WO2009012718A1 - Émulsifiant composite, émulsion préparée à partir de celui-ci et procédé de préparation de celle-ci - Google Patents

Émulsifiant composite, émulsion préparée à partir de celui-ci et procédé de préparation de celle-ci Download PDF

Info

Publication number
WO2009012718A1
WO2009012718A1 PCT/CN2008/071747 CN2008071747W WO2009012718A1 WO 2009012718 A1 WO2009012718 A1 WO 2009012718A1 CN 2008071747 W CN2008071747 W CN 2008071747W WO 2009012718 A1 WO2009012718 A1 WO 2009012718A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
emulsion
emulsifier
group
particle size
Prior art date
Application number
PCT/CN2008/071747
Other languages
English (en)
French (fr)
Inventor
Yihui Deng
Jing Zhao
Xiaohui Dong
Li Shi
Yi Lu
Dongmin Ni
Hongwei Zhao
Original Assignee
Shenyang Pharmaceutical University
Wenzhou Haijiang Pharmaceutical Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Pharmaceutical University, Wenzhou Haijiang Pharmaceutical Technology Co., Ltd. filed Critical Shenyang Pharmaceutical University
Priority to EP08783740A priority Critical patent/EP2184100A1/en
Priority to JP2010517259A priority patent/JP2010534555A/ja
Priority to US12/670,820 priority patent/US20100189596A1/en
Publication of WO2009012718A1 publication Critical patent/WO2009012718A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/347Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • A61K8/553Phospholipids, e.g. lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/90Block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/21Emulsions characterized by droplet sizes below 1 micron
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/91Injection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/14Derivatives of phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/42Ethers, e.g. polyglycol ethers of alcohols or phenols

Definitions

  • the invention relates to the field of pharmaceutical preparations, and has a method for preparing a composite emulsifier and an emulsion and an emulsion prepared therefrom. Background technique
  • the composition of the emulsion includes "oil phase”, “water phase” and “emulsifier”.
  • oil phase is an unstable system, it is highly susceptible to external influences such as freezing, Shaking and high-temperature sterilization Xie Wei made a change in particle size, even demulsification and oil deposition, resulting in significant changes in product quality, affecting efficacy, causing unexpected adverse reactions, and even scrapping, causing great losses.
  • oil phase in which the emulsion is prepared is a long-chain fatty acid ester such as oil. Long-chain fatty acid esters have the following problems.
  • the stone of soybean oil is long, has a high viscosity, and has a low dissolved amount of a soluble drug. It contains a large amount of unsaturated double bonds, which is easily oxidized, and more severely, cannot withstand freezing and thawing. When autoclaved, it leads to a significant increase in particle size, even with medium chain triglycerides (MCT) or a mixture of long chain triglycerides and MCT.
  • MCT medium chain triglycerides
  • the prescription and process of these emulsions have the following problems: First, the prepared emulsion cannot withstand freezing and thawing; the oleic acid added in the second problem has a certain hemolytic property; and the third is that the average particle size is large, and no sterilization is required. Rotary sterilization increases the complexity of the process and the fourth is a high value of ⁇ , which is not suitable for drugs unstable under high ⁇ value (dipropofol, alprostadil); the five-prepared emulsion needs to be stored at low temperature. . With the development of society, new requirements have been put forward for the relatively old and classic dosage form of emulsion, and it is extremely urgent to solve the above problems.
  • Coenzyme ft It is one of the important members of the coenzyme Q class, which is widely present in the inner membrane of mitochondria and is a coenzyme that plays an important role in human cells. Endogenous coenzyme ft. The total content in the human body is 0. 5-1. 5g, which is higher in the heart, liver and pancreas. The coenzyme required for the synthesis of the body itself is taken up by the rest of the food. Co-enzyme ft synthesized in the body with age. gradually decreases.
  • Coenzyme ft has anti-oxidation, free radical scavenging, stable biofilm action, enhanced immune function, etc.
  • cardiovascular diseases acute and chronic hepatitis and subacute liver necrosis and other diseases such as liver diseases, cancer, central nervous system degeneration disorders.
  • coenzyme ft can also be used.
  • Coenzyme ft was first developed in Japan. And become the largest country in the world. According to statistics, 90% of the products in the world come from Japan. At present, some enterprises in China have gradually mastered advanced technologies such as bio-extraction method, semi-chemical synthesis method and microbial fermentation extraction method, which have guaranteed the domestic raw material demand.
  • Coenzyme The main products currently listed are tablets, capsules, soft capsules, injections, etc., but it is still difficult to meet the needs of disease treatment. Coenzyme. It is a lipophilic substance with very low solubility (almost insoluble in water). Oral tablets, capsules, etc.
  • the coenzyme is ft.
  • Formulated as an emulsion to increase solubility, improve bioavailability and targeting, and reduce toxic side effects.
  • Chinese patent ZL02808179. X discloses microemulsion preconcentrates and microemulsions containing coenzyme Q 10 mainly for oral administration;
  • Chinese patent application CN 200480017624. 9 discloses an increase in coenzyme using essential oils.
  • C 200610046134. 2 discloses a coenzyme ft. Injection emulsion and preparation method thereof.
  • the emulsions were prepared according to the prescriptions of Example 2 and Example 3 of the patent document CN 200610046134. 2, respectively, for 2 hours and 1 hour, that is, drug precipitation.
  • the New Zealand 3 ⁇ 4 ⁇ 4 still does not achieve the IJ effect. Even if an emulsion is prepared according to a conventional method, it cannot be destroyed.
  • the present inventors have prepared a coenzyme ft by a conventional method using a single emulsifier lecithin (concentration 2%) or Solutol HS 15 (concentration 2%) as an emulsifier.
  • the emulsion, the emulsion obtained was tested for heat resistance and freeze-thaw stability. The results are shown in Table 1 below.
  • Table 1 Auxiliary B ft prepared using a single emulsifier. Anti-heat and freeze-thaw stability of emulsion
  • the single 3 ⁇ 4 ⁇ 4 phospholipid or 5 emulsion has good centrifugation stability, and the average particle size and particle size distribution before and after centrifugation are basically unchanged.
  • the emulsion of the shed phospholipid alone has good qualitative properties, but the particle size increases after freezing and thawing. , Separate shed 5 emulsion, resistant to freezing and thawing but not sterilized.
  • the first object of the present invention is to provide a composite emulsifier.
  • a second object of the present invention is to share an emulsion prepared from such a composite emulsifier.
  • a third object of the present invention is to share a method of preparing an emulsion by using such a composite emulsifier. Summary of the invention
  • the composite emulsifier of the present invention comprises two or more selected from the group consisting of phospholipids 10% w/v, PEG emulsifiers ⁇ 30% w/v ; poloxamers ⁇ 10% w /v, based on the amount in the emulsion.
  • the composite emulsifier of the present invention may further comprise a freeze-thaw protection agent in an amount of 50% w/v.
  • the phospholipid used in the complex emulsifier of the present invention may be selected from one or more of egg yolk phospholipids and soybean phospholipids, other natural or semi-synthetic or fully synthetic phospholipids; the poloxamers used may be selected from the group consisting of Poloxamer 188 (Poloxamerl 88) and Pluronic F68; the PEG-based emulsifier used may be selected from the group consisting of polyethylene glycol 660 hydroxy stearate (Solutol, HS 15 ), vitamin E poly ethane One or more of alcohol succinate (TPGS) and DSPE-PEG (including DPPE_PEG, DMPE-PEG), PEG molecular weight is 100 ⁇ 10000 ; the freeze-thaw protection agent used may be selected from alcohols and saccharides
  • One embodiment is a complex emulsifier composed of a phospholipid and a PEG-based emulsifier and a freeze-thaw protectant.
  • the composite emulsion of the present invention contains three or more emulsifiers, one of which is a poloxamer, but no freeze-thaw protection agent.
  • the inventors have found that when three or more complex emulsifiers are used and one of them is a poloxamer, whether it is simply medium chain triglyceride (MCT) as the oil phase, or is long Chain triglyceride (LCT) is an oil phase, or MCT and LCT are mixed as an oil phase, or a Chinese oleaginous substance is used as an oil phase, or a wax-soluble compound is dissolved in various oils as an oil phase, without adding anti-resistant
  • MCT medium chain triglyceride
  • LCT long Chain triglyceride
  • a Chinese oleaginous substance is used as an oil phase
  • a wax-soluble compound is dissolved in various oils as an oil phase, without adding anti-resistant
  • the freeze-thaw agent and the prepared emulsion can achieve the purpose of anti-freezing and thawing.
  • One embodiment of the marrow is a composite emulsifier composed of one or both of a phospholipid and a PEG-based emulsifier (including HS 15 , TPGS, DSPE-PEG 2000) and a poloxamer emulsifier.
  • the composite emulsifier does not require a freeze-thaw protection agent, and has a wider application range, and is suitable for different oil phase compositions, including oils containing ⁇ and soluble in such oils.
  • the agent can also be used as a therapeutic oil or as a compound preparation by dissolving a fat-soluble compound in a therapeutic oil.
  • the emulsion prepared by the composite emulsifier of the invention is shared, the emulsion comprising an oil phase, a complex emulsifier and water, wherein the composite emulsifier comprises two selected from the group consisting of Species or more: phospholipid 10% w/v, PEG emulsifier 30% w/ v; poloxamer 10% w/v, based on the content in the emulsion.
  • the oil phase in the emulsion of the present invention comprises ⁇ oily substance, and a therapeutically active oleaginous substance and/or a fat-soluble or drug dissolved or dispersed in the leg C 6 ⁇ L ⁇ 20%w/w, in the emulsion, the ratio of the drug to the oil substance is 1: 0 ⁇ 1: 10000w / w, the amount of the C 6 ⁇ ( ⁇ oil-based substance is 0. l ⁇ 20% w / v, in the emulsion Content meter.
  • the above oily substance may be selected from the structurally modified and hydrolyzed coconut oil, the touch oil, the soybean oil, the safflower oil, the triglyceride, the glyceryl caprylate, the ethyl oleate, the linoleic acid glyceride, Ethyl linoleate, oleic acid glyceride, cholesterol oleate/linoleate, coconut oil C8 I C10 monoglyceride or diester, coconut oil C8 I C10 propylene glycol diester, coconut oil C8 I C10 triglyceride One or more of them.
  • the triglyceride in the above oily substance may be medium chain triglyceride (MCT) and/or long chain triglyceride (LCT).
  • MCT medium chain triglyceride
  • LCDT long chain triglyceride
  • MCT medium-chain triglycerides
  • MCT Medium chain triglycerides
  • Leo ⁇ i long chain glycerol Triester
  • a composite emulsifier phospholipids and PEG chain-containing emulsifiers such as HS 15 , TPGS, DSPE-PEG (PEG molecular weight 100 ⁇ 10000
  • the emulsion of the present invention may further comprise one or more pharmaceutical excipients selected from the group consisting of self-emulsifiers, stabilizers, freeze-thaw protection agents, and pH adjusters.
  • the emulsifiable emulsifier in the emulsion of the present invention is selected from one or more of oleic acid, linoleic acid, linoleic acid, stearic acid, docosahexaic acid and cholic acid;
  • the protective agent is selected from the group consisting of one or more alcohols including propylene glycol, glycerin, and polyethylene glycol, and one or more of glucose, mannitol, sucrose, trehalose, alcohol, maltose, and lactose.
  • a saccharide selected from the group consisting of nitrogen, EDTA and its salts, 3 ⁇ 4K sodium sulfite, 3 ⁇ 4 ⁇ sodium bisulfite, pyrosulfonium, vitamin C and its derivatives, dibutylhydroxytoluene, ⁇ - One or more of tocopherol, a-tocopherol acetate and hydroquinone;
  • the opatable isotonicity adjusting agent is one selected from the group consisting of glycerin, 1,2-propanediol, glucose, maltose, mannitol and xylitol Or one or more;
  • the clogging regulator is selected from one or more of the group consisting of hydrochloric acid, sodium hydroxide, acetic acid, sodium acetate, phosphoric acid, phosphorus, citric acid and sodium citrate.
  • the invention provides a method for preparing an emulsion by sharing the above composite emulsifier, comprising the following steps:
  • the first step is to adjust the homogenization pressure to 4000 ⁇ 8000 psi
  • the second step is to adjust the homogenization pressure to 10000 ⁇ 30000 psi to prepare an emulsion.
  • the pH can be adjusted to 3 to 9 before homogenization of the colostrum as needed.
  • the emulsion prepared by the above method is subjected to microfiltration, subpackaged, and sterilized to obtain an emulsion for injection. Sterilization can be performed by moist heat sterilization or filter sterilization or microwave sterilization.
  • the emulsion obtained by the present invention has an average volume particle diameter of less than 150, and more preferably, the emulsion has an average volume particle diameter of less than 100. Such emulsions are convenient for injectable or oral administration.
  • the present invention has the following advantages:
  • the prepared emulsion can resist the damage of heat and freeze-thaw; 2. It is easier to produce an emulsion with an average volume particle size of less than 150 or even less than 100, which is not high in requirements; 3. It can achieve the purpose of filtering and sterilization.
  • the sterile preparation can be obtained without using high temperature; 4.
  • the emulsion is affected by the pH value and other additions in the prescription, and the purpose of preparing the emulsion at a low pH value can be achieved, thereby expanding the application range of the emulsion; Improve the chemical stability of the drug; 6, due to the presence of a composite emulsion layer on the surface, can greatly reduce the stimulation of the drug.
  • Figure 1 is an electrocardiogram of a rat prior to treatment with doxorubicin (ADM) in Example 16 of the present invention.
  • Fig. 2 is an electrocardiogram of a rat treated with ADM in Example 16 of the present invention.
  • Fig. 3 is a diagram showing administration of coenzyme ft to a rat in Example 16 of the present invention. Electrocardiogram after the emulsion. detailed description
  • the coenzyme ft The content was determined by HPLC chromatography using an 18-inch silicon germanium bonded silica gel column with methanol-ethanol (50/50, v/v) as the mobile phase, and the detection wavelength was 275; the particle size of the emulsion was determined by PSS. NIC0MPTM380 is used as an instrument for measuring particle size.
  • Example 1 When 13 ⁇ 4 5 and 5? (soy lecithin) were used as composite emulsifiers, the effect of different proportions of soybean oil/medium chain oil on the particle size of oil before and after freezing and thawing
  • composition of the formulation coenzyme Qio 0. 25g, soybean phospholipid (SPC) 1. 2g, HS 15 0. 9g, injection oil 10g, glycerol 2. 2g, the rest is water for injection, a total of 100mL.
  • the ratio of oil for injection to soybean oil / medium chain oil is 100: 0 ⁇ 0: 100 (w/w) D
  • Step 1 1) In the preparation tank, heat the injection oil, phospholipid, HS 15 to 50 ° C, stir vigorously until dissolved, add the drug, stir to dissolve (add activated carbon if necessary, follow the conventional method, remove heat 2) In the preparation tank, add glycerin to the water for injection, stir at 50 ° C for 5 min, completely dissolve (add activated carbon if necessary, according to the conventional method, remove the pyrogen); 3) Steps 2) The product is added to the product of step 1) under stirring of the cattle, after stirring at 50 ° C
  • Example 2 When TPGS and SPC were used as composite emulsifiers, the effect of different proportions of soybean oil/medium chain oil on the particle size of oil before and after freezing and thawing
  • Prescription composition Coenzyme ft. 0. 25g, phospholipid 1. 2g, TPGS lg, 10g of injectable oil, 2. 2g of glycerin, and the rest are water for injection, 100mL total.
  • the injection oil is soybean oil / medium chain oil ratio of 100: 0 ⁇ 0: 100 (w/w).
  • Preparation 1) In the preparation tank, heat the injection oil, phospholipid, TPGS to 50 ° C, stir vigorously until dissolved, force the drug into the mouth, stir to dissolve it (add activated carbon if necessary, follow the conventional method, except 2) In the preparation tank, add glycerin to the water for injection, stir at 50 ° C for 5 min, completely dissolve (add activated carbon if necessary, according to the conventional method, remove the pyrogen); 3) 2) The product is added to the product under stirring, 1), and the colostrum is obtained after stirring at 50 ° C; 4) the obtained colostrum (liquid) is passed through the itl flow meter, and the first step is to adjust the homogenization pressure to 4000 psi, In two steps, the solution was adjusted to 16,000 psi, and the solution was repeatedly homogenized to obtain an IJ uniform emulsion. Co-enzymes are obtained by membrane, sub-packaging, nitrogen filling, sealing, and sterilization. Injectable emulsion. The results of
  • the ratio of soybean oil to medium chain oil is 100: 0 ⁇ 0: 100 (w/w).
  • the range of freeze-thaw resistance is better than HS 15; 50: 50 ⁇ 0: 100 (w/w)
  • the prepared emulsion freeze-thaw particle size is increased.
  • the ratio of soybean oil to medium chain oil is 0: 100 (w/w)
  • the TPGS in the prescription is changed to 5% or 10% or 15% or 20% or 25% or 30% (w/v)
  • the composition of the shell U emulsion is 51nm, 46, 39, 36nm, 33nm, 18nm, and the percentage of particle size growth after freezing S. is less than 20%, which proves to have good freeze-thaw resistance, and An increase in the amount of TPGS is beneficial to improve the freeze-thaw resistance of the emulsion.
  • the prescription soybean phospholipid is changed to 2% or 5% or 10% (w/v), the other ingredients are unchanged, and the shell 1J emulsion
  • the average particle diameters are 59 nm, 51 nm, and 36 nm, respectively.
  • the percentage increase of particle size after freezing and thawing is less than 20%, which proves that it has good freeze-thaw resistance, and the increase of the amount of soybean phospholipids is beneficial to improve the freeze-thaw resistance of the emulsion.
  • Example 3 Effect of different phospholipids on particle size before and after freezing and thawing of emulsion
  • Prescription composition Coenzyme ft. 0g, EDTA-2Na 0. 05g, the rest is 0g, EDTA-2Na 0. 05g, the remaining part is 0g, EDTA-2Na 0. 05g, the rest of the oil is 1. 2g, HS 15 3. 0g, 10g of oil for injection (soybean oil / medium chain oil, 15/85, w/w) Water for injection, a total of 100mL.
  • Preparation 1) In the preparation tank, heat the injection oil, phospholipid, HS 15 to 50 ° C, stir vigorously until dissolved, add the drug, stir to dissolve (add activated carbon if necessary, follow the conventional method, remove heat 2) In the preparation tank, propylene glycol, EDTA-2Na is added to the water for injection, and stirred at 50 ° C for 5 min to completely dissolve (add activated carbon if necessary, according to conventional methods, except for pyrogens); 3) The product of 2) is added to the product under stirring, 1), and the colostrum is obtained after stirring at 50 ° C; 4) The obtained liquid is passed through a microfluidizer, and the first step is to adjust the homogenization pressure to 5000 psi.
  • the type of phospholipid has little effect on the particle size of the emulsion before and after freezing and thawing.
  • Example 4 Effect of different freeze-thaw protective agents on particle size before and after freezing and thawing of emulsion
  • Prescription composition Coenzyme Qio 1. 0g, soybean phospholipid 1. 2g, HS 15 3. 0g, injection oil 10g oil / medium chain oil, 15/85, w/w), EDTA-2Na 0. 05g, freeze-thaw protection
  • the right amount of the agent, the rest is water for injection, a total of 100mL.
  • Preparation 1) In the preparation tank, the oil for injection, phospholipid, 5 heat to 50 ° C, stir vigorously until dissolved, add the drug, stir to dissolve (add activated carbon if necessary, according to the conventional method, except 2)
  • the freeze-thaw protection agent, EDTA-2Na is added to the water for injection, and stirred at 50 ° C for 5 minutes to completely dissolve (add activated carbon if necessary, according to the conventional method, except 3)
  • the product of 2) is added to the product under stirring, 1), and the colostrum is obtained after stirring at 50 ° C; 4)
  • the resulting colostrum (liquid) was passed through a microfluidizer.
  • the first step was to adjust the homogenization pressure to 5000 psi
  • the second step was adjusted to 14,000 psi, and after repeated homogenization, a uniform emulsion was obtained.
  • freeze-thaw protection agent Add appropriate amount of different kinds of freeze-thaw protection agent to the emulsion, stir to dissolve and mix, and then pass through membrane, sub-package, nitrogen filling, sealing and sterilization to obtain coenzyme ft. Injectable emulsion.
  • the results of the freeze-thaw test are shown in Table 5.
  • the propylene glycol in the alcohol protective agent is the marrow, and the sugars are used in combination with insect maltose, mannitol 6% glucose, 5%, mannitol 6% glucose 3%, mannitol 6%.
  • Maltose 1. 5% in combination, mannitol 2% glucose 4% maltose 8% combined with a particle size growth rate of less than 200%, especially mannitol 2% glucose 4% maltose 8% in combination, the particle size growth rate is less than 50%.
  • Prescription composition Coenzyme ft. 0. lg, soybean phospholipid 0 ⁇ 6g, HS 15 1. 8g, injection oil 5g (soybean oil / medium chain oil, 15/85, w/w), glucose 1. 5g, mannitol 6g, the rest for water for injection , a total of 100mL.
  • the injection oil, phospholipid, HS 15 is heated to 50 ° C, stirred vigorously until dissolved, and the coenzyme is added to the mouth, and stirred to dissolve;
  • glucose and mannitol are added to the water for injection, and stirred at 50 ° C for 5 minutes to completely dissolve;
  • the colostrum (liquid) obtained in the previous step is passed through the microfluidizer.
  • the first step is to adjust the homogenization pressure to 5000 psi
  • the second step is adjusted to 14,000 psi
  • the homogenization is repeated to obtain a uniform emulsion, which is passed through the membrane, dispensed, and charged.
  • Coenzyme was prepared by nitrogen, sealing and sterilization.
  • Injectable emulsion. 5 ⁇ The average particle size of the emulsion after the freeze-thaw after the average particle size of 49. 5 should be. By reducing the oil ratio, a small particle size emulsion can be obtained, and the freeze-thaw resistance is greatly increased. )
  • the HS 15 was replaced by TPGS, and the emulsion was prepared as above.
  • the average particle size was 36, and the average particle size after freezing and thawing was 37.
  • Prescription composition Coenzyme ft. 0. 25g, soybean phospholipid 0. 3g, HS 15 1. 8g, injection oil 5g (soybean oil / medium chain oil, 15/85, w/w), glucose 1. 5g, mannitol 6g, the rest is water for injection , a total of 100mL.
  • Example 5 The operation was the same as in Example 5 except that the temperature in the step (2) was 30 °C.
  • the average particle size of the obtained emulsion is 51.0.
  • the average particle size of the emulsion after freezing and thawing was 53 ⁇ 3 nm.
  • the HS 15 was replaced by TPGS, and the emulsion was prepared as above, and the average particle size was 43.
  • the average particle size after freezing and thawing was 49.
  • Prescription composition Coenzyme Qio 0. 25g, soybean phospholipid 0 ⁇ 3g, HS 15 1. 8g, injectable oil 5g oil / medium chain oil, 15/85, w/w), glycerol 2. 4%, the rest is water for injection , a total of 100mL.
  • Example 5 The procedure was the same as in Example 5 except that glycerin was added to the injection water in the step (2).
  • the average particle size after the freeze-thaw is 62. 8 nm.
  • the HS 15 was replaced by TPGS, and the emulsion was prepared as above, and the average particle size was 38.
  • the average particle size after freezing and thawing was 40.
  • composition of the formula coenzyme Qio 0. 5g, soybean phospholipid 1 ⁇ 2g, HS 15 3. 0g, injection oil 10g (soybean oil / medium chain oil, 15 / 85, w / w), propylene glycol 5. 0g, EDTA-2Na 0. 05g, the rest is water for injection, a total of 100mL.
  • step (2) propylene glycol and EDTA-2Na were injected into the water for injection, and the defending was carried out in the same manner as in Example 5. 5 ⁇ The average particle size of the emulsion is 58. 9nm, the average particle size after freezing and thawing is 61.5.
  • the HS 15 was replaced by TPGS, and the emulsion was prepared as above, and the average particle size was 53.
  • the average particle size after freezing and thawing was 57.
  • composition of the formulation coenzyme Q 10 1. 0g, soybean phospholipid 1 ⁇ 2g, HS 15 3. 0g, injection oil 10g (soybean oil / medium chain oil, 15 / 85, w / w), propylene glycol 5. 0g, EDTA- 2Na 0. 05g, the rest is water for injection, a total of 100mL.
  • the procedure was the same as in Example 5 except that propylene glycol and EDTA-2Na were added to the injection water in the step (2). 2 ⁇
  • the average particle size of the emulsion is 66. 9nm, the average particle size after freezing and thawing is 64. 2 should.
  • the HS 15 was replaced by TPGS, and the emulsion was prepared as above.
  • the average particle size was 72, and the average particle size after freezing and thawing was 76.
  • Prescription composition Coenzyme ft. 0g ⁇ 1. 0g, lecithin 1. 0g, HS 15 2. 0g, poloxamer 188 1 ⁇ 0g, oil for injection 10g (soybean oil / medium chain oil, 15 / 85, w / w), propylene glycol 5. 0g EDTA-2Na 0. 05g, the rest is water for injection, a total of 100mL.
  • the obtained liquid is passed through the microfluidizer.
  • the first step is to adjust the homogenization pressure to 5000 psi, and the second step is adjusted to 14,000 psi.
  • the coenzyme ft is obtained.
  • injectable emulsion 5 ⁇
  • the average particle size of the emulsion was 66.2.
  • the average particle size of the emulsion after the freeze-thaw is 63. 3 should.
  • the oil for injection in the prescription was changed to 15 g. Others, the average particle size of the obtained emulsion was 68, and the average particle size after freezing and thawing was 71. The oil for injection in the prescription was changed to 20 g. Others, the average particle size of the obtained emulsion was 73, and the average particle size after freezing and thawing was 78.
  • the homogenization pressure was adjusted to 1000 psi, and the formulation and other operations were the same as in Example 10 to obtain a uniform emulsion.
  • the test should have an average particle size of 91.6.
  • the average particle size of the emulsion after the freeze-thaw is 93.9.
  • the composition of the formulation and other operations are the same as in the example 11.
  • the average emulsion particle size is 128. 2 should be, the average particle size after freezing and thawing is 132. 9 should.
  • the coenzyme ft is prepared by a relatively reasonable formulation process, using a composite emulsifier composed of two emulsifiers and a composite emulsifier of emulsifier ⁇ .
  • the emulsion has good freeze-thaw stability.
  • the diluent for clinical use of the emulsion for intravenous injection is mainly a raw SitoK and a 5% dextrose injection.
  • the co-enzyme ft is examined by taking the two as objects. Physical stability after dilution of the emulsion.
  • Example 10 coenzyme was precisely weighed. 2 parts of each emulsion 2 mL, placed in a 10 mL volumetric flask, separately added to the physiological ifoK and 5% glucose injection to the scale, mixed, transferred to a test tube with a stopper; then accurately measure 2 enzymes ft . Each emulsion was 1 nL and placed in a 10 mL volumetric flask. The other operations were the same as before. Four sample legs were sampled at 0, 2, 4, 6, 8, 10 and 12 hr in a constant temperature water bath at 30 °C. The particle size was measured for the distribution of t3 ⁇ 4, and the particle size change during the ifi period after the sample was mixed with the diluent was determined. The results are shown in Table 7.
  • coenzyme ft The photolysis has a concentration, and as the initial concentration increases, the photolysis rate decreases. Will be a coenzyme. After the preparation of the emulsion, the light stability of the drug is greatly improved as the concentration is increased as compared with the solution. The result is not seen, so the coenzyme in the emulsion. Concentration g lmg/mL.
  • Example 16 Coenzyme ft. Protective effect of emulsion on adriamycin-assisted cardiotoxicity
  • Coenzyme ft Cardiotoxicity of doxorubicin (ADM) can be reduced.
  • ADM doxorubicin
  • a model of myocardial injury induced by doxorubicin was established and coenzyme ft was examined.
  • the content of MDA in the myocardial tissue of rats was significantly higher than that of the control group after intraperitoneal injection of doxorubicin (P ⁇ 0.05), and the content of SOD was lower than that of the control ship (P ⁇ 0.05).
  • the tail vein was injected with coenzyme ft of different ffi. After the emulsion, the content of the ship in the myocardial tissue of the rats was slightly higher than that of the control group, but all of them were 3 ⁇ 4.
  • Coenzyme ft The emulsion can effectively reduce the cardiotoxicity of doxorubicin and protect the SOD activity of rats with cardiac damage, thereby increasing the function of the endogenous active oxygen free radical scavenging system and reducing the production of MDA.
  • the results of myocardial tissue section showed that the heart tissue of the control group without ADM treatment was unchanged, and the myocardial injury of the ADM group was severe, which showed focal necrosis of the endocardial side myocardial cells, the disappearance of the horizontal stripes, the disappearance of the nucleus, and the ventricle.
  • the myocardial fibers were arranged disorderly, with large lesions of necrosis and coenzyme ft injected into the tail vein. Nanoemulsions can alleviate ADM-induced heart damage.
  • mice taken for 12 hours were randomly divided into four groups, and coenzyme was injected into the tail vein respectively.
  • Nanoemulsion, 3 mice per group at each time point, the dose was 4. 0 mg ⁇ kg - 10 min, 30 min, 1 h, 2 h, 6 h, 12 h at different time points after administration
  • the blood was collected from the heparin anticoagulant tube, the plasma was separated by centrifugation, and the heart, liver, and brain were taken out, washed with ice physiological itoK, dried with filter paper, and stored frozen at -20 °C.
  • High performance liquid chromatography (Dalian Elite); W2000 II ultraviolet variable wavelength detector (Dalian Elite); HW2000 chromatographic data processing workstation (Dalian Elite).
  • Example 18 Three Composite Emulsifiers ⁇ Preparation of emulsions was applied.
  • the guarantin (commercially available cucurbitacin raw material, the content in the emulsion is 0.1 mg/ml based on the total cucurbitin), and the oil phase is 10 MCT (w/v) 0 Preparation Process Reference Example 10.
  • the comparison results with the two emulsifier composite sheds are shown in Table 16.
  • the measured particle sizes are Gaussian volume diameters.
  • Vitamin E is an antioxidant in the prescription composition.
  • the cucurbitacin in the emulsion prepared by VE Beibei is unstable.
  • the particle size of the emulsion before and after sterilization is reduced by 6%.
  • the particle size before and after sterilization is unchanged after adding VE. 2.
  • the TPGS in Prescription 6 was removed, and the emulsion of Bellows could not antagonize the freeze-thaw test.
  • the TPGS in the prescription 6 is replaced by the DSPE- PEG2000, the other is unchanged, and the particle size before and after the sterilization is 55.3 and 60. 6 should be, the particle size after the freeze-thaw test is 62. 3, indicating DSPE - PEG2000 Good freezing and thawing effect.
  • the concentration of the oil phase was preferably less than or equal to 20%.
  • Example 18 The cucurbitacin in Example 18 was replaced with cucurbitacin ⁇ (or dihydrocucurbitin ⁇ , isoliquirin 8 , cucurbitacin D, cucurbitacin E, cucurbitacin I, cucurbitacin Q) (HPLC area normalized purity is greater than 90%), the other unchanged, the test showed the same results, no significant changes.
  • the emulsion prepared by using the compound emulsifier with HS 15 dosage of 0 and SPC and F68 of 1% can not withstand the freeze-thaw damage test; if SPC is removed, it is only composed of HS ⁇ P F68 or TPGS and F68.
  • the emulsion is also less tolerant to heat and freeze-thaw.
  • Example 21 The coenzyme ft in Example 21 was used. Replace with vitamin Id, concentration 1% (formulation concentration 10mg/ml), other unchanged, the obtained emulsion particle size less than 100 should be able to withstand heat and freeze-thaw damage.
  • the vitamin in Example 23 was changed to 0.1% (formulation concentration: lmg/ml), 0.5% (formulation concentration: 5 mg/ml), and SPC was changed to EPC, and the results were the same.
  • the oil phase was 10% of a composite oil (LCT/MCT, 15/85, the oil phase of Example 9) to prepare the bispropofol of the present invention ( The concentration of 1% emulsion was 76 barrels and 68 vessels.
  • a propofol emulsion was prepared according to the prescription of a commercially available product (bis propofol 1%, LCT1%, SPC 1. 2%, glycerol 2 ⁇ 2%), and the obtained emulsion had a particle size of 187.
  • the preparations were placed at 40 ° C for 10 days, respectively.
  • the formulation of the formulation of the present invention was still milky white, and the emulsions prepared according to the commercial prescription and the commercially available products all turned pale yellow; the freeze-thaw damage test results showed that the city The bis-propiophene emulsion (AstraZeneca) can not antagonize the freeze-thaw damage, but the appearance and particle size of the emulsion of the invention are not changed after freeze-thaw, indicating that the stability of the preparation of the invention is far superior to the commercially available product. .
  • the oil phase was 10% Brucea javanica oil
  • the Brucea javanica oil emulsion of the present invention was prepared to have a particle size of 81 nm and 73, respectively.
  • a commercially available Brucea javanica oil emulsion (Shenyang Pharmaceutical Pharmaceutical Co., Ltd.) was measured, and the particle size was 266 nm.
  • the ⁇ 3 ⁇ 4H preparations were subjected to a freeze-thaw failure test, and as a result, the emulsions of the present invention had a particle size of 83 and 71, respectively, and the commercially available Brucea oil emulsion was not detected, and the system was severely damaged. It is indicated that the preparation of the invention is far superior to the commercially available product.
  • the oil phase was 10% of a composite oil (LCT/MCT, 15/85, the oil phase of Example 9) to prepare the forefront of the present invention (prostate) Emulsion E1) emulsion, filter sterilization, its particle size is 66 should be 62 and should be.
  • the particle size of the commercially available forefront 3 ⁇ 4 er emulsion (trade name: Kai Shi, Beijing Tide) was about 233 dishes.
  • Wufu Xinnao Kang Soft Capsule is made by Shenwei Pharmaceutical ⁇ ⁇ , used name: Wufu Xinnao Qing, or Xinnao Qing / Xinnao Kang, the main ingredients are: refined safflower oil, vitamin B6, vitamin E, borneol and so on.
  • the Wufu Xinnao Kang emulsion containing 10%, 5% or 1% of refined safflower oil was prepared, and the particle size was about 91 nm, 73 nm or 56 should be. Freeze-thaw failure test of the above 3 ⁇ 4H preparations, knot There was no significant change in the particle size of Wufuxinxinkang emulsion.
  • the oil phase of 10% composite oil (LCT/MCT, 15/85, w/w), and the concentration of butylphthalide to be 1%
  • preparing the butylbenzene of the present invention A bismuth emulsion having a particle size of about 70 dishes.
  • the particle size of the emulsion after freezing and thawing was 73, and there was no significant change.
  • Lamxiang recorded is a combination of ⁇ -, - and 5-lanxi, the main ingredients in zedoary turmeric oil.
  • the existing emulsion is made from Elm J: Greek, Soybean Phosphorus and Cholesterol, and the approval number is WS-258. (X-218) -93 (1) , its specification is 20ml: 0 ⁇ lg, which is 0 ⁇ 5%. Because of the existing problems in the formulation of the existing preparations, the clinical application process is more severely irritating. Therefore, the emulsion of the patent No. ZL02155072. 7 has prepared the emulsion, and the preparation thereof includes the scent of thyme ⁇ . 05-0. 25 %, injection oil 10 ⁇ 30%, injection egg yolk lecithin 1.
  • the emulsion was prepared by the method of Example 9. As a result, the emulsion prepared according to the prescriptions 1, 2, and 3 was further divided into 63, 58 and 67, and the particle size of the emulsion after freezing and thawing was less than 70, which was not significant. Variety.
  • the results of writhing i in mice indicate that the stimulating activity of the preparation of the present invention is lower than that of the commercially available preparation (Note: The method of writhing stimulation of the mouse is: test 3 ⁇ 43 ⁇ 4 force: Kunming mice, 10 per group) , male and female, the preparations were diluted with 5% glucose to a drug content of 2mg / ml; Qiliang and route of administration: 0. 5ml / only, intraperitoneal injection; observed 0. 5 hours within the mouse writhing times. Commercial injections 6) ⁇ The average writhing number of the mouse was 10. 2, and the preparation of the present invention was 2. 6).
  • the current preparation of brain rice pine palmitate is an emulsion, which is traded as limeidasone, and contains 1 ml of active ingredient per ampule. Omg brainsame palmitate. The inventors found that the emulsion also failed the freezing-thawing damage test.
  • the oil phase is 10% composite oil (LCT/MCT, 15/85, w/w), preparing the brain rice pine palmitate emulsion of the present invention (lml containing effective The composition of 4. 0mg), the particle size of less than 100 should be, about 57 should be, after the freeze-thaw damage test, the particle size of the emulsion should be 61, there is no significant change.
  • the monthly soluble vitamins are essential nutrients for the human body. Clinically critical people often need to be supplemented to maintain their lives. However, fat-soluble vitamins are insoluble in water, and the bioavailability of oral administration is relatively low, so they are taken intravenously. At present, there are two types of commercially available products, fat-soluble vitamin injections I and II (Part 2, Volume 5, pages 85 to 90). The prescriptions are as follows.
  • Vitamin A 69mg (230,000 units); Vitamin D2 1. Omg (40,000 units); Vitamin E 0. 64g (70,000 units); vitamin Kl 20mg ; injection soybean oil 100g; injection lecithin 12g; glycerin 22. 0g ; injection water amount; total amount 1000ml.
  • Vitamin A 99mg (330,000 units); Vitamin 0. 5mg (20,000 units); Vitamin E 0. 91g (1000 units); Vitamin Id 15mg ; Injection soybean oil 100g; Injection lecithin 12g; Glycerol 22 0g ; the amount of water for injection; the total amount of 1000ml.
  • the above prescription was produced by the company, and we conducted a freeze-thaw test to find that the emulsion could not be destroyed by freeze-thaw.
  • the emulsifier "lecithin for injection” in the above prescription was replaced by an emulsifier composed of "SPC lg, HS15 2g, poloxamer F68 lg” (without additional VE added), and as a result, the average volume particle size of the prepared emulsion was less than 100 nm. , about 66nm, 62nm, respectively, after the freeze-thaw damage test, the particle size of the emulsion is further divided into 70 should be 68 and 68 should be, there is no significant change.
  • Replace the "injection soybean oil" in the prescription with the mixed oil of "LCT/MCT, 15/85, w/V" thief.
  • the emulsifier is the emulsifier of prescription 2 in Table 16 of Example 18 (without additional VE)
  • the average volume particle size of the prepared emulsion was less than 100 nm, which was about 58 nm and 60 nm, respectively, and the particle size of the emulsion after freeze-thaw destruction test was about 63 nm and 66 nm, respectively, and there was no significant change.
  • the horse scorpion includes A and B, and its structure is as follows:
  • horse jasmine A horse jasmine is similar to that of the coenzyme Q10 (see the following formula).
  • the volume average particle size of the prepared emulsion was about 66, and the volume average particle size after sterilization and freeze-thaw was divided into 68 nm and 69 dishes.
  • the volume average particle size is about 53 dishes, and the volume average particle size after sterilization and freeze-thaw respectively About 51 nm and 56 nm
  • emulsion 0%, DSPE-PEG 0. 2, DSPE-PEG2000, ie, prescription composition: horse scorpion 1. 0g, lecithin 1. 0g, HS 15 2. 0g, poloxamer 188 1. 0g, DSPE-PEG 0. 2 g, injection oil 10g (soybean oil / medium chain oil, 15 / 85, w / w), glycerol 2. 4g, EDTA-2Na O. 05g, the rest for water for injection, a total of 100mL.
  • the obtained emulsion has an average volume particle size of about 56 dishes, and the volume average particle size after sterilization and freeze-thaw is 52 nm and 56 ⁇ .
  • the emulsions prepared according to the two prescriptions have good antagonistic heat and freeze-thaw damage.
  • an emulsion of the respective monomer compounds can be prepared by the process described herein.
  • Example 18 Using the method of Example 18, preparing fish oil (deep sea fish oil, rich in polyunsaturated fat such as DHA), glutinous rice kernel oil, zedoary turmeric oil, bupleurum oil, sea buckthorn oil, pill garlic oil, allicin, chuanxiong oil, angelica Oil, capsicum essential oil, ginger oil, ; seed oil, houttuynia oil, evening primrose oil, perilla seed oil, shark liver alcohol, tanshinone oxime, artemis lactone, entecavir, bilirubin (anthracene trisulfide) , malotilate, high tridextrin, norcantharicine, curcumin, cyclomandelin, beta-lemma, bone t-sterol, statin lipid-lowering drugs (such as lovastatin, simvastatin, etc.) , vitamin E nicotinate, gossypol, Rubescensine A, fenofibrate
  • the ratio of the waxy soluble compound or the drug to the oily substance is 1: 0 1 10000 w/w.
  • the beryllium needs to use an additional oil, that is, the drug and the C 6 ⁇ ( ⁇
  • the ratio of oily substances is 1: Ow/w; if bone t-sterol is used, the concentration of oil in the preparation is 1%, and the amount of oil in the preparation is 1% (w/v)
  • the ratio of drug to oil is 1:10000w/w; when using 0.1%%/v oil, the ratio of drug to oil is 1 1000w/w
  • the phosphorus swelling hook is replaced with other natural or semi-synthetic or fully synthetic phospholipids, such as "cardiolipin”, “phospholipid alcohol”, “phosphatidylglycerol”, “sphingomyelin (SM)”, Phosphatidylserine (PS), "hydrogenated phospholipids”, “DMPC (dipalmitoyl phosphate)”, “D0PC (dioleoyl phospholipids)”, “DLPC (dilauroyl phospholipid) "Alkali) ", “phosphatidylethanolamine (PE)", the results are the same.
  • DMPC dipalmitoyl phosphate
  • D0PC dioleoyl phospholipids
  • DLPC diilauroyl phospholipid
  • the oil phase is an oily substance, which can be selected from the group consisting of coconut oil, oil leakage, soybean oil, safflower oil, triglyceride, glyceryl caprylate, ethyl oleate, linoleic acid glycerin. Ester, ethyl linoleate, oleic acid glyceride, cholesterol oleate/linoleate, coconut oil C8 I C10 monoglyceride or diester, coconut oil C8 I C10 propylene glycol diester, coconut oil C8 I C10 An emulsion having heat resistance and freeze-thaw resistance can be obtained by one or more of the triol triesters.
  • the accelerated test was performed at 25 ⁇ 2 ° C for 6 months.
  • Coenzyme Q 10 emulsion was dispensed into a vial, filled with nitrogen, sealed, and placed in the dark at 25 ⁇ 2 ° C for 6 months. Samples were taken at 1, 2, 3, and 6 months to investigate the appearance, particle size, and content of the emulsion. Change, the results are shown in Table 20.
  • the coenzyme Q 10 emulsion was dispensed into a vial, filled with nitrogen, sealed, and placed at 6 ⁇ 2 ° C for 6 months in the dark. Sampled at 3 and 6 months, the appearance, particle size, and content change of the emulsion were investigated. See Table 21.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Emergency Medicine (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Dermatology (AREA)
  • Mycology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Medicinal Preparation (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

一种复合型乳化剂及用其制备的乳剂及其制备方法 技术领域
本发明涉及药物制剂领域, 具# ^及一种复合型乳化剂及用其制备的乳剂和乳剂的制备方法。 背景技术
一般而言, 乳剂的组成包括 "油相"、 "水相"和 "乳化剂", 由于常规(经典或传统) 的乳 齐 IJ是一个不稳定体系, 极易受到外界 的影响,如冷冻、振摇、高温灭菌謝喿作均^ t成粒度变化, 甚至破乳、 析油, 致使产品质量发生显著改变, 影响疗效, 产生意外的不良反应, 甚至报废, 造成极 大的损失。 目前, 制备乳剂的油相大多数都是采用长链脂肪酸酯, 如 油。 长链脂肪酸酯类物质均 存在如下问题, 如豆油的石«长, 粘度大, 对]^溶性药物溶解量低, 含有大量不饱和双键, 易氧化, 更为严重的是不能经受冻融, 在高温灭菌时会导致粒度明显增大, 即使采用中链甘油三酯 (MCT)或 者长链甘油三酯与 MCT的混合物。 产生这些问题的主要原因是现有乳剂处方中仅采用单一乳化剂或者 两种乳化剂, 而这样的(未经 的)两种乳化剂 ^应用时并未将既可经受高温灭菌又可经受冻融 的性质考虑在内, 仅以高温灭菌不破乳, 灭菌后粒度未极大增加为指标。 ¥¾1678年人类便开始研究 乳剂, 自从 1961年 Intralipid成功上市以来, 乳剂得到广泛重视, 也取得了极大的成功, 为人类生命 健康做出了重要贡献。 但令 Ait憾的是, 虽然乳剂生产技术、 设备融入了时代发展的先进成果, 而所 采用的处方仍然是几十年前, 即 1961年所采用的经典处方, 主要为 10% (或者 20%或者 30%)大豆油、 1. 2°/驻射用卵磷脂、 2. 2%甘油, ρΗ值约为 8, 即使有变化, 其变化也不大。 在上述处方组成中, 常常 要加入适量的油酸, 同时要调 ρΗ值至 9左右, 使得灭菌后的 ρΗ值约为 8, 目的是获得高负电荷, 使乳剂 稳定。 这些乳剂的处方、 工艺存在如下问题: 其一是所制备的乳剂不能经受冻融; 其二题加入的油 酸具有一定的溶血性; 其三是平均粒度较大, 不鍵虑除菌, 需要旋转灭菌,增加工艺复杂性和 其四是 ρΗ值较高, 不适于在高 ρΗ值下不稳定的药物(双异丙酚, 前列地尔) ; 其五题制备乳剂需要 在嫌内低温保存。 随着社会的发展, 对乳剂这一相对古老而经典的剂型提出了新的要求, 解决上述 所存在的问题迫在眉睫。
为了解决乳剂冻融问题, 主要采用合理选择乳化剂和油相繊的手段。 有文献报¾¾用吐温 80或 聚氧乙烯蓖麻油制备乳剂对乳剂有一定的保护作用, 但作用不理想, 且乳剂粒度较大不能过滤除菌, 而且因强力致 SI安释放作用, 可致患者过敏, 甚至因过敏而死亡。
下面以]^溶性药物辅酶 。为例介绍其相关背景。
辅酶 ft。是辅酶 Q类重要成员之一, 广泛存在于线粒体的内膜中, 是人体细胞中具有重要作用的 辅酶。 内源性辅酶 ft。在人体内的总含量为 0. 5-1. 5g, 在心脏、 肝及胰中的水平较高。 人体自身合成 部分所需的辅酶 , 其余的 ΛΙ善食中摄取。 随着年龄的增长, 体内合成的辅酶 ft。逐渐减少。
辅酶 ft。具有抗氧化作用、 自由基清除作用、 稳定生物膜作用、 增强免疫机能作用等, 临床上用 于治疗和 /或预防心血管类疾病、 急慢性肝炎和亚急性肝坏死等肝脏疾病、 癌症、 中枢神经***变性 紊乱等疾病。 另外, 也可用辅酶 ft。预防或降低某些药物的副作用, 例如他汀类药物或细胞抑制剂的 副作用, 例如阿霉素的心脏毒性。
近年来, 在辅酶 ft。原料药的提取及制备方面开展了很多研究。 日本最早开发了辅酶 ft。, 并成为 世界上最大的 国家, 据统计全球有 90%的产品来自日本。 目前, 我国的一些企业已逐渐掌握了生 物提取法、 半化学合成法以及微生物发酵提取法等先进技术, 为国内的原料需求 共了保障。 辅酶 。的制剂目前主要上市产品有片剂、胶囊、软胶囊、注射剂等, 但仍难以满足疾病治疗的需要。辅酶 。是一种亲脂性物质, 械中的溶解度非常低(几乎不溶于水)。 口服的片剂、 胶囊剂等均存在生物 利用度低、 个体差异大等缺点。 注射剂的物理稳定性差, 储存过程中易析出药物, 需加热重新溶解。 为增加辅酶 ft。的溶解度, 常加吐温 -80为增 ί#¾该物质具有溶血作用, 且易氧化,其氧化产物可造 成过敏。
若将辅酶 ft。制成乳剂, 可增加溶解度, 提高生物利用度和靶向性, 并降低毒副作用。
中国专利 ZL02808179. X公开了主要用于口服的含有辅酶 Q10的微乳剂预浓缩物和微乳剂;中国专 利申请 CN 200480017624. 9公开了一种采用精油提高辅酶 。传送和吸收的化学组合物及方法; C 200610046134. 2公开了一种辅酶 ft。注射乳剂及其制备方法。
然而, 按照专利文献 CN 200610046134. 2实施例 2和实施例 3的处方制备乳剂, 分别放置 2小时 和 1小时, 即有药物析出。对于其它处方, 纽¾¾仍然达不至 IJ徹子效果。 即使按照常规方法制备成 乳剂, 也不能 东融破坏作用。
本发明人曾将单一乳化剂卵磷脂(浓度 2%)或者 Solutol HS15 (浓度 2%)作乳化剂按常规方法 制备辅酶 ft。乳剂, 所制得的乳剂进行了抗热与冻融稳定性测定。 结果见下表 1。
表 1 采用单一乳化剂制备的辅 B ft。乳剂的抗热与冻融稳定性
Figure imgf000003_0001
由表 1可知, 单 ¾¾用磷脂或 5的乳剂离心稳定性均良好, 离心前后平均粒径和粒度分布基本 没有变化; 单独棚磷脂的乳剂灭 ¾m定性良好, 但冻融后粒径增长较大, 单独棚 5的乳剂, 耐 冻融但不耐灭菌。
因此, 为了解决乳剂的抗热和抗冻融问题, 本发明的第一个目的 共一种复合型乳化剂。 本发明的第二个目的 共用这种复合型乳化剂制备的乳剂。
本发明的第三个目的 共用这种复合型乳化剂制备乳剂的方法。 发明内容
本发明 共的复合型乳化剂包含选自以下物质中的两种或两种以上: 磷脂 10%w/v、 PEG类乳 化剂 ^30%w/v; 泊洛沙姆类物质 ^10%w/v, 以 乳剂中的含量计。
为达到更好的抗冻融 ¾¾, 本发明的复合型乳化剂中还可包括含量 50%w/v的冻融保护剂。 本发明的复合型乳化剂中所用的磷脂可选自蛋黄磷脂和大豆磷脂、其它天然或半合成或全合成的 磷脂中的一种或一种以上;所用的泊洛沙姆类物质可选自泊洛沙姆 188 (Poloxamerl88)和 Pluronic F68 ; 所用的 PEG 类乳化剂可选自聚乙二醇 12-羟基硬脂酸酯 (polyethylene glycol 660 hydroxy stearate, Solutol, HS15)、维生素 E聚乙二醇琥珀酸酯(TPGS)和 DSPE-PEG (包括 DPPE_PEG、 DMPE-PEG) 中的一种或一种以上, PEG分子量为 100〜10000; 所用的冻融保护剂可选自醇类和糖类 物质。
一个 的实施方式是由磷脂与一种 PEG类乳化剂和一种冻融保护剂构成复合型乳化剂。
本发明的复合型乳化齐阿以包含三种或三种以上乳化剂,其中一种是泊洛沙姆,但不加入冻融保 护剂。
本发明人发现,当采用三种或者三种以上的复合乳化剂且其中一种是泊洛沙姆类物质时,无论是 单纯以中链甘油三酯 (MCT)为油相, 或是以长链甘油三酯 (LCT)为油相, 或是将 MCT与 LCT混合作 为油相,或是以中药油脂性物质为油相,或是以各种油溶解腊溶性化合物为油相,无需加入抗冻融剂, 所制备的乳剂均可以达到抗冻融目的。一个髓的实施方式是由磷脂与 PEG类乳化剂 (包括 HS15、TPGS、 DSPE-PEG2000)中的一种或两种和一种泊洛沙姆类乳化剂构成复合乳化剂。该复合乳化剂中无需亥噫 考虑冻融保护剂,其适用面更广,适用于不同油相组成,包括含 〜 的油类及以此类油类溶解的月旨 溶性化 勿, 该复合乳化剂也能够用于治疗用油或者以治疗用油溶解脂溶性化合物成为复方制剂。
本发明的第二个方面, ¾f共用本发明的复合型乳化剂制备的乳剂,所述乳剂包含油相、复合型乳 化剂和水, 其中所述复合型乳化剂包含选自以下物质中的两种或两种以上: 磷脂 10%w/v、 PEG类 乳化剂 30%w/V; 泊洛沙姆类物质 10%w/v, 以 乳剂中的含量计。
本发明乳剂中的油相包含 〜 油类物质, 及有治疗活性的油脂性物质和 /或溶解或分散在腿 C6〜 (^油类物质中的脂溶性化 勿或药物,所述腊溶性化 勿或药物与所述 油类物质的比例为 1: 0〜1: 10000w/w, 所述 C6〜 (^油类物质的用量为 0. l〜20%w/v, 以 乳剂中的含量计。
上述 油类物质可选自经过结构改造和水解后的椰子油、碰览油、大豆油、红花油、甘油三 酸酯, 辛癸酸甘油酯、 油酸乙酯、 亚油酸甘油酯、 亚油酸乙酯、 油酸甘油酯、 胆固醇油酸酯 /亚油酸 酯、 椰子油 C8 I C10甘油单酯或双酯、 椰子油 C8 I C10丙二醇双酯、 椰子油 C8 I C10甘油三酯中 的一种或一种以上。
上述 油类物质中的甘油三酸酯可为中链甘油三酯 (MCT)和 /或长链甘油三酯(LCT)。相对 于长链脂肪酸酯类物质(如 油)而言, 中链甘油三酯 (MCT)具有碳链短、 粘度小、 对脂溶性药 物溶解量高、 未含有双键不易被氧化、 在体内代 搁单等优点。 将中链甘油三酯 (MCT)与长链甘油 三酯(Leo ^i , 可以获得恰当的油相粘度, 再以复合乳化剂进行乳化(以磷脂与含 PEG链的 乳化剂,如 HS15、 TPGS、 DSPE-PEG (PEG分子量为 100〜10000)中一种或两种以上组合成的复合乳化剂), 同时加入冻融 ί 户剂, 以达到本发明目的。
有治疗活性的油脂性物质和 /或溶解或分散在所述 〜 油类物质中的脂溶性化 勿或药物选自 辅酶 Q10、 葫芦素、 葫芦素 B、 双氢葫芦素 B、 异葫芦素^ 葫芦素 D、 葫芦素 E、 葫芦素 I、 葫芦 素0、 前列地尔、 双异丙酚、 维生素 Kl、 ***棕榈酸酯、 丹参酮 ΠΑ、 丁苯酞、 藁本内酯、 马 蔺子素、 恩替卡韦、 胆维他、 马¾ 酯、 高三尖酯碱、 去甲斑蝥酸、 姜黄素、环扁桃酯、 β -榄香録、 鲨肝醇、他汀类降脂药如 滅他订"和 "辛伐他汀"等、鸦胆子油、 沙棘油、鱼油(深海鱼油, 富 含 DHA等多不饱和脂肪酸及其酯)、 薏米仁油、 莪术油、 大蒜油、 大蒜素、 川芎油、 当归油、 辣椒精 油、 生姜油、 芹菜籽油、 鱼腥草油、 月见草油、 紫苏籽油、 五福心脑康(曾用名:五福心脑清, 或者 心脑清 /心脑康, 主要成份: 精制红花油、维生素 、维生素 Ε、冰片等)、维生素 Ε烟酸酯、棉子酚、 冬凌草甲素、非诺贝特、伊曲康唑、坎地沙坦、羟基喜树碱、喜树碱衍生物、紫杉醇及其衍生物、 多 烯紫杉醇及其衍生物、 非那雄胺、 依托伯苷、 人参皂甙、 20(S)~原人参二醇、 人参皂甙 Re、 人参皂 甙 Rbl、 人参皂甙 Rg2、 20(R)-人参皂甙 Rg3和 20(S) "人参皂甙 Rg3°
本发明的乳剂中还可包含选自助乳化剂、 稳定剂、 冻融保护齐 U和 PH调节剂中一种或一种以上的 药物辅料。
本发明乳剂中可棚的助乳化剂选自油酸、亚油酸、亚麻油酸、硬脂酸、二十二碳六録酸和胆酸 中的一种或一种以上;可使用的冻融保护剂选自包括丙二醇、丙三醇和聚乙二醇中一种或一种以上的 醇类和包括葡萄糖、 甘露醇、 蔗糖、 海藻糖、 * 醇、 麦芽糖和乳糖中一种或一种以上的糖类物质; 可嫺的稳定剂选自氮气、 EDTA及其盐类、 ¾K亚硫酸钠、 ¾Κ亚硫酸氢钠、焦亚硫醱内、维生素 C 及其衍生物、二丁基羟基甲苯、 α -生育酚、 a -醋酸生育酚和氢醌中的一种或一种以上; 可棚的等 渗调节剂选自甘油、 1,2-丙二醇、葡萄糖、麦芽糖、甘露醇和木糖醇中的一种或一种以上; 可棚的 ρΗ调节剂选自盐酸、 氢氧化钠、 醋酸、 醋酸钠、 磷酸、 磷隱、 柠檬酸和柠檬酸钠中的一种或一种 以上。
本发明¾§{共用上述复合型乳化剂制备乳剂的方法, 包括以下步骤:
( 1 )制备油相:在氮气环境中将油类物质及油溶性成分加热至 20〜90°C,然后加入乳化剂, 20〜 90°C时搅拌至溶解, 接着纖半边加入药物活性成分;
(2)制备水相: 将水溶性物质( 调节剂、 抗冻融剂等)加入水 相乳化剂中, 在 20〜 90°C下搅拌 5min, 使之完全混溶;
(3)氮气环境、 20〜60°C, 将水相加入油相中, 搅拌 5〜30min, 形成初乳;
(4)过均质 {¾行均质化处理, 第一步调节匀化压力至 4000〜8000psi, 第二步调节匀化压力 至 10000〜30000psi, 制得乳剂。
根据需要, 在对初乳进行均质化处理前可调节 pH值到 3〜9。 将用上述方法制得的乳剂经过过微孔滤膜、 分装、 灭菌处理, 即可获得注射用乳剂。 灭菌处理 可采用湿热灭菌或过滤除菌或者微波灭菌。
本发明获得的乳剂平均体积粒径小于 150應, 更好的是乳剂平均体积粒径小于 100應。 这样的乳 剂便于舰注射、 口服 卜用给药。
与现有技纖匕, 本发明具有如下优点:
1、 所制备乳剂能够抵抗热、 冻融的破坏作用; 2、 较易生产平均体积粒度小于 150應、 甚至小于 100應的乳剂,对设备的要求不高; 3、可以实现过滤除菌目的, 无需采用高温即可获得无菌制剂; 4、 乳剂受 pH值、 处方中其它添加齐啲影响很小, 可以实现在低 pH值下制备乳剂的目的, 从而扩大了乳剂 的应用范围; 5、 言 提高药物的化学稳定性; 6、 由于表面存在复合乳化层, 可以大大降低药物的剌 激性。 附图的简要说明
图 1是本发明实施例 16中大鼠经阿霉素 (ADM)处理前的心电图。
图 2是本发明实施例 16中大鼠经 ADM处理后的心电图。
图 3是本发明实施例 16中大鼠给予辅酶 ft。乳剂后的心电图。 具体实施方式
下面结合实施例更具体地说明本发明内容。应当理解, 下面的实施例用于说明本发明内容而非限 制本发明内容, ίί可形式上的变通和 /或改变都将落入本发明的保护范围。
各实施例中, 辅酶 ft。的含量测定用 HPLC色谱分析, 采用十八焼基硅浣键合硅胶色谱柱, 以甲醇 -乙醇(50/50, v/v)为流动相, 检测波长 275應; 乳剂的粒度测定采用 PSS. NIC0MP™380作为测定 粒径的仪器。
实施例 1 以 1¾5与5? (大豆卵磷脂)为复合乳化剂时, 不同比例大豆油 /中链油作为油相对乳 剂冻融前后粒径的影响
处方组成: 辅酶 Qio 0. 25g、 大豆磷脂(SPC) 1. 2g、 HS150. 9g、 注射用油 10g、 甘油 2. 2g, 其余 为注射用水, 共 100mL。 注射用油为大豆油 /中链油比例为 100: 0〜0: 100 (w/w)D
制备: 1)在配制罐中, 将注射用油、 磷脂、 HS15加热至 50°C, 强烈搅拌至溶解, 加入药物, 搅 拌使之溶解(必要时加入活性炭, 按照常规方法进行处理, 除热原); 2)在配制罐中, 将甘油加入 注射用水中, 在 50°C下搅拌 5min, 使之完全溶解(必要时加入活性炭, 按照常规方法进行处理, 除 热原); 3)将步骤 2)产物在搅拌的 牛下加入步骤 1)产物中, 在 50°C时搅拌后 |刀乳; 4)所得 初乳(液体)过 itl寸流仪, 第一步调节匀化压力至 4000psi, 第二步在调节至 16000psi, 将溶液反复 匀化, 得到均匀的乳剂。 纽膜、 分装、 充氮气、 封口和灭菌处理, 即得辅酶 。注射用乳剂。 将制 备的乳剂进行冻融试验。 结果见表 2。 表 2 ^同比例大豆油 /中链油对乳剂冻融前后粒径的影响
大豆油 /中链油 原乳剂 冻融后 粒径增长
质量比 平均粒径(應) 平均粒径(應) 百分率
100/0 136. 5 386. 2 有破乳聰
90/10 121. 3 238. 6 有破乳聰
75/25 76. 6 103. 9 有破乳聰
50/50 74. 1 181. 1 144. 4%
40/60 80. 1 112. 7 40. 7%
25/75 76. 6 103. 9 35. 6%
20/80 77. 5 100. 6 29. 6%
15/85 75. 4 90. 6 20. 2%
10/90 79. 2 99. 4 25. 5%
0/100 73. 1 219. 6 200. 4% 由表 2可知, 在以 HS15、 SPC为复合乳化剂时, 大豆油 /中链油比例在 25: 75〜10: 90 (w/w)范 围内, 制备的乳剂冻融粒径增长较小, 为髓的组合比例。
实施例 2 以 TPGS与 SPC为复合乳化剂时, 不同比例大豆油 /中链油作为油相对乳剂冻融前后 粒径的影响
处方组成: 辅酶 ft。 0. 25g、 磷脂 1. 2g、 TPGS lg、 注射用油 10g、 甘油 2. 2g, 其余为注射 用水, 共 100mL。 注射用油为大豆油 /中链油比例为 100: 0〜0: 100 (w/w)。
制备: 1)在配制罐中, 将注射用油、磷脂、 TPGS加热至 50°C, 强烈搅拌至溶解, 力口入药物, 搅 拌使之溶解(必要时加入活性炭, 按照常规方法进行处理, 除热原); 2)在配制罐中, 将甘油加入 注射用水中, 在 50°C下搅拌 5min, 使之完全溶解(必要时加入活性炭, 按照常规方法进行处理, 除 热原); 3)将 2)产物在搅拌的条件下加入 1)产物中, 在 50°C时搅拌后得初乳; 4)所得初乳(液 体)过 itl寸流仪, 第一步调节匀化压力至 4000psi, 第二步在调节至 16000psi, 将溶液反复匀化, 得 至 IJ均匀的乳剂。 经过膜、 分装、 充氮气、 封口、 灭菌处理, 即得辅酶 。注射用乳剂。 其冻融 i 结 果见表 3。
表 3 不同比例 油 /中链油对乳剂冻融前后粒径的影响
Figure imgf000007_0001
由表 3可知, 在以 TPGS、 SPC为复合乳化剂时, 大豆油 /中链油比例在 100: 0〜0: 100 (w/w) 范围的抗冻融能力要好于 HS15; 50: 50〜0: 100 (w/w)范围内, 制备的乳剂冻融粒径增 小。 当采用大豆油 /中链油比例为 0: 100 (w/w)时,处方中的 TPGS改为 5%或 10%或 15%或 20%或 25% 或 30% (w/v), 其它成分不变, 贝 U乳剂的平均粒径分别为 51nm、 46應、 39應、 36nm、 33nm、 18nm, 冻 S虫后粒径增长百分率小于 20%, 证明有良好的耐受冻融性能, 且 TPGS的用量增加有利于改善乳剂的 抗冻融能力。
当采用大豆油 /中链油比例为 0: 100 (w/w)时, 处方中的大豆磷脂改为 2%或 5%或 10% (w/v), 其它成分不变, 贝 1J乳剂的平均粒径分别为 59nm、 51nm、 36nm, 冻融后粒径增长百分率小于 20%, 证明 有良好的耐受冻融性能, 且大豆磷脂的用量增加有利于改善乳剂的抗冻融能力。
实施例 3 不同磷脂对乳剂冻融前后粒径的影响
处方组成: 辅酶 ft。 1. 0g、 磷脂 1. 2g、 HS153. 0g、 注射用油 10g (大豆油 /中链油, 15/85, w/w), 丙二醇 5. 0g、 EDTA-2Na 0. 05g, 其余为注射用水, 共 100mL。
制备: 1)在配制罐中, 将注射用油、 磷脂、 HS15加热至 50°C, 强烈搅拌至溶解, 加入药物, 搅 拌使之溶解(必要时加入活性炭, 按照常规方法进行处理, 除热原); 2)在配制罐中, 将丙二醇、 EDTA-2Na加入注射用水中, 在 50°C下搅拌 5min, 使之完全溶解(必要时加入活性炭, 按照常规方法 进行处理, 除热原); 3)将 2)产物在搅拌的条件下加入 1 )产物中, 在 50°C时搅拌后得初乳; 4) 所得液体过微射流仪,第一步调节匀化压力至 5000psi,第二步在调节至 14000psi, 反复匀化后得到 均匀的乳剂。 纽膜、 分装、 充氮气、 封口、 灭菌处理, 即得辅酶 。注射用乳剂。 其冻融试验结果 见表 4。
不同磷脂对辅 B ft。乳剂冻融稳定性的影响
Figure imgf000008_0001
由表 4可知, 磷脂的种类对乳剂冻融前后粒径的影响不大。
实施例 4 不同冻融保护剂对乳剂冻融前后粒径的影响
处方组成: 辅酶 Qio 1. 0g、 大豆磷脂 1. 2g、 HS15 3. 0g、 注射用油 10g 油 /中链油, 15/85, w/w), EDTA-2Na 0. 05g、 冻融保护剂适量, 其余为注射用水, 共 100mL。
制备: 1)在配制罐中, 将注射用油、磷脂、 5力口热至 50°C, 强烈搅拌至溶解, 加入药物, 搅 拌使之溶解(必要时加入活性炭,按照常规方法进行处理, 除热原); 2)在配制罐中,将冻融保护剂、 EDTA-2Na加入注射用水中, 在 50°C下搅拌 5min, 使之完全溶解(必要时加入活性炭, 按照常规方法 进行处理, 除热原); 3)将 2)产物在搅拌的条件下加入 1 )产物中, 在 50°C时搅拌后得初乳; 4) 所得初乳(液体)过微射流仪, 第一步调节匀化压力至 5000psi, 第二步调节至 14000psi, 反复匀化 后, 得到均匀的乳剂。
在乳剂中加入适量不同种类的冻融保护剂, 搅拌使溶解混匀, 再经过膜、分装、充氮气、封口、 灭菌处理, 即得辅酶 ft。注射用乳剂。 其冻融试验结果见表 5。
Figure imgf000009_0001
由表 5可知, 醇类保护剂中丙二醇为髓, 糖类 { 户剂中與虫麦芽糖、 甘露醇 6%葡萄糖 1. 5%联 用、甘露醇 6%葡萄糖 3%联用、甘露醇 6%麦芽糖 1. 5%联用、甘露醇 2%葡萄糖 4%麦芽糖 8%联用粒度增 长率小于 200%, 特别是甘露醇 2%葡萄糖 4%麦芽糖 8%联用, 其粒度增长率小于 50%。
实施例 5
处方组成:辅酶 ft。 0. lg、大豆磷脂 0· 6g、 HS151. 8g、注射用油 5g (大豆油 /中链油, 15/85, w/w), 葡萄糖 1. 5g、 甘露醇 6g, 其余为注射用水, 共 100mL。
( 1 )在配制罐中, 将注射用油、 磷脂、 HS15加热至 50°C, 强烈搅拌至溶解, 力口入辅酶 , 搅拌使之溶解;
(2)在配制罐中, 将葡萄糖、 甘露醇加入注射用水中, 在 50°C下搅拌 5min, 使之完全溶解;
(3)将(2)产物在搅拌的条件下加入(1 )产物中, 在 50°C时搅拌后得初乳;
(4)将上步所得初乳 (液体)过微射流仪, 第一步调节匀化压力至 5000psi, 第二步调节至 14000psi, 反复匀化, 得到均匀的乳剂, 过膜、 分装、 充氮气、 封口和灭菌处理, 制得辅酶 。注射 用乳剂。经检测, 乳剂的平均粒径为 46. 8應, 冻融后乳剂平均粒径为 49. 5應。 降低油相比例可以 获得小粒径乳剂, 抗冻融能力大大增加。)
将 HS15换成 TPGS, 同上制得乳剂, 其平均粒径为 36應, 冻融后平均粒径为 37應。 实施例 6
处方组成: 辅酶 ft。 0. 25g、 大豆磷脂 0. 3g、 HS151. 8g、 注射用油 5g (大豆油 /中链油, 15/85, w/w)、 葡萄糖 1. 5g、 甘露醇 6g, 其余为注射用水, 共 100mL。
除了步骤 (2) 中 为 30°C外, 操作同实施例 5。 所得乳剂平均粒径为 51. 0應。 冻融后乳剂平 均粒径为 53· 3nm。
将 HS15换成 TPGS, 同上制得乳剂, 其平均粒径为 43應, 冻融后平均粒径为 49應。
实施例 7
处方组成: 辅酶 Qio 0. 25g、 大豆磷脂 0· 3g、 HS151. 8g、 注射用油 5g 油 /中链油, 15/85, w/w)、 甘油 2. 4%, 其余为注射用水, 共 100mL。
除了步骤 (2) 中将甘油加入注射水中, 其他操作同实施例 5。 所得乳剂平均粒径为 63. 1應, 冻 融后平均粒径为 62. 8nm。
将 HS15换成 TPGS, 同上制得乳剂, 其平均粒径为 38應, 冻融后平均粒径为 40應。
实施例 8
处方组成: 辅酶 Qio 0. 5g、 大豆磷脂 1· 2g、 HS15 3. 0g、 注射用油 10g (大豆油 /中链油, 15/85, w/w)、 丙二醇 5. 0g、 EDTA-2Na 0. 05g, 其余为注射用水, 共 100mL。
除了步骤 (2) 中将丙二醇、 EDTA-2Na力口入注射水中, 其衞喿作同实施例 5。 所得乳剂平均粒径 为 58· 9nm, 冻融后平均粒径为 61. 5應。
将 HS15换成 TPGS, 同上制得乳剂, 其平均粒径为 53應, 冻融后平均粒径为 57應。
实施例 9
处方组成: 辅酶 Q10 1. 0g、 大豆磷脂 1· 2g、 HS15 3. 0g、 注射用油 10g (大豆油 /中链油, 15/85, w/w)、 丙二醇 5. 0g、 EDTA-2Na 0. 05g, 其余为注射用水, 共 100mL。
除了步骤 (2)中将丙二醇、 EDTA-2Na加入注射水中, 其他操作同实施例 5。所得乳剂平均粒径 为 66· 9nm, 冻融后平均粒径为 64. 2應。
将 HS15换成 TPGS, 同上制得乳剂, 其平均粒径为 72應, 冻融后平均粒径为 76應。
实施例 10
处方组成: 辅酶 ft。 1. 0g、 卵磷脂 1. 0g、 HS15 2. 0g、 泊洛沙姆 188 1· 0g、 注射用油 10g (大豆油 /中链油, 15/85, w/w)、 丙二醇 5. 0g、 EDTA-2Na 0. 05g, 其余为注射用水, 共 100mL。
( 1 )在配制罐中, 将注射用油、 卵磷脂、 HS15加热至 50°C, 强烈搅拌至溶解, 加入辅酶 , 搅 拌使之溶解;
(2)在配制罐中, 将泊洛沙姆 188、 丙二醇、 EDTA-2Na加入注射用水中, 在 50°C下搅拌 5min, 使之完全溶解;
(3)将(2)产物在搅拌的条件下加入(1)产物中, 在 50°C 时搅拌后得初乳;
(4)所得液体过微射流仪, 第一步调节匀化压力至 5000psi, 第二步调节至 14000psi, 反复匀 化, 得到均匀的乳剂。 经过膜(过滤除菌)、 分装、 充氮气、 封口、 灭菌处理(湿热灭菌或者过滤除 菌), 即得辅酶 ft。注射用乳剂。 经检测, 乳剂平均粒径为 62. 6應。 冻融后乳剂平均粒径为 63. 3應。
将处方中注射用油换成 15g, 其他同上, 所得乳剂平均粒径为 68應, 冻融后平均粒径为 71應。 将处方中注射用油换成 20g, 其他同上, 所得乳剂平均粒径为 73應, 冻融后平均粒径为 78應。 实施例 11
除了步骤 (4) 中第二步调节匀化压力至 lOOOOpsi夕卜, 处方组成和其他操作同实施例 10, 得到 均匀的乳剂。 经检测, 乳剂平均粒径为 91. 6應。 冻融后乳剂平均粒径为 93. 9應。
实施例 12
除了步骤 (4)中调节匀化压力至 5000psi夕卜, 处方组成和其他操作同实施例 11, 得到均匀的乳 齐 经检测, 乳剂平均粒径为 128. 2應, 冻融后平均粒径为 132. 9應。
实施例 13 辅酶 ft。乳剂冻融试验
参照 SFDA《化学药物稳定性研究技术指导原贝 lj》对辅酶 ft。乳剂进行冻融 ¾¾, 即于 -10〜- 20°C 牛下冷冻 2天, 之后于 40°C加速条件下考察 2天, 反复循环三次。 结果见表 6。
表 6 辅酶 Q10乳剂冻融试验结果
Figure imgf000011_0001
由表 6可知, 在大量基础研究试验后, 以相对合理的处方工艺, 无论采用两种乳化剂组成的复 合乳化剂还 ¾H种乳化剂繊的复合乳化剂来制备辅酶 ft。乳剂, 其冻融稳定性均良好。
实施例 14 辅酶 ft。乳剂稀稱式验
临床上用于静脉注射用乳剂的稀释剂主要有生 SitoK和 5%葡萄糖注射液, 本实施例以二者为对 象, 考察辅酶 ft。乳剂稀释后的物理稳定性。
方法: 精密量取实施例 10辅酶 。乳剂 2份各 2 mL, 置于 10 mL量瓶中, 分别加入生理 ifoK和 5%葡萄糖注射液定容至刻度, 混匀, 转移至具塞磨口试管中; 再精密量取 2條酶 ft。乳剂各 1 nL, 置于 10 mL量瓶中, 其它操作同前。 将 4份样品腿于 30°C恒温水浴中, 在 0、 2、 4、 6、 8、 10和 12hr取样。测定粒度均t¾分布状况,确定样品与稀释剂混合后方 ifi期间内的粒度变化,结果见表 7。
辅酶 Q10乳剂稀释 i 结果
时间 (h) 5%葡萄糖注射液稀释平均粒径 (nm) 0.9%氯化钠注射液稀释平均粒径 (nm)
0 73.2 77.4
2 65.5 71.4
4 65.8 75.1
6 67.2 69.1
8 63.1 66.9
Figure imgf000012_0001
由粒度测定的结果可以看出,本品分别与葡萄糖注射液和生《水混合,放置 12h的过程中,平 均粒径基本无变化 因此配伍稳定性良好。
实施例 15 不同制剂光照试验
自制浓度为 0. 1 mg/mL、 0. 5 mg/mL、 mg/mL的辅酶 Q10乙醇溶液,以及浓度为 0. 1 mg/mL、 0. 5 mg/mL、 l mg/mL、 10 mg/mL的辅酶 ft。纳米乳剂, 分装于軒个西林瓶中, 密封。 然后将西林瓶置于人工气候 箱中, 温度设定为 25°C, 在 2000Lux、 3000Lux、 4000Lux、 5000Lux 、 6000 lux下进行强制光解实 验。 结果见表 8〜12。
表 8 辅酶 ft。制剂在 2000 lux下的光解动力学 ¾
Figure imgf000012_0002
表 9 辅酶 Q10制剂在 3000 lux下的光解动力学 ¾
Figure imgf000012_0003
表 10 辅酶 Q10制剂在 4000 lux下的光解动力学 ¾
浓度 (mg/mL) 制剂 回归方程 r /2(h) 乳齐 y/溶液 ½比
0.1 溶液 LnC = 4.6176 - 0.0493 1 0.9967 14.1
0.1 乳剂 LnC = 3.8297 - 0.05021 0.9933 13.8 0.98
0.5 溶液 LnC = 4.6373 - 0.0443 1 0.9964 15.6
0.5 乳剂 LnC = 4.5196 - 0.0423 1 0.9964 16.8 1.08
1 溶液 LnC = 4.6377 - 0.03571 0.9938 19.4
1 乳剂 LnC = 4.4557 - 0.0125 1 0.9963 55.4 2.86
10 实施例 10 LnC = 4.5099 - 0.00521 0.9970 133.3 辅酶 Qio制剂在 5000 lux下的光解动力学 ¾
Figure imgf000013_0001
表 12 辅酶 Q10制剂在 6000 lux下的光解动力学 ¾
Figure imgf000013_0002
由表 8〜12可知, 辅酶 ft。的光解具有浓度 性, 随着初浓度的增加, 光解速率减小。 将辅酶 。制备成乳剂后, 与溶液剂相比, 随着浓度的增加, 药物光稳定性有较大提高。该结果未见 ί随, 因 此乳剂中辅酶 。浓度 g lmg/mL。
实施例 16 辅酶 ft。乳剂对阿霉素輔心脏毒性的保护作用
辅酶 ft。可以降低阿霉素 (ADM)的心脏毒性,本研究建立了阿霉素诱导大鼠心肌损伤模型,考察了 辅酶 ft。纳米乳剂对阿霉素所致大鼠心肌损伤的保护效果。
Wistar大鼠 40只, 体重 250± 15g, 雌雄各半。 随机分成 5组: 阴性对照组、 ADM组、 ADM+辅酶 Qm-低剂量组、應+辅酶 ft。-中剂量组、應+辅酶 ft。-高剂崖且, 每组 8只。对照组: 腹腔注射生理盐 水 10mL/kg/d, 连续 9天; ADM组: 翻空注射 ADM 3 mg/kg, 隔日给药, 共 5次(9天); ADM+辅酶 ft。- 低剂量组、 中剂量组、 高剂量组: 分别尾静脉注射辅酶 ft。_1. 5, 3. 0, 6. 0 mg/kg/d, 连续 9天, ADM 采取隔日给药, 共 5次(9天), 于静脉注射辅酶 Q1010分钟后, 翻空注射 ADM 3 mg/kg。 第 10天处死 大鼠并取心脏, 进行组织病理学检查及丙二醛、 SOD的含量测定。其中组织病理学检查: 取左心室心 肌组织, 10%甲醛固定, 常规切片, HE染色, 参照文献按照 Rona等的标准将损伤分为 4级。 结果见 表 13、 14。 表 13 辅酶 Q10乳剂对阿霉素心肌损伤保护作用的病理学结果 (n=8)
Figure imgf000014_0001
由表 13可见, 尾静脉注射辅酶 Q10乳剂后可减轻阿霉素诱导产生的心脏损伤。
表 14心肌 MDA和 SOD含量的变化 (n=8)
Figure imgf000014_0002
(注 a: P〈0. 05,与对照组相比; b: P〈0. 05,与阿霉素组相比)
由表 14可知,腹腔注射阿霉素后,大鼠心肌组织中 MDA的含量较对照组显著升高(P〈0. 05), SOD 的含量较对照舰著降低 (P〈0. 05)。 尾静脉注射不同齐 ffi的辅酶 ft。乳剂后, 大鼠心肌组织中的舰 含量较对照组略有增加,但均 ¾ 著性差异; 各剂量组与阿霉素组相比均存在显著性差异(Ρ〈0· 05); 大鼠心肌组织中的 SOD含量较对照组略有降低,但均无显著性差异; 中、高剂量组与阿霉素组相比存 在显著性差异 (P〈0. 05)。 辅酶 ft。乳剂可以有效地降低阿霉素的心脏毒性,保护心脏损伤大鼠的 S0D 活性,从而增加内源性活性氧自由基清除***的功能,减少 MDA的生成。
大鼠心电图变化情况见附图 1—3。与正常状态下心电图图 1相对照, ADM给药组心电图图 2中 P 波消失、 T波低平、 ST-T段明显降低、 QRS波群降低, 辅酶 ft。治疗组大鼠心电图图 3中 P波、 T波、 ST-T段、 QRS波群得到明显修复。
心肌组织切片 (HE染色)结果表明, 未经 ADM处理的对照组心 织无改变, 腹腔注射 ADM组 心肌损伤严重,表现为心内膜侧心肌细胞灶状坏死, 横纹消失, 细胞核消失, 心室壁各层可见心肌纤 维排列紊乱, 呈大片灶状坏死, 尾静脉注射辅酶 ft。纳米乳剂后可减轻 ADM诱导产生的心脏损伤。
实施例 17 辅酶 Q10乳剂初步革巴向性 i j介
给药及取样: 取 12h的小鼠随机分成四组, 分别尾静脉注射辅酶 。溶液剂和不同粒度的辅 酶 ft。纳米乳剂, 使每组每个时间点都有 3只小鼠, 给药剂量为 4. 0 mg · kg— 给药后于不同时间点 10 min、 30 min、 1 h、 2 h、 6h、 12h目艮眶取血于肝素抗凝管中, 离心分离血浆, 并 取出心、 肝、 脑, 用冰生理 itoK冲 净, 滤纸蘸干, -20°C冷冻保存。 采用高效液相色谱仪(大连依利特); W2000 II紫外可变波长检测器(大连依利特); HW2000色 谱数据处理工作站(大连依利特)。
色谱柱: Hypersil BDS C18 (200 讓 X 4. 6 讓, 5 μ πι, 大连依利特); 流动相: 甲醇- ¾Κ乙醇 (20 : 80, v/v); 柱温: 30 °C; 龍: 1. 0 mL/min; 检测波长: 275 nm; 进样量: 20 μί。
采用 3ρ87药动学程序对数据进行处理, 得出各组织中的 AUC。 结果见表 15。
表 15 辅酶 。在各组织中的 AUC及靶向效率
Figure imgf000015_0001
由表 15可知: 乳剂的粒度小于 150應时, 即使乳剂的粒度有较大的差异 (实施例 10、 11、 12分别 为 62· 6應、 91· 6應和 128· 2應), 心、 肝和脑的相对摄取率(re)均大于 1, 表明乳剂在这些组织具有 靶向性, 其靶向效果心》肝〉脑, 而且没有显著性区别, 这为将来的工业化大生产, 以及产品的储存 变化的控制顧衣据。 该结果未见报道。
实施例 18 三种复合乳化剂 ^应用制备乳剂。
以葫芦素(市售葫芦素原料, 在乳剂中的含量以总葫芦素计为 0. 1mg/ml )为模型药进行处方筛 选,油相为 10 MCT (w/v)0制备工艺参考实施例 10,与两种乳化剂复合棚情况的比较结果见表 16, 所测粒度均为高斯体积径。
表 16 不同复合乳化剂制备葫芦素乳剂的试验结果
Figure imgf000015_0002
(注: 处方组成中维生素 E (VE)是抗氧剂, 去掉 VE贝 U所制乳剂中葫芦素不稳定, 灭菌前后乳 剂粒度下降 6%, 加入 VE则灭菌前后粒度没有变化, ①、 ②、 弋表重复实验次数。) 将处方 6中的 TPGS去掉,贝唰备的乳剂不能拮抗冻融试验。另外,将处方 6中的 TPGS换成 DSPE- PEG2000, 其它不变, 结果灭菌前后的粒度分别为 55. 3應和 60. 6應, 冻融试验后的粒度为 62. 3應, 说明 DSPE- PEG2000
Figure imgf000016_0001
良好的 冻融作用。
以表 6处方 2为基础,分别考察了日本产 NANOMIZER/美国产頂 CROFLUIDIZER (高压微射流纳米分 散仪)、 国产机器纳米微乳化系列设备 DSS系列 /德国产 ΕΚΑΤΟΝΑΝΟΜΙΧ/意大利产实验型高压均质机 -Niro Soavi NS1001L型高压均质机等不同设备制备乳剂的抗热和冻融破坏情况, 结果没有显著性差 别, 表明本发明可应用于不同设备、不同分散原理(如果采用传统的经典处方, 即采用卵磷脂作为乳 化剂, 贝 U设备对乳剂的粒度、 分布有影响, 所制备的乳剂达不到抗热和冻融破坏目的)。
另外, 还考察了 pH范围 3〜9, 结果 pH对乳剂粒度没有显著性影响, 这是以前的经典乳剂处方 所不具备的特点,说明本发明特别适合于对 PH敏感的药物制备乳剂。将油相换成不同比例的混合油, 如 LCT/MCT 10 : 90; 20: 80; 30: 70; 40: 60; 50: 50; 60: 40; 70: 30; 80: 20; 90: 10; 100: 0, 所制备的乳剂也均能銜吉抗热和冻融破坏试验。雄行油相浓度用量考察时发现,油相的浓度若超过 20%, 制得的乳剂不能拮抗热与冻融的破坏作用, 因此油相的浓度以小于或者等于 20%为宜。
将处方 6中的 F68 (泊洛沙姆)用量改为 5%或 10% (w/v), 其它成分不变, 则乳剂的平均粒径 分别为 63皿、 38皿, 冻融后粒 @*发生明显变化。
实施例 19
将实施例 18中的 SPC换成 EPC, 其它不变, 试验表明结果相同, 没有显著性变化。
实施例 20
将实施例 18中的葫芦素换成葫芦素 β (或者双氢葫芦素 Β、 异葫芦素8、 葫芦素 D、 葫芦素 E、 葫芦素 I、 葫芦素 Q) (HPLC面积归一化纯度大于 90%), 其它不变, 试验表明结果相同, 没有显著性 变化。
实施例 21
采用实施例 18的方法, 将葫芦素换成辅酶 ft。(乳剂中辅酶 ft。浓度为 1%, 即制剂中辅酶 浓度 为 10 mg/ml), 并进行简单调整, 结果见表 17。
表 17 不同复合乳化剂制备辅酶 。乳剂的试验结果
Figure imgf000016_0002
采用 HS15用量为 0, SPC与 F68均为 1%的复合乳化剂处方所制备乳剂亦经受不起冻融破坏试验; 如果去掉 SPC, 仅由 HS^P F68或者由 TPGS与 F68组成, 制得的乳剂对热和冻融的耐受力也不强。 实施例 22
将辅 B ft。的浓度变为 0· 1%、 0. 5%, SPC换 j¾EPC, 其他同实施例 9, 并采用实施例 19的研究方法, 得 到的结果相同, 没有显著性变化。
实施例 23 维生素 乳剂 ( 10mg/ml )
将实施例 21中的辅酶 ft。换成维生素 Id,浓度 1% (制剂浓度 10mg/ml), 其它不变, 制得的乳剂 粒度小于 100應, 能够经受热和冻融破坏作用。
实施例 24 维生素 乳剂(lmg/ml、 5mg/ml)
将实施例 23中的维生素 变为 0. 1 % (制剂浓度 lmg/ml)、 0. 5% (制剂浓度 5mg/ml), SPC换 成 EPC, 结果相同。
实施例 25 双异丙酚乳剂
采用实施例 18表 16中处方 2、 4的乳化剂组成, 油相为 10%的复合油 (LCT/MCT, 15/85,实施 例 9的油相), 制备本发明的双异丙酚(浓度 1 % )乳剂, 粒度分别为 76皿和 68皿。 同时按市售产品 的处方(双异丙酚 1%、 LCT1%、 SPC 1. 2%、甘油 2· 2%)制备双异丙酚乳剂, 得到的乳剂粒度为 187應。
将 种制剂分别置于 40°C考察 10天,结果本发明处方的制剂外观仍然为乳白色,而按照市售 处方制备以及市售产品的乳剂均变为淡黄色;冻融破坏试验结果表明,市售双异丙酚乳剂(阿斯利康, AstraZeneca)不能拮抗冻融破坏作用, 而本发明的乳剂在冻融后的外观与粒度基本没有变化, 说明 本发明制剂的稳定性远优于市售产品。
实施例 26 鸦胆子油乳剂
采用实施例 18表 16中处方 2、 4的乳化剂賊, 油相为 10%鸦胆子油, 制备本发明的鸦胆子油 乳剂, 其粒度分别为 81nm和 73應。 同时测定市售鸦胆子油乳剂(沈阳药大药业有限责任公司), 粒 度为 266 nm。将 ±¾H种制剂进行冻融破坏试验, 结果本发明乳剂的粒度分别为 83應和 71應, 而市 售鸦胆子油乳剂检测不到, 体系已经被严重破坏。 说明本发明制剂远优于市售产品。
实施例 27 前列地尔乳剂
采用实施例 18表 16中处方 2、 4的乳化剂组成, 油相为 10%的复合油 (LCT/MCT, 15/85,实施 例 9的油相), 制备本发明的前列¾尔(***素 E1 )乳剂, 过滤除菌,其粒度分别为 66應和 62應。 同时测定市售前列¾尔乳剂(商品名: 凯时, 北京泰德) 的粒度约为 233 皿。 将上 ¾H种制剂进行 冻融破坏试验, 结果本发明乳剂的粒度分别为 69應和 63應, 而市售前列¾尔乳剂检测不到, 体系已 经被严重破坏。 说明本发明制剂远优于市售产品。 本制剂的剌激性也大大降低。
实施例 28 五福心脑康乳剂
五福心脑康软胶囊是由神威药业^ ^, 曾用名:五福心脑清, 或者心脑清 /心脑康, 主要成份为: 精制红花油、 维生素 B6、 维生素 E、 冰片等。
采用实施例 18表 16中处方 2、 4的乳化剂组成, 分别制备含 10%、 5%或 1%精制红花油相应的五 福心脑康乳剂, 结果其粒度分别约为 91nm、 73 nm或 56應。 将上 ¾H种制剂进行冻融破坏试验, 结 果五福心脑康乳剂的粒度没有显著性变化。
实施例 29 丁苯酞乳剂
采用实施例 18表 16中处方 2的乳化剂賊, 油相为 10%的复合油 (LCT/MCT, 15/85, w/w), 丁 苯酞浓度为 1 %, 制备本发明的丁苯酞乳剂, 其粒度约为 70皿。 冻融破坏后乳剂的粒度为 73皿, 没 有显著性变化。
实施例 30 榄香録乳剂
榄香録是莪术油中的主要成分 β -、 -和5 -榄 希的组合物, 现有的乳剂是由榄香 J:希、 大豆磷 月旨和胆固醇制成, 批文号为 WS-258 (X-218) -93 (1) , 其规格为 20ml: 0· lg, 即 0· 5%。 由于现有 制剂组方存在一定问题, 临床应用过程中产生较为严重的剌激性, 因此专利号为 ZL02155072. 7的专 禾 IJ制备了其乳剂,其制剂包括榄香 ϋθ. 05-0. 25%、注射用 油 10〜30%、注射用蛋黄卵磷脂 1. 0〜 1. 5%或注射用大豆磷脂0. 8〜1. 5%、注射用甘油 2· 0〜2· 5%、注射用水加至 100ml。按照该专利的 处方制备乳剂, 冻融 i 结果表明, 该专利的乳剂不能经受冻融 i 。
本实施例采用实施例 18表 16中处方 2的乳化剂賊, 油相组成见表 18。
油相组成
Figure imgf000018_0001
采用实施例 9的工艺制备乳剂, 结果根据处方 1、 2、 3制备的乳剂粒度分另喲为 63應、 58應和 67應, 冻融破坏 i 后乳剂的粒度纖小于 70應, 没有显著性变化。小鼠扭体剌激性 i 结果表明, 本发明制剂的剌激性 低于市售制剂(注: 小鼠扭体剌激性试验方法为, 试¾¾力物: 昆明小鼠, 每 组 10只, 雌雄各半, 制剂均用 5%葡萄糖稀释成药物含量 2mg/ml; 齐糧及给药途径: 0. 5ml/只,腹腔 注射;观察 0 . 5小时内小鼠扭体次数。市售注射剂的小鼠平均扭体次数为 10. 2,而本发明制剂为 2. 6)。
实施例 31 脑米松棕榈酸酯乳剂
脑米松棕榈酸酯的现有制剂为乳剂,其商品名为利美达松,每安瓿 lml含有效成分 4. Omg脑 米松棕榈酸酯, 发明人发现, 该乳剂同样经受不了冻融破坏试验。
采用实施例 18表 16中处方 2的乳化剂賊, 油相为 10%的复合油 (LCT/MCT, 15/85, w/w), 制 备本发明的脑米松棕榈酸酯乳剂(lml含有效成分 4. 0mg), 其粒度小于 100應, 约为 57 應, 冻融 破坏试验后乳剂的粒度为 61應, 没有显著性变化。
实施例 32 脂溶性维生素乳剂
月旨溶性维生素是人体必需的营养素, 临床危翻人常常需要补充, 以维持生命, 但脂溶性维生素 不溶于水, 口服给药的生物利用度又比较低, 因而顾合于静脉注射。 目前, 已有两类市售产品脂溶 性维生素注射液 I和 II (部颁标准二部, 第五册,85页〜 90页) , 其处方组成如下。
处方 I : 维生素 A 69mg ( 23万单位) ; 维生素 D2 1. Omg ( 4万单位) ; 维生素 E 0. 64g ( 7万单位) ; 维生素 Kl 20mg ; 注射用大豆油 100g ; 注射用卵磷脂 12g ; 甘油 22. 0g; 注射用水适量; 全量 1000ml。
处方 Π : 维生素 A 99mg ( 33万单位) ; 维生素 0. 5mg ( 2万单位) ; 维生素 E 0. 91g ( 1000单位) ; 维生素 Id 15mg ; 注射用大豆油 100g; 注射用卵磷脂 12g; 甘油 22. 0g; 注射用水适量; 全量 1000ml。
上述处方的乳齐岫华3¾1|贿限公司生产,我们将其进行冻融试验发现该乳剂不能 ί誠冻融破坏 作用。
将上述处方中的乳化剂 "注射用卵磷脂"换成 "SPC lg、 HS15 2g、 泊洛沙姆 F68 lg"组成的乳 化剂(不额外加入 VE) , 结果所制备乳剂的平均体积粒度小于 lOOnm, 分别约为 66nm、 62nm, 冻融 破坏试验后乳剂的粒度分另喲为 70應和 68應, 没有显著性变化。将处方中的 "注射用大豆油"换成 "LCT/MCT, 15/85, w/V" 賊的混合油, 乳化剂为实施例 18表 16中处方 2的乳化剂(不额外加入 VE), 结果所制备乳剂的平均体积粒度小于 lOOnm, 分别约为 58nm、 60nm, 冻融破坏试验后乳剂的粒 度分别约为 63nm和 66nm, 没有显著性变化。
实施例 33 马蔺子素乳剂
马蔺子素包括甲素与乙素, 其结构如下:
Figure imgf000019_0001
马蔺子甲素 马蔺子乙素 与辅酶 Q10的结构 (见下式)相似。
Figure imgf000019_0002
参考 "实施例 9 "制备可拮抗热与冻融破坏的马蔺子素乳剂 (最终制剂中马蔺子素浓度为
10mg/ml),结果所制备乳剂的体积平均粒度约为 66應,灭菌与冻融后的体积平均粒度分另喲为 68 nm 与 69皿。 将处方中的 HS15换成 TPGS, 其体积平均粒度约为 53皿, 灭菌与冻融后的体积平均粒度分别 约为 51 nm与 56nm
在处方中加入 0. 2%的 DSPE-PEG2000, 即处方组成: 马蔺子素 1. 0g、 卵磷脂 1. 0g、 HS152. 0g、泊 洛沙姆 188 1. 0g、 DSPE-PEG 0. 2 g、 注射用油 10g (大豆油 /中链油, 15/85, w/w), 丙三醇 2. 4g、 EDTA-2Na O. 05g, 其余为注射用水, 共 100mL。 制得的乳剂体积平均粒度约为 56皿, 灭菌与冻融后的 体积平均粒度分另喲为 52 nm与 56應。 根据两种处方制备的乳剂均具有良好的拮抗热与冻融破坏作 用。 同理, 可以采用此处方工艺制备各自单体化合物的乳剂。
实施例 34
采用实施例 18的方法,制备鱼油(深海鱼油, 富含 DHA等多不饱和脂肪 其酯)、薏米仁油、 莪术油、柴胡油、 沙棘油、 丸蒜油、大蒜素、 川芎油、 当归油、辣椒精油、 生姜油、 ; ^籽油、鱼腥 草油、 月见草油、 紫苏籽油、 鲨肝醇、 丹参酮 ΠΑ、 蒿本内酯、 恩替卡韦、 胆维他(茴三硫)、 马洛 替酯、 高三尖酯碱、 去甲斑蝥酸、 姜黄素、 环扁桃酯、 β -榄香録、 骨t≡醇、 他汀类降脂药(如洛 伐他汀、 辛伐他汀等)、 维生素 E烟酸酯、 棉子酚、 冬凌草甲素、 非诺贝特、 伊曲康唑、 坎地沙坦、 羟基喜树碱、 喜树碱衍生物、 (紫杉醇及其衍生物、 多烯紫杉醇及其衍生物)、 非那雄胺、 依托伯苷、 人参皂甙、 20(S)~原人参二醇、人参皂甙 Re、 人参皂甙 Rbl、 人参皂甙 Rg2、 20(R)-人参皂甙 Rg3和 20(S) "人参皂甙 乳剂, 它们的平均体积粒度均小于 150nm, 冻融试验后乳剂的粒度没有显著性 变化。
根据实际膚况, 所述腊溶性化合物或药物与所述 油类物质的比例为 1: 0 1 10000w/w 当采用油类药物时, 贝呒需采用额外的油, 即药物与所述 C6〜 (^油类物质的比例为 1: Ow/w; 如果采 用骨t≡醇, 由于骨^≡酉½制剂中的浓度为 1μ , 油类物质在制剂中的用量为 1% (w/v) 时, 药物与油类物质的比例为 1: 10000w/w; 当采用 0. l%w/v油类物质时, 药物与油类物质的比例为 1 1000w/w
以上所有实施例中磷膨勾更换为其它的天然或者半合成或者全合成的磷脂, 如 "心肌磷脂"、 "磷 脂酉舰醇"、 "磷脂酰甘油"、 "鞘磷脂 (SM)"、 "磷脂酰丝氨酸 (PS)"、 "氢化磷脂"、 "DMPC (二棕榈酰磷 月旨酉舰碱) "、 "D0PC (二油酰磷脂酉舰碱) " 、 "DLPC (二月桂酰磷脂酉舰碱) "、 "磷脂酰乙醇胺(PE)", 得到的结果相同。
实施例 35
在以上各处方中, 加入油酸、 亚油酸、 亚麻油酸、 硬脂酸、 二十二碳六録酸、 胆酸、 去氧胆酸、 生育酚、 硫辛酸、 焦亚硫酸钠、 亚硫醱内、 氮气、 柠檬酸等辅助乳化剂, 以及抗氧化剂、 pH调节剂 等添加剂, 均不影响乳剂的抗热、 抗冻融性能, 也不影响乳剂的粒度大小。 油相为 油类物质, 可选自纽结构改造和水解后的椰子油、漏油、大豆油、红花油、甘油三酸酯, 辛癸酸甘油酯、 油 酸乙酯、 亚油酸甘油酯、 亚油酸乙酯、 油酸甘油酯、 胆固醇油酸酯 /亚油酸酯、 椰子油 C8 I C10甘油 单酯或双酯、椰子油 C8 I C10丙二醇双酯、椰子油 C8 I C10丙三醇三酯中的一种或一种以上, 均可 获得具有抗热、 抗冻融性能的乳剂。 实施例 36 稳定性试验
(一)影响因素试验
参照《中国药典》 2005年版二部附录药物稳定性指导原则设计, 进行高温和光照因素的考察。 将辅酶 ft。纳米乳剂, 分别在 40°C和光照(4500±5001ux) 下放置 10天, 于第 5、 10天取样, 测定辅酶 含量和乳剂粒径分布, 结果见表 19。
表 19 影响因素试验结果
Figure imgf000021_0001
由以上数据可知,本品在 40°C条件下保存, 其含量和平均粒径无明显变化; 在光照条件下, 第 5 天含量已明显下降, 故未进行 10天光照试验, 平均粒径没有明显变化, 说明在光照 牛下, 乳齐, 现出不稳定的趋势, 提示本品应严格避光保存。
(二)加速试验及长期稳定性试验
1.力口速试验
根据药典中药物稳定性指导原则, 加速试验在 25±2°C下进行, 时间为 6个月。
将辅酶 Q10乳剂分装于西林瓶中, 充氮、 密封, 在 25±2°C下避光放置 6个月, 于第 1、 2、 3、 6 月取样, 考察乳剂外观、 粒度、 含量变化, 结果见表 20。
表 20加速 ΐ ^结果
批次 时间 (月) 外观 平均粒度 (nm) CV 含量 (%)
0 黄色乳剂 69.0 0.390 100.0
1 黄色乳剂 68.7 0.388 99.8
1 2 黄色乳剂 67.9 0.396 101.3
3 黄色乳剂 69.5 0.398 99.5
6 黄色乳剂 70.5 0.415 99.2
0 黄色乳剂 66.8 0.401 100.0
1 黄色乳剂 68.9 0.389 99.5
2 2 黄色乳剂 69.6 0.400 100.8
3 黄色乳剂 71.8 0.413 99.04
6 黄色乳剂 70.6 0.421 100.1
3 0 黄色乳剂 71.3 0.388 100.0
1 黄色乳剂 68.9 0.381 99.2 2 黄色乳剂 67.0 0.396 101.5
3 黄色乳剂 70.8 0.404 100.6
6 黄色乳剂 73.9 0.413 98.8
2. 长期稳定性试验
根据药典中药物稳定性试验指导原则, 长期 在 6 ± 2°C下进行。
将辅酶 Q10乳剂分装于西林瓶中, 充氮、 密封, 在 6 ± 2°C 下, 避光放置 6个月, 于第 3、 6 月取样, 考察乳剂外观、 粒度、 含量变化, 结果见表 21。
表 21 长期试验结果
Figure imgf000022_0001
结果表明,本发明的辅酶 Qio乳剂在 25±2°C加速 ΐ ^ 牛下和 6士 2°C长期稳定 牛下避光放置 6个月, 制剂的外观、 粒度与含量均没有明显变化。

Claims

权 利 要 求
1. 一种复合型乳化剂, 包含两种或两种以上乳化剂, 选自: 磷脂 10%w/v、 PEG类乳化剂 30%w/v、 泊洛沙姆类物质 ^10%w/v, 以 乳剂中的含量计。
2. 如权利要求 1所述的复合型乳化剂, 其中戶避磷脂选自蛋黄磷脂、 磷脂、 其它天然或半 合成或全合成的磷脂中的一种或一种以上; 所述 PEG类乳化剂选自 HS15、 TPGS和 DSPE-PEG中一种或 一种以上, PEG的分子量为 100〜10000, 戶; f¾ DSPE-PEG包括 DPPE-PEG和 DMPE-PEG; 所述泊洛沙姆 类物质选自泊洛沙姆 188和 Pluronic F68。
3. 如权利要求 2所述的复合型乳化剂, 其中戶避其它天然或半合成或全合成的磷脂选自心肌磷 月旨、磷脂應几醇、磷脂酰甘油、鞘磷脂、磷脂酉 氨酸、氢化磷脂、二棕榈酰磷脂酉舰碱、二油酰磷 月旨酉舰碱、 二月桂酰磷脂酉舰碱和磷脂酰乙醇胺。
4. 如权利要求 1所述的复合型乳化剂, 其中包含一种磷脂、 一种 PEG类乳化剂, 并且加入含量 ^50%w/v 的冻融保护剂, 以 乳剂中的含量计。
5. 如权利要求 4所述的复合型乳化剂, 其中腿冻融保护剂选自醇类和糖类物质, 所述醇类物 质选自丙二醇、 丙三醇和聚乙二醇中的一种或一种以上, 腿糖类物质选自葡萄糖、 甘露醇、 蔗糖、 海藻糖、 麦芽糖和乳糖中的一种或一种以上。
6. 如权利要求 1所述的复合型乳化剂, 包含三种或三种以上乳化剂, 其中一种是泊洛沙姆, 但 不加入冻融保护剂。
7. 如权利要求 6所述的复合型乳化剂, 包含磷脂、 PEG类乳化剂中的一种或两种及一种泊洛沙 姆类乳化剂。
8. 用权利要求 1所述复合型乳化剂制备的乳剂, 包含油相、 复合型乳化剂和水相, 其中所述复 合型乳化剂包含选自以下物质中的两种或两种以上: 磷脂 10%w/v、 PEG类乳化剂 30%w/v、 泊 洛沙姆类物质 ^10%w/v, 以 乳剂中的含量计。
9. 如权利要求 8戶; f¾的乳剂, 其中所述油相包含 Ce〜 油类物质, 及有治疗活性的油脂性物质 和 /或溶解或分散在所述 (;〜^油类物质中的腊溶性化合物或药物, 所述脂溶性化^勿或药物与腿
C6〜 (^油类物质的比例为 1: 0〜1: 10000w/w, 所述 C6〜 (^油类物质的用量为 0. l〜20%w/v, 以其在 乳剂中的含量计。
10. 如权利要求 8所述的乳剂, 其中所述 Ce〜 油类物质选自经过结构 ¾it和水解后的椰子油、
«I油、 大豆油、 红花油、甘油三酸酯, 辛癸酸甘油酯、 油酸乙酯、 亚油酸甘油酯、亚油酸乙酯、 油 酸甘油酯、胆固醇油酸酯 /亚油酸酯、椰子油 C8 I C10甘油单酯或双酯、椰子油 C8 I C10丙二醇双酯、 椰子油 C8 I C10甘油三酯中的一种或一种以上;戶避有治疗活性的油脂性物质和 /或溶解或分散在所 述植物油和 /或动物油中的腊溶性化合物或药物选自辅酶 Q10、 葫芦素、 葫芦素 B、 双氢葫芦素 B、 异葫芦 «B、 葫芦素 D、 葫芦素 E、 葫芦素 I、 葫芦素 Q、 前列地尔、双异丙酚、 维生素 Kl、地塞米 松棕榈酸酯、 丹参酮 ΠΑ、 丁苯酞、 藁本内酯、 马蔺子素、 恩替卡韦、 胆维他、 马洛替酯、 高三尖酯 碱、 去甲斑蝥酸、 姜黄素、 环扁桃酯、 β -榄香録、 鲨肝醇、 他汀类降脂药、 鸦胆子油、 沙棘油、 鱼 油、 薏米仁油、莪术油、 大蒜油、 丸蒜素、 川芎油、 当归油、辣椒精油、 生姜油、 芹菜籽油、鱼腥草 油、 月见草油、 紫苏籽油、 五福心脑康、 维生素 Ε烟酸酯、 棉子酚、 冬凌草甲素、 非诺贝特、 伊曲 康唑、坎地^ fi、羟基喜树碱、喜树碱衍生物、紫杉醇及其衍生物、 多烯紫杉醇及其衍生物、非那雄 胺、 依托伯苷、 人参皂甙、 20(S)~原人参二醇、 人参皂甙 Re、 人参皂甙 Rbl、 人参皂甙 Rg2、 20(R)- 人参皂甙 Rg3和 20(S) "人参皂甙 Rg3o
11. 如权利要求 8所述的乳剂, 其中还包含选自助乳化剂、 稳定剂、 冻融保护剂和 pH调节剂中 一种或一种以上的药物辅料, 所述助乳化剂选自油酸、亚油酸、亚麻油酸、硬脂酸、二十二碳六録酸 和胆酸中的一种或一种以上;戶; f¾冻融保护剂选自包括丙二醇、丙三醇和聚乙二醇中一种或一种以上 的醇类和包括葡萄糖、甘露醇、蔗糖、海藻糖、 醇、麦芽糖和乳糖中一种或一种以上的糖类物质; 所述稳定剂选自氮气、 EDTA及其盐类、 ¾K亚硫醱内、 ¾Κ亚硫隨钠、 焦亚硫酸钠、 维生素 C及 其衍生物、二丁基羟基甲苯、 a -生育酚、 a -醋酸生育酚和氢醌中的一种或一种以上; 所述^ 调节 剂选自甘油、 1,2-丙二醇、 葡萄糖、 麦芽糖、 甘露醇和木糖醇中的一种或一种以上; 所述 pH调节剂 选自盐酸、 氢氧化钠、 醋酸、 醋醱内、 磷酸、 磷膨内、 柠檬酸和 »酸钠中的一种或一种以上。
12. 如权利要求 8所述的乳剂, 其中所 ¾7j相是含或不含水溶性物质的水和 /或甘油水溶液。
13. 权利要求 8所述乳剂的制备方法, 包括以下步骤:
(1)制备油相:在氮气环境中将油类物质及油溶性成分加热至 20〜90°C,然后加入乳化剂, 20〜 90°C时搅拌至溶解, 接着纖半边加入药物活性成分;
(2)制备水相: 将水溶性物质加入水和 相乳化剂中, 在 20〜90°C下搅拌 5min, 使之完全 混溶;
(3)氮气环境、 20〜60°C, 将水相加入油中, 搅拌 5〜30min, 形成初乳;
(4)过均质 {¾行均质化处理, 第一步调节匀化压力至 4000〜8000psi, 第二步调节匀化压力 至 10000〜30000psi, 制得乳剂。
14. 如权利要求 12腿的制备方法, 其中, 在均质化处理前调节 pH值至 3〜9。
15. 如权利要求 12戶; f¾的制备方法, 其中还包括过微孔滤膜、 分装和灭菌处理。
16. 如权利要求 14戶; f¾的制备方法,其中戶 f¾的灭菌处理方法,选自无菌操作处理、湿热灭菌、 热压灭菌, 和微波灭菌处理。
PCT/CN2008/071747 2007-07-26 2008-07-25 Émulsifiant composite, émulsion préparée à partir de celui-ci et procédé de préparation de celle-ci WO2009012718A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08783740A EP2184100A1 (en) 2007-07-26 2008-07-25 A composite emulsifier, an emulsion prepared from it and the preparation method thereof
JP2010517259A JP2010534555A (ja) 2007-07-26 2008-07-25 複合型乳化剤及びそれを用いて調製された乳剤並びにその調製方法
US12/670,820 US20100189596A1 (en) 2007-07-26 2008-07-25 Composite emulsifier, an emulsion prepared from it and the preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007100122757A CN101091890A (zh) 2007-07-26 2007-07-26 一种复合型乳化剂及用其制备的乳剂及其制备方法
CN200710012275.7 2007-07-26

Publications (1)

Publication Number Publication Date
WO2009012718A1 true WO2009012718A1 (fr) 2009-01-29

Family

ID=38990437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071747 WO2009012718A1 (fr) 2007-07-26 2008-07-25 Émulsifiant composite, émulsion préparée à partir de celui-ci et procédé de préparation de celle-ci

Country Status (5)

Country Link
US (1) US20100189596A1 (zh)
EP (1) EP2184100A1 (zh)
JP (1) JP2010534555A (zh)
CN (1) CN101091890A (zh)
WO (1) WO2009012718A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112900A2 (en) 2010-03-12 2011-09-15 Cytotech Labs, Llc Intravenous formulations of coenzyme q10 (coq10) and methods of use thereof
JP2012012331A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp プロポフォール含有水中油型エマルション組成物
JP2013501752A (ja) * 2009-08-11 2013-01-17 ピエール、ファーブル、メディカマン Dhaエステルを含む非経口投与のための医薬組成物
US9896731B2 (en) 2009-05-11 2018-02-20 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (coenzyme Q10)
US9901542B2 (en) 2013-09-04 2018-02-27 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme Q10
US10376477B2 (en) 2011-04-04 2019-08-13 Berg Llc Method of treating or preventing tumors of the central nervous system
US10933032B2 (en) 2013-04-08 2021-03-02 Berg Llc Methods for the treatment of cancer using coenzyme Q10 combination therapies
US10973763B2 (en) 2011-06-17 2021-04-13 Berg Llc Inhalable pharmaceutical compositions

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091890A (zh) * 2007-07-26 2007-12-26 沈阳药科大学 一种复合型乳化剂及用其制备的乳剂及其制备方法
CA2780486C (en) * 2009-11-10 2018-01-02 MyCell Holdings Limited Stabilized formulations of fatty acids
CN101869297A (zh) * 2010-06-02 2010-10-27 王京南 复方月见紫苏油脂肪乳口服溶液、饮料及制造方法
US20120213855A1 (en) * 2011-02-17 2012-08-23 Cima Labs Inc. Dosage forms for weakly ionizable compounds
US8945627B2 (en) 2011-05-05 2015-02-03 Wisconsin Alumni Research Foundation Micelles for the solubilization of gossypol
CN102204867B (zh) * 2011-05-20 2013-05-01 尚诚德 一种具有降脂补钙功能的脂质体制备方法
WO2013014073A1 (en) * 2011-07-22 2013-01-31 Universite De Strasbourg Phospholipid-detergent conjugates and uses thereof
CN102525954B (zh) * 2011-11-09 2013-06-05 济南环肽医药科技有限公司 左旋棉酚及其醋酸盐的注射用冻干乳制剂
CN102743394A (zh) * 2012-07-30 2012-10-24 刘时灵 复合脂溶性维生素注射液
CN103800907A (zh) * 2012-11-14 2014-05-21 沈阳药科大学 一种耐冻融乳剂平台
CN104116768A (zh) * 2013-04-26 2014-10-29 成都力思特制药股份有限公司 一种含聚乙二醇十二羟基硬脂酸酯的柴胡药物注射制剂及其制备方法
CN104288130A (zh) * 2013-07-16 2015-01-21 天津迈迪瑞康生物医药科技有限公司 一种注射用丙泊酚组合物、其制备方法及用途
CN103735504B (zh) * 2013-12-10 2016-06-29 国家纳米科学中心 一种伊立替康纳米脂束制剂及其制备方法
CN103859395B (zh) * 2014-01-24 2015-08-26 天津科技大学 一种高吸收率的辅酶q10的自乳化释药体系及其制备方法及应用
WO2015157750A1 (en) * 2014-04-11 2015-10-15 Sam Houston State University Formulations of dimethyl trisulfide for use as a cyanide antidote
CN105030760B (zh) * 2014-04-24 2018-10-02 长弘生物科技股份有限公司 稳定医药组合物
CN104940939B (zh) * 2014-06-16 2016-11-23 沈阳药科大学 大剂量甘油在可耐受冻融脂肪乳剂中的应用
JP6392883B2 (ja) * 2014-09-25 2018-09-19 富士フイルム株式会社 プロポフォール含有水中油型エマルション組成物及びその製造方法
CN105688220A (zh) * 2014-12-15 2016-06-22 四川曼赛思医药科技有限公司 一种含丁苯酞与新型增溶剂的药物组合物
CN104585750B (zh) * 2014-12-25 2016-06-01 李德远 一种抗四氧化二氮应激的食品及制备方法
CN105854014B (zh) * 2015-01-22 2019-07-26 中牧实业股份有限公司 一种不含聚氧乙烯基乳化剂的疫苗佐剂及其动物疫苗
CN105796486A (zh) * 2016-03-17 2016-07-27 南京天翔医药科技有限公司 丁苯酞脂肪乳注射剂及其制备工艺
CN106074377A (zh) * 2016-06-24 2016-11-09 广东双骏生物科技有限公司 一种稳定型维生素k2亚微乳及其制备方法
CN107028884A (zh) * 2017-06-22 2017-08-11 沈阳鑫泰格尔医药科技开发有限公司 一种含有姜黄素的药物制剂及其制备方法
CN107568731B (zh) * 2017-10-19 2020-09-29 李宏 一种辅酶q10鱼油纳米乳液及其制备方法与应用
CN110679669A (zh) * 2019-11-12 2020-01-14 上海海融食品科技股份有限公司 一种非氢化奶酪奶油及其制备方法
CN114796111A (zh) * 2021-01-28 2022-07-29 北京德立福瑞医药科技有限公司 一种含有难溶性药物的浓缩液以及由其制备的乳剂
GB2606739A (en) * 2021-05-19 2022-11-23 Landa Labs 2012 Ltd Method of preparing dermatological compositions
CN114027294B (zh) * 2021-12-12 2022-11-29 杭州中赢生物医疗科技有限公司 一种免疫细胞冻存液及免疫细胞冻存方法
CN114983937B (zh) * 2022-01-19 2023-11-07 中国医学科学院药物研究所 一种鱼腥草挥发油自微乳及其制备方法与应用
CN114796594A (zh) * 2022-04-08 2022-07-29 湖南有美生物科技有限公司 一种酵母重组胶原蛋白液体敷料的制备方法及其应用
CN114869904B (zh) * 2022-05-09 2023-10-20 广州汉光药业股份有限公司 复方维生素自乳化给药***及其制备方法
WO2024010441A1 (en) * 2022-07-06 2024-01-11 Avantsar Sdn Bhd A self-emulsifying drug delivery formulation with improved oral bioavailability of lipophilic compound
CN115176989A (zh) * 2022-07-12 2022-10-14 河南中大恒源生物科技股份有限公司 一种透明姜黄素油溶液及其制备方法和应用
CN115554241A (zh) * 2022-09-14 2023-01-03 浙江诚意药业股份有限公司 一种胶束型维生素k1注射液及其制备方法和应用
CN116098866A (zh) * 2022-12-15 2023-05-12 中南大学湘雅医院 一种用于治疗关节痛的糖皮质激素脂肪乳、其制法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1720900A (zh) * 2004-07-14 2006-01-18 无锡杰西医药科技有限公司 一种适用于难溶性药物的药用乳剂及其制备方法
CN1857239A (zh) * 2006-03-22 2006-11-08 杭州宇泰医药科技有限公司 辅酶q10注射乳剂及制备方法
CN101091890A (zh) * 2007-07-26 2007-12-26 沈阳药科大学 一种复合型乳化剂及用其制备的乳剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135680A (en) * 1978-04-12 1979-10-22 Nippon Oil & Fats Co Ltd Emulsifier composition
JP2926749B2 (ja) * 1989-04-25 1999-07-28 吉富製薬株式会社 プロスタグランジン含有液状組成物
JPH04154718A (ja) * 1990-10-18 1992-05-27 Green Cross Corp:The パーフルオロカーボン乳剤
JPH08198777A (ja) * 1995-01-25 1996-08-06 Taisho Pharmaceut Co Ltd 注射用脂肪乳剤
JPH09278672A (ja) * 1996-04-12 1997-10-28 Green Cross Corp:The 薬物含有脂肪乳剤
US6248363B1 (en) * 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
JP2001300287A (ja) * 2000-04-20 2001-10-30 Nof Corp パーフルオロカーボン乳化製剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1720900A (zh) * 2004-07-14 2006-01-18 无锡杰西医药科技有限公司 一种适用于难溶性药物的药用乳剂及其制备方法
CN1857239A (zh) * 2006-03-22 2006-11-08 杭州宇泰医药科技有限公司 辅酶q10注射乳剂及制备方法
CN101091890A (zh) * 2007-07-26 2007-12-26 沈阳药科大学 一种复合型乳化剂及用其制备的乳剂及其制备方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028446B2 (en) 2009-05-11 2021-06-08 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (coenzyme Q10)
US10519504B2 (en) 2009-05-11 2019-12-31 Berg Llc Methods for treatment of oncological disorders using epimetabolic shifters, multidimensional intracellular molecules, or environmental influencers
US10351915B2 (en) 2009-05-11 2019-07-16 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (Coenzyme Q10)
US9896731B2 (en) 2009-05-11 2018-02-20 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (coenzyme Q10)
JP2016000742A (ja) * 2009-08-11 2016-01-07 ピエール、ファーブル、メディカマン Dhaエステルを含む非経口投与のための医薬組成物
JP2013501752A (ja) * 2009-08-11 2013-01-17 ピエール、ファーブル、メディカマン Dhaエステルを含む非経口投与のための医薬組成物
KR101735861B1 (ko) 2009-08-11 2017-05-15 피에르 파브르 메디카먼트 비경구적으로 투여되는 dha 에스테르를 포함하는 약학적 조성물
AU2016200991B2 (en) * 2010-03-12 2017-12-21 Berg Llc Intravenous formulations of Coenzyme Q10 (CoQ10) and methods of use thereof
JP2019059734A (ja) * 2010-03-12 2019-04-18 バーグ エルエルシー コエンザイムQ10(CoQ10)の静脈内投与用製剤およびその使用方法
JP2016199573A (ja) * 2010-03-12 2016-12-01 バーグ エルエルシー コエンザイムQ10(CoQ10)の静脈内投与用製剤およびその使用方法
KR20140021467A (ko) * 2010-03-12 2014-02-20 베르그 엘엘씨 코엔자임 Q10(CoQ10)의 정맥내 제형 및 이의 사용 방법
TWI602562B (zh) * 2010-03-12 2017-10-21 博格有限責任公司 輔酶Q10(CoQ10)之靜脈注射調配物及其使用方法
WO2011112900A2 (en) 2010-03-12 2011-09-15 Cytotech Labs, Llc Intravenous formulations of coenzyme q10 (coq10) and methods of use thereof
EP2544663A4 (en) * 2010-03-12 2013-10-30 Berg Pharma Llc INTRAVENOUS FORMULATION FROM COENZYME Q10 (COQ10) AND METHOD OF USE THEREOF
US11400058B2 (en) 2010-03-12 2022-08-02 Berg Llc Intravenous formulations of coenzyme Q10 (CoQ10) and methods of use thereof
EP3366280A1 (en) * 2010-03-12 2018-08-29 Berg LLC Intravenous formulations of coenzyme q10 (coq10) and methods of use thereof
AU2011224207B2 (en) * 2010-03-12 2015-11-19 Berg Llc Intravenous formulations of Coenzyme Q10 (CoQ10) and methods of use thereof
JP2013522233A (ja) * 2010-03-12 2013-06-13 バーグ ファーマ エルエルシー コエンザイムQ10(CoQ10)の静脈内投与用製剤およびその使用方法
AU2018202010B2 (en) * 2010-03-12 2020-02-27 Berg Llc Intravenous formulations of Coenzyme Q10 (CoQ10) and methods of use thereof
EP2544663A2 (en) * 2010-03-12 2013-01-16 Berg Pharma LLC Intravenous formulations of coenzyme q10 (coq10) and methods of use thereof
JP2012012331A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp プロポフォール含有水中油型エマルション組成物
US10376477B2 (en) 2011-04-04 2019-08-13 Berg Llc Method of treating or preventing tumors of the central nervous system
US11452699B2 (en) 2011-04-04 2022-09-27 Berg Llc Method of treating or preventing tumors of the central nervous system
US10973763B2 (en) 2011-06-17 2021-04-13 Berg Llc Inhalable pharmaceutical compositions
US10933032B2 (en) 2013-04-08 2021-03-02 Berg Llc Methods for the treatment of cancer using coenzyme Q10 combination therapies
US11298313B2 (en) 2013-09-04 2022-04-12 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme Q10
US9901542B2 (en) 2013-09-04 2018-02-27 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme Q10

Also Published As

Publication number Publication date
EP2184100A1 (en) 2010-05-12
US20100189596A1 (en) 2010-07-29
JP2010534555A (ja) 2010-11-11
CN101091890A (zh) 2007-12-26

Similar Documents

Publication Publication Date Title
WO2009012718A1 (fr) Émulsifiant composite, émulsion préparée à partir de celui-ci et procédé de préparation de celle-ci
JP2023109849A (ja) カンナビノイドの希釈可能な製剤及びその調整方法
Jing et al. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel
CN104427976B (zh) 疏水的活性成分的储库制剂及其制备方法
WO2022160971A1 (zh) 一种含有难溶性药物的浓缩液以及由其制备的乳剂
CN106038488A (zh) 一种明显提高难溶性药物生物利用度的水包油型纳米乳及其制备方法
CN104224711B (zh) 以类固醇复合物为中间载体的紫杉醇亚微乳
WO2005067905A1 (ja) プロポフォール含有脂肪乳剤
AU2016324349A1 (en) Ubiquinone and ubiquinol compositions, and methods relating thereto
CN105853403A (zh) 一种紫杉醇棕榈酸酯脂质体及其制备方法
CN108289832A (zh) 用于以输注或注射形式进行静脉给药的左西孟旦以及输注浓缩液的改善配方
WO2016177346A1 (zh) 一种卡巴他赛脂肪乳注射剂及其制备方法和用途
JP2022509463A (ja) 非クルクミノイドの水溶性粒子とクルクミノイドの水溶性粒子から構成される製剤
WO2022013854A1 (en) Oral cannabinoid compositions
TW200922552A (en) Novel taxoid-based compositions
US20220193008A1 (en) Bioaccessibile compositions of lipophilic compounds and process thereof
Pichayakorn et al. Fabrication and characterization of buccal film loaded self-emulsifying drug delivery system containing Lysiphyllum strychnifolium stem extracts
WO2022043407A1 (fr) Compositions destinées au traitement des troubles neurologiques
KR100211772B1 (ko) 활성물질을 함유하는 동결건조 유제
Falcão et al. Nanotechnology in phytotherapy: Current challenges of lipid-based nanocarriers for the delivery of natural products
JP2022550797A (ja) リポソームカンナビノイドおよびその使用
Biganeh et al. Nanoformulations of plant-derived compounds as emerging therapeutic approach for colorectal cancer
CN107088227A (zh) 用于使治疗剂增溶的药物溶液和方法
Liu et al. A comprehensive preclinical evaluation of intravenous etoposide lipid emulsion
Garg et al. Application of self-emulsifying delivery systems for effective delivery of nutraceuticals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517259

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12670820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008783740

Country of ref document: EP