WO2008145292A1 - Vorrichtung, messanordnung und verfahren zur messung von langsam ablaufenden bewegungen eines probestücks - Google Patents

Vorrichtung, messanordnung und verfahren zur messung von langsam ablaufenden bewegungen eines probestücks Download PDF

Info

Publication number
WO2008145292A1
WO2008145292A1 PCT/EP2008/004069 EP2008004069W WO2008145292A1 WO 2008145292 A1 WO2008145292 A1 WO 2008145292A1 EP 2008004069 W EP2008004069 W EP 2008004069W WO 2008145292 A1 WO2008145292 A1 WO 2008145292A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
strain
sensitive sensor
temperature
length
Prior art date
Application number
PCT/EP2008/004069
Other languages
English (en)
French (fr)
Inventor
Adelbert Liebert
Bastian Devrient
Herbert Schendzielorz
Rudolf Löslein
Original Assignee
Areva Np Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva Np Gmbh filed Critical Areva Np Gmbh
Publication of WO2008145292A1 publication Critical patent/WO2008145292A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure

Definitions

  • the present invention relates to a device and a measuring arrangement for detecting slow-running movements of a sample piece.
  • the invention further relates to a method for measuring slow-running movements of a sample piece.
  • Normalized tensile tests are often performed to test materials and determine material properties.
  • specimens are subjected to defined tensile loads, at the same time the expansion and / or fracture behavior is detected. With these tensile tests, a variety of insights into the strength and ductility characteristics of the material investigated can be obtained.
  • the results of the experiments carried out under standardized conditions are suitable for the definition of characteristic values and for the characterization of the materials. If the material is additionally subject to certain external influences, this may greatly influence the measurement results. Such influences may be, for example, high pressure, high or low temperatures and / or aggresive media to which the material is exposed.
  • the invention is based on the object to provide a measuring method and a measuring arrangement for detecting the expansion behavior of a material sample available, with which a particularly reliable estimation of the material behavior is possible when used in the field of nuclear power plants.
  • the invention is based on the consideration that the resistance of materials to medium-influenced cracking and subsequent crack propagation by e.g. Media-assisted crack corrosion is an essential prerequisite for the design and implementation of technical applications which have surfaces in contact with the medium.
  • an elevated pressure eg 170 bar
  • a high operating temperature of the cooling medium eg 350 0 C
  • the medium is referred to in the specialist literature as high-temperature water (HTW) or dissolved oxygen in the water as oxygen-containing high-temperature water.
  • HMW high-temperature water
  • This water is an aggressive medium in which many materials fail due to the corrosive damage with superposition of mechanical and corrosive load and only a few materials are suitable for the construction of pressure-enclosing components.
  • the device according to the invention has a measuring bracket with two legs spaced apart from one another for fixing to the sample piece and a strain-sensitive sensor arranged on or assigned to the measuring bracket.
  • the device is particularly suitable for measuring the length or strain of the specimen to which a defined tensile force is applied.
  • the strain was not measured directly on the material sample (in the autoclave) - based on the initial length of the gauge length of the round tensile specimen used - but the strain due to the applied path of the Machine traverse determined with appropriate conversion. Due to a non-ideal and usually different machine rigidity, this leads to falsified measured values, which has an effect in the calculation, for example, of the modulus of elasticity.
  • the invention makes it possible to provide a measurement technique for recording the change in length available, in which the length changes directly on used sample body or on the respective Rundzugprobe under different media influences with high resolution at the corresponding measuring length of the sample body used can be measured.
  • the device according to the invention is particularly suitable as a so-called extensometer, which can deliver reliable measured values even under unfavorable environmental conditions.
  • the device is therefore also suitable, for example, for use in so-called high-temperature water (HTW), so that the measurement technique for recording changes in length directly on the respective round tensile specimen in oxygen-containing high-temperature water with high resolution at the corresponding gauge length of the round tensile specimens used. All disturbances related to the measurement of the change in length by external inductive displacement measurement, e.g. the frictional forces due to the seals of the drawbar with respect to the autoclave, the interior or by the rigidity of the abutment are avoided by the measuring arrangement according to the invention or the extensometer, as is measured directly on the sample.
  • HMW high-temperature water
  • a preferred variant of the invention provides that the strain-sensitive sensor is arranged adhering flat on the measuring bracket. As a result, a robust measuring arrangement is made available in which measured value distortions due to relative movements between the sensor and measuring bracket are almost impossible.
  • the measuring bracket may optionally have a U-shaped, an arcuate, an annular or a C-shaped connecting portion between the legs.
  • the measuring bracket has an extended measuring section which deforms substantially uniformly over the path change of the sample and whose deformation behavior can be measured substantially more precisely by means of the sensor than when the sensor is applied directly to the lateral surface of the sample piece ,
  • the measuring bracket thus provides a path translation, which transmits the very small changes in length of the specimen in precisely measurable changes in shape or changes in radius on the measuring bracket.
  • a sectionally regularly shaped or curved contour ensures the desired linearity of the measured data.
  • a C-shaped connection Section with a circular arc-shaped contour in which the circular arc has a constant radius, particularly good for detecting their deformation behavior, since the arc uniformly opens at a change in length of the specimen between the fixed thereto connecting legs, wherein the connecting portion uniformly deformed.
  • the legs may, for example, have clamping connections for fixing on the sample piece.
  • connection options are conceivable, for example. Screw or adhesive connections o. The like. It is important that the points of contact between the measuring bracket and the sample does not slip, which would make the measurement results unusable.
  • the connection is preferably designed in such a way that no notch effect on the surface of the specimen arises through the attachment of the clamp connections during the experiment.
  • the strain-sensitive sensor may in particular be formed by at least one strain gauge. Alternatively, several strain gauges may be arranged on the measuring bracket, either in parallel or in a bridge circuit. As a result, if necessary, temperature and / or other environmental influences can be taken into account and computationally compensated.
  • the strain gauges can supply measured values of different types, for example capacitive measured values or changes in an ohmic resistance.
  • the strain-sensitive sensor or strain gauges is expediently adhesively bonded to the connecting section of the measuring yoke.
  • the strain-sensitive sensor or the strain gauges may in particular be adhesively bonded to an outer side of the connecting section or the measuring yoke, since at this point the greatest change in the path of the measuring yoke takes place when the sample is stretched.
  • the fixation on the outside of the arc of the connecting portion is best suited for detecting highest possible measured values.
  • the strain-sensitive sensor or strain gauges against pressure, Temperature and / or media influence to be encapsulated As a result, the device which is resistant to corrosive phenomena is suitable for use in oxygen-containing high-temperature water, wherein the pressure values which occur can be, for example, between about 1 to 170 bar or more.
  • the temperature range may, for example, between about 25 0 C to about 350 0 C or more.
  • the oxygen content of the water or of the liquid or gaseous medium can be, for example, between 0 and 8 ppm of dissolved oxygen.
  • the electrical connection line of the strain-sensitive sensor or of the strain gauge can, for example, have a largely rigid enclosure and at least one electrical supply embedded therein in ceramic material.
  • An embodiment of the invention provides that at least the connecting portion of the measuring bracket is formed of a resilient material.
  • the measuring bracket or its connecting portion may in particular be formed from a high-temperature, pressure and / or media-resistant material.
  • a material is, for example, a suitable nickel-based material or a stainless steel that is not attacked or damaged even by the aggressive high-temperature water, for example. By stress corrosion cracking.
  • a suitable stainless steel such as Inconel 600® (registered trademark of the Special Metals Group of Companies) may be used as the material for the measuring bracket and the connecting section, a nickel-chromium alloy with good resistance to oxidation and corrosion at high temperatures.
  • the fields of application of such a material include components of furnaces, the chemical industry, the food processing industry and the nuclear industry.
  • the measuring bracket thus has sufficient resistance when used in oxygen-containing high-temperature water. In addition, it is not damaged by media-based Risskorrosionss bine at small strains in the elastic range.
  • the invention further comprises a measuring arrangement for detecting slow-moving movements or changes in length of a sample piece exposed to a defined tensile force or change in length.
  • the measuring arrangement comprises a sample piece or a sample body and a measuring device fixed thereto in accordance with one of the previously described embodiments.
  • the measuring arrangement can in particular be coupled to a data acquisition and / or data evaluation system.
  • This data acquisition and / or data evaluation system can in turn be coupled to a storage, display and / or printing device, so that visualization and / or recording with further analysis of the acquired measured values is possible.
  • the invention comprises a method for measuring slow-moving movements or changes in length of a sample piece, in particular by applying a tensile force acting on the sample piece, in which the changes in length of the sample piece are detected by means of a measuring bracket fixed thereto and with at least one strain-sensitive sensor arranged on the measuring bracket be set, which are in terms of pressure, temperature and chemical composition of the surrounding medium conditions substantially similar to those in the coolant circuit of an operating boiling water reactor plant or a pressurized water reactor plant.
  • the material trials take place under simulated environmental conditions of a boiling water reactor or pressurized water reactor in an autoclave of a corresponding simulation environment or according to the in-situ principle even locally in a boiling or pressurized water reactor itself.
  • the inventive method can be carried out in particular with a device and / or with a measuring arrangement according to one of the previously described embodiments. The method makes it possible to perform changes in length of specimens in aggressive media such as. In high-temperature water with high resolution. Disturbance variables, which falsify the measured value recording, can be largely filtered out or excluded.
  • Fig. 1 is a schematic representation of the measuring principle of a measuring arrangement according to the invention.
  • Fig. 2 is a schematic representation to illustrate the principle of operation of the measuring arrangement.
  • FIG. 1 shows a schematic representation of the measuring principle of a measuring arrangement 10 according to the invention, which essentially comprises a measuring device 12 in the form of a so-called extensometer 14 (see FIG. 2) as well as a sample piece or a sample body 16 on the / the extensometer 14 is fixed.
  • a downstream evaluation unit 18 the measured values of the extensometer 14 can be detected, processed and, if appropriate, delivered to a downstream visualization and / or storage unit designated generally by the reference numeral 20.
  • the reference numeral 20 may also indicate a printed or screen-displayed stress-strain diagram or other suitable graphical representation of the measured values.
  • the evaluation unit 18 can furthermore detect and process the mechanical load 22 applied to the sample body 16 and / or the environmental parameters 24, which respectively influence the measurement.
  • the mechanical load 22 is typically a tensile load acting on the elongated specimen 16 from both end faces.
  • a pressure vessel 25 also referred to as an autoclave, in which the extensometer 14 together with the material sample is arranged.
  • the evaluation unit 18 as well as the visualization and / or storage unit 20 connected downstream on the data side are expediently arranged outside the pressure vessel 25.
  • a connection line 42 which is encapsulated at least in the interior of the pressure vessel 25, is guided in the wall of the pressure vessel 25 by a pressure-resistant cable feedthrough.
  • FIG. 2 illustrates the functional principle of the measuring arrangement 10 according to the invention, which in turn comprises a measuring device 12 in the form of the extensometer 14 and the elongate, rod-shaped sample body 16 to which the extensometer 14 is fixed.
  • the extensometer 14 and the measuring device 12 form a so-called measuring bracket 26.
  • This measuring bracket 26 comprises two spaced-apart legs 28, which are fastened in each case by means of fastening elements 30, for example.
  • fastening elements 30 In the form of clamping connections 32 on the sample body 16.
  • the lower clamp connection of the lower fastener 30 is i.d.R.
  • the legs 28 are fixed to the sample body 16 so that no negative notch effects are formed, which could reduce the strength of the sample body 16 in the tensile test or its resistance to crack initiation.
  • each L-shaped legs 28 open into short parallel portions 34, to which a closed, annular, elastic connecting portion 36 connects, on the outside of a strain sensor 38 in the form of a high temperature water resistant, encapsulated strain gauge 40 (so-called . DMS) is fixed with its entire surface resting.
  • the strain gauge 40 may, for example, be glued or welded onto the connecting section 36 in order to transmit the spring movements to the strain gauges 40.
  • the strain gauge 40 may additionally be embedded in a densified oxide ceramic powder, thereby improving the transmission of the signal from the connection portion 36 to the strip 40. As a result, losses are reduced by relative movements of the DehnmessstAINs 40 to a minimum.
  • an electrical connection line 42 of the strain-sensitive sensor 38 or the strain gauge 40 which is encapsulated against pressure, temperature and / or media influence.
  • the electrical connection line 42 establishes a connection to the evaluation unit 18 (see FIG.
  • the measuring bracket 26 and the connecting portion 36 is, for example, a suitable stainless steel in question, whereby the measuring bracket 26 is given a sufficient resistance in its intended use in oxygen-containing high-temperature water.
  • a stainless steel for the measuring bracket is, for example, a nickel-chromium alloy with good resistance to oxidation and corrosion at high temperatures. The fields of application of such a material include components for the nuclear industry.
  • the measuring bracket can thus have sufficient resistance in its intended use in oxygen-containing high-temperature water. In addition, it is not damaged by stress corrosion effects at small strains in the elastic range.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Erfassung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines Probenkörpers (16), insbesondere unter Aufbringung einer auf den Probenkörpers (16) einwirkenden Zugkraft, umfassend einen Messbügel (26) mit zwei beabstandeten Schenkeln (28) zur Fixierung am Probenkörper (16) und einen dehnungsempfindlichen Sensor (38), der am Messbügel (26) angeordnet ist. Die Erfindung betrifft weiterhin ein Verfahren zur Messung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines Probenkörpers (16), insbesondere unter Aufbringung einer auf den Probenkörper (16) einwirkenden Zugkraft, bei dem die Längenänderungen des Probenkörpers (16) mittels eines daran fixierten Messbügels (26) und mit wenigstens einem am Messbügel (26) angeordneten dehnungsempfindlichen Sensor (38) erfasst werden.

Description

Beschreibung
Vorrichtung, Messanordnung und Verfahren zur Messung von langsam ablaufenden Bewegungen eines Probenstücks
Die vorliegende Erfindung betrifft eine Vorrichtung und eine Messanordnung zur Erfassung von langsam ablaufenden Bewegungen eines Probenstücks. Die Erfindung betrifft weiterhin ein Verfahren zur Messung von langsam ablaufenden Bewegungen eines Probenstücks.
Zur Prüfung von Werkstoffen und zur Ermittlung von Werkstoffeigenschaften werden oftmals normierte Zugversuche durchgeführt. Hierbei werden Probenstücke definierten Zugbelastungen unterzogen, wobei gleichzeitig das Dehnungs- und/oder Bruchverhalten erfasst wird. Mit diesen Zugversuchen können vielfältige Erkenntnisse hinsichtlich der Festigkeits- und Duktilitätskennwerte des untersuchten Werkstoffes gewonnen werden. Die Ergebnisse der unter normierten Bedingungen durchgeführten Versuche eignen sich zur Definition von Kennwerten und zur Charakterisierung der Werkstoffe. Unterliegt der Werkstoff zusätzlich bestimmten äußeren Einflüssen, kann dies die Messergebnisse unter Umständen stark beeinflussen. Solche Einflüsse können bspw. hoher Druck, hohe oder tiefe Temperaturen und/oder aggresive Medien sein, denen der Werkstoff ausgesetzt ist.
Zur Gewinnung von Erkenntnissen über das Verhalten von Werkstoffen, die solchen Einflüssen ausgesetzt sind, sind überlagerte Versuche sinnvoll, bspw. ein sog. langsamer Zugversuch (SSRT-Test: Slow Strain Rate Tensile Test), bei dem der untersuchte Werkstoff bei geringer Dehnrate gleichzeitig definierten Umgebungseinflüssen ausgesetzt wird. Besonders bei Werkstoffen, die im Kraftwerksbau eingesetzt werden, sind derartige Versuche notwendig, um die erforderlichen Bauteildimensionierungen abschätzen sowie die typische Lebensdauer und das Versagensverhalten der Bauteile vorhersagen zu können. Dies betrifft insbesondere Werkstoffe, die im Bereich von Kernkraftwerken eingesetzt werden, da hier Bedingungen auftreten können, die das Bauteilverhalten erheblich beeinflussen können.
BESTÄT1GUNGSKOPIE Der Erfindung liegt die Aufgabe zu Grunde, ein Messverfahren sowie eine Messanordnung zur Erfassung des Dehnungsverhaltens einer Werkstoffprobe zur Verfügung zu stellen, mit denen eine besonders zuverlässige Abschätzung des Werkstoffverhaltens bei einem Einsatz im Bereich von Kernkraftwerken ermöglicht ist.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zur Erfassung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines Probenkörpers mit den Merkmalen des unabhängigen Anspruchs 1.
Die Erfindung geht von der Überlegung aus, dass die Beständigkeit von Werkstoffen gegenüber mediumbeeinflussten Rissbildungen und anschließendem Rissfortschritt durch z.B. mediengestützte Risskorrosion eine wesentliche Vorraussetzung zur Konstruktion und Umsetzung von technischen Anwendungen ist, welche mediumsberührte Oberflächen aufweisen.
So ist z.B. bei der Auswahl von Werkstoffen für den Wasserdampfkreislauf von Kraftwerken zur Stromerzeugung neben den mechanischen Eigenschaften, welche die Integrität des Systems aufrecht erhalten, auf eine ausreichende Beständigkeit gegenüber dem korrosiven Medium zu achten. Zur Erhöhung des Wirkungsgrades wird im Wasserdampfkreislauf ein erhöhter Druck (z.B. 170 bar) und eine hohe Betriebstemperatur des Kühlmediums (z.B. 3500C) verwendet. Das Medium wird in der Fachliteratur demnach als Hochtemperaturwasser (HTW) oder bei im Wasser gelöstem Sauerstoff als sauerstoffhaltiges Hochtemperaturwasser bezeichnet. Dieses Wasser stellt ein aggressives Medium dar, in welchem viele Werkstoffe aufgrund der korrosiven Schädigung unter Überlagerung von mechanischer und korrosiver Belastung versagen und nur wenige Werkstoffe für die Konstruktion der druckumschließenden Komponenten geeignet sind. Besonders bei kleinen Dehnraten in typischen Größenordnungen zwischen ca. iü 4 bis 10"3 s'1 kann eine erhöhte korrosive Anfälligkeit gegen mediumbeeinflusste Rissbildung vorliegen. Ähnliches gilt für die unter diesen Umgebungsbedingungen eingesetzte Messtechnik (z.B. zur Dehnungsmessung). Die Problematik kann verschärft auftreten, sofern ionale Verunreinigungen die schädigende Wirkung des Mediums verstärken.
Neben der ertragbaren Spannung stellt die Dehnung der verwendeten Rundzugproben beim Erreichen der Zugfestigkeit bzw. beim Bruch der Probe in sauerstoffhaltigem Hochtemperaturwasser eine wichtige Kenngröße für Aussagen zur Beständigkeit gegenüber mediumbeeinflusster Rissbildung dar. Bislang sind keine Längenmesssysteme verfügbar, welche unter den speziellen Umgebungsbedingungen des Primärkreislaufs von Siedewasserreaktoranlagen bzw. von Druckwasserreaktoranlagen unter den dort vorherrschenden hohen Drücken, d.h. 1 bis 170 bar, der hoher Mediumstemperatur, d.h. 25 bis 350 0C1 und einem Sauerstoffgehalt von 0 ... 8 ppm gelöstem Sauerstoff eine dauerhafte Messung der Längenänderungen unter den oben beschriebenen aggressiven Umgebungsbedingungen (sauerstoffhaltiges Hochtemperaturwasser) mit eventuell chemischen Transienten durch ionale Verunreinigungen (z.B. Chlorid, Sulfat, etc.) bei einer entsprechenden Auflösung der Längenmessung zu zufrieden stellenden Messwerten führen.
Die erfindungsgemäße Vorrichtung weist einen Messbügel mit zwei voneinander be- abstandeten Schenkeln zur Fixierung am Probenstück und einen am Messbügel angeordneten bzw. diesem zugeordneten dehnungsempfindlichen Sensor auf. Die Vorrichtung eignet sich insbesondere zur Längenänderungs- bzw. Dehnungsmessung des Probenstücks, auf das eine definierte Zugkraft aufgebracht wird.
Bisher wurde bei der Prüfung von Werkstoffen unter Umgebungsbedingungen, sowohl für Einzelproben- als auch Mehrprobenprüfungen, die Dehnung nicht direkt an der Werkstoffprobe (im Autoklaven) - bezogen auf die Ausgangslänge der Messlänge der verwendeten Rundzugprobe - gemessen, sondern die Dehnung aufgrund des beaufschlagten Weges der Maschinentraverse mit entsprechender Umrechnung ermittelt. Dies führt aufgrund einer nicht idealen und meist unterschiedlichen Maschinensteifig- keit zu verfälschten Messwerten, was sich in der Berechnung z.B. des E-Moduls auswirkt. Die Erfindung ermöglicht es hingegen, eine Messtechnik zur Aufzeichnung der Längenänderung zur Verfügung zu stellen, bei der die Längenänderungen direkt am verwendeten Probenkörper bzw. an der jeweiligen Rundzugprobe unter unterschiedlichen Medieneinflüssen mit hoher Auflösung an der entsprechenden Messlänge des verwendeten Probenkörpers gemessen werden kann.
Die erfindungsgemäße Vorrichtung eignet sich insbesondere als sog. Extensometer, das auch unter ungünstigen Umgebungsbedingungen zuverlässige Messwerte liefern kann. Die Vorrichtung eignet sich damit bspw. auch für die Verwendung in sogenanntem Hochtemperaturwasser (HTW), so dass sich die Messtechnik zur Aufzeichnung von Längenänderung direkt an der jeweiligen Rundzugprobe in sauerstoffhaltigem Hochtemperaturwasser mit hoher Auflösung an der entsprechenden Messlänge der verwendeten Rundzugproben eignet. Sämtliche Störgrößen in Bezug auf die Messung der Längenänderung durch externe induktive Wegmessung, wie z.B. die Reibkräfte durch die Dichtungen der Zugstange gegenüber dem Autoklaven, dem Innenraum oder durch die Steifigkeit des Widerlagers, werden durch die erfindungsgemäße Messanordnung bzw. das Extensometer vermieden, da direkt an der Probe gemessen wird.
Eine bevorzugte Variante der Erfindung sieht vor, dass der dehnungsempfindliche Sensor flächig haftend am Messbügel angeordnet ist. Hierdurch wird eine robuste Messanordnung zur Verfügung gestellt, bei der Messwertverfälschungen aufgrund von Relativbewegungen zwischen Sensor und Messbügel nahezu ausgeschlossen sind.
Der Messbügel kann wahlweise einen U-förmigen, einen bogenförmigen, einen ringförmigen oder einen C-förmigen Verbindungsabschnitt zwischen den Schenkeln aufweisen. Darüber hinaus sind weitere Gestaltungen und Formen des Messbügels möglich. Ein wesentlicher Aspekt der Erfindung besteht darin, dass der Messbügel einen verlängerten und sich weitgehend gleichmäßig über die Wegänderung der Probe verformenden Messabschnitt zur Verfügung aufweist, dessen Verformungsverhalten mittels des Sensors wesentlich präziser gemessen werden kann als bei einer Aufbringung des Sensors direkt an der Mantelfläche des Probenstücks. Der Messbügel liefert somit eine Wegübersetzung, welche die sehr kleinen Längenänderungen am Probenkörper in präzise messbare Formänderungen bzw. Radiusänderungen am Messbügel überträgt. Eine abschnittsweise regelmäßig geformte bzw. gekrümmte Kontur sorgt für die gewünschte Linearität der Messdaten. So eignet sich bspw. ein C-förmiger Verbindungs- abschnitt mit einer kreisbogenförmigen Kontur, bei der der Kreisbogen einen konstanten Radius aufweist, besonders gut zur Erfassung ihres Verformungsverhaltens, da sich der Kreisbogen bei einer Längenänderung des Probenstücks zwischen den daran fixierten Verbindungsschenkeln gleichmäßig öffnet, wobei sich der Verbindungsabschnitt gleichmäßig verformt.
Die Schenkel können bspw. Klemmanschlüsse zur Fixierung am Probenstück aufweisen. Daneben sind auch andere Verbindungsmöglichkeiten denkbar, bspw. Schrauboder Klebeverbindungen o. dgl. Wichtig dabei ist, dass die Berührpunkte zwischen dem Messbügel und der Probe nicht verrutschen, wodurch die Messergebnisse unbrauchbar gemacht würden. Gleichzeitig ist die Verbindung vorzugsweise so ausgestaltet, dass durch die Anbringung der Klemmanschlüsse während der Versuchsdurchführung keine Kerbwirkung an der Oberfläche des Probenkörpers entsteht.
Der dehnungsempflindliche Sensor kann insbesondere durch wenigstens einen Dehnmessstreifen gebildet sein. Wahlweise können auch mehrere Dehnmessstreifen am Messbügel angeordnet sein, wahlweise in Parallelschaltung oder auch in einer Brückenschaltung. Hierdurch können bei Bedarf Temperatur- und/oder andere Umgebungseinflüsse berücksichtigt und rechentechnisch kompensiert werden. Die Dehnmessstreifen können Messwerte unterschiedlicher Art liefern, bspw. kapazitive Messwerte oder Änderungen eines ohmschen Widerstandes.
Da sich die Schenkel des Messbügels nicht zur Messwerterfassung eignen, ist der dehnungsempfindliche Sensor bzw. der Dehnmessstreifen zweckmäßigerweise flächig haftend am Verbindungsabschnitt des Messbügels fixiert. Der dehnungsempfindliche Sensor bzw. der Dehnmessstreifen kann insbesondere flächig haftend an einer Außenseite des Verbindungsabschnittes bzw. des Messbügels fixiert sein, da an dieser Stelle bei einer Dehnung der Probe die größte Wegänderung des Messbügels stattfindet. Somit eignet sich die Fixierung an der Außenseite des Bogens des Verbindungsabschnitts am besten zur Erfassung möglichst hoch aufgelöster Messwerte.
Entsprechend den bevorzugten Einsatzmöglichkeiten der erfindungsgemäßen Vorrichtung kann der dehnungsempfindliche Sensor bzw. der Dehnmessstreifen gegen Druck-, Temperatur- und/oder Medieneinfluss gekapselt sein. Hierdurch eignet sich die gegenüber korrosiven Erscheinungen beständige Vorrichtung zum Einsatz in sauerstoffhaltigem Hochtemperaturwasser, wobei die auftretenden Druckwerte bspw. zwischen ca. 1 bis 170 bar oder mehr liegen können. Der Temperaturbereich kann bspw. zwischen ca. 250C bis ca. 3500C oder mehr liegen. Der Sauerstoffgehalt des Wassers bzw. des flüssigen oder gasförmigen Mediums kann bspw. zwischen 0 bis 8 ppm gelöstem Sauerstoff liegen.
Sinnvollerweise wird bei Anwendungen in derartigen Umgebungen eine gekapselte elektrische Anschlussleitung verwendet, so dass der dehnungsempfindliche Sensor bzw. der Dehnmessstreifen mitsamt seinen Anschlussleitungen gegen Druck-, Temperatur- und/oder Medieneinfluss gekapselt ist. Die elektrische Anschlussleitung des dehnungsempfindlichen Sensors bzw. des Dehnmessstreifens kann bspw. eine weitgehend starre Umhüllung und wenigstens eine darin in keramischem Material eingebettete elektrische Zuleitung aufweisen.
Eine Ausgestaltung der Erfindung sieht vor, dass zumindest der Verbindungsabschnitt des Messbügels aus einem federelastischen Material gebildet ist. Der Messbügel bzw. dessen Verbindungsabschnitt kann insbesondere aus einem hochtemperatur-, druck- und/oder medienresistenten Material gebildet sein. Als Material eignet sich bspw. ein geeigneter Nickelbasiswerkstoff oder ein rostfreier Stahl, das selbst nicht durch das aggressive Hochtemperaturwasser angegriffen oder geschädigt wird, bspw. durch Spannungsrisskorrosion.
Als Material für den Messbügel und den Verbindungsabschnitt kommt bspw. ein geeigneter Edelstahl wie Inconel 600® (eingetragene Marke der Special Metals Group of Companies) in Frage, eine Nickel-Chrom-Legierung mit guter Beständigkeit gegen Oxidation und Korrosion bei hohen Temperaturen. Zu den Einsatzfeldern eines solchen Materials gehören Bauteile von Feuerungen, die chemische Industrie, die Nahrungsmittel verarbeitende Industrie und die Nuklearindustrie. Der Messbügel hat somit eine ausreichende Beständigkeit bei einem Einsatz in sauerstoffhaltigem Hochtemperaturwasser. Zudem wird er bei kleinen Dehnungen im elastischen Bereich nicht durch mediengestützte Risskorrosionseffekte geschädigt. Die Erfindung umfasst weiterhin eine Messanordnung zur Erfassung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines einer definierten Zugkraft bzw. Längenänderung ausgesetzten Probenstücks. Die Messanordnung umfasst ein Probenstück bzw. einen Probenkörper und eine daran fixierte Messvorrichtung gemäß einer der zuvor beschriebenen Ausführungsvarianten. Die Messanordnung kann insbesondere mit einem Datenerfassungs- und/oder Datenauswertungssystem gekoppelt sein. Diese Datenerfassungs- und/oder Datenauswertungssystem kann wiederum mit einer Speicher-, Anzeige- und/oder Druckeinrichtung gekoppelt sein, so dass eine Visualisierung und/oder Aufzeichnung mit weitergehender Analyse der erfassten Messwerte ermöglicht ist.
Vor einem Einsatz der erfindungsgemäßen Vorrichtung bzw. der Messanordnung erfolgt zweckmäßigerweise eine Kalibrierung hinsichtlich der temperatur- und wegabhängigen Veränderungen des Messsignals nach geeigneten Kalibrierdaten bzw. -Vorschriften.
Schließlich umfasst die Erfindung ein Verfahren zur Messung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines Probenstücks, insbesondere unter Aufbringung einer auf das Probenstück einwirkenden Zugkraft, bei dem die Längenänderungen des Probenstücks mittels eines daran fixierten Messbügels und mit wenigstens einem am Messbügel angeordneten dehnungsempfindlichen Sensor erfasst werden, wobei hinsichtlich Druck, Temperatur und chemischer Zusammensetzung des umgebenden Mediums Bedingungen eingestellt werden, die im Wesentlichen denen im Kühlmittelkreislauf einer im Betrieb befindlichen Siedewasserreaktoranlage oder einer Druckwasserreaktoranlage entsprechen.
Das heißt, die Materialversuche finden unter simulierten Umgebungsbedingungen eines Siedewasserreaktors oder Druckwasserreaktors in einem Autoklaven einer entsprechenden Simulationsumgebung oder gemäß dem In-Situ-Prinzip sogar vor Ort in einem Siede- oder Druckwasserreaktor selber statt. Das erfindungsgemäße Verfahren kann insbesondere mit einer Vorrichtung und/oder mit einer Messanordnung gemäß einer der zuvor beschriebenen Ausführungsvarianten durchgeführt werden. Das Verfahren ermöglicht es, Längenänderungen an Probenkörpern in aggressiven Medien wie bspw. in Hochtemperaturwasser mit hoher Auflösung durchzuführen. Störgrößen, welche die Messwertaufnahme verfälschen, können weitgehend ausgefiltert bzw. ausgeschlossen werden.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
Fig. 1 eine schematische Darstellung des Messprinzips einer erfindungsgemäßen Messanordnung und
Fig. 2 eine schematische Darstellung zur Verdeutlichung des Funktionsprinzips der Messanordnung.
Die Fig. 1 zeigt anhand einer schematischen Darstellung das Messprinzip einer erfindungsgemäßen Messanordnung 10, die im Wesentlichen eine Messvorrichtung 12 in Gestalt eines sog. Extensometers 14 (vgl. Fig. 2) sowie ein Probenstück bzw. einen Probenkörper 16 umfasst, an der/dem der Extensometer 14 fixiert ist. Mittels einer nachgeschalteten Auswerteeinheit 18 können die Messwerte des Extensometers 14 erfasst, verarbeitet und ggf. an eine allgemein mit der Bezugsziffer 20 bezeichnete nachgeschaltete Visualisierungs- und/oder Speichereinheit geliefert werden. Die Bezugsziffer 20 kann auch ein gedrucktes oder am Bildschirm angezeigtes Spannungs- Dehnungs-Diagramm oder eine andere geeignete grafische bzw. bildliche Darstellung der gemessenen Werte bezeichnen.
Neben den vom Extensometer 14 bzw. der Messvorrichtung 12 gelieferten Messwerten kann die Auswerteeinheit 18 weiterhin die auf den Probenkörper 16 aufgebrachte mechanische Belastung 22 und/oder die Umgebungsparameter 24 erfassen und verarbeiten, welche jeweils die Messung beeinflussen. Die mechanische Belastung 22 ist typischerweise eine Zugbelastung, welche auf den länglichen Probenkörper 16 von beiden Stirnseiten her einwirkt. Die Umgebungsparameter 24 sind u.a. die Definition des Mediums (z.B. Hochtemperaturwasser - HTW), dessen Sauerstoffgehalt (z.B. O2 = 0 ... 8 ppm), die Mediumtemperatur (z.B. T = 25 ... 350 0C) sowie der im Medium herrschende Druck (z.B. p = 1 ... 170 bar).
Derartige Umgebungsverhältnisse werden innerhalb eines auch als Autoklaven bezeichneten Druckbehälters 25, in der das Extensometer 14 mitsamt der Materialprobe angeordnet ist, bereitgestellt. Die Auswerteeinheit 18 sowie die datenseitig nachgeschaltete Visualisierungs- und/oder Speichereinheit 20 ist zweckmäßigerweise außerhalb des Druckbehälters 25 angeordnet. Zur elektrischen Verbindung des Extensome- ters 14 bzw. der an ihm angeordneten Sensoren mit der Auswerteeinheit 18 ist eine zumindest im Innenraum des Druckbehälters 25 gekapselte Anschlussleitung 42 durch eine druckfeste Kabeldurchführung in der Wand des Druckbehälters 25 geführt.
Die schematische Darstellung der Fig. 2 verdeutlicht das Funktionsprinzips der erfindungsgemäßen Messanordnung 10, die wiederum eine Messvorrichtung 12 in Form des Extensometers 14 sowie den länglichen, stabförmigen Probenkörper 16 umfasst, an dem der Extensometer 14 fixiert ist. Das Extensometer 14 bzw. die Messvorrichtung 12 bilden einen sog. Messbügel 26. Dieser Messbügel 26 umfasst zwei voneinander beabstandete Schenkel 28, die jeweils mittels Befestigungselementen 30, bspw. in Gestalt von Klemmverbindungen 32, am Probenkörper 16 befestigt sind. In der Fig . 2 ist lediglich die obere Klemmverbindung 32 dargestellt, während die untere Klemmverbindung der Einfachheit halber weggelassen ist. Die untere Klemmverbindung des unteren Befestigungselementes 30 ist jedoch i.d.R. in gleicher weise ausgebildet wie die obere Klemmverbindung 32. Die Schenkel 28 sind so am Probenkörper 16 fixiert, dass keine negativen Kerbwirkungen gebildet werden, welche die Festigkeit des Probenkörpers 16 beim Zugversuch oder auch seine Beständigkeit gegen Rissinitiierung herabsetzen könnten.
Die symmetrisch zueinander angeordneten, jeweils L-förmigen Schenkel 28 münden jeweils in kurze parallele Abschnitte 34, an die sich ein geschlossener, kreisringförmiger, elastischer Verbindungsabschnitt 36 anschließt, an dessen Außenseite ein Dehnungssensor 38 in Gestalt eines gegen Hochtemperaturwasser resistenten, gekapselten Dehnmessstreifens 40 (sog. DMS) mit seiner gesamten Fläche aufliegend fixiert ist. Der Dehnmessstreifen 40 kann bspw. auf dem Verbindungsabschnitt 36 aufgeklebt oder aufgeschweißt sein, um die Federbewegungen auf den Dehnmessstreifen 40 zu übertragen.
Der Dehnmessstreifen 40 kann zusätzlich in einem verdichteten oxidkeramischen Pulver eingebettet sein, wodurch die Übertragung des Signals vom Verbindungsabschnitt 36 auf den Streifen 40 verbessert wird. Hierdurch werden Verluste durch Relativbewegungen des Dehnmessstreifens 40 auf ein Mindestmaß reduziert.
Erkennbar ist weiterhin eine elektrische Anschlussleitung 42 des dehnungsempfindlichen Sensors 38 bzw. des Dehnmessstreifens 40, die gegen Druck-, Temperatur- und/oder Medieneinfluss gekapselt ist. Die elektrische Anschlussleitung 42 stellt eine Verbindung zur Auswerteeinheit 18 (vgl. Fig. 1) her.
Als Material für den Messbügel 26 und den Verbindungsabschnitt 36 kommt bspw. ein geeigneter Edelstahl in Frage, wodurch der Messbügel 26 eine ausreichende Beständigkeit bei seinem vorgesehenen Einsatz in sauerstoffhaltigem Hochtemperaturwasser erhält. Als Edelstahl für den Messbügel eignet sich bspw. eine Nickel-Chrom-Legierung mit guter Beständigkeit gegen Oxidation und Korrosion bei hohen Temperaturen. Zu den Einsatzfeldern eines solchen Materials gehören Bauteile für die Nuklearindustrie. Der Messbügel kann somit eine ausreichende Beständigkeit bei seinem vorgesehenen Einsatz in sauerstoffhaltigem Hochtemperaturwasser aufweisen. Zudem wird er bei kleinen Dehnungen im elastischen Bereich nicht durch Spannungsrisskorrosionseffekte geschädigt.
Bezugszeichenliste
Messanordnung
Messvorrichtung
Extensometer
Probenkörper
Auswerteeinheit
Anzeigeeinheit mechanische Belastung
Umgebungsparameter
Druckbehälter
Messbügel
Schenkel
Befestigungselement
Klemmverbindung parallele Abschnitte
Verbindungsabschnitt
Dehnungssensor
Dehnmessstreifen Anschlussleitung

Claims

Ansprüche
1. Vorrichtung zur Erfassung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines Probenkörpers (16), insbesondere unter Aufbrin- s gung einer auf den Probenkörper (16) einwirkenden Zugkraft, umfassend einen Messbügel (26) mit zwei beabstandeten Schenkeln (28) zur Fixierung am Probenkörper (16) und einen dehnungsempfindlichen Sensor (38), der am Messbügel (26) angeordnet ist, wobei der dehnungsempfindliche Sensor (38) derart gegen o Druck-, Temperatur- und Medieneinfluss gekapselt ist, dass ein dauerhafter Einsatz in sauerstoffhaltigem Hochtemperaturwasser (HTW) bei Drücken von 1 bis 170 bar, bei einer Mediumstemperatur von 25 bis 350 0C und bei einem Sauerstoffgehalt von 0 bis 8 ppm gelöstem Sauerstoff möglich ist.
2. Vorrichtung nach Anspruch 1 , bei der eine elektrische Anschlussleitung (42) des dehnungsempfindlichen Sensors gegen Druck-, Temperatur- und Medieneinfluss gekapselt ist.
3. Vorrichtung nach Anspruch 2, bei der die elektrische Anschlussleitung (42) des dehnungsempfindlichen Sensors (38) eine weitgehend starre Umhüllung und wenigstens eine darin in keramischem Material eingebettete elektrische Zuleitung aufweist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, bei der der Messbügel (26) aus einem hochtemperatur-, druck- und medienresistenten Material gebildet ist, nämlich aus einem korrosionsbeständigen Edelstahl oder aus einer Nickelbasislegierung.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, bei der der dehnungsempfindliche Sensor (38) flächig haftend am Messbügel (26) angeordnet ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, bei der der Messbügel (26) einen U-förmigen, einen bogenförmigen, einen ringförmigen oder einen C-för- migen Verbindungsabschnitt (36) zwischen den Schenkeln (28) aufweist.
7. Vorrichtung nach Anspruch 6, bei der der dehnungsempfindliche Sensor (38) flächig haftend an einer Außenseite des Verbindungsabschnittes (36) bzw. des Messbügels (26) fixiert ist.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, bei der die Schenkel (28) Klemmanschlüsse (32) zur Fixierung am Probenkörper (16) aufweisen.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, bei der der dehnungsempflindliche Sensor (38) durch wenigstens einen Dehnmessstreifen (40) gebildet ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, bei der der dehnungsempfindliche Sensor (38) bzw. der Dehnmessstreifen (40) flächig haftend an einem Verbindungsabschnitt (36) des Messbügels (26) fixiert ist.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, bei der zumindest ein Verbindungsabschnitt (36) des Messbügels (26) aus einem federelastischen Material gebildet ist.
12. Messanordnung zur Erfassung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines einer definierten Zugkraft bzw. Längenänderung ausgesetzten Probenkörpers (16), umfassend den Probenkörper (16) und eine daran fixierte Messvorrichtung (12) gemäß einem der Ansprüche 1 bis 11.
13. Messanordnung nach Anspruch 12, die mit einem Datenerfassungs- und/oder Datenauswertungssystem (18) gekoppelt ist.
14. Messanordnung nach Anspruch 13, bei der das Datenerfassungs- und/oder Datenauswertungssystem (18) mit einer Speicher-, Anzeige- und/oder Druckeinrichtung (20) gekoppelt ist.
15. Verfahren zur Messung von langsam ablaufenden Bewegungen bzw. von Längenänderungen eines Probenkörpers (16), insbesondere unter Aufbringung einer auf den Probenkörper (16) einwirkenden Zugkraft, bei dem die Längenänderungen des Probenkörpers (16) mittels eines daran fixierten Messbügels (26) und mit wenigstens einem am Messbügel (26) angeordne- ten dehnungsempfindlichen Sensor (38) erfasst werden, wobei hinsichtlich
Druck, Temperatur und chemischer Zusammensetzung des umgebenden Mediums Bedingungen eingestellt werden, die im Wesentlichen denen im Kühlmittelkreislauf einer im Betrieb befindlichen Siedewasserreaktoranlage oder einer Druckwasserreaktoranlage entsprechen.
16. Verfahren nach Anspruch 16, wobei die Messungen in einem Autoklaven vorgenommen werden, in dem sich sauerstoffhaltiges Hochtemperaturwasser bei Drücken von 1 bis 170 bar, bei einer Mediumstemperatur von 25 bis 350 0C und bei einem Sauerstoffgehalt von 0 bis 8 ppm gelöstem Sauerstoff befindet.
17. Verfahren nach Anspruch 17, bei dem dem Hochtemperaturwasser ionale Verunreinigungen beigemengt werden.
PCT/EP2008/004069 2007-05-25 2008-05-21 Vorrichtung, messanordnung und verfahren zur messung von langsam ablaufenden bewegungen eines probestücks WO2008145292A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710024694 DE102007024694A1 (de) 2007-05-25 2007-05-25 Vorrichtung, Messanordnung und Verfahren zur Messung von langsam ablaufenden Bewegungen eines Probenstücks
DE102007024694.5 2007-05-25

Publications (1)

Publication Number Publication Date
WO2008145292A1 true WO2008145292A1 (de) 2008-12-04

Family

ID=39769499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/004069 WO2008145292A1 (de) 2007-05-25 2008-05-21 Vorrichtung, messanordnung und verfahren zur messung von langsam ablaufenden bewegungen eines probestücks

Country Status (2)

Country Link
DE (1) DE102007024694A1 (de)
WO (1) WO2008145292A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114360754A (zh) * 2021-12-07 2022-04-15 华能核能技术研究院有限公司 一种压力容器支承调整垫板摩擦力测量方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051519B4 (de) * 2007-10-19 2013-04-11 Technische Universität Bergakademie Freiberg Verfahren und Vorrichtung zur Messung von Werkstoffkenngrößen an Messobjekten während der Behandlung in Druckbehältern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2816444A1 (de) * 1978-04-15 1979-10-25 Deutsche Forsch Luft Raumfahrt Dehnungsaufnehmer fuer die werkstoffpruefung
JPS5821540A (ja) * 1981-07-31 1983-02-08 Shimadzu Corp 試験片変形量測定装置
CA1188130A (en) * 1983-03-07 1985-06-04 John M. Nielsen Hermetically sealed high temperature strain gage
DE4338005A1 (de) * 1993-11-07 1995-05-11 Deutsche Forsch Luft Raumfahrt Extensometer und Lagerung für ein Extensometer
DE19744104A1 (de) * 1997-10-06 1999-06-10 Junghans Eva Dipl Ing Vorrichtung zur Erfassung einer Dehnung insbesondere kleiner Proben
JP2001241912A (ja) * 2000-03-02 2001-09-07 Mitsubishi Heavy Ind Ltd 歪みゲージ取付方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036927A1 (de) * 2005-08-05 2007-02-08 Technische Universität Darmstadt Vorrichtung zur Messung der geometrischen Veränderung eines Objektes, Zugprüfmaschine und Verwendung der Vorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2816444A1 (de) * 1978-04-15 1979-10-25 Deutsche Forsch Luft Raumfahrt Dehnungsaufnehmer fuer die werkstoffpruefung
JPS5821540A (ja) * 1981-07-31 1983-02-08 Shimadzu Corp 試験片変形量測定装置
CA1188130A (en) * 1983-03-07 1985-06-04 John M. Nielsen Hermetically sealed high temperature strain gage
DE4338005A1 (de) * 1993-11-07 1995-05-11 Deutsche Forsch Luft Raumfahrt Extensometer und Lagerung für ein Extensometer
DE19744104A1 (de) * 1997-10-06 1999-06-10 Junghans Eva Dipl Ing Vorrichtung zur Erfassung einer Dehnung insbesondere kleiner Proben
JP2001241912A (ja) * 2000-03-02 2001-09-07 Mitsubishi Heavy Ind Ltd 歪みゲージ取付方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114360754A (zh) * 2021-12-07 2022-04-15 华能核能技术研究院有限公司 一种压力容器支承调整垫板摩擦力测量方法

Also Published As

Publication number Publication date
DE102007024694A1 (de) 2008-11-27

Similar Documents

Publication Publication Date Title
DE69008211T2 (de) Verfahren zur Bestimmung der Länge eines Risses.
DE102017201163A1 (de) Kraft- / drehmoment-sensor, welcher eine redundante instrumentierung aufweist und betriebsbereit ist, um fehler zu erkennen
DE102005018123A1 (de) Verfahren zur Bewertung von Messwerten zur Erkennung einer Materialermüdung
DE69819193T2 (de) Dehnungsmessstreifen und dessen anwendungen
DE102014223654A1 (de) Mechanisches Bauteil mit einem Kraftsensor
Vasco‐Olmo et al. Plastic CTOD as fatigue crack growth characterising parameter in 2024‐T3 and 7050‐T6 aluminium alloys using DIC
DE102011080282B4 (de) Verfahren und Messvorrichtung zur Untersuchung eines magnetischen Werkstücks
DE102010023727A1 (de) Verfahren zur schwingungsarmen optischen Kraftmessung, insbesondere auch bei hohen Temperaturen
WO2008145292A1 (de) Vorrichtung, messanordnung und verfahren zur messung von langsam ablaufenden bewegungen eines probestücks
DE3785411T2 (de) Verfahren zur Voraussagung der übrigbleibenden Lebensdauer eines Metallmaterials.
DE102010052814B4 (de) Vorrichtung und Verfahren zur Vermeidung von Instabilitäten belasteter Strukturen
DE102007001464A1 (de) Verfahren zur Bestimmung der Restlebensdauer und/oder des Ermüdungszustandes von Bauteilen
NO125688B (de)
DE102020000495A1 (de) Testeinrichtung zur Untersuchung von einem Korrosionsverhalten, insbesondere von Spannungsrisskorrosion, an einer unter Biegespannung gesetzten U-Probe sowie Testsystem
DE102019007207A1 (de) Testeinrichtung zur Untersuchung von einem Korrosionsverhalten, insbesondere von Spannungsrisskorrosion, an einer unter Zugspannung gesetzten Probe sowie Testsystem
EP1216414A1 (de) Verfahren und vorrichtung zur zerstörungsfreien materialcharakterisierung ferromagnetischer stoffe
DE102022128976B3 (de) Druckmessvorrichtung und Verfahren zur Messung eines Fluiddrucks in einem Rohr
DE810817C (de) Druckanzeigevorrichtung
DE102021124940A1 (de) Verfahren zur Ermittlung der bruchmechanischen Beanspruchung mindestens eines Risses bei Belastung eines Bauteils, Computerprogrammprodukt und Vorrichtung zur Durchführung des Verfahrens, sowie deren Verwendung
DE902682C (de) Werkstoffpruefgeraet
DE2543126C2 (de) Vorrichtung zur Messung von Längenänderungen
DE102014013739A1 (de) Verfahren zur beschleunigten Bestimmung der Fähigkeit von organischen und metallischen Beschichtungen den darunter liegenden Grundwerkstoff vor Korrosion zu schützen
DE102014206759A1 (de) Messelement und ein Messelement aufweisendes Bauteil
DE102019216215A1 (de) Prüfstand und Verfahren zur Prüfung von Fahrzeugreifen
DE843315C (de) Vorrichtung zur Bestimmung der Streckgrenze

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08758674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08758674

Country of ref document: EP

Kind code of ref document: A1