WO2008056611A1 - Sonde ultrasonore - Google Patents

Sonde ultrasonore Download PDF

Info

Publication number
WO2008056611A1
WO2008056611A1 PCT/JP2007/071412 JP2007071412W WO2008056611A1 WO 2008056611 A1 WO2008056611 A1 WO 2008056611A1 JP 2007071412 W JP2007071412 W JP 2007071412W WO 2008056611 A1 WO2008056611 A1 WO 2008056611A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic matching
matching layer
piezoelectric element
conductive member
conductive
Prior art date
Application number
PCT/JP2007/071412
Other languages
English (en)
French (fr)
Inventor
Koetsu Saito
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/447,535 priority Critical patent/US8319399B2/en
Priority to DE112007002645T priority patent/DE112007002645T5/de
Priority to JP2008543058A priority patent/JP5331483B2/ja
Priority to CN2007800412334A priority patent/CN101536545B/zh
Publication of WO2008056611A1 publication Critical patent/WO2008056611A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects

Definitions

  • the present invention relates to an ultrasonic probe used to obtain diagnostic information of a subject by transmitting and receiving ultrasonic waves in contact with a subject such as a living body.
  • An ultrasonic diagnostic apparatus irradiates a living subject such as a human or animal with an ultrasonic wave, detects an echo signal reflected in the subject, displays a tomographic image of the tissue in the living body, etc. on a monitor, It provides information necessary for diagnosis of the subject.
  • This ultrasonic diagnostic apparatus uses an ultrasonic probe for transmitting ultrasonic waves into the subject and receiving echo signals from the subject.
  • FIG. 9 is a cross-sectional view showing a configuration example of this type of conventional ultrasonic probe.
  • the ultrasonic probe 30 is a plurality of piezoelectric elements arranged in a certain direction (in FIG. 9, the direction orthogonal to the paper surface) to transmit and receive ultrasonic waves to and from a subject (not shown).
  • 11 and one or more layers of the piezoelectric element 11 on the subject side (upper side of FIG. 9) (hereinafter, the subject side surface is referred to as the front surface).
  • the signal electrical terminal 15 provided on the opposite side of the specimen side is referred to as the back side, the back load material 14 provided on the back side of the signal electrical terminal 15, and the first acoustic matching layer 12a. And a second electrical matching layer 12b, and an electrical terminal 16 for grounding.
  • Piezoelectric element 11 can be applied to piezoelectric ceramics such as PZT (lead zirconate titanate), single crystals, composite piezoelectric materials combining these materials and polymer materials, or PVDF (bifukka polyvinyl). It is formed by a piezoelectric material of a representative polymer material. Electrodes are formed on the front surface and the back surface of the piezoelectric element 11, and electrical signals are transmitted and received between these electrodes and the piezoelectric element 11. That is, the piezoelectric element 11 converts the voltage into an ultrasonic wave and transmits it into the subject, and receives the echo reflected in the subject and converts it into an electrical signal. Replace.
  • PZT lead zirconate titanate
  • Single crystals single crystals
  • PVDF bifukka polyvinyl
  • the acoustic matching layer 12 is provided to efficiently transmit ultrasonic waves to the subject and receive from the subject, and more specifically, the acoustic impedance of the piezoelectric element 11 is gradually increased. It plays the role of getting close to acoustic impedance.
  • a first acoustic matching layer 12a and a second acoustic matching layer 12b are stacked as the acoustic matching layer 12.
  • the first acoustic matching layer 12a is a graphite, which is a conductive member, and an electrical terminal 16 having a metal film on an insulating film is taken out from the front surface.
  • a second acoustic matching layer 12b is provided on the front surface of the electrical terminal 16.
  • the first acoustic matching layer 12a there is also known a configuration in which a band is broadened by using a material having an acoustic impedance larger than that of the graphite (for example, see Patent Document 2 below). .
  • a through hole is provided in a part of the insulating member, and the conductive member is fitted into the through hole, and the electric terminal provided on the front surface and the rear surface thereof are provided.
  • a configuration for connecting the electrodes of the piezoelectric element 11 is also known! /, E.g. (see, for example, Patent Document 3 below).
  • the acoustic lens 13 plays a role of narrowing the ultrasonic beam in order to increase the resolution of the diagnostic image.
  • the acoustic lens 13 is an optional element and is provided as necessary.
  • the back load material 14 is joined so as to hold the piezoelectric element 11 and further plays a role of attenuating unnecessary ultrasonic waves.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-123497
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-125494
  • Patent Document 3 Japanese Utility Model Publication No. 7-37107
  • An electronic scanning ultrasonic diagnostic apparatus is composed of a plurality of piezoelectric elements and is driven by giving a certain delay time to each piezoelectric element group, and ultrasonic waves from each piezoelectric element group into a subject are transmitted. Transmit and receive echo signals from within the subject. By giving the delay time in this way, the ultrasonic beam is converged or diffused, and it is wide! You can get images.
  • a system for obtaining an ultrasound image by giving a certain delay time to a plurality of piezoelectric element groups is already known as a general system.
  • an ultrasound probe one of the important things to obtain such a high-resolution ultrasound image is a wide band.
  • the ultrasound probe is operated by a doctor or laboratory technician and obtains a diagnostic image by directly or indirectly contacting the subject.
  • a slim shape is also required for the touch panel to improve operability.
  • the ultrasonic probe is sometimes dropped due to force majeure during its operation or otherwise, or it may break due to being hit, and a reliable one is required for it. .
  • Patent Document 2 As one measure for broadening the bandwidth of an ultrasonic probe, as shown in Patent Document 2, there is a configuration in which three or more acoustic matching layers are provided on the front surface of a piezoelectric element.
  • silicon which is a semiconductor
  • this configuration which can only be taken out from a part of the end of the electrode formed on the piezoelectric element, if the piezoelectric element and the electrode are cracked by mechanical impact, disconnection occurs at the time of cracking and the function deteriorates. It will be.
  • Patent Document 1 uses an electrical terminal in which a graphite as a conductor is used for the first acoustic matching layer and a metal film is mounted on one main surface of an insulating film on the front surface thereof.
  • the conductor material used for the first acoustic matching layer has a low acoustic impedance, and the acoustic matching layer can be made up to two layers. It was difficult.
  • ultrasonic probes have tended to have a wider bandwidth, and use high-resolution ultrasonic images by using second-order or third-order harmonic components with respect to the fundamental frequency, or using multiple frequencies. Since there are many cases in which diagnosis is performed, it is becoming increasingly important to increase the bandwidth!
  • the present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a highly reliable ultrasonic probe that can obtain a high-resolution diagnostic image. . Another object of the present invention is to provide an ultrasonic probe with good operability.
  • the present invention provides an ultrasonic probe comprising: a piezoelectric element having electrodes formed on both surfaces in the thickness direction; and an acoustic matching layer stacked on one electrode forming surface of the piezoelectric element.
  • the acoustic matching layer is composed of a composite material of a plurality of materials including at least a conductive member, and the conductive member penetrates in the thickness direction of each layer at a plurality of positions on one electrode forming surface of the piezoelectric element. It has the site
  • the acoustic impedance of the acoustic matching layer laminated on one electrode formation surface of the piezoelectric element can be set to a desired value, so that the frequency can be widened, thereby obtaining a high-resolution diagnostic image.
  • the acoustic matching layer includes a composite material of a plurality of materials including an insulating member or a semiconductive member and a conductive member, or an insulating member or a semiconductive member. It is composed of a composite material of a plurality of materials and a plurality of materials including a conductive member, and the conductive member penetrates in the thickness direction of each layer at a plurality of locations on one electrode forming surface of the piezoelectric element. It has a part to be!
  • the acoustic impedance of the acoustic matching layer laminated on one electrode formation surface of the piezoelectric element can be set to a desired value, so that the frequency can be widened, thereby obtaining a high-resolution diagnostic image.
  • the present invention provides a plurality of piezoelectric elements having a predetermined thickness, electrodes formed on both surfaces in the thickness direction, and arranged in directions orthogonal to the thickness direction, and the plurality of piezoelectric elements.
  • an ultrasonic probe comprising a plurality of acoustic matching layers stacked on the electrode forming surface of one of the elements,
  • the acoustic matching layer includes first and second acoustic matching layers sequentially stacked on the piezoelectric element,
  • the first acoustic matching layer is composed of a composite material of a plurality of materials including an insulating member or a semiconductive member and a conductive member, and the conductive member is formed of the piezoelectric element.
  • the electrode forming surface has a plurality of portions penetrating in the thickness direction of each layer.
  • the acoustic impedance can be easily set to a desired value by multilayering the acoustic matching layer, so that a high-resolution diagnostic image can be obtained, and the first acoustic matching layer can be used. Since it becomes possible to connect electrical terminals to a plurality of locations on one electrode forming surface of the piezoelectric element, a highly reliable ultrasonic probe is provided.
  • an insulating member or a semiconductive member and a conductive member are arranged in a predetermined region.
  • the volume ratio between the insulating member or the semiconductive member and the conductive member can be arbitrarily set, and the acoustic impedance can be easily determined.
  • the present invention further includes an electrical terminal stacked on an outer surface portion of the acoustic matching layer adjacent to the piezoelectric element,
  • the electrical terminal is laminated such that a conductive film is provided on one main surface of the insulating film and the one main surface of the insulating film is opposed to the acoustic matching layer.
  • the electrode is electrically connected to one of the electrodes formed on the piezoelectric element via the conductive member constituting the acoustic matching layer.
  • the present invention provides a plurality of piezoelectric elements having a predetermined thickness, electrodes formed on both surfaces in the thickness direction, and arranged in directions orthogonal to the thickness direction, and the plurality of piezoelectric elements.
  • an ultrasonic probe comprising a plurality of acoustic matching layers stacked on the electrode forming surface of one of the elements,
  • n is an integer of 3 or more
  • the acoustic matching layer includes first to nth acoustic matching layers sequentially stacked on the piezoelectric element, and includes the first acoustic matching layer and the second acoustic matching layer. Electrical terminals are attached between
  • At least the first acoustic matching layer includes an insulating member or a semiconductive member, and a conductive member.
  • the conductive member has a portion 1AI that penetrates in the thickness direction of each layer at a plurality of locations on one electrode forming surface of the piezoelectric element.
  • the electrical terminal is laminated such that a conductive film is provided on one main surface of the insulating film and the one main surface of the insulating film is opposed to the acoustic matching layer.
  • the first acoustic matching layer is electrically connected to one of the electrodes formed on the piezoelectric element via the conductive member constituting the first acoustic matching layer.
  • the electrical terminals can be connected to multiple locations on one electrode forming surface of the piezoelectric element via the acoustic matching layer, the reliability is improved, and the insulating film is difficult to break, An ultrasonic probe is provided that has extremely low breakage and failure, and good operability.
  • the present invention also provides a plurality of piezoelectric elements having a predetermined thickness, electrodes formed on both sides in the thickness direction, and arranged in a direction perpendicular to the thickness direction, and one of the plurality of piezoelectric elements.
  • a plurality of piezoelectric elements having a predetermined thickness, electrodes formed on both sides in the thickness direction, and arranged in a direction perpendicular to the thickness direction, and one of the plurality of piezoelectric elements.
  • an ultrasonic probe comprising a plurality of acoustic matching layers stacked on the electrode forming surface
  • the acoustic matching layer includes first to nth acoustic matching layers sequentially stacked on the piezoelectric element, and includes a second acoustic matching layer and a third acoustic matching layer. Electrical terminals are attached between
  • At least the first and second acoustic matching layers are composed of a composite material of a plurality of materials including an insulating member or a semiconductive member and a conductive member, and the conductive member is formed of the piezoelectric element. At multiple locations on one electrode forming surface, each has a portion penetrating in the thickness direction of the layer,
  • the electrical terminal is laminated such that a conductive film is provided on one main surface of the insulating film and the one main surface of the insulating film is opposed to the acoustic matching layer.
  • the piezoelectric element is formed through the conductive member constituting the first acoustic matching layer and the conductive member constituting the second acoustic matching layer.
  • the other electrode is electrically connected.
  • the acoustic matching layer is multi-layered and the acoustic impedance of the acoustic matching layer can be set to a desired value, so that a high-resolution diagnostic image can be obtained.
  • an insulating member or a semiconductive member and a conductive member are arranged in a predetermined region. It is characterized by.
  • an insulating member or a semiconductive member and a conductive member are arranged in a predetermined region. It is characterized by.
  • the thickness direction of the piezoelectric element is a Z direction
  • a direction perpendicular to the Z direction is an X direction
  • a direction perpendicular to the Z direction and the X direction is a Y direction.
  • the composite material constituting the acoustic matching layer is:
  • the conductive member is connected only in the Z direction and not connected in the X and Y directions.
  • the insulating member or semiconductive member is connected in the three directions of X, Y, and ⁇ , or A connection structure in which the conductive member is connected in two directions, i.e., ⁇ and ⁇ , and the insulating member or semiconductive member is connected in two directions;
  • the conductive member is connected in three directions, X, ⁇ , and ⁇ , and the insulating member or semiconductive member is connected only in the ⁇ direction, and there is no connection in the X, ⁇ direction. It is characterized by having one connecting structure! /.
  • the present invention also includes a piezoelectric element having a predetermined thickness and electrodes formed on both surfaces in the thickness direction, and an acoustic matching layer laminated on one electrode forming surface of the piezoelectric element.
  • a piezoelectric element having a predetermined thickness and electrodes formed on both surfaces in the thickness direction, and an acoustic matching layer laminated on one electrode forming surface of the piezoelectric element.
  • the acoustic matching layer is composed of a composite material of a plurality of materials including at least a conductive member, and the conductive member is disposed at a plurality of locations on one electrode forming surface of the piezoelectric element, respectively in the thickness direction of the layer.
  • the conductive member has a portion that penetrates and has a structure in which the volume ratio is continuously inclined in the thickness direction or the volume ratio is changed stepwise.
  • the acoustic impedance of the acoustic matching layer laminated on one electrode formation surface of the piezoelectric element can be set to a desired value, so that the frequency can be widened, thereby obtaining a high-resolution diagnostic image.
  • the present invention is also characterized in that the composite material of the plurality of materials of the acoustic matching layer is made of a material including an insulating member or a semiconductive member and a conductive member. Let's say.
  • the acoustic impedance of the acoustic matching layer laminated on one electrode formation surface of the piezoelectric element can be set to a desired value and can be multilayered.
  • a resolution diagnostic image can be obtained, and electrical terminals can be connected to multiple locations on one electrode formation surface of the piezoelectric element via an acoustic matching layer.
  • a tentacle is provided.
  • the present invention is characterized in that the conductive member of the composite material includes at least one of a metal, a composite of a metal and a polymer material, and a carbide of graphite. With this configuration, it is possible to select a material in consideration of acoustic impedance.
  • the insulating member or the semiconductive member of the composite material is at least one of glass, ceramics, crystal, a composite of an organic polymer and a metal, a single crystal or a polycrystal of silicon. It is characterized by containing one.
  • This configuration facilitates determination of acoustic impedance.
  • the acoustic matching layer laminated on one electrode formation surface of the piezoelectric element is composed of a composite material of a plurality of materials including an insulating member or a semiconductive member and a conductive member. Therefore, the acoustic impedance can be set to a desired value, the frequency can be widened, and a high-resolution diagnostic image can be obtained, and the conductive member is one of the piezoelectric elements. Since there are portions that penetrate through the thickness direction of the layer at multiple locations on the electrode formation surface, electrical terminals are connected to multiple locations on one electrode formation surface of the piezoelectric element via the acoustic matching layer. This makes it possible to provide highly reliable V and ultrasound probes.
  • FIG. 1A is a cross-sectional view showing a configuration of a first embodiment of an ultrasonic probe according to the present invention.
  • FIG. 1B is a sectional view showing a configuration example of an acoustic matching layer constituting the ultrasonic probe shown in FIG. 1A.
  • FIG. 2A is a cross-sectional view showing a configuration of a second embodiment of an ultrasonic probe according to the present invention.
  • FIG. 2B is a perspective view showing a configuration example of the first acoustic matching layer constituting the ultrasonic probe shown in FIG. 2A.
  • FIG. 2C is a diagram showing the relationship between the volume ratio of the insulating member or conductive member of the first acoustic matching layer shown in FIG. 2B and the acoustic impedance.
  • FIG. 2D is a perspective view showing a configuration example of the first acoustic matching layer constituting the ultrasonic probe shown in FIG. 2A.
  • FIG. 2E is a perspective view showing a configuration example of the first acoustic matching layer constituting the ultrasonic probe shown in FIG. 2A.
  • FIG. 3A is a perspective view showing a configuration of a third embodiment of an ultrasonic probe according to the present invention, partially broken away.
  • Fig. 3B Cross section of the ultrasound probe shown in Fig. 3A
  • FIG. 3C is a perspective view showing a specific configuration example of elements constituting the ultrasonic probe shown in FIGS. 3A and 3B.
  • FIG. 3D is a perspective view showing a specific configuration example of elements constituting the ultrasonic probe shown in FIGS. 3A and 3B.
  • FIG. 4A is a perspective view showing a configuration of a fourth embodiment of an ultrasonic probe according to the present invention, partly broken away.
  • FIG. 4B Cross section of the ultrasound probe shown in Fig. 4A
  • FIG. 5A is a perspective view showing a configuration of a fifth embodiment of an ultrasonic probe according to the present invention, partly broken away.
  • FIG. 5B Sectional view of the ultrasonic probe shown in Fig. 5A
  • FIG. 6A is a cross-sectional view showing a configuration of a sixth embodiment of an ultrasonic probe according to the present invention, partially broken away.
  • FIG. 6B is a cross-sectional view showing a configuration example of an acoustic matching layer constituting the ultrasonic probe shown in FIG. 6A.
  • FIG. 7A is a sectional view showing a configuration example of an acoustic matching layer constituting the seventh embodiment of the ultrasonic probe according to the present invention.
  • FIG. 7B is a cross-sectional view showing another configuration example of the acoustic matching layer constituting the seventh embodiment of the ultrasonic probe according to the present invention.
  • FIG. 8 is a sectional view showing a configuration example of an acoustic matching layer constituting the eighth embodiment of the ultrasonic probe according to the present invention.
  • FIG. 9 is a cross-sectional view showing a configuration example of a conventional ultrasonic probe
  • FIG. 1A is a cross-sectional view showing a configuration of the first embodiment of the ultrasonic probe according to the present invention
  • FIG. 1B is a configuration of an acoustic matching layer constituting the ultrasonic probe shown in FIG. 1A.
  • an ultrasonic probe 10A includes a plate-like piezoelectric element 1, an acoustic matching layer 2 stacked on the front surface of the piezoelectric element 1 (above the drawing), and, if necessary, the piezoelectric element 1 A back load material 3 mounted on the back surface (below the drawing) and an acoustic lens 4 mounted on the front surface of the acoustic matching layer 2 as necessary.
  • the functions of these constituent elements are the same as the functions of the elements constituting the conventional ultrasonic probe.
  • the piezoelectric element 1 is a piezoelectric ceramic such as PZT, a piezoelectric single crystal such as PZN-PT or PMN-PT, or a polymer of these materials and a polymer. It is formed by a composite piezoelectric material that combines materials, or a piezoelectric material of a polymer material typified by PVDF.
  • a ground electrode 5 is formed on the front surface of the piezoelectric element 1
  • a signal electrode 6 is formed on the back surface of the piezoelectric element 1.
  • the ground electrode 5 and the signal electrode 6 are formed by gold or silver deposition, sputtering, or silver baking, respectively.
  • a conductive surface such as copper is formed on one main surface of the insulating film 7a made of a polymer material such as polyimide.
  • a signal electrical terminal 7 on which the conductive film 7b is mounted is attached.
  • the conductive film 7b of the signal electrical terminal 7 contacts the signal electrode 6 formed on the piezoelectric element 1, and the insulating film 7a of the signal electrical terminal 7 contacts the back load material 3.
  • one main surface of the insulating film 7a is directed to the piezoelectric element 1 side.
  • an acoustic matching layer 2 composed of a composite material including at least a conductive member, and a conductive thin film of metal such as copper, for example.
  • the electrical terminals 9 for grounding are sequentially stacked. In this case, the grounding electrical terminal 9 comes into contact with the conductive material of the composite material of the acoustic matching layer 2 and, if necessary, the acoustic lens 4 using a material such as silicone rubber on the front surface of the grounding electrical terminal 9. Is installed.
  • the conductive film 7b and the grounding electrical terminal 9 are not limited to metals as long as they are electrically conductive materials.
  • the grounding electrical terminal 9 has a conductive film on one main surface of an insulating film made of a polymer material like the configuration of the signal electrical terminal 7, and this conductive film is acoustically matched.
  • the layers may be laminated so as to be on the layer 2 side.
  • the signal electrode 6 formed on the piezoelectric element 1 is connected to the piezoelectric element 1 via the signal electric terminal 7.
  • the ground electrode 5 of the element 1 is electrically connected to one end of a cable (not shown) via the conductive member of the composite material of the acoustic matching layer 2 and the electrical terminal 9 for grounding. Each other end is connected to a main body of an ultrasonic diagnostic apparatus (not shown).
  • a regular pulse voltage generated in the main body of the ultrasonic diagnostic apparatus is applied to the piezoelectric element 1 to transmit ultrasonic waves, and echoes of the received ultrasonic waves are converted into electrical signals to convert the ultrasonic diagnostic apparatus. Send to the main unit.
  • the acoustic matching layer 2 made of a composite material including a conductive member has an acoustic impedance between the acoustic impedances of a subject (not shown) located on the piezoelectric element 1 and acoustic lens 4 side.
  • the material is selected so that A configuration example of the composite material including the conductive member of the acoustic matching layer 2 is shown in FIG. 1B.
  • the direction in which ultrasonic waves are radiated toward the subject is the Z direction
  • the two directions perpendicular thereto are the X direction and the Y direction, respectively.
  • the acoustic matching layer 2 shown in FIG. 1B includes a conductive member 20 and other members such as an insulating member or a semiconductive member 21 that are alternately arranged in the X direction.
  • the plurality of conductive members 20 are connected in the two directions of Y and Z, and the insulating member or semiconductive member 21 is also a structure having connections in the two directions of Y and Z.
  • the plurality of conductive members 20 are in contact with the grounding electrode 5 formed on the front surface of the piezoelectric element 1 and the grounding electrical terminal 9, respectively, so that the grounding electrode 5 and the grounding electrical terminal 9 of the piezoelectric element 1 are contacted. And have a function of electrically connecting the two.
  • the conductive members 20 are arranged in a row in the Y direction with their end portions directed in the Z direction, and in a plurality of rows in the X direction, the periphery of which is an insulating member or a semiconductive member 21. Of these, the conductive member 20 may be connected in one direction only in the Z direction and not in the X and Y directions.
  • the insulating member or semiconductive member 21 is a structure having connections in three directions of X, Y, and ⁇ , or a plurality of insulating members or semiconductive members 21 with their ends directed in the ⁇ direction.
  • a row in the ⁇ direction are arranged in multiple rows in the X direction and surrounded by a conductive member 20, of which the conductive member 20 is in three directions, X, ⁇ , and ⁇ .
  • the insulating member or the semiconductive member 21 has the same effect as a structure having a connection in one direction only in the heel direction.
  • the conductive member 20 and the insulating member Alternatively, a composite of the semiconductive member 21 is used, but a composite having different materials among other conductive members has the same effect.
  • the acoustic impedance of the acoustic matching layer 2 shown in FIG. 1A needs to have a value between the acoustic impedance of the piezoelectric element 1 and the acoustic impedance of the subject.
  • a piezoelectric element 1 For example, when PZT-5H piezoelectric ceramics with an acoustic impedance of about 30 megarails is used as piezoelectric element 1 and a subject such as a living body with an acoustic impedance of about 1.6 megarails is targeted Since the acoustic matching layer 2 is a single layer, a material with a value around 6-8 megarails is used.
  • an insulating member or a semiconductive member is used as the force acoustic matching layer 2 described using the ultrasonic probe 10A shown in FIG. 1A, and the end of the ground electrode 5 of the piezoelectric element 1 is used.
  • a configuration is also conceivable in which a portion (not shown) without an acoustic matching layer is formed by cutting out a portion corresponding to the portion, and an electric terminal (not shown) is taken out from the portion.
  • the piezoelectric element 1 vibrates and generates ultrasonic waves even in a portion where there is no acoustic matching layer, so that it is transmitted to the subject.
  • the ultrasonic image is disturbed and the ultrasonic image is deteriorated. Also, since there is only one electrical terminal to be taken out from the ground electrode 5, the ultrasonic probe was dropped during the diagnostic operation, or a mechanical impact such as striking was applied to the ultrasonic probe. As a result, when the piezoelectric element 1 is cracked, the ground electrode 5 may be cracked in the same manner, causing an electrical disconnection and the like, which may cause failure.
  • the first embodiment shown in FIG. 1A solves these problems and realizes a configuration capable of widening the frequency band. That is, since the ground electrode 5 of the piezoelectric element 1 is electrically connected to the grounding electrical terminal 9 through the plurality of conductive members 20 of the acoustic matching layer 2, the piezoelectric element 1 It is possible to transmit and receive desired ultrasonic waves uniformly over the entire surface, and even if the piezoelectric element 1 and the ground electrode 5 break due to mechanical impact, etc. Because it is connected with the member 20! /, It is extremely unlikely that it will break and break down.
  • the insulating member or semiconductive member 21 of the acoustic matching layer 2 a polymer material typified by epoxy resin, urethane resin, polyimide, etc., glass, crystallized gas, etc. Epoxy resin mixed with glass or tungsten powder at high concentration, lead niobate ceramics, ceramics with workability (free-cutting ceramics), ceramics such as single crystal or polycrystalline silicon, quartz crystal, and barium titanate.
  • a graphite filled with a metal such as graphite or copper a metal material such as copper, aluminum, silver, gold or nickel, or a metal material such as gold, silver, copper or aluminum
  • a metal material such as copper, aluminum, silver, gold or nickel
  • a metal material such as gold, silver, copper or aluminum
  • the conductive member 20, the insulating member, or the semiconductive member 21 is not limited to the above-described material, but may be any other material as long as it has the same acoustic impedance as the above-described material. Moyore. Conductive member
  • the acoustic impedance of the composite material of 20 and the insulating member or semiconductive member 21 is determined by the volume ratio of each.
  • the conductive member 20 is a graphite and an insulating member filled with copper having a value of about 10 megarails.
  • the volume ratio of epoxy resin is high, the acoustic impedance is close to 3 megarails, and when the volume ratio of graphite filled with copper is high, the acoustic impedance is close to 10 megarails. You can easily choose 7 Megarails.
  • the configuration of the composite material of the conductive member 20 and the insulating member or the semiconductive member 21 has been described, but other than the configuration of the composite material of this combination, for example, the insulating member or the semiconductive
  • the insulating member or the semiconductive A structure in which a conductive member is used as the conductive member 21 and a composite material of the conductive member may be used. That is, the conductive member 21 has at least the conductive member 20 and can be electrically connected to the electrode surface of the piezoelectric element 1 and acoustic impedance.
  • the composite material is not limited to the above structure as long as it has a function capable of changing the thickness.
  • the acoustic matching layer 2 has the force S described for the type of one layer, and even when the acoustic matching layer 2 includes two or more acoustic matching layers, the composite material is provided in each acoustic matching layer. The same effect can be obtained even if it is provided in some layers. It is done.
  • the acoustic matching layer can be made to have a desired acoustic impedance. This makes it possible to widen the frequency band, thereby obtaining a high-resolution diagnostic image.
  • electrical terminals can be connected to multiple locations of the piezoelectric element through the conductive member of the acoustic matching layer of the composite material, an ultrasonic probe with high reliability and good operability is obtained. be able to.
  • the conductive member 20 and the insulating member or semiconductive member 21 shown in FIG. 1B are formed with a uniform width in the Z direction.
  • the insulating member or semiconductive member 21 has a so-called wedge shape in which the width continuously changes in the Z direction, or changes in a stepwise manner with respect to the thickness in the Z direction. The same effect can be obtained even when the acoustic impedance is changed continuously or stepwise.
  • the force described in the case where the conductive member 20 and the insulating member or the semiconductive member 21 shown in FIG. 1B are alternately arranged at substantially equal intervals is described.
  • the same effect can be obtained even at random intervals or at random arrangement.
  • a configuration in which a grounding electrical terminal 9 is provided on the front surface of the piezoelectric element 1 via the acoustic matching layer 2 in order to exchange electrical signals with the grounding electrode 5 of the piezoelectric element 1 is provided.
  • a conductive member is formed on both or one side in the Z direction of the acoustic matching layer 2 by sputtering, plating or printing, and the grounding electrical terminal 9 is connected to that part. The effect is obtained.
  • the acoustic matching layer 2 has a connection structure of a conductive member 20 and an insulating member or semiconductive member 21 each formed of one material.
  • a connection structure of a conductive member 20 and an insulating member or semiconductive member 21 each formed of one material.
  • the same effect can be obtained even if at least one of the conductive member 20 and the insulating member or the semiconductive member 21 is formed of two or more materials. It is not limited to the connection structure of the grades.
  • the electrode on the front surface of the piezoelectric element 1 is used as the ground electrode 5.
  • the grounding electrical terminal 9 is arranged on the subject side, the electrode on the back surface of the piezoelectric element 1 is used as the signal electrode 6, and the signal electrical terminal 7 is in contact with the signal electrode 6.
  • the front electrode of the piezoelectric element 1 is used as the signal electrode 6 and the signal electrical terminal 7 is arranged on the subject side, the back electrode of the piezoelectric element 1 is used as the ground electrode 5, and further to the ground electrode 5 for grounding.
  • ultrasonic waves can be transmitted and received even when the electrical terminal 9 is brought into contact.
  • FIG. 2A is a cross-sectional view showing a configuration of the second embodiment of the ultrasonic probe according to the present invention, and FIGS. 2B, 2D, and 2E respectively show the ultrasonic probe shown in FIG. 2A.
  • FIG. 2C is a perspective view showing a configuration example of the first acoustic matching layer, and FIG. 2C shows the volume ratio of the silicon single crystal used as the insulating member or conductive member of the first acoustic matching layer shown in FIG. 2B.
  • FIG. 4 is a diagram showing a relationship with acoustic impedance.
  • the ultrasonic probe 10B includes a plate-like piezoelectric element 1 and a front surface of the piezoelectric element 1.
  • acoustic matching layers 2 (2a, 2b) stacked on top of the drawing (2a, 2b), and back load material 3 mounted on the back of the piezoelectric element 1 (bottom of the drawing) as necessary. Accordingly, the acoustic lens 4 is mounted on the front surface of the acoustic matching layer 2 (2a, 2b).
  • the functions of these components are the same as the functions of the components that make up a conventional ultrasound probe.
  • the piezoelectric element 1 is a piezoelectric ceramic such as PZT, a piezoelectric single crystal such as PZN-PT or PMN-PT, or a polymer of these materials and polymers. It is formed by a composite piezoelectric material that combines materials, or a piezoelectric material of a polymer material typified by PVDF.
  • a ground electrode 5 is formed on the front surface of the piezoelectric element 1
  • a signal electrode 6 is formed on the back surface of the piezoelectric element 1.
  • the ground electrode 5 and the signal electrode 6 are formed by gold or silver deposition, sputtering, or silver baking, respectively.
  • a conductive surface such as copper is formed on one main surface of the insulating film 7a made of a polymer material such as polyimide.
  • a signal electrical terminal 7 on which the conductive film 7b is mounted is attached.
  • the conductive film 7b of the signal electrical terminal 7 is in contact with the signal electrode 6 formed on the piezoelectric element 1, and the signal One main surface of the insulating film 7a is directed to the piezoelectric element 1 side so that the insulating film 7a of the electrical terminal 7 is in contact with the back surface load material 3.
  • a first acoustic matching layer 2a made of a composite material of an insulating member or a semiconductive member and a conductive member, polyimide, etc.
  • Insulating film 9a composed of a polymer material
  • Conductive film such as copper on one main surface of 9a (thickness is preferably 5 micrometers or less so that the effect on properties is small) 9b 9 and a second acoustic matching layer 2b made of a polymer material such as epoxy resin or polyimide are sequentially stacked.
  • the conductive film 9b of the grounding electrical terminal 9 is in contact with the conductive material of the composite material of the first acoustic matching layer 2a, and the second acoustic matching is made to the insulating finole 9a of the grounding electrical terminal 9.
  • One main surface of the insulating film 9a is directed to the first acoustic matching layer 2a side so that the layer 2b contacts.
  • the second acoustic matching layer 2b may be an insulating member or a conductive member. If necessary, an acoustic lens 4 using a material such as silicone rubber is attached to the front surface of the second acoustic matching layer 2b.
  • the conductive films 7b and 9b may be any material that is electrically conductive and is not limited to metal.
  • the signal electrode 6 formed on the piezoelectric element 1 is connected to the signal electrical terminal 7 and the ground electrode 5 of the piezoelectric element 1 is connected to the conductive member of the composite material of the first acoustic matching layer 2a and the grounding electrical
  • Each terminal 9 is electrically connected to one end of a cable (not shown), and the other end of each of these cables is connected to a main body of an ultrasonic diagnostic apparatus (not shown).
  • the regular pulse voltage generated in the main body of the ultrasonic diagnostic apparatus is applied to the piezoelectric element 1 to transmit ultrasonic waves, and the received ultrasonic echoes are converted into electrical signals to generate ultrasonic waves. Send to the main body of the diagnostic device.
  • a first material composed of a composite material of an insulating member or a semiconductive member and a conductive member (hereinafter referred to as a composite material of a conductive member and an insulating member or a semiconductive member).
  • a material whose acoustic impedance is between the acoustic impedances of the piezoelectric element 1 and the second acoustic matching layer 2b is selected.
  • the connection between the conductive member and the insulating member or semiconductive member of the first acoustic matching layer 2a Examples of the structure are shown in FIGS. 2B, 2D, and 2E.
  • the direction in which the ultrasonic wave is radiated toward the subject is the Z direction
  • the two directions orthogonal thereto are the X direction and the Y direction, respectively.
  • conductive members 20 and insulating members or semiconductive members 21 each formed in a strip shape are alternately arranged in the X direction.
  • the conductive member 20 is connected to the two directions Y and Z
  • the insulating member or the semiconductive member 21 is also a structure connected to the two directions Y and Z. Therefore, in the following explanation, this connection structure is called a 2-2 type connection structure.
  • the plurality of conductive members 20 are respectively formed on a ground electrode 5 formed on the front surface of the piezoelectric element 1 and a conductive film 9b shown on one main surface of the insulating film 9a of the grounding electrical terminal 9. It has a function of contacting and electrically connecting the ground electrode 5 of the piezoelectric element 1 and the conductive film 9b of the electrical terminal 9 for grounding.
  • the first acoustic matching layer 2a-2 shown in FIG. 2D has a plurality of conductive members 20 each formed in a columnar shape in the Y direction with their ends directed in the Z direction. Arranged in a row and in multiple rows in the X direction and surrounded by an insulating member or semiconductive member 21, of which the conductive member 20 is connected in only one direction of the Z direction. Yes, there is no connection in the X and Y directions.
  • the insulating member or semiconductive member 21 has a structure connected in three directions of X, Y, and Z, and this connecting structure is called a 1-3 type connecting structure.
  • the plurality of conductive members 20 are composed of a ground electrode 5 formed on the front surface of the piezoelectric element 1 and a conductive film 9b shown on one main surface of the insulating film 9a of the electrical terminal 9 for grounding. Each has a function of electrically connecting the ground electrode 5 of the piezoelectric element 1 and the conductive film 9b of the grounding electric terminal 9 in contact with each other.
  • the first acoustic matching layer 2a-3 shown in FIG. 2E has a plurality of insulative members or semiconductive members 21 each formed in a quadrangular prism shape, and ends thereof in the Z direction. Are arranged in rows in the Y direction, and are arranged in multiple rows in the X direction, and the periphery is surrounded by a conductive member 20. Of these, the conductive member 20 is connected in three directions, X, Y, and ⁇ .
  • the insulating member or the semiconductive member 21 is a structure that is connected in only one direction of the heel direction, and this connection structure is referred to as a 3-1 type connection structure.
  • the conductive member 20 is in contact with the ground electrode 5 formed on the front surface of the piezoelectric element 1 and the conductive film 9b shown on one main surface of the insulating film 9a of the grounding electrical terminal 9, respectively. It has a function of electrically connecting the ground electrode 5 of the element 1 and the conductive film 9b of the electrical terminal 9 for grounding.
  • the acoustic impedance of the first acoustic matching layer 2a shown in FIG. 2A has a value between the acoustic impedance of the piezoelectric element 1 and the acoustic impedance of the second acoustic matching layer 2b. It is necessary.
  • the acoustic impedance of the second acoustic matching layer 2b is a material with a value around 3 megarails. Therefore, a material having an acoustic impedance of at least 3 to 30 megarails is required for the first acoustic matching layer 2a.
  • the acoustic impedance of the first acoustic matching layer 2a be between 5 and 20 megarails, and the higher the value, the wider the frequency characteristic band tends to be. is there. Therefore, it is preferable to use a material in the range of 10 to 20 megarails as the first acoustic matching layer 2a.
  • materials having an acoustic impedance of 10 to 20 megalenoless include, for example, glass, crystallized glass, epoxy resin mixed with metal tungsten powder at a high concentration, lead niobate ceramics, and workable ceramics (free cutting). Ceramic), single crystal or polycrystalline silicon, and quartz. However, these materials are! /, And the displacement is electrically an insulating member or a semiconductive member.
  • a configuration in which a portion (not shown) without an acoustic matching layer is cut out at a portion corresponding to the end of the electrode 5 and an electric terminal (not shown) is taken out from the portion is also conceivable.
  • the ultrasonic probe can be dropped during the diagnostic operation, or If the piezoelectric element 1 is cracked due to mechanical impact such as striking the ultrasonic probe, the ground electrode 5 may be cracked in the same way, causing electrical disconnection, etc. is there.
  • the second embodiment shown in FIG. 2A realizes a configuration that solves these problems and can broaden the frequency band. That is, the ground electrode 5 of the piezoelectric element 1 is electrically connected to the metal film 9b of the grounding electrical terminal 9 through the plurality of conductive members 20 of the first acoustic matching layer 2a. Therefore, it is possible to transmit and receive the desired ultrasonic wave uniformly over the entire surface of the piezoelectric element 1, and even if the piezoelectric element 1 and the ground electrode 5 are cracked due to mechanical impact, etc. Since the plurality of conductive members 20 of the acoustic matching layer 2a are connected to each other! /, The occurrence of a failure due to disconnection is extremely reduced.
  • the glass, crystallized glass, or tungsten powder described above has a high concentration.
  • Epoxy resin, lead niobate ceramics, ceramics with workability (free-cutting ceramics), ceramics such as single crystal or polycrystalline silicon, quartz crystal, barium titanate, etc. are used.
  • a metal material such as copper, aluminum, silver, gold, or nickel can be used, or gold, silver, copper, aluminum Metal materials such as rubber or carbon powder are mixed with polymer compounds such as epoxy resin to make them conductive, graphite, carbon, etc. are used.
  • the conductive member 20, the insulating member, or the semiconductive member 21 is not limited to the above-described material, and may be another material as long as it has the same acoustic impedance as the above-described material. Moyo! / The acoustic impedance of the composite material of the conductive member 20 and the insulating member or semiconductive member 21 is determined by the respective volume ratios.
  • the configuration of the composite material of the conductive member 20 and the insulating member or the semiconductive member 21 has been described here, other than the configuration of the composite material of the above combination, for example, the insulating member Alternatively, a structure in which a conductive member is used as the semiconductive member 21 to form a composite material of the conductive member, that is, a function that has at least the conductive member 20 and can be electrically connected to the electrode surface of the piezoelectric element 1 is used. It is obvious that the composite material is not limited to the above configuration as long as the composite material has a function capable of changing the acoustic impedance.
  • the composite material of the conductive member 20 and the insulating member or the semiconductive member 21 has two types of materials when the connection structure is a 13 type, a 2-2 type, or a 3-1 type. By changing the volume ratio between the acoustic impedance values, a material having a desired acoustic impedance can be obtained.
  • a composite material of a conductive member 20 having a connection structure of 1 type 3, 2 type 2 and 3 type 1 and an insulating member or semiconductive member 21 is used as the first acoustic matching layer 2a.
  • the width of the conductive member 20 and the arrangement interval thereof are determined so that the composite material integrally propagates ultrasonic waves.
  • the conductive member 20 may be selected mainly for its electrical connection function! / ,.
  • connection structure shown in FIGS. 2B, 2D, and 2E is used for the purpose of matching only the acoustic impedance to a desired value without requiring the acoustic matching layer function, that is, the conductive performance.
  • a connection structure with such a semiconductive member may be used.
  • a silicon single crystal is used as the insulating member or semiconductive member 21.
  • This silicon single crystal is assumed to have a flat Z direction in FIG. 2B.
  • Grooves for filling the conductive member 20 in the Y direction in FIG. 2B are formed at arbitrary intervals on the flat surface by laser irradiation, chemical etching, machining by dicing machine, etc. .
  • the groove is filled with a conductive adhesive such as conductive epoxy resin in which powder such as silver is mixed and cured.
  • This conductive adhesive is a material having a smaller acoustic impedance than a silicon single crystal.
  • the first acoustic matching layer 2a is formed by slicing in the Z direction to a thickness of approximately a quarter wavelength.
  • the volume ratio of the conductive adhesive of the conductive member 20 can be reduced. If a value is required, the volume ratio should be increased.
  • Echobond 56C Emerson & Cumming
  • the acoustic impedance is about 6.5 Megarails and 19.7 Megarails.
  • the silicon single crystal when the volume ratio was 65.5%, it was 15.3 megarails, and when the volume ratio of silicon single crystal was 43%, it was 12.7 megarails.
  • FIG. 2C is a diagram showing the relationship between the volume ratio and acoustic impedance of a silicon single crystal prepared based on the measurement results for the two materials described above.
  • Echobond 56C was used as the conductive adhesive for forming the conductive member 20, and the volume ratio of the silicon single crystal was changed from 0 percent (conductive adhesive only) to 100 percent ( When changed in the range of only silicon single crystal), the acoustic impedance of the conductive adhesive and silicon single crystal composite material is approximately linear from 6.5 megarails to the silicon single crystal acoustic impedance 19.7 megarails You can see that it changes.
  • the inventors were able to confirm that there is a correlation between this volume ratio and acoustic impedance.
  • a plate-like silicon single crystal as the insulating member or semiconductive member 21 and a plate-like graphite or metal as the conductive member 20 are alternately stacked and bonded in the X direction in FIG. 2B. Or a thin film formed by sputtering, plating, or printing on one main surface of the plate-like silicon single crystal as the insulating member or semiconductive member 21 as shown in FIG. After sequentially laminating and adhering in the direction, slice the film so that the thickness in the Z direction in Figure 2B is obtained. According to this manufacturing method, mass production is also possible.
  • the first acoustic matching layer 2a-2 having the 1-3 type coupling structure shown in Fig. 2D will be described.
  • the insulating member or semiconductive member 21 a silicon single crystal having a thickness in the Z direction in FIG. 2D is prepared. And this silicon single crystal is irradiated with laser, Holes for providing a plurality of conductive members 20 at arbitrary intervals are formed by chemical etching or machining. Next, the hole is filled with a conductive adhesive such as a conductive epoxy resin mixed with powder such as silver and cured. After that, the first acoustic matching layer is formed by processing to a thickness of about a quarter wavelength.
  • the volume ratio of the conductive adhesive of the conductive member 21 can be reduced, and if so, a low acoustic impedance value is required. If so, the volume ratio of the conductive adhesive of the conductive member 21 may be increased.
  • the acoustic impedance of single crystal silicon is 19.7 megarails
  • the acoustic impedance of Echobond 56C (Emerson & Cumming) as a conductive adhesive is about 6.5 megarails. Adjust the acoustic impedance to a value in the range of 6.5 Megarails to 19.7 Megarails, as in the structure of Figure 2B.
  • a silicon single crystal is prepared as the insulating member or semiconductive member 21. Then, this silicon single crystal is formed with a plurality of grooves in both the X and Y directions at arbitrary intervals by laser irradiation, chemical etching, or machining by a die cinder machine, and then conductive bonding is performed. Fill a plurality of grooves with a conductive member 20 such as an agent and cure. After that, the first acoustic matching layer is formed by processing to a thickness of about a quarter wavelength.
  • the acoustic matching layer can be formed in a desired manner. Since the acoustic impedance can be obtained and the frequency band can be widened, a high-resolution diagnostic image can be obtained. In addition, since it is possible to connect the electrical terminals to multiple locations of the piezoelectric element via the conductive member of the acoustic matching layer of the composite material, the ultrasonic probe is highly reliable and has good operability. Can be obtained.
  • the conductive member 20 having the 1-3 type connection structure shown in FIG. 2D is used.
  • the same effect can be obtained by using other shapes such as prisms or spheres.
  • the same effect can also be obtained when a conical shape such as a cone is formed in the z direction so that the acoustic impedance changes continuously with respect to the thickness in the Z direction.
  • the conductive member 20 and the insulating member or semiconductive member 21 having the 2-2 type connecting structure shown in FIG. 2B have a uniform width in the Z direction.
  • the conductive member 20 and the insulating properties of the 2-2 type shown in FIG. 2B, the 13 type shown in FIG. 2D, and the 3 1 type shown in FIG. 2E are connected.
  • the same effect can be obtained when the members or the semiconductive members 21 are arranged at random intervals or at random.
  • the grounding electrical terminal 9 is provided on the front surface thereof via the first acoustic matching layer 2a.
  • a conductive member is formed by sputtering, plating, or printing on both sides or one side of the first acoustic matching layer 2a in the Z direction, and the grounding electrical terminal 9 is connected to that portion. Even when configured, the same effect can be obtained.
  • connection structure of a conductive member 20 and an insulating member or semiconductive member 21 each formed of one material type
  • the same effect can be obtained even if at least one of the conductive member 20 and the insulating member or the semiconductive member 21 is formed of two or more types of materials.
  • Each is not limited to a single grade connection structure.
  • the electrode on the front surface of the piezoelectric element 1 is used as the ground electrode 5 and the grounding electrical terminal 9 is disposed on the subject side, and the electrode on the back surface of the piezoelectric element 1 is used as a signal.
  • the signal electrical terminal 7 is brought into contact with the signal electrode 6 as the signal electrode 6, but instead, the signal electrode 6 on the front side of the piezoelectric element 1 is used as the signal electrode 6 on the subject side. 7 and the back electrode of the piezoelectric element 1 as the ground electrode 5, In principle, ultrasonic waves can be transmitted and received even when the grounding electrical terminal 9 is brought into contact with the ground electrode 5.
  • FIG. 3A is a perspective view showing a configuration of a third embodiment of an ultrasonic probe according to the present invention, with a part thereof broken
  • FIG. 3B is an ultrasonic probe shown in FIG. 3A.
  • Figures 3C and 3D are diagrams.
  • FIG. 4 is a perspective view showing a specific configuration example of elements constituting the ultrasonic probe shown in FIGS. 3A and 3B.
  • the ultrasonic probe 10C shown in FIGS. 3A and 3B includes a plurality of piezoelectric elements 1 arranged in the X direction among X, Y, and ⁇ shown in FIG. 3A, and each piezoelectric element 1
  • an acoustic lens 4 provided in common on a plurality of acoustic matching layers 2 (2a, 2b), and a plurality of signal electrical terminals 7 sandwiched between the piezoelectric element 1 and the back load material 3
  • a grounding electrical terminal 9 is provided between the first acoustic matching layer 2a and the second acoustic matching layer 2b.
  • the functions of these components are the same as the functions of the components that make up a conventional ultrasound probe.
  • piezoelectric ceramics such as PZT, piezoelectric single crystals such as PZN-PT and PMN-PT, or composite piezoelectric materials combining these materials with polymer materials, or
  • a plate material having a predetermined thickness that is, a piezoelectric plate material is prepared, which is composed of a polymer piezoelectric material represented by PVDF.
  • a ground electrode 5 is formed on one main surface of the piezoelectric plate material, that is, a front surface in the Z direction, and a signal electrode 6 is formed on the rear surface thereof by vapor deposition of gold or silver, sputtering, or silver baking.
  • a plate-shaped back surface load material having a predetermined thickness (an alternative member for an ultrasonic probe that does not include a back surface load material) 3, a conductive member, an insulating member, or a semiconductive member
  • a conductive film 7b made of copper, etc. is displayed on one main surface of an insulating film 7a made of a polymer material such as polyimide, and a plurality of signal electrical devices formed in the shape of a ribbon.
  • Insulating film 9a made of polymer material such as terminal 7 and polyimide, etc.Conductive film such as copper on one main surface (thickness is preferably 5 micrometers or less so as not to affect the acoustic characteristics) 9b Prepare a grounding electrical terminal 9 on which is displayed.
  • the polymer material such as epoxy resin and polyimide used for forming the second acoustic matching layer 2b may be a force that is an insulating member, or a conductive member instead.
  • the conductive films 7b and 9b are not limited to metals as long as they are electrically conductive materials.
  • each of the plurality of signal electrical terminals 7 mounted between the back load material 3 and the piezoelectric plate material has the conductive film 7b shown on the main surface of the insulating film 7a as the piezoelectric plate material.
  • One main surface of the insulating film 7a is directed to the piezoelectric plate material side (upper side of the drawing) so that the formed signal electrode 6 contacts the insulating film 7a and the back load material 3.
  • the grounding electrical terminal 9 attached between the plate material for forming the first acoustic matching layer 2a and the plate material for forming the second acoustic matching layer 2b is provided on the insulating film 9a.
  • One main surface of the insulating film 9a is directed toward the first acoustic matching layer 2a so that the conductive film 9b formed on one main surface is in contact with the first acoustic matching layer 2a.
  • the back load material 3, the plurality of signal electrical terminals 7, the piezoelectric plate material for forming the piezoelectric element 1, the plate material for forming the first acoustic matching layer 2a, and grounding After the plate material for forming the electrical terminal 9 and the second acoustic matching layer 2b is integrally fixed, a load is applied from the front surface of the second acoustic matching layer 2b to the rear surface by a slicing machine.
  • Dividing grooves into a plurality of piezoelectric element units are formed with the unit as one unit.
  • a dividing groove is formed in an intermediate portion of the signal electrical terminal 7 arranged at a predetermined interval in the X direction.
  • a piezoelectric element array in which the piezoelectric element units are arranged in parallel is formed.
  • a material such as silicone rubber or urethane rubber (not shown) having a small acoustic coupling is filled in each dividing groove, and if necessary, silicone rubber is applied to the upper surface of the second acoustic matching layer 2b.
  • silicone rubber is applied to the upper surface of the second acoustic matching layer 2b.
  • a grounding electrical terminal 9 in which a conductive film 9b is mounted on an insulating film 9a is attached between the first acoustic matching layer 2a and the second acoustic matching layer 2b. Then, by bringing the conductive film 9b of the grounding electrical terminal 9 into contact with the conductive member of the first acoustic matching layer 2a, the grounding electrical terminal 9 and the ground electrode 5 formed on the piezoelectric element 1 In addition to this, a conductive member was used as the second acoustic matching layer 2b, and a conductive film 9b was mounted on the front surface of the second acoustic matching layer 2b.
  • the grounding electrical terminal 9 is attached, and the grounding electrical terminal 9 and the ground electrode 5 formed on the piezoelectric element 1 are electrically connected via the first acoustic matching layer 2a and the second acoustic matching layer 2b. Even if it does, it can be made to perform the same operation.
  • the signal electrode 6 formed on the back surface of the piezoelectric element 1 is connected to the signal electrical terminal 7, and the ground electrode 5 formed on the front surface of the piezoelectric element 1 is a composite material of the first acoustic matching layer 2a.
  • Each of these cables is electrically connected to one end of a cable (not shown) via the conductive member 9 and the grounding electrical terminal 9, and the other end of each of these cables is the main body of the ultrasonic diagnostic apparatus (not shown). Connected to.
  • an ultrasonic pulse is generated by applying a regular pulse voltage generated in the main body of the ultrasonic diagnostic apparatus to the piezoelectric element 1, and an ultrasonic diagnosis is performed by converting an echo of the received ultrasonic wave into an electrical signal. Sent to the main body of the device.
  • the conductive member of the first acoustic matching layer 2a which will be described in detail later, is a piezoelectric element.
  • the shape is not limited to a specific shape as long as the shape is such that the ground electrode 5 formed in 1 and the conductive film 9b of the grounding electrical terminal 9 are electrically connected.
  • the conductive member of the first acoustic matching layer 2a has two or more conductive members for one piezoelectric element 1, and the ground electrode 5 of the piezoelectric element 1 and the conductive film 9b of the grounding electrical terminal 9 are connected. A structure that is electrically connected is desired.
  • the primary purpose of the insulating member or semiconductive member of the first acoustic matching layer 2a is to select the acoustic impedance. For this reason, when two acoustic matching layers are provided as in the third embodiment, the acoustic impedance of the first acoustic matching layer 2a is the same as that of the piezoelectric element 1 and the second acoustic matching layer 2b. For example, a value in the range of 5 megarails to 15 megarails is selected.
  • a material capable of obtaining acoustic impedance in such a range may be a material in which a conductive member and an insulating member or a semiconductive member are combined.
  • each connection between the conductive member and the insulating member or semiconductive member material in the first acoustic matching layer 2a composed of the composite material of the conductive member and the insulating member or semiconductive member An example of the structure is shown in Figures 3C and 3D.
  • the Z direction which is the thickness direction, indicates the direction on the subject side
  • the X direction indicates the arrangement direction of the piezoelectric elements 1
  • the Y direction indicates the X direction and the direction orthogonal to the Z direction.
  • the plurality of conductive members 20 constituting the first acoustic matching layer 2a-4 are formed in a cylindrical shape, and their axial centers are aligned in the Z direction. There is a connection in only one direction, and the insulating member or semiconductive member 21 becomes a structure that is connected in the three directions X, Y, and ⁇ !
  • This connection structure of the composite material of the conductive member 20 and the insulating member or the semiconductive member 21 is called a 13-type connection structure.
  • the piezoelectric element unit that is, one conductive matching member 20 of the first acoustic matching layer 2a-4 corresponding to one piezoelectric element 1 has a total of 66 in 3 rows and 22 columns.
  • the force S increases as the number of locations where the piezoelectric element 1 is connected to the ground electrode 5 increases, and the number of the conductive members 20 is two or more. If so, it is not limited to 66 pieces.
  • the conductive member 20 and the first acoustic matching layer 2a In other words, it is necessary that the composite material of the conductive member 20 and the insulating member or the semiconductive member 21 acoustically function as one acoustic matching layer. Note that the first acoustic matching layer 2a-4 shown in FIG.
  • 3C shows a state in which the first acoustic matching layer 2a-4 is already divided corresponding to the piezoelectric element 1, and the state before the force division is all as described above.
  • the body is a single plate.
  • the piezoelectric element 1 when the conductive member 20 does not need to have an acoustic matching function, that is, when the conductive member 20 has a remarkably small volume ratio with respect to the insulating member or the semiconductive member 21, the piezoelectric element 1 The same effect can be obtained by providing only the function of connecting the ground electrode 5 to the other.
  • the plurality of conductive members 20 are in contact with the ground electrode 5 of the piezoelectric element 1 and the metal film 9b of the grounding electrical terminal 9, respectively, and these are in the Z direction, which is the thickness direction thereof. It has a function of electrical connection.
  • the force that the connection in one direction in the Z direction is the conductive member 20, and the connection in the three directions X, Y, and ⁇ is the insulation member or the semiconductive member 21.
  • the insulating member or semiconductive member side is connected in one direction of the ⁇ direction, and the conductive member side is a connected structure with a force S in the three directions of X, ⁇ , and ⁇ ⁇ ⁇ ⁇ , that is, A similar result can be obtained even with a 3-1 type connecting structure (not shown).
  • the acoustic matching layers 2a-5 shown in FIG. 3D are alternately arranged with the conductive member 20 and the insulating member or the semiconductive member 21, and the conductive member 20 is composed of the piezoelectric element 1.
  • the conductive member 20 is composed of the piezoelectric element 1.
  • the insulating member or semiconductive member 21 is also in the X direction in the arrangement direction of the piezoelectric element 1 and the Z direction.
  • the connection structure of these composite materials is called a 2-2 type connection structure. Therefore, the plurality of conductive members 20 can be electrically connected to the ground electrode 5 of the piezoelectric element 1 and the conductive members of the grounding electrical terminal 9 in the Z direction, which is the thickness direction.
  • the conductive member 20 of one first acoustic matching layer 2a-5 corresponding to one piezoelectric element 1 is alternated with an insulating member or semiconductive member 21 in the Y direction. 11 are arranged in each.
  • the conductive member 20 has a large number of connection points to the ground electrode 5 of the piezoelectric element 1, and the reliability increases as the number of the conductive members 20 increases. If it is above.
  • the conductive member 20 functions as the first acoustic matching layer 2a. In other words, it is necessary that the composite material of the conductive member 20 and the insulating member or the semiconductive member 21 functions as one acoustic matching layer.
  • the first acoustic matching layer 2a-5 shown in FIG. 3D shows the state of the structure already divided corresponding to the piezoelectric element 1, and the state before the force division is as described above.
  • the whole is in the form of a single plate, and the conductive member 20 and the insulating member or semiconductive member 21 are connected in the X direction, which is the arrangement direction of the piezoelectric elements 1.
  • the conductive member 20 does not need to have an acoustic matching function, that is, when the conductive member 20 has a remarkably small volume ratio with respect to the insulating member or the semiconductive member 21, the piezoelectric element 1
  • the piezoelectric element 1 The same effect can be obtained by providing only the function of connecting the ground electrode 5 to the other.
  • the conductive member 20 and the insulating member or semiconductive member 21 of the first acoustic matching layer 2a-5 are configured substantially in parallel with the arrangement direction of the piezoelectric elements 1.
  • the same effect can be obtained by using a two-two type connection structure arranged in a direction orthogonal to the arrangement direction of the piezoelectric elements 1 or in other directions.
  • the first acoustic matching layers 2a-4 and 2a-5 having a coupling structure as shown in FIG. 3C or 3D have an acoustic impedance equal to that of the piezoelectric element 1 and the second acoustic matching layer.
  • the piezoelectric element 1 has an acoustic impedance of about 30
  • a piezoelectric ceramic of PZT-5H having a value of megarails is used and an object such as a living body having an acoustic impedance value of about 1.6 megarails is targeted
  • the acoustic impedance of the second acoustic matching layer 2b A material with a value of about 3 megarails will be used.
  • a material having an acoustic impedance of the first acoustic matching layer 2a of at least 3 to 30 megarails is required.
  • the acoustic impedance of the first acoustic matching layer 2a is preferably set to a value between 5 and 20 megarails, and the higher the value, the wider the frequency characteristic band tends to be.
  • the acoustic impedance value of the first acoustic matching layer 2a needs to be increased, and a material in the range of 10 to 20 megarails is used.
  • materials having values in this range include, for example, glass, crystallized glass, and metal tanda.
  • all of these materials are electrically insulating or semiconductive members.
  • the ultrasonic probe 10C shown in FIG. 3B will be described.
  • a portion corresponding to the end portion of the ground electrode 5 of the piezoelectric element 1 is cut away and a portion without an acoustic matching layer (not shown) ), And an electrical terminal (not shown) can be taken out from that portion.
  • the piezoelectric element 1 vibrates and generates ultrasonic waves even in a portion without the acoustic matching layer. The ultrasonic wave transmitted to is disturbed and the ultrasonic image is deteriorated.
  • ground electrode 5 since there is only one electrical terminal to be taken out from the ground electrode 5, it is possible to drop the ultrasonic probe during diagnostic operation or to apply mechanical impact such as striking the ultrasonic probe. When the piezoelectric element 1 is cracked, the ground electrode 5 may be cracked in the same way, causing a failure due to electrical disconnection.
  • the third embodiment solves these problems and realizes a configuration capable of widening the power and frequency. That is, the ground electrode 5 of the piezoelectric element 1 is electrically connected to the metal film 9b of the grounding electrical terminal 9 via the plurality of conductive members 20 of the first acoustic matching layer 2a. Therefore, since the acoustic matching layer is provided on the entire surface of the piezoelectric element 1, it is possible to transmit and receive desired ultrasonic waves uniformly on the entire surface of the piezoelectric element 1, as well as mechanical shock, etc. Even if the piezoelectric element 1 and the ground electrode 5 are cracked by the above, since they are connected by a plurality of conductive members of the first acoustic matching layer 2a, the occurrence of breakage due to disconnection is extremely reduced.
  • the insulating member or semiconductive member 21 of the first acoustic matching layer 2a-3, 2a-4 glass, crystallized glass, tungsten, which is the material used in the second embodiment, is used.
  • Epoxy resin mixed with high concentration of powder, lead niobate ceramics, workable ceramics (free-cutting ceramics), ceramics such as single crystal or polycrystalline silicon, quartz crystal, and barium titanate are used.
  • the conductive members 20 of the first acoustic matching layers 2a-3 and 2a-4 include metals such as copper, aluminum, silver, gold, and nickel, and gold, silver, copper, and aluminum.
  • the acoustic impedance of the composite material of 13-type, 2-2-type, 3-1-type connection structure using such conductive member 20, insulating member or semi-conductive member 21 is insulative with conductive member 20. It depends on the volume ratio of each member or semiconductive member 21. For example, when silver is used as the conductive member 20 and X-cut quartz is used as the insulating member, the acoustic impedance of the material alone is 38 and 15.3 megarails, respectively.
  • the acoustic impedance of X-cut quartz crystal 38 megarails and silver acoustic impedance 15.3 megarails similar to the diagram of Fig. 2C described in the second embodiment. Between the desired values.
  • the conductive member 20, the insulating member, or the semiconductive member 21 is not limited to the above-described materials as long as the object of the present invention can be achieved even if it is a material other than those described above. is not.
  • the first acoustic matching layer 2a having a connection structure of one type of conductor 20 and one type of insulating member or semiconductive member 21 has been described.
  • the same effect can be obtained by using two or more types of materials, such as two types of conductive members and one to three types of insulating members. It is not limited to the connection structure.
  • a composite material of the conductive member 20 having the connection structure of type 1, type 2, type 2-2, type 3-1 and the insulating member or semiconductive member 21 is used as the first acoustic matching layer 2a.
  • the width and the arrangement interval of the conductive members 20 are set so that the ultrasonic wave propagates as one body of the composite material.
  • the material may be selected mainly by the electrical connection function without considering the width and arrangement interval of the conductive member 20.
  • the first acoustic matching layer 2a shown in Fig. 2D as the second embodiment is used.
  • Fig. 3D shows the manufacturing method of the first acoustic matching layer 2a-4 with the 2-2 type connection structure shown in Fig. 3D as the second embodiment. What is necessary is just to manufacture by the method similar to 1st acoustic matching layer 2a-1 shown to 2B.
  • the acoustic impedance is desired. Since the frequency can be widened, a high-resolution diagnostic image can be obtained, and the electrical terminal can be taken out from the conductive member constituting the composite material. In addition, an ultrasonic probe with high reliability and good operability can be obtained.
  • the force using a cylindrical shape as the conductive member 20 of the 1-3 type connecting structure is also used. Even if used, the same effect can be obtained.
  • the conductive member 20 having a 1-3 type connection structure is formed in a conical shape like a cone in the Z direction so that the acoustic impedance continuously changes with respect to the thickness in the Z direction. Even in the case of the configuration, the same effect can be obtained.
  • the conductive member 20 and the insulating member or semiconductive member 21 of the 13-type, 2-2-type, and 3-1-type connecting structures are substantially equidistant from each other.
  • the force described in the case where these are alternately arranged IJ in addition, the same effect can be obtained even when they are arranged at random intervals or randomly.
  • an electrical grounding electrode is connected to the front surface of the first acoustic matching layer 2a via a conductive member.
  • a conductive member is formed on both sides or one side in the Z direction of the first acoustic matching layer 2a by sputtering, plating, printing, etc. The same effect can be obtained even when the electrical terminals are connected.
  • the configuration in which a plurality of piezoelectric elements 1 are arranged one-dimensionally has been described.
  • a so-called two-dimensional array in which a plurality of piezoelectric elements 1 are arranged two-dimensionally has been described.
  • the electrode on the front surface of the piezoelectric element 1 is used as the ground electrode 5 and the grounding electrical terminal 9 is disposed on the subject side, and the electrode on the back surface of the piezoelectric element 1 is used as a signal.
  • the signal electrical terminal 7 is brought into contact with the signal electrode 6 as the signal electrode 6, but instead, the signal electrode 6 on the front side of the piezoelectric element 1 is used as the signal electrode 6 on the subject side.
  • the signal electrode 6 on the front side of the piezoelectric element 1 is used as the signal electrode 6 on the subject side.
  • FIG. 4A is a perspective view showing a configuration of the ultrasonic probe according to the fourth embodiment, with a part thereof broken
  • FIG. 4B shows the ultrasonic probe shown in FIG.
  • X, ⁇ , and ⁇ shown in the figure, a cross-sectional view taken along the ⁇ - ⁇ plane is viewed from the X direction.
  • the ultrasonic probe 10D shown in Figs. 4 and 4 includes a plurality of piezoelectric elements 1 arranged in the X direction among the three directions X, ⁇ and ⁇ shown in Fig. 4 and each Common to multiple first acoustic matching layers 2a, multiple second acoustic matching layers 2b, and second acoustic matching layers 2b stacked in front of the heel direction on the subject side corresponding to the piezoelectric element 1
  • the acoustic matching layer 2 including the third acoustic matching layer 2c, the back load material 3 provided on the back surface of the piezoelectric element 1 if necessary, and the acoustic matching layer 2 if necessary.
  • first acoustic matching layer 2a and the second acoustic matching layer 2b Between the first acoustic matching layer 2a and the second acoustic matching layer 2b, and the plurality of signal electrical terminals 7 attached between the piezoelectric element 1 and the back load material 3. And an electrical terminal for grounding 9 attached to.
  • the functions of these constituent elements are the same as the functions of the elements constituting the conventional ultrasonic probe.
  • piezoelectric ceramics such as PZT, piezoelectric single crystals such as PZN-PT and PMN-PT, or composite piezoelectric materials combining these materials with polymer materials, or
  • a plate material having a predetermined thickness that is, a piezoelectric plate material, which is composed of a piezoelectric material of a polymer material typified by PVDF or the like, is prepared.
  • the ground electrode 5 is formed on the front surface in the Z direction
  • the signal electrode 6 is formed on the back surface thereof by vapor deposition of gold or silver, sputtering, or baking of silver, respectively.
  • a plate-shaped back surface load material having a predetermined thickness (an alternative member for an ultrasonic probe that does not include a back surface load material) 3, a conductive member, an insulating member, or a semiconductive member
  • a plate material for forming a plurality of first acoustic matching layers 2a and a plurality of second acoustic matching layers 2b made of a polymer material such as epoxy resin or polyimide.
  • a conductive film 7b such as copper is displayed on one main surface of an insulating film 7a composed of a plate material for forming and a polymer material such as polyimide.
  • a signal electrical terminal 7 and an insulating film 9a made of a polymer material such as polyimide are formed on one main surface of a conductive film such as copper (thickness should be 5 micrometers or less so that there is little effect on acoustic characteristics).
  • a force conductive member which is an insulating member may be used as a polymer material such as an epoxy resin or polyimide used for forming the second acoustic matching layer 2b.
  • the conductive films 7b and 9b are not limited to metals as long as they are electrically conductive materials.
  • a plurality of signal electrical terminals 7 are arranged at predetermined intervals in the X direction on the front surface of the back load material 3, and the piezoelectric element 1 is formed thereon Piezoelectric plate materials are stacked, and further, a plate material for forming the first acoustic matching layer 2a on the front surface of the piezoelectric plate material, an electrical terminal for grounding 9, and a plate material for forming the second acoustic matching layer 2b Are stacked one on top of the other and fixed together.
  • each of the plurality of signal electrical terminals 7 mounted between the back load material 3 and the piezoelectric plate material has the conductive film 7b shown on the main surface of the insulating film 7a as the piezoelectric plate material.
  • One main surface of the insulating film 7a is directed to the piezoelectric plate material side (upper side of the drawing) so that the formed signal electrode 6 contacts the insulating film 7a and the back load material 3.
  • the grounding electrical terminal 9 attached between the plate material for forming the first acoustic matching layer 2a and the plate material for forming the second acoustic matching layer 2b is provided on the insulating film 9a.
  • the one principal surface is directed toward the first acoustic matching layer 2a so that the conductive film 9b formed on the one principal surface is in contact with the first acoustic matching layer 2a.
  • the back load material 3, the plurality of signal electrical terminals 7, the piezoelectric plate material for forming the piezoelectric element 1, the plate material for forming the first acoustic matching layer 2a, and grounding After the plate material for forming the electrical terminal 9 and the second acoustic matching layer 2b was fixed integrally, it was dug down from the front surface of the second acoustic matching layer 2b to the front surface portion of the back load material 3 by a slicing machine.
  • a plurality of grooves i.e., the second acoustic matching layer 2b, the grounding electrical terminal 9, the first acoustic matching layer 2a, the piezoelectric plate material, the signal electrical terminal 7 and a part of the back load material 3 as one unit,
  • a dividing groove is formed to divide the piezoelectric element unit.
  • a dividing groove is formed in an intermediate portion of the signal electrical terminal 7 arranged at a predetermined interval in the X direction. Thereby, a piezoelectric element array in which the piezoelectric element units are arranged in parallel is formed.
  • a material such as silicone rubber or urethane rubber (not shown) having a small acoustic coupling is filled in each divided groove, and further, the second acoustic matching layer 2b and the portion filled in the divided groove are filled.
  • a third acoustic matching layer 2c is attached to the upper surface.
  • the third acoustic matching layer 2c is attached in a connected state without being divided as shown.
  • a material mainly composed of a rubber elastic body such as silicone rubber, chloroprene rubber, ethylene propylene copolymer rubber, acrylonitrile butadiene copolymer rubber, and urethane rubber is used.
  • an acoustic lens 4 using a material such as silicone rubber is attached to the upper surface of the third acoustic matching layer 2c.
  • a member that replaces the back load material 3 is removed at this stage.
  • the third acoustic matching layer 2c may be divided together with the piezoelectric element 1 in the same manner as the first acoustic matching layer 2a and the second acoustic matching layer 2b. Further, the second acoustic matching layer 2b and the third acoustic matching layer 2c may be either an insulating member or a conductive member.
  • a grounding electrical terminal 9 in which a conductive film 9b is mounted on an insulating film 9a is attached between the first acoustic matching layer 2a and the second acoustic matching layer 2b. Then, by bringing the conductive film 9b of the grounding electrical terminal 9 into contact with the conductive member of the first acoustic matching layer 2a, the grounding electrical terminal 9 and the ground electrode 5 formed on the piezoelectric element 1 In addition to this, a conductive member was used as the second acoustic matching layer 2b, and a conductive film 9b was mounted on the front surface of the second acoustic matching layer 2b.
  • the electrical terminal 9 is attached, and the ground electrical terminal 9 and the ground electrode 5 formed on the piezoelectric element 1 are electrically connected via the first acoustic matching layer 2a and the second acoustic matching layer 2b. In this way, the same operation can be performed.
  • the signal electrode 6 formed on the back surface of the piezoelectric element 1 is connected to the signal electrical terminal 7, and the ground electrode 5 formed on the front surface of the piezoelectric element 1 is a composite material of the first acoustic matching layer 2a.
  • Each of these cables is electrically connected to one end of a cable (not shown) via the conductive member 9 and the grounding electrical terminal 9, and the other end of each of these cables is the main body of the ultrasonic diagnostic apparatus (not shown). Connected to.
  • an ultrasonic pulse is generated by applying a regular pulse voltage generated in the main body of the ultrasonic diagnostic apparatus to the piezoelectric element 1, and an ultrasonic diagnosis is performed by converting an echo of the received ultrasonic wave into an electrical signal. Sent to the main body of the device.
  • the conductive member of the first acoustic matching layer 2a which will be described in detail later, electrically connects the ground electrode 5 formed on the piezoelectric element 1 and the conductive film 9b of the grounding electrical terminal 9 If it is a shape, it is not limited to a specific shape.
  • the conductive member of the first acoustic matching layer 2a has two or more conductive members for one piezoelectric element 1, and the ground electrode 5 of the piezoelectric element 1 and the conductive film 9b of the grounding electrical terminal 9 are connected. A structure that is electrically connected is desired. The greater the number of conductive members 20, the lower the frequency of signal transmission path disconnection and failure, even if the ground electrode 5 is cracked together with the piezoelectric element 1. The high level of stuff.
  • the main purpose of the insulating member or the semiconductive member 21 of the first acoustic matching layer 2a is to bring the acoustic impedance close to the matching state. Therefore, when three acoustic matching layers are provided as in this embodiment, the acoustic impedances of the first, second, and third acoustic matching layers 2a, 2b, and 2c are the respective target frequencies.
  • the range of values to be used is selected according to the characteristics. For example, in JP-A-60-53399, the acoustic impedances of the first, second, and third acoustic matching layers are 12.6 to 18.1, 3.8 forces, 6.0, and 1 respectively. 7 force, et al. 2.
  • Connection structure of conductive member 20 and insulating member or semiconductive member 21 of first acoustic matching layer 2a composed of a composite material of a conductive member and an insulating member or semiconductive member
  • connection structure of conductive member 20 and insulating member or semiconductive member 21 of first acoustic matching layer 2a composed of a composite material of a conductive member and an insulating member or semiconductive member
  • a metal such as copper, aluminum, silver, gold, nickel, or a metal such as gold, silver, copper, aluminum, or carbon powder is used as an epoxy.
  • the insulating member or semiconductive member 21 of the first acoustic matching layer 2a includes glass, crystallized glass, epoxy resin mixed with tungsten powder at a high concentration, lead niobate ceramics, and workability. Ceramics (free-cutting ceramics), single crystal or polycrystalline silicon, quartz, barium titanate, and other ceramics are used.
  • the conductive member 20 the insulating member, or the semiconductive member 21
  • any material that can achieve the object of the present invention may be used.
  • the acoustic impedance as a composite material of the conductive member 20 and the insulating member or the semiconductive member 21 is 13 type, 2-2 type, and 3-1 type connected structure. The fact that it is determined by the respective volume ratios of 20 and the insulating member or semiconductive member 21 is as described in the second embodiment.
  • the conductive member 20 silver having an acoustic impedance of 38 megarails is used as the conductive member 20, and a crystal X-cut plate having an acoustic impedance of 15.3 megarails is used as the insulating member 21, and the volume ratio is arbitrarily selected.
  • the acoustic impedance of the composite material can be arbitrarily obtained in the range of 15.3 to 38 megarails.
  • the acoustic impedance in this range has a volume ratio having a range corresponding to 5 to 20 megarails, which is a range of values required for the first acoustic matching layer 2a of the three-layer acoustic matching layer.
  • the material that exists and is created in this range has a function as the first acoustic matching layer 2a.
  • the conductive member 20 of the first acoustic matching layer 2a is connected to the ground electrode 5 of the piezoelectric element 1 and the grounding electrical terminal 9 Since it is configured to be electrically connected to the conductive member, the electrical terminal can be taken out.
  • connection structure is 1 3 type, 2-2 type, 3-1 type structure
  • the value is within the range of acoustic impedance of each of the two types of materials, and the volume ratio of each material is changed
  • a material having a desired acoustic impedance can be obtained.
  • the force described for the first acoustic matching layer 2a having the connection structure of the conductive member 20 and the insulating member or the semiconductive member 21 is used. It is clear that the same effect can be obtained even if the material 20 and the insulating material or semiconductive material 21 are used, and it is not limited to the connection structure of two types of materials, one type each. .
  • a composite material of the conductive member 20 having the connection structure of type 1, type 2-2, type 3-1 and the insulating member or semiconductive member 21 is used as the first acoustic matching layer 2a.
  • the width and the arrangement interval of the conductive members 20 are set so that the ultrasonic wave propagates as one body of the composite material.
  • the material may be selected mainly by the electrical connection function without considering the width and arrangement interval of the conductive member 20.
  • the third acoustic matching layer 2c is structured not to be divided corresponding to the piezoelectric element 1, but naturally, the same effect can be obtained even if divided. Therefore, the present invention is not limited to the configuration shown in FIG. 4A.
  • the acoustic impedance is desired. Since the frequency can be widened, a high-resolution diagnostic image can be obtained, and the electrical terminal can be taken out from the conductive member constituting the composite material. In addition, an ultrasonic probe with high reliability and good operability can be obtained.
  • a force using a cylindrical shape as the conductive member 20 of the 1-3 type connecting structure in addition to those having other shapes such as a prism or a sphere. Even if used, the same effect can be obtained.
  • the conductive member 20 having a 1-3 type connection structure is formed in a conical shape like a cone in the Z direction so that the acoustic impedance continuously changes with respect to the thickness in the Z direction. Even in the case of the configuration, the same effect can be obtained.
  • the conductive member 20 and the insulating member or semiconductive member 21 having a 2-2 type connecting structure are arranged with a uniform width in the Z direction.
  • the force explained in the above section is a wedge-like shape whose width changes continuously in the Z direction, and the acoustic impedance changes continuously with respect to the thickness in the Z direction. Even in the case, the same effect can be obtained.
  • the conductive member 20 and the insulating member or semiconductive member 21 of each of the 13-type, 2-2-type, and 3-1-type connecting structures are substantially equidistant from each other.
  • the force described in the case where these are alternately arranged IJ in addition, the same effect can be obtained even when they are arranged at random intervals or randomly.
  • a grounding electrical terminal 9 is provided on the front surface of the first acoustic matching layer 2a via a conductive member.
  • a conductive member is formed on both sides or one side of the first acoustic matching layer 2a in the Z direction by sputtering, plating or printing, and an electrical terminal is connected to that portion. Even with this configuration, the same effect can be obtained.
  • the electrode on the front surface of the piezoelectric element 1 is used as the ground electrode 5 and the grounding electrical terminal 9 is disposed on the subject side, and the electrode on the back surface of the piezoelectric element 1 is used as the signal.
  • a signal electrical terminal 7 is further in contact with the signal electrode 6.
  • the electrode on the front surface of the piezoelectric element 1 is used as the signal electrode 6 and the signal electrical terminal 7 is arranged on the subject side, and the electrode on the back surface of the piezoelectric element 1 is used as the ground electrode 5 and further connected to the ground electrode 5.
  • ultrasonic waves can be transmitted and received even when the grounding electrical terminal 9 is brought into contact.
  • FIG. 5A is a perspective view showing a configuration of a fifth embodiment of the ultrasonic probe according to the present invention, with a part thereof broken
  • FIG. 5B is a diagram showing the ultrasonic probe shown in FIG. 5A
  • FIG. 4 is a cross-sectional view of the cross section of the tentacles cut along the ⁇ - ⁇ plane of the three directions X, Y, and ⁇ ⁇ shown in the figure, as viewed from the X direction.
  • the ultrasonic probe 10E shown in Figs. 5 and 5B includes a plurality of piezoelectric elements 1 arranged in the X direction among the three directions X, ⁇ , and ⁇ ⁇ shown in Fig. 5 ⁇ , and On the plurality of first acoustic matching layers 2a, the plurality of second acoustic matching layers 2b, and the second acoustic matching layers 2b stacked on the front surface in the heel direction on the subject side corresponding to the piezoelectric element 1
  • the stacked structure of the piezoelectric element 1, the first acoustic matching layer 2a, and the third acoustic matching layer 2c is the same as that in the fourth embodiment.
  • the second acoustic matching layer 2b is made of a conductive member or a composite material of a conductive member and an insulating member or a semiconductive member, like the first acoustic matching layer 2a.
  • the grounding electrical terminal 9 on which the metal film 9b such as copper is mounted on the main surface of the insulating film 9a made of a polymer material such as polyimide is provided on the upper surface of the second acoustic matching layer 2b. It is in.
  • the grounding electrical terminal 9 and the grounding electrode 5 formed on the piezoelectric element 1 are electrically connected via the first acoustic matching layer 2a and the second acoustic matching layer 2b. Can be connected.
  • the conductive member portions of the acoustic matching layers 2a and 2b are at least electrically connected to each other. It is necessary to make the configuration as described.
  • the connection structure of the composite material of the first acoustic matching layer 2a and the second acoustic matching layer 2b is not necessarily the same structure.
  • connection structure of the first acoustic matching layer 2a is changed to a 1-3 type. Therefore, the connection structure of the second acoustic matching layer 2b may be 2-2 type, and the conductive member portions of both acoustic matching layers may be electrically connected, and the grounding electrical terminal 9 and the piezoelectric
  • the ground electrode 5 formed on the element 1 may be electrically connected and each may have a value of acoustic impedance as an acoustic matching layer! /.
  • a conductive material such as a graphite may be used, or a composite material of a conductive member and an insulating member or a semiconductive member may be used.
  • a composite material of a conductive member and an insulating member or a semiconductive member for example, silver having an acoustic impedance of 38 megarails is used as the conductive member 20, and an acoustic impedance of 3 megarails is used as the insulating member 21.
  • the acoustic impedance can be set arbitrarily by changing the volume ratio, for example, it can be set to a value around 6 megarails. This is possible for any composite material with any one of the 1-3 type, 2-2 type, and 3-1 type connected structures.
  • an acoustic impedance such as polyimide is used as an insulating film serving as a base material for the grounding electrical terminal 9 attached to the front surface of the second acoustic matching layer 2b.
  • the acoustic impedance of this material is the value between or close to the second acoustic matching layer 2b and the third acoustic matching layer 2c. Therefore, it is easy to obtain good frequency characteristics without any acoustic mismatch.
  • the first and second acoustic matching layers are each provided with a conductive member and an insulating member or semiconductive.
  • the acoustic impedance of both the first and second acoustic matching layers can be set to a desired value, and the frequency can be widened. Diagnostic images can be obtained, and the first and The grounding electrical terminal 9 can be electrically connected to the grounding electrode 5 through each conductive member of the second acoustic matching layer, so that the ultrasonic probe angle is highly reliable and has good operability. You can get insects.
  • the first and second acoustic matching layers 2a each having a connection structure of one kind of conductive member 20 and a material such as an insulating member or a semiconductive member 21,
  • the force described for 2b it is clear that the same effect can be obtained by using two or more kinds of conductive members 20 and insulating members or semiconductive members 21. It is not limited to the structure.
  • the conductive member of the 13-type connecting structure has been described as having a cylindrical shape V / !, but there are other prisms! / The same effect can be obtained with other shapes such as a sphere!
  • the force S using a cylindrical member as the conductive member of the 13-type connecting structure, and also a conical shape like a cone with respect to the Z direction The same effect can be obtained when the acoustic impedance is continuously changed with respect to the thickness in the Z direction.
  • the conductive member 20 and the insulating member or semiconductive member 21 of each of the 13-type, 2-2-type, and 3-1-type connecting structures are substantially equidistant from each other.
  • the force described in the case where these are alternately arranged IJ in addition, the same effect can be obtained even when they are arranged at random intervals or randomly.
  • the conductive members 20 of the first acoustic matching layer 2a and the second acoustic matching layer 2b are used to exchange electrical signals with the ground electrode 5 of the piezoelectric element 1.
  • the force described in the case of the configuration in which the electrical terminals are provided on the front surface of the conductive member is sputtered, plated or printed on both sides or one side of the second acoustic matching layer 2b in the Z direction instead.
  • the same effect can be obtained even if it is formed by, for example, and an electric terminal is connected to that portion.
  • the second acoustic matrix is formed on the front surface of the first acoustic matching layer 2a.
  • the acoustic matching layer 2 has the first to third forces S and n, which are described in the description of the laminated layer 2b and the third acoustic matching layer 2c, which are provided with a total of three acoustic matching layers 2.
  • An effect similar to that described above can be obtained by including an nth acoustic matching layer and mounting an electrical terminal between the second acoustic matching layer and the third acoustic matching.
  • the electrode on the front surface of the piezoelectric element 1 is used as the ground electrode 5, and the grounding electrical terminal 9 is disposed on the subject side, and the electrode on the back surface of the piezoelectric element 1 is used as the signal.
  • the signal electrical terminal 7 is brought into contact with the signal electrode 6 as the signal electrode 6, but instead, the signal electrode 6 on the front side of the piezoelectric element 1 is used as the signal electrode 6 on the subject side. In principle, it is possible to transmit and receive ultrasonic waves even if the electrode on the back surface of the piezoelectric element 1 is used as the ground electrode 5 and the grounding electrical terminal 9 is in contact with the ground electrode 5. .
  • FIG. 6A is a cross-sectional view showing a configuration of a sixth embodiment of the ultrasonic probe according to the present invention
  • FIG. 6B is a configuration example of an acoustic matching layer that forms the ultrasonic probe shown in FIG. 6A.
  • the ultrasonic probe 10F includes a plate-like piezoelectric element 1 and a front surface of the piezoelectric element 1.
  • Acoustic matching layer 2 stacked (above the drawing), back load material 3 attached to the back of piezoelectric element 1 (below the drawing) if necessary, and front of acoustic matching layer 2 if necessary And an acoustic lens 4 to be mounted on.
  • the functions of these constituent elements are the same as the functions of the elements constituting the conventional ultrasonic probe.
  • the piezoelectric element 1 is a piezoelectric ceramic such as PZT, a piezoelectric single crystal such as PZN-PT or PMN-PT, or a polymer of these materials and polymers. It is formed by a composite piezoelectric material that combines materials, or a piezoelectric material of a polymer material typified by PVDF.
  • a ground electrode 5 is formed on the front surface of the piezoelectric element 1, and a signal electrode 6 is formed on the back surface of the piezoelectric element 1.
  • the ground electrode 5 and the signal electrode 6 are formed by gold or silver deposition, sputtering, or silver baking, respectively.
  • polyimide A signal electrical terminal 7 on which a metal film 7b such as copper is exhibited is attached to one main surface of an insulating film 7a made of a polymer material such as.
  • the metal film 7b of the signal electrical terminal 7 is in contact with the signal electrode 6 formed on the piezoelectric element 1, and the insulating film 7a of the signal electrical terminal 7 is in contact with the back load material 3.
  • one main surface of the insulating film 7a is directed to the piezoelectric element 1 side.
  • an acoustic matching layer 2 composed of a composite material of a conductive member 20 and an insulating member or a semiconductive member 21, and polyimide, etc.
  • Insulating film 9a made of a polymer material
  • Conductive film such as copper on one main surface of 9a (thickness is preferably 5 micrometers or less so that the effect on properties is small) 9b 9 are stacked one after another.
  • one main surface of the insulating film 9a is directed to the acoustic matching layer 2 side so that the conductive film 9b of the grounding electrical terminal 9 is in contact with the conductive member 20 of the composite material of the acoustic matching layer 2.
  • an acoustic lens 4 using a material such as silicone rubber is attached to the front surface of the acoustic matching layer 2.
  • the signal electrode 6 formed on the piezoelectric element 1 is connected to the signal electrical terminal 7, and the ground electrode 5 of the piezoelectric element 1 is connected to the conductive member 20 of the composite material of the acoustic matching layer 2 and the grounding electric terminal. 9 are each electrically connected to one end of a cable (not shown), and the other end of each of these cables is connected to a main body of an ultrasonic diagnostic apparatus (not shown).
  • the regularity created in the main unit of the ultrasonic diagnostic device is applied! /
  • the pulse voltage is applied to the piezoelectric element 1 to transmit ultrasonic waves, and the received ultrasonic echoes are converted into electrical signals. To the main body of the ultrasonic diagnostic apparatus.
  • the acoustic impedance of the acoustic matching layer 2 made of a composite material of the conductive member 20 and the insulating member or the semiconductive member 21 is the piezoelectric element 1 and the subject (for example, a living body). Materials that are between are selected.
  • the shape or volume of the insulating member or semiconductive member 21 changes continuously in the thickness direction (vertical direction in the drawing), and in the drawing, the volume is large in the lower part and becomes smaller as it goes upward.
  • V is made into a shape (for example, a cone, a triangular pyramid, a quadrangular pyramid, etc.) and the gap is filled with the conductive member 20.
  • the insulating member or the semiconductive member 21 is an acoustic impedance of the conductive member 20.
  • the volume is large in the lower part, so that the volume of the conductive member 20 gradually increases as the acoustic impedance value increases to the largest value.
  • the acoustic impedance gradually decreases. That is, the acoustic matching layer 2 has a configuration in which the acoustic impedance continuously changes in the vertical direction. In the configuration as shown in FIG. 6A, the acoustic impedance is large in the lower part of the drawing and naturally decreases as it goes upward, so that the piezoelectric element 1 side is naturally downward and the object side is upward. .
  • the acoustic matching layer 2 is acoustically sensitive to the thickness direction (the direction from the piezoelectric element 1 to the subject).
  • the impedance of the acoustic matching layer 2 located on the ground electrode 2 side of the piezoelectric element 1 has a characteristic in which the impedance changes continuously.
  • the acoustic impedance is large at a value close to that of the piezoelectric element 1 and the object side (drawing
  • the acoustic impedance of the acoustic matching layer 2 in the upper part is close to the value of the subject.
  • the acoustic matching layer 2 that continuously inclines the acoustic impedance in this way, it is possible to widen the frequency band.
  • the thickness of the acoustic matching layer 2 does not depend on the frequency, an effect as an acoustic matching layer can be achieved if the thickness is about one-half wavelength or more of the center frequency, and the frequency characteristics are not much related to the thickness. do not do.
  • the conductive member 20 of the acoustic matching layer 2 is electrically connected to one electrode of the piezoelectric element 1, and the conductive film 9b of the electrical terminal 9 for grounding is provided on the surface of the other conductive member 20. Are connected and electrically connected, and signals are taken in and taken out from the grounding electrical terminal 9.
  • the connection structure of the insulating member or semiconductive member 21 of the acoustic matching layer 2 and the conductive member 20 is the 2-2 type, 13 type, or 3-1 type connection described in the second embodiment. A structure is desirable.
  • a silicon single crystal having an acoustic impedance of about 19.7 megarails which is used for semiconductors as an insulating member or a semiconductive member 21, and a conductive material having an acoustic impedance of about 6.5 megarails as a conductive member 20
  • Echobond 56C Emerson & Cumming
  • the acoustic impedance is 19.7 megarails of acoustic impedance where the volume ratio of silicon single crystal is almost 100%.
  • the volume ratio of conductive adhesive By gradually increasing the acoustic impedance, it is possible to obtain an extraordinary life in which the acoustic impedance approaches 6.5 megarails.
  • the insulating member or semiconductive member 21 of the acoustic matching layer 2 includes glass, crystallized glass, epoxy resin mixed with tungsten powder at a high concentration, lead niobate ceramic, and workability. Ceramics (free-cutting ceramics), single crystal or polycrystalline silicon, quartz, barium titanate and other ceramics are used.
  • a metal material such as copper, aluminum, silver, gold, or nickel, or a metal or carbon powder such as gold, silver, copper, or aluminum is used as an epoxy resin.
  • the conductive member 20, the insulating member, or the semiconductive member 21 is not limited to the above-described material, but may be another material as long as it has the same acoustic impedance as the above-described material.
  • the acoustic matching layer can be formed in a desired manner. Since the acoustic impedance can be continuously tilted, and the frequency band can be widened, a high-resolution diagnostic image can be obtained. In addition, since electrical terminals can be connected to a plurality of locations of the piezoelectric element via the conductive member of the acoustic matching layer of the composite material, an ultrasonic probe with high reliability and good operability is obtained. That's the power S.
  • a grounding electrical terminal 9 is provided on the front surface of the piezoelectric element 1 via the acoustic matching layer 2 in order to exchange electrical signals with the grounding electrode 5 of the piezoelectric element 1.
  • a conductive member is formed on both or one side of the acoustic matching layer 2 in the vertical direction by sputtering, plating or printing, and the grounding electrical terminal 9 is connected to that part. The effect is obtained.
  • the acoustic matching layer 2 has a structure in which the conductive member 20 and the insulating member or the semiconductive member 21 each formed of one material are connected. However, it is clear that the same effect can be obtained even if at least one of the conductive member 20 and the insulating member or the semiconductive member 21 is formed of two or more materials. It is not limited to the connection structure of the grades.
  • the electrode on the front surface of the piezoelectric element 1 is used as the ground electrode 5, and the grounding electrical terminal 9 is arranged on the subject side, and the electrode on the back surface of the piezoelectric element 1 is used as a signal.
  • the signal electrical terminal 7 is brought into contact with the signal electrode 6 as the signal electrode 6, but instead, the signal electrode 6 on the front side of the piezoelectric element 1 is used as the signal electrode 6 on the subject side. In principle, it is possible to transmit and receive ultrasonic waves even if the electrode on the back surface of the piezoelectric element 1 is used as the ground electrode 5 and the grounding electrical terminal 9 is in contact with the ground electrode 5. .
  • FIG. 7A is a cross-sectional view showing the configuration of the seventh embodiment of the acoustic matching layer constituting the ultrasonic probe according to the present invention.
  • the schematic cross-sectional view of the ultrasonic probe is the same as that of FIG. 6A described in the sixth embodiment, and only the configuration of the acoustic matching layer 2 is different. Therefore, the ultrasonic probe will be described with reference to FIG. 6A.
  • the acoustic matching layer will be explained using Fig. 7A.
  • the ultrasonic probe 10F includes a plate-like piezoelectric element 1 and a front surface of the piezoelectric element 1.
  • the acoustic matching layer 2 It is mounted on the acoustic matching layer 2 (above the drawing), the back load material 3 attached to the back of the piezoelectric element 1 (below the drawing) if necessary, and the front of the acoustic matching layer 2 if necessary.
  • the acoustic lens 4 is provided.
  • the functions of these constituent elements are the same as the functions of the elements constituting the conventional ultrasonic probe.
  • the constituent elements and operation of the ultrasonic probe 1 OF have been described in the sixth embodiment, and are therefore omitted here.
  • the acoustic impedance of the acoustic matching layer 2 made of a composite material of the conductive member 20 and the insulating member or the semiconductive member 21 is the piezoelectric element 1 and the subject (for example, a living body). Materials that are between are selected. Insulating member or semiconducting member 21 is divided into two levels in the thickness direction (vertical direction in the drawing), for example, in the drawing. The shape (volume) is changed in a variable manner, and the lower stage (T1 area) has a larger width and the upper stage (T2 area) has a smaller width, and the gap is filled with the conductive member 20. It is configured.
  • the T1 region has a large width, and thus the acoustic impedance value is large. Becomes narrower.
  • the width of the conductive member 20 is reversed and approaches the acoustic impedance of the member having the larger width (volume).
  • the acoustic impedance can be changed stepwise depending on the volume ratio of the conductive member 20 in the region of Tl and ⁇ 2 and the insulating member or semiconductive member 21. Therefore, in the two-stage configuration shown in Fig. 7 (b), two acoustic matching layers are configured.
  • the thickness of ⁇ 1 and ⁇ 2 is set based on the thickness of 1/4 wavelength.
  • the conductive member 20 of the acoustic matching layer 2 is electrically connected to one electrode of the piezoelectric element 1, and the other conductive member 20 has a grounding electric terminal on the surface thereof.
  • Nine conductive films 9b are in contact and electrically connected, and signals are taken in and taken out from the grounding electrical terminal 9.
  • the connection structure between the conductive member 20 of the acoustic matching layer 2 shown in FIG. 7A and the insulating member or the semiconductive member 21, the 2-2 type, the 13 type described in the second embodiment, 3—1 type connection structure is desirable.
  • the acoustic matching layer can be formed in a desired manner. Since the acoustic impedance can be varied step by step, the frequency band can be widened, so that a high-resolution diagnostic image can be obtained. In addition, since electrical terminals can be connected to a plurality of locations of the piezoelectric element via the conductive member of the acoustic matching layer of the composite material, an ultrasonic probe with high reliability and good operability is obtained. That's the power S.
  • the same effect can be obtained even at random intervals or at random arrangement.
  • a grounding electrical terminal 9 is provided on the front surface of the piezoelectric element 1 via the acoustic matching layer 2 in order to exchange electrical signals with the grounding electrode 5.
  • a conductive member is formed on both or one side in the Z direction of the acoustic matching layer 2 by sputtering, plating or printing, and the grounding electrical terminal 9 is connected to that part. The effect is obtained.
  • the acoustic matching layer 2 has a structure in which the conductive member 20 and the insulating member or the semiconductive member 21 each formed of one material are connected.
  • the same effect can be obtained even if at least one of the conductive member 20 and the insulating member or the semiconductive member 21 is formed of two or more materials. It is not limited to the connection structure of the grades.
  • the electrode on the front surface of the piezoelectric element 1 is used as the ground electrode 5 and the grounding electrical terminal 9 is arranged on the subject side, and the electrode on the back surface of the piezoelectric element 1 is used as the signal.
  • the signal electrical terminal 7 is brought into contact with the signal electrode 6 as the signal electrode 6, but instead, the signal electrode 6 on the front side of the piezoelectric element 1 is used as the signal electrode 6 on the subject side. In principle, it is possible to transmit and receive ultrasonic waves even if the electrode on the back surface of the piezoelectric element 1 is used as the ground electrode 5 and the grounding electrical terminal 9 is in contact with the ground electrode 5. .
  • FIG. 7B shows another configuration example of the acoustic matching layer 2 constituting the seventh embodiment.
  • the acoustic matching layer 2 in FIG. 7B has the two acoustic matching layers Tl and ⁇ 2 as shown in FIG. 7A.
  • the conductive member 20 is made of a material in which graphite is filled with metal powder such as copper or silver, and the acoustic impedance is 6 to; using the value of 16 megarails, the thickness T1 is 100% and the first acoustic matching layer and In the region of thickness ⁇ 2, a groove is formed in the conductive member 20 so as to obtain a desired acoustic impedance, and an acoustic impedance (1 to 3 megarails) such as an insulating member such as epoxy resin, urethane, or silicone rubber is formed in the groove. ) Low!
  • the second acoustic matching layer can be configured.
  • the conductive member 20 is connected in the thickness direction of Tl and ⁇ 2
  • the same effect as the embodiment of FIG. 7 ⁇ can be obtained.
  • the force described in the case of two acoustic matching layers can be used.
  • FIG. 8 is a cross-sectional view showing the configuration of the acoustic matching layer constituting the eighth embodiment of the ultrasonic probe according to the present invention.
  • the schematic cross-sectional view of the ultrasonic probe is the same as that shown in FIG. 2 described in the second embodiment, except that the configuration of the first acoustic matching layer 2a is different.
  • the first acoustic matching layer is described with reference to FIG.
  • the ultrasonic probe 10B includes a plate-like piezoelectric element 1 and a front surface of the piezoelectric element 1.
  • acoustic matching layers 2 (2a, 2b) stacked on top of the drawing (2a, 2b), and back load material 3 mounted on the back of the piezoelectric element 1 (bottom of the drawing) as necessary. Accordingly, the acoustic lens 4 is mounted on the front surface of the acoustic matching layer 2 (2a, 2b).
  • the functions of these components are the same as the functions of the components that make up a conventional ultrasound probe. The components and operation of the ultrasonic probe have been described in the second embodiment, and are omitted here.
  • the first acoustic matching layer 2a made of a composite material of a conductive member and an insulating member or a semiconductive member has an acoustic impedance of the piezoelectric element 1 and the second acoustic matching layer 2b. A material that is between the acoustic impedances is selected.
  • FIG. 8 shows a configuration example of a conductive member and a plurality of insulating members or semiconductive members as the first acoustic matching layer 2a. In FIG. 8, the direction in which ultrasonic waves are radiated toward the subject is the Z direction, and the two directions orthogonal thereto are the X direction and the Y direction, respectively.
  • the first acoustic matching layer 2a shown in FIG. 8 includes a conductive member 20 and a plurality of here two types of insulating members or semiconductive members 21 arranged in order in the X direction.
  • the conductive member 20 has a connection structure, and is a structure having connections in at least the Z direction.
  • the electrical member 20 has a very narrow width (volume)!
  • the acoustic impedance of the first acoustic matching layer 2a is arbitrarily set by changing the volume ratio (the width in the X direction in the drawing) of the two types of insulating members or semiconductive members 21.
  • the conductive member 20 has a very small value compared to the volume ratio of the two types of insulating members or semiconductive member 21, that is, the width in the X direction in FIG. Is configured so that it hardly contributes.
  • two types of insulating members or semiconductive members 21 are made of silicon single crystal and epoxy resin, the widths in the X direction are each 0.1 mm, and the conductive members 20 are side surfaces of silicon single crystal or epoxy resin. If the width of copper, silver, gold, etc.
  • the function as the conductive member 20 is mainly an electrical connection from the electrode surface of the piezoelectric element 1.
  • Such a configuration makes it easy to produce and has high precision, and eliminates the disadvantage of making processing difficult when creating an ultrasonic probe when metal is used for the conductive material. it can.
  • the volume ratio can be selected by changing the ratio of the width of the three types of members including the two types of insulating members or the semiconductive member 21. By doing so, the acoustic impedance can be arbitrarily selected, so the width of the conductive member is not limited.
  • the conductive member 20 of the acoustic matching layer 2a is electrically connected to one electrode of the piezoelectric element 1, and the other conductive member 20 has a grounding electric terminal 9 on the surface thereof.
  • the metal film 9b contacts and is electrically connected, and signals are taken in and taken out from the grounding electrical terminal 9.
  • the acoustic matching layer As described above, as the acoustic matching layer provided on the subject side of the piezoelectric element, the acoustic matching layer is desired by providing a composite material of a conductive member and a plurality of insulating members or semiconductive members. Therefore, it is possible to arbitrarily vary the acoustic impedance of the sensor, and thereby to widen the frequency band, so that a high-resolution diagnostic image can be obtained. In addition, through the conductive member of the acoustic matching layer of the composite material, Since electrical terminals can be connected, it is possible to obtain an ultrasonic probe with high reliability and good operability.
  • the conductive member 20 and the plurality of insulating members or semiconductive members 21 are alternately arranged at substantially equal intervals.
  • the same effect can be obtained even at random intervals or randomly arranged.
  • a grounding electrical terminal 9 is provided on the front surface via the acoustic matching layer 2a.
  • a conductive member is formed on both or one side of the acoustic matching layer 2a in the Z direction by sputtering, plating or printing, and the grounding electrical terminal 9 is connected to that part. The same effect can be obtained.
  • conductive member 20 and insulating members or semi-conductive members 21 are connected. it is obvious.
  • the conductive member 20 shown in FIG. 8 and the plurality of insulating members or semiconductive members 21 are formed with a uniform width in the Z direction.
  • the insulating member or the semiconductive member 21 has a so-called wedge shape whose width continuously changes in the Z direction, and the thickness in the Z direction.
  • the conductive member may be formed on the inclined side surface, or as shown in the seventh embodiment, the insulating member or the semiconductive member. The same effect can be obtained even when the conductive member 20 is provided on the side surface of the member 21 by changing the width of the member 21 stepwise to change the acoustic impedance.
  • each of the conductive member 20 formed of one material type and two types of insulating properties is used as the first acoustic matching layer 2a of the two acoustic matching layers. Force using a member or a structure with a semiconductive member 21.
  • the same effect can be obtained even if each layer is provided. Fruit is obtained.
  • the acoustic impedance of the acoustic matching layer laminated on one electrode forming surface of the piezoelectric element can be set to a desired value.
  • High-resolution diagnostic images can be obtained, and electrical terminals can be connected to multiple locations on one electrode formation surface of the piezoelectric element via the acoustic matching layer, which increases reliability. Therefore, it is suitable for various medical fields in which ultrasonic diagnosis of a subject such as a human body is performed, and further, it can be used in an industrial field for the purpose of internal flaw detection of materials and structures.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Gynecology & Obstetrics (AREA)
  • Multimedia (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

明 細 書
超音波探触子
技術分野
[0001] 本発明は、生体などの被検体に当接させて超音波を送信及び受信することにより、 被検体の診断情報を得るために使用される超音波探触子に関する。
背景技術
[0002] 超音波診断装置は超音波を人や動物などの生体の被検体に照射し、被検体内で 反射されるエコー信号を検出して生体内組織の断層像などをモニタに表示し、被検 体の診断に必要な情報を提供するものである。この超音波診断装置には被検体内 への超音波の送信と、被検体内からのエコー信号の受信とを行うための超音波探触 子が使用される。
[0003] 図 9はこの種の従来の超音波探触子の構成例を示した断面図である。図 9におい て、超音波探触子 30は不図示の被検体との間で超音波を送受信するべぐ一定方 向(図 9においては紙面と直交する方向)に配列された複数の圧電素子 11と、この圧 電素子 11の被検体側(図 9の上方)の表面(以下、被検体側の表面を前面と称する) に設けられた 1層以上 (図示したものは 2層)の音響マッチング層 12 (12a、 12b)と、こ の音響マッチング層 12の前面に設けられた音響レンズ 13と、圧電素子 11の被検体 側とは反対側(図 9の下方)の表面(以下、被検体側とは反対側の表面を背面と称す る)に設けられた信号用電気端子 15と、この信号用電気端子 15の背面に設けられた 背面負荷材 14と、第 1の音響マッチング層 12aと第 2の音響マッチング層 12bとの間 に装着された接地用電気端子 16とを備えている。
[0004] 圧電素子 11は PZT (チタン酸ジルコン酸鉛)系などの圧電セラミックス、単結晶、こ れらの材料と高分子材料とを複合した複合圧電体、あるいは PVDF (二フッカポリビ ニル)などに代表される高分子材料の圧電体などによって形成される。この圧電素子 11の前面及び背面にはそれぞれ電極が形成され、これらの電極と圧電素子 11との 間で電気信号の送受信が行われる。すなわち、圧電素子 11は電圧を超音波に変換 して被検体内に送信し、また、被検体内で反射したエコーを受信して電気信号に変 換する。
[0005] 音響マッチング層 12は超音波を効率よく被検体に送信し、かつ、被検体から受信 するために設けられ、より具体的には、圧電素子 11の音響インピーダンスを段階的 に被検体の音響インピーダンスに近づける役割を果たしている。図示の例では、音 響マッチング層 12として第 1の音響マッチング層 12aと第 2の音響マッチング層 12bと が積み重ねられている。このうち、第 1の音響マッチング層 12aとしては導電部材であ るグラフアイトが用いられ、その前面から絶縁性フィルムに金属膜を披着した電気端 子 16が取り出されている。更に電気端子 16の前面に第 2の音響マッチング層 12bが 設けられている。この構成は、圧電素子 11が外部からの機械的な衝撃などによって 割れたとしても、絶縁性フィルムは割れにくいため、電気的な導通が確保できるので 信頼性が高レ、と!/、う特徴を有して!/、る (例えば、下記の特許文献 1参照)。
[0006] 一方、第 1の音響マッチング層 12aとして、グラフアイトよりも音響インピーダンスの大 きい材料を用いることによって、広帯域化するという構成も知られている(例えば、下 記の特許文献 2参照)。
[0007] また、第 1の音響マッチング層 12aとして、絶縁性部材の一部に貫通孔を設け、この 貫通孔に導電性部材を嵌装し、その前面に設けた電気端子とその背面にある圧電 素子 11の電極とを接続する構成も知られて!/、る (例えば、下記の特許文献 3参照)。
[0008] 音響レンズ 13は診断画像の分解能を高めるために超音波ビームを絞る役割を果た すものである。この音響レンズ 13はオプション要素であり、必要に応じて設けられる。 背面負荷材 14は圧電素子 11を保持するように結合され、さらに不要な超音波を減 衰させる役割を果たすものである。
特許文献 1:特開平 7— 123497号公報
特許文献 2:特開 2003— 125494号公報
特許文献 3:実開平 7— 37107号公報
[0009] 電子走査型の超音波診断装置は、圧電素子を複数の群にして個々の圧電素子群 に一定の遅延時間を与えて駆動し、各圧電素子群から被検体内への超音波の送信 と、被検体内からのエコー信号の受信とを行う。このように遅延時間を与えることによ つて超音波ビームが収束あるいは拡散され、広!、視野幅あるレ、は高分解能の超音波 画像を得ること力できる。
[0010] 複数の圧電素子群に一定の遅延時間を与えて超音波画像を得るシステムは、一般 的なシステムとして既に知られている。超音波探触子として、このような高分解能の超 音波画像を得るために重要なことの 1つに広帯域化がある。また、高い性能が求めら れる一方で、超音波探触子は医師あるいは検査技師が操作するとともに、被検体に 直接あるいは間接的に接触させて診断画像を得るものであることから、超音波探触 子には操作性を良好にするためにスリムな形状も求められる。また、超音波探触子は その操作中あるいはそれ以外のときに、不可抗力で落下させられたり、打撃が与えら れたりして壊れることも時々あり、それに対して信頼性の高いものが求められる。
[0011] 超音波探触子を広帯域化するための 1つの方策として、特許文献 2に示すように、 圧電素子の前面に設ける音響マッチング層を 3層以上にする構成が挙げられる。し 力、しながら、この構成においては、圧電素子側の第 1の音響マッチング層に半導体で あるシリコンを使用しているため、この第 1の音響マッチング層側の圧電素子の電極 力 取り出す電気端子は、圧電素子に形成された電極の端部の一部から取り出すし かなぐこの構成では機械的な衝撃によって圧電素子及び電極が割れた場合、割れ た時点で断線が発生して機能が低下することになる。
[0012] 一方、特許文献 1に示す構成は、第 1の音響マッチング層に導体であるグラフアイト を使用し、その前面に絶縁性フィルムの一主面に金属膜を披着させた電気端子を設 けているため、信頼性は高くなるが、第 1の音響マッチング層に使用する導体材料は 音響インピーダンスが小さぐまた、音響マッチング層は 2層までし力、積層できないた め、広帯域化が困難であった。近年、超音波探触子はより広帯域化される傾向にあり 、基本周波数に対して 2次あるいは 3次の高調波成分を利用するか、あるいは複数の 周波数で使用して高分解能の超音波画像を得て診断する場合が多くなつてきている ことから、広帯域化することがますます重要になってきて!/、る。
発明の開示
[0013] 本発明は、上記の事情を考慮してなされたもので、その目的は、高分解能の診断 画像を得ることができるとともに、信頼性の高い超音波探触子を提供することにある。 また本発明の他の目的は、操作性の良好な超音波探触子を提供することにある。 [0014] 本発明は、厚さ方向の両面に電極が形成された圧電素子と、前記圧電素子の一方 の電極形成面に積層された音響マッチング層とを備えた超音波探触子において、 前記音響マッチング層は、少なくとも導電性部材を含む複数の素材の複合材料で 構成され、かつ前記導電性部材は、前記圧電素子の一方の電極形成面の複数箇所 で、それぞれ層の厚さ方向に貫通する部位を有していることを特徴とする。
この構成により、圧電素子の一方の電極形成面に積層される音響マッチング層の 音響インピーダンスを所望の値にすることが可能になるため、周波数の広帯域化が できることによって、高分解能の診断画像を得ることができ、また、音響マッチング層 を介して、圧電素子の一方の電極形成面の複数箇所に電気端子を接続することが 可能になるため、信頼性の高い超音波探触子が提供される。
[0015] また、本発明は、前記音響マッチング層は、絶縁性部材又は半導電性部材と、導 電性部材とを含む複数の素材の複合材料、若しくは絶縁性部材又は半導電性部材 を含む複数の素材と、導電性部材を含む複数の素材との複合材料で構成され、かつ 前記導電性部材は、前記圧電素子の一方の電極形成面の複数箇所で、それぞれ層 の厚さ方向に貫通する部位を有して!/、ることを特徴とする。
この構成により、圧電素子の一方の電極形成面に積層される音響マッチング層の 音響インピーダンスを所望の値にすることが可能になるため、周波数の広帯域化が できることによって、高分解能の診断画像を得ることができ、また、音響マッチング層 を介して、圧電素子の一方の電極形成面の複数箇所に電気端子を接続することが 可能になるため、信頼性の高い超音波探触子が提供される。
[0016] また、本発明は、所定の厚さを有し、厚さ方向の両面に電極が形成され、互いに厚 さ方向と直交する方向に配置された複数の圧電素子と、前記複数の圧電素子の一 方の電極形成面にそれぞれ積層された複数の音響マッチング層とを備えた超音波 探触子において、
前記音響マッチング層は、前記圧電素子に順に積層された第 1及び第 2の音響マ ツチング層を含み、
前記第 1の音響マッチング層は、絶縁性部材又は半導電性部材と、導電性部材と を含む複数の素材の複合材料で構成され、かつ前記導電性部材は、前記圧電素子 の一方の電極形成面の複数箇所で、それぞれ層の厚さ方向に貫通する部位を有し ていることを特徴とする。
この構成により、音響マッチング層の多層化により、音響インピーダンスを所望の値 にすることが容易になるため、高分解能の診断画像を得ることができ、また、第 1の音 響マッチング層を介して、圧電素子の一方の電極形成面の複数箇所に電気端子を 接続することが可能になるため、信頼性の高い超音波探触子が提供される。
[0017] また、本発明は、前記圧電素子に隣接する前記音響マッチング層を構成する前記 複合材料は、絶縁性部材又は半導電性部材と、導電性部材とが、あらかじめ定めた 領域に配置されて!/、ることを特徴とする。
この構成により、絶縁性部材又は半導電性部材と、導電性部材との体積率を任意 に設定することが可能になり、音響インピーダンスの決定が容易になる。
[0018] また、本発明は、前記圧電素子に隣接する前記音響マッチング層の外表面部に積 層された電気端子を備え、
前記電気端子は、絶縁性フィルムの一主面に導電性膜が披着され、かつ前記絶縁 性フィルムの一主面が前記音響マッチング層に対向するように積層され、前記導電 性膜が、前記音響マッチング層を構成する前記導電性部材を介して、前記圧電素子 に形成された一方の前記電極と電気的に接続されていることを特徴とする。
この構成により、機械的な衝撃などによって圧電素子及び一方の電極が割れたとし ても絶縁性のフィルムは割れ難!/、ため、断線して故障することが極めて少なくなつて 操作性の良好な超音波探触子が提供される。
[0019] また、本発明は、所定の厚さを有し、厚さ方向の両面に電極が形成され、互いに厚 さ方向と直交する方向に配置された複数の圧電素子と、前記複数の圧電素子の一 方の電極形成面にそれぞれ積層された複数の音響マッチング層とを備えた超音波 探触子において、
nを 3以上の整数として、前記音響マッチング層は、前記圧電素子に順に積層され る第 1〜第 nの音響マッチング層を含み、かつ第 1の音響マッチング層と第 2の音響マ ツチング層との間に電気端子が揷着され、
少なくとも前記第 1の音響マッチング層は、絶縁性部材又は半導電性部材と、導電 性部材とを含む複数の素材の複合材料で構成され、かつ前記導電性部材は、前記 圧電素子の一方の電極形成面の複数箇所で、それぞれ層の厚さ方向に貫通する部 1AIを有し、
前記電気端子は、絶縁性フィルムの一主面に導電性膜が披着され、かつ前記絶縁 性フィルムの一主面が前記音響マッチング層に対向するように積層され、前記導電 性膜が、前記第 1の音響マッチング層を構成する前記導電性部材を介して、前記圧 電素子に形成された一方の前記電極と電気的に接続されていることを特徴とする。 この構成により、音響マッチング層が多層化されるとともに、音響マッチング層の音 響インピーダンスを所望の値にすることが可能になるため、高分解能の診断画像を 得ること力 sでき、また、第 1の音響マッチング層を介して、圧電素子の一方の電極形 成面の複数箇所に電気端子を接続することが可能になるため、信頼性が高められ、 さらに、絶縁性のフィルムは割れにくいため、断線して故障することが極めて少なくな つて操作性も良好な超音波探触子が提供される。
また、本発明は、所定の厚さを有し、厚さ方向の両面に電極が形成され、互いに厚 さ方向と直交する方向に配置された複数の圧電素子と、前記複数の圧電素子の一 方の電極形成面にそれぞれ積層された複数の音響マッチング層とを備えた超音波 探触子において、
nを 3以上の整数として、前記音響マッチング層は、前記圧電素子に順に積層され る第 1〜第 nの音響マッチング層を含み、かつ第 2の音響マッチング層と第 3の音響マ ツチング層との間に電気端子が揷着され、
少なくとも前記第 1及び第 2の音響マッチング層は、絶縁性部材又は半導電性部材 と、導電性部材とを含む複数の素材の複合材料で構成され、かつ前記導電性部材 は、前記圧電素子の一方の電極形成面の複数箇所で、それぞれ層の厚さ方向に貫 通する部位を有し、
前記電気端子は、絶縁性フィルムの一主面に導電性膜が披着され、かつ前記絶縁 性フィルムの一主面が前記音響マッチング層に対向するように積層され、前記導電 性膜が、前記第 1の音響マッチング層を構成する前記導電性部材及び前記第 2の音 響マッチング層を構成する前記導電性部材を介して、前記圧電素子に形成された一 方の前記電極と電気的に接続されていることを特徴とする。
この構成により、音響マッチング層が多層化されるとともに、音響マッチング層の音 響インピーダンスを所望の値にすることが可能になるため、高分解能の診断画像を 得ること力 Sでき、また、第 1及び第 2の音響マッチング層を介して、圧電素子の一方の 電極形成面の複数箇所に電気端子を接続することが可能になるため、信頼性が高 められ、さらに、機械的な衝撃などによっても割れにくい絶縁性のフィルムを使用して V、るため、操作性の良好な超音波探触子が提供される。
[0021] また、本発明は、前記第 1の音響マッチング層を構成する前記複合材料は、絶縁性 部材又は半導電性部材と、導電性部材とが、あらかじめ定めた領域に配置されてい ることを特徴とする。
この構成により、第 1の音響マッチング層を構成する複合材料における絶縁性部材 又は半導電性部材と、導電性部材との体積率を任意に設定することが可能になり、 音響インピーダンスの決定が容易になる。
[0022] また、本発明は、前記第 2の音響マッチング層を構成する前記複合材料は、絶縁性 部材又は半導電性部材と、導電性部材とが、あらかじめ定めた領域に配置されてい ることを特徴とする。
この構成により、第 2の音響マッチング層を構成する複合材料における絶縁性部材 又は半導電性部材と、導電性部材との体積率を任意に設定することが可能になり、 音響インピーダンスの決定が容易になる。
[0023] また、本発明は、前記圧電素子の厚さ方向を Z方向、この Z方向と直交する方向を X方向、これら Z方向及び X方向と直交する方向を Y方向として、
前記音響マッチング層を構成する前記複合材料は、
前記導電性部材が Z方向のみにつながりがあって、 X、 Y方向につながりがなぐ前 記絶縁性部材又は半導電性部材が X、 Y、 Ζの 3方向につながりがある連結構造か、 又は、前記導電性部材が Υ及び Ζの 2方向につながりがあり、前記絶縁性部材又は 半導電性部材カ 及び Ζの 2方向につながりがある連結構造か、
又は、前記導電性部材が X、 Υ、 Ζの 3方向につながりがあり、前記絶縁性部材又は 半導電性部材が Ζ方向のみにつながりがあって、 X、 Υ方向につながりがない連結構 造力、、 V、ずれか 1つの連結構造を有して!/、ることを特徴とする。
この構成により、音響マッチング層を構成する複合材料における絶縁性部材又は 半導電性部材と、導電性部材との体積率の設定が容易になり、また、一方の電極形 成面の複数箇所で、それぞれ層の厚さ方向に導電性部材が貫通する部位を形成す ることが容易になる。
[0024] また、本発明は、所定の厚さを有し、厚さ方向の両面に電極が形成された圧電素子 と、前記圧電素子の一方の電極形成面に積層された音響マッチング層とを備えた超 音波探触子において、
前記音響マッチング層は、少なくとも導電性部材を含む複数の素材の複合材料で 構成され、かつ前記導電性部材は、前記圧電素子の一方の電極形成面の複数箇所 で、それぞれ層の厚さ方向に貫通する部位を有し、かつ厚さ方向に導電性部材は連 続的に体積比率が傾斜した、若しくは段階的に体積比率を変えた構成にしているこ とを特徴とする。
この構成により、圧電素子の一方の電極形成面に積層される音響マッチング層の 音響インピーダンスを所望の値にすることが可能になるため、周波数の広帯域化が できることによって、高分解能の診断画像を得ることができ、また、音響マッチング層 を介して、圧電素子の一方の電極形成面の複数箇所に電気端子を接続することが 可能になるため、信頼性の高い超音波探触子が提供される。
[0025] また、本発明は、前記音響マッチング層の前記複数の素材の複合材料は、絶縁性 部材又は半導電性部材と、導電性部材とを含む材料で構成されてレ、ることを特徴と する。
この構成により、圧電素子の一方の電極形成面に積層される音響マッチング層の 音響インピーダンスを所望の値にすることが可能になり、かつ多層化できるため、周 波数の広帯域化ができることによって、高分解能の診断画像を得ることができ、また、 音響マッチング層を介して、圧電素子の一方の電極形成面の複数箇所に電気端子 を接続することが可能になるため、信頼性の高い超音波探触子が提供される。
[0026] また、本発明は、前記複合材料の前記導電性部材が、金属、金属と高分子材料の 複合体、グラフアイトの炭化物のうちの少なくとも 1つを含んでいることを特徴とする。 この構成により、音響インピーダンスをも加味しての材料選択が可能となる。
[0027] また、本発明は、前記複合材料の絶縁性部材又は半導電性部材が、ガラス、セラミ ッタス、水晶、有機高分子と金属の複合体、シリコンの単結晶若しくは多結晶のうちの 少なくとも 1つを含んでいることを特徴とする。
この構成により、音響インピーダンスの決定が容易となる。
[0028] 本発明によれば、圧電素子の一方の電極形成面に積層される音響マッチング層が 、絶縁性部材又は半導電性部材と、導電性部材とを含む複数の素材の複合材料で 構成されているため、音響インピーダンスを所望の値にすることが可能になり、周波 数の広帯域化ができることによって、高分解能の診断画像を得ることができ、また、導 電性部材が圧電素子の一方の電極形成面の複数箇所で、それぞれ層の厚さ方向に 貫通する部位を有していることから、音響マッチング層を介して、圧電素子の一方の 電極形成面の複数箇所に電気端子を接続することが可能になるため、信頼性の高 V、超音波探触子が提供される。
図面の簡単な説明
[0029] [図 1A]本発明に係る超音波探触子の第 1の実施の形態の構成を示す断面図
[図 1B]図 1Aに示す超音波探触子を構成する音響マッチング層の構成例を示す断 面図
[図 2A]本発明に係る超音波探触子の第 2の実施の形態の構成を示す断面図
[図 2B]図 2Aに示す超音波探触子を構成する第 1の音響マッチング層の構成例を示 す斜視図
[図 2C]図 2Bに示す第 1の音響マッチング層の絶縁性部材又は導電性部材の体積比 率と音響インピーダンスとの関係を示した線図
[図 2D]図 2Aに示す超音波探触子を構成する第 1の音響マッチング層の構成例を示 す斜視図
[図 2E]図 2Aに示す超音波探触子を構成する第 1の音響マッチング層の構成例を示 す斜視図
[図 3A]本発明に係る超音波探触子の第 3の実施の形態の構成を、その一部を破断 して示した斜視図 [図 3B]図 3Aに示した超音波探触子の断面図
[図 3C]図 3A及び図 3Bに示した超音波探触子を構成する要素の具体的な構成例を 示す斜視図
[図 3D]図 3A及び図 3Bに示した超音波探触子を構成する要素の具体的な構成例を 示す斜視図
[図 4A]本発明に係る超音波探触子の第 4の実施の形態の構成を、その一部を破断 して示した斜視図
[図 4B]図 4Aに示した超音波探触子の断面図
[図 5A]本発明に係る超音波探触子の第 5の実施の形態の構成を、その一部を破断 して示した斜視図
[図 5B]図 5Aに示した超音波探触子の断面図
[図 6A]本発明に係る超音波探触子の第 6の実施の形態の構成を、その一部を破断 して示した断面図
[図 6B]図 6Aに示す超音波探触子を構成する音響マッチング層の構成例を示す断 面図
[図 7A]本発明に係る超音波探触子の第 7の実施の形態を構成する音響マッチング 層の構成例を示す断面図
[図 7B]本発明に係る超音波探触子の第 7の実施の形態を構成する音響マッチング 層の他の構成例を示す断面図
[図 8]本発明に係る超音波探触子の第 8の実施の形態を構成する音響マッチング層 の構成例を示す断面図
[図 9]従来の超音波探触子の構成例を示した断面図
発明を実施するための最良の形態
以下、本発明を図面に示す好適な実施の形態に基づいて詳細に説明する。
<第 1の実施の形態〉
図 1 Aは本発明に係る超音波探触子の第 1の実施の形態の構成を示す断面図であ り、図 1Bは図 1Aに示す超音波探触子を構成する音響マッチング層の構成例を示す 断面図である。 [0031] 図 1Aにおいて、超音波探触子 10Aは板状の圧電素子 1と、この圧電素子 1の前面 (図面の上方)に積み重ねられた音響マッチング層 2と、必要に応じて圧電素子 1の 背面(図面の下方)に装着される背面負荷材 3と、同じく必要に応じて音響マッチング 層 2の前面に装着される音響レンズ 4とを備えている。これらの構成要素のそれぞれ の機能は、従来の超音波探触子を構成する要素が持つ機能と同様である。
[0032] 超音波探触子 10Aの構成要素のうち、圧電素子 1は PZT系のような圧電セラミック ス、 PZN-PT、 PMN-PT系のような圧電単結晶、又はこれらの材料と高分子材料を 複合した複合圧電体、あるいは PVDFなどで代表される高分子材料の圧電体などに よって形成される。圧電素子 1の前面には接地電極 5が形成され、圧電素子 1の背面 には信号用電極 6が形成されている。接地電極 5及び信号用電極 6は、それぞれ金 や銀の蒸着、スパッタリング、あるいは銀の焼き付けなどによって形成される。
[0033] また、圧電素子 1に形成されている信号用電極 6と背面負荷材 3との間に、ポリイミド などの高分子材料によって構成される絶縁性フィルム 7aの一主面に銅などの導電性 膜 7bが披着された信号用電気端子 7が揷着されている。この場合、圧電素子 1に形 成されている信号用電極 6に信号用電気端子 7の導電性膜 7bが接触し、かつ信号 用電気端子 7の絶縁性フィルム 7aが背面負荷材 3に接触するように、絶縁性フィルム 7aの一主面が圧電素子 1側に向けられる。一方、圧電素子 1に形成されている接地 電極 5の前面には、少なくとも導電性部材を含む複合材料で構成される音響マッチ ング層 2と、導電性を有する、例えば銅などの金属の薄膜などの接地用電気端子 9と が順次積み重ねられている。この場合、音響マッチング層 2の複合材料の導電性部 材に接地用電気端子 9が接触し、必要に応じて、接地用電気端子 9の前面にはシリ コーンゴムなどの材料を用いた音響レンズ 4が装着される。なお、導電性膜 7b、接地 用電気端子 9は電気的に導電性を有する材料であれば何でも良く金属に限定するも のではない。また、接地用電気端子 9は、信号用電気端子 7の構成のように高分子材 料によって構成される絶縁性フィルムの一主面に導電性膜が披着され、この導電性 膜が音響マッチング層 2側になるように積層してもよい。
[0034] 上記のように構成された超音波探触子 10Aの動作について以下に説明する。
圧電素子 1に形成された信号用電極 6は、信号用電気端子 7を介して、また、圧電 素子 1の接地電極 5は音響マッチング層 2の複合材料の導電性部材と接地用電気端 子 9とを介して、それぞれ不図示のケーブルの一端に電気的に接続され、これらのケ 一ブルのそれぞれの他端は不図示の超音波診断装置の本体部に接続される。これ によって、超音波診断装置の本体部で作られる規則正しいパルス電圧を圧電素子 1 に印加して超音波を発信し、また、受信した超音波のエコーを電気信号に変換して 超音波診断装置の本体部に送信する。
[0035] 導電性部材を含む複合材料で構成されている音響マッチング層 2としては、その音 響インピーダンスが圧電素子 1と音響レンズ 4側に位置する不図示の被検体の各音 響インピーダンスの間になるような材料が選ばれる。この音響マッチング層 2の導電 性部材を含む複合材の構成例を図 1Bに示す。図 1Bにおいては、被検体に向けて 超音波を放射する方向を Z方向、これと直交する 2つの方向をそれぞれ X方向、 Y方 向としている。
[0036] 図 1Bに示した音響マッチング層 2は、導電性部材 20と、他の部材として例えば絶 縁性部材又は半導電性部材 21とが X方向に交互に配置されたもので、このうち複数 の導電性部材 20は Y及び Zの 2方向につながりがあり、また絶縁性部材又は半導電 性部材 21も同じように Y及び Zの 2方向につながりがある構造体になっている。ここで 、複数の導電性部材 20は圧電素子 1の前面に形成された接地電極 5と、接地用電 気端子 9とにそれぞれ接触して、圧電素子 1の接地電極 5と接地用電気端子 9とを電 気的に接続する機能を有している。なお、導電性部材 20を、その端部をそれぞれ Z 方向に向けた状態で Y方向に列状に配置するとともに、 X方向に複数列配置し、その 周囲を絶縁性部材又は半導電性部材 21で取り囲んだもので、このうち導電性部材 2 0は Z方向のみの 1方向につながりがあり、 X、 Y方向のつながりはないものにしてもよ い。また絶縁性部材又は半導電性部材 21は X、 Y、 Ζの 3方向につながりがある構造 体、又は、複数の絶縁性部材又は半導電性部材 21を、その端部をそれぞれ Ζ方向 に向けた状態で Υ方向に列状に配置するとともに、 X方向に複数列配置し、その周囲 を導電性部材 20で取り囲んだもので、このうち導電性部材 20は X、 Υ、 Ζの 3方向に つながりがあり、また絶縁性部材又は半導電性部材 21は、 Ζ方向のみの 1方向につ ながりがある構造体としても同様の効果を有する。また、導電性部材 20と絶縁性部材 又は半導電性部材 21の複合体としたがこの他導電部材同士で材料が異なる複合体 でも同様の効果を有する。
[0037] 上述したように、図 1Aに示した音響マッチング層 2の音響インピーダンスは圧電素 子 1の音響インピーダンスと被検体の音響インピーダンスの間の値を有していることが 必要である。例えば圧電素子 1として音響インピーダンスが約 30メガレールスの値を 有する PZT-5Hの圧電セラミックスを用い、音響インピーダンスが約 1. 6メガレール スの値を有する生体のような被検体を対象とした場合には、音響マッチング層 2は 1層 としているので 6〜8メガレールス前後の値の材料を用いることになる。
[0038] そこで、例えば、図 1Aに示した超音波探触子 10Aを用いて説明する力 音響マツ チング層 2として絶縁性部材又は半導電性部材を用い、圧電素子 1の接地電極 5の 端部に対応する部位を切り欠いて音響マッチング層のない部分(図示せず)を作り、 その部分から電気端子(図示せず)を取り出す構成も考えられる。しかし、このような 構成にすると、性能的には周波数の広帯域化が可能になる反面、音響マッチング層 の無い部分においても圧電素子 1が振動して超音波を発生するため、被検体に送信 する超音波が乱れて超音波画像が劣化する。また、接地電極 5から取り出す電気端 子は 1箇所であるため、診断操作中に超音波探触子を落下させたり、あるいは超音 波探触子に打撃など機械的な衝撃を加えたりしたことにより、圧電素子 1が割れたと き、接地電極 5も同じように割れて電気的な断線が発生するなどにより、故障するお それもある。
[0039] 図 1Aに示した第 1の実施の形態は、これらの問題を解決し、しかも周波数の広帯 域化が可能な構成を実現したものである。すなわち、圧電素子 1の接地電極 5が、音 響マッチング層 2の複数の導電性部材 20を介して、接地用電気端子 9と電気的に接 続される構成にしているため、圧電素子 1の全面にて均一で所望の超音波の送信、 受信をすることができるとともに、機械的な衝撃などによって圧電素子 1及び接地電 極 5が割れたとしても、音響マッチング層 2の複数個の導電性部材 20で接続されて!/、 るため、断線して故障することは極めて少なくなる。
[0040] ここでは、音響マッチング層 2の絶縁性部材又は半導電性部材 21として、エポキシ 樹脂、ウレタン樹脂、ポリイミドなどで代表されるような高分子材料、ガラス、結晶化ガ ラス、タングステン粉体を高濃度で混入したエポキシ樹脂、ニオブ酸鉛セラミックス、 加工性があるセラミックス(快削性セラミックス)、単結晶若しくは多結晶シリコン、水晶 、チタン酸バリウムなどのセラミックスなどを用いる。また、音響マッチング層 2の導電 性部材 20として、グラフアイト、銅などの金属を充填したグラフアイト、銅、アルミニウム 、銀、金、ニッケルなどの金属材料や、金、銀、銅、アルミニウムなどの金属若しくは力 一ボンの粉体をエポキシ樹脂などの高分子化合物に混入して導電性を持たせた高 分子材料や、カーボンなどを用いる。なお、導電性部材 20あるいは絶縁性部材又は 半導電性部材 21は、前述した材料に限定されるものではなぐ前述した材料と同程 度の音響インピーダンスを有するものであれば他の材料であってもよレ、。導電性部材
20と絶縁性部材又は半導電性部材 21の複合材料の音響インピーダンスはそれぞれ の体積比率によって決まる。
[0041] 例えば、音響マッチング層 2に必要な音響インピーダンスとして 7メガレールスの値 にしようとした場合には、導電性部材 20として約 10メガレールスの値を有する銅を充 填したグラフアイトと絶縁性部材 21として約 3メガレールスの値を有するエポキシ樹脂 を用いた複合材にしてそれぞれの部材の体積比率を選択すればよ!/、。つまり音響ィ ンピーダンスはエポキシ樹脂の体積比率が高い場合は音響インピーダンスが 3メガレ 一ルスに近くなり、銅を充填したグラフアイトの体積比率が高い場合は音響インピーダ ンスが 10メガレールスに近くなり、必要とする 7メガレールスにすることは容易に選択 できる。
[0042] なお、ここで導電性部材 20と、絶縁性部材又は半導電性部材 21との複合材料の 構成を説明したが、この組み合わせの複合材料の構成以外に、例えば絶縁性部材 又は半導電性部材 21に導電性部材を用いて導電性部材の複合材料にした構成で も良ぐつまり少なくとも導電性部材 20を有し、圧電素子 1の電極面と電気的な接続 ができる機能と音響インピーダンスを可変できる機能を備えた複合材料であれば上 記構成に限定されるものではないことは明らかである。
[0043] なお、ここでは音響マッチング層 2は 1層のタイプについて説明した力 S、この他 2層 以上の音響マッチング層を備える構成とした場合においても、それぞれの音響マッチ ング層に本複合材を設けても、また一部の層に設けた構成にしても同様の効果が得 られる。
[0044] 以上のように、圧電素子の被検体側に設けられる音響マッチング層として、少なくと も導電性部材を含む複合材料を設けることにより、音響マッチング層を所望の音響ィ ンピーダンスにすることが可能になり、これによつて周波数の広帯域化ができるため、 高分解能の診断画像を得ることができる。また、複合材料の音響マッチング層の導電 性部材を介して、圧電素子の複数箇所に電気端子を接続することができるため、信 頼性が高くかつ操作性の良好な超音波探触子を得ることができる。
[0045] また、第 1の実施の形態では、図 1Bに示す導電性部材 20と絶縁性部材又は半導 電性部材 21とが、 Z方向に対して均一な幅で形成される場合について説明したが、 絶縁性部材又は半導電性部材 21が Z方向に対して幅が連続的に変化するいわゆる 楔のような形状に、又は段階的に変化するようにして、 Z方向の厚みに対して音響ィ ンピーダンスが連続的に変化、あるいは段階的に変化するような構成にした場合に おいても同様の効果が得られる。
[0046] また、第 1の実施の形態では、図 1Bに示す導電性部材 20及び絶縁性部材又は半 導電性部材 21がほぼ等間隔で、これらを交互に配列した場合について説明した力 このほかランダムの間隔若しくはランダムに配列した場合においても同様の効果が得 られる。
[0047] また、第 1の実施の形態では、圧電素子 1の接地電極 5と電気信号を授受するため に、音響マッチング層 2を介して、その前面に接地用電気端子 9を設ける構成につい て説明したが、この代わりに、音響マッチング層 2の Z方向の両面又は片面に導電性 部材をスパッタリング、めっきあるいは印刷などにより形成し、その部分に接地用電気 端子 9を接続する構成にしても同様の効果が得られる。
[0048] また、第 1の実施の形態においては、音響マッチング層 2として、それぞれ 1つの材 種で形成された導電性部材 20と絶縁性部材又は半導電性部材 21との連結構造の ものを用いたが、導電性部材 20と絶縁性部材又は半導電性部材 21の少なくとも一 方が 2種類以上の材料で形成されていたとしても同様の効果が得られることは明らか であり、それぞれ 1つの材種の連結構造に限定されるものではない。
[0049] また、第 1の実施の形態においては、圧電素子 1の前面の電極を接地電極 5として その被検体側に接地用電気端子 9を配置するとともに、圧電素子 1の背面の電極を 信号用電極 6として、さらに信号用電極 6に信号用電気端子 7を接触させているが、こ の代わりに、圧電素子 1の前面の電極を信号用電極 6としてその被検体側に信号用 電気端子 7を配置するとともに、圧電素子 1の背面の電極を接地電極 5として、さらに 接地電極 5に接地用電気端子 9を接触させても、原理的には超音波を送受信するこ とは可能である。
[0050] <第 2の実施の形態〉
図 2Aは本発明に係る超音波探触子の第 2の実施の形態の構成を示す断面図であ り、図 2B、図 2D、図 2Eはそれぞれ図 2Aに示す超音波探触子を構成する第 1の音 響マッチング層の構成例を示す斜視図であり、図 2Cは図 2Bに示す第 1の音響マツ チング層の絶縁性部材又は導電性部材として用いたシリコン単結晶の体積比率と音 響インピーダンスとの関係を示した線図である。
[0051] 図 2Aにおいて、超音波探触子 10Bは板状の圧電素子 1と、この圧電素子 1の前面
(図面の上方)に積み重ねられた 2層の音響マッチング層 2 (2a、 2b)と、必要に応じ て圧電素子 1の背面(図面の下方)に装着される背面負荷材 3と、同じく必要に応じて 音響マッチング層 2 (2a、 2b)の前面に装着される音響レンズ 4とを備えている。これら の構成要素のそれぞれの機能は、従来の超音波探触子を構成する要素が持つ機能 と同様である。
[0052] 超音波探触子 10Bの構成要素のうち、圧電素子 1は PZT系のような圧電セラミック ス、 PZN-PT、 PMN-PT系のような圧電単結晶、又はこれらの材料と高分子材料を 複合した複合圧電体、あるいは PVDFなどで代表される高分子材料の圧電体などに よって形成される。圧電素子 1の前面には接地電極 5が形成され、圧電素子 1の背面 には信号用電極 6が形成されている。接地電極 5及び信号用電極 6は、それぞれ金 や銀の蒸着、スパッタリング、あるいは銀の焼き付けなどによって形成される。
[0053] また、圧電素子 1に形成されている信号用電極 6と背面負荷材 3との間に、ポリイミド などの高分子材料によって構成される絶縁性フィルム 7aの一主面に銅などの導電性 膜 7bが披着された信号用電気端子 7が揷着されている。この場合、圧電素子 1に形 成されている信号用電極 6に信号用電気端子 7の導電性膜 7bが接触し、かつ信号 用電気端子 7の絶縁性フィルム 7aが背面負荷材 3に接触するように、絶縁性フィルム 7aの一主面が圧電素子 1側に向けられる。一方、圧電素子 1に形成されている接地 電極 5の前面には、絶縁性部材又は半導電性部材と、導電性部材との複合材料で 構成される第 1の音響マッチング層 2aと、ポリイミドなどの高分子材料によって構成さ れる絶縁性フィルム 9aの一主面に銅などの導電性膜 (厚みは特性に影響が小さいよ うに 5マイクロメートル以下が好ましい) 9bが披着された接地用電気端子 9と、エポキシ 樹脂、ポリイミドなどの高分子材料で構成される第 2の音響マッチング層 2bとが順次 積み重ねられている。この場合、第 1の音響マッチング層 2aの複合材料の導電性部 材に接地用電気端子 9の導電性膜 9bが接触し、接地用電気端子 9の絶縁性フィノレ ム 9aに第 2の音響マッチング層 2bが接触するように、絶縁性フィルム 9aの一主面が 第 1の音響マッチング層 2a側に向けられる。第 2の音響マッチング層 2bは絶縁性部 材であっても、あるいは導電性部材であってもよい。そして、必要に応じて、第 2の音 響マッチング層 2bの前面にはシリコーンゴムなどの材料を用いた音響レンズ 4が装着 される。なお、導電性膜 7b、 9bは電気的に導電性を有する材料であれば何でも良く 金属に限定するものではない。
[0054] 上記のように構成された超音波探触子 10Bの動作について以下に説明する。
圧電素子 1に形成された信号用電極 6は、信号用電気端子 7を介して、また、圧電 素子 1の接地電極 5は第 1の音響マッチング層 2aの複合材料の導電性部材と接地用 電気端子 9とを介して、それぞれ不図示のケーブルの一端に電気的に接続され、こ れらのケーブルのそれぞれの他端は不図示の超音波診断装置の本体部に接続され る。これによつて、超音波診断装置の本体部で作られる規則正しいパルス電圧を圧 電素子 1に印加して超音波を発信し、また、受信した超音波のエコーを電気信号に 変換して超音波診断装置の本体部に送信する。
[0055] 絶縁性部材又は半導電性部材と、導電性部材との複合材料 (以下、導電性部材と 絶縁性部材又は半導電性部材との複合材料と称する)で構成されている第 1の音響 マッチング層 2aとしては、その音響インピーダンスが圧電素子 1と第 2の音響マツチン グ層 2bの各音響インピーダンスの中間になるような材料が選ばれる。この第 1の音響 マッチング層 2aの導電性部材と絶縁性部材又は半導電性部材とのそれぞれの連結 構造の構成例を図 2B、図 2D及び図 2Eに示す。図 2B、図 2D及び図 2Eにおいては 、被検体に向けて超音波を放射する方向を Z方向、これと直交する 2つの方向をそれ ぞれ X方向、 Y方向としている。
[0056] 図 2Bに示した第 1の音響マッチング層 2a— 1は、それぞれ短冊状に形成された導 電性部材 20と絶縁性部材又は半導電性部材 21とが X方向に交互に配置されたもの で、このうち導電性部材 20は Y及び Zの 2方向につながりがあり、また絶縁性部材又 は半導電性部材 21も同じように Y及び Zの 2方向につながりがある構造体になってお り、以下の説明ではこの連結構造を 2— 2型連結構造と呼ぶこととする。ここで、複数 の導電性部材 20は圧電素子 1の前面に形成された接地電極 5と、接地用電気端子 9 の絶縁性フィルム 9aの一主面に披着された導電性膜 9bとにそれぞれ接触して、圧 電素子 1の接地電極 5と接地用電気端子 9の導電性膜 9bとを電気的に接続する機能 を有している。
[0057] 図 2Dに示した第 1の音響マッチング層 2a— 2は、それぞれ円柱状に形成された複 数の導電性部材 20を、その端部をそれぞれ Z方向に向けた状態で Y方向に列状に 配置するとともに、 X方向に複数列配置し、その周囲を絶縁性部材又は半導電性部 材 21で取り囲んだもので、このうち導電性部材 20は Z方向のみの 1方向につながり があり、 X、 Y方向のつながりはない。また絶縁性部材又は半導電性部材 21は X、 Y 、 Zの 3方向につながりがある構造体となっており、この連結構造を 1—3型連結構造 と呼ぶこととする。ここで、複数の導電性部材 20は圧電素子 1の前面に形成された接 地電極 5と、接地用電気端子 9の絶縁性フィルム 9aの一主面に披着された導電性膜 9bとにそれぞれ接触して、圧電素子 1の接地電極 5と接地用電気端子 9の導電性膜 9bとを電気的に接続する機能を有している。
[0058] 図 2Eに示した第 1の音響マッチング層 2a— 3は、それぞれ四角柱状に形成された 複数の絶縁性部材又は半導電性部材 21を、その端部をそれぞれ Z方向に向けた状 態で Y方向に列状に配置するとともに、 X方向に複数列配置し、その周囲を導電性 部材 20で取り囲んだもので、このうち導電性部材 20は X、 Y、 Ζの 3方向につながりが あり、また絶縁性部材又は半導電性部材 21は、 Ζ方向のみの 1方向につながりがあ る構造体となっており、この連結構造を 3— 1型連結構造と呼ぶこととする。ここで、導 電性部材 20は圧電素子 1の前面に形成された接地電極 5と接地用電気端子 9の絶 縁性フィルム 9aの一主面に披着された導電性膜 9bとにそれぞれ接触して、圧電素 子 1の接地電極 5と接地用電気端子 9の導電性膜 9bとを電気的に接続する機能を有 している。
[0059] 前述したように、図 2Aに示した第 1の音響マッチング層 2aの音響インピーダンスは 圧電素子 1の音響インピーダンスと第 2の音響マッチング層 2bの音響インピーダンス の間の値を有していることが必要である。例えば圧電素子 1として音響インピーダンス が約 30メガレールスの値を有する PZT-5Hの圧電セラミックスを用い、音響インピー ダンスが約 1. 6メガレールスの値を有する生体のような被検体を対象とした場合には 、第 2の音響マッチング層 2bの音響インピーダンスは 3メガレールス前後の値の材料 を用いることになる。したがって、第 1の音響マッチング層 2aの音響インピーダンスは 少なくとも 3から 30メガレールスの間の値を有する材料が必要になる。
[0060] 一般的に、第 1の音響マッチング層 2aの音響インピーダンスは 5から 20メガレール スの間の値にすることが望ましぐまた、その値が大きくなるほど周波数特性の帯域が 広くなる傾向にある。したがって、第 1の音響マッチング層 2aとして 10から 20メガレー ルスの範囲の材料を用いることが好適である。音響インピーダンスが 10〜20メガレー ノレスの値を有する材料としては、例えばガラス、結晶化ガラス、金属タングステン粉体 を高濃度で混入したエポキシ樹脂、ニオブ酸鉛セラミックス、加工性があるセラミック ス(快削性セラミックス)、単結晶若しくは多結晶シリコン、水晶などがある。し力もなが ら、これらの材料は!/、ずれも電気的には絶縁性部材又は半導電性部材である。
[0061] そこで、例えば、図 2Aに示した超音波探触子 10Bを用いて説明する力、第 1の音 響マッチング層 2aとして絶縁性部材又は半導電性部材を用い、圧電素子 1の接地電 極 5の端部に対応する部位を切り欠いて音響マッチング層のない部分(図示せず)を 作り、その部分から電気端子(図示せず)を取り出す構成も考えられる。しかし、このよ うな構成にすると、性能的には周波数の広帯域化が可能になる反面、音響マツチン グ層の無い部分においても圧電素子 1が振動して超音波を発生するため、被検体に 送信する超音波が乱れて超音波画像が劣化する。また、接地電極 5から取り出す電 気端子は 1箇所であるため、診断操作中に超音波探触子を落下させたり、あるいは 超音波探触子に打撃など機械的な衝撃を加えたりしたことにより、圧電素子 1が割れ たとき、接地電極 5も同じように割れて電気的な断線が発生するなどにより、故障する おそれがある。
[0062] 図 2Aに示した第 2の実施の形態は、これらの問題を解決し、しかも周波数の広帯 域化が可能な構成を実現したものである。すなわち、圧電素子 1の接地電極 5が、第 1の音響マッチング層 2aの複数の導電性部材 20を介して、接地用電気端子 9の金 属膜 9bと電気的に接続される構成にしているため、圧電素子 1の全面にて均一で所 望の超音波の送信、受信をすること力 Sできるとともに、機械的な衝撃などによって圧 電素子 1及び接地電極 5が割れたとしても、第 1の音響マッチング層 2aの複数個の導 電性部材 20で接続されて!/、るため、断線して故障することが極めて少なくなる。
[0063] ここでは、第 1の音響マッチング層 2a— 1、 2a— 2、 2a— 3の絶縁性部材又は半導 電性部材 21として、前述したガラス、結晶化ガラス、タングステン粉体を高濃度で混 入したエポキシ樹脂、ニオブ酸鉛セラミックス、加工性があるセラミックス(快削性セラ ミックス)、単結晶若しくは多結晶シリコン、水晶、チタン酸バリウムなどのセラミックス などを用いる。また、第 1の音響マッチング層 2a— 1、 2a— 2、 2a— 3の導電性部材 2 0として、銅、アルミニウム、銀、金、ニッケノレなどの金属材料や、金、銀、銅、アルミ二 ゥムなどの金属若しくはカーボンの粉体をエポキシ樹脂などの高分子化合物に混入 して導電性を持たせた高分子材料や、グラフアイト、カーボンなどを用いる。なお、導 電性部材 20あるいは絶縁性部材又は半導電性部材 21は、前述した材料に限定さ れるものではなぐ前述した材料と同程度の音響インピーダンスを有するものであれ ば他の材料であってもよ!/、。導電性部材 20と絶縁性部材又は半導電性部材 21との 複合材料の音響インピーダンスはそれぞれの体積比率によって決まる。
[0064] なお、ここで導電性部材 20と絶縁性部材又は半導電性部材 21との複合材料の構 成を説明したが、この他、前記組み合わせの複合材料の構成以外、例えば絶縁性部 材又は半導電性部材 21に導電性部材を用いて導電性部材の複合材料にした構成 でも良く、つまり少なくとも導電性部材 20を有し、圧電素子 1の電極面と電気的な接 続ができる機能と音響インピーダンスを可変できる機能を備えた複合材料であれば 上記構成に限定されるものではないことは明らかである。 [0065] 導電性部材 20と絶縁性部材又は半導電性部材 21との複合材料は、連結構造が 1 3型、 2— 2型、 3—1型においては、 2種類のそれぞれの材料が有する音響インピ 一ダンスの間の値になり、しかも、それらの体積比率を変えることによって、所望の音 響インピーダンスの材料を得ることができる。
[0066] また、 1 3型、 2— 2型、 3— 1型の連結構造を有する導電性部材 20と絶縁性部材 又は半導電性部材 21との複合材料を第 1の音響マッチング層 2aとして機能させるた めには、複合材料が一体として超音波を伝搬させるように、導電性部材 20の幅及び その配列間隔を決定する。また、導電性部材 20の体積比率が小さい場合には、その 幅及び配列間隔を考慮する必要はなぐ導電性部材 20は電気的な接続機能を主に してその材料を選択すればよ!/、。
[0067] また、音響マッチング層としての機能、すなわち導電性能を必要としないで音響イン ピーダンスのみを所望の値に整合させることを目的として図 2B、図 2D、図 2Eに示し た連結構造を用る場合には、導電性部材と絶縁性部材又は半導電性部材とレ、ぅ材 料の選択をする必要はなぐ絶縁性部材どうしの連結構造、あるいはエポキシ樹脂の ような絶縁性部材とシリコンのような半導電性部材との連結構造であってもよい。
[0068] 次に、図 2Bに示す 2— 2型連結構造を有する第 1の音響マッチング層 2a— 1の製 造方法の一例を以下に説明する。絶縁性部材又は半導電性部材 21としてシリコン 単結晶を用いる。このシリコン単結晶は図 2Bの Z方向が平坦になっているものとする 。その平坦面に対してレーザ照射、化学的なエッチング、あるいはダイシングマシ一 ンなどによる機械加工などにより、任意の間隔で図 2Bの Y方向に導電性部材 20を装 填するための溝を形成する。次に、溝の中に銀などの粉体を混入した導電性のェポ キシ樹脂などの導電性接着剤を充填して硬化させる。この導電性接着剤はシリコン 単結晶に比べて音響インピーダンスがより小さい材料である。次に、第 1の音響マツ チング層 2aとして Z方向に、ほぼ 4分の 1波長の厚みにスライス加工して形成する。こ の場合、シリコン単結晶に近い音響インピーダンスの第 1の音響マッチング層 2aを要 望するのであれば、導電性部材 20の導電性接着剤の体積比率を小さくすればよぐ また小さい音響インピーダンスの値を必要とするのであれば体積比率を大きくすれば よい。 [0069] 例えば、導電性部材 20を形成するための導電性接着剤としてエコーボンド 56C ( エマーソンアンドカミング社)を用い、絶縁性部材又は半導電性部材 21としてシリコン 単結晶を用いた場合、それぞれの音響インピーダンスは約 6. 5メガレールス、 19. 7 メガレールスである。そこでシリコン単結晶をダイシンダマシーンにより任意の間隔と 溝幅で分割し、その溝の部分にエコーボンド 56Cを充填して作成した材料の音響ィ ンピーダンス (密度 X音速)を測定すると、シリコン単結晶の体積比率が 63· 5%の場 合は 15· 3メガレールスとなり、また、シリコン単結晶の体積比率が 43%の場合は 12 . 7メガレールスとなった。
[0070] 図 2Cは上述した 2つの材料に対する測定結果に基づいて作成したシリコン単結晶 の体積比率と音響インピーダンスとの関係を示した線図である。この線図から明らか なように、導電性部材 20を形成するための導電性接着剤としてエコーボンド 56Cを 用い、シリコン単結晶の体積比率を 0パーセント(導電性接着剤のみ)から 100パー セント (シリコン単結晶のみ)の範囲で変化させた場合、導電性接着剤とシリコン単結 晶の複合材料の音響インピーダンスは約 6. 5メガレールスからシリコン単結晶の音響 インピーダンス 19. 7メガレールスまでほぼ直線的に変化することが分かる。また、発 明者はこの体積比率と音響インピーダンスとに相関があることを確認することができた
[0071] 次に、図 2Bに示す 2— 2型連結構造における第 1の音響マッチング層 2a— 1の他 の製造方法について説明する。絶縁性部材又は半導電性部材 21としての板状のシ リコン単結晶と、導電性部材 20としての板状のグラフアイトや金属とを、図 2Bの X方 向に交互に積層して接着するか、あるいは絶縁性部材又は半導電性部材 21として の板状のシリコン単結晶の一主面にそれぞれ金属をスパッタリング、めっき、あるいは 印刷などの方法で薄い膜を形成したものを、図 2Bの X方向に順次に積層して接着し た後、図 2Bの Z方向の厚みが得られるようにスライス加工する。この製造方法によれ ば大量生産することも可能である。
[0072] 次に、図 2Dに示す 1—3型連結構造を有する第 1の音響マッチング層 2a— 2の製 造方法の一例を説明する。絶縁性部材又は半導電性部材 21として図 2Dの Z方向に 厚みを有するシリコン単結晶を用意する。そして、このシリコン単結晶にレーザ照射、 化学的なエッチングあるいは機械加工などにより任意の間隔で複数個の導電性部材 20を設けるための穴を設ける。次に、その穴に、銀などの粉体を混入した導電性の エポキシ樹脂などの導電性接着剤を充填し硬化させる。その後、第 1の音響マツチン グ層としてほぼ 4分の 1波長の厚みに加工して形成する。シリコン単結晶に近い音響 インピーダンスの第 1の音響マッチング層を要望するのであれば、導電性部材 21の 導電性接着剤の体積比率を少なくすればよく、またもつと小さレヽ音響インピーダンス の値を必要とするのであれば導電性部材 21の導電性接着剤の体積比率を大きくす れば'よい。
[0073] ちなみに、単結晶シリコンの音響インピーダンスは 19· 7メガレールスで、また導電 性接着剤としてエコーボンド 56C (エマーソンアンドカミング社)の音響インピーダンス は約 6. 5メガレールスであり、それぞれの体積比率を調整することにより図 2Bの構造 と同様に、音響インピーダンスを 6. 5メガレールスから 19. 7メガレールスの範囲の値 にすることカでさる。
[0074] 次に、図 2Eに示す 3— 1型連結構造を有する第 1の音響マッチング層 2a— 3の製 造方法の一例を以下に説明する。絶縁性部材又は半導電性部材 21としてシリコン 単結晶を用意する。そして、このシリコン単結晶にレーザ照射、化学的なエッチング あるいはダイシンダマシーンによる機械加工などにより任意の間隔で X、 Yの両方向 に複数個の溝を設けて角柱を形成し、その後、導電性接着剤などの導電性部材 20 を複数の溝に充填し硬化させる。その後、第 1の音響マッチング層として、ほぼ 4分の 1波長の厚みに加工して形成する。
[0075] 以上のように、圧電素子の被検体側に設けられる音響マッチング層として、導電性 部材と絶縁性部材又は半導電性部材との複合材料を設けることにより、音響マツチン グ層を所望の音響インピーダンスにすることが可能になり、これによつて周波数の広 帯域化ができるため、高分解能の診断画像を得ることができる。また、複合材料の音 響マッチング層の導電性部材を介して、圧電素子の複数箇所に電気端子を接続す ること力 Sできるため、信頼性が高くかつ操作性の良好な超音波探触子を得ることがで きる。
[0076] なお、第 2の実施の形態では、図 2Dに示す 1—3型連結構造の導電性部材 20とし て円柱の形状を有するものを用いたが、このほか角柱あるいは球など他の形状を有 するものを用いても同様の効果が得られる。また、 z方向に対してコーンのような円錐 状の形状にして、 Z方向の厚みに対して音響インピーダンスが連続的に変化するよう な構成にした場合においても同様の効果が得られる。
[0077] また、第 2の実施の形態では、図 2Bに示す 2— 2型連結構造の導電性部材 20と絶 縁性部材又は半導電性部材 21とが、 Z方向に対して均一な幅で形成される場合に ついて説明した力 S、絶縁性部材又は半導電性部材 21が Z方向に対して幅が連続的 に変化するいわゆる楔のような形状にして、 Z方向の厚みに対して音響インピーダン スが連続的に変化するような構成にした場合においても同様の効果が得られる。
[0078] また、第 2の実施の形態では、図 2Bに示す 2— 2型、図 2Dに示す 1 3型及び図 2 Eに示す 3 1型の各連結構造の導電性部材 20及び絶縁性部材又は半導電性部 材 21がほぼ等間隔で、これらを交互に配列した場合について説明した力 このほか ランダムの間隔若しくはランダムに配列した場合においても同様の効果が得られる。
[0079] また、第 2の実施の形態では、圧電素子 1の接地電極 5と電気信号を授受するため に、第 1の音響マッチング層 2aを介して、その前面に接地用電気端子 9を設ける構成 について説明したが、この代わりに、第 1の音響マッチング層 2aの Z方向の両面又は 片面に導電性部材をスパッタリング、めっきあるいは印刷などにより形成し、その部分 に接地用電気端子 9を接続する構成にしても同様の効果が得られる。
[0080] また、第 2の実施の形態においては、第 1の音響マッチング層 2aとして、それぞれ 1 つの材種で形成された導電性部材 20と絶縁性部材又は半導電性部材 21との連結 構造のものを用いたが、導電性部材 20と絶縁性部材又は半導電性部材 21の少なく とも一方が 2種類以上の材料で形成されていたとしても同様の効果が得られることは 明らかであり、それぞれ 1つの材種の連結構造に限定されるものではない。
[0081] また、第 2の実施の形態においては、圧電素子 1の前面の電極を接地電極 5として その被検体側に接地用電気端子 9を配置するとともに、圧電素子 1の背面の電極を 信号用電極 6として、さらに信号用電極 6に信号用電気端子 7を接触させているが、こ の代わりに、圧電素子 1の前面の電極を信号用電極 6としてその被検体側に信号用 電気端子 7を配置するとともに、圧電素子 1の背面の電極を接地電極 5として、さらに 接地電極 5に接地用電気端子 9を接触させても、原理的には超音波を送受信するこ とは可能である。
[0082] <第 3の実施の形態〉
次に、本発明の第 3の実施の形態について説明する。図 3Aは本発明に係る超音 波探触子の第 3の実施の形態の構成を、その一部を破断して示した斜視図であり、 図 3Bは、図 3Aに示した超音波探触子を、その図中に示した 3つの方向 X、 Y、 Ζのう ち、 Υ— Ζ平面で切断した断面を X方向から見た断面図であり、図 3C、 3Dはそれぞ れ図 3A及び図 3Bに示した超音波探触子を構成する要素の具体的な構成例を示す 斜視図である。
[0083] 図 3A及び図 3Bに示した超音波探触子 10Cは、図 3A中に示した X、 Y、 Ζのうち、 X方向に配列された複数の圧電素子 1と、各圧電素子 1に対応して被検体側となる Ζ 方向前面に設けられた 2層の音響マッチング層 2 (2a、 2b)と、必要に応じて圧電素 子 1の背面に設けられる背面負荷材 3と、同じく必要に応じて複数の音響マッチング 層 2 (2a、 2b)上に共通に設けられる音響レンズ 4と、圧電素子 1と背面負荷材 3との 間に揷着された複数の信号用電気端子 7と、第 1の音響マッチング層 2aと第 2の音響 マッチング層 2bとの間に揷着された接地用電気端子 9とを備えている。これらの構成 要素のそれぞれの機能は、従来の超音波探触子を構成する要素が持つ機能と同様 である。
[0084] 以下、説明の都合上、図 3A及び図 3Bに示した超音波探触子 10Cの製造方法に ついて説明する。
複数の圧電素子 1を形成するために、 PZT系のような圧電セラミックス、 PZN-PT、 PMN-PT系のような圧電単結晶、又はこれらの材料と高分子材料を複合した複合 圧電体、あるいは PVDFなどで代表される高分子材料の圧電体などで構成され、所 定の厚さを有する板材、すなわち圧電板材を準備する。この圧電板材の一主面、す なわち Z方向の前面には接地電極 5を、その背面には信号用電極 6を、それぞれ金 や銀の蒸着、スパッタリング、あるいは銀の焼き付けなどによって形成する。
[0085] また、所定の厚さを有する板状の背面負荷材 (背面負荷材を備えない超音波探触 子ではこれに代わる部材) 3と、導電性部材と絶縁性部材又は半導電性部材との複 合材料で構成され、複数の第 1の音響マッチング層 2aを形成するための板材と、ェ ポキシ樹脂、ポリイミドなどの高分子材料で構成された複数の第 2の音響マッチング 層 2bを形成するための板材と、ポリイミドなどの高分子材料によって構成される絶縁 性フィルム 7aの一主面に銅などの導電性膜 7bが披着され、全体力 Sリボン状に形成さ れた複数の信号用電気端子 7と、ポリイミドなどの高分子材料によって構成される絶 縁性フィルム 9aの一主面に銅などの導電性膜 (厚みは音響特性に対する影響が少 ないように 5マイクロメートル以下が好ましい) 9bが披着された接地用電気端子 9とを 準備する。なお、第 2の音響マッチング層 2bを形成するために用いるエポキシ樹脂、 ポリイミドなどの高分子材料は絶縁性部材である力、この代わりに導電性部材を用い てもよい。なお、導電性膜 7b、 9bは電気的に導電性を有する材料であれば何でも良 く金属に限定するものではない。
[0086] そこで、図 3Aに示したように、背面負荷材 3の前面に、複数の信号用電気端子 7を X方向に所定の間隔で載置し、その上に圧電素子 1を形成するための圧電板材を重 ね合わせ、さらに、圧電板材の前面に第 1の音響マッチング層 2aを形成するための 板材と、接地用電気端子 9と、第 2の音響マッチング層 2bを形成するための板材とを 順次に重ね合わせて、これらを一体的に固着する。この場合、背面負荷材 3と圧電板 材との間に装着される複数の信号用電気端子 7は、それぞれ絶縁性フィルム 7aの一 主面に披着されている導電性膜 7bが圧電板材に形成された信号用電極 6に接触し 、絶縁性フィルム 7aが背面負荷材 3に接触するように、絶縁性フィルム 7aの一主面が 圧電板材側(図面の上方)に向けられる。また、第 1の音響マッチング層 2aを形成す るための板材と第 2の音響マッチング層 2bを形成するための板材との間に揷着され る接地用電気端子 9は、絶縁性フィルム 9aの一主面に形成された導電性膜 9bが第 1の音響マッチング層 2aに接触するように、絶縁性フィルム 9aの一主面が第 1の音響 マッチング層 2a側に向けられる。
[0087] 以上のようにして、背面負荷材 3、複数の信号用電気端子 7、圧電素子 1を形成す るための圧電板材、第 1の音響マッチング層 2aを形成するための板材、接地用電気 端子 9及び第 2の音響マッチング層 2bを形成するための板材を一体的に固着した後 、スライシンダマシーンなどによって第 2の音響マッチング層 2bの前面から背面負荷 材 3の前面部まで掘り下げた複数の溝、すなわち第 2の音響マッチング層 2b、接地 用電気端子 9、第 1の音響マッチング層 2a、圧電板材、信号用電気端子 7及び背面 負荷材 3の一部を 1ユニットとして、複数の圧電素子ユニットに分割する分割溝を形 成する。この場合、 X方向に所定の間隔で配置された信号用電気端子 7の中間部に 分割溝を形成する。これによつて、圧電素子ユニットが並列に配置された圧電素子列 が形成される。次に、音響的な結合が小さいシリコーンゴムやウレタンゴムなどのよう な材料 (図示せず)を各分割溝に充填し、さらに、必要に応じて第 2の音響マッチング 層 2bの上面にシリコーンゴムなどの材料を用いた音響レンズ 4を装着する。背面負荷 材を備えない超音波探触子においては、この段階で背面負荷材 3に代わる部材を除 去する。
[0088] なお、ここでは第 1の音響マッチング層 2aと第 2の音響マッチング層 2bとの間に、絶 縁性フィルム 9aに導電性膜 9bを披着させた接地用電気端子 9を揷着し、接地用電 気端子 9の導電性膜 9bと第 1の音響マッチング層 2aの導電性部材とを接触させるこ とによって、接地用電気端子 9と圧電素子 1に形成された接地電極 5とを電気的に接 続するものについて説明したが、このほか、第 2の音響マッチング層 2bとして導電性 部材を用い、この第 2の音響マッチング層 2bの前面に導電性膜 9bを披着させた接地 用電気端子 9を装着し、第 1の音響マッチング層 2a及び第 2の音響マッチング層 2b を介して、接地用電気端子 9と圧電素子 1に形成された接地電極 5とを電気的に接続 するようにしても同様の動作をさせることができる。
[0089] 上記のように構成された超音波探触子 10Cの動作について以下に説明する。
圧電素子 1の背面に形成された信号用電極 6は、信号用電気端子 7を介して、また 、圧電素子 1の前面に形成された接地電極 5は、第 1の音響マッチング層 2aの複合 材料の導電性部材と接地用電気端子 9とを介して、それぞれ不図示のケーブルの一 端に電気的に接続され、これらのケーブルのそれぞれの他端は不図示の超音波診 断装置の本体部に接続される。これによつて、超音波診断装置の本体部で作られる 規則正しいパルス電圧を圧電素子 1に印加して超音波を発信し、また、受信した超 音波のエコーを電気信号に変換して超音波診断装置の本体部に送信する。
[0090] この場合、詳細を後述する第 1の音響マッチング層 2aの導電性部材は、圧電素子 1に形成された接地電極 5と接地用電気端子 9の導電性膜 9bとを電気的に接続する 形状であればよぐ特定の形状に限定するものではない。また、第 1の音響マツチン グ層 2aの導電性部材は、 1つの圧電素子 1に対して 2箇所以上で、圧電素子 1の接 地電極 5と接地用電気端子 9の導電性膜 9bとが電気的に接続されるような構成が望 ましぐ導電性部材 20の数が多いほど接地電極 5が圧電素子 1と共に割れても、信号 電送経路が断線して故障する頻度は少なくなり、信頼性の高いものとなる。また、第 1 の音響マッチング層 2aの絶縁性部材又は半導電性部材は音響インピーダンスを選 択することが主たる目的となる。そのため、第 3の実施の形態のように 2層の音響マツ チング層を備えた場合、第 1の音響マッチング層 2aの音響インピーダンスは、圧電素 子 1の音響インピーダンスと第 2の音響マッチング層 2bの音響インピーダンスとの間 の値を有していることが必要で、例えば、 5メガレールスから 15メガレールスの範囲の 値が選ばれる。このような範囲の音響インピーダンスが得られる材料を導電性部材と 絶縁性部材又は半導電性部材とを複合した材料とすればよい。
[0091] 導電性部材と絶縁性部材又は半導電性部材との複合材料で構成した第 1の音響 マッチング層 2aにおける導電性部材と絶縁性部材又は半導電性部材材料とのそれ ぞれの連結構造の一例を図 3C、図 3Dに示す。図 3C、図 3Dにおいて、厚さ方向で ある Z方向は被検体側の方向、 X方向は圧電素子 1の配列方向、 Y方向は X方向及 び Z方向と直交する方向を示している。
[0092] 図 3Cにおいて、第 1の音響マッチング層 2a— 4を構成する複数の導電性部材 20 は円柱状に形成されたものを、その軸芯を Z方向に揃えたもので、 Z方向の 1方向の みにつながりがあり、絶縁性部材又は半導電性部材 21は X、 Y、 Ζの 3方向につなが りがある構造体となって!/、る。この導電性部材 20と絶縁性部材又は半導電性部材 21 との複合材料の連結構造を 1 3型連結構造と呼ぶ。また、圧電素子ユニット、すな わち 1個の圧電素子 1に対応する 1個の第 1の音響マッチング層 2a— 4の導電性部 材 20は、それぞれ 3行 X 22列にして合計 66個が配設されている。この導電性部材 2 0の数については、前述したように、圧電素子 1の接地電極 5との接続箇所が多くなる ほど信頼性は高くなる力 S、導電性部材 20の数については 2個以上であればよぐ 66 個に限定されるものではない。ただし、導電性部材 20が第 1の音響マッチング層 2aと して機能するように、つまり、導電性部材 20と絶縁性部材又は半導電性部材 21の複 合材料が音響的に 1つの音響マッチング層として機能する形態にすることが必要で ある。なお、図 3Cに示す第 1の音響マッチング層 2a— 4は、圧電素子 1に対応して既 に分割された構成の状態を示している力 分割される前の状態は、前述したように全 体が 1枚の板状のものになっている。一方、導電性部材 20に音響マッチング機能を 持たせる必要がないとき、つまり導電性部材 20が、絶縁性部材又は半導電性部材 2 1に対してその体積比率が著しく少ない場合は、圧電素子 1の接地電極 5とを接続さ せる機能のみを持たせるだけで同じ効果が得られる。
[0093] このように、複数の導電性部材 20は、圧電素子 1の接地電極 5と接地用電気端子 9 の金属膜 9bとにそれぞれ接触して、その厚さ方向である Z方向でこれらを電気的に 接続させる機能を有している。ここでは、 Z方向の 1方向につながりがあるものを導電 性部材 20とし、 X、 Y、 Ζ方向の 3方向につながりがあるものを絶縁性部材又は半導 電性部材 21とした力 これらの材料を互いに入れ替えて、絶縁性部材又は半導電性 部材側が Ζ方向の 1方向につながりがあり、導電性部材側が X、 Υ、 Ζの 3方向につな 力 Sりがある連結構造体、すなわち 3— 1型連結構造体(図示を省略)にしても同様の ¾]果を得ること力できる。
[0094] また、図 3Dに示した音響マッチング層 2a— 5は、導電性部材 20と絶縁性部材又は 半導電性部材 21と交互に配置したもので、導電性部材 20は、圧電素子 1の配列方 向の X方向と、厚さ方向である Z方向の 2方向につながりがあり、また絶縁性部材又は 半導電性部材 21も同様に、圧電素子 1の配列方向の X方向と、 Z方向の 2方向につ ながりがある構造体となっており、これらの複合材料の連結構造を 2— 2型連結構造 と呼ぶ。したがって、複数の導電性部材 20は圧電素子 1の接地電極 5及び接地用電 気端子 9の導電性部材とは厚さ方向である Z方向で電気的な接続が可能となる。
[0095] 図 3Dにおいて、 1個の圧電素子 1に対応する 1個の第 1の音響マッチング層 2a— 5 の導電性部材 20は、絶縁性部材又は半導電性部材 21と交互にして Y方向に 11個 配置されている。この導電性部材 20は、前述したように、圧電素子 1の接地電極 5と の接続箇所が多レ、ほど信頼性は高くなる力 導電性部材 20の数につ!/、ては 2個以 上であればよい。ただし、導電性部材 20が第 1の音響マッチング層 2aとして機能す るように、つまり導電性部材 20と絶縁性部材又は半導電性部材 21との複合材料が 1 つの音響マッチング層として機能する形態にすることが必要である。なお、図 3Dに示 す第 1の音響マッチング層 2a— 5は、圧電素子 1に対応して既に分割された構成の 状態を示している力 分割される前の状態は、前述したように、全体が 1枚の板状のも のになつており、導電性部材 20及び絶縁性部材又は半導電性部材 21は圧電素子 1 の配列方向である X方向に連結した構成になっている。一方、導電性部材 20に音響 マッチング機能を持たせる必要がないとき、つまり導電性部材 20が、絶縁性部材又 は半導電性部材 21に対してその体積比率が著しく少ない場合は、圧電素子 1の接 地電極 5とを接続させる機能のみを持たせるだけで同じ効果が得られる。
[0096] また、図 3Dでは、第 1の音響マッチング層 2a— 5の導電性部材 20と絶縁性部材又 は半導電性部材 21は、圧電素子 1の配列方向とほぼ並行に構成した 2— 2型の連結 構造としたが、このほか、圧電素子 1の配列方向と直交する方向、あるいはそれ以外 の方向に配列した 2— 2型の連結構造にしても同様の効果が得られる。
[0097] 図 3C又は 3Dに示すような連結構造を有する第 1の音響マッチング層 2a— 4、 2a— 5は、前述したように、その音響インピーダンスが圧電素子 1の音響インピーダンスと 第 2の音響マッチング層 2bの音響インピーダンスとの間の値を有することが必要であ る力 本実施の形態のように音響マッチング層を 2層タイプにした場合には、例えば 圧電素子 1として音響インピーダンスが約 30メガレールスの値を有する PZT-5Hの 圧電セラミックを用い、音響インピーダンスが約 1. 6メガレールスの値を有する生体 のような被検体を対象とした場合には、第 2の音響マッチング層 2bの音響インピーダ ンスは約 3メガレールスの値の材料を用いることになる。
[0098] したがって、第 1の音響マッチング層 2aの音響インピーダンスは少なくとも 3から 30 メガレールスの間の値を有する材料が必要になってくる。一般的に第 1の音響マッチ ング層 2aの音響インピーダンスは、 5から 20メガレールスの間の値にすることが望ま しぐまた、その値が大きくなるほど、周波数特性の帯域が広くなる傾向があり、広帯 域の周波数特性を得るためには、第 1の音響マッチング層 2aの音響インピーダンス の値を大きくする必要があり、 10から 20メガレールスの範囲の材料を用いる。
[0099] しかし、この範囲の値を有する材料は、例えば、ガラス、結晶化ガラス、金属タンダ ステン粉体を高濃度で混入したエポキシ樹脂、ニオブ酸鉛セラミックス、加工性があ るセラミックス(快削性セラミックス)、単結晶若しくは多結晶シリコン、水晶などがある。 し力、しながら、これらの材料は、いずれも電気的には絶縁物あるいは半導電性部材 である。
[0100] そこで、例えば、図 3Bに示した超音波探触子 10Cについて説明すると、圧電素子 1の接地電極 5の端部に対応する部位を切り欠いて音響マッチング層のない部分(図 示せず)を作り、その部分から電気端子(図示せず)を取り出す構成も考えられる。し かし、このような構成にすると、性能的には周波数の広帯域化が可能になる反面、音 響マッチング層の無い部分においても圧電素子 1は振動して超音波を発生するため 、被検体に送信する超音波が乱れて超音波画像が劣化する。また、接地電極 5から 取り出す電気端子は 1箇所であるため、診断操作中に超音波探触子を落下させたり 、あるいは超音波探触子に打撃など機械的な衝撃を加えたりしたことにより、圧電素 子 1が割れたとき、接地電極 5も同じように割れて電気的な断線が発生するなどにより 故障するおそれがある。
[0101] 第 3の実施の形態は、これらの問題を解決し、し力、も周波数の広帯域化が可能な構 成を実現したものである。すなわち、圧電素子 1の接地電極 5が、第 1の音響マツチン グ層 2aの複数の導電性部材 20を介して、接地用電気端子 9の金属膜 9bとの電気的 に接続される構成にしているため、圧電素子 1の全面に音響マッチング層を設ける構 成にできているため、圧電素子 1の全面にて均一で所望の超音波の送信、受信する ことができるとともに、機械的な衝撃などによって圧電素子 1及び接地電極 5が割れた としても、第 1の音響マッチング層 2aの複数個の導電性部材で接続されているため、 断線して故障することが極めて少なくなる。
[0102] 一方、第 1の音響マッチング層 2a— 3、 2a— 4の絶縁性部材又は半導電性部材 21 としては、第 2の実施の形態で用いた材料であるガラス、結晶化ガラス、タングステン 粉体を高濃度で混入したエポキシ樹脂、ニオブ酸鉛セラミックス、加工性があるセラミ ックス(快削性セラミックス)、単結晶若しくは多結晶シリコン、水晶、チタン酸バリウム などのセラミックスなどを用いる。また、第 1の音響マッチング層 2a— 3、 2a— 4の導電 性部材 20としては、銅、アルミニウム、銀、金、ニッケノレなどの金属や、金、銀、銅、ァ ノレミニゥムなどの金属若しくはカーボンの粉体をエポキシ樹脂などの高分子化合物 に混入して導電性を持たせた高分子材料や、グラフアイト、カーボンなどの材料を用 いる。このような導電性部材 20、絶縁性部材又は半導電性部材 21を用いた 1 3型 、 2— 2型、 3— 1型連結構造の複合材料の音響インピーダンスは、導電性部材 20と 絶縁性部材又は半導電性部材 21のそれぞれの体積比率によって決まる。例えば、 導電性部材 20として銀を用い、絶縁性部材として Xカット水晶を用いた場合、それぞ れ材料単体の音響インピーダンスは 38、 15. 3メガレールスである。この 2種類の材 料の体積比率を変えることにより、第 2の実施の形態で説明した図 2Cの線図と同様 に、 Xカット水晶の音響インピーダンス 38メガレールスと銀の音響インピーダンス 15. 3メガレールスの間の所望の値にすることができる。
[0103] なお、導電性部材 20、絶縁性部材又は半導電性部材 21が上述した以外の材料で あっても本発明の目的が達成できる材料であればよぐ上術した材料に限定するもの ではない。また、第 3の実施の形態においては、 1種類の導体 20と、 1種類の絶縁性 部材又は半導電性部材 21との連結構造を有する第 1の音響マッチング層 2aについ て説明したが、このほか、導電性部材を 2種類、絶縁性部材を 1種類〜 3種類というよ うに、 2種類以上の材料を用いても同様の効果が得られることは明らかであり、それぞ れ 1種類の材料の連結構造に限定するものではない。
[0104] また、 1 3型、 2— 2型、 3— 1型の連結構造を有する導電性部材 20と絶縁性部材 又は半導電性部材 21との複合材料を第 1の音響マッチング層 2aとして機能させるた めには、複合材料が一体として超音波が伝搬するように、導電性部材 20の幅及び配 列間隔にする。また、導電性部材 20の体積比率が少ない場合は、導電性部材 20の 幅及び配列間隔を考慮する必要はなぐ電気的な接続機能を主にしてその材料を選 択すればよい。
[0105] 図 3Cに示す 1 3型の連結構造を有する第 1の音響マッチング層 2a— 4の製造方 法としては、第 2の実施の形態として図 2Dに示した第 1の音響マッチング層 2a— 2と 同じような方法で製造すればよぐ図 3Dに示す 2— 2型の連結構造を有する第 1の音 響マッチング層 2a— 4の製造方法としては、第 2の実施の形態として図 2Bに示した 第 1の音響マッチング層 2a— 1と同じような方法で製造すればよい。 [0106] 以上のように、圧電素子の被検体側に設けられる音響マッチング層として、導電性 部材と絶縁性部材又は半導電性部材とを複合した複合材料を用いることにより、その 音響インピーダンスを所望の値にすることが可能になり、周波数の広帯域化ができる ことによって、高分解能の診断画像を得ることができ、また、複合材料を構成する導 電性部材から電気端子を取り出すことができるため、信頼性が高くかつ操作性が良 好な超音波探触子を得ることができる。
[0107] なお、第 3の実施の形態では、 1—3型連結構造の導電性部材 20として、円柱の形 状を有するものを用いた力 このほか角柱あるいは球など他の形状を有するものを用 いても同様の効果が得られる。また、 1—3型連結構造の導電性部材 20として、 Z方 向に対してコーンのような円錐状の形状にして、 Z方向の厚みに対して音響インピー ダンスが連続的に変化するような構成にした場合においても同様の効果が得られる。
[0108] また、第 3の実施の形態では、 2— 2型連結構造の導電性部材 20と絶縁性部材又 は半導電性部材 21が、 Z方向に対して均一な幅で配列される場合について説明し た力 これらの部材が Z方向に対して幅が連続的に変化するいわゆる楔のような形状 にして、 Z方向の厚みに対して音響インピーダンスが連続的に変化するような構成に した場合においても同様の効果が得られる。
[0109] また、第 3の実施の形態では、 1 3型、 2— 2型及び 3— 1型の各連結構造の導電 性部材 20と絶縁性部材又は半導電性部材 21とがほぼ等間隔で、これらを交互に配 歹 IJした場合について説明した力 このほかランダムの間隔若しくはランダムに配列し た場合においても同様の効果が得られる。
[0110] また、第 3の実施の形態では、圧電素子 1の接地電極 5と電気信号を授受するため に、第 1の音響マッチング層 2aの導電性部材を介して、その前面に接地用電気端子 9を設ける構成の場合について説明した力 S、この代わりに、第 1の音響マッチング層 2 aの Z方向の両面又は片面に導電性部材をスパッタリング、めっきあるいは印刷など により形成し、その部分に電気端子を接続する構成にしても同様の効果が得られる。
[0111] また、第 3の実施の形態においては、圧電素子 1を 1次元に複数個配列した構成に ついて説明したが、このほか、圧電素子 1を 2次元に複数個配列したいわゆる 2次元 アレイの構成にしても同様の効果が得られる。 [0112] また、第 3の実施の形態においては、圧電素子 1の前面の電極を接地電極 5として その被検体側に接地用電気端子 9を配置するとともに、圧電素子 1の背面の電極を 信号用電極 6として、さらに信号用電極 6に信号用電気端子 7を接触させているが、こ の代わりに、圧電素子 1の前面の電極を信号用電極 6としてその被検体側に信号用 電気端子 7を配置するとともに、圧電素子 1の背面の電極を接地電極 5として、さらに 接地電極 5に接地用電気端子 9を接触させても、原理的には超音波を送受信するこ とは可能である。
[0113] <第 4の実施の形態〉
次に、本発明に係る超音波探触子の第 4の実施の形態について説明する。図 4A は第 4の実施の形態に係る超音波探触子の構成を、その一部を破断して示した斜視 図であり、図 4Bは、図 4Aに示した超音波探触子を、その図中に示した 3つの方向 X 、 Υ、 Ζのうち、 Υ— Ζ平面で切断した断面を X方向から見た断面図である。
[0114] 図 4Α及び図 4Βに示した超音波探触子 10Dは、図 4Α中に示した 3つの方向 X、 Υ 、 Ζのうち、 X方向に配列された複数の圧電素子 1と、各圧電素子 1に対応して被検体 側となる Ζ方向前面に積み重ねられた複数の第 1の音響マッチング層 2a、複数の第 2 の音響マッチング層 2b、及び第 2の音響マッチング層 2b上に共通に積み重ねられた 第 3の音響マッチング層 2cを含む音響マッチング層 2と、必要に応じて圧電素子 1の 背面に設けられる背面負荷材 3と、同じく必要に応じて音響マッチング層 2の前面に 設けられる音響レンズ 4と、圧電素子 1と背面負荷材 3との間に揷着された複数の信 号用電気端子 7と、第 1の音響マッチング層 2aと第 2の音響マッチング層 2bとの間に 揷着された接地用電気端子 9とを備えている。これらの構成要素のそれぞれの機能 は、従来の超音波探触子を構成する要素が持つ機能と同様である。
[0115] 以下、説明の都合上、図 4A及び図 4Bに示した超音波探触子 10Dの製造方法に ついて説明する。
複数の圧電素子 1を形成するために、 PZT系のような圧電セラミックス、 PZN-PT、 PMN-PT系のような圧電単結晶、又はこれらの材料と高分子材料を複合した複合 圧電体、あるいは PVDFなどに代表される高分子材料の圧電体などで構成され、所 定の厚さを有する板材、すなわち圧電板材を準備する。この圧電板材の一主面、す なわち Z方向の前面には接地電極 5を、その背面には信号用電極 6を、それぞれ金 や銀の蒸着、スパッタリング、あるいは銀の焼き付けなどによって形成する。
[0116] また、所定の厚さを有する板状の背面負荷材 (背面負荷材を備えない超音波探触 子ではこれに代わる部材) 3と、導電性部材と絶縁性部材又は半導電性部材との複 合材料で構成され、複数の第 1の音響マッチング層 2aを形成するための板材と、ェ ポキシ樹脂、ポリイミドなどの高分子材料で構成された複数の第 2の音響マッチング 層 2bを形成するための板材と、ポリイミドなどの高分子材料によって構成される絶縁 性フィルム 7aの一主面に銅などの導電性膜 7bが披着され、全体力 Sリボン状に形成さ れた複数の信号用電気端子 7と、ポリイミドなどの高分子材料によって構成される絶 縁性フィルム 9aの一主面に銅などの導電性膜 (厚みは音響特性に対する影響が少 ないように 5マイクロメートル以下が好ましい) 9bが披着された接地用電気端子 9とを 準備する。なお、第 2の音響マッチング層 2bを形成するために用いるエポキシ樹脂、 ポリイミドなどの高分子材料は絶縁性部材である力 導電性部材を用いてもよい。な お、導電性膜 7b、 9bは電気的に導電性を有する材料であれば何でも良く金属に限 定するものではない。
[0117] そこで、図 4Aに示したように、背面負荷材 3の前面に、複数の信号用電気端子 7を X方向に所定の間隔で配置し、その上に圧電素子 1を形成するための圧電板材を重 ね合わせ、さらに、圧電板材の前面に第 1の音響マッチング層 2aを形成するための 板材と、接地用電気端子 9と、第 2の音響マッチング層 2bを形成するための板材とを 順次に重ね合わせて、これらを一体的に固着する。この場合、背面負荷材 3と圧電板 材との間に装着される複数の信号用電気端子 7は、それぞれ絶縁性フィルム 7aの一 主面に披着されている導電性膜 7bが圧電板材に形成された信号用電極 6に接触し 、絶縁性フィルム 7aが背面負荷材 3に接触するように、絶縁性フィルム 7aの一主面が 圧電板材側(図面の上方)に向けられる。また、第 1の音響マッチング層 2aを形成す るための板材と第 2の音響マッチング層 2bを形成するための板材との間に揷着され る接地用電気端子 9は、絶縁性フィルム 9aの一主面に形成された導電性膜 9bが第 1の音響マッチング層 2aに接触するように、その一主面が第 1の音響マッチング層 2a 側に向けられる。 [0118] 以上のようにして、背面負荷材 3、複数の信号用電気端子 7、圧電素子 1を形成す るための圧電板材、第 1の音響マッチング層 2aを形成するための板材、接地用電気 端子 9及び第 2の音響マッチング層 2bを形成するための板材を一体的に固着した後 、スライシンダマシーンなどによって第 2の音響マッチング層 2bの前面から背面負荷 材 3の前面部まで掘り下げた複数の溝、すなわち第 2の音響マッチング層 2b、接地 用電気端子 9、第 1の音響マッチング層 2a、圧電板材、信号用電気端子 7及び背面 負荷材 3の一部を 1ユニットとして、複数の圧電素子ユニットに分割する分割溝を形 成する。この場合、 X方向に所定の間隔で配置された信号用電気端子 7の中間部に 分割溝を形成する。これによつて、圧電素子ユニットが並列に配置された圧電素子列 が形成される。次に、音響的な結合が小さいシリコーンゴムやウレタンゴムなどのよう な材料 (図示せず)を各分割溝に充填し、さらに、第 2の音響マッチング層 2b及び分 割溝に充填した部分の上面には、第 3の音響マッチング層 2cを装着する。
[0119] 第 3の音響マッチング層 2cは、図示のように分割しないで連結した状態で装着する 。この第 3の音響マッチング層 2cの材料としては、シリコーンゴム、クロロプレンゴム、 エチレン プロピレン共重合ゴム、アクリロニトリル ブタジエン共重合ゴム、及びウレ タンゴムなどのゴム弾性体を主体とした材料を用いる。さらに、必要に応じて、第 3の 音響マッチング層 2cの上面にはシリコーンゴムなどの材料を用いた音響レンズ 4を装 着する。背面負荷材を備えない超音波探触子においては、この段階で背面負荷材 3 に代わる部材を除去する。
[0120] なお、第 3の音響マッチング層 2cは、第 1の音響マッチング層 2a、第 2の音響マッチ ング層 2bと同じように圧電素子 1と一緒に分割してもよい。また、第 2の音響マツチン グ層 2b、第 3の音響マッチング層 2cは絶縁性部材、導電性部材のいずれでもよい。
[0121] なお、ここでは第 1の音響マッチング層 2aと第 2の音響マッチング層 2bとの間に、絶 縁性フィルム 9aに導電性膜 9bを披着させた接地用電気端子 9を揷着し、接地用電 気端子 9の導電性膜 9bと第 1の音響マッチング層 2aの導電性部材とを接触させるこ とによって、接地用電気端子 9と圧電素子 1に形成された接地電極 5とを電気的に接 続するものについて説明したが、このほか、第 2の音響マッチング層 2bとして導電性 部材を用い、この第 2の音響マッチング層 2bの前面に導電性膜 9bを披着させた接地 用電気端子 9を装着し、第 1の音響マッチング層 2a及び第 2の音響マッチング層 2b を介して、接地用電気端子 9と圧電素子 1に形成された接地電極 5とを電気的に接続 するようにしても同様の動作をさせることができる。
[0122] 上記のように構成された超音波探触子 10Cの動作について以下に説明する。
圧電素子 1の背面に形成された信号用電極 6は、信号用電気端子 7を介して、また 、圧電素子 1の前面に形成された接地電極 5は、第 1の音響マッチング層 2aの複合 材料の導電性部材と接地用電気端子 9とを介して、それぞれ不図示のケーブルの一 端に電気的に接続され、これらのケーブルのそれぞれの他端は不図示の超音波診 断装置の本体部に接続される。これによつて、超音波診断装置の本体部で作られる 規則正しいパルス電圧を圧電素子 1に印加して超音波を発信し、また、受信した超 音波のエコーを電気信号に変換して超音波診断装置の本体部に送信する。
[0123] この場合、詳細を後述する第 1の音響マッチング層 2aの導電性部材は、圧電素子 1に形成された接地電極 5と接地用電気端子 9の導電性膜 9bとを電気的に接続する 形状であればよぐ特定の形状に限定するものではない。また、第 1の音響マツチン グ層 2aの導電性部材は、 1つの圧電素子 1に対して 2箇所以上で、圧電素子 1の接 地電極 5と接地用電気端子 9の導電性膜 9bとが電気的に接続されるような構成が望 ましぐ導電性部材 20の数が多いほど接地電極 5が圧電素子 1と共に割れても、信号 電送経路が断線して故障する頻度は少なくなり、信頼性の高レ、ものとなる。
[0124] また、第 1の音響マッチング層 2aの絶縁性部材又は半導電性部材 21は音響インピ 一ダンスを整合の状態の近づけることが主たる目的となる。そのため、本実施の形態 のように 3層の音響マッチング層を備えた場合、第 1、第 2、第 3の音響マッチング層 2 a、 2b、 2cの各音響インピーダンスは、それぞれの目的とする周波数特性に応じて使 用する値の範囲が選択される。例えば、特開昭 60— 53399号公報では、第 1、第 2 及び第 3の音響マッチング層の音響インピーダンスは、それぞれ 12. 6から 18. 1、3 . 8力、ら 6. 0、及び 1. 7力、ら 2. 4メガレーノレスの範囲を、また、特開日召 60— 185499 号公報では、それぞれ 5から 15、 1. 9力、ら 4. 4、及び 1 · 6力、ら 2メガレールスの範囲 を、さらに特開 2003— 125494号公幸 には 19. 7、 7. 4、 2. 44メガレーノレスのィ直カ S 示されている。したがって、 3層タイプの音響マッチング層における第 1の音響マッチ ング層 2aの音響インピーダンスは、およそ 5から 20メガレールスの範囲の値を有する 材料が用いられる。音響マッチング層の層数が多くなるほど周波数特性の広帯域化 、高感度化が可能になり、少なくとも 2層の音響マッチング層のタイプより 3層の音響 マッチング層タイプの方が周波数の広帯域化が可能となる。
[0125] 導電性部材と絶縁性部材又は半導電性部材との複合材料で構成した第 1の音響 マッチング層 2aの導電性部材 20と絶縁性部材又は半導電性部材 21とのそれぞれ の連結構造の一例は、第 3の実施の形態で説明した図 3C、図 3Dに示すような 1 3 型、 2— 2型あるいは前述した 3— 1型の構造のものを用いればよ!/、。
[0126] 第 1の音響マッチング層 2aの導電性部材 20としては、銅、アルミニウム、銀、金、二 ッケルなどの金属や、金、銀、銅、アルミニウムなどの金属若しくはカーボンの粉体を エポキシ樹脂などの高分子化合物に混入して導電性を持たせた高分子材料や、ダラ ファイト、カーボンなどの材料を用いる。また、第 1の音響マッチング層 2aの絶縁性部 材又は半導電性部材 21としては、ガラス、結晶化ガラス、タングステン粉体を高濃度 で混入したエポキシ樹脂、ニオブ酸鉛セラミックス、加工性があるセラミックス(快削性 セラミックス)、単結晶若しくは多結晶シリコン、水晶、チタン酸バリウムなどのセラミツ タスなどを用いる。
[0127] なお、導電性部材 20、絶縁性部材又は半導電性部材 21として上記以外の材料を 用いたとしても、本願発明の目的が達成できる材料であればよい。また、導電性部材 20と絶縁性部材又は半導電性部材 21との複合材料としての音響インピーダンスは、 1 3型、 2— 2型、 3— 1型連結構造を有する複合材料は、導電性部材 20と絶縁性 部材又は半導電性部材 21とのそれぞれの体積比率によって決まることは、第 2の実 施の形態で説明したとおりである。例えば、導電性部材 20として音響インピーダンス は 38メガレールスの値を有する銀を用い、絶縁性部材 21として音響インピーダンス は 15. 3メガレールスの値を有する水晶 Xカット板を用いて体積比率を任意に選択す ることにより、第 2の実施の形態を示す図 2Cと同様に、複合材料の音響インピーダン スは 15. 3から 38メガレールスの範囲で任意に所望の値を得ることができる。この範 囲の音響インピーダンスは、 3層音響マッチング層の第 1の音響マッチング層 2aに要 望される値の範囲である 5から 20メガレールスに相当する範囲を有する体積比率が 存在し、この範囲で作成した材料は、第 1の音響マッチング層 2aとしての機能を有し ていることになる。また、第 4の実施の形態の第 1の音響マッチング層 2aのほかの機 能としては、第 1の音響マッチング層 2aの導電性部材 20が圧電素子 1の接地電極 5 と接地用電気端子 9の導電性部材と電気的に接続できる構成であるため、電気端子 を取り出しできる構成にしている。
[0128] 連結構造が 1 3型、 2— 2型、 3— 1型構造においては、 2種類のそれぞれの材料 が有する音響インピーダンスの範囲内の値になり、それぞれの材料の体積比率を変 えることによって、所望の音響インピーダンスの材料を得ることができる。また、第 4の 実施の形態は、導電性部材 20と絶縁性部材又は半導電性部材 21との連結構造を 有する第 1の音響マッチング層 2aについて説明した力 このほか、 2種類以上の導電 性部材 20と絶縁性部材又は半導電性部材 21材料を用いても同様の効果が得られ ることは明らかであり、それぞれ 1種類ずつ、合計 2種類の材料の連結構造に限定す るものではない。
[0129] また、 1 3型、 2— 2型、 3— 1型の連結構造を有する導電性部材 20と絶縁性部材 又は半導電性部材 21との複合材料を第 1の音響マッチング層 2aとして機能させるた めには、複合材料が一体として超音波が伝搬するように、導電性部材 20の幅及び配 列間隔にする。また、導電性部材 20の体積比率が少ない場合は、導電性部材 20の 幅及び配列間隔を考慮する必要はなぐ電気的な接続機能を主にしてその材料を選 択すればよい。
[0130] また、図 4Aに示すように、第 3の音響マッチング層 2cを圧電素子 1に対応して分割 しない構造としているが、当然のことながら、分割した構成にしても同様の効果が得ら れるので、図 4Aの構成に限定するものではない。
[0131] 以上のように、圧電素子の被検体側に設けられる音響マッチング層として、導電性 部材と絶縁性部材又は半導電性部材とを複合した複合材料を用いることにより、その 音響インピーダンスを所望の値にすることが可能になり、周波数の広帯域化ができる ことによって、高分解能の診断画像を得ることができ、また、複合材料を構成する導 電性部材から電気端子を取り出すことができるため、信頼性が高くかつ操作性が良 好な超音波探触子を得ることができる。 [0132] なお、第 4の実施の形態では、 1—3型連結構造の導電性部材 20として、円柱の形 状を有するものを用いた力 このほか角柱あるいは球など他の形状を有するものを用 いても同様の効果が得られる。また、 1—3型連結構造の導電性部材 20として、 Z方 向に対してコーンのような円錐状の形状にして、 Z方向の厚みに対して音響インピー ダンスが連続的に変化するような構成にした場合においても同様の効果が得られる。
[0133] また、第 4の実施の形態では、 2— 2型連結構造の導電性部材 20と絶縁性部材又 は半導電性部材 21が、 Z方向に対して均一な幅で配列される場合について説明し た力 これらの部材が Z方向に対して幅が連続的に変化するいわゆる楔のような形状 にして、 Z方向の厚みに対して音響インピーダンスが連続的に変化するような構成に した場合においても同様の効果が得られる。
[0134] また、第 4の実施の形態では、 1 3型、 2— 2型及び 3— 1型の各連結構造の導電 性部材 20と絶縁性部材又は半導電性部材 21とがほぼ等間隔で、これらを交互に配 歹 IJした場合について説明した力 このほかランダムの間隔若しくはランダムに配列し た場合においても同様の効果が得られる。また、第 4の実施の形態では、圧電素子 1 の接地電極 5と電気信号を授受するために、第 1の音響マッチング層 2aの導電性部 材を介して、その前面に接地用電気端子 9を設ける構成の場合について説明したが 、この代わりに、第 1の音響マッチング層 2aの Z方向の両面又は片面に導電性部材 をスパッタリング、めっきあるいは印刷などにより形成し、その部分に電気端子を接続 する構成にしても同様の効果が得られる。
[0135] また、第 4の実施の形態では、圧電素子 1を 1次元に複数個配列した構成の場合に ついて説明したが、このほか、圧電素子 1を 2次元に複数個配列したいわゆる 2次元 アレイの構成にしても同様の効果が得られる。また、第 4の実施の形態では、導電性 部材及び絶縁性部材若しくは半導電性部材は、 2種類用いた場合について説明し た力 このほか、導電性部材を 2種類、絶縁性部材を 1種類〜 3種類というように、 2種 類以上の材料を用いても同様の効果が得られる。
[0136] また、第 4の実施の形態においては、圧電素子 1の前面の電極を接地電極 5として その被検体側に接地用電気端子 9を配置するとともに、圧電素子 1の背面の電極を 信号用電極 6として、さらに信号用電極 6に信号用電気端子 7を接触させているが、こ の代わりに、圧電素子 1の前面の電極を信号用電極 6としてその被検体側に信号用 電気端子 7を配置するとともに、圧電素子 1の背面の電極を接地電極 5として、さらに 接地電極 5に接地用電気端子 9を接触させても、原理的には超音波を送受信するこ とは可能である。
[0137] <第 5の実施の形態〉
次に、本発明の第 5の実施の形態について説明する。図 5Aは本発明に係る超音 波探触子の第 5の実施の形態の構成を、その一部を破断して示した斜視図であり、 図 5Bは、図 5Aに示した超音波探触子を、その図中に示した 3つの方向 X、 Y、 Ζのう ち、 Υ— Ζ平面で切断した断面を X方向から見た断面図である。
[0138] 図 5Α及び図 5Βに示した超音波探触子 10Eは、図 5Α中に示した 3つの方向 X、 Υ 、 Ζのうち、 X方向に配列された複数の圧電素子 1と、各圧電素子 1に対応して被検体 側となる Ζ方向の前面に積み重ねられた複数の第 1の音響マッチング層 2a、複数の 第 2の音響マッチング層 2b、及び第 2の音響マッチング層 2b上に共通に積み重ねら れた第 3の音響マッチング層 3cを含む音響マッチング層 2と、必要に応じて圧電素子 1の背面に設けられる背面負荷材 3と、同じく必要に応じて音響マッチング層 2 (2a、 2 b、 2c)上に設けられる音響レンズ 4と、圧電素子 1と背面負荷材 3との間に揷着され た複数の信号用電気端子 7と、第 2の音響マッチング層 2bと第 3の音響マッチング層 2cとの間に揷着された接地用電気端子 9とを備えている。これらの構成要素のそれ ぞれの機能は、従来の超音波探触子を構成する要素が持つ機能と同様である。
[0139] 第 5の実施の形態は第 4の実施の形態と比較して、圧電素子 1、第 1の音響マッチ ング層 2a、第 3の音響マッチング層 2cの積層構造は同じである力 基本的に違う点 は、第 2の音響マッチング層 2bに導電性部材、又は第 1の音響マッチング層 2aと同じ ように導電性部材と絶縁性部材又は半導電性部材との複合材料を用いた点、第 2の 音響マッチング層 2bの上面にポリイミドなどの高分子材料によって構成される絶縁性 フィルム 9aの一主面に銅などの金属膜 9bが披着された接地用電気端子 9を設けた 点にある。このように構成にすることにより、第 1の音響マッチング層 2a及び第 2の音 響マッチング層 2bを介して、接地用電気端子 9と圧電素子 1に形成された接地電極 5 とを電気的に接続することができる。 [0140] 第 1の音響マッチング層 2a及び第 2の音響マッチング層 2bの両方に複合材料を用 いる場合には、これの音響マッチング層 2a、 2bの各導電性部材部が少なくとも電気 的に接続されるような構成にする必要がある。また、第 1の音響マッチング層 2aと第 2 の音響マッチング層 2bの複合材料の連結構造は必ずしも同じ構造にする必要はなく 、例えば第 1の音響マッチング層 2aの連結構造を 1—3型にして、第 2の音響マッチ ング層 2bの連結構造を 2— 2型にしてもよぐ両音響マッチング層の導電性部材部が 電気的に接続される構成にして、接地用電気端子 9と圧電素子 1に形成された接地 電極 5とが電気的に接続されるとともに、それぞれが音響マッチング層としての音響ィ ンピーダンスの値を有するように構成すればよ!/、。
[0141] また、第 2の音響マッチング層 2bとしては、グラフアイトのような導電性部材を用いて も、導電性部材と絶縁性部材又は半導電性部材との複合材料を用いてもよい。導電 性部材と絶縁性部材又は半導電性部材との複合材料を用いる場合には、例えば、 導電性部材 20として音響インピーダンスが 38メガレールスの銀を用い、絶縁性部材 21として音響インピーダンスが 3メガレールスのエポキシ樹脂を用いて、体積比率を 変えることにより音響インピーダンスを任意に設定することができ、例えば 6メガレール ス付近の値にすることが可能である。これは 1—3型、 2— 2型、 3—1型のいずれの連 結構造の複合材料にも可能である。
[0142] 一方、第 5の実施の形態においては、第 2の音響マッチング層 2bの前面に装着さ れる接地用電気端子 9の基材となる絶縁性のフィルムとして、ポリイミドのような音響ィ ンピーダンスが約 3メガレールスの材料を用いた場合には、この材料の音響インピー ダンスが第 2の音響マッチング層 2bと第 3の音響マッチング層 2cとの間の値力、、若し くはこれに近い値であるので、音響的な不整合がなくなって良好な周波数特性が得 られやすい。
[0143] 以上のように、圧電素子の被検体側面に設ける 3層の音響マッチング層の構成に おいて、第 1及び第 2の音響マッチング層にそれぞれ導電性部材と絶縁性部材又は 半導電性部材との複合材料を用いることにより、第 1及び第 2の音響マッチング層の いずれをもその音響インピーダンスを所望の値にすることが可能になり、周波数の広 帯域化ができることによって、高分解能の診断画像を得ることができ、また、第 1及び 第 2の音響マッチング層の各導電性部材を介して、接地用電気端子 9を接地電極 5 に電気的に接続することができるので、信頼性が高ぐかつ操作性が良好な超音波 探角虫子を得ること力できる。
[0144] なお、第 5の実施の形態では、それぞれ 1種類の導電性部材 20と絶縁性部材又は 半導電性部材 21などの材料の連結構造を有する第 1、第 2の音響マッチング層 2a、 2bについて説明した力 このほか、 2種類以上の導電性部材 20と絶縁性部材又は 半導電性部材 21とを用いても同様の効果が得られることは明らかであり、それぞれ 1 種類の材料の連結構造に限定するものではない。
[0145] また、第 5の実施の形態では、 1 3型連結構造の導電性部材は円柱の形状を用 V、た場合につ!/、て説明したが、このほか角柱ある!/、は球など他の形状に場合にお!/ヽ ても同様の効果が得られる。また、第 5の実施の形態では、 1 3型連結構造の導電 性部材として円柱の形状を有するものを用いた力 S、このほか Z方向に対してコーンの ような円錐状の形状にして、 Z方向の厚みに対して音響インピーダンスが連続的に変 化するような構成にした場合においても同様の効果が得られる。
[0146] また、第 5の実施の形態では、 1 3型、 2— 2型及び 3— 1型の各連結構造の導電 性部材 20と絶縁性部材又は半導電性部材 21とがほぼ等間隔で、これらを交互に配 歹 IJした場合について説明した力 このほかランダムの間隔若しくはランダムに配列し た場合においても同様の効果が得られる。
[0147] また、第 5の実施の形態では、圧電素子 1の接地電極 5と電気信号を授受するため に、第 1の音響マッチング層 2aと第 2の音響マッチング層 2bの各導電性部材 20を介 して、それらの前面に電気端子を設ける構成の場合について説明した力 この代わり に、第 2の音響マッチング層 2bの Z方向の両面又は片面に導電性部材をスパッタリン グ、めっきあるいは印刷などにより形成し、その部分に電気端子を接続する構成にし ても同様の効果が得られる。
[0148] また、第 5の実施の形態においては、圧電素子 1を 1次元に複数個配列した構成に ついて説明したが、このほか、圧電素子 1を 2次元に複数個配列したいわゆる 2次元 アレイの構成にしても同様の効果が得られる。
[0149] また、第 5の実施の形態では、第 1の音響マッチング層 2aの前面に、第 2の音響マ ツチング層 2b及び第 3の音響マッチング層 2cを積層して、合計 3層の音響マッチング 層 2を備えたものについて説明した力 S、 nを 3以上の整数として、音響マッチング層 2 が第 1〜第 nの音響マッチング層を含み、かつ第 2の音響マッチング層と第 3の音響 マッチングとの間に電気端子を装着する構成としても、上述したと同様の効果が得ら れる。
[0150] また、第 5の実施の形態においては、圧電素子 1の前面の電極を接地電極 5として その被検体側に接地用電気端子 9を配置するとともに、圧電素子 1の背面の電極を 信号用電極 6として、さらに信号用電極 6に信号用電気端子 7を接触させているが、こ の代わりに、圧電素子 1の前面の電極を信号用電極 6としてその被検体側に信号用 電気端子 7を配置するとともに、圧電素子 1の背面の電極を接地電極 5として、さらに 接地電極 5に接地用電気端子 9を接触させても、原理的には超音波を送受信するこ とは可能である。
[0151] <第 6の実施の形態〉
図 6Aは本発明に係る超音波探触子の第 6の実施の形態の構成を示す断面図であ り、図 6Bは図 6Aに示す超音波探触子を構成する音響マッチング層の構成例を示す 断面図である。
[0152] 図 6Aにおいて、超音波探触子 10Fは板状の圧電素子 1と、この圧電素子 1の前面
(図面の上方)に積み重ねられた音響マッチング層 2と、必要に応じて圧電素子 1の 背面(図面の下方)に装着される背面負荷材 3と、同じく必要に応じて音響マッチング 層 2の前面に装着される音響レンズ 4とを備えている。これらの構成要素のそれぞれ の機能は、従来の超音波探触子を構成する要素が持つ機能と同様である。
[0153] 超音波探触子 10Fの構成要素のうち、圧電素子 1は PZT系のような圧電セラミック ス、 PZN-PT、 PMN-PT系のような圧電単結晶、又はこれらの材料と高分子材料を 複合した複合圧電体、あるいは PVDFなどで代表される高分子材料の圧電体などに よって形成される。圧電素子 1の前面には接地電極 5が形成され、圧電素子 1の背面 には信号用電極 6が形成されている。接地電極 5及び信号用電極 6は、それぞれ金 や銀の蒸着、スパッタリング、あるいは銀の焼き付けなどによって形成される。
[0154] また、圧電素子 1に形成されている信号用電極 6と背面負荷材 3との間に、ポリイミド などの高分子材料によって構成される絶縁性フィルム 7aの一主面に銅などの金属膜 7bが披着された信号用電気端子 7が揷着されている。この場合、圧電素子 1に形成 されている信号用電極 6に信号用電気端子 7の金属膜 7bが接触し、かつ信号用電 気端子 7の絶縁性フィルム 7aが背面負荷材 3に接触するように、絶縁性フィルム 7aの 一主面が圧電素子 1側に向けられる。一方、圧電素子 1に形成されている接地電極 5 の前面には、導電性部材 20と絶縁性部材又は半導電性部材 21との複合材料で構 成される音響マッチング層 2と、ポリイミドなどの高分子材料によって構成される絶縁 性フィルム 9aの一主面に銅などの導電性膜 (厚みは特性に影響が小さいように 5マイ クロメートル以下が好ましい) 9bが披着された接地用電気端子 9とが順次積み重ねら れている。この場合、音響マッチング層 2の複合材料の導電性部材 20に接地用電気 端子 9の導電性膜 9bが接触するように、絶縁性フィルム 9aの一主面が音響マツチン グ層 2側に向けられる。そして、必要に応じて、音響マッチング層 2の前面にはシリコ ーンゴムなどの材料を用いた音響レンズ 4が装着される。
[0155] 上記のように構成された超音波探触子 10Fの動作について以下に説明する。
圧電素子 1に形成された信号用電極 6は、信号用電気端子 7を介して、また、圧電 素子 1の接地電極 5は音響マッチング層 2の複合材料の導電性部材 20と接地用電 気端子 9とを介して、それぞれ不図示のケーブルの一端に電気的に接続され、これら のケーブルのそれぞれの他端は不図示の超音波診断装置の本体部に接続される。 これによつて、超音波診断装置の本体部で作られる規則正し!/、パルス電圧を圧電素 子 1に印加して超音波を発信し、また、受信した超音波のエコーを電気信号に変換し て超音波診断装置の本体部に送信する。
[0156] 図 6Bにおいて、導電性部材 20と絶縁性部材又は半導電性部材 21との複合材料 で構成されている音響マッチング層 2としては、音響インピーダンスが圧電素子 1と被 検体 (例えば生体)の間になるような材料が選ばれる。絶縁性部材又は半導電性部 材 21は厚み方向(図面では上下方向)に対して連続的に形状(体積)が変化し、図 面では下方は体積が大きく上方にいくに従って体積が小さくなるような形状 (例えば 円錐、三角錐、四角錐など)にし、その間隙に導電性部材 20を満たした構成にして V、る。例えば絶縁性部材又は半導電性部材 21が、導電性部材 20の音響インピーダ ンスより大きい値を有する材料の場合には、図面では下方は体積が大きいため音響 インピーダンスの値が最も大きぐ上方にいくに従って徐々に体積が小さくなつて導 電性部材 20の体積が大きくなることにより音響インピーダンスが徐々に小さくなつて いく。つまり音響マッチング層 2は上下方向に音響インピーダンスが連続的に変化し た構成となっている。図 6Aのような構成で図面の下方が音響インピーダンスは大きく 、上方にいくに従って小さくなる構成の場合は、当然ながら圧電素子 1側は下方にな り被検体側は上方になるように構成される。
[0157] このように音響マッチング層 2の形状が厚み方向に連続的に可変する構成にするこ とにより、音響マッチング層 2は、厚み方向(圧電素子 1から被検体の方向)に対して 音響インピーダンスが連続的に変化する特性となっており、圧電素子 1の接地電極 2 側に位置する音響マッチング層 2の部分は、音響インピーダンスが圧電素子 1に近い 値で大きぐそして被検体側(図面では上方)に位置する部分の音響マッチング層 2 の音響インピーダンスは、被検体の値に近い値となっている。このように音響インピー ダンスを連続的に傾斜させる音響マッチング層 2を用いることにより、周波数の広帯 域化が可能となる。また、本音響マッチング層 2の厚みは周波数に依存しないため、 中心周波数の約 2分の 1波長以上の厚みであれば音響整合層としての効果を発揮 でき、厚みに対して周波数特性はあまり関係しない。
[0158] 音響マッチング層 2の導電性部材 20は圧電素子 1の一方の電極と電気的な接続が なされ、もう一方の導電性部材 20の面には、接地用電気端子 9の導電性膜 9bが接 触して電気的に接続される構成となっており、接地用電気端子 9から信号の取り入れ 、取り出しをする。本音響マッチング層 2の絶縁性部材又は半導電性部材 21と、導電 性部材 20の連結構造としては、第 2の実施の形態で説明した 2— 2型、 1 3型、 3— 1型連結構造が望ましい。例えば絶縁性部材又は半導電性部材 21として半導体な どに使用されている音響インピーダンスが約 19. 7メガレールスを有するシリコンの単 結晶、また導電性部材 20として音響インピーダンス約 6. 5メガレールスを有する導電 性接着剤のエコーボンド 56C (エマーソンアンドカミング社)を用いると音響インピー ダンスはシリコン単結晶の体積比率がほぼ 100%の部分は、 19. 7メガレールスの音 響インピーダンスであり徐々に体積比率が減少していき、導電性接着剤の体積比率 が徐々に増加していくことにより音響インピーダンスは 6· 5メガレールスに近づいてい くような特十生を得ることができる。
[0159] ここでは、音響マッチング層 2の絶縁性部材又は半導電性部材 21として、ガラス、 結晶化ガラス、タングステン粉体を高濃度で混入したエポキシ樹脂、ニオブ酸鉛セラ ミックス、加工性があるセラミックス(快削性セラミックス)、単結晶若しくは多結晶シリコ ン、水晶、チタン酸バリウムなどのセラミックスなどを用いる。また、音響マッチング層 2 の導電性部材 20として、銅、アルミニウム、銀、金、ニッケルなどの金属材料や、金、 銀、銅、アルミニウムなどの金属若しくはカーボンの粉体をエポキシ樹脂などの高分 子化合物に混入して導電性を持たせた高分子材料や、グラフアイト、カーボンなどを 用いる。なお、導電性部材 20あるいは絶縁性部材又は半導電性部材 21は、前述し た材料に限定されるものではなぐ前述した材料と同程度の音響インピーダンスを有 するものであれば他の材料であってもよレ、。
[0160] 以上のように、圧電素子の被検体側に設けられる音響マッチング層として、導電性 部材と絶縁性部材又は半導電性部材との複合材料を設けることにより、音響マツチン グ層を所望の音響インピーダンスを連続的に傾斜させることが可能になり、これによ つて周波数の広帯域化ができるため、高分解能の診断画像を得ることができる。また 、複合材料の音響マッチング層の導電性部材を介して、圧電素子の複数箇所に電 気端子を接続することができるため、信頼性が高くかつ操作性の良好な超音波探触 子を得ること力 Sでさる。
[0161] また、第 6の実施の形態では、図 6Βに示すように導電性部材 20及び絶縁性部材 又は半導電性部材 21がほぼ等間隔で、これらを交互に配列した場合について説明 した力 このほかランダムの間隔若しくはランダムに配列した場合においても同様の 効果が得られる。
[0162] また、第 6の実施の形態では、圧電素子 1の接地電極 5と電気信号を授受するため に、音響マッチング層 2を介して、その前面に接地用電気端子 9を設ける構成につい て説明したが、この代わりに、音響マッチング層 2の Ζ方向の両面又は片面に導電性 部材をスパッタリング、めっきあるいは印刷などにより形成し、その部分に接地用電気 端子 9を接続する構成にしても同様の効果が得られる。 [0163] また、第 6の実施の形態においては、音響マッチング層 2として、それぞれ 1つの材 種で形成された導電性部材 20と絶縁性部材又は半導電性部材 21との連結構造の ものを用いたが、導電性部材 20と絶縁性部材又は半導電性部材 21の少なくとも一 方が 2種類以上の材料で形成されていたとしても同様の効果が得られることは明らか であり、それぞれ 1つの材種の連結構造に限定されるものではない。
[0164] また、第 6の実施の形態においては、圧電素子 1の前面の電極を接地電極 5として その被検体側に接地用電気端子 9を配置するとともに、圧電素子 1の背面の電極を 信号用電極 6として、さらに信号用電極 6に信号用電気端子 7を接触させているが、こ の代わりに、圧電素子 1の前面の電極を信号用電極 6としてその被検体側に信号用 電気端子 7を配置するとともに、圧電素子 1の背面の電極を接地電極 5として、さらに 接地電極 5に接地用電気端子 9を接触させても、原理的には超音波を送受信するこ とは可能である。
[0165] <第 7の実施の形態〉
図 7Aは本発明に係る超音波探触子を構成する音響マッチング層の第 7の実施の 形態の構成を示す断面図である。なお、超音波探触子の概略断面図は第 6の実施 の形態で説明した図 6Aと同じであり音響マッチング層 2の構成が違うだけなので、超 音波探触子は図 6Aを用いて説明し、音響マッチング層の部分は図 7Aを用いて説 明する。
[0166] 図 6Aにおいて、超音波探触子 10Fは板状の圧電素子 1と、この圧電素子 1の前面
(図面の上方)に音響マッチング層 2と、必要に応じて圧電素子 1の背面(図面の下方 )に装着される背面負荷材 3と、同じく必要に応じて音響マッチング層 2の前面に装着 される音響レンズ 4とを備えている。これら構成要素のそれぞれの機能は、従来の超 音波探触子を構成する要素が持つ機能と同様である。超音波探触子 1 OFの構成要 素及び動作については第 6の実施の形態で説明しているのでここでは割愛する。
[0167] 図 7Aにおいて、導電性部材 20と絶縁性部材又は半導電性部材 21との複合材料 で構成されている音響マッチング層 2としては、音響インピーダンスが圧電素子 1と被 検体 (例えば生体)の間になるような材料が選ばれる。絶縁性部材又は半導電性部 材 21は厚み方向(図面では上下方向)に対して、例えば図面では幅を 2段階に段階 的に可変して形状 (体積)を変化させ、下段 (T1の領域)は幅が大きぐ上段 (T2の 領域)は幅が小さくなるような形状にし、その間隙に導電性部材 20を満たした構成に している。例えば絶縁性部材又は半導電性部材 21が、導電性部材 20の音響インピ 一ダンスより大きい値を有する材料の場合は、 T1の領域は幅が大きいため音響イン ピーダンスの値が大きぐ T2の領域は幅が狭くなる。それに対して、導電性部材 20 の幅は逆になり、それぞれの幅(体積)が広い方の部材の音響インピーダンスに近づ く。 Tl、 Τ2の領域の導電性部材 20と、絶縁性部材又は半導電性部材 21の体積比 率によって音響インピーダンスを段階的に変えることができる。したがって、図 7Αに 示すように 2段階になる構成では、 2層の音響マッチング層が構成されたことになる。 当然ながら Τ1、Τ2のそれぞれの厚みは 4分の 1波長の厚みを基本にして設定される
[0168] 図 6Αのように音響マッチング層 2の導電性部材 20は圧電素子 1の一方の電極と電 気的な接続がされ、もう一方の導電性部材 20の面には、接地用電気端子 9の導電性 膜 9bが接触して電気的に接続される構成となっており、接地用電気端子 9から信号 の取り入れ、取り出しをする。図 7Aに示した音響マッチング層 2の導電性部材 20と、 絶縁性部材又は半導電性部材 21との連結構造としては、第 2の実施の形態で説明 した 2— 2型、 1 3型、 3— 1型連結構造が望ましい。
[0169] 以上のように、圧電素子の被検体側に設けられる音響マッチング層として、導電性 部材と絶縁性部材又は半導電性部材との複合材料を設けることにより、音響マツチン グ層を所望の音響インピーダンスを段階的に可変させることが可能になり、これによ つて周波数の広帯域化ができるため、高分解能の診断画像を得ることができる。また 、複合材料の音響マッチング層の導電性部材を介して、圧電素子の複数箇所に電 気端子を接続することができるため、信頼性が高くかつ操作性の良好な超音波探触 子を得ること力 Sでさる。
[0170] また、第 7の実施の形態では、図 7Aに示すように導電性部材 20及び絶縁性部材 又は半導電性部材 21がほぼ等間隔で、これらを交互に配列した場合について説明 した力 このほかランダムの間隔若しくはランダムに配列した場合においても同様の 効果が得られる。 [0171] また、第 7の実施の形態では、圧電素子 1の接地電極 5と電気信号を授受するため に、音響マッチング層 2を介して、その前面に接地用電気端子 9を設ける構成につい て説明したが、この代わりに、音響マッチング層 2の Z方向の両面又は片面に導電性 部材をスパッタリング、めっきあるいは印刷などにより形成し、その部分に接地用電気 端子 9を接続する構成にしても同様の効果が得られる。
[0172] また、第 7の実施の形態においては、音響マッチング層 2として、それぞれ 1つの材 種で形成された導電性部材 20と絶縁性部材又は半導電性部材 21との連結構造の ものを用いたが、導電性部材 20と絶縁性部材又は半導電性部材 21の少なくとも一 方が 2種類以上の材料で形成されていたとしても同様の効果が得られることは明らか であり、それぞれ 1つの材種の連結構造に限定されるものではない。
[0173] また、第 7の実施の形態においては、圧電素子 1の前面の電極を接地電極 5として その被検体側に接地用電気端子 9を配置するとともに、圧電素子 1の背面の電極を 信号用電極 6として、さらに信号用電極 6に信号用電気端子 7を接触させているが、こ の代わりに、圧電素子 1の前面の電極を信号用電極 6としてその被検体側に信号用 電気端子 7を配置するとともに、圧電素子 1の背面の電極を接地電極 5として、さらに 接地電極 5に接地用電気端子 9を接触させても、原理的には超音波を送受信するこ とは可能である。
[0174] また、第 7の実施の形態を構成する音響マッチング層 2の他の構成例として図 7Bに 示したものがある。図 7Bの音響マッチング層 2は図 7Aに示したように 2層の音響マツ チング層 Tl、 Τ2を構成している力 図 7Βは導電性部材 20を厚み T1の領域で 100 %を占め、厚み Τ2の領域に導電性部材 20と音響インピーダンスの値が違う部材、例 えば絶縁性若しくは半導体部材を任意の体積比率で設ける。例えば導電性部材 20 としてグラフアイトに銅、銀などの金属粉を充填した材料を用いて音響インピーダンス を 6〜; 16メガレールスの値を用いて厚み T1を 100%占めて第 1の音響マッチング層 とする、また厚み Τ2の領域は所望の音響インピーダンスにするように導電性部材 20 に溝を形成し、その溝に絶縁性部材であるエポキシ樹脂、ウレタン、シリコーンゴムな どの音響インピーダンス(1〜3メガレールス)の低!/、材料を充填して形成し導電性部 材 20と絶縁性若しくは半導体部材 21の体積比率で厚み Τ2の音響インピーダンスに することにより第 2の音響マッチング層を構成することができる。このような構成にする ことにより導電性部材 20は Tl、 Τ2の厚み方向に連結しているため、図 7Αの実施の 形態と同様の効果を得ることができる。なお、図 7Βでは 2層の音響マッチング層で構 成した場合について説明した力 この他 2層以上つまり 3層以上の音響マッチング層 で構成することも可能であり、 2層の音響マッチング層に限定するものではない。
[0175] <第 8の実施の形態〉
図 8は本発明に係る超音波探触子の第 8の実施の形態を構成する音響マッチング 層の構成を示す断面図である。なお、超音波探触子の概略断面図は第 2の実施の 形態で説明した図 2Αと同じであり第 1の音響マッチング層 2aの構成が違うだけなの で、超音波探触子は図 2Aを用いて説明し、第 1の音響マッチング層の部分は図 8を 用いて説明する。
[0176] 図 2Aにおいて、超音波探触子 10Bは板状の圧電素子 1と、この圧電素子 1の前面
(図面の上方)に積み重ねられた 2層の音響マッチング層 2 (2a、 2b)と、必要に応じ て圧電素子 1の背面(図面の下方)に装着される背面負荷材 3と、同じく必要に応じて 音響マッチング層 2 (2a、 2b)の前面に装着される音響レンズ 4とを備えている。これら の構成要素のそれぞれの機能は、従来の超音波探触子を構成する要素が持つ機能 と同様である。超音波探触子の構成要素及び動作については第 2の実施の形態で 説明しているのでここでは割愛する。
[0177] 導電性部材と絶縁性部材又は半導電性部材との複合材料で構成されている第 1の 音響マッチング層 2aとしては、その音響インピーダンスが圧電素子 1と第 2の音響マ ツチング層 2bの各音響インピーダンスの中間になるような材料が選ばれる。この第 1 の音響マッチング層 2aとして、導電性部材と、複数の絶縁性部材又は半導電性部材 との構成例を図 8に示す。図 8においては、被検体に向けて超音波を放射する方向 を Z方向、これと直交する 2つの方向をそれぞれ X方向、 Y方向としている。
[0178] 図 8に示した第 1の音響マッチング層 2aは、導電性部材 20と、複数のここでは 2種 類の絶縁性部材又は半導電性部材 21とが X方向に順次に配置された連結構造をし ており、この導電性部材 20は少なくとも Z方向につながりがある構造体になっている。 図 8の構成は、 2種類の絶縁性部材又は半導電性部材 21の幅(体積)に対して、導 電性部材 20の幅(体積)は極めて狭くなつた構成にして!/、る。
[0179] この構成は 2種類の絶縁性部材又は半導電性部材 21の体積比率(図面では X方 向の幅)を変えることにより第 1の音響マッチング層 2aの音響インピーダンスを任意に 設定することを可能にし、導電性部材 20は前記 2種類の絶縁性部材又は半導電性 部材 21の体積比率に比べて極めて小さい値つまり、図 8の X方向の幅が極めて狭く して音響インピーダンスの可変にはほとんど寄与しないような構成にする。例えば 2種 類の絶縁性部材又は半導電性部材 21としてシリコン単結晶とエポキシ樹脂を用いて X方向の幅をそれぞれ 0. 1mmに、また導電性部材 20としてシリコン単結晶又はェ ポキシ樹脂の側面に銅、銀、金などをメツキあるいはスパッタリングなどの方法により 形成しての幅を 0. 002mmにすると、これら合計の幅に対して導電性部材 20の幅の 割合は約 1 %となり、音響インピーダンスの可変の寄与度は極めて小さくなる。したが つて、前記導電性部材 20としての機能は圧電素子 1の電極面から電気的な接続が 主となる。このような構成にすると作成が容易にし力、も精度よくでき、しかも導電性部 材に金属を使用する場合には、超音波探触子を作成するときの加工が困難になると いう短所も解消できる。
[0180] 当然のことながら導電性部材 20の幅が広くなつたとしても 2種類の絶縁性部材又は 半導電性部材 21と含めて 3種類の部材の幅の割合を変えることで体積比率を選択 することにより音響インピーダンスは任意に選択できるので導電性部材の幅を限定す るものではない。
[0181] 図 2Aのように音響マッチング層 2aの導電性部材 20は圧電素子 1の一方の電極と 電気的な接続がされ、もう一方の導電性部材 20の面には、接地用電気端子 9の金属 膜 9bが接触して電気的に接続される構成となっており、接地用電気端子 9から信号 の取り入れ、取り出しをする。
[0182] 以上のように、圧電素子の被検体側に設けられる音響マッチング層として、導電性 部材と複数の絶縁性部材又は半導電性部材との複合材料を設けることにより、音響 マッチング層を所望の音響インピーダンスを任意に可変させることが可能になり、これ によって周波数の広帯域化ができるため、高分解能の診断画像を得ることができる。 また、複合材料の音響マッチング層の導電性部材を介して、圧電素子の複数箇所に 電気端子を接続することができるため、信頼性が高くかつ操作性の良好な超音波探 角虫子を得ること力できる。
[0183] また、第 8の実施の形態では、図 8に示すように導電性部材 20及び複数の絶縁性 部材又は半導電性部材 21がほぼ等間隔で、これらを交互に配列した場合について 説明した力 このほかランダムの間隔若しくはランダムに配列した場合においても同 様の効果が得られる。
[0184] また、第 8の実施の形態では、圧電素子 1の接地電極 5と電気信号を授受するため に、音響マッチング層 2aを介して、その前面に接地用電気端子 9を設ける構成につ いて説明したが、この代わりに、音響マッチング層 2aの Z方向の両面又は片面に導 電性部材をスパッタリング、めっきあるいは印刷などにより形成し、その部分に接地用 電気端子 9を接続する構成にしても同様の効果が得られる。
[0185] また、第 8の実施の形態においては、音響マッチング層 2aとして、それぞれ 1つの 材種で形成された導電性部材 20と 2種類の絶縁性部材又は半導電性部材 21との 連結構造のものを用いたが、複数の導電性部材 20と絶縁性部材又は半導電性部材 21の連結構造若しくはそれ以外に複数種類の連結構造で形成されていたとしても 同様の効果が得られることは明らかである。
[0186] また、第 8の実施の形態では、図 8に示す導電性部材 20と複数の絶縁性部材又は 半導電性部材 21とが、 Z方向に対して均一な幅で形成される場合について説明した 1S 第 6の実施の形態で示したように絶縁性部材又は半導電性部材 21が Z方向に対 して幅が連続的に変化するいわゆる楔のような形状にして、 Z方向の厚みに対して音 響インピーダンスが連続的に変化するような構成にし、導電部材はその傾斜の側面 に形成しても、あるいは、第 7の実施の形態で示したように絶縁性部材又は半導電性 部材 21の幅を段階的に変えて音響インピーダンスが変化する構成にしてその側面 に導電性部材 20を設けた構成にしても同様の効果が得られる。
[0187] また、第 8の実施の形態においては、 2層の音響マッチング層の第 1の音響マッチ ング層 2aとして、それぞれ 1つの材種で形成された導電性部材 20と 2種類の絶縁性 部材又は半導電性部材 21との連結構造のものを用いた力 このほか 3層以上の音 響マッチング層として設けた場合においてそれぞれの層に設けたとしても同様の効 果が得られる。
産業上の利用可能性
本発明に係る超音波探触子は、圧電素子の一方の電極形成面に積層される音響 マッチング層の音響インピーダンスを所望の値にすることが可能になるため、周波数 の広帯域化ができることによって、高分解能の診断画像を得ることができ、また、音響 マッチング層を介して、圧電素子の一方の電極形成面の複数箇所に電気端子を接 続することが可能になるため、信頼性が高められて、人体などの被検体の超音波診 断を行う各種医療分野に好適で、さらには材料や構造物の内部探傷を目的としたェ 業分野において利用が可能である。

Claims

請求の範囲
[1] 厚さ方向の両面に電極が形成された圧電素子と、前記圧電素子の一方の電極形 成面に積層された音響マッチング層とを備えた超音波探触子において、
前記音響マッチング層は、少なくとも導電性部材を含む複数の素材の複合材料で 構成され、かつ前記導電性部材は、前記圧電素子の一方の電極形成面の複数箇所 で、それぞれ層の厚さ方向に貫通する部位を有していることを特徴とする超音波探 触子。
[2] 前記音響マッチング層は、絶縁性部材又は半導電性部材と、導電性部材とを含む 複数の素材の複合材料、若しくは絶縁性部材又は半導電性部材を含む複数の素材 と、導電性部材を含む複数の素材との複合材料で構成されていることを特徴とする請 求項 1記載の超音波探触子。
[3] 所定の厚さを有し、厚さ方向の両面に電極が形成され、互いに厚さ方向と直交する 方向に配置された複数の圧電素子と、前記複数の圧電素子の一方の電極形成面に それぞれ積層された複数の音響マッチング層とを備えた超音波探触子において、 前記音響マッチング層は、前記圧電素子に順に積層された第 1及び第 2の音響マ ツチング層を含み、
前記第 1の音響マッチング層は、絶縁性部材又は半導電性部材と、導電性部材と を含む複数の素材の複合材料で構成され、かつ前記導電性部材は、前記圧電素子 の一方の電極形成面の複数箇所で、それぞれ層の厚さ方向に貫通する部位を有し て!/、ることを特徴とする超音波探触子。
[4] 前記圧電素子に隣接する前記音響マッチング層を構成する前記複合材料は、絶 縁性部材又は半導電性部材と、導電性部材とが、あらかじめ定めた領域に配置され ていることを特徴とする請求項 1から 3のいずれ力、 1つに記載の超音波探触子。
[5] 前記圧電素子に隣接する前記音響マッチング層の外表面部に積層された電気端 子を備え、
前記電気端子は、絶縁性フィルムの一主面に導電性膜が披着され、かつ前記絶縁 性フィルムの一主面が前記音響マッチング層に対向するように積層され、前記導電 性膜が、前記音響マッチング層を構成する前記導電性部材を介して、前記圧電素子 に形成された一方の前記電極と電気的に接続されていることを特徴とする請求項 1か ら 3のいずれ力、 1つに記載の超音波探触子。
[6] 所定の厚さを有し、厚さ方向の両面に電極が形成され、互いに厚さ方向と直交する 方向に配置された複数の圧電素子と、前記複数の圧電素子の一方の電極形成面に それぞれ積層された複数の音響マッチング層とを備えた超音波探触子において、 nを 3以上の整数として、前記音響マッチング層は、前記圧電素子に順に積層され る第 1〜第 nの音響マッチング層を含み、かつ第 1の音響マッチング層と第 2の音響マ ツチング層との間に電気端子が揷着され、
少なくとも前記第 1の音響マッチング層は、絶縁性部材又は半導電性部材と、導電 性部材とを含む複数の素材の複合材料で構成され、かつ前記導電性部材は、前記 圧電素子の一方の電極形成面の複数箇所で、それぞれ層の厚さ方向に貫通する部
1AIを有し、
前記電気端子は、絶縁性フィルムの一主面に導電性膜が披着され、かつ前記絶縁 性フィルムの一主面が前記音響マッチング層に対向するように積層され、前記導電 性膜が、前記第 1の音響マッチング層を構成する前記導電性部材を介して、前記圧 電素子に形成された一方の前記電極と電気的に接続されていることを特徴とする超 音波探触子。
[7] 所定の厚さを有し、厚さ方向の両面に電極が形成され、互いに厚さ方向と直交する 方向に配置された複数の圧電素子と、前記複数の圧電素子の一方の電極形成面に それぞれ積層された複数の音響マッチング層とを備えた超音波探触子において、 nを 3以上の整数として、前記音響マッチング層は、前記圧電素子に順に積層され る第 1〜第 nの音響マッチング層を含み、かつ第 2の音響マッチング層と第 3の音響マ ツチング層との間に電気端子が揷着され、
少なくとも前記第 1及び第 2の音響マッチング層は、絶縁性部材又は半導電性部材 と、導電性部材とを含む複数の素材の複合材料で構成され、かつ前記導電性部材 は、前記圧電素子の一方の電極形成面の複数箇所で、それぞれ層の厚さ方向に貫 通する部位を有し、
前記電気端子は、絶縁性フィルムの一主面に導電性膜が披着され、かつ前記絶縁 性フィルムの一主面が前記音響マッチング層に対向するように積層され、前記導電 性膜が、前記第 1の音響マッチング層を構成する前記導電性部材及び前記第 2の音 響マッチング層を構成する前記導電性部材を介して、前記圧電素子に形成された一 方の前記電極と電気的に接続されていることを特徴とする超音波探触子。
[8] 前記第 1の音響マッチング層を構成する前記複合材料は、絶縁性部材又は半導電 性部材と、導電性部材とが、あらかじめ定めた領域に配置されていることを特徴とす る請求項 6又は 7に記載の超音波探触子。
[9] 前記第 2の音響マッチング層を構成する前記複合材料は、絶縁性部材又は半導電 性部材と、導電性部材とが、あらかじめ定めた領域に配置されていることを特徴とす る請求項 7に記載の超音波探触子。
[10] 前記圧電素子の厚さ方向を Z方向、この Z方向と直交する方向を X方向、これら Z方 向及び X方向と直交する方向を Y方向として、
前記音響マッチング層を構成する前記複合材料は、
前記導電性部材が Z方向のみにつながりがあって、 X、 Y方向につながりがなぐ前 記絶縁性部材又は半導電性部材が X、 Y、 Ζの 3方向につながりがある連結構造か、 又は、前記導電性部材が Υ及び Ζの 2方向につながりがあり、前記絶縁性部材又は 半導電性部材カ 及び Ζの 2方向につながりがある連結構造か、
又は、前記導電性部材が X、 Υ、 Ζの 3方向につながりがあり、前記絶縁性部材又は 前記半導電性部材が Ζ方向のみにつながりがあって、 X、 Υ方向につながりがない連 結構造か、
の!/、ずれか 1つの連結構造を有して!/、ることを特徴とする請求項 2から 9の!/、ずれか 1つに記載の超音波探触子。
[11] 所定の厚さを有し、厚さ方向の両面に電極が形成された圧電素子と、前記圧電素 子の一方の電極形成面に積層された音響マッチング層とを備えた超音波探触子に おいて、
前記音響マッチング層は、少なくとも導電性部材を含む複数の素材の複合材料で 構成され、かつ前記導電性部材は、前記圧電素子の一方の電極形成面の複数箇所 で、それぞれ層の厚さ方向に貫通する部位を有し、かつ厚さ方向に導電性部材は連 続的に体積比率が傾斜した、若しくは段階的に体積比率を変えた構成にしているこ とを特徴とする超音波探触子。
[12] 前記音響マッチング層の前記複数の素材の複合材料は、絶縁性部材又は半導電 性部材と、導電性部材とを含む材料で構成されて!、ることを特徴とする請求項 11に 記載の超音波探触子。
[13] 前記複合材料の前記導電性部材が、金属、金属と高分子材料の複合体、グラファ イトの炭化物のうちの少なくとも 1つを含んでいることを特徴とする請求項 1から 12の いずれか 1つに記載の超音波探触子。
[14] 前記複合材料の絶縁性部材又は半導電性部材が、ガラス、セラミックス、水晶、有 機高分子と金属の複合体、シリコンの単結晶若しくは多結晶のうちの少なくとも 1つを 含んでいることを特徴とする請求項 2から 12のいずれ力、 1つに記載の超音波探触子
PCT/JP2007/071412 2006-11-08 2007-11-02 Sonde ultrasonore WO2008056611A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/447,535 US8319399B2 (en) 2006-11-08 2007-11-02 Ultrasound probe
DE112007002645T DE112007002645T5 (de) 2006-11-08 2007-11-02 Ultraschallsonde
JP2008543058A JP5331483B2 (ja) 2006-11-08 2007-11-02 超音波探触子
CN2007800412334A CN101536545B (zh) 2006-11-08 2007-11-02 超声波探头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-303224 2006-11-08
JP2006303224 2006-11-08

Publications (1)

Publication Number Publication Date
WO2008056611A1 true WO2008056611A1 (fr) 2008-05-15

Family

ID=39364429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071412 WO2008056611A1 (fr) 2006-11-08 2007-11-02 Sonde ultrasonore

Country Status (6)

Country Link
US (1) US8319399B2 (ja)
JP (1) JP5331483B2 (ja)
KR (1) KR101121369B1 (ja)
CN (1) CN101536545B (ja)
DE (1) DE112007002645T5 (ja)
WO (1) WO2008056611A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507457A (ja) * 2007-12-18 2011-03-03 ボストン サイエンティフィック サイムド,インコーポレイテッド 超音波トランスデューサ用複合受動材料
CN102018532A (zh) * 2010-11-25 2011-04-20 北京悦琦创通科技有限公司 一种用于超声多普勒的连续波探头结构
US20110121687A1 (en) * 2009-11-24 2011-05-26 Kabushiki Kaisha Toshiba Ultrasound probe
EP2474050A1 (en) * 2009-09-01 2012-07-11 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
WO2012169568A1 (ja) * 2011-06-08 2012-12-13 株式会社 東芝 超音波プローブ
CN101605288B (zh) * 2008-06-13 2013-06-12 上海爱培克电子科技有限公司 一种声阻抗连续变化的超声换能器
JPWO2020196428A1 (ja) * 2019-03-26 2020-10-01
WO2024117396A1 (ko) * 2022-12-02 2024-06-06 한국기계연구원 음향 메타렌즈를 포함하는 유연 센서, 이의 제조방법 및 이를 이용한 센싱방법

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083210B2 (ja) * 2006-06-13 2012-11-28 コニカミノルタエムジー株式会社 アレイ型超音波探触子及びその製造方法
JP5065763B2 (ja) * 2007-05-18 2012-11-07 Jfeミネラル株式会社 圧電単結晶素子
KR101145152B1 (ko) * 2009-10-29 2012-05-15 삼성메디슨 주식회사 초음파 진단장치용 프로브 및 그 제조방법
KR101397100B1 (ko) * 2010-06-28 2014-05-20 삼성전자주식회사 초음파 프로브 및 그 제조방법
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US9000656B2 (en) * 2011-03-15 2015-04-07 Qualcomm Mems Technologies, Inc. Microelectromechanical system device including a metal proof mass and a piezoelectric component
CN102247164B (zh) * 2011-04-18 2012-12-19 华中科技大学 一种高频声学自聚焦球面探头的制备方法
JP5738671B2 (ja) 2011-05-18 2015-06-24 株式会社東芝 超音波トランスデューサ、超音波プローブおよび超音波トランスデューサの製造方法
US9011337B2 (en) * 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
CN102288782A (zh) * 2011-07-19 2011-12-21 江苏物联网研究发展中心 高精度超声波传感器
US8564177B2 (en) * 2011-09-09 2013-10-22 Dvx, Llc Piezopolymer transducer with matching layer
US9166141B2 (en) 2011-09-09 2015-10-20 Dvx, Llc Process of manufacturing a piezopolymer transducer with matching layer
GB2498213B (en) * 2012-01-09 2018-11-21 Bae Systems Plc Transducer arrangement
KR101354605B1 (ko) * 2012-02-03 2014-01-23 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법
JP5954773B2 (ja) * 2012-03-13 2016-07-20 東芝メディカルシステムズ株式会社 超音波プローブおよび超音波プローブの製造方法
CN104883977A (zh) * 2012-11-01 2015-09-02 爱飞纽医疗机械贸易有限公司 具有多个声路的探头
CN103876775B (zh) * 2012-12-20 2016-02-03 深圳迈瑞生物医疗电子股份有限公司 超声探头的阵元连接元件及其超声探头及超声成像***
EP2954458A4 (en) 2013-02-06 2016-11-09 Sonavation Inc BIOMETRIC DETECTION DEVICE FOR THREE-DIMENSIONAL IMAGING OF SUBCUTANEOUS STRUCTURES INTO FINGER TISSUE
JP6326833B2 (ja) * 2014-01-31 2018-05-23 セイコーエプソン株式会社 超音波デバイス、超音波デバイスの製造方法、プローブ、電子機器、超音波画像装置
JP6344026B2 (ja) * 2014-04-14 2018-06-20 コニカミノルタ株式会社 超音波探触子及び超音波画像診断装置
KR102369731B1 (ko) * 2014-12-26 2022-03-04 삼성메디슨 주식회사 프로브 및 프로브의 제조방법
WO2016137023A1 (ko) 2015-02-24 2016-09-01 알피니언메디칼시스템 주식회사 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
WO2016138622A1 (zh) * 2015-03-02 2016-09-09 深圳市理邦精密仪器股份有限公司 超声波换能器及其制造方法
WO2016183243A1 (en) 2015-05-11 2016-11-17 Measurement Specialties, Inc. Impedance matching layer for ultrasonic transducers with metallic protection structure
US10422772B1 (en) 2015-10-20 2019-09-24 Sonavation, Inc. Acoustic sensing through a barrier
WO2017108544A1 (en) * 2015-12-21 2017-06-29 Koninklijke Philips N.V. Ultrasound compatible x-ray anti-scatter grid
CN105390606A (zh) * 2015-12-23 2016-03-09 海鹰企业集团有限责任公司 一种压电陶瓷二维阵的成阵方法
JP2017163330A (ja) * 2016-03-09 2017-09-14 セイコーエプソン株式会社 超音波デバイス、超音波モジュール、及び超音波測定装置
KR102023429B1 (ko) * 2016-04-06 2019-09-24 한국기계연구원 지문인식모듈과, 이것이 적용된 전자기기, 그리고 이를 위한 음파제어부재의 제조방법
JP6608532B2 (ja) * 2016-07-19 2019-11-20 オリンパス株式会社 超音波プローブ、及び超音波内視鏡
CN109804643B (zh) * 2016-10-13 2021-02-19 富士胶片株式会社 超声波探头及超声波探头的制造方法
US10561398B2 (en) * 2016-12-20 2020-02-18 General Electric Company Ultrasound transducer and method for wafer level back face attachment
US10596598B2 (en) * 2016-12-20 2020-03-24 General Electric Company Ultrasound transducer and method for wafer level front face attachment
KR20180097285A (ko) * 2017-02-23 2018-08-31 삼성메디슨 주식회사 초음파 프로브
KR102370812B1 (ko) * 2017-09-13 2022-03-07 지멘스 메디컬 솔루션즈 유에스에이, 인크. 초음파 트랜스듀서
KR102374007B1 (ko) * 2017-09-15 2022-03-14 지멘스 메디컬 솔루션즈 유에스에이, 인크. 초음파 트랜스듀서 및 그 제조 방법
US10710116B2 (en) * 2017-09-21 2020-07-14 General Electric Company Methods and systems for manufacturing an ultrasound probe
US11678865B2 (en) * 2017-12-29 2023-06-20 Fujifilm Sonosite, Inc. High frequency ultrasound transducer
JP7070138B2 (ja) * 2018-06-21 2022-05-18 コニカミノルタ株式会社 超音波探触子および超音波診断装置
CN110477953A (zh) * 2018-07-16 2019-11-22 华中科技大学 一种双频超声换能器
WO2020165383A1 (fr) * 2019-02-15 2020-08-20 Boysset Max Pièce d'habillement et méthode de contrôle de cellules utilisant une telle pièce d'habillement
ES2779956B2 (es) * 2019-02-20 2021-08-30 Consejo Superior Investigacion Estructura laminar como parte de un transductor ultrasonico piezoelectrico
JP7281668B2 (ja) * 2019-08-02 2023-05-26 パナソニックIpマネジメント株式会社 超音波送受信器、および超音波流量計
US12030083B2 (en) * 2019-12-02 2024-07-09 GE Precision Healthcare LLC Methods and systems for ground recover in a transducer array
USD917714S1 (en) * 2020-06-29 2021-04-27 Zhenwu Chen Ultrasound body slimming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870498A (ja) * 1994-08-26 1996-03-12 Olympus Optical Co Ltd 超音波トランスデューサおよびその製造方法
JPH1056690A (ja) * 1996-08-08 1998-02-24 Toshiba Corp 超音波トランスデューサ
JP2002209292A (ja) * 2001-01-11 2002-07-26 Matsushita Electric Ind Co Ltd 超音波探触子
JP2003333694A (ja) * 2002-05-17 2003-11-21 Aloka Co Ltd 超音波探触子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642758B2 (ja) 1983-09-02 1994-06-01 日本電気株式会社 超音波探触子
JPS60185499A (ja) 1984-03-05 1985-09-20 Terumo Corp 超音波探触子
JPS61174909U (ja) * 1985-04-18 1986-10-31
JP2502685B2 (ja) 1988-06-15 1996-05-29 松下電器産業株式会社 超音波探触子の製造方法
JP2758199B2 (ja) * 1989-03-31 1998-05-28 株式会社東芝 超音波探触子
JPH0737107A (ja) 1993-06-29 1995-02-07 Ge Yokogawa Medical Syst Ltd 輪郭線修正方法および装置
JP3304560B2 (ja) 1993-10-26 2002-07-22 ジーイー横河メディカルシステム株式会社 超音波探触子及び超音波探触子の製造方法
JP2606249Y2 (ja) * 1993-12-21 2000-10-10 ジーイー横河メディカルシステム株式会社 超音波探触子
JP3964508B2 (ja) * 1997-09-19 2007-08-22 株式会社日立メディコ 超音波探触子及び超音波診断装置
JP4118381B2 (ja) * 1998-04-16 2008-07-16 株式会社日立メディコ 超音波探触子及びその製造方法並びにその超音波探触子を用いた超音波診断装置
US6390985B1 (en) 1999-07-21 2002-05-21 Scimed Life Systems, Inc. Impedance matching transducers
US6558323B2 (en) * 2000-11-29 2003-05-06 Olympus Optical Co., Ltd. Ultrasound transducer array
US6666825B2 (en) 2001-07-05 2003-12-23 General Electric Company Ultrasound transducer for improving resolution in imaging system
JP4118115B2 (ja) * 2002-09-26 2008-07-16 株式会社東芝 超音波プローブ
US7491172B2 (en) 2004-01-13 2009-02-17 General Electric Company Connection apparatus and method for controlling an ultrasound probe
US7348712B2 (en) * 2004-04-16 2008-03-25 Kabushiki Kaisha Toshiba Ultrasonic probe and ultrasonic diagnostic apparatus
JP4181103B2 (ja) * 2004-09-30 2008-11-12 株式会社東芝 超音波プローブおよび超音波診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870498A (ja) * 1994-08-26 1996-03-12 Olympus Optical Co Ltd 超音波トランスデューサおよびその製造方法
JPH1056690A (ja) * 1996-08-08 1998-02-24 Toshiba Corp 超音波トランスデューサ
JP2002209292A (ja) * 2001-01-11 2002-07-26 Matsushita Electric Ind Co Ltd 超音波探触子
JP2003333694A (ja) * 2002-05-17 2003-11-21 Aloka Co Ltd 超音波探触子

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507457A (ja) * 2007-12-18 2011-03-03 ボストン サイエンティフィック サイムド,インコーポレイテッド 超音波トランスデューサ用複合受動材料
CN101605288B (zh) * 2008-06-13 2013-06-12 上海爱培克电子科技有限公司 一种声阻抗连续变化的超声换能器
EP2474050A1 (en) * 2009-09-01 2012-07-11 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
US8264126B2 (en) * 2009-09-01 2012-09-11 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
US8604672B2 (en) * 2009-09-01 2013-12-10 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
US20140117814A1 (en) * 2009-09-01 2014-05-01 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
EP2474050A4 (en) * 2009-09-01 2014-07-02 Measurement Spec Inc MULTILAYER ACOUSTIC IMPEDANCE INVERTER FOR ULTRASONIC TRANSDUCERS
US9149838B2 (en) * 2009-09-01 2015-10-06 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
US20110121687A1 (en) * 2009-11-24 2011-05-26 Kabushiki Kaisha Toshiba Ultrasound probe
CN102018532A (zh) * 2010-11-25 2011-04-20 北京悦琦创通科技有限公司 一种用于超声多普勒的连续波探头结构
WO2012169568A1 (ja) * 2011-06-08 2012-12-13 株式会社 東芝 超音波プローブ
CN103270775A (zh) * 2011-06-08 2013-08-28 株式会社东芝 超声波探测器
JPWO2020196428A1 (ja) * 2019-03-26 2020-10-01
JP7403532B2 (ja) 2019-03-26 2023-12-22 テルモ株式会社 超音波振動子
WO2024117396A1 (ko) * 2022-12-02 2024-06-06 한국기계연구원 음향 메타렌즈를 포함하는 유연 센서, 이의 제조방법 및 이를 이용한 센싱방법

Also Published As

Publication number Publication date
DE112007002645T5 (de) 2009-10-08
US20100066207A1 (en) 2010-03-18
JPWO2008056611A1 (ja) 2010-02-25
US8319399B2 (en) 2012-11-27
CN101536545A (zh) 2009-09-16
CN101536545B (zh) 2013-02-06
JP5331483B2 (ja) 2013-10-30
KR20090085579A (ko) 2009-08-07
KR101121369B1 (ko) 2012-03-09

Similar Documents

Publication Publication Date Title
JP5331483B2 (ja) 超音波探触子
JP4990272B2 (ja) 超音波探触子
US8207652B2 (en) Ultrasound transducer with improved acoustic performance
KR101464769B1 (ko) 초음파 탐촉자
US7288069B2 (en) Ultrasonic probe and method of manufacturing the same
US20030018267A1 (en) Piezocomposite ultrasound array and integrated circuit assembly with improved thermal expansion and acoustical crosstalk characteristics
US8823246B2 (en) High frequency piezocomposite transducer pillars
EP1728563B1 (en) Ultrasonic probe and ultrasonic probe manufacturing method
JP5738671B2 (ja) 超音波トランスデューサ、超音波プローブおよび超音波トランスデューサの製造方法
KR20110088384A (ko) 초음파 트랜스듀서, 초음파 프로브, 초음파 트랜스듀서의 제조 방법
US11197655B2 (en) Ultrasound probe and method of manufacturing ultrasound probe
US7876027B2 (en) Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer
US6288477B1 (en) Composite ultrasonic transducer array operating in the K31 mode
US6323661B1 (en) Measurement of printed circuit-to-conductive substrate contact resistance
JP2008307117A (ja) 超音波探触子
JP2009072349A (ja) 超音波トランスデューサ及びその製造方法、並びに、超音波探触子
JP2015188121A (ja) 超音波探触子
JPH11347032A (ja) 超音波探触子
JP2006174991A (ja) 超音波探触子
EP3905716B1 (en) Ultrasound device
JP2018175372A (ja) 超音波探触子および超音波診断装置
JP2003230194A (ja) 超音波探触子
JPH04273698A (ja) 超音波探触子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041233.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097007815

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008543058

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12447535

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120070026456

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007002645

Country of ref document: DE

Date of ref document: 20091008

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07831146

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607