WO2008072390A1 - プラズマ生成装置およびプラズマ生成方法 - Google Patents

プラズマ生成装置およびプラズマ生成方法 Download PDF

Info

Publication number
WO2008072390A1
WO2008072390A1 PCT/JP2007/061837 JP2007061837W WO2008072390A1 WO 2008072390 A1 WO2008072390 A1 WO 2008072390A1 JP 2007061837 W JP2007061837 W JP 2007061837W WO 2008072390 A1 WO2008072390 A1 WO 2008072390A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
plasma
medium gas
gas supply
medium
Prior art date
Application number
PCT/JP2007/061837
Other languages
English (en)
French (fr)
Inventor
Katsuhisa Kitano
Satoshi Hamaguchi
Hironori Aoki
Original Assignee
Osaka Industrial Promotion Organization
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization, Osaka University filed Critical Osaka Industrial Promotion Organization
Priority to US12/518,737 priority Critical patent/US8232729B2/en
Priority to JP2008549208A priority patent/JP4677530B2/ja
Publication of WO2008072390A1 publication Critical patent/WO2008072390A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/44Plasma torches using an arc using more than one torch
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes

Definitions

  • the present invention relates to microplasma generation, and more particularly to a plasma generation apparatus and generation method for generating plasma limited to a medium gas.
  • microplasma jets have attracted attention because of their wide range of applications, and have been realized by various power supply and electrode structures.
  • Microplasma is characterized by its small spatial size, but in order to generate and maintain plasma in a very small space, atoms and molecules of electron ions and medium gas (plasma generation gas) are required. Therefore, the medium density will inevitably increase to ensure sufficient collision frequency. Therefore, in order to generate microplasma, a medium gas near atmospheric pressure, that is, about 10 18 to 10 22 cm 3 is necessary in terms of the density of the medium.
  • Te Tg is in a non-equilibrium state like low-pressure plasma.
  • argon (Ar) gas used as a medium gas for plasma generation is caused to flow into a quartz pipe to be ejected, and a coil is disposed around the quartz pipe. Then, it is induced in the quartz pipe by flowing high frequency current. Generate a conductive field. Argon atoms in the argon gas flowing into the quartz pipe are ionized by an induced electric field or magnetic field to become high-temperature (6000 to 7000 ° C) plasma, which is pushed by the inflow pressure of the argon gas and is emitted from the jet outlet at the tip of the quartz pipe. Spouts into the atmosphere. The ejected plasma generates a microplasma jet that does not diffuse due to the presence of the atmosphere.
  • reference numeral 1 denotes a gas supply pipe having an inner diameter of about 2 to 5 mm and also having a quartz noise force, and helium gas passing through the inner cavity is ejected from the ejection port la.
  • a pair of coaxial electrodes 3a and 3b for generating plasma are installed on the upstream side and the downstream side.
  • LF Lower Frequency plasma jet
  • This LF plasma jet has rare features in two respects.
  • a plasma jet with a long and elongated diameter ratio that is, a large aspect ratio and shape, is obtained, depending on the direction of the voltage applied to the electrode.
  • the injection direction is determined.
  • the direction of the jet conversely extends upstream of the gas.
  • a spherical plasma lump that does not maintain a columnar discharge is 10 [kmZs], approximately 10,000 times that of the medium gas flow, in synchronization with the power supply frequency. And moving very fast. Therefore, the generation mechanism is not directly related to the medium gas flow.
  • the plasma jet according to this system is a plasma of the medium gas flow itself, so that it is possible to directly irradiate the target with plasma.
  • the LF plasma jet emits a plasma lump in a pulsed manner, so it is non-equilibrium in time, that is, it cannot be relaxed with neutral gas at the moment, creating a thermally non-equilibrium state. Since it is a thermal non-equilibrium plasma, it is possible to irradiate a high energy component without increasing the temperature of the object.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-60130 Disclosure of the invention
  • the force ground potential of the plasma jet 5 extends in the downstream direction with respect to the medium gas flow. It was found that the position of the electrode 3b on the high potential side with respect to the electrode 3a does not determine the jetting direction of the jet.
  • a plasma jet is generated only by the presence of the electrode 3b to which a high potential is applied, and the ground potential electrode 3a rather suppresses the jet flow.
  • a partial discharge occurs with the ground potential existing far away.
  • the discharge is a medium-limited plasma that is generated only in the medium gas flow, and a plasma flow in which the medium gas flow is converted into plasma is generated.
  • the gap between the high potential electrode 3a and the ground potential electrode 3b is close to the upstream side of the medium gas flow with respect to the high potential electrode 3b, the discharge due to the short circuit between the electrodes covered with the dielectric barrier is not caused. Has occurred. Unlike partial discharge, discharge due to a short circuit consumes a large amount of power and generates heat. It was found that the two-electrode method is not efficient because of such short-circuit discharge.
  • the present invention provides a plasma generating apparatus and a generating method capable of generating plasma limited to a medium gas stably with respect to a wide range of parameters with high energy efficiency by a simple configuration.
  • the purpose is to provide.
  • a plasma generation apparatus having a first configuration is an apparatus for generating medium gas mass plasma having an elongated shape, and forms an electric field in the medium gas mass.
  • the electric field forming element forms an electric field such that a partial discharge occurs in both the longitudinal direction of the medium gas mass.
  • the plasma generating apparatus of the second configuration of the present invention comprises a medium gas mass having an elongated shape.
  • An apparatus for generating plasma comprising: a single high-potential electrode disposed in the medium gas mass; and a voltage application element for applying a voltage to the high-potential electrode, wherein the voltage application element comprises: A voltage is applied to the high potential electrode to form an electric field that generates a partial discharge from the high potential electrode in both the longitudinal direction of the medium gas mass.
  • a first plasma generation method of the present invention is a method of generating the medium gas mass force plasma having an elongated shape by an electric field forming element that forms an electric field in the medium gas mass, the electric field forming element The electric field is formed in the medium gas mass by the electric field forming element so that partial discharge occurs in both the longitudinal direction of the medium gas mass.
  • a second plasma generation method of the present invention is a method of generating the medium gas mass force plasma having an elongated shape by an electric field forming element that forms an electric field in the medium gas mass, the medium gas mass A single high-potential electrode is disposed therein, and a voltage that generates an electric field that generates a partial discharge from both the electric field forming element in the longitudinal direction of the medium gas mass is applied to the high-potential electrode. It is characterized by that.
  • the partial discharge is a phenomenon in which, when a voltage is applied between the electrodes, the atmospheric gas is partially discharged between the electrodes, and the discharge completely short-circuits between the electrodes. Is used in a meaning that does not include.
  • Such partial discharge occurs when there is a non-uniform electric field distribution or a gas distribution with different non-uniform breakdown voltage between the electrodes. For example, when the electrode structure has a sharp electrode structure that is not a parallel plate structure, electric field concentration occurs at the tip of the electrode, and the electric field strength increases, and this electric field strength exceeds the breakdown electric field of the atmospheric gas. Partial discharge occurs only in this part.
  • the discharge mechanism of the LF plasma jet is considered to be that the streamer corona discharge phenomenon due to the concentrated electric field strength in the vicinity of the high-voltage electrode occurs along the helium gas flux in the atmosphere or inside the glass tube.
  • the LF plasma jet generation apparatus and generation method of the present invention have a slender medium. By forming an electric field in the gas mass so that partial discharge occurs along the longitudinal direction, it is possible to generate plasma with high energy efficiency and stable over a wide range of parameters with a simple configuration. is there.
  • FIG. 1A is a front view showing an LF plasma jet generation apparatus according to Embodiment 1 of the present invention.
  • FIG. 1B is an enlarged cross-sectional view along the line AA in the LF plasma jet generator of FIG. 1A.
  • FIG. 2A is a waveform diagram showing a low-frequency voltage applied by the LF plasma jet generation apparatus in the same embodiment.
  • FIG. 2B is a waveform diagram showing a voltage waveform when only a positive high voltage is applied in the LF plasma jet generator of the present invention.
  • FIG. 2C is a waveform diagram showing a voltage waveform when only the same negative high voltage is applied.
  • FIG. 2D is a waveform diagram showing voltage waveforms when the same positive and negative high voltages are alternately applied.
  • FIG. 2E is a waveform diagram showing another example of the low-frequency voltage applied by the LF plasma jet generation device in the same embodiment.
  • FIG. 3A is a front view of the LF plasma jet generation apparatus according to Embodiment 2 of the present invention.
  • FIG. 3B is an enlarged cross-sectional view taken along the line BB in the LF plasma jet generator of FIG. 3A.
  • FIG. 4 is a front view showing a modified example of the LF plasma jet generating apparatus in the same embodiment.
  • FIG. 5A is a front view of the LF plasma jet generation apparatus according to Embodiment 3 of the present invention.
  • FIG. 5B is an enlarged cross-sectional view taken along the line CC in the LF plasma jet generator of FIG. 5A.
  • FIG. 6A is a front view of the LF plasma jet generation device according to Embodiment 4 of the present invention.
  • FIG. 6B is an enlarged cross-sectional view along the line DD in the LF plasma jet generating apparatus of FIG. 6A.
  • FIG. 7 is a front view of the LF plasma jet generation device according to Embodiment 5 of the present invention.
  • FIG. 8A is a front view of the LF plasma jet generation device according to Embodiment 6 of the present invention.
  • FIG. 8B is a front view showing another aspect of the LF plasma jet generation apparatus in the same embodiment.
  • FIG. 9A is a front view showing a first step of the LF plasma jet generation method according to the seventh embodiment of the present invention.
  • FIG. 9B is a front view showing a second step of the LF plasma jet generation method according to the seventh embodiment of the present invention.
  • FIG. 9C is a front view showing a third step of the LF plasma jet generation method according to the seventh embodiment of the present invention.
  • FIG. 10 is a front view showing the LF plasma jet generation device according to the eighth embodiment of the present invention.
  • FIG. 11 is a front view showing a conventional LF jet generating device.
  • the plasma generation apparatus of the present invention can take the following various modes based on the above-described configuration.
  • a gas flow generating element that generates a medium gas flow as the medium gas mass
  • the electric field forming element includes an upstream side of the medium gas flow from the electric field forming element and An electric field can be formed so that partial discharge occurs toward both downstream sides.
  • a gas supply member that guides a medium gas to the electric field forming element through a lumen can be further provided, and the medium gas flow can be generated by the gas supply member.
  • the electric field forming element includes a strong electric field capable of initiating partial discharge in the medium gas lump.
  • a weak electric field capable of maintaining the partial discharge can be formed.
  • the second configuration may further include a gas supply member that guides a medium gas to the electric field forming element through a lumen, and the gas supply member generates the medium gas flow.
  • the gas supply member may be made of a dielectric, and the high potential electrode may be provided outside the gas supply member.
  • the gas supply member has a configuration in which the opening for discharging the medium gas has a flat plate shape, and the high potential electrode is provided in a flat plate shape on the flat plate surface of the opening portion. be able to.
  • the gas supply member may have a cylindrical structure, and the high potential electrode may have a cylindrical structure.
  • the action of the present invention can be determined arbitrarily other than in the case of a cylinder or a plane that is not essentially restricted by the cross-sectional shape of the gas flux. Togashi.
  • the gas supply member has a conductor force, and the gas supply member can be used as the high potential electrode.
  • the gas supply member may be made of a dielectric, and the high-potential electrode may be provided in an inner cavity of the gas supply member.
  • the high-potential electrode is provided so as to form a part of the inner surface of the gas supply member so as to form an integral structure with the gas supply member, and the medium gas may be the gas supply member. It can be set as the structure which touches the inner wall surface and the surface of the said high potential electrode.
  • the voltage application element may be configured to be able to supply a voltage capable of starting a partial discharge in the medium gas mass and a voltage capable of maintaining the partial discharge.
  • the auxiliary electrode further includes an auxiliary electrode disposed so as to be adjacent to a part of the medium gas mass at a position where the high potential electrode force is also separated, and the auxiliary electrode is provided with a ground potential from the voltage application element. It can be set as a structure.
  • the apparatus further includes an auxiliary gas supply member that guides the medium gas through a lumen, and an auxiliary electrode that is provided in the auxiliary gas supply member and is applied with a ground potential by the voltage application element.
  • the auxiliary gas supply member is disposed such that a jet outlet for ejecting the medium gas is in contact with a jet outlet for ejecting the medium gas of the gas supply member, or is close to the jet outlet with a predetermined gap g, At least one of the gas supply member and the auxiliary gas supply member may have a dielectric force.
  • the medium gas mass force plasma may be generated, and the high potential electrode may be provided in each of the medium gas masses.
  • a medium gas flow is generated as the medium gas mass, and the electric field forming element force is directed toward both the upstream side and the downstream side of the medium gas flow.
  • An electric field can be generated by the electric field forming element so that a partial discharge occurs.
  • the electric field forming element can sequentially form a strong electric field capable of starting a partial discharge in the medium gas mass and a weak electric field capable of maintaining the partial discharge.
  • a partial discharge is started by a distance between the high potential electrode and a ground potential portion by a voltage applied to the high potential electrode.
  • the predetermined distance can be set, and then the distance between the high potential electrode and the ground potential location can be made larger than the predetermined distance within a range in which partial discharge can be maintained.
  • FIG. 1A and IB show the LF plasma jet generation apparatus according to Embodiment 1
  • FIG. 1A is a front view
  • FIG. 1B is an enlarged cross-sectional view along line AA in FIG. 1A.
  • the gas supply pipe 1 also has a dielectric force such as quartz noise, for example, and a gas tube 2 is connected to the rear end of the gas supply pipe 1 so that, for example, helium (He) gas is supplied from the medium gas source. Supplied.
  • the helium gas that has passed through the lumen of the gas supply pipe 1 is ejected from the ejection port la to form a gas flow generation unit for forming a gas flow of the medium gas.
  • the gas supply pipe 1 for example, one having an inner diameter of 50 / ⁇ ⁇ to 50 ⁇ can be used.
  • quartz pipes instead of quartz pipes, other dielectric pipes such as plastic tubes may be used!
  • a coaxial high-potential electrode 3 for generating plasma is installed on the outer periphery of the end of the gas supply pipe 1 on the jet outlet la side.
  • a voltage application device 4 is connected to the high-potential electrode 3 so that a positive voltage in the form of a pulse train having a predetermined frequency as shown in FIG. 2A can be applied.
  • the voltage value of the positive voltage in the pulse train applied by the voltage application device 4 to, for example, 10 kV and setting the frequency to, for example, about 10 kHz, the non-equilibrium plasma jet 5 that extends narrowly from the outlet la is generated.
  • the plasma jet 5 generated only by the high potential single pole has a phenomenon in which the medium gas flow extends in the upstream and downstream directions as shown by the broken line in FIG. 1A. Observed. Therefore, this discharge is thought to be a discharge phenomenon that occurs in a cylindrical space limited by a helium gas flow, rather than a phenomenon in which the plasma mass jumps out into the atmosphere. In other words, a partial discharge occurs between the upstream and downstream sides of the medium gas flow with respect to the high-potential electrode 3 and a ground potential existing far away, and the discharge is limited by the medium that is generated only in the medium gas flow. Plasma. Therefore, in the LF plasma jet generating apparatus of the present embodiment, no short circuit discharge occurs between the electrodes.
  • the gas supply pipe 1 and the gas tube 2 are configured to generate a medium gas flow.
  • the high potential electrode 3 and the voltage applying device 4 function as an electric field forming unit that forms an electric field so as to correspond to each of the medium gas flow.
  • the electric field formed by the electric field forming section thus provided causes partial discharges on both the upstream side and the downstream side of the medium gas flow.
  • the electric field forming section upstream of the medium gas flow from the electric field forming section. Plasma is generated toward both the side and the downstream side.
  • the voltage application device 4 may be configured to apply a positive voltage in the form of a pulse train having a predetermined frequency to the high potential electrode 3, but the applied voltage is such a state. It is not necessarily limited to. As long as the electric field is generated so that partial discharge occurs, the mode of the applied voltage is arbitrary.
  • a voltage that changes over time By changing with time, especially in the case of dielectric barrier discharge, the plasma is ignited via a capacitor called glass, so that the plasma is likely to be generated by a component whose voltage changes. Specifically, a voltage of about 10 kHz may be used, but a glowing atmospheric pressure plasma may be obtained even at a low frequency of about 60 Hz. However, at a high frequency of about 10 MHz, another discharge shape is formed that is uniform even when viewed with a high-speed power camera. More preferably, a voltage that changes periodically is applied. This is because it is easier to obtain a stable plasma if it is discharged periodically.
  • the medium gas other gas can be used if the force condition for which helium gas is suitable is appropriately set.
  • a mixed gas of argon and ketone can be used.
  • various processes can be performed by supplying chemical vapors such as monomers and aerosols such as sprayed mist and fine particles.
  • This LF plasma jet is a thermal non-equilibrium low-temperature plasma that can irradiate thin nylon and the like without damaging the substrate. It is sufficient to cause surface treatment, ozone generation and plasma polymerization. I have a lot of energy.
  • a non-equilibrium plasma is generated by a single electrode, that is, a single high potential electrode 3.
  • a single electrode that is, a single high potential electrode 3.
  • the number of high-potential electrodes 3, that is, electric field forming portions arranged for one medium gas flow is not limited to one. That is, even if a plurality of electric field forming portions are provided for one medium gas flow, each electric field forming portion may be arranged so as to generate only a partial discharge. Therefore, it is also possible to obtain the operational effects as in the present embodiment by a configuration in which a plurality of high potential electrodes 3 are arranged sufficiently apart from each other with respect to one gas flow generation unit.
  • partial discharge is particularly effective.
  • the inner surface of the tube is treated with a moving electrode (it does not need to be in contact with the tube), and a mixture of helium gas or a suitable monomer gas is allowed to flow through the tube (just fill it). )) Generate plasma in the tube. Thereby, continuous processing of the tube is possible. If the method of the present embodiment is used, the moving electrode can be easily configured as compared with the two-electrode system.
  • the essence of the plasma jet according to the present invention is "to create a gas flux in the atmosphere” and "partial discharge near the high voltage electrode".
  • the plasma parameters can be controlled not only by the force applied voltage by applying a periodic high voltage but also by the applied frequency. In addition to these, it is also possible to control the parameters of the generated plasma by controlling the waveform (polarity) of the applied high voltage.
  • the actually applied high voltage can be classified into waveforms as shown in FIGS.
  • Figure 2B shows the voltage waveform when only a positive high voltage is applied.
  • Figure 2C shows the voltage waveform when only a negative high voltage is applied.
  • Figure 2D shows the voltage waveform when both positive and negative high voltages are applied alternately.
  • the discharge itself generates a pulsed discharge at the moment when the applied voltage is greater than a certain absolute value, which is different between positive and negative. For example, when a 10 kHz power supply is used, the force is 100 seconds per cycle. This pulse-like discharge is observed within a few seconds.
  • the voltage application device 4 is configured to change the peak value of the applied voltage at the start of plasma generation and the peak value of the applied voltage when maintaining the plasma generation. Is desirable. That is, when the plasma jet is started, the high peak voltage VO is supplied from time tO to tl, and thereafter the reduced peak voltage VI is supplied after time tl.
  • the voltage VO has a level sufficient to trigger the generation of the plasma jet, and the voltage VI is a level necessary to maintain the generation of the plasma jet. Power that requires high voltage for plasma jet start-up-When a plasma jet is generated, it can be maintained at a lower voltage than the start-up, so power consumption can be reduced by lowering the applied voltage. Is possible.
  • the same driving method can be applied to the LF plasma jet generation devices in the following embodiments.
  • the high potential electrode 3 is not necessarily provided coaxially on the outer peripheral surface of the gas supply pipe 1, and may be an electrode attached to a part of the outer peripheral surface or the inner peripheral surface of the gas supply pipe 1. Can be generated. That is, it is preferable to have a structure in which an electrode is attached to the inner surface or outer surface of a dielectric member that forms a medium gas flow, and a structure in which the dielectric and the electrode are integrated. When the electrode is attached to the inner surface of the member having dielectric force, the medium gas contacts both the dielectric and the electrode.
  • the medium gas does not necessarily form a flow! That is, it is possible to configure the plasma generator so as to generate medium gas mass plasma.
  • an electric field forming section for forming an electric field in the medium gas mass is provided. If the medium gas mass has an elongated shape, an electric field is formed so that partial discharge occurs from the electric field forming portion in both directions in the longitudinal direction of the medium gas mass.
  • the medium gas mass may be configured such that the medium gas is enclosed in a tube provided with an electrode. Even in that case, the electrode may be provided on either the inner surface or the outer surface of the tube.
  • FIG. 3A and 3B show the LF plasma jet generator in Embodiment 2, and FIG. FIG. 3B is an enlarged sectional view taken along line BB in FIG. 3A.
  • FIG. 3 the same elements as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated. The same applies to the description of each embodiment below.
  • the gas supply pipe 1 is a dielectric quartz pipe.
  • the force high potential electrode 6 is a copper wire, on the axis of the lumen at the end of the gas supply pipe 1 at the outlet la side. Is located. When such a high potential electrode 6 is used, discharge starts from the tip of the copper wire that is the high potential electrode 6. The narrowly extending jet gradually increases its radius as it is directed toward the outlet la of the gas supply pipe 1.
  • the high potential electrode 7 having a copper wire force can be arranged separately from the gas supply pipe 1. That is, the linear high-potential electrode 7 is arranged at a position separated from the end of the gas supply pipe 1 in the ejection direction of the medium gas flow.
  • a coaxial electrode can be arranged on the inner peripheral surface of the end of the gas supply pipe 1 on the side of the jet outlet la.
  • a non-equilibrium plasma jet can be generated even if an electrode is arranged on a part of the inner peripheral surface.
  • a single high-potential electrode is provided, the degree of freedom of electrode installation is increased.
  • a metal gas supply pipe is used instead of the dielectric gas supply pipe as in this embodiment, and the plasma is used with the gas supply pipe as an electrode. It is also possible to generate a jet.
  • FIG. 5A and 5B show the LF plasma jet generation apparatus according to Embodiment 3
  • FIG. 5A is a front view
  • FIG. 5B is an enlarged cross-sectional view along the line CC in FIG. 5A.
  • the gas supply pipe is formed by the metal noise 8 that is a conductive material, and the metal noise 8 is connected to the voltage application device 4 to apply a positive voltage in the form of a pulse train having a predetermined frequency. It is used as a high potential electrode for generating plasma.
  • the metal pipe 8 for example, a metal pipe having an inner diameter of about several millimeters can of course be used, and a stainless steel pipe having an inner diameter of 100 m can be used to generate a micro-size plasma jet.
  • FIG. 6A and 6B show the LF plasma jet generator in Embodiment 4, and FIG. FIG. 6B is an enlarged cross-sectional view taken along line DD in FIG. 6A.
  • the flat quartz pipe constituting the flat gas supply pipe 9 has a flat plate shape whose cross section is not cylindrical as shown in FIG. 6B. A linear opening is formed.
  • the high potential electrode 10 also has a flat plate shape and is attached to one outer surface of the flat gas supply pipe 9.
  • This LF plasma jet generating apparatus can be made larger than the above-described embodiment.
  • a planar non-equilibrium plasma jet 11 of about 2 mm ⁇ 50 mm can be formed, which is suitable for large area processing.
  • the gas supply pipe is not limited to a quartz pipe, and a plastic pipe, a metal pipe, or the like can be used.
  • FIG. 7 is a front view showing the LF plasma jet generation apparatus in the fifth embodiment.
  • the basic configuration of the LF plasma jet generation apparatus in the present embodiment is the same as that of the apparatus of Embodiment 1 shown in FIGS. 1A and 1B.
  • a coaxial high potential electrode 3 for generating plasma is installed on the outer periphery of the end of the gas supply pipe 1 on the jet outlet la side.
  • a voltage application device 4 is connected to the high potential electrode 3 so that a positive voltage in the form of a pulse train having a predetermined frequency can be applied.
  • the auxiliary electrode 12 is arranged in the vicinity of the jet outlet la of the gas supply pipe 1 and connected to the ground side of the voltage applying device 4.
  • a medium gas for example, helium gas
  • a positive voltage in the form of a pulse train of 10 kV for example, is generated by the voltage application device 4 at a frequency.
  • a non-equilibrium plasma jet 5 extending narrowly from the jet outlet la is generated.
  • the grounded auxiliary electrode 12 is disposed, the start of plasma generation is facilitated, and the stability of the plasma generation maintenance is improved. That is, the applied voltage at the start of plasma generation can be reduced to a low voltage necessary for maintaining plasma generation, and plasma generation can be stably maintained at a sufficiently low voltage.
  • the auxiliary electrode 12 is dimensioned so as to contact only a part of the medium gas flow ejected from the ejection port la. Law and arrangement. Thereby, it is possible to obtain the effect of starting and maintaining the plasma without substantially affecting the generation of the nonequilibrium plasma jet 5.
  • FIG. 8A is a front view showing the LF plasma jet generation device according to Embodiment 6.
  • the basic configuration of the LF plasma jet generation apparatus in the present embodiment is the same as that of the apparatus of Embodiment 1 shown in FIG. 1A and IB. That is, on the outer periphery of the end portion of the gas supply pipe 1 on the jet outlet la side, a coaxial single high-potential electrode 3 for generating plasma is installed.
  • a voltage applying device 4 is connected to the high potential electrode 3 so that a high potential in the form of a pulse train having a predetermined frequency can be applied.
  • a feature of this embodiment is that an auxiliary gas supply pipe 13 is provided adjacent to the outlet la of the gas supply pipe 1.
  • An auxiliary electrode 14 is disposed in the lumen of the auxiliary gas supply pipe 13 and is connected to the ground side of the voltage application device 4.
  • the auxiliary electrode 14 is disposed close to the tube wall of the auxiliary gas supply pipe 13 on the gas supply pipe 1 side.
  • the auxiliary gas supply pipe 13 is disposed obliquely at an acute angle with the gas supply pipe 1, and the jet outlet 13 a thereof is arranged adjacent to the jet outlet la of the gas supply pipe 1.
  • adjacent means a state where they are in contact with each other as shown in FIG. 8A, or a case where they are arranged close to each other as shown in FIG. 8B.
  • the allowable upper limit of the separation distance g when the jet outlet 13a and the jet outlet la are brought close to each other without being in contact with each other is determined by a range in which an effect described below can be sufficiently obtained in practice.
  • FIG. 8B only the creeping discharge 15 is shown for the sake of illustration, and the illustration of the plasma jet 5 is omitted.
  • the apparatus having the above configuration for example, argon gas is allowed to flow as a medium gas, and the voltage application apparatus 4 applies a low-frequency voltage similar to that in Embodiment 1 between the high-potential electrode 3 and the auxiliary electrode 14.
  • the generation of the plasma jet 5 can be started and maintained stably. The reason for this is as follows.
  • the LF plasma jet is generated not by short circuit discharge but by partial discharge. Partial discharge is a force caused by electric field concentration in the vicinity of the high-potential electrode. Therefore, a higher voltage is required for plasma generation than for short-circuit discharge.
  • helium is used as the medium gas
  • the discharge start voltage is higher than that in the case of helium gas, it is necessary to apply a relatively high voltage.
  • a strong discharge occurs as the discharge starts. In other words, it is difficult to start and maintain the LF plasma jet in argon gas at a low voltage that produces a weak discharge that does not impair the characteristics of the LF plasma jet.
  • the discharge start voltage when argon gas is used as the medium gas is reduced. Can be made. This is because creeping discharge 15 is first generated between the high potential electrode 3 and the auxiliary electrode 14 when a voltage is applied. Creeping discharge 15 is a discharge phenomenon along the surface of a solid, and can be discharged over a long distance at a relatively low voltage compared to discharge in gas. That is, the discharge starts at a lower voltage than the partial discharge in the medium gas flow of argon ejected from the gas supply pipe 1 by the high potential electrode 3.
  • the discharge start voltage can be further reduced, and the discharge can be maintained stably at a lower voltage. It is possible and effective.
  • the allowable upper limit of the separation distance g in the case where the ejection port 13a and the ejection port la are brought close to each other without being in contact varies depending on various conditions.
  • the separation distance g is set so as to satisfy the condition expressed by the following formula (1), the auxiliary effect by creeping discharge can be sufficiently obtained in practice.
  • L represents the length of the path along which the creeping discharge 15 is generated along the inner walls of the gas supply pipe 1 and the auxiliary gas supply pipe 13.
  • this gZL value is the breakdown voltage of the creeping portion and the space short-circuit portion. What is necessary is just to set so that what added the pressure may fall below an applied voltage. However, since the spatial breakdown voltage is usually much higher than the creeping breakdown voltage, it is possible to obtain a practical effect if it is set within the range shown by equation (1).
  • the high potential electrode 3 applies a voltage to the medium gas using the glass wall of the gas supply pipe 1 as a dielectric barrier
  • the auxiliary electrode 14 is a medium without passing through the dielectric barrier.
  • a creeping discharge along the glass wall is generated by the configuration of one-sided nore that applies a voltage to the gas.
  • the auxiliary electrode 14 can also generate a creeping discharge along the glass wall by applying a voltage to the medium gas by using the glass wall of the auxiliary gas supply pipe 13 as an insulator barrier. .
  • the auxiliary electrode 14 is arranged with a bias with respect to the tube axis of the auxiliary gas supply pipe 13, so long as the creeping discharge can be generated. Good.
  • the LF plasma jet generation method in Embodiment 7 will be described.
  • the LF plasma jet generation method in the present embodiment is basically the same as the method described as Embodiment 1 with reference to FIG. 1A and IB. That is, for example, a medium gas, for example, helium gas, is ejected from the ejection port la using the gas supply pipe 1 to form a gas flow of the medium gas, and a single tank is brought into contact with or adjacent to the medium gas flow.
  • the high potential electrode 3 is disposed, and a positive voltage in a row of pulses having a predetermined frequency is applied to the high potential electrode, thereby generating plasma 5 in the medium gas flow.
  • a predetermined driving pulse voltage is applied from the voltage application device 4 to the high potential electrode 3, and the electrode 12 connected to the ground side of the voltage application device 4 is
  • the gas supply pipe 1 is positioned in the vicinity of the outlet la.
  • the applied voltage at the start of the plasma jet can be reduced to a voltage as low as necessary to maintain the plasma jet generation, which is effective for downsizing the voltage application device 4. is there.
  • FIG. 10 is a front view showing the LF plasma jet generation device according to the eighth embodiment.
  • four plasma jet generation units having the same configuration as that shown in FIG. 1A are arranged, and He gas is supplied from a common medium gas source 16 to each unit. .
  • the voltage application device 4 is individually provided in each unit.
  • the plasma generation apparatus of the present invention can generate a stable plasma flow with a wide range of parameters by a simple discharge mechanism.
  • Surface treatment of plastics, oxidation reaction of dissolved substances in liquid, liquid monomer A wide range of applications such as plasma polymerization can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fluid Mechanics (AREA)
  • Plasma Technology (AREA)

Abstract

 細長い形状を有する媒質ガス塊からプラズマを生成するために、媒質ガス塊中に電場を形成する電場形成要素3、4を備える。電場形成要素は、電場形成要素から媒質ガス塊の長手方向の双方に向って部分放電が起こるように電場を形成する。それにより、媒質ガス塊からプラズマ5を生成する。媒質ガス塊は、例えば、内腔を通して電場形成要素に媒質ガスを誘導するガス供給部材1、2により形成される。電場形成部は、例えば、少なくとも1つの高電位電極3と、高電位電極に電圧を印加する電圧印加部4とを含む。簡易な構成により、幅広いパラメーターに対して安定に、かつエネルギー効率良く、媒質ガスに制限されたプラズマを生成することが可能である。

Description

明 細 書
プラズマ生成装置およびプラズマ生成方法
技術分野
[0001] 本発明は、マイクロプラズマの生成に関し、特に、媒質ガスに制限されたプラズマを 生成するプラズマ生成装置および生成方法に関する。
背景技術
[0002] 近年、マイクロプラズマジェットはその応用範囲の広さから注目され、種々の電源、 電極構造により実現されている。マイクロプラズマは、その空間的なサイズが微小で あることに特徴を有するが、微小な空間内でプラズマを生成 ·維持するためには、電 子'イオンと媒質ガス (プラズマ生成ガス)の原子分子との十分な衝突頻度を確保す るために、必然的に媒質密度が高くなる。そのため、マイクロプラズマの生成には大 気圧近傍の媒質ガス、すなわち媒質の密度で言えば、例えば、 1018〜1022cm 3程度 が必要となる。
[0003] また、一般に、従来のマクロスケールのプラズマの場合には、動作圧力の増加ととも に、プラズマ中の電子温度 Teとガスの温度 Tgがほぼ熱平衡に達するようになり、熱 平衡プラズマと呼ばれる。これに対して、プラズマのサイズを数 mmから μ m領域にス ケールダウンしてマイクロプラズマの領域になると、媒質ガス分子のプラズマ中での 滞在時間て が短くなることに起因して、粒子間の衝突によるエネルギー緩和が十分
d
になされず、低圧プラズマのように Te》Tgの非平衡状態になっているものと考えら れる。
[0004] 従来のマイクロプラズマジェット生成のほとんどの方式は、媒質ガスを流した石英パ イブの内部で発生させた比較的高温のプラズマが、媒質ガス流によって押し流され てノイブ先端力も吹き出される、低温ィ匕したプラズマを利用するアフターグロ一方式 である。
[0005] 例えば特許文献 1に記載の方式では、プラズマ生成のための媒質ガスとして使用さ れるアルゴン (Ar)ガスを石英パイプ内に流入させ、噴出ロカ 噴出させるとともに、 石英パイプの周囲にコイル配置して高周波電流を流すことにより、石英パイプ内に誘 導電場を発生させる。石英パイプ内に流入するアルゴンガスのアルゴン原子は、誘 導電場や磁場で電離して高温(6000〜7000°C)のプラズマとなり、アルゴンガスの 流入圧力に押されて石英パイプ先端の噴出口から大気中に噴き出る。噴き出したプ ラズマは、大気の存在により、拡散することなぐマイクロプラズマジェットを生成する。
[0006] 一方、それらとは異なる方式として、ドイツ Wuppertal大の Engemannらによって提案 された、図 11に示すような方式が知られている。図 11において、 1は内径が 2〜5m m程度の石英ノイブ力もなるガス供給管であり、その内腔を通ったヘリウムガスが噴 出口 laから噴出される。ガス供給管 1の噴出口 la側の端部の外周上には、同軸状の 一対のプラズマ発生用の電極 3a、 3bが上流側と下流側に設置されている。電圧印 加装置 4により、電極 3aをグラウンド電位とし、電極 3bを高電位として、 10kHz程度 の低周波のパルス電圧(例えば、 6〜12kV、 13kHz)を印加してパルス放電させるこ とにより、噴出口 laから細く伸びるプラズマジェット(以下、 LF (Lower Frequency)プ ラズマジエツトとも称する)が生成される。
[0007] この LFプラズマジェットは、 2つの点で希有な特徴を有している。まず、アフターグロ 一方式のプラズマジェットとは異なり、細長く伸張した、その直径に対する長さの比す なわちアスペクト比が大き 、形状のプラズマジェットが得られ、電極に印加する電圧 の向きに応じて射出方向が決まる。すなわち、電極に印加する電圧の向きを反転さ せると、ジェットの向きは逆にガスの上流に向力つて伸びる。また、高時間分解能測 定によると、柱状の放電が維持されているのではなぐ球状のプラズマ塊が電源周波 数と同期して、 10[kmZs]と、媒質ガス流に比べて 1万倍程度と非常に高速に移動 している。したがって、その生成機構は媒質ガス流とは直接関わりはない。
[0008] この方式によるプラズマジェットは、アフターグロ一ジェットとは異なり、媒質ガス流そ のものがプラズマ化しているので、対象物に対して直接的にプラズマを照射すること が可能である。また、 LFプラズマジェットではパルス状にプラズマ塊が射出されるた め、時間的に非平衡、すなわち、瞬間瞬間で中性ガスとエネルギー緩和できないこと により、熱的に非平衡の状態が作り出される。熱非平衡なプラズマであるので、対象 物の温度上昇をもたらすことなく高エネルギー成分を照射することができる。
特許文献 1 :特開 2006— 60130号公報 発明の開示
発明が解決しょうとする課題
[0009] 上述のとおり、 LFプラズマジェットの方式によれば、電極 3bに対して高電位を印加 することにより、媒質ガス流に対して下流方向へプラズマジェット 5が伸びている力 グ ラウンド電位の電極 3aに対する高電位側の電極 3bの位置がジェットの射出方向を決 めて 、るわけではな 、ことが判った。
[0010] すなわち、高電位が印加される電極 3bの存在のみによりプラズマジェットが生成さ れ、グラウンド電位の電極 3aはむしろ、ジェットの流れを抑制している。高電位の電極 3bに対する媒質ガス流の下流側では、遠方に存在するグラウンド電位との間で部分 放電が発生する。しかもその放電は媒質ガス流の中でのみ発生する媒質制限された プラズマであって、媒質ガス流がプラズマ化されたようなプラズマ流が生成される。一 方、高電位の電極 3bに対する媒質ガス流の上流側では、高電位の電極 3aと接地電 位の電極 3bの間隔が近いため、誘電体バリアーに覆われた電極間の短絡による放 電が生じている。短絡による放電は、部分放電と異なり、消費電力が大きく発熱を伴 う。このような短絡放電を伴うため、 2電極方式は効率の良いものではないことが判つ た。
[0011] また、 LFプラズマジェットは、その放電機構は不明であるため、種々のパラメーター での放電可能範囲も制限的であった。
[0012] したがって本発明は、簡易な構成により、エネルギー効率良ぐかつ幅広いパラメ 一ターに対し安定して、媒質ガスに制限されたプラズマを生成することが可能なブラ ズマ生成装置、および生成方法を提供することを目的とする。
課題を解決するための手段
[0013] 上記課題を解決するために、本発明の第 1の構成のプラズマ生成装置は、細長い 形状を有する媒質ガス塊力 プラズマを生成する装置であって、前記媒質ガス塊中 に電場を形成する電場形成要素を備え、前記電場形成要素は、前記電場形成要素 力 前記媒質ガス塊の長手方向の双方に向って部分放電が起こるように電場を形成 する。
[0014] 本発明の第 2の構成のプラズマ生成装置は、細長い形状を有する媒質ガス塊から プラズマを生成する装置であって、前記媒質ガス塊中に配置される単一の高電位電 極と、前記高電位電極に電圧を印加する電圧印加要素とを備え、前記電圧印加要 素は、前記高電位電極から前記媒質ガス塊の長手方向の双方に向つて部分放電を 発生させる電場が形成される電圧を、前記高電位電極に印加する。
[0015] 本発明の第 1のプラズマ生成方法は、媒質ガス塊に電場を形成する電場形成要素 によって、細長 、形状を有する前記媒質ガス塊力 プラズマを生成する方法であつ て、前記電場形成要素から前記媒質ガス塊の長手方向の双方に向って部分放電が 起こるように、前記電場形成要素により前記媒質ガス塊に電場を形成することを特徴 とする。
[0016] 本発明の第 2のプラズマ生成方法は、媒質ガス塊に電場を形成する電場形成要素 によって、細長 、形状を有する前記媒質ガス塊力 プラズマを生成する方法であつ て、前記媒質ガス塊中に単一の高電位電極を配置し、前記電場形成要素から前記 媒質ガス塊の長手方向の双方に向って部分放電が発生させる電場が形成される電 圧を、前記高電位電極に印加することを特徴とする。
[0017] なお、本願の記載において、部分放電とは、電極間に電圧をカ卩えたとき、その間の 雰囲気ガスが電極間において部分的に放電する現象であり、電極間を完全に短絡 する放電は含まない意味で用いられる。このような部分放電は、電極間に、不均一な 電界分布、不均一な絶縁破壊電圧の異なるガス分布がある場合などに生じる。例え ば、電極構造が平行平板構造ではなぐ先鋭な電極構造を持つ場合、電極の先端 では電界の集中が起こり、電界強度が強くなり、この電界強度が、雰囲気ガスの絶縁 破壊電界を超えた場合、この部分のみ部分放電が生じる。
[0018] このような部分放電を用いることは、 LFプラズマジェットの放電機構について本発 明者らが解明した知見に基づくものである。すなわち、 LFプラズマジェットの放電機 構は、高電圧電極近傍の集中した電界強度によるストリーマーコロナ放電現象が、大 気中やガラス管内部のヘリウムガス流束に沿って起こっているものであると考えられる 発明の効果
[0019] 本発明の LFプラズマジェット生成装置および生成方法は、細長い形状を有する媒 質ガス塊中にその長手方向に沿って部分放電が発生するように電場を形成すること により、簡易な構成により、エネルギー効率良ぐかつ幅広いパラメーターに対し安定 してプラズマを生成することが可能である。
図面の簡単な説明
[図 1A]図 1Aは、本発明の実施の形態 1における LFプラズマジェット生成装置を示す 正面図である。
[図 1B]図 1Bは、図 1Aの LFプラズマジェット生成装置における A— A線に沿った拡 大断面図である。
[図 2A]図 2Aは、同実施の形態における LFプラズマジェット生成装置で印加される低 周波電圧を示す波形図である。
[図 2B]図 2Bは、本発明の LFプラズマジェット生成装置で正の高電圧のみを印加し た場合の電圧波形を示す波形図である。
[図 2C]図 2Cは、同負の高電圧のみを印加した場合の電圧波形を示す波形図である
[図 2D]図 2Dは、同正と負の高電圧を交互に印加した場合の電圧波形を示す波形図 である。
[図 2E]図 2Eは、同実施の形態における LFプラズマジェット生成装置で印加される低 周波電圧の他の例を示す波形図である。
[図 3A]図 3Aは、本発明の実施の形態 2における LFプラズマジェット生成装置の正面 図である。
[図 3B]図 3Bは、図 3Aの LFプラズマジェット生成装置における B— B線に沿った拡大 断面図である。
[図 4]図 4は、同実施の形態における LFプラズマジェット生成装置の変形例を示す正 面図である。
[図 5A]図 5Aは、本発明の実施の形態 3における LFプラズマジェット生成装置の正面 図である。
[図 5B]図 5Bは、図 5Aの LFプラズマジェット生成装置における C— C線に沿った拡大 断面図である。 [図 6A]図 6Aは、本発明の実施の形態 4における LFプラズマジェット生成装置の正面 図である。
[図 6B]図 6Bは、図 6Aの LFプラズマジェット生成装置における D— D線に沿った拡 大断面図である。
[図 7]図 7は、本発明の実施の形態 5における LFプラズマジェット生成装置の正面図 である。
[図 8A]図 8Aは、本発明の実施の形態 6における LFプラズマジェット生成装置の正面 図である。
[図 8B]図 8Bは、同実施の形態における LFプラズマジェット生成装置の他の態様を 示す正面図である。
[図 9A]図 9Aは、本発明の実施の形態 7における LFプラズマジェット生成方法の第 1 のステップを示す正面図である。
[図 9B]図 9Bは、本発明の実施の形態 7における LFプラズマジェット生成方法の第 2 のステップを示す正面図である。
[図 9C]図 9Cは、本発明の実施の形態 7における LFプラズマジェット生成方法の第 3 のステップを示す正面図である。
[図 10]図 10は、本発明の実施の形態 8における LFプラズマジェット生成装置を示す 正面図である。
[図 11]図 11は、従来例の LFジェット生成装置を示す正面図である。
符号の説明
1 ガス供給管
la 噴出口
2 ガスチューブ
3 高電位電極
4 電圧印加装置
5 非平衡プラズマジェット
6、 7、 10 高電位電極
8 金属パイプ 9 平板状ガス供給管
11 非平衡プラズマジェット
12 補助電極
13 補助ガス供給管
14 補助電極
15 沿面放電
16 媒質ガス源
発明を実施するための最良の形態
[0022] 本発明のプラズマ生成装置は、上記構成を基本として、以下のような種々の態様を とることができる。
[0023] すなわち、上記第 1の構成において、前記媒質ガス塊として媒質ガス流を発生させ るガス流発生要素を備え、前記電場形成要素は、前記電場形成要素から前記媒質 ガス流の上流側および下流側の双方に向って部分放電が起こるように電場を形成す る構成とすることがでさる。
[0024] また、内腔を通して前記電場形成要素に媒質ガスを誘導するガス供給部材を更に 備え、前記ガス供給部材により前記媒質ガス流を発生させる構成とすることができる。
[0025] また、前記電場形成要素は、前記媒質ガス塊中で部分放電を開始可能な強電場と
、前記部分放電を維持可能な弱電場とを形成することが可能であることが好ま 、。
[0026] 上記第 2の構成において、内腔を通して前記電場形成要素に媒質ガスを誘導する ガス供給部材を更に備え、前記ガス供給部材により前記媒質ガス流を発生させる構 成とすることができる。
[0027] また、前記ガス供給部材は誘電体からなり、前記高電位電極は、前記ガス供給部 材の外部に設けられている構成とすることができる。
[0028] また、前記ガス供給部材は、前記媒質ガスを放出する開口部が平板状をなし、前 記高電位電極は、前記開口部の平板面上に平板状に設けられている構成とすること ができる。あるいは、前記ガス供給部材は円筒構造を有し、前記高電位電極は円筒 構造を有する構成とすることができる。但し、本発明の作用は、本質的にはガス流束 の断面形状に制約されることはなぐ円筒の場合や平面上以外にも、任意に決めるこ とがでさる。
[0029] また、前記ガス供給部材は導電体力 なり、前記ガス供給部材が前記高電位電極 として用いられる構成とすることができる。
[0030] また、前記ガス供給部材は誘電体からなり、前記高電位電極は、前記ガス供給部 材の内腔に設けられて 、る構成とすることができる。
[0031] その場合、前記高電位電極は、前記ガス供給部材と一体構造を成して、前記ガス 供給部材の内面の一部を形成するように設けられ、前記媒質ガスは、前記ガス供給 部材の内壁面及び前記高電位電極の表面に接する構成とすることができる。
[0032] また、前記電圧印加要素は、前記媒質ガス塊中で部分放電を開始可能な電圧と、 前記部分放電を維持可能な電圧とを供給可能である構成とすることができる。
[0033] また、前記高電位電極力も離間した位置で前記媒質ガス塊の一部に隣接するよう に配置された補助電極を更に備え、前記補助電極は前記電圧印加要素から接地電 位が付与される構成とすることができる。
[0034] また、内腔を通して前記媒質ガスを誘導する補助ガス供給部材と、前記補助ガス供 給部材に設けられ、前記電圧印加要素により接地電位が付与される補助電極とを更 に備え、前記補助ガス供給部材は、前記媒質ガスを噴出する噴出口が、前記ガス供 給部材の前記媒質ガスを噴出する噴出口に接触するか、または所定の間隔 gを隔て て近接して配置され、前記ガス供給部材及び前記補助ガス供給部材の少なくとも一 方は誘電体力もなる構成とすることができる。
[0035] また、複数の前記媒質ガス塊力 プラズマを生成するように構成され、複数の前記 媒質ガス塊中に各々配置される前記高電位電極を備えた構成とすることができる。
[0036] 上記第 1のプラズマ生成方法にぉ 、て、前記媒質ガス塊として媒質ガス流を発生さ せて、前記電場形成要素力 前記媒質ガス流の上流側および下流側の双方に向か つて部分放電が起こるように、前記電場形成要素により電場を形成することができる。
[0037] また、前記電場形成要素により、前記媒質ガス塊中で部分放電を開始可能な強電 場と、前記部分放電を維持可能な弱電場とを順次形成することができる。
[0038] また、前記電場形成要素により前記電場を形成する際に、前記高電位電極と接地 電位箇所との間の距離を、前記高電位電極に印加される電圧により部分放電を開始 可能な所定距離に設定し、次に、前記高電位電極と前記接地電位箇所との間の距 離を、部分放電を維持可能な範囲で前記所定距離より大きくすることができる。
[0039] 以下、本発明の実施形態について図面を参照しながら説明する。
[0040] (実施の形態 1)
図 1A、 IBは、実施の形態 1における LFプラズマジェット生成装置を示し、図 1Aは 正面図、図 1Bは図 1Aにおける A— A線に沿った拡大断面図である。
[0041] ガス供給管 1は、例えば石英ノイブのような誘電体力もなり、その後端部にはガスチ ユーブ 2が接続されて、図示しな 、媒質ガス源カゝら例えばヘリウム (He)ガスが供給さ れる。ガス供給管 1の内腔を通ったヘリウムガスは噴出口 laから噴出されて、媒質ガ スのガス流を形成するためのガス流発生部が構成される。ガス供給管 1としては、例 えば、内径 50 /ζ πι〜50πιπιのものを用いることができる。石英パイプに代えて、他の 誘電体からなるパイプ、例えばプラスチックチューブ等を用いてもよ!、。
[0042] ガス供給管 1の噴出口 la側の端部の外周上には、同軸状の単一のプラズマ発生 用の高電位電極 3が設置されている。高電位電極 3には電圧印加装置 4が接続され 、図 2Aに示すような、所定周波数のパルス列状の正電圧を印加することができる。電 圧印加装置 4により印加するパルス列状の正電圧の電圧値を例えば 10kVに設定し 、周波数を例えば 10kHz程度に設定することにより、噴出口 laから細く伸びる非平 衡プラズマジェット 5が生成される。
[0043] このように、高電位の単極のみにより生成されるプラズマジェット 5には、図 1Aに破 線でも示すように、高電位電極 3から媒質ガス流の上下流方向へ伸張する現象が観 察される。したがつてこの放電は、プラズマ塊が大気中へ飛び出している現象ではな ぐヘリウムガス流により媒質制限された円柱状の空間で起こる放電現象であると考 えられる。つまり高電位の電極 3に対する媒質ガス流の上下流側において、遠方に 存在するグラウンド電位との間で部分放電が発生し、しカゝもその放電は、媒質ガス流 中でのみ発生する媒質制限されたプラズマである。したがって、本実施の形態の LF プラズマジェット生成装置においては、電極間での短絡放電は発生していない。その 結果、高電位電極 3の上流部と下流部との双方 (即ち高電位電極 3の外部)で、ァス ぺクト比の大き 、プラズマが発生する。 [0044] 本実施の形態における媒質制限された部分放電のみによるプラズマ流を発生させ るために、上記構成においては、ガス供給管 1およびガスチューブ 2が、媒質ガス流 を発生するガス流発生部として機能し、高電位電極 3および電圧印加装置 4が、媒質 ガス流の各々と対応するように電場を形成する電場形成部として機能する。このよう に設けられた電場形成部により形成される電場により、媒質ガス流の上流側および下 流側の双方で部分放電が発生し、媒質ガス流中に、電場形成部から媒質ガス流の 上流側及び下流側の双方に向かってプラズマが生成される。
[0045] 上記構成において、電圧印加装置 4は、高電位電極 3に対して所定周波数を有す るパルス列状の正電圧を印加するように構成されて ヽるが、印加電圧はこのような態 様に限定されるわけではない。部分放電が起こるように電場が生成されさえすれば、 印加電圧の態様は任意である。
[0046] 但し、時間的に変化する電圧を印加することが望ましい。時間的に変化することに より、特に誘電体バリア放電の場合、ガラスというコンデンサを経由してプラズマを着 火しているので、電圧が変化する成分によってプラズマが生成され易くなる。具体的 には、 10kHz程度の電圧を用いればよいが、 60Hz程度の低周波でもグロ一状の大 気圧プラズマが得られる場合もある。ただし、 10MHz程度の高周波になると、高速力 メラで見ても一様な形状をしている別の放電形状になる。より好ましくは、周期的に変 化する電圧を印加する。周期的に放電したほうが安定したプラズマが得られ易いから である。
[0047] 媒質ガスとしてはヘリウムガスが好適である力 条件を適切に設定すれば他のガス を用いることも可能である。例えば、アルゴンとケトンの混合ガスを用いることもできる 。また、モノマーなど化学薬品の蒸気、噴霧した霧や微粒子などエアロゾルを供給す ることにより、種々のプロセスを行うことが可能である。
[0048] 以上のような放電機構に関する知見を応用することにより、種々の放電が可能にな つた。この LFプラズマジェットは熱的に非平衡な低温プラズマであり、薄いナイロン等 へ基材にダメージを与えることなく照射する事も可能である力 表面処理、オゾン生 成やプラズマ重合を起こすために十分なエネルギーは有して 、る。
[0049] 本実施の形態のように、単電極すなわち単一の高電位電極 3により非平衡プラズマ ジェットを生成する構成により、短絡放電を発生させることなぐ部分放電のみを容易 に発生させることが可能である。但し、 1つの媒質ガス流に対して配置される高電位 電極 3すなわち電場形成部は、 1つのみに制限されることはない。すなわち、 1つの 媒質ガス流に対して複数の電場形成部を設けても、各々の電場形成部が部分放電 のみを発生するように配置されればよい。したがって、 1つのガス流発生部に対して、 複数の高電位電極 3が互いに十分に離間して配置された構成により、本実施形態の ような作用効果を得ることも可能である。
[0050] 部分放電のみを発生させる構成とすることにより、従来の同軸 2電極方式に比べる と、短絡放電に伴う消費電力の増大が抑制され、エネルギー変換効率を向上させる ことが可能であり、また、不要な発熱を抑制することもできる。さらに、プラズマジェット の発生に対する寄与が少ないグラウンド側の電極が省略されて、装置が単純化され る。単電極であっても、プラズマジェットの生成の起動は容易である。
[0051] また、媒質ガス流束により媒質制限された空間領域にプラズマを生成する方法にお いては、部分放電のみを発生させることにより、任意の媒質ガス流束を安定してブラ ズマ化することが可能である。この手法を用いて、 10 m〜 50mm程度の幅広いス ケールにてプラズマを着火することが実現され、さらなる大口径化も原理的に可能で ある。
[0052] また、チューブの内面処理では、特に部分放電が有効である。チューブの内面処 理には、移動電極 (チューブに接触している必要は無い)を用い、ヘリウムガスや適 当なモノマーガスを混ぜたものをチューブに流してぉ 、て(充填するだけでもよ 、)、 チューブ内でプラズマを生成する。それにより、チューブの連続処理が可能である。 本実施の形態の手法を利用すれば、 2電極方式に比べて、移動電極を容易に構成 することができる。
[0053] 以上のように、本実施の形態における LFプラズマジェット生成装置によれば、媒質 ガスを流したガス供給管 1に接続した高電位電極 3にパルス列状の正電圧のみを印 加することにより、ガス供給管 1から大気中へ拡散する媒質ガス流に沿って部分放電 を発生させ、それによりプラズマ流を生成することができる。そのための各種条件の設 定の一例は、次のとおりである。 [0054] 媒質ガス:ヘリウムガス
石英パイプの内径: 3mm
媒質ガスの流量:数リットル Z分
高電位電極 3への印加電圧:電圧 10kV
印加電圧の周波数: 10kHz
また、幅 2mm横 50mmのような、媒質ガス流束に対して回転角方向に閉じた面を 持たな 、電極 (一部分のみを覆って 、る電極)を用いても、部分放電によるプラズマ 発生が可能である。
[0055] 本発明によるプラズマジェットの本質は、 "大気中にガス流束を作る"ことと、 "高電 圧電極近傍での部分放電"の二つである。周期的な高電圧を印加し放電を行って 、 る力 印加電圧のみならず、印加周波数によってプラズマパラメーターの制御が可能 である。それらに加えて、印加する高電圧の波形 (極性)を制御することによつても、 生成されるプラズマのパラメーターの制御が可能である。
[0056] 実際に印加される高電圧は、図 2B〜2Cに示すような波形に分類できる。図 2Bは、 正の高電圧のみを印加した場合の電圧波形を示す。図 2Cは、負の高電圧のみを印 加した場合の電圧波形を示す。図 2Dは、正と負の両方の高電圧を交互に印加した 場合の電圧波形を示す。それぞれの場合において、放電そのものは、印加した電圧 が正と負でそれぞれ異なる一定の絶対値より大きくなつた瞬間にパルス状の放電が 生じる。例えば 10kHzの電源を用いた場合、一周期は 100 secとなる力 このパル ス状の放電は数 secのうちに観測される。
[0057] そのときに印加されている高電圧の極性により、プラズマそのもの、もしくはプラズマ 力も生成されるイオン、電子、メタステーブル原子などの大気中密度や温度分布状態 などが異なってくる。それぞれ、正電圧の場合は正コロナ放電、負電圧の場合は負コ ロナ放電が発生して 、るが、それぞれ物理的な放電機構が異なるためにプラズマ生 成状態が異なってくる。このようにそれぞれ極性を制御したプラズマを用いることによ り、プラズマを照射対象物へ対する効果を制御することが可能となる。一方、図 2Dの 場合には、両極性の放電が発生し、それぞれ電圧がピーク近傍の時間領域で、正コ ロナ放電と負コロナ放電が順次発生する状態が得られる。 [0058] 正や負の高電圧の印加波形を組み合わせて制御することにより、パラメーターの異 なるプラズマジェットを生成して、選択性のある化学反応増進を行うことが期待できる
[0059] なお、電圧印加装置 4は、図 2Eに示すように、プラズマ発生の起動時の印加電圧 のピーク値と、プラズマ発生を維持する際の印加電圧のピーク値を変化させる構成と することが望ましい。すなわち、プラズマジェットの起動に際して、時間 tO〜tlまでは 、高いピーク電圧 VOを供給し、その後時間 tl以降は、低減させたピーク電圧 VIを供 給する。電圧 VOは、プラズマジェットの発生を起動させるのに十分なレベルを有し、 電圧 VIは、プラズマジェットの発生を維持するのに必要なレベルである。プラズマジ エツトの起動には高い電圧が必要である力 ー且プラズマジェットが生成されると起動 時よりも低 、電圧でプラズマジェットの生成を維持できるので、印加電圧を下げること により、消費電力を低減することが可能である。以降の実施の形態における LFプラズ マジェット生成装置についても、同様の駆動方法を適用できる。
[0060] また、高電位電極 3は、必ずしもガス供給管 1の外周面に同軸状に設ける必要はな ぐガス供給管 1の外周面あるいは内周面の一部分に取り付けた電極でも、 LFプラズ マジエツトの生成は可能である。すなわち、媒質ガス流を形成する誘電体からなる部 材の内面あるいは外面に電極を取り付けた構造とし、また、誘電体と電極が一体とな つた構造とすることが好ましい。誘電体力 なる部材の内面に電極を取り付けた構造 とした場合には、媒質ガスは誘電体および電極の双方に接触する。
[0061] また、媒質ガスは、必ずしも流れを形成して!/ヽる必要はな ヽ。すなわち、媒質ガス塊 力 プラズマを生成するようにプラズマ生成装置を構成することも可能である。その場 合、媒質ガス塊中に電場を形成する電場形成部を設ける。媒質ガス塊が細長い形状 を有する場合であれば、電場形成部から媒質ガス塊の長手方向における双方に向 かって部分放電が起こるように電場を形成する。媒質ガス塊を、電極を設けた管に、 媒質ガスを封入した構成とすることもできる。その場合でも、電極は、管の内面あるい は外面のどちらに設けてもよい。
[0062] (実施の形態 2)
図 3A、 3Bは、実施の形態 2における LFプラズマジェット生成装置を示し、図 3Aは 正面図、図 3Bは図 3Aにおける B— B線に沿った拡大断面図である。図 3において、 図 1に示した要素と同一の要素については同一の参照符号を付して、説明の繰り返 しを省略する。以下の各実施の形態の説明につ 、ても同様である。
[0063] 本実施の形態において、ガス供給管 1は誘電体の石英パイプである力 高電位電 極 6は銅線であり、ガス供給管 1の噴出口 la側端部の内腔の軸線上に配置されてい る。このような高電位電極 6を用いると、放電は高電位電極 6である銅線の先端から開 始される。そして、細く伸びたジェットはガス供給管 1の噴出口 laに向力つて次第に 半径を増大させる。
[0064] 図 4に示すように、銅線力 なる高電位電極 7を、ガス供給管 1から分離して配置す ることもできる。すなわち、線状の高電位電極 7が、ガス供給管 1の噴出口 la端から 媒質ガス流の噴出方向に離間した位置に配置されて 、る。
[0065] さらに、線状の高電位電極 6に代えて、ガス供給管 1の噴出口 la側端部の内周面 に、同軸状の電極を配置することもできる。あるいは内周面の一部に電極を配置して も、非平衡プラズマジェットの生成は可能である。
[0066] (実施の形態 3)
上述のように本発明によれば、単一の高電位電極を設ければよいので、電極設置 の自由度が増大する。例えば、誘電体のガス供給管に電極を装着するのみならず、 本実施の形態のように、誘電体のガス供給管に代えて金属のガス供給管を用い、ガ ス供給管を電極としてプラズマジェットを生成することも可能である。
[0067] 図 5A、 5Bは、実施の形態 3における LFプラズマジェット生成装置を示し、図 5Aは 正面図、図 5Bは図 5Aにおける C— C線に沿った拡大断面図である。
[0068] 本実施の形態においては、ガス供給管は導電材である金属ノイブ 8により形成され 、金属ノイブ 8が電圧印加装置 4に接続されて、所定周波数のパルス列状の正電圧 を印加するためのプラズマ発生用の高電位電極として用いられる。金属パイプ 8とし ては、例えば、内径が数ミリ程度の金属管は無論のこと、内径 100 mのステンレス パイプを用いて、マイクロサイズのプラズマジェットを生成することも可能である。
[0069] (実施の形態 4)
図 6A、 6Bは、実施の形態 4における LFプラズマジェット生成装置を示し、図 6Aは 正面図、図 6Bは図 6Aにおける D— D線に沿った拡大断面図である。
[0070] 本実施の形態においては、平板状ガス供給管 9を構成する平板状石英パイプは、 その断面が、図 6Bに示すように円筒形ではなぐ平板形状を有する、従って噴出口 9 aは線状の開口を形成している。高電位電極 10も平板形状を有し、平板状ガス供給 管 9の一方の外面に取り付けられて 、る。
[0071] この LFプラズマジェット生成装置は、上述の実施の形態と比べて大型化を可能と するものである。例えば、 2mm X 50mm程度の平面状の非平衡プラズマジェット 11 を形成することができ、大面積処理に適している。
[0072] また、ガス供給管としては、石英パイプに限らず、プラスチックパイプや金属パイプ なども使用可能である。
[0073] (実施の形態 5)
図 7は、実施の形態 5における LFプラズマジェット生成装置を示す正面図である。 本実施の形態における LFプラズマジェット生成装置は、基本的な構成は、図 1A、 1 Bに示した実施の形態 1の装置と同様である。
[0074] ガス供給管 1の噴出口 la側の端部の外周上には、同軸状の単一のプラズマ発生 用の高電位電極 3が設置されている。高電位電極 3には電圧印加装置 4が接続され 、所定周波数のパルス列状の正電圧を印加することができる。本実施の形態の特徴 は、さら〖こ、ガス供給管 1の噴出口 laの近傍に補助電極 12が配置され、電圧印加装 置 4のグラウンド側に接続されることである。
[0075] ガス供給管 1を用いてその噴出口 laから媒質ガス、例えばヘリウムガスを噴出させ て媒質ガスのガス流を形成し、電圧印加装置 4により、例えば 10kVのパルス列状の 正電圧を周波数 10kHz程度の周波数で印加すれば、噴出口 laから細く伸びる非平 衡プラズマジェット 5が生成される。その際、接地された補助電極 12が配置されてい ることにより、プラズマ生成の起動が容易になり、またプラズマ生成維持の安定性が 向上する。すなわち、プラズマ生成の起動時の印加電圧を、プラズマ生成の維持に 必要な程度の低い電圧に低減させることができ、また、十分に低い電圧でプラズマ生 成を安定して維持可能である。
[0076] 補助電極 12は、噴出口 laから噴出する媒質ガス流の一部にのみ接触するような寸 法および配置とする。それにより、非平衡プラズマジェット 5の生成に実質的な影響を 与えることなぐプラズマの起動及び維持の効果を得ることができる。
[0077] (実施の形態 6)
図 8Aは、実施の形態 6における LFプラズマジェット生成装置を示す正面図である 。本実施の形態における LFプラズマジェット生成装置は、基本的な構成は、図 1A、 IBに示した実施の形態 1の装置と同様である。すなわち、ガス供給管 1の噴出口 la 側の端部の外周上には、同軸状の単一のプラズマ発生用の高電位電極 3が設置さ れている。高電位電極 3には電圧印加装置 4が接続され、所定周波数のパルス列状 の高電位を印加することができる。
[0078] 本実施の形態の特徴は、さら〖こ、ガス供給管 1の噴出口 laに隣接して、補助ガス供 給管 13が設けられたことである。補助ガス供給管 13の内腔には補助電極 14が配置 され、電圧印加装置 4のグラウンド側に接続される。補助電極 14は、補助ガス供給管 13のガス供給管 1側の管壁に近接して配置される。
[0079] 補助ガス供給管 13は、ガス供給管 1と鋭角をなして斜めに配置され、その噴出口 1 3aは、ガス供給管 1の噴出口 laに隣接して配置されている。隣接とは、図 8Aのよう に互いに接触する状態、あるいは図 8Bに示すように、互いに接触はしないが近接し て配置されている場合を含む意味である。噴出口 13aと噴出口 laを接触させずに近 接させる場合の離間距離 gの許容可能な上限は、後述する効果を実用上十分に得る ことが可能な範囲によって決まる。なお、図 8Bには、図示の都合上、沿面放電 15の みを図示し、プラズマジェット 5の図示は省略されている。
[0080] 上記構成の装置を用い、媒質ガスとして例えばアルゴンガスを流し、電圧印加装置 4により、高電位電極 3と補助電極 14間に実施の形態 1と同様の低周波電圧を印加 すると、容易にプラズマジェット 5の発生を起動し、安定して維持することが可能であ る。この理由は以下のとおりである。
[0081] LFプラズマジェットは、短絡放電ではなくて、部分放電により生成される。部分放電 は高電位電極近傍の電界集中によりもたらされる力 そのため、プラズマの発生には 短絡放電に比べて高い電圧が必要である。ヘリウムを媒質ガスとして用いた場合に は、比較的低い電圧で LFプラズマジェットを起動し維持することが可能である。これ に対してアルゴンガスの場合は、ヘリウムガスの場合に比べて放電開始電圧が高!ヽ ため、比較的高電圧を印加する必要がある。その結果、放電開始と共に強い放電が 生じる。言い換えれば、 LFプラズマジェットの特徴を損なうことのない弱い放電を発 生させるような低 、電圧では、アルゴンガス中で LFプラズマジェットを起動し維持す ることは困難である。
[0082] これに対して、上記構成の LFプラズマジェット生成装置によれば、補助電極 14を 有する補助ガス供給管 13を設けることにより、アルゴンガスを媒質ガスとして用いた 場合の放電開始電圧を低下させることができる。これは、電圧を印加したときに、まず 高電位電極 3と補助電極 14との間で沿面放電 15が生成されることによる。沿面放電 15は、固体表面に沿った放電現象であり、気体中の放電に比べて比較的低電圧で 長距離の放電が可能である。すなわち、高電位電極 3による、ガス供給管 1から噴出 するアルゴンの媒質ガス流中での部分放電に比べて、より低電圧で放電を開始する
[0083] これは、沿面放電 15により、その周辺に、電子、ラジカル、紫外線などが供給され、 周辺部分での放電開始条件が緩くなるためである。その結果、ガス供給管 1から噴出 するアルゴンの媒質ガス流中で部分放電が発生し難 ヽような印加電圧でも、高電位 電極 3による部分放電、すなわち LFプラズマジェットの生成が開始し易くなり、また、 プラズマ生成を安定して維持可能となる。
[0084] 本実施の形態の構成は、ヘリウムガスを媒質とする場合であっても、より放電開始 電圧を低下させ、また、放電の維持をより低電圧で安定して維持可能とすることがで き、効果的である。
[0085] なお、図 8Bに示したように、噴出口 13aと噴出口 laを接触させずに近接させる場合 の離間距離 gの許容可能な上限は、種々の条件によって相違する。但し、下記の式( 1)で示される条件を満足するように離間距離 gを設定すれば、沿面放電による補助 効果を実用上十分に得ることが可能である。式(1)において Lは、ガス供給管 1及び 補助ガス供給管 13の内壁に沿った、沿面放電 15が生成される経路の長さを示す。
Figure imgf000019_0001
この gZLの値は、厳密には、沿面部分と空間短絡部分のそれぞれの絶縁破壊電 圧を足し算したものが、印加電圧より下回るように設定すればよい。しかし、通常、沿 面破壊電圧よりも空間破壊電圧の方が大幅に高いため、式(1)で示される範囲に設 定すれば、実用的な効果を得ることが可能である。
[0087] 上記 LFプラズマジェット生成装置においては、高電位電極 3はガス供給管 1のガラ ス壁を誘電体バリアとして媒質ガスに電圧を印加し、補助電極 14は誘電体バリアを 介することなく媒質ガスに電圧を印加する、片側ノ リアの構成によりガラス壁に沿った 沿面放電を発生させている。一方、補助電極 14も補助ガス供給管 13のガラス壁を誘 電体バリアとして媒質ガスに電圧を印加する、両側ノ《リアの構成によりガラス壁に沿 つた沿面放電を発生させることも可能である。
[0088] また、上記構成において、補助電極 14は補助ガス供給管 13の管軸に対して偏つ て配置されている力 沿面放電の発生が可能であれば、どのような配置であってもよ い。
[0089] (実施の形態 7)
実施の形態 7における LFプラズマジェット生成方法にっ 、て説明する。本実施の 形態における LFプラズマジェット生成方法は、基本的には、図 1A、 IBを参照して実 施の形態 1として説明した方法と同様である。すなわち、例えばガス供給管 1を用い てその噴出口 laから媒質ガス、例えばヘリウムガスを噴出させて媒質ガスのガス流を 形成し、その媒質ガス流に接触するカゝまたは隣接するように単一の高電位電極 3を 配置して、高電位電極に所定周波数を有するノ ルス列状の正電圧を印加することに より、媒質ガス流中にプラズマ 5を発生させる。
[0090] 上記の基本的な LFプラズマジェット生成方法に対して、起動をより容易にするため の改良を加えた方法について、生成方法の工程を示す図 9A〜9Cの正面図を参照 して説明する。
[0091] まず、図 9Aに示すように、電圧印加装置 4から高電位電極 3に対して所定の駆動 用パルス電圧を印加するとともに、電圧印加装置 4のグラウンド側に接続された電極 12を、ガス供給管 1の噴出口 laの近傍に位置させる。
[0092] そして、図 9Bに示すように、ガス供給管 1の噴出口 laからヘリウムガスを噴出させ れば、非平衡プラズマジェットの生成が開始される。次に、図 9Cに示すように、グラウ ンド電位の電極 12を単一の電極カゝら離間させる。電圧印加装置 4からの高電位電極 3へのパルス電圧印加を継続すれば、非平衡プラズマジェットの生成が維持される。
[0093] このようにすれば、プラズマジェットの起動時の印加電圧を、プラズマジェット生成の 維持に必要な程度の低 、電圧に低減することができ、電圧印加装置 4の小型化に有 効である。
[0094] (実施の形態 8)
図 10は、実施の形態 8における LFプラズマジェット生成装置を示す正面図である。 本実施の形態においては、図 1Aに示したものと同様の構成を有するプラズマジエツ ト生成ユニットが 4台配置され、各々のユニットに対して、共通の媒質ガス源 16から H eガスが供給される。電圧印加装置 4は、各ユニットに個別に設けられている。
産業上の利用可能性
[0095] 本発明のプラズマ生成装置は、単純な放電機構により、幅広いパラメーターで安定 したプラズマ流を生じさせることが可能であり、プラスチックの表面処理、液中溶解物 質の酸化反応、液体モノマーのプラズマ重合など、広範隨こ利用可能である。

Claims

請求の範囲
[1] 細長 、形状を有する媒質ガス塊力 プラズマを生成するプラズマ生成装置であつ て、
前記媒質ガス塊中に電場を形成する電場形成要素を備え、
前記電場形成要素は、前記電場形成要素から前記媒質ガス塊の長手方向の双方 に向って部分放電が起こるように電場を形成するプラズマ生成装置。
[2] 前記媒質ガス塊として媒質ガス流を発生させるガス流発生要素を備え、
前記電場形成要素は、前記電場形成要素から前記媒質ガス流の上流側および下 流側の双方に向って部分放電が起こるように電場を形成する、請求項 1に記載のプ ラズマ生成装置。
[3] 内腔を通して前記電場形成要素に媒質ガスを誘導するガス供給部材を更に備え、 前記ガス供給部材により前記媒質ガス流を発生させる、請求項 2に記載のプラズマ 生成装置。
[4] 前記電場形成要素は、前記媒質ガス塊中で部分放電を開始可能な強電場と、前 記部分放電を維持可能な弱電場とを形成することが可能である、請求項 1に記載の プラズマ生成装置。
[5] 細長 、形状を有する媒質ガス塊力 プラズマを生成するプラズマ生成装置であつ て、
前記媒質ガス塊中に配置される単一の高電位電極と、
前記高電位電極に電圧を印加する電圧印加要素とを備え、
前記電圧印加要素は、前記高電位電極から前記媒質ガス塊の長手方向の双方に 向って部分放電を発生させる電場が形成される電圧を、前記高電位電極に印加する プラズマ生成装置。
[6] 内腔を通して前記電場形成要素に媒質ガスを誘導するガス供給部材を更に備え、 前記ガス供給部材により前記媒質ガス流を発生させる、請求項 5に記載のプラズマ 生成装置。
[7] 前記ガス供給部材は誘電体からなり、
前記高電位電極は、前記ガス供給部材の外部に設けられている、請求項 6に記載 のプラズマ生成装置。
[8] 前記ガス供給部材は、前記媒質ガスを放出する開口部が平板状をなし、
前記高電位電極は、前記開口部の平板面上に平板状に設けられている、請求項 7 に記載のプラズマ生成装置。
[9] 前記ガス供給部材は円筒構造を有し、
前記高電位電極は円筒構造を有する、請求項 7に記載のプラズマ生成装置。
[10] 前記ガス供給部材は導電体力 なり、
前記ガス供給部材が前記高電位電極として用いられる、請求項 6に記載のプラズマ 生成装置。
[11] 前記ガス供給部材は誘電体力 なり、
前記高電位電極は、前記ガス供給部材の内腔に設けられている、請求項 6に記載 のプラズマ生成装置。
[12] 前記高電位電極は、前記ガス供給部材と一体構造を成して、前記ガス供給部材の 内面の一部を形成するように設けられ、
前記媒質ガスは、前記ガス供給部材の内壁面及び前記高電位電極の表面に接す る、請求項 11に記載のプラズマ生成装置。
[13] 前記電圧印加要素は、前記媒質ガス塊中で部分放電を開始可能な電圧と、前記 部分放電を維持可能な電圧とを供給可能である、請求項 7に記載のプラズマ生成装 置。
[14] 前記高電位電極力 離間した位置で前記媒質ガス塊の一部に隣接するように配置 された補助電極を更に備え、
前記補助電極は前記電圧印加要素カゝら接地電位が付与される、請求項 5に記載 のプラズマ生成装置。
[15] 内腔を通して前記媒質ガスを誘導する補助ガス供給部材と、
前記補助ガス供給部材に設けられ、前記電圧印加要素により接地電位が付与され る補助電極とを更に備え、
前記補助ガス供給部材は、前記媒質ガスを噴出する噴出口が、前記ガス供給部材 の前記媒質ガスを噴出する噴出口に接触するか、または所定の間隔 gを隔てて近接 して配置され、
前記ガス供給部材及び前記補助ガス供給部材の少なくとも一方は誘電体力 なる 請求項 6に記載のプラズマ生成装置。
[16] 複数の前記媒質ガス塊力 プラズマを生成するように構成され、
複数の前記媒質ガス塊中に各々配置される前記高電位電極を備えた、請求項 5に 記載のプラズマ生成装置。
[17] 媒質ガス塊に電場を形成する電場形成要素によって、細長い形状を有する前記媒 質ガス塊力 プラズマを生成するプラズマ生成方法であって、
前記電場形成要素から前記媒質ガス塊の長手方向の双方に向って部分放電が起 こるように、前記電場形成要素により前記媒質ガス塊に電場を形成するプラズマ生成 方法。
[18] 前記媒質ガス塊として媒質ガス流を発生させて、
前記電場形成要素から前記媒質ガス流の上流側および下流側の双方に向かって 部分放電が起こるように、前記電場形成要素により電場を形成する、請求項 17に記 載のプラズマ生成方法。
[19] 前記電場形成要素により、前記媒質ガス塊中で部分放電を開始可能な強電場と、 前記部分放電を維持可能な弱電場とを順次形成する、請求項 17に記載のプラズマ 生成方法。
[20] 媒質ガス塊に電場を形成する電場形成要素によって、細長い形状を有する前記媒 質ガス塊力 プラズマを生成するプラズマ生成方法であって、
前記媒質ガス塊中に単一の高電位電極を配置し、
前記電場形成要素から前記媒質ガス塊の長手方向の双方に向って部分放電が発 生させる電場が形成される電圧を、前記高電位電極に印加するプラズマ生成方法。
[21] 前記電場形成要素により前記電場を形成する際に、
前記高電位電極と接地電位箇所との間の距離を、前記高電位電極に印加される 電圧により部分放電を開始可能な所定距離に設定し、
次に、前記高電位電極と前記接地電位箇所との間の距離を、部分放電を維持可能 な範囲で前記所定距離より大きくする、請求項 20に記載のプラズマ生成方法。
PCT/JP2007/061837 2006-12-12 2007-06-12 プラズマ生成装置およびプラズマ生成方法 WO2008072390A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/518,737 US8232729B2 (en) 2006-12-12 2007-06-12 Plasma producing apparatus and method of plasma production
JP2008549208A JP4677530B2 (ja) 2006-12-12 2007-06-12 プラズマ生成装置およびプラズマ生成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-334800 2006-12-12
JP2006334800 2006-12-12

Publications (1)

Publication Number Publication Date
WO2008072390A1 true WO2008072390A1 (ja) 2008-06-19

Family

ID=39511422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061837 WO2008072390A1 (ja) 2006-12-12 2007-06-12 プラズマ生成装置およびプラズマ生成方法

Country Status (3)

Country Link
US (1) US8232729B2 (ja)
JP (1) JP4677530B2 (ja)
WO (1) WO2008072390A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008062A1 (ja) * 2008-07-18 2010-01-21 株式会社吉田製作所 歯科用診療装置及び歯科用プラズマジェット照射装置
JP2010051557A (ja) * 2008-08-28 2010-03-11 Yoshida Dental Mfg Co Ltd 歯科用診療装置及び歯科用流体管路殺菌装置
WO2010082561A1 (ja) * 2009-01-13 2010-07-22 リバーベル株式会社 プラズマ生成装置及び方法
JP2010232109A (ja) * 2009-03-28 2010-10-14 Nihon Univ Lfプラズマジェット生成方法とlfプラズマジェット生成装置
JP2011238385A (ja) * 2010-05-06 2011-11-24 Tokyo Metropolitan Univ 誘起流制御表面プラズマアクチュエータ
US8383038B2 (en) 2009-09-03 2013-02-26 Osaka University Method and apparatus for supplying liquid with ions, sterilization method and apparatus
WO2013105659A1 (ja) 2012-01-13 2013-07-18 国立大学法人大阪大学 活性種照射装置、活性種照射方法及び活性種被照射物作製方法
WO2014188725A1 (ja) 2013-05-24 2014-11-27 国立大学法人大阪大学 殺菌用液体の生成方法および装置
CN104540313A (zh) * 2014-12-26 2015-04-22 中国科学院西安光学精密机械研究所 大气压中空基底电极等离子体射流发生装置
JP2018170216A (ja) * 2017-03-30 2018-11-01 国立大学法人大阪大学 プラズマ生成装置及びこれを用いたプラズマ生成方法
US10499648B2 (en) 2014-09-02 2019-12-10 Katsuhisa Kitano Sterilization method, formulation for sterilization use, and device for producing sterilizing liquid
US11511316B2 (en) 2010-11-04 2022-11-29 Nissan Chemical Industries, Ltd. Plasma annealing method and device for the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102766A1 (en) * 2008-02-12 2009-08-20 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
US8460283B1 (en) * 2009-04-03 2013-06-11 Old Dominion University Low temperature plasma generator
US8736174B2 (en) * 2010-01-15 2014-05-27 Agilent Technologies, Inc. Plasma generation device with split-ring resonator and electrode extensions
US8217343B2 (en) * 2010-01-26 2012-07-10 Agilent Technologies, Inc. Device and method using microplasma array for ionizing samples for mass spectrometry
BR112013017419B1 (pt) 2011-01-05 2021-03-16 Purdue Research Foundation sistema e método para analisar uma amostra e método para ionizar uma amostra
CN102762022A (zh) * 2011-04-26 2012-10-31 中国科学院化学研究所 一种产生辉光放电等离子体的方法及其专用装置
GB2501484A (en) * 2012-04-24 2013-10-30 Linde Ag Plasma tooth treatment device
US9533909B2 (en) 2014-03-31 2017-01-03 Corning Incorporated Methods and apparatus for material processing using atmospheric thermal plasma reactor
CN104013472B (zh) * 2014-06-10 2016-08-24 杭州新亚齿科材料有限公司 一种基于等离子技术的牙齿表面处理方法以及装置
CN107106225B (zh) 2014-11-19 2021-05-28 技术研究及发展基金有限公司 冷等离子体生成***
US9786478B2 (en) 2014-12-05 2017-10-10 Purdue Research Foundation Zero voltage mass spectrometry probes and systems
US20160200618A1 (en) 2015-01-08 2016-07-14 Corning Incorporated Method and apparatus for adding thermal energy to a glass melt
JP6948266B2 (ja) 2015-02-06 2021-10-13 パーデュー・リサーチ・ファウンデーションPurdue Research Foundation プローブ、システム、カートリッジ、およびその使用方法
CN106068053B (zh) * 2016-06-28 2019-01-18 河北大学 一种可产生均匀连续放电或等离子体光子晶体的装置及方法
WO2018215619A1 (de) * 2017-05-24 2018-11-29 B. Braun Melsungen Ag Driftröhre mit modifizierter oberflächengüte zur verwendung in einem ionenbeweglichkeitsspektrometer
DE102018132960A1 (de) * 2018-12-19 2020-06-25 Plasmatreat Gmbh Vorrichtung und Verfahren zur Behandlung einer Werkstückoberfläche mit einem atmosphärischen Plasmastrahl

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665739A (ja) * 1991-08-20 1994-03-08 Bridgestone Corp 表面処理方法及びその装置
JP2002313599A (ja) * 2001-04-18 2002-10-25 Matsushita Electric Works Ltd プラズマ処理装置及びプラズマ点灯方法
JP2002368389A (ja) * 2001-06-06 2002-12-20 Matsushita Electric Works Ltd プリント配線板の処理方法及びプリント配線板の処理装置
JP2003282443A (ja) * 2002-03-27 2003-10-03 Japan Science & Technology Corp パルス電源とパルス放電スパッタによる多結晶シリコン膜気相合成法並びに多結晶シリコン膜気相合成装置
JP2004111948A (ja) * 2002-08-28 2004-04-08 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236512A (en) * 1991-08-14 1993-08-17 Thiokol Corporation Method and apparatus for cleaning surfaces with plasma
GB2259185B (en) * 1991-08-20 1995-08-16 Bridgestone Corp Method and apparatus for surface treatment
US6652069B2 (en) * 2000-11-22 2003-11-25 Konica Corporation Method of surface treatment, device of surface treatment, and head for use in ink jet printer
US7465407B2 (en) * 2002-08-28 2008-12-16 Panasonic Corporation Plasma processing method and apparatus
JP3616088B1 (ja) 2004-03-17 2005-02-02 独立行政法人科学技術振興機構 マイクロプラズマジェット発生装置
WO2006001455A1 (ja) 2004-06-28 2006-01-05 The University Of Tokyo プラズマ発生装置並びにこれを使用した生体内プラズマ処理装置及び表面処理装置
JP4701376B2 (ja) 2004-08-23 2011-06-15 国立大学法人埼玉大学 薄膜結晶化方法
JP2007012910A (ja) * 2005-06-30 2007-01-18 Shinkawa Ltd ボンディング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665739A (ja) * 1991-08-20 1994-03-08 Bridgestone Corp 表面処理方法及びその装置
JP2002313599A (ja) * 2001-04-18 2002-10-25 Matsushita Electric Works Ltd プラズマ処理装置及びプラズマ点灯方法
JP2002368389A (ja) * 2001-06-06 2002-12-20 Matsushita Electric Works Ltd プリント配線板の処理方法及びプリント配線板の処理装置
JP2003282443A (ja) * 2002-03-27 2003-10-03 Japan Science & Technology Corp パルス電源とパルス放電スパッタによる多結晶シリコン膜気相合成法並びに多結晶シリコン膜気相合成装置
JP2004111948A (ja) * 2002-08-28 2004-04-08 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KITANO K. ET AL.: "Ekitai Sesshoku Taikiatsu Hoden Plasma no Seisei to Shotokusei", DAI 67 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 29 August 2006 (2006-08-29), pages 148 + ABSTR. NO. 1A-S-11, XP003023062 *
KITANO K. ET AL.: "Taikiatsu RF Barrier Hoden ni yoru Ekitai Hyomen Narabi Ekichu ni Okeru Glow Plasma no Seisei to Shotokusei", DAI 6 KAI JOINT CONFERENCE FOR FUSION ENERGY YOKOSHU, 13 June 2006 (2006-06-13), pages 172 + ABSTR. NO. 14K06, XP003023061 *
KITANO K. ET AL.: "Teishuha Koden'atsu Dengen o Mochiita Taikiatsu Plasma Jet no Hoden Kiko", PLASMA AND FUSION RESEARCH, DAI 23 KAI NENKAI YOKOSHU, 28 November 2006 (2006-11-28), pages 301 + ABSTR. NO. 01PC05, XP003023060 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758010B2 (en) 2008-07-18 2014-06-24 Yoshida Creation Inc. Dental clinical apparatus and plasma jet applying device for dentistry
WO2010008062A1 (ja) * 2008-07-18 2010-01-21 株式会社吉田製作所 歯科用診療装置及び歯科用プラズマジェット照射装置
JPWO2010008062A1 (ja) * 2008-07-18 2012-01-05 株式会社吉田製作所 歯科用診療装置及び歯科用プラズマジェット照射装置
JP5441066B2 (ja) * 2008-07-18 2014-03-12 株式会社吉田製作所 歯科用診療装置及び歯科用プラズマジェット照射装置
JP2010051557A (ja) * 2008-08-28 2010-03-11 Yoshida Dental Mfg Co Ltd 歯科用診療装置及び歯科用流体管路殺菌装置
WO2010082561A1 (ja) * 2009-01-13 2010-07-22 リバーベル株式会社 プラズマ生成装置及び方法
CN102282916A (zh) * 2009-01-13 2011-12-14 里巴贝鲁株式会社 等离子体生成装置及方法
JPWO2010082561A1 (ja) * 2009-01-13 2012-07-05 リバーベル株式会社 プラズマ生成装置及び方法
JP5891341B2 (ja) * 2009-01-13 2016-03-23 ヘルスセンシング株式会社 プラズマ生成装置及び方法
JP2010232109A (ja) * 2009-03-28 2010-10-14 Nihon Univ Lfプラズマジェット生成方法とlfプラズマジェット生成装置
US8383038B2 (en) 2009-09-03 2013-02-26 Osaka University Method and apparatus for supplying liquid with ions, sterilization method and apparatus
JP2011238385A (ja) * 2010-05-06 2011-11-24 Tokyo Metropolitan Univ 誘起流制御表面プラズマアクチュエータ
US11511316B2 (en) 2010-11-04 2022-11-29 Nissan Chemical Industries, Ltd. Plasma annealing method and device for the same
WO2013105659A1 (ja) 2012-01-13 2013-07-18 国立大学法人大阪大学 活性種照射装置、活性種照射方法及び活性種被照射物作製方法
WO2014188725A1 (ja) 2013-05-24 2014-11-27 国立大学法人大阪大学 殺菌用液体の生成方法および装置
US10499648B2 (en) 2014-09-02 2019-12-10 Katsuhisa Kitano Sterilization method, formulation for sterilization use, and device for producing sterilizing liquid
CN104540313A (zh) * 2014-12-26 2015-04-22 中国科学院西安光学精密机械研究所 大气压中空基底电极等离子体射流发生装置
JP2018170216A (ja) * 2017-03-30 2018-11-01 国立大学法人大阪大学 プラズマ生成装置及びこれを用いたプラズマ生成方法
JP6991543B2 (ja) 2017-03-30 2022-01-12 国立大学法人大阪大学 プラズマ生成装置及びこれを用いたプラズマ生成方法

Also Published As

Publication number Publication date
JP4677530B2 (ja) 2011-04-27
US20100019677A1 (en) 2010-01-28
JPWO2008072390A1 (ja) 2010-03-25
US8232729B2 (en) 2012-07-31

Similar Documents

Publication Publication Date Title
JP4677530B2 (ja) プラズマ生成装置およびプラズマ生成方法
Lu et al. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets
US8471171B2 (en) Cold air atmospheric pressure micro plasma jet application method and device
Tachibana et al. Analysis of a pulsed discharge within single bubbles in water under synchronized conditions
US9693441B2 (en) Method for generating an atmospheric plasma jet and atmospheric plasma minitorch device
Lu et al. Atmospheric pressure nonthermal plasma sources
US7214949B2 (en) Ion generation by the temporal control of gaseous dielectric breakdown
JP2013519188A (ja) 中空体内での放電発生装置及び方法
Kim et al. Characteristics of multiple plasma plumes and formation of bullets in an atmospheric-pressure plasma jet array
JP2006216468A (ja) プラズマ表面処理方法、プラズマ生成装置及びプラズマ表面処理装置
Wang et al. Dynamics of plasma bullets in a microsecond-pulse-driven atmospheric-pressure he plasma jet
CA2621749A1 (en) Decomposition of natural gas or methane using cold arc discharge
JP2006244938A (ja) プラズマ発生装置及びプラズマ発生方法
Wang et al. The effect of accumulated charges and fluid dynamics on the helium plasma jet array behavior
Blajan et al. Surface treatment of glass by microplasma
Kone et al. Investigation of the interaction between a helium plasma jet and conductive (metal)/non-conductive (dielectric) targets
Niu et al. Atmospheric-pressure plasma jet produced by a unipolar nanosecond pulse generator in various gases
Sohbatzadeh et al. The effect of voltage waveform and tube diameter on transporting cold plasma strings through a flexible dielectric tube
Korolev et al. Discharge in the saline solutions in a vicinity of the threshold voltages
Darny et al. Helical plasma propagation of microsecond plasma gun discharges
Nastuta et al. ICCD imaging of atmospheric pressure plasma jet behavior in different electrode configurations
Zhou et al. The influence of pulse parameters on the downstream uniformity of linear-field jet array in argon
Lu et al. On the chronological understanding of the homogeneous dielectric barrier discharge
Walsh et al. Atmospheric dielectric-barrier discharges scalable from 1 mm to 1 m
Lei et al. DBD plasma jet in atmospheric pressure neon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745124

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12518737

Country of ref document: US

Ref document number: 2008549208

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745124

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)