WO2009043765A1 - Kraftstoffpumpe zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine - Google Patents

Kraftstoffpumpe zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine Download PDF

Info

Publication number
WO2009043765A1
WO2009043765A1 PCT/EP2008/062719 EP2008062719W WO2009043765A1 WO 2009043765 A1 WO2009043765 A1 WO 2009043765A1 EP 2008062719 W EP2008062719 W EP 2008062719W WO 2009043765 A1 WO2009043765 A1 WO 2009043765A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
fuel pump
impeller
fuel
pump according
Prior art date
Application number
PCT/EP2008/062719
Other languages
English (en)
French (fr)
Inventor
Johannes Deichmann
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US12/680,690 priority Critical patent/US20100218747A1/en
Priority to EP08804632A priority patent/EP2205850A1/de
Priority to JP2010526271A priority patent/JP2010540823A/ja
Priority to BRPI0817529A priority patent/BRPI0817529A2/pt
Publication of WO2009043765A1 publication Critical patent/WO2009043765A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/048Arrangements for driving regenerative pumps, i.e. side-channel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/003Regenerative pumps of multistage type
    • F04D5/006Regenerative pumps of multistage type the stages being axially offset
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention relates to a fuel pump for conveying fuel from a reservoir to an internal combustion engine having a housing, at least one impeller arranged in the housing, wherein the impeller has at least one ring of spaced-apart blades, an electric motor driving the impeller via a shaft, which is designed as an axial field motor and has a rotor and a stator, the rotor of which has permanent magnets and that the permanent magnets opposite windings supporting bobbins at a distance from the rotor axis and at regular angular intervals are fixedly arranged in the housing.
  • a fuel pump with a small overall length is known from DE 196 17 495 Al.
  • Form this fuel pump the rotor of the electric motor and the impeller of the pump a one-piece assembly.
  • the radially inner rotor carries the windings.
  • the impeller connects radially to the outside of the rotor.
  • the windings on the rotor opposite permanent magnets are arranged on both sides of the rotor, which form the stator of the electric motor.
  • the pump housing which receives the impeller with the blade rings, adjoins the permanent magnets radially on the outside.
  • a disadvantage of this design of an axial field motor is the large diameter of the rotor, which is due to the size of the windings, which in turn to achieve a predetermined torque of the
  • the diameter of the fuel pump can not be increased arbitrarily due to the predetermined openings in the reservoir.
  • the invention is therefore based on the object to provide a fuel pump with improved efficiency with small dimensions.
  • the object is achieved in that the bobbin are arranged with respect to their longitudinal alignment parallel to the shaft of the electric motor.
  • the diameter of the coil arrangement can be substantially smaller than in the case of an arrangement of the coils on the rotor.
  • a fuel pump constructed in this way therefore has a substantially smaller outer diameter, which lies approximately in the range of previously used fuel pumps.
  • the fuel pump according to the invention can be used in existing conveyor units.
  • the arrangement of the bobbin designed with little effort when the stator has radially extending walls, wherein chambers are formed by the walls, and at least one coil body carrying the windings is arranged in a chamber.
  • the stator forms a part of the housing.
  • Turbulences in the region of the permanent magnets are avoided in a particularly simple embodiment if the permanent magnets are arranged in the rotor in such a way that they terminate with the respective side surface of the rotor.
  • the rotor consists of a rotor disk on which the permanent magnets are arranged.
  • the performance of the fuel pump can be increased if the rotor consists of two rotor disks, which are arranged in the axial extent on both sides of the coil assembly, so that they include the coil assembly.
  • the impeller is arranged in the flow direction in front of the rotor.
  • This has the advantage that the electric motor can be pre-assembled and tested as an assembly before it is installed in the fuel pump. If the fuel pump has a front and a main pump stage, an advantageous embodiment is that two wheels are provided, wherein the electric motor is disposed between the wheels.
  • the fuel pump according to the invention requires in axial
  • the impeller can be arranged both radially inwardly and radially outwardly with respect to the permanent magnets. If the impeller is arranged in the radially outer region of a rotor disk, an annular impeller has formed proved to be advantageous.
  • the impeller may be formed in this case both as a side channel or peripheral wheel, while it is formed at a relation to the permanent magnet radially inner arrangement as a 9.kanalrad.
  • the rotor as a rotor disk, which is formed in its radially outer region as an impeller of a peripheral or side channel pump and, viewed in the flow direction, to arrange a further pump impeller in front of the rotor disk.
  • the rotor has two rotor disks, which are arranged in the axial extent to both sides of the coil arrangement, wherein the impellers are annular and are each arranged in the radially outer region of a rotor disk, so that the rotor disks and the wheels form a structural unit.
  • the pumping stage can be designed as a separate impeller or in a structural unit with a rotor.
  • the provision of several pump stages can also be used to supply a plurality of consumers or to fill a reservoir, in particular a baffle.
  • a pump stage for conveying fuel to the internal combustion engine of the motor vehicle, while the other pump stage promotes fuel to drive a suction jet pump is used.
  • a suction jet pump Since the fuel requirement of a suction jet pump is substantially lower than that of an internal combustion engine, according to a further embodiment it is advantageous to use only a portion of the conveyed force at several pump stages. amount of material to supply a pumping stage of the suction jet pump, while the remaining amount of fuel is supplied to the internal combustion engine.
  • stator For cooling the electric motor, it is beneficial if the stator is designed in such a way that the fuel conveyed by an impeller located upstream of the coil arrangement flows through the coil arrangement.
  • the supply of the fuel to the coil assembly designed with little effort, when the outlet of the upstream in the flow direction of the coil assembly and the coil assembly are connected to a channel.
  • the channel may have an oblique or an angled course with respect to the shaft of the electric motor.
  • Such a channel profile can be produced by simple means.
  • stator which is designed in such a way that the fuel conveyed by an impeller located upstream of the coil arrangement flows around the stator forming the housing with the coil arrangement. In this way, the coil assembly is not cooled directly from the fuel but via the heat output to the stator.
  • the cooling can be reinforced with a stator made of a good thermal conductivity material.
  • Such a fuel guide in the fuel pump can be achieved with a channel arranged in the stator for the fuel, wherein the channel is arranged in the region of the coil assembly parallel to the coil assembly.
  • distribution device allows a division of the funded fuel flow, so that a partial flow through the Coil arrangement and a partial flow of the coil assembly is passed over.
  • such a distribution device can also be used to divide the fuel flow in such a way that a part is directed to a first consumer, in particular an ejector pump, and the remaining part to a second consumer, in particular a second pumping stage or the internal combustion engine.
  • FIG. 1 shows an exploded view of a fuel pump with two impellers
  • FIGS. 2a-c further embodiments with separate impellers
  • Figures 3a-d further embodiments with integrated
  • FIGS. 4a-c further embodiments with a plurality of coil arrangements.
  • the fuel pump 1 shown in Figure 1 consists of a first housing cover 2 having an inlet port 3, is sucked through the fuel from the fuel pump 1.
  • the first housing cover 2 has on the side facing away from the inlet nozzle 3 an annular channel 4 with a semicircular cross-section, which is connected to the inlet nozzle 3 and extends over 330 °.
  • a first rotor 5 Opposite the channel 4, a first rotor 5 is arranged.
  • the first rotor 5 has a first impeller 6 forming ring 7, arranged on the two sides in each case a ring 8 of blade chambers 9 bounding blades 10 is.
  • Four magnets 11 in the form of a circular ring are connected to the first rotor 5 on the side facing away from the first housing cover 2.
  • the first rotor 5 has a central bore 12 in which a shaft 13 is arranged rotationally fixed.
  • a stator 14 connects to the first rotor 5.
  • the stator 14 has a central bore 15.
  • a bearing bush 19 for the shaft 13 is inserted into the bore 15.
  • concentric six chambers 16 are arranged at the same angular distance from each other, in each of which a
  • Coil 17 is arranged.
  • the chambers 16 are separated from one another in the axial extent by chamber walls.
  • the bobbin 17 are aligned so that they are arranged in their longitudinal extent parallel to the shaft 13 of the electric motor. On the bobbins 17 is one each
  • Winding 18 arranged.
  • the bobbins 17 with the windings 18 are arranged concentrically so that they face the magnet 11 of the first rotor 5.
  • stator 14 In its radially outer region, the stator 14 has on its side facing the first rotor 5 side 22 a shoulder 20 which is formed such that the ring 7, which forms the first impeller 6, is received therein.
  • the shoulder 20 has a part-ring-shaped channel 21 which corresponds in arrangement and design to the channel 4 of the first housing cover 2, so that the first housing cover 2, the ring 7 and the shoulder 20 form a side channel pumping stage.
  • the partially annular channel 21 in the stator 14 has in the conveying direction at its end an outlet 23 which extends in the radially outer region of the stator 14 as a channel 23a to an inlet 23b.
  • the stator 14 has a side 24 of the same construction with a shoulder 25 for receiving a second impeller 26 and a partially annular channel 27.
  • the partially annular channel 27 begins at the inlet, not shown, and also extends over an angular range of 330 °.
  • the second impeller 26, which is formed by a ring 28, corresponds to the structure of the impeller 6 with arranged on both sides of wreaths 29 of blade chambers 30 bounding the blades 31.
  • the second impeller 26 forms a structural unit with a second rotor 32.
  • the second rotor 32 with the magnets 33 corresponds in terms of construction and arrangement to the bobbins 17 with the windings 18 to the first rotor 5.
  • the fuel pump 1 On the side facing away from the magnets 33 of the second rotor 32, the fuel pump 1 is closed by a second housing cover 34, which corresponds in its construction to the first housing cover 2. Due to the compact design, the fuel pump 1 has an axial length of 35mm and a diameter of 70mm.
  • a separate impeller 6 is arranged on the shaft 13. In the flow direction behind a first rotor 5 and a second rotor 32 are arranged. Between the two rotors 5, 32, the bobbin 17 are arranged with winding 18. Impeller 6 and rotor 5 are separate components.
  • the structure of the fuel pump 1 in Figure 2b corresponds to the structure of Figure 2a. Only after the second rotor 32 is a second impeller 26 arranged as an additional component. By the second impeller 32, which is a second pump stage, the internal combustion engine is supplied with fuel. The funded by the first impeller 6 fuel is used to drive a suction jet pump, not shown.
  • FIG. 2c shows a fuel pump 1 with only one rotor 5, to which coil body 17 with winding 18 adjoin in the flow direction.
  • an impeller 6 is arranged on the side facing away from the rotor 5 of the bobbin 17.
  • Such a fuel pump 1 requires due to the simple structure of a small space and is suitable with the one impeller 6 for lower requirements.
  • FIG. 3 a shows such a fuel pump 1 as a schematic representation. The construction corresponds to the fuel pump 1 of the pump of FIG. 1.
  • FIG. 3b shows a fuel pump 1, which differs from the fuel pump according to FIG. 3a in that the running wheels 6, 26 are arranged radially inward with respect to the rotors 5, 32.
  • Figure 3c shows a fuel pump 1 with only a rotor 5 and an impeller 6. This fuel pump 1 is characterized by a smaller footprint.
  • the fuel pump 1 in Figure 3d has two rotors 5, 32 and an impeller 6, wherein the impeller 6 with the first rotor 5 forms a structural unit.
  • FIGS. 4a-c Fuel pumps for higher demands are shown in FIGS. 4a-c.
  • the fuel pump 1 in Figure 4a has three rotors 5, 32, 35 between which bobbin 17, 36 are arranged with windings 18, 37, wherein the bobbin 17, 36 are aligned in their longitudinal direction parallel to the rotor axis.
  • the fuel pump 1 has an impeller 6, which forms a structural unit with the first rotor 5.
  • the impeller 6 is arranged according to Figure 1 as a ring radially outward on the first rotor 5.
  • the fuel pump 1 in Figure 4b has two wheels 6, 26 according to the wheels in Figure 1. Both wheels 6, 26 promote fuel to the internal combustion engine, not shown.
  • part of the fuel delivered by the first impeller 6 is supplied to a suction jet pump (not shown) as a drive.
  • the fuel pump 1 in Figure 4c builds on the fuel pump 1 of Figure 4b, wherein the third rotor 35 also forms a structural unit with an impeller 38 analogous to the rotors 5, 32.
  • the invention is not limited to impellers with a ring of blade chambers limiting blades on each side of the impeller and the corresponding part-annular channels in the housing cover and stator.
  • the impellers with the corresponding channels may also have a plurality of concentrically arranged rings of blades bounding blade chambers or more, preferably two, arranged on a pitch circle diameter, corresponding channels have.
  • the at least one ring of blade chambers limiting blades can be arranged only on one side of an impeller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Gegenstand der Erfindung ist eine Kraftstoffpumpe (1) zum Fördern von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine mit einem Gehäuse, mindestens einem in dem Gehäuse angeordneten Laufrad (6,26), wobei das Laufrad mindestens einen Kranz von zueinander beabstandet angeordneten Schaufeln (10,31) aufweist, einem das Laufrad über eine Welle (13) antreibenden Elektromotor, der als Axialfeldmotor ausgebildet ist und einen Rotor (5,32) und einen Stator (14) besitzt, dessen Rotor Permanentmagnete (11,33) aufweist und dass den Permanentmagneten gegenüberliegend Wicklungen (18) tragende Spulenkörper (17) im Abstand zur Rotorachse und in gleichmäßigen Winkelabständen fest in dem Stator angeordnet sind. Die Spulenkörper (17) sind bezogen auf ihre Längsausrichtung parallel zur Welle des Elektromotors angeordnet.

Description

Beschreibung
Kraftstoffpumpe zum Fördern von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine
Gegenstand der Erfindung ist eine Kraftstoffpumpe zum Fördern von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine mit einem Gehäuse, mindestens einem in dem Gehäuse angeordneten Laufrad, wobei das Laufrad mindestens einen Kranz von zueinander beabstandet angeordneten Schaufeln aufweist, einem das Laufrad über eine Welle antreibenden Elektromotor, der als Axialfeldmotor ausgebildet ist und einen Rotor und einen Stator besitzt, dessen Rotor Permanentmagnete aufweist und dass den Permanentmagneten gegenüberliegend Wicklungen tragende Spulenkörper im Abstand zur Rotorachse und in gleichmäßigen Winkelabständen fest in dem Gehäuse angeordnet sind.
Es ist allgemein bekannt, Kraftstoffpumpen mit einem Elektro- motor und einem Laufrad auszubilden, wobei sich der Elektromotor in axialer Erstreckung an das in einer Pumpenkammer umlaufende Laufrad anschließt. Der Elektromotor besteht aus einem die Wicklungen tragenden Rotor, der von einem die Permanentmagneten aufweisenden Stator umgeben ist. Pumpenkammer und Antriebsmotor sind von einem gemeinsamen Gehäuse umgeben. Im Betrieb der Kraftstoffpumpe wird der Kraftstoff durch die Pumpenkammer und den Elektromotor gefördert. Nachteilig bei diesem Pumpentyp ist das Durchströmen des Kraftstoffs durch den Elektromotor, da der Rotor zu Verwirbelungen im geförder- ten Kraftstoff und somit zu Leistungsverlusten führt. Weiterhin besitzen derartige Kraftstoffpumpen aufgrund ihres Aufbaus eine gewisse Baulänge, die aufgrund immer flacherer Kraftstoffbehälter Grenzen bezüglich der Anordnung im Kraftstoffbehälter erfahren.
Eine Kraftstoffpumpe mit einer geringen Baulänge ist aus der DE 196 17 495 Al bekannt. Bei dieser Kraftstoffpumpe bilden der Rotor des Elektromotors und das Laufrad der Pumpe eine einstückige Baueinheit. Der radial innen liegende Rotor trägt dabei die Wicklungen. An den Rotor schließt sich radial außen das Laufrad an. Den Wicklungen auf dem Rotor gegenüberliegend sind zu beiden Seiten des Rotors Permanentmagnete angeordnet, die den Stator des Elektromotors bilden. An die Permanentmagnete schließt sich radial außen das Pumpengehäuse an, welches das Laufrad mit den Schaufelkränzen aufnimmt. Nachteilig bei dieser Ausbildung eines Axialfeldmotors ist der große Durch- messer des Rotors, der durch die Größe der Wicklungen bedingt ist, die wiederum zum Erreichen eines vorgegebenen Drehmoments des
Elektromotors notwendig sind. Insbesondere beim Einsatz der Kraftstoffpumpe in einem Vorratsbehälter kann der Durchmesser der Kraftstoffpumpe aufgrund der vorgegebenen Öffnungen im Vorratsbehälter nicht beliebig erhöht werden.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Kraftstoffpumpe mit verbessertem Wirkungsgrad bei kleinen Abmes- sungen zu schaffen.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Spulenkörper bezogen auf ihre Längsausrichtung parallel zur Welle des Elektromotors angeordnet sind.
Mit dem Vorsehen der Spulenkörper in dem Stator wird eine a- xial ausgerichtete Anordnung der Spulenkörper ermöglicht. Dadurch lässt sich der Durchmesser der Spulenanordnung wesentlich kleiner gestalten als bei einer Anordnung der Spulen auf dem Rotor. Eine derart aufgebaute Kraftstoffpumpe weist daher einen wesentlich kleineren Außendurchmesser auf, der in etwa in dem Bereich bisher verwendeter Kraftstoffpumpen liegt. Damit lässt sich die erfindungsgemäße Kraftstoffpumpe in bereits bestehende Fördereinheiten einsetzen.
Die Anordnung der Spulenkörper gestaltet sich mit geringem Aufwand, wenn der Stator radial verlaufende Wände besitzt, wobei durch die Wände Kammern gebildet sind, und mindestens ein die Wicklungen tragender Spulenkörper in einer Kammer angeordnet ist. Der Stator bildet dabei einen Teil des Gehäuses .
Verwirbelungen im Bereich der Permanentmagnete werden in einer besonders einfachen Ausführung vermieden, wenn die Permanentmagnete derart in dem Rotor angeordnet sind, dass sie mit der jeweiligen Seitenfläche des Rotors abschließen.
In einer besonders einfachen Ausführung besteht der Rotor aus einer Rotorscheibe, auf der die Permanentmagnete angeordnet sind .
In einer weiteren Ausgestaltung lässt sich die Leistung der Kraftstoffpumpe erhöhen, wenn der Rotor aus zwei Rotorscheiben besteht, die in axialer Erstreckung zu beiden Seiten der Spulenanordnung angeordnet sind, so dass sie die Spulenanordnung einschließen.
In einer anderen Ausführung ist das Laufrad in Strömungsrichtung vor dem Rotor angeordnet ist. Das hat den Vorteil, dass der Elektromotor als Baugruppe vorab montiert und geprüft werden kann, bevor er in der Kraftstoffpumpe verbaut wird. Sofern die Kraftstoffpumpe eine Vor- und eine Hauptpumpenstufe aufweist, besteht eine vorteilhafte Ausgestaltung darin, dass zwei Laufräder vorgesehen sind, wobei der Elektromotor zwischen den Laufrädern angeordnet ist.
Die erfindungsgemäße Kraftstoffpumpe benötigt in axialer
Erstreckung besonders wenig Bauraum, wenn das Laufrad mit dem Rotor eine Baueinheit bildet.
Das Laufrad kann dabei hinsichtlich der Permanentmagnete so- wohl radial innen als auch radial außen angeordnet sein. Sofern das Laufrad im radial äußeren Bereich einer Rotorscheibe angeordnet ist, hat sich ein ringförmig ausgebildetes Laufrad als vorteilhaft erwiesen. Das Laufrad kann in diesem Fall sowohl als Seitenkanal- oder Peripheralrad ausgebildet sein, während es bei einer gegenüber den Permanentmagneten radial innen liegenden Anordnung als Seitenkanalrad ausgebildet ist.
Es ist aber auch denkbar, den Rotor als eine Rotorscheibe auszubilden, die in ihrem radial äußeren Bereich als Laufrad einer Peripheral- oder Seitenkanalpumpe ausgebildet ist und in Strömungsrichtung gesehen vor der Rotorscheibe ein weite- res Pumpenlaufrad anzuordnen.
Die Anordnung eines separaten Pumpenlaufrades wird in einer anderen Ausgestaltung vermieden, indem der Rotor zwei Rotorscheiben aufweist, die in axialer Erstreckung zu beiden Sei- ten der Spulenanordnung angeordnet sind, wobei die Laufräder ringförmig ausgebildet sind und jeweils im radial äußeren Bereich einer Rotorscheibe angeordnet sind, so dass die Rotorscheiben und die Laufräder eine Baueinheit bildet.
Durch das Vorsehen von mehreren Pumpstufen lässt sich die
Förderleistung der Kraftstoffpumpe gegenüber einer Ausbildung mit nur einer Pumpstufe erhöhen. Die Pumpstufe kann wie bereits beschrieben, als separates Laufrad oder in Baueinheit mit einem Rotor ausgebildet sein. Neben der Erhöhung der För- derleistung, kann das Vorsehen von mehreren Pumpstufen auch zur Versorgung mehrerer Verbraucher oder zum Befüllen eines Reservoirs, insbesondere eines Schwalltopfes, genutzt werden.
In einer Ausgestaltung der erfindungsgemäßen Kraftstoffpumpe dient eine Pumpstufe zum Fördern von Kraftstoff zur Brennkraftmaschine des Kraftfahrzeugs, während die andere Pumpstufe Kraftstoff zum Antrieb einer Saugstrahlpumpe fördert.
Da der Kraftstoffbedarf einer Saugstrahlpumpe im Vergleich zum dem einer Brennkraftmaschine wesentlich geringer ist, ist es gemäß einer weiteren Ausgestaltung vorteilhaft, bei mehreren Pumpstufen lediglich einen Teil der geförderten Kraft- stoffmenge einer Pumpstufe der Saugstrahlpumpe zuzuführen, während die verbleibende Kraftstoffmenge zur Brennkraftmaschine gefördert wird.
Zur Kühlung des Elektromotors trägt es bei, wenn der Stator derart ausgebildet ist, dass der von einem in Strömungsrichtung vor der Spulenanordnung befindlichem Laufrad geförderte Kraftstoff die Spulenanordnung durchströmt.
Die Zuführung des Kraftstoffs zur Spulenanordnung gestaltet sich mit geringem Aufwand, wenn der Auslass des in Strömungsrichtung vor der Spulenanordnung befindlichen Laufrades und die Spulenanordnung mit einem Kanal verbunden sind. Der Kanal kann in Bezug zur Welle des Elektromotors einen schrägen oder einen abgewinkelten Verlauf aufweist. Ein derartiger Kanalverlauf ist mit einfachen Mitteln herstellbar.
Aufgrund teilweise aggressiver Bestandteile im Kraftstoff, sind oftmals Schutzmaßnahmen für Teile des Elektromotors not- wendig. Derartige Maßnahmen lassen sich mit einem Stator vermeiden, welcher derart ausgebildet ist, dass der von einem in Strömungsrichtung vor der Spulenanordnung befindlichem Laufrad geförderte Kraftstoff den das Gehäuse bildenden Stator mit der Spulenanordnung umströmt. Auf diese Weise wird die Spulenanordnung nicht direkt vom Kraftstoff sondern über die Wärmeabgabe an den Stator gekühlt. Die Kühlung lässt sich mit einem Stator aus einem gut wärmeleitfähigen Material noch verstärken .
Eine derartige Kraftstoffführung in der Kraftstoffpumpe lässt sich mit einem im Stator angeordneten Kanal für den Kraftstoff erreichen, wobei der Kanal im Bereich der Spulenanordnung parallel zur Spulenanordnung angeordnet ist.
Eine stromabwärts des Auslasses des Laufrades angeordnete
Verteileinrichtung ermöglicht dagegen eine Aufteilung des geförderten KraftstoffStroms, so dass ein Teilstrom durch die Spulenanordnung und ein Teilstrom an der Spulenanordnung vorbei leitbar ist.
Eine derartige Verteileinrichtung kann aber auch dazu ver- wandt werden, den Kraftstoffström dahingehend aufzuteilen, dass ein Teile zu einem ersten Verbraucher, insbesondere eine Saugstrahlpumpe, und der verbleibende Teil zu einem zweiten Verbraucher, insbesondere einer zweiten Pumpstufe oder der Brennkraftmaschine, geleitet wird.
An mehreren Ausführungsbeispielen wird die Erfindung näher erläutert. Es zeigen in
Figur 1: eine Explosionsdarstellung eine Kraftstoffpum- pe mit zwei Laufrädern,
Figuren 2a-c: weitere Ausführungsformen mit separaten Laufrädern,
Figuren 3a-d: weitere Ausführungsformen mit integrierten
Laufrädern und
Figuren 4a-c: weitere Ausführungsformen mit mehreren Spulenanordnungen .
Die in Figur 1 dargestellte Kraftstoffpumpe 1 besteht aus einem ersten Gehäusedeckel 2 der einen Einlassstutzen 3 besitzt, über den Kraftstoff von der Kraftstoffpumpe 1 angesaugt wird. Der erste Gehäusedeckel 2 besitzt auf der dem Einlassstutzen 3 abgewandten Seite einen ringförmigen Kanal 4 mit halbkreisförmigem Querschnitt, welcher mit dem Einlassstutzen 3 verbunden ist und sich über 330° erstreckt.
Dem Kanal 4 gegenüberliegend ist ein erster Rotor 5 angeord- net . Der erste Rotor 5 weist einen ein erstes Laufrad 6 bildenden Ring 7 auf, zu dessen beiden Seiten jeweils ein Kranz 8 von Schaufelkammern 9 begrenzenden Schaufeln 10 angeordnet ist. Mit dem ersten Rotor 5 sind auf der dem ersten Gehäusedeckel 2 abgewandten Seite vier Magnete 11 in Form eines Kreisrings verbunden. Der erste Rotor 5 besitzt eine zentrale Bohrung 12 in der eine Welle 13 drehfest angeordnet ist.
An den ersten Rotor 5 schließt sich ein Stator 14 an. Der Stator 14 besitzt eine zentrale Bohrung 15. In die Bohrung 15 ist eine Lagerbuchse 19 für die Welle 13 eingesetzt. Um die Bohrung 15 sind konzentrisch sechs Kammern 16 im gleichen Winkelabstand zueinander angeordnet, in denen jeweils ein
Spulenkörper 17 angeordnet ist. Die Kammern 16 sind in axialer Erstreckung durch Kammerwände voneinander getrennt. Die Spulenkörper 17 sind so ausgerichtet, dass sie in ihrer Längserstreckung parallel zur Welle 13 des Elektromotors an- geordnet sind. Auf den Spulenkörpern 17 ist jeweils eine
Wicklung 18 angeordnet. Die Spulenkörper 17 mit den Wicklungen 18 sind derart konzentrisch angeordnet, dass sie den Magneten 11 des ersten Rotors 5 gegenüberliegen.
In seinem radial äußeren Bereich weist der Stator 14 auf seiner dem ersten Rotor 5 zugewandten Seite 22 einen Absatz 20 auf, der derart ausgebildet ist, dass der Ring 7, welcher das erste Laufrad 6 bildet, darin aufgenommen wird. Der Absatz 20 weist einen teilringsförmigen Kanal 21, der in Anordnung und Ausbildung dem Kanal 4 des ersten Gehäusedeckels 2 entspricht, so dass der erste Gehäusedeckel 2, der Ring 7 und der Absatz 20 eine Seitenkanalpumpstufe bilden.
Der teilringförmige Kanal 21 im Stator 14 besitzt in Förder- richtung an seinem Ende einen Auslass 23, der im radial äußeren Bereich des Stators 14 als Kanal 23a bis zu einem Einlass 23b verläuft. Der Seite 22 gegenüberliegend, weist der Stator 14 eine Seite 24 gleichen Aufbaus mit einem Absatz 25 zur Aufnahme eines zweiten Laufrades 26 und einen teilringförmi- gen Kanal 27 auf. Der teilringförmige Kanal 27 beginnt am nicht dargestellten Einlass und verläuft ebenfalls über einen Winkelbereich von 330°. Das zweite Laufrad 26, welches durch einen Ring 28 gebildet wird, entspricht vom Aufbau dem Laufrad 6 mit zu beiden Seiten angeordneten Kränzen 29 von Schaufelkammern 30 begrenzen- den Schaufeln 31. Das zweite Laufrad 26 bildet mit einem zweiten Rotor 32 eine Baueinheit. Der zweite Rotor 32 mit den Magneten 33 entspricht hinsichtlich Aufbau und Anordnung zu den Spulenkörpern 17 mit den Wicklungen 18 dem ersten Rotor 5. Auf der den Magneten 33 abgewandten Seite des zweiten Ro- tors 32 wird die Kraftstoffpumpe 1 von einem zweiten Gehäusedeckel 34 abgeschlossen, der in seinem Aufbau dem ersten Gehäusedeckel 2 entspricht. Aufgrund der kompakten Bauweise besitzt die Kraftstoffpumpe 1 eine axiale Länge von 35mm und einen Durchmesser von 70mm.
Im Betrieb der Kraftstoffpumpe 1 wird Kraftstoff über den Einlass 3 angesaugt. Der angesaugte Kraftstoff strömt in den teilringförmigen Kanal 4 und wird vom ersten Laufrad 6 zum Auslass 23 gefördert. Der Kraftstoff strömt anschließend im Stator bis zu dem nicht dargestellten Einlass, der in den teilringförmigen Kanal 24 der zweiten Seitenkanalpumpstufe mit dem zweiten Laufrad 26 mündet. Nachdem der Kraftstoff vom zweiten Laufrad 26 entlang des teilringförmigen Kanals 24 gefördert wurde, tritt der Kraftstoff mit Nenndruck aus dem nicht dargestellten Auslass im zweiten Gehäusedeckel 34 aus. Von dort aus wird der Kraftstoff zu einem Verbraucher, z.B. einer nicht dargestellten Brennkraftmaschine gefördert. Die Rotation der Laufräder 6, 26 erfolgt durch die Verbindung mit den beiden Rotoren 5, 32, die wiederum über die gemeinsame Welle 13 miteinander verbunden sind.
Die nachfolgenden Figuren zeigen weitere Ausführungsformen gemäß der Kraftstoffpumpe in Figur 1 hinsichtlich Anzahl und Anordnung der wesentlichen Baugruppen im Schnitt. Zur besse- ren Darstellung der unterschiedlichen Anordnungen sind lediglich die Baugruppen Rotor mit Magnet, Laufrad, Welle und Spulenkörper mit Wicklung gezeigt, wobei die Baugruppen zur ver- einfachten Darstellung in schematischer Weise gezeigt sind. Der Kraftstoff wird durch die Kraftstoffpumpe von links nach rechts gefördert.
In Figur 2a ist auf der Welle 13 ist ein separates Laufrad 6 angeordnet. In Strömungsrichtung dahinter sind ein erster Rotor 5 und ein zweiter Rotor 32 angeordnet. Zwischen beiden Rotoren 5, 32 sind die Spulenkörper 17 mit Wicklung 18 angeordnet. Laufrad 6 und Rotor 5 sind separate Bauteile.
Der Aufbau der Kraftstoffpumpe 1 in Figur 2b entspricht dem Aufbau nach Figur 2a. Lediglich nach dem zweiten Rotor 32 ist ein zweites Laufrad 26 als zusätzliches Bauteil angeordnet. Durch das zweite Laufrad 32, welches eine zweite Pumpenstufe ist, wird die Brennkraftmaschine mit Kraftstoff versorgt. Der vom ersten Laufrad 6 geförderte Kraftstoff dient zum Antrieb einer nicht dargestellten Saugstrahlpumpe.
Die Figur 2c zeigt eine Kraftstoffpumpe 1 mit nur einem Rotor 5, an den sich in Strömungsrichtung Spulenkörper 17 mit Wicklung 18 anschließen. Auf der dem Rotor 5 abgewandten Seite der Spulenkörper 17 ist ein Laufrad 6 angeordnet. Eine derartige Kraftstoffpumpe 1 erfordert aufgrund des einfachen Aufbaus einen geringen Bauraum und ist mit dem einen Laufrad 6 für geringere Anforderungen geeignet.
Nach den bisher beschriebenen Kraftstoffpumpen mit separaten Laufrädern werden nachfolgend Kraftstoffpumpen mit Laufrädern beschrieben, die mit einem Rotor eine Baueinheit bilden. Fi- gur 3a zeigt eine derartige Kraftstoffpumpe 1 als schematische Darstellung. Vom Aufbau entspricht die Kraftstoffpumpe 1 der Pumpe aus Fig. 1.
Figur 3b zeigt eine Kraftstoffpumpe 1, die sich von der Kraftstoffpumpe nach Figur 3a dadurch unterscheidet, dass die Laufräder 6, 26 in Bezug auf die Rotoren 5, 32 radial innen angeordnet sind. Figur 3c zeigt eine Kraftstoffpumpe 1 mit nur einem Rotor 5 und einem Laufrad 6. Diese Kraftstoffpumpe 1 zeichnet sich durch einen geringeren Platzbedarf aus.
Die Kraftstoffpumpe 1 in Figur 3d besitzt zwei Rotoren 5, 32 und ein Laufrad 6, wobei das Laufrad 6 mit dem ersten Rotor 5 eine Baueinheit bildet.
Kraftstoffpumpen für höhere Anforderungen zeigen die Figuren 4a-c. Die Kraftstoffpumpe 1 in Figur 4a besitzt drei Rotoren 5, 32, 35 zwischen denen Spulenkörper 17, 36 mit Wicklungen 18, 37 angeordnet sind, wobei die Spulenkörper 17, 36 in ihre Längsausrichtung parallel zur Rotorachse ausgerichtet sind.
In Figur 4a besitzt die Kraftstoffpumpe 1 ein Laufrad 6, welches eine Baueinheit mit dem ersten Rotor 5 bildet. Das Laufrad 6 ist gemäß Figur 1 als Ring radial außen am ersten Rotor 5 angeordnet. Die Kraftstoffpumpe 1 in Figur 4b besitzt zwei Laufräder 6, 26 gemäß den Laufrädern in Figur 1. Beide Laufräder 6, 26 fördern Kraftstoff zur nicht dargestellten Brennkraftmaschine. Darüber hinaus wird ein Teil des vom ersten Laufrad 6 geförderten Kraftstoffs einer nicht dargestellten Saugstrahl- pumpe als Antrieb zugeführt.
Die Kraftstoffpumpe 1 in Figur 4c baut auf der Kraftstoffpumpe 1 nach Figur 4b auf, wobei der dritte Rotor 35 ebenfalls eine Baueinheit mit einem Laufrad 38 analog den Rotoren 5, 32 bildet.
Die Erfindung ist nicht auf Laufräder mit einem Kranz von Schaufelkammern begrenzenden Schaufeln auf jeder Seite des Laufrades und den korrespondierenden teilringförmigen Kanälen in Gehäusedeckel und Stator begrenzt. Die Laufräder mit den korrespondierenden Kanälen können auch mehrere konzentrisch angeordnete Kränze von Schaufelkammern begrenzenden Schaufeln oder mehrere, vorzugsweise zwei, auf einem Teilkreisdurchmesser angeordnete, korrespondierende Kanäle besitzen. Ebenso kann der mindestens eine Kranz von Schaufelkammern begrenzenden Schaufeln nur auf einer Seite eines Laufrades angeordnet sein .

Claims

Patentansprüche
1. Kraftstoffpumpe zum Fördern von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine mit einem Gehäu- se, mindestens einem in dem Gehäuse angeordneten Laufrad, wobei das Laufrad mindestens einen Kranz von zueinander beabstandet angeordneten Schaufeln aufweist, einem das Laufrad über eine Welle antreibenden Elektromotor, der als Axialfeldmotor ausgebildet ist und einen Rotor und einen Stator besitzt, dessen Rotor Permanentmagnete aufweist und dass den Permanentmagneten gegenüberliegend Wicklungen tragende Spulenkörper im Abstand zur Rotorachse und in gleichmäßigen Winkelabständen fest in dem Stator angeordnet sind, dadurch gekennzeichnet , dass die Spulenkörper (17, 36) bezogen auf ihre Längsausrichtung parallel zur Welle (13) des Elektromotors angeordnet sind.
2. Kraftstoffpumpe nach Anspruch 1, dadurch gekenn- zeichnet , dass der Stator (14) radial verlaufende Wände besitzt, wobei durch die Wände Kammern (16) gebildet sind, und dass mindestens ein die Wicklungen (18, 37) tragender Spulenkörper (17, 36) in einer Kammer (16) angeordnet ist.
3. Kraftstoffpumpe nach Anspruch 1, dadurch gekennzeichnet , dass die Permanentmagnete (11, 33) derart in dem Rotor (5, 32, 35) angeordnet sind, dass sie zu den Seiten des Rotors (5, 32, 35) mit dessen Seitenfläche ab- schließen.
4. Kraftstoffpumpe nach Anspruch 1, dadurch gekennzeichnet , dass der Rotor aus einer Rotorscheibe (5) besteht .
5. Kraftstoffpumpe nach Anspruch 1, dadurch gekennzeichnet , dass der Rotor aus mindestens zwei Rotorscheiben (5, 32) besteht.
6. Kraftstoffpumpe nach Anspruch 3, dadurch gekennzeichnet , dass in axialer Erstreckung zu beiden Seiten der Spulenkörper (17, 36) zwei Rotorscheiben (5, 32, 35) angeordnet sind.
7. Kraftstoffpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet , dass das Laufrad (6, 26) in Strömungsrichtung vor dem Rotor (32, 35) angeordnet ist.
8. Kraftstoffpumpe nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , dass zumindest ein Laufrad (6, 26) mit einer Rotorscheibe (5, 32, 35) eine Baueinheit bildet.
9. Kraftstoffpumpe nach Anspruch 8, dadurch gekenn- zeichnet , dass das zumindest eine Laufrad (6, 26) radial außen an zumindest einer Rotorscheibe (5, 32) angeordnet ist.
10. Kraftstoffpumpe nach zumindest einem der vorhergehenden Ansprüche 1 bis 5, dadurch gekennzeichnet , dass zwei Laufräder (6, 26) vorgesehen sind, wobei der Elektromotor zwischen den Laufrädern (6, 26) angeordnet ist.
11. Kraftstoffpumpe nach zumindest einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet , dass der Stator (14) derart ausgebildet ist, dass der von einem in Strömungsrichtung vor den Spulenkörpern (17) befindlichen Laufrad (6) geförderte Kraftstoff die Spulenanordnung (17, 18; 36, 37) durchströmt.
12. Kraftstoffpumpe nach Anspruch 9, dadurch gekennzeichnet , dass der Auslass (23) eines in Strömungs- richtung vor den Spulenkörpern (17) befindlichen Laufrades (6) und die Spulenanordnung (17, 18; 36, 37) mit einem Kanal verbunden sind, und dass der Kanal in Bezug zur Welle des Elektromotors einen schrägen oder einen abge- winkelten Verlauf aufweist.
13. Kraftstoffpumpe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet , dass der Stator (14) derart ausgebildet ist, dass der von einem in Strömungsrichtung vor der Spulenanordnung (17, 18; 36, 37) befindlichem
Laufrad (6, 26) geförderte Kraftstoff an der Spulenanordnung (17, 18; 36, 37) vorbei strömt.
14. Kraftstoffpumpe nach Anspruch 11, dadurch gekenn- zeichnet , dass im Bereich der Spulenanordnung (17, 18;
36, 37) ein parallel zur Spulenanordnung (17, 18; 36, 37) verlaufender Kanal (23a) für den Kraftstoff angeordnet ist.
15. Kraftstoffpumpe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet , dass stromabwärts des Auslasses des Laufrades () eine Verteileinrichtung angeordnet ist, mittels der einen Teilstrom durch die Spulenanordnung und einen Teilstrom an der Spulenanordnung vorbei leitbar ist.
PCT/EP2008/062719 2007-09-27 2008-09-24 Kraftstoffpumpe zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine WO2009043765A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/680,690 US20100218747A1 (en) 2007-09-27 2008-09-24 Fuel Pump for Delivering Fuel from a Reservoir to an Internal Combusion Engine
EP08804632A EP2205850A1 (de) 2007-09-27 2008-09-24 Kraftstoffpumpe zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine
JP2010526271A JP2010540823A (ja) 2007-09-27 2008-09-24 タンクから内燃機関に燃料を圧送するための燃料ポンプ
BRPI0817529A BRPI0817529A2 (pt) 2007-09-27 2008-09-24 bomba de combustível para dispensar combustível de um reservatório em um motor de combustão interna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007046580.9 2007-09-27
DE102007046580 2007-09-27

Publications (1)

Publication Number Publication Date
WO2009043765A1 true WO2009043765A1 (de) 2009-04-09

Family

ID=40293901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/062719 WO2009043765A1 (de) 2007-09-27 2008-09-24 Kraftstoffpumpe zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine

Country Status (5)

Country Link
EP (1) EP2205850A1 (de)
JP (1) JP2010540823A (de)
KR (1) KR20100058649A (de)
BR (1) BRPI0817529A2 (de)
WO (1) WO2009043765A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103053095A (zh) * 2010-03-22 2013-04-17 雷勃公司 轴向磁通电机和组装该轴向磁通电机的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104818A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 燃料ポンプモジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844802A1 (de) * 1998-09-30 2000-04-13 Pierburg Ag Elektrische Brennstoffpumpe für Brennkraftmaschinen
EP1065383A1 (de) * 1999-06-29 2001-01-03 Ingersoll-Dresser Pump Company Dichtungslose integrierte Motorpumpe mit Seitenkanallaufrad
WO2003016718A1 (en) * 2001-08-21 2003-02-27 Advanced Rotary Systems, Llc Integrated motorized pump
US20050254936A1 (en) * 2004-05-12 2005-11-17 Aisan Kogyo Kabushiki Kaisha Fuel pump
JP2007166693A (ja) * 2005-12-09 2007-06-28 Aisan Ind Co Ltd アキシャル型モータと燃料ポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844802A1 (de) * 1998-09-30 2000-04-13 Pierburg Ag Elektrische Brennstoffpumpe für Brennkraftmaschinen
EP1065383A1 (de) * 1999-06-29 2001-01-03 Ingersoll-Dresser Pump Company Dichtungslose integrierte Motorpumpe mit Seitenkanallaufrad
WO2003016718A1 (en) * 2001-08-21 2003-02-27 Advanced Rotary Systems, Llc Integrated motorized pump
US20050254936A1 (en) * 2004-05-12 2005-11-17 Aisan Kogyo Kabushiki Kaisha Fuel pump
JP2007166693A (ja) * 2005-12-09 2007-06-28 Aisan Ind Co Ltd アキシャル型モータと燃料ポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103053095A (zh) * 2010-03-22 2013-04-17 雷勃公司 轴向磁通电机和组装该轴向磁通电机的方法
US9391500B2 (en) 2010-03-22 2016-07-12 Regal Beloit America, Inc. Axial flux electric machine

Also Published As

Publication number Publication date
JP2010540823A (ja) 2010-12-24
KR20100058649A (ko) 2010-06-03
BRPI0817529A2 (pt) 2019-09-24
EP2205850A1 (de) 2010-07-14

Similar Documents

Publication Publication Date Title
DE3820003C2 (de)
DE60111879T2 (de) Inline-Pumpe
EP3374642B1 (de) Elektrische kfz-axial-flüssigkeitspumpe
DE102012200807B4 (de) Nassläuferpumpe mit Gleitlager
DE102012212423A1 (de) Flüssigkeitspumpe
DE102012200806B4 (de) Nassläuferpumpe mit Leistungselektronik
AT502566A1 (de) Kühlmittelpumpe
DE102006035408B4 (de) Laufrad und Fluidpumpe, die das Laufrad aufweist
DE19752884A1 (de) Förderaggregat für Kraftstoff
DE10019911A1 (de) Förderpumpe
DE102012003680A1 (de) Vakuumpumpe
WO2010145730A1 (de) Laufzeug für eine fluidenergiemaschine sowie elektrisch angetriebener turbolader
WO2022263370A1 (de) Pumpe und ein fahrzeug mit einer solchen pumpe
EP2002123B1 (de) Fluidpumpe
WO2015067514A1 (de) Elektromotorische wasserpumpe
DE102005058447A1 (de) Flügelrad und dieses einsetzendes Gerät
EP1945955B1 (de) Fluidpumpe
DE10024741B4 (de) Seitenkanalpumpe
DE19725941A1 (de) Förderaggregat für Kraftstoff
EP2322803B1 (de) Pumpe mit einer magnetkupplung
DE102007055713A1 (de) Kraftstoffpumpe und diese aufweisendes Kraftstoffzufuhrgerät
EP2546525A1 (de) Kreiselpumpe mit Spiralgehäuse
WO2009043765A1 (de) Kraftstoffpumpe zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine
DE3148308A1 (de) Luftgekuehlte maschine
EP3806292B1 (de) Elektrische antriebsmaschine für einen verdichter und/oder eine turbine, turbolader und/oder turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08804632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008804632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1043/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12680690

Country of ref document: US

Ref document number: 2010526271

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107008670

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0817529

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100329