WO2009030799A1 - Method for the synthesis of inert metal nanoparticles - Google Patents

Method for the synthesis of inert metal nanoparticles Download PDF

Info

Publication number
WO2009030799A1
WO2009030799A1 PCT/ES2008/070156 ES2008070156W WO2009030799A1 WO 2009030799 A1 WO2009030799 A1 WO 2009030799A1 ES 2008070156 W ES2008070156 W ES 2008070156W WO 2009030799 A1 WO2009030799 A1 WO 2009030799A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
nanoparticles
nanoparticle
salts
liquid medium
Prior art date
Application number
PCT/ES2008/070156
Other languages
Spanish (es)
French (fr)
Inventor
Ernesto Jiménez Villar
Kamal Abderrafi
Rafael ABARGUES LÓPEZ
Juan Martínez Pastor
José Luis Valdés Navarro
Rafael IBÁÑEZ PUCHADES
Original Assignee
Universitat De Valencia, Estudi General
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Valencia, Estudi General filed Critical Universitat De Valencia, Estudi General
Publication of WO2009030799A1 publication Critical patent/WO2009030799A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0086Preparation of sols by physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for the synthesis, in a single step, of stable colloids of inert metal nanoparticles. Therefore, it can be encompassed within the field of physics and chemistry and is capable of being applied in various fields of life sciences such as medicine and biotechnology.
  • metal nanocrystal colloids have attracted a lot of attention from researchers. They have been widely exploited for use in photography (1), catalysis (2), biology (3) and information storage (4), among others. They have also been used to amplify, guide or locate light, which can be conveniently combined with conventional optoelectronics in the near future (5). In this sense, much effort has been devoted to the synthesis of silver nanoparticles with different shapes, such as two-dimensional nano-prisms
  • nano-bars or nano-threads of silver in one dimension 7-8
  • spherical or tetrahedral points adimensiona ⁇ es (8).
  • These particles have been produced by different methods and their chemical and physical properties have been found to be dependent on their size and shape. Therefore, one of the most important challenges in the preparation of metal nanoparticles is the control of their shape, size and morphology (9-11).
  • Patent application WO2006137851 describes a method for the preparation of stable colloidal suspensions containing gold-silicon nanoparticles and silicon silver not agglomerated. It is a stable silicon suspension on a nanometric scale that serves as a means of nucleation and stabilization. Gold and silver nanoparticles are introduced into the suspension where they bind to the surface of silicon particles, which are activated to interact with noble metal ions, and thus, form a stable and non-agglomerated suspension due to the properties steric and repulsive of said silicon particles. Finally, there is the growth of noble metal particles on said silicon particles.
  • Patent document WO2004078641 refers to metal nanoparticles whose surface is coated with silicon oxide and has a diameter of few Angstroms (A).
  • this patent application discloses a method for manufacturing metal nanoparticles comprising: a) mixing metal ions, a solvent and an additive required to form ionic metal complexes; b) adding a silicon compound as a precursor of silicon oxide to coat the surface of the metal ions of the mixture (a); c) adding a reducing agent to the mixture of step (b) to reduce the metal ions.
  • the method comprises lyophilization of the product resulting from step (c).
  • the nanoparticles synthesized by this method are stabilized due to their coating with silicon oxide.
  • the nanoparticle retains electromagnetic properties inherent in the metal and can be easily manufactured in an economical way.
  • the Korean patent application KR20060056484 presents a method and an apparatus for synthesizing oxide nanostructures by laser ablation, which synthesizes semiconductor nanostructures of a nanometric size.
  • the method for synthesizing oxide nanostructures by a pulsed laser deposition process comprises a high temperature synthesis process.
  • the reaction temperature is maintained in the range of 500-1500 0 C.
  • Deposition The pulsed laser comprises a step of applying a laser beam to the surface of a target and depositing the composition of the target on a substrate.
  • the Korean patent application KR20030083134 discloses a method comprising the pressurization and heating steps of a solid powder. This powder is the starting material for nanoparticles to form clusters that are treated with laser ablation.
  • Japanese patent JP2003306319 describes a method for obtaining nanoparticle of a metal oxide by laser ablation.
  • the method comprises the process of irradiation with a laser beam, in an atmosphere of inert gas, of a solid material used as the starting material, said starting material being said metal or metal oxide.
  • the present invention relates to a method, hereinafter method of the invention, for obtaining stable colloids of inert metal nanoparticles, in a single step, by laser ablation of a solid target immersed in a solution, dispersion or emulsion containing salts.
  • metallic the size and shape of the metal nanoparticles obtained by the method of the invention can be controlled, which is one of the most important challenges in the preparation of nanoparticles.
  • the nanoparticle colloid formed by the method of the invention is a stable colloid (the nanoparticles are not agglomerated and therefore maintain their intrinsic properties) and their concentration can be controlled.
  • these nanoparticles are inert, because they are covered by an oxide layer that makes them inactive against organic substances and biological material such as bacteria or cells, and their Surface Plasmon Resonance (SPR) offers great interest industrial since it implies a great absorbance of light in a very narrow range of wavelength ( Figure 3).
  • SPR Surface Plasmon Resonance
  • the liquid medium where the solid white is immersed and containing metal salts at a suitable concentration, can be a solution, dispersion or emulsion.
  • solid white is understood as any metal or semiconductor that contains native oxides on its surface. It can be selected from the group that comprises but is not limited to: Silicon (Si), Germanium (Ge), Zirconium (Zr), Titanium (Ti), Aluminum (Al), Zinc (Zn) or Vanadium (V). These metals also oxidize as a result of laser ablation resulting in the oxides mentioned below.
  • Oxide white is understood as any oxide produced by the oxidation of the solid white used. Taking into account the solid targets mentioned above, the oxides whites can be selected from the group that comprises but is not imitated: SiO 2 , GeO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , V 2 O 3 . These oxides will form the outer part of the nanoparticle, giving them their inert character.
  • SPR is a powerful technique for measuring bio-molecular interactions in real time. While one of the interacting molecules is immobilized on the surface of the sensor, the other is free in solution and passes over said surface. Association and dissociation are measured in arbitrary units and shown in a graph called a sensogram. With this technique it is possible to verify if two molecules have the capacity to unite with each other, estimate the strength of that interaction, if it occurs, and measure the association and dissociation ratios. In addition, the binding of the molecules can be used to estimate the concentration of one of them after making a calibration curve.
  • the technical problem solved by the method implemented in the present invention refers to the achievement or synthesis, in a single step, of stable colloids of inert nanoparticles where both the size and shape of the nanoparticles and the concentration of said Colloid can be controlled.
  • the oxide formed, from the solid white submerged in the liquid medium with metal salts covers the metals formed by reducing them, giving rise to stable colloids of inert nanoparticles.
  • the temperature reached in the area of irradiation on the surface of the solid white induced the reduction of the metallic salts in solution, giving rise to the metals that will form the internal part of the nanoparticle, and the ablation of the solid white producing oxidation of the latter giving place to the oxide that will form the outer part of the nanoparticle. It was estimated that said temperature was higher than the boiling point of the metal used as a solid white.
  • the Korean patent application KR20060056484 comprises the application of a laser beam to the surface of a target (without specifying the submergence of the target in a liquid medium) and the subsequent deposition of the composition of the target on a substrate.
  • this Korean patent unlike the present invention, does not comprise the one-step formation of a stable colloid of inert nanoparticles, but requires at least two steps.
  • the method described in this Korean patent is used to form nanostructures. as semiconductors, not nanoparticles, and requires high temperatures (500-1500 0 C) to carry out electrodeposition on the semiconductor substrate.
  • WO2006137851 describes a method for the preparation of stable colloidal suspensions and containing non-agglomerated gold-silicon and silver-silicon nanoparticles but, in this case, the gold and silver nanoparticles are introduced into the suspension where they join to the surface of silicon particles.
  • nanoparticles are not introduced into the suspension but are formed in a single step within the liquid medium as a result of laser irradiation.
  • the nanoparticles do not bind to the surface of the silica particles, as occurs in WO2006137851, but rather that the silica oxide, or another solid white that is used, it forms the external part of the nanoparticle, giving it the inert character mentioned above and the colloid, due to the steric and repulsive characteristics of silicon, the stable character that causes the nanoparticles not to agglomerate and therefore maintain their intrinsic characteristics
  • the combination of the information contained in the Korean patent KR20060056484, with the patent document KR20030083134 would also not obviously solve the technical problem posed.
  • the patent KR20030083134 discloses a method comprising the pressurization and heating steps of a technical solid powder that is not carried out in the present invention.
  • the combination of the information contained in the Korean patent KR20060056484, with the patent document JP2003306319 would not obviously solve the technical problem posed.
  • JP2003306319 describes a method for obtaining nanoparticles of a metal oxide by laser ablation comprising the process of irradiation with a laser beam, in an atmosphere of inert gas, of a solid material used as a starting material, said starting material being a metal or a metal oxide.
  • a solid material used as a starting material said starting material being a metal or a metal oxide.
  • one of the fundamental aspects of the method of the invention since it makes it possible to carry out efficiently in a single step and achieve a stable colloid of inert nanoparticles, is the presence of the submerged solid white in a liquid medium (dispersion, emulsion or solution) containing metal salts.
  • the oxide formed, from the solid white submerged in the liquid medium with metal salts covers the metals formed by reducing them, giving rise to stable colloids of inert nanoparticles.
  • Figure 1 Illustrates the method used in the present invention to synthesize, in a single step, stable colloids of inert metal nanoparticles by laser ablation of solid white immersed in a solution of metal salts.
  • the present figure shows the laser ablation (1) of a solid target of certain semiconductors and metals (2), which is in a liquid medium consisting of a solution, dispersion or emulsion containing metal salts (3) with a concentration adequate.
  • the laser system has an electromechanical system (4) that allows the laser beam to sweep a certain section of the target surface.
  • FIG. 1 Absorbance spectrum of silver nanoparticles prepared at different concentrations of AgNO 3 in water.
  • the ordinate axis (Y) shows the absorbance intensity and the abscissa axis (X) shows the wavelength (nm).
  • a constant irradiation of the solid white (silicon) was used for 264 s with an average power of 0.9 W.
  • the absorbance shown at 400 nm is the characteristic SPR absorbance of the silver nanoparticles. An increase in Ia was observed SPR absorbency when the concentration of the AgNO 3 salt was increased to a value of 1.25.10 M without modification of the wavelength.
  • Curve (o) represents a salt concentration of 0.25. 10 "4 M; the curve ( ⁇ ) represents a salt concentration of 1.25. 10 " 4 M;
  • the curve (T) represents a salt concentration of 2.25. 10 "4 M; the curve (m) represents a salt concentration of 3.25. 10 " 4 M
  • Figure 3 Absorbance spectrum of silver nanoparticles prepared at different times of laser irradiation and constant power, using silicon as a solid white submerged in a 20 ml solution of AgNO 3 (2.25.10 "4 M).
  • ordinates (Y) shows the absorbance intensity which is measured in arbitrary units, and is defined as -log (T / TO), where T is the transmittance of a colloid sample in a 1-section 2 -section cuvette.
  • abscissa axis (X) shows the wavelength (nm)
  • LIT laser irradiation time
  • LIT laser irradiation time
  • Silver nanoparticles (Ag) upper curve (absorbance value SPR at 400 run of 1.2).
  • Au Gold nanoparticles
  • Ag-Au intermediate curve
  • the nanoparticles were prepared by laser irradiation for 264 s of silicon, used as solid white, immersed in an aqueous solution with a concentration 1.25.10 "4 M of AgNO 3 or HAuCI 4 (depending on whether the nanoparticle is formed by silver or by gold) or in an aqueous solution of AgNO 3 and HAuCl 4 (when the nanoparticle is formed by a silver-gold alloy).
  • the ordinate axis (Y) shows the absorbance intensity and the abscissa axis (X) shows the wavelength (nra).
  • FIG. 5 X-ray diffraction patterns (XRD) of a film coated with a deposit of Ag (a) and Au (b) on a glass substrate.
  • the inserted graph shows the diffractogram of the precipitated material after purification of the Ag colloids.
  • the ordinate axis (Y) shows the absorbance intensity and the abscissa axis (X) the Bragg diffraction at 2 ⁇ values.
  • FIG. 6 Electron micrograph and size distribution of the silver nanoparticles produced by irradiation of the silicon, used as solid white, in a solution of AgNO 3 at concentration 1.25.10 "4 M.
  • the inserted graph shows in the ordinate axis ( Y) the intensity of distribution and on the axis of abscissa (X) the diameter in nm.
  • the method of the invention is aimed at obtaining stable colloids of inert metal nanoparticles, in a single step, by laser ablation of a solid target submerged in a solution, dispersion or emulsion containing metal salts. .
  • the size and shape of the metal nanoparticles obtained by the method of the invention can be controlled, which is one of the most important challenges in the preparation of nanoparticles.
  • the nanoparticle colloid formed by the method of the invention is a stable colloid (the nanoparticles are agglomerated and therefore maintain their intrinsic properties) and their concentration can be controlled.
  • nanoparticles are inert, because they are covered by an oxide layer that makes them inactive against organic substances and biological material such as bacteria or cells, and their Surface Plasmon Resonance (SPR) offers great industrial interest since it implies a great light absorbance over a very narrow wavelength range ( Figure 3).
  • the method of the invention is based on the laser ablation of a solid target immersed in a liquid medium containing metal salts.
  • the laser radiates the solid target on whose surface a high temperature is achieved, higher than the boiling point of the metal used as a solid white, useful for evaporation of the target material and the chemical reaction, in the volume portion of the closest solution to said solid white, to reduce the metal salts contained in the liquid medium, giving rise to nucleation centers.
  • the particles emanating from the solid white and the white itself oxidize, oxide that will finally coat the nanoparticle giving it an inert character.
  • the wavelengths of the laser used in the ablation process are in the range 300-1100 nra, approximately, depending on the targets and metals most suitable for the proposed manufacturing process. Specifically, the wavelength of the laser used in the ablation (355 nm, for example) must be in "consonance" with the solid target ( Figure 1.2) chosen (silicon, for example) and the metal that internally composes the nanoparticles (silver , for example), given the great absorption of light that they produce at the wavelength that characterizes their SPR ( Figure 3).
  • the laser used in the ablation is pulsed (typical duration of a dozen nanoseconds) that provides adequate power and wavelength so that the radiation is strongly absorbed by the solid white and leads to the desired high temperatures on its surface. It must also contain a system for controlling its power and working frequency, as well as an optical focusing and electro-mechanical system ( Figure 1.4) that allows sweeping the desired surface of the solid target ( Figure 1.2).
  • the solid targets suitable for the inert metal nanoparticle synthesis process are those metals or semiconductors that contain native oxides on their surface which can be selected from the group comprising but not limited to: Silicon (Si), Germanium (Ge), Zirconium (Zr), Titanium (Ti), Aluminum (Al), Zinc (Zn) or Vanadium (V).
  • the solid white does not have to be the same as the internal metal of the nanoparticles.
  • the choice of solid white is one of the important points of the process, as it must have a high boiling temperature so that the ablation process can lead to sufficiently high temperatures on its surface, which in turn allows the reduction of metal salts dissolved that will form the inner part of the nanoparticle. In unison, oxidation of the evaporated material also occurs (resulting in the oxide that will form the outer part of the nanoparticle).
  • the oxidation of solid targets is another important point of the process because, at the same time that the metal that forms the internal part of the nanoparticle is formed by reduction of dissolved metal salts, the nanoparticles are covered by that same oxide .
  • the solution ( Figure 1.3) in which the solid target is immersed ( Figure 1.2) on which the laser ablation is performed ( Figure 1.1) must contain the appropriate concentration of the metal salts that provide, by reduction of the metal, the internal material of the nanoparticle. Therefore, the choice of metal salt is a function of the type of internal material required for the nanoparticle.
  • This salt can be any metal salt such as, for example, AgNO 3 , HAuCl 4 or appropriate mixtures thereof.
  • the mechanism of nanoparticle formation is the chemical reaction, out of equilibrium, that occurs in the liquid medium that contains the solid white and the metal salts.
  • Said chemical reaction consists in the reduction of the metallic salts in solution giving rise to the metals that form the internal part of the nanoparticle.
  • the particles emanating from the solid white by the laser ablation process are they oxidize, as well as the target itself, and are located on the outside of the nanoparticle, covering the metals formed by the reduction of the metal salts in solution, which gives them the inert character referred to above.
  • inert nanoparticles could be formed in a single step, being able to control their size and the concentration of the colloid as a function of the LIT and the concentration of dissolved salts.
  • a first type are nanoparticles based on a metal of interest in biomedicine / biotechnology applications, such as silver (Ag), gold (Au), nickel (Ni), cobalt (Co) or nanoparticles whose internal part is not formed by a exclusive metal but by alloys thereof.
  • these nanoparticles can be synthesized with elongated geometric shapes (nano-wire type) that have Superficial Plasma Resonances in the near infrared (700-900 nm).
  • the concentration of metal colloids can be controlled by handling the concentration of metal salts or the LIT.
  • the diameter of the nanoparticles was controlled by varying the salt concentration used.
  • XRD patterns indicate that nanoparticles are perfectly crystalline and exhibit some predominant facets, as observed by TEM.
  • a first aspect of the present invention relates to a method for the synthesis of stable colloids of inert metal nanoparticles characterized by: comprising the laser ablation of a solid target immersed in a liquid medium of metal salts; The synthesis of the nanoparticles is carried out in a single step; the size and shape of the nanoparticles obtained and the concentration of the colloid can be controlled according to the LIT and the concentration of salts in the liquid medium; there is an increase in the intensity of SPR absorbance of the nanoparticles in a narrow wavelength range when the concentration of dissolved salts and the LIT are controlled.
  • the solid white can be any metal or semiconductor that Contains native oxides on its surface, and may be selected from the group comprised of: Silicon (Si), Germanium (Ge), Zirconium (Zr), Titanium (Ti), Aluminum (Al), Zinc (Zn) or Vanadium (V).
  • the metal salt disposed in the liquid medium is selected from the group comprising: silver salt, gold salt, nickel salt or cobalt salt, which may be AgNO 3 or HAuCl 4 .
  • the concentration of dissolved salts is between 0.25.10 " 4M and 3.25.10 " 4M, preferably 1.25. 10 "4 M.
  • the LIT has values between 33s and 528s, preferably between 33s and 264s.
  • the applied laser is characterized by having a wavelength between 300 and 1100 nm, preferably 355 nm, for being pulsed, for having a system of control of the power and frequency of work, and of an optical system of focusing and electro-mechanic that allows to sweep the desired surface of the solid white and present a length of penetration in the solid relatively short.
  • the present invention relates, in a second aspect, to inert metal nanoparticles characterized in that their size and shape can be controlled and by having the optical property of having a high intensity of SPR absorbance in a narrow wavelength range.
  • the nanoparticles are characterized by having an SPR absorbance intensity between 0.4 and 1.2 at a wavelength of 400 nm, because their outer part is formed by an oxide of any metal and its inner part by a metal, or alloys of these, which may or may not coincide with the former.
  • the oxide that forms the outer part of the nanoparticle is selected from the group comprising: SiO 2 , GeO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , V 2 O 3 .
  • the metal that forms the internal part of the nanoparticle is selected from the group comprised of: silver (Ag), gold (Au), nickel (Ni) or cobalt (Co) or mime alloys.
  • Example 1 Synthesis, in a single step, of inert nanoparticles of silver and gold by laser ablation of a solid target immersed in a solution of metal salts.
  • the absorbance spectrum of silver nanoparticles prepared at different concentrations of AgNO 3 in water was observed (Fig. 2).
  • a constant irradiation of the solid white (silicon) was used for 264 s with an average power of 0.9 W.
  • the absorbance shown at 400 nm is the characteristic SPR absorbance of the silver nanoparticles.
  • An increase in SPR absorbance was observed when the AgNO 3 salt concentration was increased above the 1.25.10 "4 M value without modification of the wavelength.
  • the LIT is another parameter that had an important effect on the formation of silver nanoparticles.
  • the increase in the LIT from 33 s to 264 s resulted in an increase in the SPR intensity, the position of the peak being practically constant, as shown in Figure 3.
  • a LIT greater than or equal to 528 s meant a significant decrease in Ia SPR intensity, accompanied by a shift in bandwidth and maximum wavelength. This reduction in intensity can be explained by the increase in the concentration of large silicon nanoparticles. formed in solution during the ablation process, resulting in the co-precipitation of said nanoparticles and silver nanoparticles due to the electrostatic attraction between them.
  • the importance of these large silicon particles in the solution was deduced from the great clarity of the samples obtained using a long LIT, which also led to increased absorption observed at long wavelength (> 600 nm; Figure 3).
  • the present invention offers the possibility of producing silver nanoparticles with high efficiency when handling the maximum SPR values with the concentration of salts in solution and the LIT.
  • the high temperatures reached in the area of irradiation on the surface of the solid white could be the origin of this situation.
  • the high temperatures reached (higher than the boiling point of the target) also induced the reduction of Ag + to Ag in solution, and the consequent formation of silver nanoparticles, together with the ablation of the silicon white. Due to the characteristics of silicon, silicon nanoparticles will be immediately oxidized.
  • the silver nanoparticles (Ag) and SiO 2 were produced during the ablation process, achieving great stability of the silver colloids.
  • Au gold nanoparticles
  • Example 2 Synthesis, in a single step, of inert nanoparticles whose internal part is formed by a metal alloy by laser ablation of a solid target immersed in a solution of metal salts.
  • nanoparticles were also obtained whose internal part was not formed exclusively by a metal but by alloys thereof.
  • nanoparticles whose internal part was formed by the Ag-Au alloy were synthesized.
  • These nanoparticles, whose internal part is formed by an alloy of metals were achieved following the methodology explained in example 1 but, in this case, the liquid medium in which the solid white is submerged did not exclusively comprise a single metal salt but I understood at least two.
  • an adequate amount of the AgNO 3 and HAuCl 4 salts with a 90/10 molar ratio were disposed in the liquid medium which, as explained above, were reduced resulting in the Ag-Au metal alloy, which formed the internal part of the nanoparticles.
  • the composition of these nanoparticles was measured by chemical analysis with a transmission electron microscope, confirming that the nanoparticle contains silver and gold inside.
  • the absorbance curve is intermediate to that of pure silver and gold colloids, dominating the SPR of the silver (at 400 nm), as shown in Figure 4.

Abstract

The invention relates to a method for the synthesis of inert metal nanoparticles. More specifically, the invention relates to a method for obtaining stable colloids of inert metal nanoparticles in a single step comprising the laser ablation of a solid target submerged in a liquid medium containing metal salts. The invention also relates to the nanoparticles synthesised using the aforementioned method and characterised in that they have a controlled morphology and size and a high SPR absorbance intensity in a narrow wavelength range.

Description

MÉTODO DESTINADO A LA SÍNTESIS DE NANOPARTICULAS METHOD FOR THE SYNTHESIS OF NANOPARTICLES
METÁLICAS INERTESINERT METALS
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se refiere a un método destinado a la síntesis, en un solo paso, de coloides estables de nanopartículas metálicas inertes. Por lo tanto, puede ser englobada dentro del campo de la física y de la química y es susceptible de ser aplicada en diversos campos de las ciencias de la vida como, por ejemplo, medicina y biotecnología.The present invention relates to a method for the synthesis, in a single step, of stable colloids of inert metal nanoparticles. Therefore, it can be encompassed within the field of physics and chemistry and is capable of being applied in various fields of life sciences such as medicine and biotechnology.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
En las dos últimas décadas, los coloides de nanocristales metálicos han atraído mucho la atención de los investigadores. Han sido extensamente explotadas para su uso en fotografía (1), catálisis (2), biología (3) y almacenamiento de información (4), entre otros. Han sido además utilizadas para amplificar, guiar o localizar luz, lo cual puede ser convenientemente combinado con optoelectrónica convencional en un futuro próximo (5). En este sentido, se ha dedicado mucho esñierzo a la síntesis de nanopartículas de plata con diferentes formas, tal como nano-prismas bidimensionalesIn the last two decades, metal nanocrystal colloids have attracted a lot of attention from researchers. They have been widely exploited for use in photography (1), catalysis (2), biology (3) and information storage (4), among others. They have also been used to amplify, guide or locate light, which can be conveniently combined with conventional optoelectronics in the near future (5). In this sense, much effort has been devoted to the synthesis of silver nanoparticles with different shapes, such as two-dimensional nano-prisms
(6), nano-barras o nano-hilos de plata en una dimensión (7-8) y puntos esféricos o tetraédricos adimensionaíes (8). Estas partículas han sido producidas por diferentes métodos y se ha encontrado que sus propiedades químicas y físicas son dependientes de su tamaño y forma. Por lo tanto, uno de los retos más importantes en la preparación de nanopartículas metálicas es el control de su forma, tamaño y morfología (9-11).(6), nano-bars or nano-threads of silver in one dimension (7-8) and spherical or tetrahedral points adimensionaíes (8). These particles have been produced by different methods and their chemical and physical properties have been found to be dependent on their size and shape. Therefore, one of the most important challenges in the preparation of metal nanoparticles is the control of their shape, size and morphology (9-11).
A continuación se exponen los documentos localizados en el estado de Ia técnica más cercanos y, por lo tanto, más relevantes para la patentabilidad de la presente invención:Below are the documents located in the state of the art closest and, therefore, most relevant to the patentability of the present invention:
» La solicitud de patente WO2006137851 describe un método para la preparación de suspensiones coloidales estables y que contienen nanopartículas de oro-silicio y plata silicio no aglomeradas. Se trata de una suspensión estable de silicio en escala nanométrica que sirve como medio de nucleación y estabilización. Las nanopartículas de oro y de plata se introducen en la suspensión donde se unen a la superficie de las partículas de silicio, las cuales se activan para interaccionar con iones de metales nobles, y así, forman una suspensión estable y no aglomerada debido a las propiedades estéricas y repulsivas de dichas partículas de silicio. Finalmente, se produce el crecimiento de las partículas de metales nobles sobre dichas partículas de silicio.»Patent application WO2006137851 describes a method for the preparation of stable colloidal suspensions containing gold-silicon nanoparticles and silicon silver not agglomerated. It is a stable silicon suspension on a nanometric scale that serves as a means of nucleation and stabilization. Gold and silver nanoparticles are introduced into the suspension where they bind to the surface of silicon particles, which are activated to interact with noble metal ions, and thus, form a stable and non-agglomerated suspension due to the properties steric and repulsive of said silicon particles. Finally, there is the growth of noble metal particles on said silicon particles.
« El documento de patente WO2004078641 se refiere a nanopartículas metálicas cuya superficie está recubierta de óxido de silicio y tiene un diámetro de pocos Angstroms (A). Además, esta solicitud de patente divulga un método para la fabricación de nanopartículas metálicas que comprende: a) mezclar iones metálicos, un disolvente y un aditivo requerido para formar complejos metálicos iónicos; b) adición de un compuesto de silicio como precursor del óxido de silicio para recubrir la superficie de los iones metálicos de la mezcla (a); c) adición de un agente reductor a la mezcla del paso (b) para reducir lo iones metálicos. d) opcionalmente, si es necesario, el método comprende la liofilización del producto resultante del paso (c)."Patent document WO2004078641 refers to metal nanoparticles whose surface is coated with silicon oxide and has a diameter of few Angstroms (A). In addition, this patent application discloses a method for manufacturing metal nanoparticles comprising: a) mixing metal ions, a solvent and an additive required to form ionic metal complexes; b) adding a silicon compound as a precursor of silicon oxide to coat the surface of the metal ions of the mixture (a); c) adding a reducing agent to the mixture of step (b) to reduce the metal ions. d) optionally, if necessary, the method comprises lyophilization of the product resulting from step (c).
Las nanopartículas sintetizadas por este método están estabilizadas debido a su recubrimiento con óxido de silicio. Además la nanopartícula retiene propiedades electromagnéticas inherentes al metal y puede ser fácilmente fabricada de una forma económica.The nanoparticles synthesized by this method are stabilized due to their coating with silicon oxide. In addition the nanoparticle retains electromagnetic properties inherent in the metal and can be easily manufactured in an economical way.
• La solicitud de patente coreana KR20060056484 presenta un método y un aparato para sintetizar nanoestructuras de óxido mediante ablación láser, el cual sintetiza nanoestructuras semiconductoras de un tamaño nanométrico. El método para sintetizar nanoestructuras de óxido mediante un proceso de deposición de láser pulsado comprende un procedimiento de síntesis a elevada temperatura. La temperatura de reacción se mantiene en el rango de 500-1500 0C. La deposición del láser pulsado comprende un paso de aplicación de un haz de láser a la superficie de un blanco y el depósito de la composición del blanco sobre un sustrato.• The Korean patent application KR20060056484 presents a method and an apparatus for synthesizing oxide nanostructures by laser ablation, which synthesizes semiconductor nanostructures of a nanometric size. The method for synthesizing oxide nanostructures by a pulsed laser deposition process comprises a high temperature synthesis process. The reaction temperature is maintained in the range of 500-1500 0 C. Deposition The pulsed laser comprises a step of applying a laser beam to the surface of a target and depositing the composition of the target on a substrate.
« La solicitud de patente coreana KR20030083134 divulga un método que comprende los pasos de presurización y calentamiento de un polvo sólido. Este polvo es el material de partida para las nanopartículas para formar conglomerados que son tratados con ablación láser."The Korean patent application KR20030083134 discloses a method comprising the pressurization and heating steps of a solid powder. This powder is the starting material for nanoparticles to form clusters that are treated with laser ablation.
• La patente japonesa JP2003306319, describe un método para obtener nanopartícula de un óxido metálico mediante ablación láser. El método comprende el proceso de irradiación con un haz láser, en una atmósfera de gas inerte, de un material sólido utilizado como material de partida siendo dicho material de partida un metal o un óxido metálico.• Japanese patent JP2003306319 describes a method for obtaining nanoparticle of a metal oxide by laser ablation. The method comprises the process of irradiation with a laser beam, in an atmosphere of inert gas, of a solid material used as the starting material, said starting material being said metal or metal oxide.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Breve descripción de Ia invenciónBrief description of the invention
La presente invención se refiere a un método, en adelante método de la invención, para la obtención de coloides estables de nanopartículas metálicas inertes, en un único paso, tnediante ablación láser de un blanco sólido sumergido en una disolución, dispersión o emulsión que contiene sales metálicas. Además, el tamaño y la forma de las nanopartículas metálicas obtenidas mediante el método de la invención pueden ser controlados, lo cual supone uno de los retos más importantes en la preparación de nanopartículas. Por otro lado, el coloide de nanopartículas formado por el método de la invención es un coloide estable (las nanopartículas no están aglomeradas y por lo tanto mantienen sus propiedades intrínsecas) y su concentración puede ser controlada. Además dichas nanopartículas son inertes, debido a que están recubiertas por una capa de óxido que las hace inactivas frente a sustancias orgánicas y material biológico como bacterias o células, y su Resonancia de Plasmón Superficial (SPR) ofrece gran interés industrial ya que implica una gran absorbancia de luz en un rango muy estrecho de longitud de onda (Figura 3).The present invention relates to a method, hereinafter method of the invention, for obtaining stable colloids of inert metal nanoparticles, in a single step, by laser ablation of a solid target immersed in a solution, dispersion or emulsion containing salts. metallic In addition, the size and shape of the metal nanoparticles obtained by the method of the invention can be controlled, which is one of the most important challenges in the preparation of nanoparticles. On the other hand, the nanoparticle colloid formed by the method of the invention is a stable colloid (the nanoparticles are not agglomerated and therefore maintain their intrinsic properties) and their concentration can be controlled. In addition, these nanoparticles are inert, because they are covered by an oxide layer that makes them inactive against organic substances and biological material such as bacteria or cells, and their Surface Plasmon Resonance (SPR) offers great interest industrial since it implies a great absorbance of light in a very narrow range of wavelength (Figure 3).
Tal y como se cita en la presente invención el medio líquido, donde está inmerso el blanco sólido y que contiene sales metálicas a una concentración adecuada, puede ser una disolución, dispersión o emulsión.As cited in the present invention, the liquid medium, where the solid white is immersed and containing metal salts at a suitable concentration, can be a solution, dispersion or emulsion.
En Ia presente invención se entiende por blanco sólido cualquier metal o semiconductor que contenga óxidos nativos en su superficie. Puede ser seleccionado del grupo que comprende pero no se limita a: Silicio (Si), Germanio (Ge), Circonio (Zr), Titanio (Ti), Aluminio (Al), Zinc (Zn) o Vanadio (V). Estos metales también se oxidan como consecuencia de la ablación láser dando lugar a los óxidos abajo mencionados.In the present invention, solid white is understood as any metal or semiconductor that contains native oxides on its surface. It can be selected from the group that comprises but is not limited to: Silicon (Si), Germanium (Ge), Zirconium (Zr), Titanium (Ti), Aluminum (Al), Zinc (Zn) or Vanadium (V). These metals also oxidize as a result of laser ablation resulting in the oxides mentioned below.
Se entiende por blanco óxido cualquier óxido producido por la oxidación del blanco sólido utilizado. Teniendo en cuenta los blancos sólidos arriba citados, los blancos óxidos pueden ser seleccionados del grupo que comprende pero no se ¡imita a: SiO2, GeO2, ZrO2, TiO2, Al2O3, ZnO2, V2O3. Estos óxidos formarán la parte externa de la nanopartícula confiriéndolas su carácter inerte.Oxide white is understood as any oxide produced by the oxidation of the solid white used. Taking into account the solid targets mentioned above, the oxides whites can be selected from the group that comprises but is not imitated: SiO 2 , GeO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , V 2 O 3 . These oxides will form the outer part of the nanoparticle, giving them their inert character.
La SPR es una poderosa técnica para medir interacciones bio-moleculares en tiempo real. Mientras que una de las moléculas que interactúa se inmoviliza en la superficie del sensor, la otra está libre en disolución y pasa encima de dicha superficie. La asociación y la disociación se miden en unidades arbitrarias y se muestra en un gráfico llamado sensograma. Con esta técnica se puede comprobar si dos moléculas tienen la capacidad de unirse entre ellas, estimar la fortaleza de esa interacción, en caso de que se produzca, y medir los ratios de asociación y disociación. Además, la unión de las moléculas puede utilizarse para estimar la concentración de una de ellas después de hacer una curva de calibración. La resonancia de plasmón, puede dar rápidamente información de la velocidad y extensión de una adsorción, determinar propiedades dieléctricas, cinéticas de asociación/disociación, constantes de afinidad para una interacción ligando/ligado, etc. Por lo tanto, el problema técnico resuelto por el método implementado en la presente invención se refiere a la consecución o síntesis, en un único paso, de coloides estables de nanopartículas inertes donde tanto el tamaño y la forma de las nanopartículas como la concentración de dicho coloide pueden ser controlados.SPR is a powerful technique for measuring bio-molecular interactions in real time. While one of the interacting molecules is immobilized on the surface of the sensor, the other is free in solution and passes over said surface. Association and dissociation are measured in arbitrary units and shown in a graph called a sensogram. With this technique it is possible to verify if two molecules have the capacity to unite with each other, estimate the strength of that interaction, if it occurs, and measure the association and dissociation ratios. In addition, the binding of the molecules can be used to estimate the concentration of one of them after making a calibration curve. Plasmon resonance can quickly give information on the speed and extent of an adsorption, determine dielectric properties, kinetics of association / dissociation, affinity constants for a ligand / ligand interaction, etc. Therefore, the technical problem solved by the method implemented in the present invention refers to the achievement or synthesis, in a single step, of stable colloids of inert nanoparticles where both the size and shape of the nanoparticles and the concentration of said Colloid can be controlled.
Una vez analizado el estado de la técnica, se considera que la información contenida en Ia solicitud de patente coreana KR20060056484 es la más cercana a la presente invención. A pesar de su proximidad, existen diferencias funcionalmente importantes entre el método de la invención y el método descrito en la solicitud de patente coreana KR20060056484. Uno de los aspectos fundamentales del método de la invención, dado que posibilita ser llevado a cabo de forma eficiente en un único paso y conseguir un coloide estable de nanopartículas inertes, es la presencia del blanco sólido sumergido en un medio líquido (dispersión, emulsión o disolución) que contiene sales metálicas. En el método de la invención el óxido formado, a partir del blanco sólido sumergido en el medio líquido con sales metálicas, recubre los metales formados por la reducción de éstas, dando lugar a coloides estables de nanopartículas inertes. La temperatura alcanzada en el área de irradiación en la superficie del blanco sólido indujo la reducción de las sales metálicas en disolución, dando lugar a los metales que formarán la parte interna de la nanopartícula, y la ablación del blanco sólido produciéndose la oxidación de éste dando lugar al óxido que formará la parte externa de la nanopartícula. Se estimó que dicha temperatura era superior al punto de ebullición del metal utilizado como blanco sólido. En cambio, la solicitud de patente coreana KR20060056484 comprende la aplicación de un haz de láser a la superficie de un blanco (sin especificar el sumergimiento del blanco en un medio líquido) y el depósito posterior de la composición del blanco sobre un sustrato. Con lo cual esta patente coreana, a diferencia de la presente invención, no comprende la formación en un solo paso de un coloide estable de nanopartículas inertes, sino que requiere al menos dos pasos, El método descrito en esta patente coreana se utiliza para formar nanoestructuras como los semiconductores, no nanopartículas, y requiere temperaturas elevadas (500-15000C) para llevar a cabo la electro-deposición sobre el sustrato semiconductor. Por lo tanto, se considera que no sería obvio para un experto en la materia combinar la información contenida en la solicitud de patente coreana KR20060056484 con alguno de los documentos expuestos en el estado de la técnica y, con ello, resolver el problema técnico planteado. El documento de patente WO2006137851 describe un método para la preparación de suspensiones coloidales estables y que contienen nanopartículas no aglomeradas de oro-silicio y plata-silicio pero, en este caso, las nanopartículas de oro y de plata se introducen en la suspensión donde se unen a la superficie de las partículas de silicio. En cambio, en el método de la invención las nanopartículas no se introducen en la suspensión sino que éstas se forman en un único paso dentro del medio líquido como consecuencia de la irradiación del láser. Además, otra diferencia funcional muy importante es que en el método de la invención las nanopartículas no se unen a Ia superficie de las partículas de sílice, como ocurre en el documento de patente WO2006137851, sino que el óxido de sílice, o de otro blanco sólido que se utilice, forma la parte externa de la nanopartícula confiriéndola a ésta el carácter inerte arriba mencionado y al coloide, debido a las características estéricas y repulsivas del silicio, el carácter estable que hace que las nanopartículas no se aglomeren y por lo tanto mantengan sus características intrínsecas.Once the state of the art has been analyzed, the information contained in the Korean patent application KR20060056484 is considered to be the closest to the present invention. Despite its proximity, there are functionally important differences between the method of the invention and the method described in the Korean patent application KR20060056484. One of the fundamental aspects of the method of the invention, since it makes it possible to carry out efficiently in a single step and achieve a stable colloid of inert nanoparticles, is the presence of the solid white submerged in a liquid medium (dispersion, emulsion or solution) containing metal salts. In the method of the invention, the oxide formed, from the solid white submerged in the liquid medium with metal salts, covers the metals formed by reducing them, giving rise to stable colloids of inert nanoparticles. The temperature reached in the area of irradiation on the surface of the solid white induced the reduction of the metallic salts in solution, giving rise to the metals that will form the internal part of the nanoparticle, and the ablation of the solid white producing oxidation of the latter giving place to the oxide that will form the outer part of the nanoparticle. It was estimated that said temperature was higher than the boiling point of the metal used as a solid white. Instead, the Korean patent application KR20060056484 comprises the application of a laser beam to the surface of a target (without specifying the submergence of the target in a liquid medium) and the subsequent deposition of the composition of the target on a substrate. Whereby this Korean patent, unlike the present invention, does not comprise the one-step formation of a stable colloid of inert nanoparticles, but requires at least two steps. The method described in this Korean patent is used to form nanostructures. as semiconductors, not nanoparticles, and requires high temperatures (500-1500 0 C) to carry out electrodeposition on the semiconductor substrate. Therefore, it is considered that it would not be obvious for a person skilled in the art to combine the information contained in the Korean patent application KR20060056484 with any of the documents set forth in the state of the art and thereby solve the technical problem raised. WO2006137851 describes a method for the preparation of stable colloidal suspensions and containing non-agglomerated gold-silicon and silver-silicon nanoparticles but, in this case, the gold and silver nanoparticles are introduced into the suspension where they join to the surface of silicon particles. In contrast, in the method of the invention, nanoparticles are not introduced into the suspension but are formed in a single step within the liquid medium as a result of laser irradiation. In addition, another very important functional difference is that in the method of the invention the nanoparticles do not bind to the surface of the silica particles, as occurs in WO2006137851, but rather that the silica oxide, or another solid white that is used, it forms the external part of the nanoparticle, giving it the inert character mentioned above and the colloid, due to the steric and repulsive characteristics of silicon, the stable character that causes the nanoparticles not to agglomerate and therefore maintain their intrinsic characteristics
La combinación de la información contenida en la patente coreana KR20060056484, con el documento de patente WO2004078641 tampoco resolvería de forma obvia el problema técnico planteado. Dicha patente PCT comprende cuatro pasos y ninguno de ellos utiliza la ablación láser. En cambio, una característica fundamental del método de la invención es la consecución de nanopartículas en un único paso mediante la ablación láser de un blanco sólido.The combination of the information contained in the Korean patent KR20060056484, with the patent document WO2004078641 would also not obviously solve the technical problem posed. Said PCT patent comprises four steps and none of them uses laser ablation. Instead, a fundamental feature of the method of the invention is the achievement of nanoparticles in a single step by laser ablation of a solid target.
La combinación de la información contenida en Ia patente coreana KR20060056484, con el documento de patente KR20030083134 tampoco resolvería de forma obvia el problema técnico planteado. La patente KR20030083134 divulga un método que comprende los pasos de presurización y calentamiento de un polvo sólido técnica que no se lleva a cabo en Ia presente invención. Finalmente se considera que la combinación de la información contenida en la patente coreana KR20060056484, con el documento de patente JP2003306319 tampoco resolvería de forma obvia el problema técnico planteado. La patente JP2003306319 describe un método para obtener nanopartículas de un óxido metálico mediante ablación láser que comprende el proceso de irradiación con un haz láser, en una atmósfera de gas inerte, de un material sólido utilizado como material de partida, siendo dicho material de partida un metal o un óxido metálico. En cambio, como se ha comentado anteriormente, uno de los aspectos fundamentales del método de la invención, dado que posibilita ser llevado a cabo de forma eficiente en un único paso y conseguir un coloide estable de nanopartículas inertes, es la presencia del blanco sólido sumergido en un medio líquido (dispersión, emulsión o disolución) que contiene sales metálicas. En el método de la invención el óxido formado, a partir del blanco sólido sumergido en el medio líquido con sales metálicas, recubre los metales formados por la reducción de éstas, dando lugar a coloides estables de nanopartículas inertes.The combination of the information contained in the Korean patent KR20060056484, with the patent document KR20030083134 would also not obviously solve the technical problem posed. The patent KR20030083134 discloses a method comprising the pressurization and heating steps of a technical solid powder that is not carried out in the present invention. Finally, it is considered that the combination of the information contained in the Korean patent KR20060056484, with the patent document JP2003306319 would not obviously solve the technical problem posed. JP2003306319 describes a method for obtaining nanoparticles of a metal oxide by laser ablation comprising the process of irradiation with a laser beam, in an atmosphere of inert gas, of a solid material used as a starting material, said starting material being a metal or a metal oxide. On the other hand, as mentioned above, one of the fundamental aspects of the method of the invention, since it makes it possible to carry out efficiently in a single step and achieve a stable colloid of inert nanoparticles, is the presence of the submerged solid white in a liquid medium (dispersion, emulsion or solution) containing metal salts. In the method of the invention, the oxide formed, from the solid white submerged in the liquid medium with metal salts, covers the metals formed by reducing them, giving rise to stable colloids of inert nanoparticles.
Descripción de las figurasDescription of the figures
Figura 1. Ilustra el método usado en la presente invención para sintetizar, en un único paso, coloides estables de nanopartículas metálicas inertes mediante ablación láser de blanco sólido sumergido en una solución de sales de metales. En la presente figura se representa la ablación láser (1) de un blanco sólido de ciertos semiconductores y metales (2), el cual está en un medio líquido consistente en una disolución, dispersión o emulsión que contiene sales metálicas (3) con una concentración adecuada. El sistema láser dispone de un sistema electromecánico (4) que permite al haz láser barrer una determinada sección de Ia superficie del blanco.Figure 1. Illustrates the method used in the present invention to synthesize, in a single step, stable colloids of inert metal nanoparticles by laser ablation of solid white immersed in a solution of metal salts. The present figure shows the laser ablation (1) of a solid target of certain semiconductors and metals (2), which is in a liquid medium consisting of a solution, dispersion or emulsion containing metal salts (3) with a concentration adequate. The laser system has an electromechanical system (4) that allows the laser beam to sweep a certain section of the target surface.
Figura 2. Espectro de absorbancia de las nanopartículas de plata preparadas a diferentes concentraciones de AgNO3 en agua. El eje de ordenadas (Y) muestra la intensidad de absorbancia y el eje de abscisas (X) muestra la longitud de onda (nm). En este caso se utilizó una irradiación constate del blanco sólido (silicio) durante 264 s con una potencia media de 0,9 W. La absorbancia mostrada a 400 nm es la característica absorbancia SPR de las nanopartículas de plata. Se observó un aumento en Ia absorbencia SPR cuando se aumentó la concentración de la sal AgNO3 hasta un valor 1,25.10 M sin modificación de la longitud de onda. La curva (o) representa una concentración de sal de 0,25. 10"4 M; la curva (Δ) representa una concentración de sal de 1,25. 10"4 M; Ia curva (T) representa una concentración de sal de 2,25. 10"4 M; la curva (m) representa una concentración de sal de 3,25. 10"4 MFigure 2. Absorbance spectrum of silver nanoparticles prepared at different concentrations of AgNO 3 in water. The ordinate axis (Y) shows the absorbance intensity and the abscissa axis (X) shows the wavelength (nm). In this case a constant irradiation of the solid white (silicon) was used for 264 s with an average power of 0.9 W. The absorbance shown at 400 nm is the characteristic SPR absorbance of the silver nanoparticles. An increase in Ia was observed SPR absorbency when the concentration of the AgNO 3 salt was increased to a value of 1.25.10 M without modification of the wavelength. Curve (o) represents a salt concentration of 0.25. 10 "4 M; the curve (Δ) represents a salt concentration of 1.25. 10 " 4 M; The curve (T) represents a salt concentration of 2.25. 10 "4 M; the curve (m) represents a salt concentration of 3.25. 10 " 4 M
Figura 3. Espectro de absorbancia de las nanopartículas de plata preparadas a diferentes tiempos de irradiación del láser y potencia constante, usando silicio como blanco sólido sumergido en una disolución de 20 mi de AgNO3 (2.25.10"4 M). El eje de ordenadas (Y) muestra la intensidad de absorbancia la cual se mide en unidades arbitrarias, y se define como -log (T/TO), donde T es Ia transmitancia de una muestra de coloide en una cubeta de 1 era2 de sección. EI eje de abscisas (X) muestra la longitud de onda (nm). El incremento del tiempo de irradiación láser (LIT) de 33 s a 264 s resultó en un incremento de la intensidad SPR, manteniéndose prácticamente constante la posición del pico. Un LIT mayor o igual de 528 s supuso una sensible disminución de la intensidad SPR, acompañada con un desplazamiento en el ancho de banda y de la longitud de onda máxima.Figure 3. Absorbance spectrum of silver nanoparticles prepared at different times of laser irradiation and constant power, using silicon as a solid white submerged in a 20 ml solution of AgNO 3 (2.25.10 "4 M). ordinates (Y) shows the absorbance intensity which is measured in arbitrary units, and is defined as -log (T / TO), where T is the transmittance of a colloid sample in a 1-section 2 -section cuvette. abscissa axis (X) shows the wavelength (nm) The increase in laser irradiation time (LIT) from 33 s to 264 s resulted in an increase in SPR intensity, keeping the position of the peak practically constant. or equal to 528 s, it marked a significant decrease in SPR intensity, accompanied by a shift in bandwidth and maximum wavelength.
Figura 4. Espectro de absorbancia de:Figure 4. Absorbance spectrum of:
• nanopartículas de plata (Ag): curva superior (valor de absorbancia SPR a 400 run de 1.2).• Silver nanoparticles (Ag): upper curve (absorbance value SPR at 400 run of 1.2).
• nanopartículas oro (Au): curva inferior (valor de absorbancia SPR a 550 nm de 0.6). • nanopartículas compuestas por la aleación de plata y oro (Ag-Au): curva intermedia (valor de absorbancia SPR a 400 nm de 1).• Gold nanoparticles (Au): lower curve (SPR absorbance value at 550 nm of 0.6). • nanoparticles composed of the silver and gold alloy (Ag-Au): intermediate curve (SPR absorbance value at 400 nm of 1).
Las nanopartículas fueron preparadas por irradiación láser durante 264 s de silicio, utilizado como blanco sólido, sumergido en una disolución acuosa con una concentración 1.25.10"4 M de AgNO3 o HAuCI4 (dependiendo de si la nanopartícula está formada por plata o por oro) o en una disolución acuosa de AgNO3 y HAuCl4 (cuando la nanopartícula esta formada por una aleación de plata-oro). El eje de ordenadas (Y) muestra la intensidad de absorbancia y el eje de abscisas (X) muestra la longitud de onda (nra).The nanoparticles were prepared by laser irradiation for 264 s of silicon, used as solid white, immersed in an aqueous solution with a concentration 1.25.10 "4 M of AgNO 3 or HAuCI 4 (depending on whether the nanoparticle is formed by silver or by gold) or in an aqueous solution of AgNO 3 and HAuCl 4 (when the nanoparticle is formed by a silver-gold alloy). The ordinate axis (Y) shows the absorbance intensity and the abscissa axis (X) shows the wavelength (nra).
Figura 5. Patrones de difracción de rayos X (XRD) de una película recubierta con un depósito de Ag (a) y Au (b) en un sustrato de vidrio. La gráfica insertada muestra el difractograma del material precipitado después de la purificación de los coloides de Ag. El eje de ordenadas (Y) muestra la intensidad de absorbancia y el eje de abscisas (X) la difracción de Bragg a valores 2Θ.Figure 5. X-ray diffraction patterns (XRD) of a film coated with a deposit of Ag (a) and Au (b) on a glass substrate. The inserted graph shows the diffractogram of the precipitated material after purification of the Ag colloids. The ordinate axis (Y) shows the absorbance intensity and the abscissa axis (X) the Bragg diffraction at 2Θ values.
Figura 6. Micrografía electrónica y distribución de tamaños de las nanopartículas de plata producidas por irradiación del silicio, utilizado como blanco sólido, en una disolución de AgNO3 a concentración 1.25.10"4 M. La gráfica insertada muestra en el eje de ordenadas (Y) la intensidad de distribución y en el eje de abscisas (X) el diámetro en nm.Figure 6. Electron micrograph and size distribution of the silver nanoparticles produced by irradiation of the silicon, used as solid white, in a solution of AgNO 3 at concentration 1.25.10 "4 M. The inserted graph shows in the ordinate axis ( Y) the intensity of distribution and on the axis of abscissa (X) the diameter in nm.
Descripción detallada de Ia invenciónDetailed description of the invention
Tal y como se ha comentado anteriormente, el método de la invención está dirigido a la obtención de coloides estables de nanopartículas metálicas inertes, en un único paso, mediante ablación láser de un blanco sólido sumergido en una disolución, dispersión o emulsión que contiene sales metálicas. Además, el tamaño y la forma de las nanopartículas metálicas obtenidas mediante el método de Ia invención pueden ser controlados, Io cual supone uno de los retos más importantes en la preparación de nanopartículas. Por otro lado, el coloide de nanopartículas formado por el método de la invención es un coloide estable (las nanopartículas nos están aglomeradas y por Io tanto mantienen sus propiedades intrínsecas) y su concentración puede ser controlada.As mentioned above, the method of the invention is aimed at obtaining stable colloids of inert metal nanoparticles, in a single step, by laser ablation of a solid target submerged in a solution, dispersion or emulsion containing metal salts. . In addition, the size and shape of the metal nanoparticles obtained by the method of the invention can be controlled, which is one of the most important challenges in the preparation of nanoparticles. On the other hand, the nanoparticle colloid formed by the method of the invention is a stable colloid (the nanoparticles are agglomerated and therefore maintain their intrinsic properties) and their concentration can be controlled.
Además dichas nanopartículas son inertes, debido a que están recubiertas por una capa de óxido que las hace inactivas frente a sustancias orgánicas y material biológico como bacterias o células, y su Resonancia de Plasmón Superficial (SPR) ofrece gran interés industrial ya que implica una gran absorbancia de luz en un rango muy estrecho de longitud de onda (Figura 3). El método de la invención se basa en la ablación láser de un blanco sólido inmerso en un medio líquido que contiene sales metálicas. El láser irradia el blanco sólido en cuya superficie se consigue una elevada temperatura, superior al punto de ebullición del metal utilizado como blanco sólido, útil para que se produzca la evaporación del material del blanco y la reacción química, en la porción del volumen de la disolución más cercana a dicho blanco sólido, de reducción de las sales metálicas contenidas en el medio líquido, dando lugar a centros de nucleación. Las partículas que emanan del blanco sólido y el propio blanco se oxidan, óxido que finalmente recubrirá la nanopartícula confiriéndola carácter inerte.In addition, these nanoparticles are inert, because they are covered by an oxide layer that makes them inactive against organic substances and biological material such as bacteria or cells, and their Surface Plasmon Resonance (SPR) offers great industrial interest since it implies a great light absorbance over a very narrow wavelength range (Figure 3). The method of the invention is based on the laser ablation of a solid target immersed in a liquid medium containing metal salts. The laser radiates the solid target on whose surface a high temperature is achieved, higher than the boiling point of the metal used as a solid white, useful for evaporation of the target material and the chemical reaction, in the volume portion of the closest solution to said solid white, to reduce the metal salts contained in the liquid medium, giving rise to nucleation centers. The particles emanating from the solid white and the white itself oxidize, oxide that will finally coat the nanoparticle giving it an inert character.
EQUIPO DE ABLACIÓN LÁSER NECESARIOLASER ABLATION EQUIPMENT NEEDED
Las longitudes de onda del láser utilizado en el proceso de ablación están comprendidas en el rango 300-1100 nra, aproximadamente, dependiendo de los blancos y metales más adecuados para el proceso de fabricación propuesto. Concretamente, la longitud de onda del láser utilizada en la ablación (355 nm, por ejemplo) debe estar en "consonancia" con el blanco sólido (Figura 1.2) elegido (silicio, por ejemplo) y del metal que compone internamente las nanopartículas (plata, por ejemplo), dada la gran absorción de luz que éstas producen a la longitud de onda que caracteriza su SPR (Figura 3). El láser utilizado en la ablación es pulsado (duración típica de una decena de nanosegundos) que suministre la potencia y longitud de onda adecuada para que la radiación sea absorbida fuertemente por el blanco sólido y conduzca a las temperaturas elevadas deseadas en su superficie. Debe contener, además, un sistema de control de su potencia y frecuencia de trabajo, así como un sistema óptico de focalización y electro-mecánico (Figura 1.4) que permita barrer la superficie deseada del blanco sólido (Figura 1.2).The wavelengths of the laser used in the ablation process are in the range 300-1100 nra, approximately, depending on the targets and metals most suitable for the proposed manufacturing process. Specifically, the wavelength of the laser used in the ablation (355 nm, for example) must be in "consonance" with the solid target (Figure 1.2) chosen (silicon, for example) and the metal that internally composes the nanoparticles (silver , for example), given the great absorption of light that they produce at the wavelength that characterizes their SPR (Figure 3). The laser used in the ablation is pulsed (typical duration of a dozen nanoseconds) that provides adequate power and wavelength so that the radiation is strongly absorbed by the solid white and leads to the desired high temperatures on its surface. It must also contain a system for controlling its power and working frequency, as well as an optical focusing and electro-mechanical system (Figure 1.4) that allows sweeping the desired surface of the solid target (Figure 1.2).
BLANCO SÓLIDOSOLID WHITE
Los blancos sólidos idóneos para el proceso de síntesis de nanopartículas metálicas inertes son aquellos metales o semiconductores que contienen óxidos nativos en su superficie los cuales pueden ser seleccionados del grupo que comprende pero no se limita a: Silicio (Si), Germanio (Ge), Circonio (Zr), Titanio (Ti), Aluminio (Al), Zinc (Zn) o Vanadio (V).The solid targets suitable for the inert metal nanoparticle synthesis process are those metals or semiconductors that contain native oxides on their surface which can be selected from the group comprising but not limited to: Silicon (Si), Germanium (Ge), Zirconium (Zr), Titanium (Ti), Aluminum (Al), Zinc (Zn) or Vanadium (V).
El blanco sólido no tiene por qué ser el mismo que el metal interno de las nanopartículas. La elección del blanco sólido es uno de los puntos importantes del proceso, pues debe poseer alta temperatura de ebullición para que el proceso de ablación pueda dar lugar a temperaturas suficientemente elevadas en su superficie, lo cual permita a su vez la reducción de las sales metálicas disueltas que formarán la parte interna de la nanopartícula. Al unísono, también se produce la oxidación del material evaporado (dando lugar al óxido que formará la parte externa de la nanopartícula).The solid white does not have to be the same as the internal metal of the nanoparticles. The choice of solid white is one of the important points of the process, as it must have a high boiling temperature so that the ablation process can lead to sufficiently high temperatures on its surface, which in turn allows the reduction of metal salts dissolved that will form the inner part of the nanoparticle. In unison, oxidation of the evaporated material also occurs (resulting in the oxide that will form the outer part of the nanoparticle).
Así, la oxidación de los blancos sólidos es otro de los puntos importantes del proceso porque, a la vez que se forma el metal que constituye la parte interna de la nanopartícula por reducción de las sales metálicas disueltas, las nanopartículas quedan recubiertas por ese mismo óxido.Thus, the oxidation of solid targets is another important point of the process because, at the same time that the metal that forms the internal part of the nanoparticle is formed by reduction of dissolved metal salts, the nanoparticles are covered by that same oxide .
FASE LÍQUIDA CON SALES METÁLICASLIQUID PHASE WITH METAL SALTS
La disolución (Figura 1.3) en la que está inmerso el blanco sólido (Figura 1.2) sobre el que se efectúa la ablación láser (Figura 1.1) debe contener la concentración adecuada de las sales metálicas que aportan, por reducción del metal, el material interno de la nanopartícula. Por lo tanto, la elección de la sal metálica está en función del tipo de material interno que se requiera para la nanopartícula. Esta sal puede ser cualquier sal metálica como, por ejemplo, AgNO3, HAuCl4 o mezclas apropiadas de las mismas.The solution (Figure 1.3) in which the solid target is immersed (Figure 1.2) on which the laser ablation is performed (Figure 1.1) must contain the appropriate concentration of the metal salts that provide, by reduction of the metal, the internal material of the nanoparticle. Therefore, the choice of metal salt is a function of the type of internal material required for the nanoparticle. This salt can be any metal salt such as, for example, AgNO 3 , HAuCl 4 or appropriate mixtures thereof.
MECANISMO DE FORMACIÓN DE NANOPARTÍCULASTRAINING MECHANISM OF NANOPARTICLES
EI mecanismo de la formación de las nanopartículas es la reacción química, fuera de equilibrio, que se produce en el medio líquido que contiene el blanco sólido y las sales metálicas. Dicha reacción química consiste en la reducción de las sales metálicas en disolución dando lugar a los metales que forman la parte interna de la nanopartícula. Al unísono, las partículas que emanan del blanco sólido por el proceso de ablación láser se oxidan, así como el propio blanco, y se sitúan en la parte externa de la nanopartícula, recubriendo los metales formados por las reducción de las sales metálicas en disolución, lo cual les confiere el carácter inerte aludido más arriba.The mechanism of nanoparticle formation is the chemical reaction, out of equilibrium, that occurs in the liquid medium that contains the solid white and the metal salts. Said chemical reaction consists in the reduction of the metallic salts in solution giving rise to the metals that form the internal part of the nanoparticle. In unison, the particles emanating from the solid white by the laser ablation process are they oxidize, as well as the target itself, and are located on the outside of the nanoparticle, covering the metals formed by the reduction of the metal salts in solution, which gives them the inert character referred to above.
Así, con el método de la invención se podrían formar varios tipos de nanopartículas inertes en un solo paso, pudiendo controlar el tamaño de las mismas y la concentración del coloide en función del LIT y de la concentración de las sales disueltas.Thus, with the method of the invention several types of inert nanoparticles could be formed in a single step, being able to control their size and the concentration of the colloid as a function of the LIT and the concentration of dissolved salts.
Un primer tipo son las nanopartículas basadas en un metal de interés en aplicaciones de biomedicina/biotecnología, como plata (Ag), oro (Au), níquel (Ni), cobalto (Co) o las nanopartículas cuya parte interna no está formada por un metal en exclusiva sino por aleaciones de los mismos. Además, estás nanopartículas pueden sintetizarse con formas geométricas alargadas (tipo nano-hilo) que dispongan de Resonancias de Plasmón Superficial en el infrarrojo próximo (700-900 nm).A first type are nanoparticles based on a metal of interest in biomedicine / biotechnology applications, such as silver (Ag), gold (Au), nickel (Ni), cobalt (Co) or nanoparticles whose internal part is not formed by a exclusive metal but by alloys thereof. In addition, these nanoparticles can be synthesized with elongated geometric shapes (nano-wire type) that have Superficial Plasma Resonances in the near infrared (700-900 nm).
Se investigó el efecto de la concentración de sales metálicas y el tiempo de irradiación en el SPR. Así, se concluyó que la concentración de los coloides metálicos puede ser controlada mediante el manejo de la concentración de sales metálicas o del LIT. Además, el diámetro de las nanopartículas fue controlado mediante la variación de la concentración de sal empleada. Por otro lado, los patrones XRD indican que las nanopartículas son perfectamente cristalinas y exhiben algunas facetas predominantes, como ñie observado mediante TEM.The effect of the concentration of metal salts and the irradiation time in the SPR were investigated. Thus, it was concluded that the concentration of metal colloids can be controlled by handling the concentration of metal salts or the LIT. In addition, the diameter of the nanoparticles was controlled by varying the salt concentration used. On the other hand, XRD patterns indicate that nanoparticles are perfectly crystalline and exhibit some predominant facets, as observed by TEM.
Por lo tanto un primer aspecto de la presente invención se refiere a un método destinado a la síntesis de coloides estables de nanopartículas metálicas inertes caracterizado por: comprender la ablación láser de un blanco sólido sumergido en un medio líquido de sales metálicas; la síntesis de las nanopartículas se realiza en un único paso; el tamaño y la forma de las nanopartículas obtenidas y la concentración del coloide pueden ser controlados en función del LIT y de la concentración de sales en el medio líquido; se produce un aumento en la intensidad de absorbancia SPR de las nanopartículas en un estrecho rango de longitud de onda cuando se controlan la concentración de las sales disueltas y el LIT. El blanco sólido puede ser cualquier metal o semiconductor que contenga óxidos nativos en su superficie, pudiendo ser seleccionado del grupo comprendido por: Silicio (Si), Germanio (Ge), Circonio (Zr), Titanio (Ti), Aluminio (Al), Zinc (Zn) o Vanadio (V). La sal metálica dispuesta en el medio líquido se selecciona del grupo comprendido por: sal de plata, sal de oro, sal de níquel o sal de cobalto, pudiendo ser AgNO3 o HAuCl4. La concentración de las sales disueltas está entre 0,25.10"4 M y 3,25.10"4 M, preferentemente 1,25. 10"4 M. EI LIT tiene unos valores entre 33s y 528s, preferentemente entre 33s y 264s. El láser aplicado se caracteriza por poseer una longitud de onda entre 300 y 1100 nm, preferentemente 355 nm, por ser pulsado, por disponer de un sistema de control de la potencia y frecuencia de trabajo, y de un sistema óptico de focalización y electro -mecánico que permita barrer la superficie deseada del blanco sólido y presentar una longitud de penetración en el sólido relativamente corta.Therefore, a first aspect of the present invention relates to a method for the synthesis of stable colloids of inert metal nanoparticles characterized by: comprising the laser ablation of a solid target immersed in a liquid medium of metal salts; The synthesis of the nanoparticles is carried out in a single step; the size and shape of the nanoparticles obtained and the concentration of the colloid can be controlled according to the LIT and the concentration of salts in the liquid medium; there is an increase in the intensity of SPR absorbance of the nanoparticles in a narrow wavelength range when the concentration of dissolved salts and the LIT are controlled. The solid white can be any metal or semiconductor that Contains native oxides on its surface, and may be selected from the group comprised of: Silicon (Si), Germanium (Ge), Zirconium (Zr), Titanium (Ti), Aluminum (Al), Zinc (Zn) or Vanadium (V). The metal salt disposed in the liquid medium is selected from the group comprising: silver salt, gold salt, nickel salt or cobalt salt, which may be AgNO 3 or HAuCl 4 . The concentration of dissolved salts is between 0.25.10 " 4M and 3.25.10 " 4M, preferably 1.25. 10 "4 M. The LIT has values between 33s and 528s, preferably between 33s and 264s. The applied laser is characterized by having a wavelength between 300 and 1100 nm, preferably 355 nm, for being pulsed, for having a system of control of the power and frequency of work, and of an optical system of focusing and electro-mechanic that allows to sweep the desired surface of the solid white and present a length of penetration in the solid relatively short.
La presente invención se refiere, en un segundo aspecto, a nanopartículas metálicas inertes caracterizadas porque su tamaño y forma puede ser controlado y por tener la propiedad óptica de poseer una elevada intensidad de absorbancia SPR en un estrecho rango de longitud de onda. Concretamente, las nanopartículas se caracterizan por poseer una intensidad de absorbancia SPR entre 0,4 y 1,2 a una longitud de onda de 400 nm, porque su parte externa esta formada por un óxido de cualquier metal y su parte interna por un metal, o aleaciones de éstos, que puede ser coincidente o no con el primero. El óxido que forma la parte externa de la nanopartícula se selecciona del grupo comprendido por: SiO2, GeO2, ZrO2, TiO2, Al2O3, ZnO2, V2O3. El metal que forma la parte interna de Ia nanopartícula se selecciona del grupo comprendido por: plata (Ag), oro (Au), níquel (Ni) o cobalto (Co) o aleaciones de los mimos.The present invention relates, in a second aspect, to inert metal nanoparticles characterized in that their size and shape can be controlled and by having the optical property of having a high intensity of SPR absorbance in a narrow wavelength range. Specifically, the nanoparticles are characterized by having an SPR absorbance intensity between 0.4 and 1.2 at a wavelength of 400 nm, because their outer part is formed by an oxide of any metal and its inner part by a metal, or alloys of these, which may or may not coincide with the former. The oxide that forms the outer part of the nanoparticle is selected from the group comprising: SiO 2 , GeO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , V 2 O 3 . The metal that forms the internal part of the nanoparticle is selected from the group comprised of: silver (Ag), gold (Au), nickel (Ni) or cobalt (Co) or mime alloys.
A continuación se exponen los ejemplos de realización del método de la invención cuyo objetivo es ilustrar la presente invención sin limitar la misma.The following are examples of the embodiment of the method of the invention, the purpose of which is to illustrate the present invention without limiting it.
Ejemplo 1. Síntesis, en un único paso, de nanopartículas inertes de plata y oro mediante ablación láser de un blanco sólido sumergido en una solución de sales de metales. El láser usado para la ablación es un 3er harmónico (λ= 355 nm) Q-Switch Nd:YAG UV-laser. Se aplicaron pulsos de < 40 ns en un raíio de repetición de 5 KHz. La potencia de densidad por pulso fue aproximadamente 40 Jcm"2. Se utilizó como blanco sólido silicio con una pureza del 99,99 %, el cual se fijó en el fondo de un vaso de cristal que contenía 20 mi de solución acuosa de AgNO3 o HAuCl4. Después de la irradiación del blanco de silicio durante unos minutos, la solución cambió de color gradualmente, indicando la formación de un coloide de nanopartículas metálicas. La formación de nanocristales de plata en una solución acuosa fue investigada en función del cambio de concentración de la sal y del LIT. Los coloides resultantes fueron examinados mediante el microscopio electrónico (TEM), en un modelo a 100 kv JEOL 1200 EX, y difracción de rayos X (XRD), llevada a cabo con un SEIFERT XR3003 TT. El espectro de absorbancia de los coloides fue medido con un espectrofotómetro UV- visible SHIMAZU_2501; estos coloides fueron previamente purificados mediante centrifugación durante 20 minutos a 4000 rpm. Los coloides precipitados y purificados fueron analizados por XRD.Example 1. Synthesis, in a single step, of inert nanoparticles of silver and gold by laser ablation of a solid target immersed in a solution of metal salts. The laser used for ablation is 3 rd harmonic (λ = 355 nm) Q-Switch Nd: YAG laser UV-. Pulses of <40 ns were applied in a 5 KHz repeat line. The pulse density power was approximately 40 Jcm "2. Silicon solid white with a purity of 99.99% was used, which was set at the bottom of a glass vessel containing 20 ml of aqueous AgNO 3 solution or HAuCl 4. After irradiation of the silicon white for a few minutes, the solution gradually changed color, indicating the formation of a colloid of metal nanoparticles. The formation of silver nanocrystals in an aqueous solution was investigated based on the change of salt and LIT concentration. The resulting colloids were examined by electron microscopy (TEM), in a 100 kv JEOL 1200 EX model, and X-ray diffraction (XRD), carried out with a SEIFERT XR3003 TT. Absorbance spectrum of the colloids was measured with a UV-visible spectrophotometer SHIMAZU_2501; these colloids were previously purified by centrifugation for 20 minutes at 4000 rpm. Two and purified were analyzed by XRD.
Se observó el espectro de absorbancia de las nanopartículas de plata preparadas a diferentes concentraciones de AgNO3 en agua (Fig.2). En este caso se utilizó una irradiación constate del blanco sólido (silicio) durante 264 s con una potencia media de 0,9 W. La absorbancia mostrada a 400 nm es la característica absorbancia SPR de las nanopartículas de plata. Se observó un aumento en la absorbancia SPR cuando se aumentó ¡a concentración de Ia sal AgNO3 por encima del valor 1,25.10"4 M sin modificación de la longitud de onda.The absorbance spectrum of silver nanoparticles prepared at different concentrations of AgNO 3 in water was observed (Fig. 2). In this case a constant irradiation of the solid white (silicon) was used for 264 s with an average power of 0.9 W. The absorbance shown at 400 nm is the characteristic SPR absorbance of the silver nanoparticles. An increase in SPR absorbance was observed when the AgNO 3 salt concentration was increased above the 1.25.10 "4 M value without modification of the wavelength.
El LIT es otro parámetro que tuvo un importante efecto en la formación de nanopartículas de plata. El incremento del LIT de 33 s a 264 s resultó en un incremento de la intensidad SPR, manteniéndose prácticamente constante la posición del pico, tal y como se muestra en la figura 3. Un LIT mayor o igual de 528 s supuso una sensible disminución de Ia intensidad SPR, acompañada con un desplazamiento en el ancho de banda y de la longitud de onda máxima. Esta reducción de la intensidad puede ser explicada por el incremento en la concentración de grandes nanopartículas de silicio formadas en disolución durante el proceso de ablación, resultando en la co-precipitación de dichas nanopartículas y las nanopartículas de plata debido a la atracción electroestática entre ellas. De hecho, la importancia de estas grandes partículas de silicio en la disolución se dedujo de la gran claridad de las muestras obtenidas utilizando un LIT largo, el cual además llevó al aumento de la absorción observado a larga longitud de onda (>600 nm; Figura 3).The LIT is another parameter that had an important effect on the formation of silver nanoparticles. The increase in the LIT from 33 s to 264 s resulted in an increase in the SPR intensity, the position of the peak being practically constant, as shown in Figure 3. A LIT greater than or equal to 528 s meant a significant decrease in Ia SPR intensity, accompanied by a shift in bandwidth and maximum wavelength. This reduction in intensity can be explained by the increase in the concentration of large silicon nanoparticles. formed in solution during the ablation process, resulting in the co-precipitation of said nanoparticles and silver nanoparticles due to the electrostatic attraction between them. In fact, the importance of these large silicon particles in the solution was deduced from the great clarity of the samples obtained using a long LIT, which also led to increased absorption observed at long wavelength (> 600 nm; Figure 3).
Por lo tanto, Ia presente invención ofrece la posibilidad de producir nanopartículas de plata con elevada eficiencia cuando se manejan y comparan los valores de SPR máximos con la concentración de sales en disolución y el LIT. Las altas temperaturas alcanzadas en el área de irradiación en la superficie del blanco sólido pudo ser el origen de esta situación. Las elevadas temperaturas alcanzadas (mayores del punto de ebullición del blanco) además indujeron la reducción de Ag+ a Ag en solución, y Ia consiguiente formación de nanopartículas de plata, junto con la ablación del blanco de silicio. Debido a las características del silicio, las nanopartículas de silicio serán inmediatamente oxidadas. Así, las nanopartículas de plata (Ag) y SiO2 fueron producidas durante el proceso de ablación consiguiendo una gran estabilidad de los coloides de plata.Therefore, the present invention offers the possibility of producing silver nanoparticles with high efficiency when handling the maximum SPR values with the concentration of salts in solution and the LIT. The high temperatures reached in the area of irradiation on the surface of the solid white could be the origin of this situation. The high temperatures reached (higher than the boiling point of the target) also induced the reduction of Ag + to Ag in solution, and the consequent formation of silver nanoparticles, together with the ablation of the silicon white. Due to the characteristics of silicon, silicon nanoparticles will be immediately oxidized. Thus, the silver nanoparticles (Ag) and SiO 2 were produced during the ablation process, achieving great stability of the silver colloids.
Con el objetivo de probar la eficacia de esta técnica para llevar a cabo la síntesis de otros materiales se cambió la fuente de sal metálica AgNO3 por otra. Por lo tanto, nanopartículas de oro (Au) fueron también sintetizadas a partir de una solución de HAuCl4 en agua, bajo las mismas condiciones experimentales que las anteriormente explicadas para el caso de las nanopartículas de plata. La figura 4 compara el espectro ultravioleta visible obtenido para los dos coloides sintetizados. La máxima longitud de onda de SPR correspondiente a nanopartículas de Au está localizada a 537 nanómetros.In order to test the effectiveness of this technique to carry out the synthesis of other materials, the AgNO 3 metal salt source was changed to another. Therefore, gold nanoparticles (Au) were also synthesized from a solution of HAuCl 4 in water, under the same experimental conditions as those previously explained for the case of silver nanoparticles. Figure 4 compares the visible ultraviolet spectrum obtained for the two synthesized colloids. The maximum SPR wavelength corresponding to Au nanoparticles is located at 537 nanometers.
Ejemplo 2. Síntesis, en un único paso, de nanopartículas inertes cuya parte interna está formada por una aleación de metales mediante ablación láser de un blanco sólido sumergido en una solución de sales de metales.Example 2. Synthesis, in a single step, of inert nanoparticles whose internal part is formed by a metal alloy by laser ablation of a solid target immersed in a solution of metal salts.
Mediante el método de la invención, además fueron obtenidas nanopartículas cuya parte interna no estaba formada exclusivamente por un metal sino por aleaciones de éstos. Así, utilizando el método de la invención, se sintetizaron nanopartículas cuya parte interna estaba formada por la aleación Ag-Au. Estas nanopartículas , cuya parte interna está formada por una aleación de metales, se consiguieron siguiendo la metodología explicada en el ejemplo 1 pero, en este caso, el medio líquido en el que se encuentra sumergido el blanco sólido no comprendía exclusivamente una única sal metálica sino que comprendía al menos dos. Así, se dispuso en el medio líquido una cantidad adecuada de las sales AgNO3 y HAuCl4 con una relación molar 90/10 las cuales, según lo explicado anteriormente, se redujeron dando lugar a la aleación de metales Ag-Au, que formó la parte interna de las nanopartículas. La relación molar de las sales que se dispusieron en el medio líquido, y que se redujeron dando lugar a los metales que formaron la parte interna de la nanopartícula, influyó directamente en la proporción de dichos metales en el interior de Ia nanopartícula. La composición de estas nanopartículas se midió mediante análisis químico con un microscopio electrónico de transmisión, corroborando que la nanopartícula contiene en su interior plata y oro. La curva de absorbancia es intermedia a la de los coloides de plata y oro puros, dominando la SPR de Ia plata (a 400 nm), como se aprecia en la figura 4. By means of the method of the invention, nanoparticles were also obtained whose internal part was not formed exclusively by a metal but by alloys thereof. Thus, using the method of the invention, nanoparticles whose internal part was formed by the Ag-Au alloy were synthesized. These nanoparticles, whose internal part is formed by an alloy of metals, were achieved following the methodology explained in example 1 but, in this case, the liquid medium in which the solid white is submerged did not exclusively comprise a single metal salt but I understood at least two. Thus, an adequate amount of the AgNO 3 and HAuCl 4 salts with a 90/10 molar ratio were disposed in the liquid medium which, as explained above, were reduced resulting in the Ag-Au metal alloy, which formed the internal part of the nanoparticles. The molar ratio of the salts that were arranged in the liquid medium, and that were reduced giving rise to the metals that formed the internal part of the nanoparticle, directly influenced the proportion of said metals within the nanoparticle. The composition of these nanoparticles was measured by chemical analysis with a transmission electron microscope, confirming that the nanoparticle contains silver and gold inside. The absorbance curve is intermediate to that of pure silver and gold colloids, dominating the SPR of the silver (at 400 nm), as shown in Figure 4.
REFERENCIASREFERENCES
I . D. M.-K. Lam, B. W. Rossiter, Sci. Am. 265, 80 (1991). 2. L. N. Lewis, Chem. Rev. 93 2693 (1993).I. D. M.-K. Lam, B. W. Rossiter, Sci. Am. 265, 80 (1991). 2. L. N. Lewis, Chem. Rev. 93 2693 (1993).
3. S. R. Nicewarner-Peña et al., Science 294, 137 (2001).3. S. R. Nicewarner-Peña et al., Science 294, 137 (2001).
4. C. B. Murray, S. Sun, H. Doyle, T. Betley, Mater. Res.Soc. BuIl. 26, 985 (2001).4. C. B. Murray, S. Sun, H. Doyle, T. Betley, Mater. Res.Soc. Buil 26, 985 (2001).
5. E. Cubukcu, E. A. Kort, K. B. Crozier and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006). 6. Pastoriza-Santos, Luis M. Liz-Marzán Nano lett. 2, 903 (2002).5. E. Cubukcu, E. A. Kort, K. B. Crozier and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006). 6. Pastoriza-Santos, Luis M. Liz-Marzán Nano lett. 2, 903 (2002).
7. Y. Sun, B. Gates, B. Mayers, Younan Xia Nano Lett. 2, 165 (2002).7. Y. Sun, B. Gates, B. Mayers, Younan Xia Nano Lett. 2, 165 (2002).
8. Y-Y. Yu, S-S. Chang, C-L. Lee, C-R. Chris Wang, J. Phys. Chem. B 101, 6661 (1997).8. Y-Y. Yu, S-S. Chang, C-L. Lee, C-R. Chris Wang, J. Phys. Chem. B 101, 6661 (1997).
9. 1.0. Sosa, C. Noguez and R. G. Barrera, J. Phys. Chem. B 107, 6269 (2003). 10. H-H. Wang, C-Y. Liu, S-B. Wu, N-W. Liu, C-Y Peng, T-H. Chan, C-F. Hsu; J-9. 1.0. Sosa, C. Noguez and RG Barrera, J. Phys. Chem. B 107, 6269 (2003). 10. HH. Wang, CY. Liu, SB. Wu, NW Liu, CY Peng, TH. Chan, CF. Hsu ; J-
K. Wang, Y-L Wang. Adv. Mater. 18, 491. (2006),K. Wang, Y-L Wang. Adv. Mater. 18, 491. (2006),
I I. M.A. El-Sayed, Acc. Chem. Res. 34, 257 (2001). I I. M.A. El-Sayed, Acc. Chem. Res. 34, 257 (2001).

Claims

REIVINDICACIONES
L Método de obtención de coloides estables de nanopartículas metálicas inertes caracterizado porque comprende la ablación láser de un blanco sólido sumergido en un medio líquido de sales metálicas, en un único paso, provocando a partir del blanco sólido la formación del óxido que se sitúa en la parte externa de las nanopartículas y a partir de la reducción de las sales metálicas la formación del metal, o aleaciones de éstos, que se sitúan en la parte interna de la nanopartícula.L Method of obtaining stable colloids of inert metal nanoparticles characterized in that it comprises the laser ablation of a solid target immersed in a liquid medium of metal salts, in a single step, causing the formation of the oxide located in the solid target from the solid target external part of the nanoparticles and from the reduction of the metal salts the formation of the metal, or alloys of these, which are located in the internal part of the nanoparticle.
2. Método, según la reivindicación 1, caracterizado porque el tamaño y la morfología de las nanopartículas obtenidas pueden ser controlados en función del tiempo de irradiación del láser (LIT), que preferentemente tiene unos valores entre 33 s y 528 s, y de la concentración de las sales disueltas en el medio líquido, que está preferentemente entre 0,25.10"4 M y 3,25.10'4 M.2. Method according to claim 1, characterized in that the size and morphology of the nanoparticles obtained can be controlled as a function of the laser irradiation time (LIT), which preferably has values between 33 s and 528 s, and the concentration of the salts dissolved in the liquid medium, which is preferably between 0.25.10 "4 M and 3.25.10 '4 M.
3. Método según la reivindicación 2, donde la concentración de las sales disueltas en el medio líquido es de 1,25. 10"4 M.3. Method according to claim 2, wherein the concentration of dissolved salts in the liquid medium is 1.25. 10 "4 M.
4. Método, según la reivindicación 2, caracterizado porque el LIT tiene un valor de 264 s, para Ia frecuencia de repetición (5 kHz) y potencia del láser (0,9 W) utilizadas.4. Method according to claim 2, characterized in that the LIT has a value of 264 s, for the repetition frequency (5 kHz) and laser power (0.9 W) used.
5. Método, según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el blanco sólido puede ser cualquier metal o semiconductor que contenga óxidos nativos en su superficie.5. Method according to any one of claims 1 to 4, characterized in that the solid target can be any metal or semiconductor containing native oxides on its surface.
6. Método, según cualquiera de las reivindicaciones 1 a 5, caracterizado porque el metal o semiconductor del óxido del blanco sólido se seleccionada del grupo comprendido por: Silicio (Si), Germanio (Ge), Circonio (Zr), Titanio (Ti), Aluminio (Al), Zinc (Zn) o Vanadio (V). Method according to any one of claims 1 to 5, characterized in that the metal or semiconductor of the solid white oxide is selected from the group consisting of: Silicon (Si), Germanium (Ge), Zirconium (Zr), Titanium (Ti) , Aluminum (Al), Zinc (Zn) or Vanadium (V).
7. Método, según cualquiera de las reivindicaciones anteriores, caracterizado porque la sal metálica dispuesta en el medio líquido se selecciona del grupo comprendido por: sal de plata, sal de oro, sal de níquel, sal de cobalto, mezclas de dichas sales, o sales de aleaciones de dichos metales.Method according to any of the preceding claims, characterized in that the metal salt disposed in the liquid medium is selected from the group consisting of: silver salt, gold salt, nickel salt, cobalt salt, mixtures of said salts, or Alloy salts of said metals.
8. Método, según cualquiera de las reivindicaciones anteriores, caracterizado porque Ia sal metálica dispuesta en el medio líquido es AgNO3 y/o HAuCl4.8. Method according to any of the preceding claims, characterized in that the metal salt disposed in the liquid medium is AgNO 3 and / or HAuCl 4 .
9. Método, según cualquiera de las reivindicaciones anteriores, caracterizado porque el láser aplicado posee una longitud de onda entre 300 y 1100 nm, preferentemente 355 nm.Method according to any of the preceding claims, characterized in that the applied laser has a wavelength between 300 and 1100 nm, preferably 355 nm.
10. Método, según cualquiera de las reivindicaciones anteriores, caracterizado Porclue el láser es pulsado, posee un sistema de control de la potencia y frecuencia de trabajo, y un sistema óptico de focalización y electro-mecánico que permite barrer la superficie deseada del blanco sólido.10. Method according to any of the preceding claims, characterized P orc l ue e l laser is pulsed, having a control system power and frequency, and an optical focusing system and electro-mechanical allowing sweeping the surface desired solid white.
1 1. Nanopartícula metálica inerte de tamaño y morfología controlados, con una elevada intensidad de absorbancia SPR en un estrecho rango de longitud de onda, caracterizada porque su parte externa está formada por un óxido de cualquier metal o semiconductor y su parte interna por un metal, o aleaciones de éstos, que puede ser coincidente o no con el metal del óxido presente en la parte externa.1 1. Inert metal nanoparticle of controlled size and morphology, with a high intensity of SPR absorbance in a narrow wavelength range, characterized in that its outer part is formed by an oxide of any metal or semiconductor and its inner part by a metal , or alloys thereof, which may or may not match the metal of the oxide present on the outside.
12. Nanopartícula, según la reivindicación 11, caracterizada por tener una intensidad de absorbancia SPR entre 0,4 y 1 ,2 a una longitud de onda de 400 nm.12. Nanoparticle according to claim 11, characterized in that it has an SPR absorbance intensity between 0.4 and 1.2 at a wavelength of 400 nm.
13. Nanopartícula, según cualquiera de las reivindicaciones 11 ó 12, caracterizada porque el óxido que forma su parte externa se selecciona del grupo comprendido por: SiO2, GeO2, ZrO2, TiO2, Al2O3, ZnO2, V2O3. 13. Nanoparticle according to any of claims 11 or 12, characterized in that the oxide that forms its outer part is selected from the group comprising: SiO 2 , GeO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , V 2 or 3 .
14. Nanopartícula, según cualquiera de las reivindicaciones 11 a 13, caracterizada porque el metal que forma su parte interna se selecciona del grupo comprendido por: plata (Ag), oro (Au), níquel (Ni) o cobalto (Co) o aleaciones de los mismos.14. Nanoparticle according to any of claims 11 to 13, characterized in that the metal that forms its internal part is selected from the group comprised of: silver (Ag), gold (Au), nickel (Ni) or cobalt (Co) or alloys thereof.
15. Nanopartícula, según cualquiera de las reivindicaciones 1 1 a 14, caracterizada porque su parte interna está formada por una aleación de metales plata-oro. 15. Nanoparticle according to any one of claims 1 to 14, characterized in that its internal part is formed by an alloy of silver-gold metals.
PCT/ES2008/070156 2007-08-28 2008-08-06 Method for the synthesis of inert metal nanoparticles WO2009030799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200702415A ES2292375B1 (en) 2007-08-28 2007-08-28 METHOD INTENDED FOR THE SYNTHESIS OF INERT METAL NANOPARTICLES.
ESP200702415 2007-08-28

Publications (1)

Publication Number Publication Date
WO2009030799A1 true WO2009030799A1 (en) 2009-03-12

Family

ID=39081665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070156 WO2009030799A1 (en) 2007-08-28 2008-08-06 Method for the synthesis of inert metal nanoparticles

Country Status (2)

Country Link
ES (1) ES2292375B1 (en)
WO (1) WO2009030799A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209649A (en) * 2013-05-31 2014-12-17 中自高科(苏州)光电有限公司 Efficient and selective laser resonance absorption machining method on basis of doping
CN106077674A (en) * 2016-06-16 2016-11-09 中国科学院合肥物质科学研究院 A kind of silver nano-grain colloid solution with efficient sterilizing performance
CN113245711A (en) * 2021-06-23 2021-08-13 宁波齐云新材料技术有限公司 Laser nano material processing method and processing system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2341083B1 (en) * 2008-12-11 2011-03-10 Universitat De Valencia USE AND NANOPARTICLES AS CYTOTOXIC AGENTS.
CN101774023B (en) * 2010-02-26 2011-07-27 中山大学 Preparation method of monodispersed-precious metal nanoparticles in liquid phase by using pulse laser ablation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078641A1 (en) * 2003-03-08 2004-09-16 Mijitech Co. Ltd. Metal nano-particles coated with silicon oxide and manufacturing method thereof
WO2006137851A2 (en) * 2004-09-16 2006-12-28 Virginia Tech Intellectual Properties, Inc. Preparation of stable high concentration colloidal metal particulate systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078641A1 (en) * 2003-03-08 2004-09-16 Mijitech Co. Ltd. Metal nano-particles coated with silicon oxide and manufacturing method thereof
WO2006137851A2 (en) * 2004-09-16 2006-12-28 Virginia Tech Intellectual Properties, Inc. Preparation of stable high concentration colloidal metal particulate systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N.V TARASENKO ET AL.: "Synthesis of nanosized particles during laser ablation of gold in water", APPLIED SURFACE SCIENCE, vol. 252, no. 13, 30 April 2006 (2006-04-30), pages 4439 - 4444, XP024893281, ISSN: 0169-4332, [retrieved on 20051102] *
T. SASAKI ET AL.: "Preparation of metal oxide- based nanomaterial using nanosecond pulsed laser ablation in liquids", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A: CHEMISTRY, vol. 182, no. 3, 2006, pages 335 - 341, XP028008367, ISSN: 1010-6030, [retrieved on 20060703] *
X.P. ZHU ET AL.: "Underwater laser ablation approach to fabricating monodisperse metallic nanoparticles", CHEMICAL PHYSICS LETTERS, vol. 427, no. 1-3, 2006, pages 127 - 131, XP027877023, ISSN: 0009-2614, [retrieved on 20060607] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209649A (en) * 2013-05-31 2014-12-17 中自高科(苏州)光电有限公司 Efficient and selective laser resonance absorption machining method on basis of doping
CN106077674A (en) * 2016-06-16 2016-11-09 中国科学院合肥物质科学研究院 A kind of silver nano-grain colloid solution with efficient sterilizing performance
CN113245711A (en) * 2021-06-23 2021-08-13 宁波齐云新材料技术有限公司 Laser nano material processing method and processing system
CN113245711B (en) * 2021-06-23 2021-11-02 宁波齐云新材料技术有限公司 Laser nano material processing method and processing system

Also Published As

Publication number Publication date
ES2292375A1 (en) 2008-03-01
ES2292375B1 (en) 2009-09-14

Similar Documents

Publication Publication Date Title
Goncharova et al. Chemical and morphological evolution of copper nanoparticles obtained by pulsed laser ablation in liquid
Kumar et al. Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions
Nath et al. Ligand-stabilized metal nanoparticles in organic solvent
Jiang et al. Au–Ag@ Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment
Zou et al. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au–Cu2–x Se
Li et al. Near-infrared absorption of monodisperse water-soluble PbS colloidal nanocrystal clusters
ES2292375B1 (en) METHOD INTENDED FOR THE SYNTHESIS OF INERT METAL NANOPARTICLES.
Begletsova et al. Chemical synthesis of copper nanoparticles in aqueous solutions in the presence of anionic surfactant sodium dodecyl sulfate
Vivekanandhan et al. Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties
JP4958082B2 (en) Nanoparticles for LPR sensor, method for producing nanoparticle, slurry, paint, coating film, and LPR sensor
Taha et al. Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water
Jiménez et al. A novel method of nanocrystal fabrication based on laser ablation in liquid environment
Gaur et al. Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis (thiourea) cadmium chloride in various solvents
Khademalrasool et al. Investigation of shape effect of silver nanostructures and governing physical mechanisms on photo-activity: Zinc oxide/silver plasmonic photocatalyst
Famili et al. Laser ablation-assisted synthesis of tungsten sub-oxide (W17O47) nanoparticles in water: effect of laser fluence
Pawlik et al. Silver Nanocubes: From Serendipity to Mechanistic Understanding, Rational Synthesis, and Niche Applications
Lv et al. Self-produced bubble-template synthesis of La 2 O 3: Yb/Er@ Au hollow spheres with markedly enhanced luminescence and release properties
Karavanskii et al. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids
Sarycheva et al. Microbead silica decorated with polyhedral silver nanoparticles as a versatile component of sacrificial gel films for SERS applications
WO2018119543A1 (en) Method for producing a cu2o/tio2 nanoparticle catalyst, and cu2o/tio2 nanoparticle catalyst
Yang et al. Self-Assembly of heterogeneous structured rare-earth nanocrystals controlled by selective crystal etching and growth for optical encoding
Naz et al. 2-Aminoethanol-mediated wet chemical synthesis of ZnO nanostructures
Li et al. Gold Nanoarrow-Based Core–Shell and Yolk–Shell Nanoparticles for Surface-Enhanced Raman Scattering
Bao et al. ZnO encapsulants: Design and new view
Tatarchuk et al. Zinc Peroxide Nanoparticles: Micellar Synthesis and Preparation of Films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08805400

Country of ref document: EP

Kind code of ref document: A1