104297A AR068654A1 (es) 2007-10-02 2008-10-01 Metodos para la reduccion de aditivos polares necesarios para uso en poliolefinas
PCT/ES2008/070179 WO2009043957A1 (es) 2007-10-02 2008-10-01 Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas
RU2010117361/05A RU2010117361A (ru) 2007-10-02 2008-10-01 Способ снижения количества полярных добавок, требуемых для применения в полиолефинах
EP08835316A EP2233520A1 (en) 2007-10-02 2008-10-01 Methods for reducing the polar additives necessary for use in polyolefins
CN200880118747XA CN101883813A (zh) 2007-10-02 2008-10-01 减少聚烯烃中必需使用的极性添加剂的方法
JP2010527476A JP5366956B2 (ja) 2007-10-02 2008-10-01 ポリオレフィンにおける使用のために要求される極性添加物の削減方法
US12/680,970 US20120046401A1 (en) 2007-10-02 2008-10-01 Method for the reduction of polar additives required for use in polyolefins
TR2010/02739T TR201002739T2 (tr) 2007-10-02 2008-10-01 Polioieflnlerde kullanım için gerekli polar ilave maddelerin azaltılması için usul.
TW097137712A TW200922985A (en) 2007-10-02 2008-10-01 Method for the reduction of polar additives required for use in polyolefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2007/070165 WO2009043946A1 (es) 2007-10-02 2007-10-02 Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas

Publications (1)

Publication Number Publication Date
WO2009043946A1 true WO2009043946A1 (es) 2009-04-09

Family

ID=39488357

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/ES2007/070165 WO2009043946A1 (es) 2007-10-02 2007-10-02 Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas
PCT/ES2008/070179 WO2009043957A1 (es) 2007-10-02 2008-10-01 Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070179 WO2009043957A1 (es) 2007-10-02 2008-10-01 Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas

Country Status (10)

Country Link
US (1) US20120046401A1 (es)
EP (1) EP2233520A1 (es)
JP (1) JP5366956B2 (es)
CN (1) CN101883813A (es)
AR (1) AR068654A1 (es)
MX (1) MX2010003688A (es)
RU (1) RU2010117361A (es)
TR (1) TR201002739T2 (es)
TW (1) TW200922985A (es)
WO (2) WO2009043946A1 (es)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697784B2 (en) 2009-06-15 2014-04-15 Basf Se Permanent antistatic additive composition
WO2011075492A1 (en) 2009-12-18 2011-06-23 Dow Global Technologies Llc Films and articles prepared from the same
EP2471856A1 (en) * 2010-12-30 2012-07-04 Dow Global Technologies LLC Polyolefin compositions
CN103421235B (zh) * 2013-07-30 2016-06-01 金发科技股份有限公司 一种聚丙烯组合物及其制备方法
US10251770B2 (en) 2014-01-03 2019-04-09 Hollister Incorporated Lubricated valve for ostomy pouch
JP2018529006A (ja) * 2015-09-18 2018-10-04 ダウ グローバル テクノロジーズ エルエルシー 温室フィルムに使用される高性能滴下防止剤
US20220119724A1 (en) * 2019-01-15 2022-04-21 Avient Corporation Lubricious thermoplastic compounds and thermoplastic articles made therefrom
CN115678155B (zh) * 2022-12-13 2024-04-23 宁波致微新材料科技有限公司 一种聚烯烃弹性体微孔发泡材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001015A (en) * 1986-10-14 1991-03-19 W. R. Grace & Co.-Conn. Antistatic polyolefin compositions and antistatic polyolefin films made therefrom, including oriented films
EP0526117A1 (en) * 1991-07-31 1993-02-03 BP Chemicals Limited Polymer additive compositions
WO2002042530A1 (en) * 2000-11-22 2002-05-30 Ciba Specialty Chemicals Holding Inc. Wettable polyolefin fibers and fabrics

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA849081A (en) 1967-03-02 1970-08-11 Du Pont Of Canada Limited PRODUCTION OF ETHYLENE/.alpha.-OLEFIN COPOLYMERS OF IMPROVED PHYSICAL PROPERTIES
US3914342A (en) 1971-07-13 1975-10-21 Dow Chemical Co Ethylene polymer blend and polymerization process for preparation thereof
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US5582923A (en) 1991-10-15 1996-12-10 The Dow Chemical Company Extrusion compositions having high drawdown and substantially reduced neck-in
US5693488A (en) 1994-05-12 1997-12-02 The Rockefeller University Transmembrane tyrosine phosphatase, nucleic acids encoding the same, and methods of use thereof
JP3258534B2 (ja) 1995-07-28 2002-02-18 タイコエレクトロニクスアンプ株式会社 雌型コンタクト
JP2000506196A (ja) * 1996-03-01 2000-05-23 インペリアル・ケミカル・インダストリーズ・ピーエルシー 帯電防止性ポリマー組成物
DE60219948T2 (de) 2001-11-06 2007-09-06 Dow Global Technologies, Inc., Midland Fasern aus isotaktischem propylencopolymerisat, deren herstellung und verwendung
CA2559576C (en) 2004-03-17 2013-02-12 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
WO2005090426A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
US7915192B2 (en) 2004-03-17 2011-03-29 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for ethylene copolymer formation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001015A (en) * 1986-10-14 1991-03-19 W. R. Grace & Co.-Conn. Antistatic polyolefin compositions and antistatic polyolefin films made therefrom, including oriented films
EP0526117A1 (en) * 1991-07-31 1993-02-03 BP Chemicals Limited Polymer additive compositions
WO2002042530A1 (en) * 2000-11-22 2002-05-30 Ciba Specialty Chemicals Holding Inc. Wettable polyolefin fibers and fabrics

Also Published As

Publication number Publication date
JP5366956B2 (ja) 2013-12-11
WO2009043957A1 (es) 2009-04-09
RU2010117361A (ru) 2011-11-10
JP2010540743A (ja) 2010-12-24
TW200922985A (en) 2009-06-01
EP2233520A1 (en) 2010-09-29
MX2010003688A (es) 2010-06-17
US20120046401A1 (en) 2012-02-23
TR201002739T2 (tr) 2012-02-21
CN101883813A (zh) 2010-11-10
AR068654A1 (es) 2009-11-25

Similar Documents

Publication Publication Date Title
WO2009043946A1 (es) Métodos para la reducción de aditivos polares necesarios para uso en poliolefinas
JP2010501037A5 (es)
JP2009155423A (ja) ポリオレフィン系樹脂押出発泡シート及びその製造方法
TW200530307A (en) Polyolefin resin foam and manufacturing method thereof
KR101258728B1 (ko) 포장재
JP2007131735A (ja) アイオノマー組成物、これを用いたフィルム、シートおよび包装体
CN106604964A (zh) 聚缩醛树脂组合物及滑动构件
JP2020084143A (ja) 半導体製造工程用基材フィルム及び該基材フィルムを用いたダイシング用粘着フィルム
JP5069423B2 (ja) フイルム、及びその製造方法
JP6856413B2 (ja) ポリオレフィン系樹脂用帯電防止剤、前記帯電防止剤を含有するポリオレフィン系樹脂組成物並びに前記樹脂組成物を用いたフィルム及び積層フィルム
JP2009256474A (ja) ポリオレフィン系マスターバッチペレット、ポリオレフィン系樹脂組成物およびポリオレフィン系フィルム
JP5694832B2 (ja) 包装用発泡シート
WO2019117185A1 (ja) ポリプロピレン系樹脂組成物及びその成形体
CN105199220A (zh) 一种聚丙烯复合材料
JP2004043788A (ja) ポリプロピレン系樹脂組成物およびそのフィルム
JP5496811B2 (ja) 紙包装材用積層体
CN112789318A (zh) 聚烯烃系树脂用改性剂
JP2006206705A (ja) ポリオレフィン系樹脂用帯電防止剤
JP3453343B2 (ja) 包装用オレフィン系樹脂発泡シート及びその製造方法
JP2019209535A (ja) ポリオレフィン系樹脂積層発泡シート及び該積層発泡シートからなるガラス板用間紙
JP4926839B2 (ja) ポリオレフィン樹脂組成物
JP2022021476A (ja) ポリオレフィン系樹脂フィルム、粘着フィルム、半導体製造工程用粘着フィルム
CN105218943A (zh) 聚丙烯复合材料
JP2017205933A (ja) オレフィン系樹脂シート
JP2005220233A (ja) 防曇性フィルム用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07823059

Country of ref document: EP

Kind code of ref document: A1