WO2008087092A1 - Gemeinsamer kontroller für verschiedene fahrerassistenzsysteme - Google Patents

Gemeinsamer kontroller für verschiedene fahrerassistenzsysteme Download PDF

Info

Publication number
WO2008087092A1
WO2008087092A1 PCT/EP2008/050247 EP2008050247W WO2008087092A1 WO 2008087092 A1 WO2008087092 A1 WO 2008087092A1 EP 2008050247 W EP2008050247 W EP 2008050247W WO 2008087092 A1 WO2008087092 A1 WO 2008087092A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
app
driver assistance
data
processing device
Prior art date
Application number
PCT/EP2008/050247
Other languages
English (en)
French (fr)
Inventor
Jochen Bauer
Wendelin Feiten
Joachim Tiedeke
Georg Von Wichert
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2008087092A1 publication Critical patent/WO2008087092A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/862Combination of radar systems with sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9315Monitoring blind spots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93276Sensor installation details in the windshield area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9329Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles cooperating with reflectors or transponders

Definitions

  • the invention relates to data processing for a driver assistance system of a vehicle providing a plurality of driver assistance functions.
  • driver assistance systems summarizes functions that serve the support of the driver of a motor vehicle.
  • the aim of driver assistance systems is often to increase safety by avoiding dangerous situations before they occur and by assisting the driver in avoiding accidents in critical situations.
  • Other goals are to increase comfort by reducing stress and relieving the driver in standard situations, facilitating orientation through situationally prepared and driver-friendly information about surroundings, and increasing driving enjoyment.
  • driver assistance functions are traction control or traction control, such as ABS (Antilock Braking System), ESP (Electronic Stability Program), EDS (Electronic Differential Locking), Adaptive Headlights, Driving Light Fade-In and Fade-Out Assist, Night Vision Systems ( English: night vision), cruise control, parking assistance, brake assist, ACC (Adaptive Cruise Control) or cruise control,
  • the invention has for its object to provide an efficient data processing device for a plurality of driver assistant functions at the disposal driver assistance system, and to show a corresponding method.
  • the data processing device for a driver assistance system of a vehicle providing a plurality of driver assistance functions has an input for receiving data from a plurality of sensors, processing means for processing the received data and for generating in each case an output signal for each driver assistance function A plurality of driver assistance functions, and an output for outputting the output signal for each driver assistance function of the plurality of driver assistance functions.
  • a single data processing device is provided for at least two sensors and at least two driver assistance functions. This means that no further data processing device is needed for the majority of driver assistance functions.
  • An advantage of using this single data processing device is a space saving as well as a price reduction by the saving of further data processing devices.
  • one or more further data processing devices for driver assistance functions can be present in the vehicle.
  • Other sensors besides the majority of the sensors used in the invention may be provided.
  • the processing means of the data processing device produce output signals, this preparation taking place within or as a result of the processing of the received data.
  • a driver assistance function is assigned, so that the data detected by the respective sensor data are used to generate the output signal for the associated driver assistance function.
  • a plurality of sensors can be assigned to a specific driver assistance function, so that the data from these sensors are used to generate the output signal for this driver assistance function.
  • the data of a specific sensor to be used to generate the output signal for a plurality of driver assistance functions.
  • the reception of data originating from different sensors by the data processing device can take place simultaneously or successively. The same applies to the output of the output signals for various driver assistance functions.
  • the processing means process data from at least two sensors together.
  • one sensor's data affects the processing of another sensor's data. It is possible that the data from two, more than two, or even all sensors are processed together.
  • the processing means are designed in such a way that the output signal is generated for at least one driver assistance function using data from at least two sensors. It is possible here, in particular, for one, several or all driver assistance functions to use the data of several or all sensors for generating the respective output signal.
  • the joint processing is preferably carried out using a linear Kalman filter and / or an extended Kalman filter and / or an unscented Kalman filter and / or an information filter and / or a particle filter and / or an iterative filter.
  • the processing means are configured such that, on the basis of an evaluation of data of a first sensor, the evaluation of data of a second sensor is limited to a specific range of the data of the second sensor. This allows a more efficient data evaluation with respect to the second sensor, so that the output signal for a driver assistance function, which requires this data of the second sensor, is available faster.
  • the plurality of sensors may include a radar sensor and / or an optical camera and / or an ultrasound sensor and / or a lidar sensor and / or an infrared sensor. Also, several sensors of one type may be provided.
  • the processing means comprise means for generating and sending instructions to at least one sensor in dependence on the processing of received data.
  • These instructions may be e.g. refer to a time or region of space to which or in which the respective sensor should acquire data.
  • data from a sensor can be used to generate the instructions to this sensor;
  • data from one sensor can be used to generate the instructions to another sensor.
  • the plurality of driver assistance functions may include one or more of the following functions: a speed control function and / or a distance control function and / or a blind spot detection function and / or a lane change assist and / or a lane keeping function; and / or a night vision function and / or a parking assist function and / or a navigator-assisting function and / or a traffic sign recognition function.
  • the output of the data processing device can be connected to a human-machine interface and / or to an interface for the autonomous control of the vehicle.
  • An interface for autonomous control of the vehicle may be applied to the vehicle - e.g. braking or acceleration - can be applied without the driver being involved.
  • Preferably, exactly one human machine interface and exactly one interface for the autonomous control of the vehicle is provided as connection to the data processing device.
  • the driver assistance system comprises a plurality of sensors and a data processing device of the type described above. At least two of the sensors are preferably arranged in a common housing. In particular, it is possible that all the sensors of the plurality of sensors are arranged in a common housing. It is advantageous if the common housing between the rear-view mirror and the windshield of the vehicle is attachable.
  • a data processing device receives data from a plurality of sensors. Furthermore, the data processing device processes the received data, in each case generates an output signal for each driver assistance function of the plurality of driver assistance functions, and outputs the output signal for each driver assistance function of the plurality of driver assistance functions.
  • inventive method is particularly suitable for operating the inventive device, and this may also apply to the embodiments and developments. For this purpose, it may comprise further suitable method steps.
  • inventive method steps may comprise further suitable method steps.
  • FIG. 1 a driver assistance system
  • Figure 2 another driver assistance system.
  • FIG. 1 shows a driver assistance system according to the prior art. This includes three different driver assistance functions or applications APP 1, APP 2 and APP 3, such as:
  • Lane Departure Warning or Lane Departure Warning The driver can be warned about an unintentional departure from his lane; slight autonomous steering corrections can counteract leaving the track.
  • Blind Spot Detection can be used to provide the driver with information on whether another vehicle is in the blind spot. With the Lane Change Assistant, further information about the possibility of a lane change can be obtained from this.
  • Sensitive Guidance A navigation system can be extended by providing the driver with situational information.
  • a sensor SENSOR 1, SENSOR 2 and SENSOR 3 are provided for each application APP 1, APP 2 and APP 3.
  • ACC and Traffic Jam Assist for example, lidar sensors, for Traffic Jam Assist, Traffic Sign Recognition and Lane Departure Warning optical cameras or video cameras, for Blind Spot Detection and Lane Change Assistant radar sensors, for Night Vision IR- Sensors for near and / or far infrared, for Park Mate ultrasonic sensors, and for sensitive guidance optical cameras and radar sensors.
  • Other sensor types that can be used for driver assistance systems are sensors for certain environmental conditions, such as e.g. Rain sensors.
  • the data acquired by the sensors SENSOR 1, SENSOR 2 and SENSOR 3 of the various applications APP 1, APP 2 and APP 3 are respectively evaluated and processed in a data processing device CON 1, CON 2 and CON 3.
  • the data processing devices CON 1, CON 2 and CON 3 output information to the respective interfaces ITF 1 (D), ITF 2 (C) and ITF 3 (C).
  • Driver assistance systems can intervene autonomously or partially autonomously in drive, control or signaling equipment of the vehicle via control interfaces.
  • information can be provided to the driver via a man-machine interface or the driver can be warned.
  • the transmission of information about a human Machine interface can be acoustic, haptic, or visual.
  • FIG. 2 shows another driver assistance system. As also measured in FIG. 1, a plurality of sensors are SENSOR 1, SENSOR 2 and
  • SENSOR 3 is provided.
  • the number of sensors is an example; There may also be a greater or lesser number than three.
  • the driver assistance system of FIG. 2 like the driver assistance system of FIG. 1, provides a plurality of applications.
  • the data from each of the sensors SENSOR 1, SENSOR 2 and SENSOR 3 are transmitted to the common data processing device CON.
  • the data processing device CON is preferably a controller.
  • the data processing device CON is connected to the two interfaces ITF (D) and ITF (C), which, as explained with reference to FIG. 1, is a control interface and a human-machine interface.
  • About the two interfaces ITF (D) and ITF (C) are provided in a known per se information for the various driver assistance functions available.
  • the data processing device CON carries out a joint processing of the data of the various sensors SENSOR 1, SENSOR 2 and SENSOR 3.
  • one or more of the following methods is preferably used:
  • the linear Kalman filter is a well-proven method for the iterative estimation of the state of a linear dynamic system in discrete-time representation.
  • the method of the linear Kalman filter can be extended to the nonlinear case by going through the nonlinear system in the current estimation approximates a corresponding linear system.
  • the filter method of the linear Kalman filter is then applied to the approximating linear system instead of the nonlinear system, and the result is used as a new estimate of the nonlinear system as well.
  • Such an extension also exists for the below-mentioned information filter.
  • Unscented Cayman Filter In the case of the approximation method explained in the extended Kalman filter, the systemic state of the covariance matrix may not be estimated accurately enough, especially if the original system is strongly nonlinear. In this case, the use of the unscented Kalman filter is recommended. In this case, the estimate of the covariance matrix of the system state is not derived from the covariance matrix of the linear approximating system, but the hypothetical following system states for a number of assumed further system states in the environment of the estimated system state are predicted in addition to the system state in the subsequent time step. From the totality of these predicted system states, the covariance matrix can then be tapped again. This method is more accurate, but in some cases even more computationally expensive.
  • the information filter represents a formula that is algebraically equivalent in comparison to the linear Kalman filter, but numerically more favorable in many cases.
  • the inverse matrix is estimated, the so-called information matrix.
  • the various filter methods differ in their generality and applicability, as well as in computing power and memory requirements. It is therefore advantageous to select the most suitable filtering method depending on the situation.
  • the data processing device CON allows selection of the most suitable filtering method. This is done by unifying the interfaces to the sensors SENSOR 1, SENSOR 2, SENSOR 3 and the filter methods are object-oriented implemented in a suitable manner, so that in each case the most favorable filter method for the estimation of the state can be used.
  • the sensors SENSOR 1, SENSOR 2 and SENSOR 3 can be integrated in a common housing. As a result, costs and space can be saved.
  • the windscreen protects the sensors;
  • the windscreen wiper allows the sensors a clear view.
  • only two of the three sensors SENSOR 1, SENSOR 2 and SENSOR 3 can be accommodated in a common housing.
  • the third sensor can be arranged in this case, for example, at the rear of the vehicle.
  • the driver assistance system of FIG. 2 has only one single data processing device CON.
  • the data processing device CON is used for a plurality of applications; For example, the driver assistance system of FIG. 2 can provide 2, 3, 4 or several different applications.
  • the driver assistance system of FIG. 2 can provide 2, 3, 4 or several different applications.
  • the individual applications thus become more robust and precise compared to the driver assistance system of FIG. 1.
  • An application which is usually based on Lidar data, can eg improved by the additional consideration of video camera data; because a lidar sensor and a video camera complement each other insofar as a lidar sensor can efficiently determine distances in the direction of travel and a video camera can determine lateral positions. This can e.g. increase the precision of ACC.
  • the complexity or complexity of the data processing of a single sensor can be reduced by the inclusion of data from another sensor.
  • the location of another vehicle can be determined by a lidar sensor, whereupon the image analysis of video data is limited to the area of this location. Due to the reduced complexity of the image analysis, the results are available via the interface ITF (D) or ITF (C) information more quickly available to the various applications.
  • Another advantage of the connection of the sensors to the common data processing device CON is the possibility of calibrating a sensor on the basis of another sensor.
  • a feedback from the data processing device CON to the sensors SENSOR 1, SENSOR 2 and SENSOR 3 is provided.
  • the data acquisition by the sensors SENSOR 1, SENSOR 2 and SENSOR 3 can be controlled as a function of the joint evaluation of data.
  • measurement results of one sensor can influence the activity of another sensor.
  • a sensor is aligned in a particular direction depending on the data picked up by another sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

Die Erfindung betrifft eine Datenverarbeitungseinrichtung (CON) für ein eine Mehrzahl von Fahrerassistenzfunktionen zur Verfügung stellendes Fahrerassistenzsystem für ein Fahrzeug, mit einem Eingang zum Empfangen von Daten von einer Mehrzahl von Sensoren (SENSOR 1, SENSOR 2, SENSOR 3), Verarbeitungsmitteln zum Verarbeiten der empfangenen Daten und zum Erstellen jeweils eines Ausgangssignals für jede Fahrerassistenzfunktion der Mehrzahl von Fahrerassistenzfunktionen, und einem Ausgang zum Ausgeben des Ausgangssignals für jede Fahrerassistenzfunktion der Mehrzahl von Fahrerassistenzfunktionen. Weiterhin betrifft die Erfindung ein entsprechendes Verfahren.

Description

Beschreibung
Gemeinsamer Kontroller für verschiedene Fahrerassistenzsysteme
Die Erfindung betrifft die Datenverarbeitung für ein eine Mehrzahl von Fahrerassistenzfunktionen zur Verfugung stellendes Fahrerassistenzsystem eines Fahrzeugs.
Unter dem Begriff der Fahrerassistenzsysteme (englisch: ADAS, Advanced Driver Assistance Systems) werden Funktionen zusam- mengefasst, welche der Unterstützung des Fahrers eines Kraftfahrzeuges dienen. Ziel der Fahrerassistenzsysteme ist häufig die Steigerung der Sicherheit durch die Vermeidung von Gefah- rensituationen vor deren Entstehung und durch die Unterstützung des Fahrers zur Unfallvermeidung in kritischen Situationen. Weitere Ziele sind die Steigerung des Komforts durch Stressreduktion und Entlastung des Fahrers in Standardsituationen, die Erleichterung der Orientierung durch situations- abhangig aufbereitete und fahrergerecht vermittelte Umfeld- Informationen, sowie die Erhöhung des Fahrspaßes.
Beispiele für Fahrerassistenzfunktionen sind die Antriebsschlupfregelung bzw. Traktionskontrolle wie ABS (Antiblockiersystem) , ASR (Antriebs-Schlupf-Regelung) , ESP (Elektronisches Stabilitatsprogramm) , EDS (Elektronische Differentialsperre) , sowie adaptives Kurvenlicht, Auf- und Abblendassistent für das Fahrlicht, Nachtsichtsysteme (englisch: night vision) , Tempomat, Einparkhilfe, Bremsassistent, ACC (Adaptive Cruise Control) bzw. Abstandsregeltempomat,
Abstandswarner, Abbiegeassistent, Stauassistent, Spurerkennungssystem, Spurhalteassistent, Spurhalteunterstutzung, Spurwechselassistent, ISA (Intelligent Speed Adaption) , ANB (Automatische Notbremsung) , Reifendruckkontrollsystem, Fah- rerzustandserkennung, Verkehrszeichenerkennung, Platooning.
Der Erfindung liegt die Aufgabe zugrunde, eine effiziente Datenverarbeitungseinrichtung für ein eine Mehrzahl von Fahrer- assistenzfunktionen zur Verfugung stellendes Fahrerassistenzsystem, sowie ein entsprechendes Verfahren aufzuzeigen.
Diese Aufgabe wird durch eine Datenverarbeitungseinrichtung mit den Merkmalen des Anspruchs 1, sowie durch ein Verfahren mit Merkmalen eines nebengeordneten Anspruchs gelost. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand von Unteranspruchen .
Die erfindungsgemaße Datenverarbeitungseinrichtung für ein eine Mehrzahl von Fahrerassistenzfunktionen zur Verfugung stellendes Fahrerassistenzsystem eines Fahrzeugs weist einen Eingang auf zum Empfangen von Daten von einer Mehrzahl von Sensoren, Verarbeitungs-Mittel zum Verarbeiten der empfange- nen Daten und zum Erstellen von jeweils einem Ausgangssignal für jede Fahrerassistenzfunktion der Mehrzahl von Fahrerassistenzfunktionen, sowie einen Ausgang zum Ausgeben des Ausgangssignals für jede Fahrerassistenzfunktion der Mehrzahl von Fahrerassistenzfunktionen.
Es ist eine einzige Datenverarbeitungseinrichtung für zumindest zwei Sensoren und zumindest zwei Fahrerassistenzfunktionen vorgesehen. Dies bedeutet, dass für die Mehrzahl der Fahrerassistenzfunktionen keine weitere Datenverarbeitungsein- richtung benotigt wird. Ein Vorteil der Verwendung dieser einzigen Datenverarbeitungseinrichtung ist eine Platzeinsparung sowie eine Preisreduktion durch die Einsparung weiterer Datenverarbeitungseinrichtungen. Neben der erfindungsgemaßen Datenverarbeitungseinrichtung kann eine oder mehrere weitere Datenverarbeitungseinrichtungen für Fahrerassistenzfunktionen im Fahrzeug vorhanden sein. Auch weitere Sensoren außer der Mehrzahl der im Rahmen der Erfindung eingesetzten Sensoren können vorgesehen sein.
Die Verarbeitungs-Mittel der Datenverarbeitungseinrichtung erstellen Ausgangssignale, wobei diese Erstellung im Rahmen oder als Ergebnis der Verarbeitung der empfangenen Daten erfolgt. Hierbei ist es möglich, dass jeweils ein Sensor genau einer Fahrerassistenzfunktion zugeordnet ist, so dass die von dem jeweiligen Sensor erfassten Daten zur Erstellung des Ausgangssignals für die zugeordnete Fahrerassistenzfunktion verwendet werden. Alternativ hierzu können mehrere Sensoren ei- ner bestimmten Fahrerassistenzfunktion zugeordnet sein, so dass die Daten dieser Sensoren zur Erstellung des Ausgangssignals für diese Fahrerassistenzfunktion herangezogen werden. Weiterhin ist es möglich, dass die Daten eines bestimmten Sensors zur Erstellung des Ausgangssignals für mehrere Fahrerassistenzfunktionen zum Einsatz kommen.
Der Empfang von von verschiedenen Sensoren stammenden Daten durch die Datenverarbeitungseinrichtung kann gleichzeitig o- der nacheinander erfolgen. Entsprechendes gilt auch für das Ausgaben der Ausgangssignale für verschiedene Fahrerassistenzfunktionen .
In Weiterbildung der Erfindung verarbeiten die Verarbeitungs- Mittel Daten von zumindest zwei Sensoren gemeinsam. Bei einer gemeinsamen Verarbeitung haben die Daten eines Sensors Auswirkungen auf die Verarbeitung der Daten eines anderen Sensors . Es ist hierbei möglich, dass die Daten von zwei, mehr als zwei, oder auch allen Sensoren gemeinsam verarbeitet werden .
Besonders vorteilhaft ist es, wenn die Verarbeitungs-Mittel derart ausgestaltet sind, dass für zumindest eine Fahrerassistenzfunktion das Ausgangssignal unter Verwendung von Daten von zumindest zwei Sensoren erstellt wird. Möglich ist hier- bei insbesondere, dass für eine, mehrere oder alle Fahrerassistenzfunktionen die Daten mehrerer oder aller Sensoren zur Erstellung des jeweiligen Ausgangssignals herangezogen werden .
Die gemeinsame Verarbeitung erfolgt vorzugsweise unter Verwendung von einem linearen Kaiman-Filter und/oder einem Ex- tended Kaiman-Filter und/oder einem Unscented Kaiman-Filter und/oder einem Information-Filter und/oder einem Partikelfilter und/oder einem iterativ arbeitenden Filter.
In Ausgestaltung der Erfindung sind die Verarbeitungs-Mittel derart ausgestaltet, dass aufgrund einer Auswertung von Daten eines ersten Sensors die Auswertung von Daten eines zweiten Sensors auf einen bestimmten Bereich der Daten des zweiten Sensors beschrankt wird. Dies ermöglich eine effizientere Datenauswertung hinsichtlich des zweiten Sensors, so dass das Ausgangssignal für eine Fahrerassistenzfunktion, welche diese Daten des zweiten Sensors benotigt, schneller zur Verfugung steht.
Die Mehrzahl von Sensoren können einen Radar-Sensor und/oder eine optische Kamera und/oder einen Ultraschall-Sensor und/oder einen Lidar-Sensor und/oder einen Infrarot-Sensor umfassen. Auch können mehrere Sensoren eines Typs vorgesehen sein .
In Weiterbildung der Erfindung umfassen die Verarbeitungs- Mittel Mittel zum Erstellen und Senden von Anweisungen an zumindest einen Sensor in Abhängigkeit von der Verarbeitung von empfangenen Daten. Diese Anweisungen können sich z.B. auf eine Zeit oder eine Raumregion beziehen, zu welcher bzw. in welcher der jeweilige Sensor Daten erfassen soll. Hierbei können Daten eines Sensors zur Erstellung der Anweisungen an diesen Sensor herangezogen werden; alternativ können Daten eines Sensors zur Erstellung der Anweisungen an einen anderen Sensor zum Einsatz kommen.
Die Mehrzahl der Fahrerassistenzfunktionen kann eine oder mehrere der folgenden Funktionen umfassen: eine Geschwindigkeitskontrollfunktion und/oder eine Abstandskontrollfunktion und/oder eine Funktion zur Detektion von Fahrzeugen in einem toten Winkel und/oder eine Funktion zur Unterstützung eines Spurwechsels und/oder eine Spurhaltefunktion und/oder eine Nachtsichtfunktion und/oder eine Einparkhilfefunktion und/oder eine navigationsgeratunterstutzende Funktion und/oder eine Verkehrszeichenerkennungsfunktion.
Einer bevorzugten Ausgestaltung der Erfindung gemäß ist der Ausgang der Datenverarbeitungseinrichtung an eine Mensch- Maschine-Schnittstelle und/oder an eine Schnittstelle zur autonomen Kontrolle des Fahrzeugs anschließbar. Über eine Schnittstelle zur autonomen Kontrolle des Fahrzeugs kann auf das Fahrzeug - z.B. durch Bremsen oder Beschleunigen - einge- wirkt werden, ohne dass der Fahrer mitwirkt. Vorzugsweise ist genau eine Mensch-Maschine-Schnittstelle und genau eine Schnittstelle zur autonomen Kontrolle des Fahrzeugs als An- schluss an die Datenverarbeitungseinrichtung vorgesehen.
Das erfindungsgemaße Fahrerassistenzsystem umfasst eine Mehrzahl von Sensoren und eine mit den Sensoren verbundene Datenverarbeitungseinrichtung der oben beschriebenen Art. Hierbei sind vorzugsweise mindestens zwei der Sensoren in einem gemeinsamen Gehäuse angeordnet. Insbesondere ist es möglich, dass alle Sensoren der Mehrzahl von Sensoren in einem gemeinsamen Gehäuse angeordnet sind. Vorteilhaft ist es, wenn das gemeinsame Gehäuse zwischen dem Ruckspiegel und der Windschutzscheibe des Fahrzeugs anbringbar ist.
Bei dem erfindungsgemaßen Verfahren zur Datenverarbeitung für ein eine Mehrzahl von Fahrerassistenzfunktionen zur Verfugung stellendes Fahrerassistenzsystem empfangt eine Datenverarbeitungseinrichtung Daten von einer Mehrzahl von Sensoren. Weiterhin verarbeitet die Datenverarbeitungseinrichtung die emp- fangenen Daten, erstellt jeweils ein Ausgangssignal für jede Fahrerassistenzfunktion der Mehrzahl von Fahrerassistenzfunktionen, und gibt das Ausgangssignal für jede Fahrerassistenzfunktion der Mehrzahl von Fahrerassistenzfunktionen aus.
Das erfindungsgemaße Verfahren eignet sich insbesondere zum Betreiben der erfindungsgemaßen Einrichtung, wobei dies auch auf die Ausgestaltungen und Weiterbildungen zutreffen kann. Hierzu kann es weitere geeignete Verfahrensschritte umfassen. Im folgenden wird die Erfindung anhand eines Ausfuhrungsbeispiels naher erläutert. Dabei zeigen:
Figur 1: ein Fahrerassistenzsystem,
Figur 2: ein weiteres Fahrerassistenzsystem.
Figur 1 zeigt ein Fahrerassistenzsystem gemäß dem Stand der Technik. Dieses umfasst drei verschiedene Fahrerassistenzfunktionen bzw. Anwendungen APP 1, APP 2 und APP 3, wie z.B.:
• ACC (Adaptive Cruise Control) . Hierdurch kann der Abstand zu einem vorausfahrenden Fahrzeug konstant gehalten werden. • Stauassistent bzw. Traffic Jam Assist: Hierdurch kann, insbesondere bei langsamen Geschwindigkeiten in Staus und im zahfließenden Verkehr, die eigene Fahrgeschwindigkeit an die Geschwindigkeit eines Richtfahrzeugs an- gepasst werden. • Verkehrszeichenerkennung bzw. Traffic Sign Recognition: Hierdurch können dem Fahrer Informationen über aktuelle Geschwindigkeitsbegrenzungen zur Verfugung gestellt werden .
• Spurhalteassistent bzw. Lane Departure Warning: Hierbei kann der Fahrer durch eine Warnmeldung auf ein unbeabsichtigtes Verlassen seiner Spur hingewiesen werden; leichte autonome Lenkkorrekturen können dem Verlassen der Spur entgegen wirken .
• Blind Spot Detection, Spurwechselassistent bzw. Lane Change Assistant: Durch die Blind Spot Detection können dem Fahrer Informationen darüber zur Verfugung gestellt werden, ob sich ein anderes Fahrzeug im toten Winkel befindet. Bei dem Lane Change Assistant können hieraus weitere Informationen über die Möglichkeit eines Spur- wechseis gewonnen werden.
• Night Vision: Hierdurch wird die Sicht bei Dunkelheit verbessert, so dass z.B. Fußganger und Fahrbahnbegrenzungen besser erkennbar sind. • Einparkhilfe bzw. Park Mate: Hierdurch wird dem Fahrer das Erkennen einer Parklücke und das Einparken in eine Parklücke erleichtert.
• Sensitive Guidance: Hierbei kann ein Navigationssystem erweitert werden, indem der Fahrer mit situationsbezoge- nen Informationen versorgt wird.
Gemäß Figur 1 ist für jede Anwendung APP 1, APP 2 und APP 3 ein Sensor SENSOR 1, SENSOR 2 und SENSOR 3 vorgesehen. Für die Anwendungen ACC und Traffic Jam Assist beispielsweise eignen sich Lidar-Sensoren, für Traffic Jam Assist, Traffic Sign Recognition und Lane Departure Warning optische Kameras bzw. Videokameras, für Blind Spot Detection und Lane Change Assistant Radar-Sensoren, für Night Vision IR-Sensoren für das nahe und/oder ferne Infrarot, für Park Mate Ultraschall- Sensoren, und für Sensitive Guidance optische Kameras und Radar-Sensoren. Andere für Fahrerassistenzsysteme einsetzbare Sensor-Arten sind Sensoren für bestimmte Umweltbedingungen, wie z.B. Regensensoren.
Die von den Sensoren SENSOR 1, SENSOR 2 und SENSOR 3 der verschiedenen Anwendungen APP 1, APP 2 und APP 3 erfassten Daten werden jeweils in einer Datenverarbeitungseinrichtung CON 1, CON 2 und CON 3 ausgewertet und verarbeitet. Die Datenverar- beitungseinrichtungen CON 1, CON 2 und CON 3 geben Informationen an die jeweiligen Schnittstellen ITF 1 (D), ITF 2 (C) und ITF 3 (C) aus. Hierbei wird unterschieden zwischen mit dem Zusatz (C) bezeichneten Kontroll-Schnittstellen, im Beispiel der Figur die Schnittstellen ITF 2 (C) und ITF 3 (C) , und mit dem Zusatz (D) bezeichnete Mensch-Maschine- Schnittstelle, im Beispiel der Figur die Schnittstellen ITF 1 (D) . Über Kontroll-Schnittstellen können Fahrerassistenzsysteme autonom oder teilautonom in Antrieb, Steuerung oder Sig- nalisierungseinrichtungen des Fahrzeugs eingreifen. Über eine Mensch-Maschine-Schnittstelle hingegen können dem Fahrer Hinweise zur Verfugung gestellt werden bzw. der Fahrer kann gewarnt werden. Die Informationsübertragung über eine Mensch- Maschine-Schnittstelle kann akustisch, haptisch, oder visuell erfolgen .
Figur 2 zeigt ein anderes Fahrerassistenzsystem. Wie auch ge- maß Figur 1 sind mehrere Sensoren SENSOR 1, SENSOR 2 und
SENSOR 3 vorgesehen. Bei der Anzahl der Sensoren handelt es sich um ein Beispiel; es kann auch eine größere oder kleinere Anzahl als drei vorhanden sein. Das Fahrerassistenzsystem der Figur 2 stellt wie auch das Fahrerassistenzsystem der Figur 1 eine Mehrzahl von Applikationen zur Verfugung.
Die Daten von jedem der Sensoren SENSOR 1, SENSOR 2 und SENSOR 3 werden an die gemeinsame Datenverarbeitungseinrichtung CON übermittelt. Bei der Datenverarbeitungseinrichtung CON handelt es sich vorzugsweise um einen Controller. Die Datenverarbeitungseinrichtung CON ist an die beiden Schnittstellen ITF (D) und ITF (C) angebunden, wobei es sich hierbei wie in Bezug auf Figur 1 erläutert um eine Kontroll- Schnittstelle und eine Mensch-Maschine-Schnittstelle handelt. Über die beiden Schnittstellen ITF (D) und ITF (C) werden auf an sich bekannte Weise Informationen für die verschienen Fahrerassistenzfunktionen zur Verfugung gestellt.
Die Datenverarbeitungseinrichtung CON fuhrt eine gemeinsame Verarbeitung der Daten der verschiedenen Sensoren SENSOR 1, SENSOR 2 und SENSOR 3 durch. Für die gemeinsame Datenverarbeitung wird vorzugsweise eine oder mehrere der folgenden Methoden angewandt :
• Linearer Kaiman-Filter.
Der lineare Kaiman-Filter ist ein gut erprobte Methode zur iterativen Schätzung des Zustandes eines linearen dynamischen Systems in zeitdiskreter Darstellung.
• Extended Kaiman-Filter.
Die Methode des linearen Kaiman-Filters lasst sich auf den nichtlinearen Fall erweitern, indem man jeweils bei der momentanen Schätzung das nichtlineare System durch ein entsprechendes lineares System approximiert. Die Filtermethode des linearen Kaiman-Filters wird dann statt auf das nichtlineare System auf das approximierende lineare System angewandt, und das Ergebnis als neue Schätzung auch des nichtlinearen Systems verwendet. Eine derartige Erweiterung existiert auch für den unten genannten Information Filter.
• Unscented Kaiman-Filter. Bei der zum Extended Kaiman-Filter erläuterten Weise der Approximation wird unter Umstanden, insbesondere wenn das ursprungliche System stark nichtlinear ist, die Ko- varianzmatrix des Systemzustandes nicht genau genug geschätzt. In diesem Fall bietet sich die Verwendung des Unscented Kaiman-Filters an. Bei diesem wird die Schätzung der Kovarianzmatrix des Systemzustandes nicht aus der Kovarianzmatrix des linearen, approximierenden Systems abgeleitet, sondern es werden neben dem Systemzustand im Folgezeitschritt auch die hypothetischen fol- genden Systemzustande für eine Anzahl angenommener weiterer Systemzustande in der Umgebung des geschätzten Systemzustandes vorhergesagt. Aus der Gesamtheit dieser vorhergesagten Systemzustande kann dann wieder die Kovarianzmatrix erschlossen werden. Diese Methode ist genau- er, allerdings unter Umstanden auch rechenaufwendiger.
• Information Filter.
Der Information Filter stellt eine im Vergleich zum linearen Kaiman-Filter algebraisch äquivalente, jedoch nu- merisch in vielen Fallen gunstigere Formulierung dar. Hierbei wird anstatt der Kovarianzmatrix des Systemzustandes die hierzu inverse Matrix geschätzt, die so genannte Informationsmatrix.
• Partikel-Filter.
Eine wesentliche Annahme der erläuterten Filterverfahren ist, dass die Wahrscheinlichkeitsdichteverteilung der zu schatzenden Großen eine Normalverteilung ist, wobei Mit- telwert und Kovarianzmatrix geschätzt werden. Geringe Abweichungen von dieser Annahme tolerieren die oben genannten Verfahren. Manchmal ist die Abweichung jedoch zu groß, und diese Verfahren funktionieren schlecht bzw. nicht. Wenn eine allgemeine zugelassen werden muss, bietet sich die Verwendung eines Partikel-Filters an. Hierbei wird die Wahrscheinlichkeitsdichteverteilung nicht durch die Parameter Mittelwert und Kovarianzmatrix beschrieben, sondern durch eine Menge von Beispielpunkten. Die Verteilung einer Große im Folgeschritt wird dann dadurch geschätzt, dass zu jedem Partikel der Partikelmenge gemäß der Systemdynamik der Folgezustand ermittelt wird, und die nicht mehr mit Beobachtungen (Sensordaten) vereinbaren Partikel entfernt werden. Dieser Ansatz bie- tet sehr große Allgemeinheit, erfordert jedoch verglichen mit den anderen Verfahren viel mehr Speicherplatz und unter Umstanden auch mehr Rechenleistung.
• Weitere Filter, welche Sensor-Daten iterativ verarbei- ten.
Die verschiedenen Filtermethoden unterscheiden sich in ihrer Allgemeinheit und Anwendbarkeit, sowie in Rechenleistung und Speicherbedarf. Es ist daher vorteilhaft, je nach Situation die am besten geeignete Filtermethode auszuwählen. Die Datenverarbeitungseinrichtung CON ermöglicht die Auswahl der am besten geeignete Filtermethode. Dies erfolgt dadurch, dass die Schnittstellen zu den Sensoren SENSOR 1, SENSOR 2, SENSOR 3 vereinheitlicht sind und die Filtermethoden objektorien- tiert in geeigneter Weise implementiert sind, so dass jeweils die gunstigste Filtermethode für die Zustandsschatzung verwendet werden kann .
Die Sensoren SENSOR 1, SENSOR 2 und SENSOR 3 können in einem gemeinsamen Gehäuse integriert sein. Hierdurch können Kosten und auch Platz eingespart werden. Vorteilhaft ist die Montage des gemeinsamen Gehäuses im Inneren des Fahrzeuges hinter der Windschutzscheibe, z.B. zwischen der Windschutzscheibe und dem Ruckspiegel. Durch die Windschutzscheibe werden die Sensoren geschützt; der Scheibenwischer ermöglicht den Sensoren eine klare Sicht. Alternativ hierzu können auch nur zwei der drei Sensoren SENSOR 1, SENSOR 2 und SENSOR 3 in einem ge- meinsamen Gehäuse untergebracht sein. Der dritte Sensor kann in diesem Fall z.B. an der Ruckseite des Fahrzeugs angeordnet werden .
Im Gegensatz zum Fahrerassistenzsystem von Figur 1, bei wel- ehern für jede Anwendung eine eigene Datenverarbeitungseinrichtung CON 1, CON 2, CON 3 vorgesehen ist, verfugt das Fahrerassistenzsystem von Figur 2 lediglich über eine einzige Datenverarbeitungseinrichtung CON. Die Datenverarbeitungseinrichtung CON wird für eine Mehrzahl von Anwendungen genutzt; so kann das Fahrerassistenzsystem der Figur 2 beispielsweise 2, 3, 4 oder mehrere verschiedene Anwendungen bereit stellen. Hierdurch stehen für jede Anwendung nicht nur die Daten eines einzelnen Sensors zur Verfugung, sondern die Daten von mehreren oder aller Sensoren SENSOR 1, SENSOR 2 und SENSOR 3. Die einzelnen Anwendungen werden hierdurch robuster und präziser im Vergleich zum Fahrerassistenzsystem der Figur 1. Eine Anwendung, welche üblicherweise auf Lidar-Daten basiert, kann z.B. durch die zusatzliche Berücksichtigung von Videokamera- Daten verbessert werden; denn ein Lidar-Sensor und eine Vi- deokamera erganzen sich insofern, als ein Lidar-Sensor Abstande in Fahrtrichtung und eine Video-Kamera seitliche Positionen effizient bestimmen kann. Dies kann z.B. die Präzision von ACC erhohen.
Auch der Aufwand oder die Komplexität der Datenverarbeitung eines einzelnen Sensors kann durch das Hinzuziehen von Daten eines anderen Sensors reduziert werden. So kann beispielsweise durch einen Lidar-Sensor der Aufenthaltsort eines anderen Fahrzeugs bestimmt werden, woraufhin sich die Bildauswertung von Videodaten auf den Bereich dieses Aufenthaltsortes beschrankt. Durch die reduzierte Komplexität der Bildauswertung stehen die als Ergebnis über die Schnittstelle ITF (D) oder ITF (C) an die verschiedenen Anwendungen ausgegebenen Informationen rascher zur Verfugung.
Ein weiterer Vorteil der Anbindung der Sensoren an die ge- meinsame Datenverarbeitungseinrichtung CON ist die Möglichkeit der Kalibrierung eines Sensors anhand eines anderen Sensors .
Weiterhin ist eine Ruckkopplung von der Datenverarbeitungs- einrichtung CON zu den Sensoren SENSOR 1, SENSOR 2 und SENSOR 3 vorgesehen. Hierdurch kann die Datenaufnahme durch die Sensoren SENSOR 1, SENSOR 2 und SENSOR 3 in Abhängigkeit von der gemeinsamen Auswertung von Daten gesteuert werden. Auf diese Weise können Messergebnisse eines Sensors die Tätigkeit eines anderen Sensors beeinflussen. Hierdurch kann z.B. ein Sensor in Abhängigkeit von den von einem anderen Sensor aufgenommenen Daten in eine bestimmte Richtung ausgerichtet werden.

Claims

Patentansprüche
1. Datenverarbeitungseinrichtung (CON) für ein eine Mehrzahl von Fahrerassistenzfunktionen (APP 1, APP 2, APP 3) zur Verfugung stellendes Fahrerassistenzsystem für ein Fahrzeug, mit einem Eingang zum Empfangen von Daten von einer Mehrzahl von Sensoren (SENSOR 1, SENSOR 2, SENSOR 3), Verarbeitungs-Mitteln zum Verarbeiten der empfangenen Da- ten und zum Erstellen jeweils eines Ausgangssignals für jede Fahrerassistenzfunktion (APP 1, APP 2, APP 3) der Mehrzahl von Fahrerassistenzfunktionen (APP 1, APP 2, APP 3) , und einem Ausgang zum Ausgeben des Ausgangssignals für jede Fahrerassistenzfunktion (APP 1, APP 2, APP 3) der Mehrzahl von Fahrerassistenzfunktionen (APP 1, APP 2, APP 3).
2. Datenverarbeitungseinrichtung (CON) nach Anspruch 1, bei der die Verarbeitungs-Mittel Daten von zumindest zwei Sensoren (SENSOR 1, SENSOR 2, SENSOR 3) gemeinsam verarbeiten.
3. Datenverarbeitungseinrichtung (CON) nach Anspruch 2, bei der die Verarbeitungs-Mittel derart ausgestaltet sind, dass für zumindest eine Fahrerassistenzfunktion (APP 1, APP 2, APP 3) das Ausgangssignal unter Verwendung von Daten von zumindest zwei Sensoren (SENSOR 1, SENSOR 2, SENSOR 3) erstellt wird.
4. Datenverarbeitungseinrichtung (CON) nach Anspruch 2 oder 3, bei der die gemeinsame Verarbeitung erfolgt unter Verwendung von einem linearen Kaiman-Filter und/oder einem Extended KaI- man-Filter und/oder einem Unscented Kaiman-Filter und/oder einem Information-Filter und/oder einem Partikelfilter und/oder einem iterativ arbeitenden Filter.
5. Datenverarbeitungseinrichtung (CON) nach einem der Ansprüche 1 bis 4, bei der die Verarbeitungs-Mittel derart ausgestaltet sind, dass aufgrund einer Auswertung von Daten eines ersten Sensors (SENSOR 1, SENSOR 2, SENSOR 3) die Auswertung von Daten eines zweiten Sensors (SENSOR 1, SENSOR 2, SENSOR 3) auf einen bestimmten Bereich der Daten des zweiten Sensors (SENSOR 1, SENSOR 2, SENSOR 3) beschrankt wird.
6. Datenverarbeitungseinrichtung (CON) nach einem der Ansprüche 1 bis 5, bei der die Mehrzahl von Sensoren (SENSOR 1, SENSOR 2, SENSOR 3) umfasst: einen Radar-Sensor und/oder eine optische Kamera und/oder einen Ultraschall-Sensor und/oder einen Lidar-Sensor und/oder einen Infrarot-Sensor.
7. Datenverarbeitungseinrichtung (CON) nach einem der Ansprüche 1 bis 6, bei der die Verarbeitungs-Mittel Mittel umfassen zum Erstellen und Senden von Anweisungen an zumindest einen Sensor
(SENSOR 1, SENSOR 2, SENSOR 3) in Abhängigkeit von der Verarbeitung von empfangenen Daten.
8. Datenverarbeitungseinrichtung (CON) nach einem der An- spruche 1 bis 7, bei der die Mehrzahl von Fahrerassistenzfunktionen (APP 1, APP 2, APP 3) umfasst: eine Geschwindigkeitskontrollfunktion und/oder eine Ab- standskontrollfunktion und/oder eine Funktion zur Detek- tion von Fahrzeugen in einem toten Winkel und/oder eine Funktion zur Unterstützung eines Spurwechsels und/oder eine Spurhaltefunktion und/oder eine Nachtsichtfunktion und/oder eine Einparkhilfefunktion und/oder eine naviga- tionsgeratunterstutzende Funktion und/oder eine Verkehrszeichenerkennungsfunktion .
9. Datenverarbeitungseinrichtung (CON) nach einem der Ansprüche 1 bis 8, bei der der Ausgang der Datenverarbeitungseinrichtung (CON) an eine Mensch-Maschine-Schnittstelle (ITF(D)) und/oder an eine Schnittstelle (ITF(C)) zur autonomen Kontrolle des Fahrzeugs anschließbar ist.
10. Fahrerassistenzsystem umfassend eine Mehrzahl von Sensoren (SENSOR 1, SENSOR 2, SENSOR 3) und eine mit den Sensoren (SENSOR 1, SENSOR 2, SENSOR 3) verbundene Datenverarbeitungseinrichtung (CON) nach einem der Ansprüche 1 bis 9.
11. Fahrerassistenzsystem nach Anspruch 10, bei dem mindestens zwei der Sensoren (SENSOR 1, SENSOR 2, SENSOR 3) in einem gemeinsamen Gehäuse angeordnet sind.
12. Fahrerassistenzsystem nach Anspruch 11, bei dem das gemeinsame Gehäuse zwischen dem Ruckspiegel und der Windschutzscheibe des Fahrzeuges anbringbar ist.
13. Fahrzeug umfassend ein Fahrerassistenzsystem nach einem der Ansprüche 10 bis 12.
14. Verfahren zur Datenverarbeitung für ein eine Mehrzahl von Fahrerassistenzfunktionen (APP 1, APP 2, APP 3) zur Verfugung stellendes Fahrerassistenzsystem für ein Fahrzeug, wobei eine Datenverarbeitungseinrichtung
• Daten von einer Mehrzahl von Sensoren (SENSOR 1, SENSOR 2, SENSOR 3) empfangt,
• die empfangenen Daten verarbeitet,
• jeweils ein Ausgangssignal für jede Fahrerassistenzfunk- tion (APP 1, APP 2, APP 3) der Mehrzahl von Fahrerassistenzfunktionen (APP 1, APP 2, APP 3) erstellt,
• das Ausgangssignal für jede Fahrerassistenzfunktion (APP 1, APP 2, APP 3) der Mehrzahl von Fahrerassistenzfunktionen (APP 1, APP 2, APP 3) ausgibt.
PCT/EP2008/050247 2007-01-16 2008-01-10 Gemeinsamer kontroller für verschiedene fahrerassistenzsysteme WO2008087092A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007002197.8 2007-01-16
DE102007002197A DE102007002197A1 (de) 2007-01-16 2007-01-16 Gemeinsamer Kontroller für verschiedene Fahrerassistenzsysteme

Publications (1)

Publication Number Publication Date
WO2008087092A1 true WO2008087092A1 (de) 2008-07-24

Family

ID=39365794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050247 WO2008087092A1 (de) 2007-01-16 2008-01-10 Gemeinsamer kontroller für verschiedene fahrerassistenzsysteme

Country Status (2)

Country Link
DE (1) DE102007002197A1 (de)
WO (1) WO2008087092A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015015437A1 (de) * 2015-12-02 2017-06-08 Conti Temic Microelectronic Gmbh Steuergerät und Verfahren für ein Fahrerassistenzsystem eines Fahrzeugs
US20210302570A1 (en) * 2018-08-09 2021-09-30 Sony Semiconductor Solutions Corporation Information processing device and information processing method, computer program, information processing system, and mobile device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063984A1 (de) * 2010-02-11 2011-08-11 Continental Teves AG & Co. OHG, 60488 Fahrzeug-Sensor-Knoten
DE102010009133B4 (de) * 2010-02-23 2012-04-05 Continental Automotive Gmbh Verfahren zur Unterstützung eines Fahrers bei einem Führen eines ein Fahrerassistenzsystem aufweisenden Kraftfahrzeugs und Kraftfahrzeug mit Systemauswahleinrichtung
DE102010018994A1 (de) * 2010-05-03 2011-11-03 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Fahrerassistenzsystems eines Fahrzeugs, Fahrerassistenzsystem und Fahrzeug
DE102011081600A1 (de) * 2011-08-25 2013-02-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Fahrzeuginformationssystems, Fahrzeuginformationssystem und Computerprogramm
US8706458B2 (en) * 2011-10-05 2014-04-22 International Business Machines Corporation Traffic sensor management
US9099006B2 (en) 2013-08-22 2015-08-04 GM Global Technology Operations LLC Context-aware threat response arbitration
EP3168637A1 (de) * 2015-11-12 2017-05-17 Autoliv Development AB Modulares fahrzeugradar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133945A1 (de) * 2001-07-17 2003-02-06 Bosch Gmbh Robert Verfahren und Vorrichtung zum Austausch und zur Verarbeitung von Daten
EP1547847A2 (de) * 2003-12-25 2005-06-29 Fuji Jukogyo Kabushiki Kaisha Abstandsbezogenes Fahrgeschwindigkeitsregelsystem
DE102004038494A1 (de) * 2004-08-07 2006-03-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Sensorsystems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4329983B4 (de) * 1993-09-04 2004-12-02 Robert Bosch Gmbh Dachmodul für ein Kraftfahrzeug
DE10118903A1 (de) * 2001-04-18 2002-11-14 Bosch Gmbh Robert Mehrzweck-Fahrerassistenzsystem für ein Kraftfahrzeug
DE10238936A1 (de) * 2002-08-24 2004-03-04 Robert Bosch Gmbh Vorrichtung und Verfahren zur Steuerung wenigstens einer Systemkomponente eines informationstechnischen Systems
DE10308168A1 (de) * 2002-09-27 2004-04-08 Volkswagen Ag Verfahren und Vorrichtung zur Ermittlung des Fahrzeugumfeldes
DE10345013A1 (de) * 2003-09-22 2005-04-14 Volkswagen Ag Verfahren und Vorrichtung zur Realisierung von Fahrerassistenz-Funktionen
DE102005009146A1 (de) * 2005-03-01 2006-09-21 Robert Bosch Gmbh Fahrerassistenzsystem mit mehreren Assistenzfunktionen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133945A1 (de) * 2001-07-17 2003-02-06 Bosch Gmbh Robert Verfahren und Vorrichtung zum Austausch und zur Verarbeitung von Daten
EP1547847A2 (de) * 2003-12-25 2005-06-29 Fuji Jukogyo Kabushiki Kaisha Abstandsbezogenes Fahrgeschwindigkeitsregelsystem
DE102004038494A1 (de) * 2004-08-07 2006-03-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Sensorsystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUNG E ET AL: "Improved obstacle detection by sensor fusion", 19920101, 1 January 1992 (1992-01-01), pages 2/1 - 2/6, XP006521317 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015015437A1 (de) * 2015-12-02 2017-06-08 Conti Temic Microelectronic Gmbh Steuergerät und Verfahren für ein Fahrerassistenzsystem eines Fahrzeugs
US10745026B2 (en) 2015-12-02 2020-08-18 Conti Temic Microelectronic Gmbh Control device and method for a driver assistance system of a vehicle
US20210302570A1 (en) * 2018-08-09 2021-09-30 Sony Semiconductor Solutions Corporation Information processing device and information processing method, computer program, information processing system, and mobile device

Also Published As

Publication number Publication date
DE102007002197A1 (de) 2008-07-17

Similar Documents

Publication Publication Date Title
WO2008087092A1 (de) Gemeinsamer kontroller für verschiedene fahrerassistenzsysteme
EP2240354B1 (de) Vorrichtung, verfahren und computerprogramm zur kollisionsvermeidung oder zur verminderung der kollisionsschwere infolge einer kollision für fahrzeuge, insbesondere nutzfahrzeuge
DE102007039617B4 (de) Automatische Spiegeleinstellung in einem Fahrzeug
EP2109845B1 (de) Fahrerassistenzsystem zur verkehrszeichenerkennung
DE102012203187A1 (de) Verfahren und Vorrichtung zur Prädiktion und Adaption von Bewegungstrajektorien von Kraftfahrzeugen
DE10102771A1 (de) Einrichtung zum Bereitstellen von Signalen in einem Kraftfahrzeug
DE102006057744A1 (de) Dynamischer Geschwindigkeitsassistent für ein Fahrerassistenzsystem
WO2014041023A1 (de) Verfahren und vorrichtungen zur kollisionswarnung bei fahrstreifenwechseln
DE102018219976A1 (de) Vorrichtung und Verfahren zur Warnung eines Fahrers eines Fahrzeugs
EP2873578B1 (de) Verfahren zur Fahrassistenz
DE102007020280A1 (de) Verfahren und Vorrichtung für die Steuerung eines Fahrerassistenzsystems
EP3530537B1 (de) Kraftfahrzeug-steuervorrichtung und verfahren zum betreiben der steuervorrichtung zum autonomen führen eines kraftfahrzeugs
DE202014006923U1 (de) Fahrassistenzsystem, Computerprogrammprodukt sowie Kraftfahrzeug
WO2018100164A1 (de) Spurwechselassistenzsystem mit relativgeschwindigkeitsabhängigem reaktionsbereich
WO2022002901A1 (de) Verfahren zur umgebungserfassung mit wenigstens zwei unabhängigen bildgebenden umgebungserfassungssensoren, vorrichtung zur durchführung des verfahrens, fahrzeug sowie entsprechend ausgelegtes computerprogramm
WO2016180665A1 (de) Verfahren zum steuern einer funktionseinrichtung eines kraftfahrzeugs anhand von fusionierten sensordaten, steuereinrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE102016204018A1 (de) Verfahren und Vorrichtung zur Bestimmung der Querneigung einer Fahrbahn
EP3653460A1 (de) Verfahren und steuereinheit zum betreiben eines autonomen fahrzeugs
DE102016109856A1 (de) Verfahren zur Vermeidung einer Kollision eines Kraftfahrzeugs mit einem Objekt auf Grundlage eines maximal vorgebbaren Radlenkwinkels, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017205495A1 (de) Vorrichtung und Verfahren zum Fokussieren von Sensoren im fahrdynamischen Grenzbereich für ein Kraftfahrzeug
DE102020211970A1 (de) Verfahren zum Steuern eines Fahrzeugs
DE102013018967A1 (de) Verfahren zur Prognose des Fahrweges eines Kraftfahrzeuges und Prognoseeinrichtung
DE112022001245T5 (de) Spurhalteassistent auf basis der abweichungsrate
DE3304620A1 (de) Einrichtung zur einhaltung einer konstanten fahrgeschwindigkeit fuer kraftwagen
DE102004012144B4 (de) Verfahren und Vorrichtung zum Unterstützen eines Fahrers beim Lenken des Kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08701393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08701393

Country of ref document: EP

Kind code of ref document: A1