WO2008053766A1 - Method for producing soymilk - Google Patents

Method for producing soymilk Download PDF

Info

Publication number
WO2008053766A1
WO2008053766A1 PCT/JP2007/070753 JP2007070753W WO2008053766A1 WO 2008053766 A1 WO2008053766 A1 WO 2008053766A1 JP 2007070753 W JP2007070753 W JP 2007070753W WO 2008053766 A1 WO2008053766 A1 WO 2008053766A1
Authority
WO
WIPO (PCT)
Prior art keywords
soymilk
solution
holding
glutamic acid
water
Prior art date
Application number
PCT/JP2007/070753
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuma Yoshimura
Akira Nagatoishi
Ryoichi Minoshima
Aya Matsuyama
Chie Shimizu
Yoshihiro Murano
Original Assignee
The Nisshin Oillio Group, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Nisshin Oillio Group, Ltd. filed Critical The Nisshin Oillio Group, Ltd.
Priority to JP2008542064A priority Critical patent/JPWO2008053766A1/en
Publication of WO2008053766A1 publication Critical patent/WO2008053766A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/05Mashed or comminuted pulses or legumes; Products made therefrom
    • A23L11/07Soya beans, e.g. oil-extracted soya bean flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/60Drinks from legumes, e.g. lupine drinks
    • A23L11/65Soy drinks
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/70Germinated pulse products, e.g. from soy bean sprouts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/02Acid
    • A23V2250/06Amino acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/02Acid
    • A23V2250/06Amino acid
    • A23V2250/062Glutamine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/24Heat, thermal treatment

Definitions

  • the present invention relates to a method for producing soymilk that increases ⁇ -aminobutyric acid (GABA) in soymilk and can suppress an increase in the number of bacteria within a range acceptable for food hygiene.
  • GABA ⁇ -aminobutyric acid
  • ⁇ Amino acid is a component contained in the soy milk is a type of bioactive amino acid that acts as a nerve transmitter in the brain of a vertebrate such as, recently, ingesting ⁇ Amino acid
  • ⁇ -aminobutyric acid suppresses blood pressure rise, promotes cerebral metabolism, improves symptoms of cerebrovascular disorders, improves symptoms associated with head trauma, improves muscle atrophy disease, improves diabetes It has been confirmed that there is no problem in terms of safety even if ingested from food.
  • Patent Document 1 includes a holding step of holding soybeans soaked and ground in water at 20 to 60 ° C. for 2 to 12 hours in the presence of a proteolytic enzyme, ⁇ -amino A method for producing soymilk with a high butyric acid content is disclosed. By this holding step, ⁇ -aminobutyric acid is efficiently produced.
  • aminoaminobutyric acid is produced by glutamate decarboxylase (GAD) acting on glutamic acid (Glu), which is a kind of amino acid, and the ⁇ -carboxyl group of glutamic acid is eliminated.
  • GAD glutamate decarboxylase
  • Glu glutamic acid
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-45138
  • Patent Document 1 does not consider the microbial hygiene of the obtained soymilk itself. That is, the increase in the number of bacteria due to microorganisms in soy milk is remarkable under the high temperature and short time holding conditions of 20 to 60 ° C., 2 to 12 hours. For this reason, if the holding time is increased within the above range, the soy milk will rot and the product will not be circulated. If the retention time is shortened within the above range to reduce the number of bacteria, the required ⁇ -aminobutyric acid will not increase.
  • an object of the present invention is to contain soy milk that contains a certain amount or more of ⁇ -aminobutyric acid as a nutritional value and can also suppress an increase in the number of bacteria within an acceptable range for food hygiene. It is to provide a manufacturing method.
  • the present invention provides the following.
  • the horizontal axis is holding temperature X (° C) and the vertical axis is holding time Y (hr)
  • the reaction in which glutamic acid in soy milk is converted to ⁇ -aminobutyric acid by the enzyme GAD, the reaction is performed at a temperature suitable for GAD (eg, 20 30 ° C) for a short time (eg, within 3 hours).
  • the amount of ⁇ -aminobutyric acid produced by the reaction is lower than the temperature suitable for GAD (eg 4 to 15 ° C) for a long time (eg, 7.5 ° C at 15 ° C for more than 7.5 hours, at 10 ° C) It was found that the amount of ⁇ -aminobutyric acid produced by the reaction was greater than 9 hours and more than 5 hours at 16 ° C.
  • ⁇ 24000 ⁇ — 2 ⁇ 7 and X is 4 to; 15 ° C.
  • the graph shows the temperature on the X-axis and the retention time on the Y-axis, and the approximate curve is drawn from this graph. Details will be described later in Examples.
  • the horizontal axis is the holding temperature X (° C) and the vertical axis is the contact strength Z between the mixed solution or the solution and the fungus
  • the contact strength Z is the retention time Y (hr) on the horizontal axis and the number of bacteria (vertical) on the vertical axis. Integral value.) Enzyme deactivation process (c),
  • the present invention is further characterized by comprising a low-temperature holding step (B) in consideration of how much the bacteria have come into contact with the mixed solution containing the soybean component.
  • the maximum value of the amount of ⁇ -aminobutyric acid produced by holding at 20 ° C. or higher is, for example, 72.lmg as shown in the examples described later.
  • the above approximate curve is obtained by calculating the time over which the amount of ⁇ -aminobutyric acid exceeds 72.lmg for each temperature and approximating this according to the examples described later.
  • this time is approximately 7.5 hours or more at 15 ° C, 9 hours or more at 10 ° C, and 16 hours or more at 5 ° C.
  • the number of bacteria before the low temperature holding step is reduced to 1/100 or less by heating at 50 to 75 ° C. simultaneously with the liquefaction step or between the liquefaction step and the low temperature holding step.
  • a pasteurization process (D) that reduces the number of bacteria before the low temperature holding step to less than 1 ⁇ 10 6 by heating at 50 to 75 ° C. (1) to (3)
  • V The manufacturing method of the described soymilk.
  • the pasteurization step means that the activity of GAD is not inactivated and the number of bacteria is reduced by a certain amount or more. This refers to the heating process.
  • the initial number of bacteria before the low-temperature holding step can be reduced, hygiene can be further improved even in consideration of a decrease in ⁇ -aminobutyric acid due to a decrease in GAD activity due to heating. For example, in a normal soymilk manufacturing process, even when sufficient line washing is performed, the number of bacteria is often not reduced as much as a small scale (beaker scale).
  • the number of bacteria before the low-temperature holding step can be kept below a certain value, and the soymilk production process can be performed more stably regardless of the initial number of bacteria after the liquefaction step. It will be possible to manage the number of bacteria in.
  • the pasteurization process may be performed simultaneously with the liquefaction process.
  • the number of bacteria before the low-temperature holding step can be reduced to a certain value or less, and it is preferable in that it can be efficiently produced by reducing the number of steps.
  • a high temperature holding step (E) is further provided before the pasteurization step (4).
  • the high temperature holding step (E) refers to a step of once increasing the activity of GAD to increase ⁇ -aminobutyric acid.
  • ⁇ -aminobutyric acid can be further increased as compared with the case where the high temperature holding step is not provided ((4) above).
  • the ability to increase the amount of ⁇ -aminobutyric acid in the high-temperature holding step (ii) may increase not only ⁇ -aminobutyric acid but also the number of bacteria.
  • a pasteurization step can be provided thereafter to reduce the number of bacteria. That is, according to this aspect, the decrease in the amount of ⁇ -aminobutyric acid due to the introduction of the pasteurization step (D) can be compensated for by the introduction of the high temperature holding step ( ⁇ ), and the amount of ⁇ -aminobutyric acid can be further increased. I can do it.
  • the GAD or the material containing the enzyme destroys the cell walls of the immature beans or the straw of the immature beans from the viewpoint of the strength of the enzyme activity and the ease of treatment when put in soy milk! It is preferable that it is a cell wall destruction processed product.
  • ⁇ -aminobutyric acid can be further increased by adding GAD or a cell wall disrupted product of a material containing the enzyme (preferably green soybeans) as a GAD resource.
  • GAD a cell wall disrupted product of a material containing the enzyme
  • immature beans or processed product of cell pods thereof have a very high GAD activity compared to vegetables such as cabotya, tomato, cucumber and carrot.
  • the reaction conditions such as temperature, time, and pH can be controlled efficiently in a relatively short period of time.
  • glutamic acid can be converted to ⁇ -aminobutyric acid at a high rate, which is particularly preferable.
  • a method for producing soymilk powder wherein the soymilk obtained by the method for producing soymilk according to any one of (1) to (7) is subjected to a drying treatment, or a drying treatment and a grinding treatment.
  • the soy milk obtained by the above production method can be made into a dry product by drying treatment.
  • the drying treatment here is not particularly limited as long as it can dry soymilk.
  • the dried soymilk can be pulverized by pulverization. Thus, it can use simply as food raw materials, such as a cake and bread, by making it into a powder form.
  • the pulverization treatment here is not particularly limited as long as it can pulverize dried soybean milk. When dried with a spray dryer (spray drying), the powder usually has an appropriate particle size, so there is no need to grind!
  • Soy milk made from soybean ground material and water as raw materials a mixed solution or solution containing the raw materials is kept at 4 to 15 ° C for a predetermined time, soy milk Soy milk with a ⁇ -aminobutyric acid content of at least 20 mg per 13.75 g of soy solid content.
  • the raw material further includes glutamic acid added from the outside, and the soymilk-derived ⁇ -aminobutyric acid content per 13.75 g of soybean solid content in soymilk is 50 mg or more, and glutamic acid
  • the raw material further contains GAD or a material containing the enzyme, and is contained in soy milk.
  • GAD or a material containing the enzyme
  • the soymilk according to claim 10 wherein the soymilk-derived ⁇ -aminobutyric acid content per 75 g of soybean solid content is 70 mg or more and the glutamic acid content is 0 mg or less.
  • the soybean is a germinated soybean, wherein the soymilk-derived ⁇ -aminobutyric acid content per 13.75 g of soybean solid content in the soymilk is 25 mg or more and the glutamic acid content is 15 mg or less.
  • Item 10 Soy milk according to item 9.
  • the soy milk of the present invention is a soy milk made from pulverized soybean and water as raw materials, and a low temperature holding step of holding a mixed solution or solution containing the raw materials at 4 to 15 ° C for a predetermined time ( B) or (B)
  • the content of ⁇ -aminobutyric acid derived from soy milk per 13.75 g of soy solid content in soy milk is 20 mg or more.
  • the soymilk-derived ⁇ -aminobutyric acid content per 13.75 g of soybean solid content in the soymilk is 50 mg or more and the glutamic acid content is 40 mg or less.
  • the content of ⁇ -aminobutyric acid derived from the soy milk per 13.75 g of soybean solid content in the soy milk is not less than 70 mg.
  • the glutamic acid content is preferably 40 mg or less.
  • the soybeans should have a ⁇ -aminobutyric acid content of 25 mg or more and a glutamic acid content of 15 mg or less per 13.75 g of soybean solids in soy milk. preferable.
  • an unprecedented high content of ⁇ -aminobutyric acid S derived from soy milk is obtained, and the content of gnoretamic acid that has a great influence on taste is 40 mg or less, Preferably it can be 15 mg or less.
  • This soy milk is obtained by the method for producing soy milk described in (1) to (7) above (see Examples described later). That is, in the method for producing soymilk of (1) to (7) above, by providing the low-temperature holding step (B) or (B),
  • the content of ⁇ -aminobutyric acid is high regardless of the presence or absence of external addition of glutamic acid as a substrate or external addition of green soybeans as a GAD resource. It is possible to obtain a soy milk that is tasteful and suitable for food hygiene.
  • the mixture or solution containing the raw material is kept at 20 ° C or higher (for example, 25 ° C to 35 ° C, 30 ° C) for a fixed time (for example, 100 minutes or longer, 2 hours or longer). Hold for more than 3 hours)
  • a force ,, or bacterial count to bacteria number 1/100 Do perform sterilization be less than 1 X 1 0 6 by heating! /, Soy milk and a method for manufacturing the soymilk, the It is preferable not to contain! According to this, by holding for a long time in a state where the number of bacteria is large, there may be a case where the food is suitable for beverages and soy milk in terms of food hygiene.
  • a method for producing soymilk comprising a liquefaction step, a glutamic acid addition step, a pasteurization step, a low-temperature holding step, and an enzyme deactivation treatment step, wherein a mixture of soybean grind and water
  • Pasteurization process to reduce the previous number of bacteria to less than 1 X 10 6 , 4 ⁇ ; at 15 ° C, keep the mixture or solution at a low temperature until the ⁇ -aminobutyric acid content reaches 50mg or more
  • the manufacturing method of the soymilk which has a process and an enzyme deactivation process.
  • the soymilk has a high ⁇ -aminobutyric acid content and can suppress an increase in the number of bacteria within a range acceptable for food hygiene.
  • a manufacturing method can be provided.
  • FIG. 1 is a graph showing the relationship between retention time and amount of ⁇ -aminobutyric acid in Examples.
  • FIG. 2 is a graph showing the relationship between holding temperature and holding time in Examples.
  • FIG. 3 is a graph showing the relationship between holding temperature and contact strength in Examples.
  • FIG. 4 is a diagram showing the relationship between holding temperature and holding time in Examples.
  • FIG. 5a is a graph showing the relationship between retention time and the number of bacteria in Examples.
  • FIG. 5b is a diagram showing the relationship between the retention time and the number of bacteria in Examples, and is a diagram for explaining the definition of contact strength.
  • the method for producing soymilk according to the present embodiment includes a mixed solution of pulverized soybean and water (hereinafter sometimes simply referred to as “mixed solution”) or a solution obtained by removing water-insoluble components from this mixed solution. (Hereinafter referred to simply as “solution”) and a liquefaction step (A), and a low-temperature holding step (B, which holds the mixed solution or the solution at a predetermined temperature for a predetermined time) B) and a mixture or
  • soybean used in the present invention No particular limitation is imposed on the soybean used in the present invention.
  • domestic soybean US soybean such as IOM
  • genetically modified soybean or non-genetically modified soybean
  • Green soybeans black soybeans, green beans and the like can also be used. Since green soybeans are immature seeds of soybeans, they can roughly be used as soybeans.
  • soybeans it is possible to produce a mixed solution of soybean ground material and water in the liquefaction step or a solution from which the water-insoluble components are removed without any treatment on the soybean.
  • soybeans it is preferable to use germinated soybeans from the viewpoint of increasing the amount of glutamic acid derived from soybeans.
  • Germinated soy beans are soaked in water, etc. so that the soybeans containing water necessary for the germination reaction are brought into contact with air or oxygen after draining or during the steps of soaking, etc., and the germination reaction is accelerated while maintaining temperature and humidity. It does not matter whether the shoots and roots can be visually confirmed.
  • the drained soybeans are transferred to a germination bed and sprayed intermittently or wrapped with a damp cloth to advance the germination reaction.
  • the germination apparatus used in the present invention is capable of using a commonly used germination bed. It is not limited to this.
  • the specific germination treatment method is not particularly limited, but is, for example, 25 to 45 ° C, more preferably 25 to 35 ° C, preferably 12 to 72 hours, more preferably 12 to 36.
  • One method is to leave it for a while.
  • germinated soybeans for example, those described in International Publication No. WO2005 / 004633 can be preferably used.
  • the liquefaction process is not particularly limited as long as it is a process capable of obtaining a mixed liquid or solution described later.
  • a water absorption process in which water is absorbed by soybeans a pulverization process in which water is absorbed into the absorbed soybeans and pulverized, and, if necessary, a pulverized soybean product and water obtained in the pulverization process. Removing the water-insoluble component from the mixed solution.
  • dried soybeans may be pulverized and then mixed with water to form a mixed solution or solution.
  • the water absorption step may be omitted if the germinated soybeans contain sufficient moisture.
  • the water absorption process is not particularly limited as long as it is a process in which soybeans can be sufficiently softened to facilitate the grinding process.
  • the water absorption process can be carried out by adjusting the water absorption process as appropriate.
  • the water used in the water absorption step is not particularly limited, such as tap water and groundwater, but it is preferable to use water containing only a small amount of metal ions such as soft water from the viewpoint of preventing precipitation of soy protein contained in soy milk.
  • the pulverization process is not particularly limited as long as it is a process that can be mixed liquid.
  • the grinding process It can adjust suitably by a conventional method.
  • the pulverizer used in the pulverization step is not particularly limited, and may be a mixer or a mortar, for example.
  • the water to be input into the pulverizing apparatus in the pulverization process is not particularly limited, such as tap water and groundwater, but from the viewpoint of preventing the precipitation of soy protein contained in soy milk, a small amount of metal ions such as soft water can be used. It is preferable to use water which does not contain.
  • a water-insoluble component for example, okara
  • a removal device or separation device
  • the water-insoluble component is removed from the liquid mixture.
  • a removal device or separation device
  • a screw press or a screw decanter can be used as the removal device (or separation device) used in the removal step.
  • the "mixed liquid of soybean pulverized product and water” results in a mixture of soybeans ground by means of pulverization or grinding and water.
  • Any manufacturing method may be used as long as it is a product.
  • it may be produced by grinding soybeans while adding water. These are sometimes called Kure or Namago.
  • the concentration of the pulverized product in the mixed solution is not particularly limited as long as soymilk can be produced.
  • the "solution from which the water-insoluble component has been removed from the mixed solution” refers to a solution obtained by removing okara from the mixed solution by a general process of removing V and soy sauce. Therefore, the water-insoluble component is sometimes called okara. Further, the solution may be called a soy milk part obtained by a general process of removing so-called okara. This solution may contain small amounts of water-insoluble components without the removal of forces that are excluding water-insoluble components. Therefore, even in the present invention, the content of the water-insoluble component in the solution is used regardless of the content of the water-insoluble component.
  • the mixed solution or the solution may be subjected to a treatment for squeezing the water-insoluble component with a stirrer or the like in order to improve poor throat penetration due to the presence of the water-insoluble component.
  • a treatment for squeezing the water-insoluble component with a stirrer or the like in order to improve poor throat penetration due to the presence of the water-insoluble component.
  • What performed the said process to the said liquid mixture may be called whole grain soymilk, and this is handled as a kind of said liquid mixture.
  • soy milk referred to in the present application is not limited to the JAS standard, as well as those included in the JAS standard, and refers to all soybeans made from soy milk. For example, do not remove okara Japanese potatoes and soybeans that have been dried and powdered once, and then the powder has water-solubility are also included. Moreover, content of soybean solid content is not ask
  • a solution containing glutamic acid added from the outside can be used as the mixed solution or solution produced in the liquefaction step.
  • glutamic acid as a substrate from the outside, ⁇ -aminobutyric acid can be further increased.
  • the glutamic acid of the present invention refers to glutamic acid and a salt thereof (for example, sodium glutamate).
  • soy milk having a ⁇ -aminobutyric acid content of 50 mg or more, strength, and a glutamic acid content of 40 mg or less per 13.75 g of solid content in soy milk is obtained.
  • Soymilk-derived ⁇ -aminobutyric acid content refers to the content of ⁇ -aminobutyric acid when y-aminobutyric acid is not added or when a material intended to increase the amount of ⁇ -aminobutyric acid itself is not added from the outside. means.
  • ⁇ -aminobutyric acid is about 10 mg. In the present invention, 50 mg or more can be achieved.
  • the amount of glutamic acid added is not particularly limited. When glutamic acid is added even a little, ⁇ -aminobutyric acid increases accordingly, so the lower limit cannot be defined unconditionally. If the reaction is not inhibited, ⁇ -aminobutyric acid will increase even if glutamic acid is added at a high concentration. Therefore, the upper limit cannot be defined unconditionally.
  • the amount of glutamic acid to be added cannot be generally defined due to differences in extraction efficiency due to differences in the machines used for production and production scales.
  • the amount of glutamic acid can be expressed as the glutamic acid concentration in the mixed solution or solution before the holding step.
  • the glutamic acid content is 50 mg or more (preferably 70 mg or more) per 13.75 g of soybean solids in the mixed solution or solution before the holding step (corresponding to 125 mL of mixed solution or solution converted to 11% soybean solids). It is preferable to add so that it may become. This amount indicates the total concentration of added dartamic acid and glutamic acid inherent in the soybean component. This is because it is possible to obtain soy milk with 50 mg or more of y-aminobutyric acid.
  • the glutamic acid content is 11 Omg or less per 13.75 g of soybean solid in the mixed solution or solution before the holding step (corresponding to 125 mL of the mixed solution or solution converted to 11% soybean solid). It is preferable to add so that it becomes. This amount indicates the total concentration of glutamic acid added and glutamic acid inherent in the soybean component. This is because it is possible to obtain soy milk having a residual amount of glutamic acid of Omg or less.
  • the glutamic acid content is 50 to 1 lOmg (preferably 125 ml of the mixture or solution converted to 11% soybean solid) in 13.75 g of soybean solid in the mixture or solution before the holding step. More preferably 70 to UOmg).
  • Soybean solids 13 Any method of preparing a mixed solution or solution present in an amount of 50 mg or more (or lO mg or less) per 75 g is acceptable. For example, (a) a method in which dartamic acid is added to a solution from which okara has been removed, or (b) when making a mixture, an excess amount of glutamic acid is added in advance, and then a part of glutamic acid is included. Can remove okara and prepare it as a solution from which okara has been removed. In the case of (b), the reason why an excessive amount of glutamic acid is added is that a part of glutamic acid is also removed at the same time as the removal of the glutamic acid. Since glutamic acid is an acidic substance, (b) is preferred from the viewpoint of protein denaturation and flavor.
  • the amount of glutamic acid is greatly influenced by the activity of the added GAD or the GAD activity contained in the material, so the amount cannot be roughly determined. . This is because if a large amount of GAD or a material containing GAD is added, even if a large amount of glutamic acid is added, glutamic acid can be converted to ⁇ -aminobutyric acid. Even in this case, it is possible to add glutamic acid in the range where the amount of ⁇ aminobutyric acid in the produced soymilk is 50 mg or more (preferably 70 mg or more) and the residual glutamic acid content is 40 mg or less. preferable. These addition amounts can be appropriately adjusted and selected by those skilled in the art with reference to the above description.
  • the liquid mixture or solution produced in the liquefaction step may further contain GAD or a material containing the enzyme.
  • GAD or material containing GAD GAD or material containing GAD
  • ⁇ -aminobutyric acid can be further increased.
  • soymilk having a ⁇ -aminobutyric acid content of 70 mg or more and a glutamic acid content of 40 mg or less per 13.75 g of solid content in soymilk is obtained.
  • the meaning of “content of ⁇ -aminobutyric acid derived from soy milk” is the same as above.
  • GAD or a material containing GAD may be added (contained) in the step of preparing a mixed solution or solution as long as it is added (contained) before the holding step. Even if added in the middle of the holding process, there is an effect, but it is inferior to the case of adding from the beginning.
  • GAD itself can be added.
  • the isolated enzyme is expensive and difficult to use as an inexpensive raw material for soy milk.
  • a material containing GAD can be added.
  • Materials containing GAD broadly refer to materials containing GAD, foods containing vegetables, fruits, etc., processed products, parts of these removed, or those that can be added to foods , Etc.
  • an extract of some of these for example, an extract (protein fraction) containing GAD at a high concentration extracted from vegetables or beans by some method. Therefore, even a material having a low GAD concentration can be used in the present invention if it is processed, extracted, or the like.
  • One object of the present invention is to further increase ⁇ -aminobutyric acid in the method for producing soymilk.
  • ⁇ -aminobutyric acid can be further increased by using a material having higher GAD activity than soybean as a material containing GAD.
  • a material having higher GAD activity than soybean for soy milk using fully-ripened soybeans, it is possible to use a material S having a higher GAD activity than this raw soybean.
  • Comparison of GAD activity between soybean and a material containing GAD can be performed by various methods, for example, the following methods.
  • An aqueous solution or water suspension of a material containing a certain amount of soybean or GAD is added to an aqueous solution containing a sufficient amount of glutamic acid, and sufficiently stirred. Hold this at 10 ° C and continue the reaction until the yield of y-aminobutyric acid reaches a plateau. When the reaction is over, sterilize Measure the amount of ⁇ -aminobutyric acid. The difference between this and the amount of ⁇ -aminobutyric acid before the start of the reaction is the increased amount of ⁇ -aminobutyric acid. This reaction can be adjusted as necessary.
  • This ⁇ -aminobutyric acid increase is higher than that of soybeans, which can be said to be “a GAD material with higher GAD activity than soybeans”.
  • “Sufficient amount of glutamic acid” means an appropriate amount of glutamic acid (for example, 10 to 40 mg / 125 mU) after the reaction is completed.
  • the solid content of the material containing GAD is not particularly limited. This is because if GAD activity is higher than that of soybean, it can be used as a GAD material with higher GAD activity than soybean.
  • an extract (protein fraction) containing GAD at a high concentration can be used from vegetables, beans, or the like by any method, and therefore, "GAD activity is higher than soybean! /, “G AD material” cannot be defined in general.
  • vegetables can include pumpkins, cucumbers, tomatoes, carrots, or extracts thereof.
  • immature beans, immature bean straw, or extracts thereof can be cited. More specifically, edamame or its pods, broad bean or broad bean pods, pods, peas, etc.
  • the type is not limited, and it is possible to use Western pumpkin or Japanese pumpkin.
  • the pumpkin extract a solution obtained by removing fibers of a force-powder pulverized solution obtained by pulverizing pumpkin in water by centrifugation, filtration, or the like can be used.
  • the pumpkin pulverized liquid solution for example, a pumpkin can be used that has been added to water at least twice the amount of the pumpkin, pulverized sufficiently with a juicer or the like, and made into a juice.
  • the raw material pumpkin preferably all parts except the seed are used.
  • a cell wall disrupted product obtained by disrupting immature beans or cell walls of immature bean straw can be used.
  • immature beans or immature bean straw refers to fruits and vegetables that are harvested while still immature or their straw.
  • the cell wall disrupted product refers to a product that has been subjected to processing such as crushing and grinding to such an extent that the cell wall of the bean or bean koji is destroyed.
  • the immature bean or the pod of the immature bean is an edamame or its pod, a broad bean or a pod of the broad bean, a green beans, a green pea, or an edamame or a cocoon that is preferably selected from the group of power.
  • the cell wall disruption-treated product is any one of immature beans or a crushed product obtained by crushing the straw of the immature beans, an aqueous suspension containing the crushed product, and a separation-treated product of the aqueous suspension. preferable.
  • the reason for applying these treatments is that beans or straw GAD are inherent in cells, and in order to effectively use GAD, treatment such as crushing and grinding is necessary.
  • immature beans or immature bean pods may be added (contained) before the holding step! /, And may be added in the step of producing a mixed solution or solution ( Contained)! /
  • the pretreatment as described above may be performed and added (containing) to the mixed solution or solution.
  • immature beans or immature bean straw is added.
  • the cell wall may be destroyed by this grinding treatment. Even if it is added in the middle of the holding process, the effect is inferior compared to the case where it is added from the beginning.
  • glutamic acid can be efficiently converted to ⁇ -aminobutyric acid at a high rate even in the above-mentioned! /, Misalignment form.
  • a specific form of using immature beans or cell walls of the immature beans that have been subjected to cell wall disruption in the conversion reaction of ⁇ -aminobutyric acid is to crush the immature beans or the immature beans to such an extent that the cell wall is destroyed. It may also be a crushed material treated by grinding or the like. Further, it may be a water suspension obtained by dispersing the crushed material in water or the like. Moreover, the separation processed material of this water suspension may be sufficient.
  • the separation-treated product a solution obtained by filtering an aqueous suspension to separate and remove insoluble matters, an extract obtained by extracting immature beans or crushed potatoes with water, or the like, Examples include a solution obtained by salting out the crushed product solution, desalting it, and purifying the column.
  • the cell wall disrupted product is a crushed product obtained by crushing immature bean straw or a water suspension containing the crushed product, and the crushed product or the aqueous suspension is used to remove water-insoluble components. It is preferable to use without performing. According to this aspect, conversion to ⁇ -aminobutyric acid can be performed with higher efficiency than that obtained by filtering an aqueous suspension. That is, in the processed product of immature bean pods with cytoplasmic destruction, not only water-soluble components but also water-insoluble components can be converted to ⁇ aminobutyric acid.
  • green soybeans An example of green soybeans is given as a material containing GAD. When using green soybeans, green soybeans are immature Since it is soy, it has excellent taste matching with soy. Green soybeans may be added when (a) a mixed solution is made and ground simultaneously with soybeans. (B) A dry powder of green soybeans may be added to the mixed solution.
  • the amount of green soybean added is not particularly limited.
  • ⁇ -aminobutyric acid is significantly increased compared to the case of no addition. Since it increases, it is preferable.
  • it is 2 mass% or more, More preferably, it is 5 mass% or more. That is, in a preferred embodiment of the present invention, the ratio of the dry weight of green soybeans to the total of the dry weight of soybeans and dry weight of green soybeans is 1% by mass or more. This is a method for producing soymilk.
  • the ratio of glutamic acid and green soybeans added from the outside is not particularly limited. In this case, for example, if the dry mass of green soybeans with respect to the mass lg of glutamic acid added from the outside is 5 g or more (preferably 17 g or more), the reaction of ⁇ -aminobutyric acid production proceeds rapidly, and ⁇ -aminobutyric acid Since it increases, it is preferable. That is, a preferred embodiment of the present invention is the method for producing soymilk according to any one of (1) to (6) V above, wherein the dry mass of green soybeans is 5 g or more with respect to the mass lg of glutamic acid added from the outside.
  • soy milk having a ⁇ -aminobutyric acid content of 25 mg or more and a glutamic acid content of 15 mg or less per 13.75 g of the solid content in the soy milk is obtained.
  • the meaning of “content of ⁇ -aminobutyric acid derived from soy milk” is the same as described above.
  • a low temperature holding step for holding the mixed solution or the solution is performed. Specifically, it is one of the following steps ⁇ or ⁇ .
  • the contact strength Z is the retention time Y (hr) on the horizontal axis and the number of bacteria (vertical) on the vertical axis. Integral value.
  • the holding conditions are within the range of the low temperature holding step ( ⁇ ) of the present invention, which is the hatched portion in FIG. 2, the increase in the number of bacteria can be suppressed to prevent spoilage, and ⁇ -aminobutyric acid can also be used. It can be further increased (see Figure 1). That is, by setting the holding conditions at a low temperature / long time as in the low temperature holding step ( ⁇ ) of the present invention, an amount of ⁇ that cannot be obtained at the holding temperature and holding time that are in the range described in Patent Document 1. —Aminobutyric acid can be obtained without spoilage.
  • the number of bacteria means “the number of bacteria present in soy milk lg”, and is simply expressed as “number”. For example, when there are X bacteria in soy milk lg (ie, “X / g soy milk”), it is simply written as “X”.
  • this initial number of bacteria cannot be specified in general, it is assumed that it is sufficiently applicable if it is less than 10 5 , and is applicable even if it is less than 5 X 10 5 or 10 6 .
  • the initial bacterial count is generally less than 10 6 .
  • the initial number of bacteria is 10 6 or more, it is not preferable because decay may occur relatively quickly.
  • the pasteurization step described below is performed as a pretreatment, the present invention is sufficient. It is applicable to. Regardless of whether the initial number of bacteria is large or small, the holding condition defined by the contact strength between the soybean component and the bacteria is the following low temperature holding step (B).
  • the behavior of the increase in the number of bacteria during the low-temperature holding step also depends on the initial number of bacteria. For this reason, the holding conditions also take into account the behavior of the increase in the number of bacteria due to the temperature (progress of spoilage), not just the holding temperature and holding time.
  • the contact strength Z can be used as a measure of the activity of the whole bacterium, and if the contact strength Z is high, it can be considered that the spoilage is likely to proceed.
  • the holding condition is determined by the contact strength Z.
  • the low-temperature holding step described above may be performed at a low temperature as long as the conditions in B or B are satisfied.
  • the low temperature holding process may be included in the low temperature holding process even if it is combined with processes such as pulverization, stirring, and homogenization as long as it is maintained at a predetermined temperature that does not indicate only a stationary state.
  • the low temperature holding means may be a pulverizing device, a removing device or the like having a heat insulating sealing function. Therefore, the holding time in the present invention is the time for holding in the state of a mixed solution of soybean ground material and water, or removing water-insoluble components from the mixed solution.
  • the time to hold the solution in the state of the solution which is a certain time, is the time to hold in the state of both the mixed solution and the solution, even if there is a deviation.
  • the low temperature holding step is performed at 4 to 10 ° C regardless of whether it is in the range of B or B.
  • the pasteurization step refers to a heating step that does not deactivate the GAD activity and reduces the number of bacteria more than a certain level.
  • the number of bacteria before the low-temperature holding step can be kept below a certain level, hygiene can be improved even in consideration of a decrease in ⁇ -aminobutyric acid due to a decrease in GAD activity due to heating.
  • the number of bacteria before the low-temperature holding process can be kept within a certain range even in the mass production line of products, and the number of bacteria in soy milk products can be controlled stably even during mass production regardless of the initial number of bacteria. Can do.
  • the pasteurization step can be performed simultaneously with the liquefaction step. According to this aspect, it is preferable in that the number of processes can be reduced by one as long as the number of bacteria before the low temperature holding process can be reduced to a certain value or less, and the production can be efficiently performed.
  • the heating temperature is preferably 50 ° C or higher because the number of bacteria in the soymilk can be reduced.
  • the heating temperature is preferably 75 ° C or less because it keeps the decrease in GAD activity below a certain level. Further, it is preferable to reduce the number of bacteria before the low temperature holding step to 1/100 or less because the initial number of bacteria can be sufficiently reduced and the number of bacteria in the subsequent low temperature holding step can be managed.
  • the number of bacteria before the low-temperature holding step is less than IX 10 6, it is possible to finally obtain a sanitary favorable soy milk, so the number of bacteria after this pasteurization step is less than 10 6 (preferably Is preferably sterilized to be less than 5 ⁇ 10 5 , more preferably less than 10 5 .
  • a high temperature holding step (E) for holding within 25 hours at 25 ° C to 35 ° C before the pasteurization step (D).
  • a high temperature holding step (E) for holding within 25 hours at 25 ° C to 35 ° C before the pasteurization step (D).
  • holding around 30 ° C is effective. Holding around 30 ° C is effective because the initial rate of ⁇ -aminobutyric acid production is fast and effective, and the increase in the number of bacteria can be suppressed to a certain range for a short time.
  • the temperature is 25 ° C or higher, the initial rate of ⁇ -aminobutyric acid production is fast, and even if it is held for a short time, production of ⁇ -aminobutyric acid can be expected. It is preferable because flavor deterioration due to heat history can be suppressed to a certain level or less. In addition, it is preferable that the retention is within 3 hours because the increase in the number of bacteria can be suppressed within a certain range.
  • enzyme deactivation treatment by heating is performed to stop the enzyme reaction.
  • enzyme deactivation treatment is usually carried out in order to stop the unfavorable flavor unique to soybeans caused by the enzyme activity and the savory taste.
  • This enzyme deactivation treatment may be performed, for example, by heat treatment at 75 to 100 ° C for 2 to 15 minutes.
  • heat sterilization is carried out by a conventional method as necessary.
  • the enzyme deactivation treatment and the heat sterilization may be performed simultaneously with a direct steam blowing type instantaneous heating apparatus. In this case, for example, heat treatment may be performed at 145 ° C. for about 5 seconds. You can also adjust the taste of soy milk by adding sugar or fruit juice to make it easier to drink before heat sterilization!
  • glutamic acid it is preferable to add glutamic acid to such an extent that glutamic acid remains at the end of the holding step (if there is an enzyme, the reaction will still proceed). By doing so, the conversion reaction to ⁇ -aminobutyric acid does not reach a plateau, and the method for enhancing GAD activity realized in the present invention can be fully utilized.
  • the residual amount of glutamic acid at the end of the holding step is, for example, soybean solids in the reaction solution 13.
  • the amount of glutamic acid added is, for example, the residual amount of glutamic acid at the end of the reaction.
  • the amount is 40 mg or less, preferably 35 mg or less, more preferably 25 mg or less.
  • glutamic acid as a raw material remains.
  • the reason for adding enough amount of glutamic acid to remain in soy milk is to increase the amount of caminobutyric acid by allowing the enzyme to work sufficiently. If glutamic acid witheres while enzyme activity remains, ⁇ -aminobutyric acid cannot be increased sufficiently.
  • foods rich in glutamic acid have a unique and strong taste, and if the flavor is unfavorable or if a large amount of sodium glutamate is consumed, the face becomes reddish, excited, or allergic to sweating ( (Chinese-less trans syndrome) is known to occur!
  • the amount of glutamic acid remaining in the soymilk of the present invention is not particularly limited. From the viewpoint of flavor, it is preferably 40 mg or less, preferably 35 mg or less, more preferably 25 mg or less. From the viewpoint of flavor, 45 mg or more is not preferable.
  • the soy milk obtained by the above production method can be dried to obtain a dried product.
  • the method for the drying treatment can be appropriately adjusted by a conventional method and is not particularly limited. For example, it can be carried out by spray dryer (spray drying), vacuum drum dryer, freeze drying, or the like.
  • the dried soybean milk obtained by the above drying treatment can be pulverized into a powder.
  • the pulverization method can be appropriately adjusted by a conventional method and is not particularly limited.
  • a mixer or a mortar may be used.
  • a dried product dried with a vacuum drum dryer is applied to a pin mill (type of pulverizer) to form a powder.
  • a spray dryer spray drying
  • a powder with an appropriate particle size is usually obtained, so that pulverization is not performed.
  • the particle diameter of the powder is not particularly limited.
  • the soy milk obtained by the above production method is composed of sugar, homogenized, concentrated, dehydrated, After processing either drying or pulverization, if necessary, processing such as freezing, heating, dilution, molding, compression, steaming, fermentation, etc., to make another processed product This can also be used for lj.
  • the processing as described above can be performed according to a method usually used in the production of general processed foods.
  • soy milk there are saccharides and other ingredients such as acidulant, seasoning, sweetener, colorant, flavoring agent, strengthening agent, preservative, antioxidant, emulsifier, quality.
  • General food additives such as improvers, bases, excipients, etc. are blended appropriately according to the purpose to make the liquid taste adjusted, or the soy milk is concentrated, if necessary, sugars, excipients
  • An agent, base, etc. can be blended into a paste, or further dried and pulverized to form a powder.
  • the food using the soymilk or the soymilk powder obtained by the above production method also contains most of the components of the soymilk, and thus exhibits the same effect.
  • soymilk or soymilk powder contains the quantity which can exhibit the effect in another foodstuff, naturally the same effect will be exhibited.
  • the above-mentioned soy milk includes pancakes such as pan, pizza, udon, buckwheat, and somen, dairy products such as ice cream, pudding, and yogurt, confectionery such as pound cake, cookies, biscuits, rice crackers, rice crackers, hail, Japanese confectionery, etc. It can be used as a raw material for food processing!
  • the above-described method for producing soymilk of the present invention is preferably the method for producing soymilk described in (1) to (6) V above, which is a scale in which 20 kg or more of dried soybeans is used in one production. ! /
  • the soybean milk production method according to any one of the above (1) to (6) V which is a scale capable of producing 80 L or more of soybean milk having a soybean solid content of 11% or more in one production. ! /
  • This embodiment defines the production scale of soymilk production.
  • hygiene is usually poor when scaled up. This is because the larger the scale, the larger the machine to be manufactured and the more complicated the work becomes, making it difficult to always maintain a state with few germs. Therefore, in manufacturing at such a mass production level, the number of bacteria can be further increased by combining with the high temperature holding process (E) and the pasteurization process (D) as in the above aspects (4) and (5). Manufacture can be performed while controlling the growth.
  • E high temperature holding process
  • D pasteurization process
  • the soybean solid content of the produced soymilk is not constant, the amount of ⁇ -aminobutyric acid was compared in terms of the soybean solid content of 11% in the following examples. Therefore, the content in 125 ml of soy milk with a soy solid content of 11% is synonymous with the content per 13.75 g of soy solid content.
  • 7-aminobutyric acid amount Xmg indicates that Xmg is present in 125ml of soy milk with a soy solid content of 11%, and that X mg per 13.75g of soy solid content is present. .
  • the amount of ⁇ -aminobutyric acid and the amount of glutamic acid in the examples were measured by the following methods.
  • soy milk powder weigh 2 g of soy milk powder, add 20 ml of water, and use a homogenizer.
  • the soybean solid content in the examples was measured by the following method.
  • the number of bacteria in the examples was measured by the following method.
  • Fig. 5a is a graph in which the values in Table 1 are plotted with the retention time as the horizontal axis and the number of bacteria as the vertical axis, and shows a growth curve of the bacteria in soy milk.
  • the growth rate of the bacteria was very fast at 30 ° C.
  • the growth rate was considerably slow, even though 5 ° C was different from 20 ° C.
  • Table 2 shows the time when rotting odor is generated and the time when no rotting odor is generated.
  • Figure 2 plots the values in Table 2 with the holding temperature X as the horizontal axis and the holding time Y as the vertical axis.
  • FIG. 2 is a plot of the approximate curve (B) by plotting the time when no rot odor occurs.
  • the main holding time (X) is put into X in the above formula B, and the holding time (Y) at that temperature is calculated.
  • the holding time (Y) at that temperature is calculated.
  • X When calculated, for example, at 15 ° C, it will be within 15 hours and 45 minutes.
  • a more preferable range is 4 to; a holding time within 48 hours in the range of 10 ° C, and in the case of exceeding 10 ° C and not exceeding 15 ° C, the curve B (formula B ) Is the condition below the range partitioned by. That is, a more preferred embodiment of the present invention is a liquefaction step (A) for obtaining a mixed solution of pulverized soybean and water, or a solution obtained by removing water-insoluble components from the mixed solution, and the horizontal axis represents the holding temperature X ( ° C) and the vertical axis is holding time Y (hr),
  • Table 3 shows the area under the curve for a certain time in Figure 5a and the cumulative value. These values are integral values. This cumulative value indicates the “contact strength” between the mixed solution or solution and the bacteria in the present invention.
  • the area under the curve refers to the area of the portion surrounded by the time axis (X-axis (horizontal axis) in Fig. 5a) and the growth curve for each holding temperature in Fig. 5a in unit time (Details) (See below).
  • Table 4 is an extraction of the area under the curve (cumulative value) until the time when the rotten odor occurs and the area under the curve (cumulative value) until the time when the rotten odor does not occur. is there. These values refer to the contact strength between soymilk components and bacteria.
  • FIG. 3 is a plot of the values in Table 4 with the retention temperature X as the horizontal axis and the contact strength Z with bacteria as the vertical axis. Note that FIG. 3 shows the approximate curve (B) obtained by plotting the time when the rot odor does not occur.
  • the area under the curve in 3-6 hours can be represented by the sum of the following (c) and (d), 2, 067,000 (time (h) X number of bacteria (cells)) (shaded area on the right side of FIG. 5b).
  • the cumulative value up to 6 hours is the sum of “area under the curve from 0 to 3 hours (172, 500)” and “area under the fountain between 3 and 6 days temple (2, 067, 000)” 2, 239, 500 (time (h) X number of bacteria (cells)) (all shaded area in Fig. 5b).
  • Table 5 shows the maximum amount of ⁇ -aminobutyric acid produced in a range that does not rot and at 20 ° C or higher (for example, in this example, ⁇ -aminobuty produced at 20 ° C for 6 hours. Butyric acid amount: 72. lmg), and the conditions under which an amount equivalent to that can be produced was calculated. Both values are calculated from the values in Table 1. Further, FIG. 4, the values in Table 5, the horizontal axis a holding temperature X, the vertical axis of the holding time between ⁇ exceeding the maximum value of rot does not range and ⁇ Amino acid amount produced by 20 ° C or more retention It is a plot. Fig. 4 plots the approximate curve ( ⁇ ) by plotting the time at each temperature.
  • soy milk can be obtained in which the amount of ⁇ -aminobutyric acid is higher than the maximum amount of ⁇ -aminobutyric acid produced by holding at 20 ° C or higher.
  • a potassium hydroxide solution was added to the liquid from which the okara had been removed as necessary to raise the pH by about 0.2. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C for 21.5 hours.
  • a potassium hydroxide solution was added to the liquid from which the okara had been removed as necessary to raise the pH by about 0.2. Next, it was kept at 30 ° C. for 100 minutes. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C for 20 hours.
  • the mixture was heated at 145 ° C for 5 seconds with a direct steam blow-type instantaneous heating device, and then cooled to 5 ° C to obtain soymilk.
  • This heating is intended for high-temperature sterilization and enzyme deactivation treatment.
  • the presence or absence of a rotten odor was confirmed.
  • the amount of ⁇ -aminobutyric acid was measured for the obtained soymilk by the above method. The results are shown in the table
  • soy milk containing high ⁇ -aminobutyric acid could be obtained by using the low temperature holding step (Test Example 32). It can be seen that the content of ⁇ -aminobutyric acid increased significantly compared to the content of ⁇ -aminobutyric acid in soymilk before the holding step (for example, see Test Example 34 below).
  • Test Example 33 which was subjected to a high temperature holding process (for example, 30 ° C for 100 minutes) before the low temperature holding process, compared to Test Example 32, soy milk containing a higher ⁇ -aminobutyric acid was further obtained.
  • a potassium hydroxide solution was added to the liquid obtained in Test Example 34 as necessary to raise the pH by about 0.2. This solution was kept at 30 ° C. for 100 minutes.
  • Test Example 35 The liquid obtained in Test Example 35 was further maintained at 10 ° C. for 24 hours.
  • Test Example 34 36 The liquid obtained in Test Example 34 36 was heated at 145 ° C for 5 seconds with a direct steam blow-type instantaneous heating apparatus and then cooled to 5 ° C to obtain soy milk. Prior to this high-temperature sterilization and enzyme deactivation treatment, the presence or absence of spoiled odor and the number of bacteria were confirmed. In addition, about the obtained soymilk, ⁇ the method - Amino acid amount was measured Roita. The results are shown in Table 7.
  • Example 3 No No 2 4 4. 0X 10 6 mm,, 6. 56 Enumeration; 8 30 at M 4 8 4.0-: 17 X 10 6 6. 57
  • Example 4 2 30 '60mm: 10 ° C 6, 3 25 10 3 6. 7 ⁇
  • soy milk suitable for beverages in terms of food hygiene could be obtained after the high temperature holding step and the pasteurization step and further holding at 10 ° C for 48 hours.
  • Edamame was added as a GAD resource to evaluate the effectiveness of the low temperature holding process.
  • the ratio of the dry weight of green soybeans to the total of the dry weight of soybeans and green beans used for production is about 2%.
  • the dry weight of green soybeans is about 7.2g with respect to lg of glutamic acid added.
  • Soy milk was obtained in the same manner as in 43.
  • Test Example 46 to which edamame with strawberry was added, 4 kg of edamame with strawberry (corresponding to 2.2 kg of podless edamame, 1.8 kg of strawberry) was used.
  • the ratio of the dry weight of green soybeans to the total of the dry weight of soybeans and green soybeans used for production is about 5%.
  • the dry weight of green soybeans is about 17.5 g based on the added lg glutamic acid.
  • Test Examples 47 to 50 were heated at 145 ° C for 5 seconds with a direct steam blow-type instantaneous heating apparatus and then cooled to 5 ° C to obtain soy milk. Prior to this heat sterilization and enzyme deactivation treatment, the number of bacteria was measured. About the obtained soymilk, The amount of nobutyric acid was measured. The results are shown in Table 10.
  • the amount of ⁇ -aminobutyric acid increased when the low temperature holding step was performed (Test Examples 48 to 50) as compared to the high temperature holding alone (Test Example 47).
  • Test Example 50 more ⁇ -aminobutyric acid was produced as compared to the case of only the low temperature holding process (Test Examples 48 and 49).
  • the present invention has proved that the effect of increasing the amount of ⁇ -aminobutyric acid can be obtained even in germinated soymilk. It was also found that the effect of increasing the amount of ⁇ -aminobutyric acid can be obtained even when glutamic acid is not added.
  • the low temperature holding temperature was 4 ° C (Test Example 5) as well as 10 ° C (Test Example 53).
  • Soy milk was produced in the same manner as in Example 35 except that 100 g of glutamic acid was added instead of 76 g of glutamic acid.
  • Soy milk was produced in the same manner as in Example 35 except that 120 g of glutamic acid was added instead of 76 g of glutamic acid.
  • the taste of the soymilk 30 ml obtained was evaluated by the score based on the following criteria for the flavor when 10 panelists ate, and the average score of all panelists was calculated.
  • This soy milk was pulverized using a spray dryer (intake air temperature 180 ° C, exhaust temperature 70 ° C) to obtain soymilk powder.
  • the amount of ⁇ -aminobutyric acid in the obtained soymilk powder was 560 mg / 100 g solid.
  • jelly-like tofu was produced by the following method.
  • a pound cake was produced by the following method. 100 parts by weight of unsalted butter that had been returned to room temperature and 100 parts by weight of sugar were mixed until creamed. Next, 100 parts by mass of eggs were added little by little while stirring. Next, add 10-20 parts by weight of soymilk powder from Test Example 58, 80-90 parts by weight of flour (100 parts by weight of soymilk powder and flour) and 2 parts by weight of baking powder, and add the sifted powder. And stirred. This was transferred to a container and baked at 170 ° C for 40 minutes to make a 20cm-type pound cake.
  • the amount of ⁇ -aminobutyric acid and glutamic acid before the low-temperature holding step shown in Table 14 is a numerical value of the solution after about 5 to 10 minutes after grinding and finishing the pasteurization step. Since this solution has been subjected to a pasteurization process by heating for a certain period of time after grinding, the 7-aminobutyric acid conversion reaction has progressed a little. Therefore, theoretically, it can be inferred that the amount of glutamic acid before the low-temperature holding step is 70 mg or more. The reason why samples could not be collected at the correct timing is due to the structure of the actual manufacturing machine.
  • Example 6 1 5 0 ° C, 2 0, 9 6 4, 5 1 .7 X 1 0 4
  • This soy milk was pulverized using a spray dryer to obtain a soy milk powder.
  • the amount of ⁇ -aminobutyric acid in the obtained soymilk powder was 557 mg / l00 g solids.
  • Test Example 61 The test was performed in the same manner as in Test Example 61 except that the pasteurization process was performed at 55 ° C for 5 minutes. The same soy milk as in Test Example 61 was obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Dairy Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

It is intended to provide a method for producing soymilk capable of increasing γ-aminobutyric acid in the soymilk and also preventing an increase in the number of bacteria so as to fall within an acceptable range in food hygiene. This method for producing soymilk includes a liquefying step (A) in which a mixed liquid of ground soybeans and water or a solution obtained by removing water-insoluble components from the mixed liquid is obtained; a low-temperature maintaining step (B1) in which the mixed liquid or the solution is maintained in a range that satisfies the following conditions: Y1 ≤ 24000X-2.7 and X = 4 to 15°C in the case where the horizontal axis represents a maintained temperature X (°C) and the vertical axis represents a retention time Y1 (hr); and an enzyme inactivation treatment step (C). It is preferred to set a predetermined low-temperature pasteurization step (D) concurrently with the liquefying step or between the liquefying step and the low-temperature maintaining step, and it is more preferred to set a predetermined high-temperature maintaining step (E) between the liquefying step and the low-temperature maintaining step and before the low-temperature pasteurization step.

Description

明 細 書  Specification
豆乳の製造方法  Method for producing soymilk
技術分野  Technical field
[0001] 本発明は、豆乳中の γ—ァミノ酪酸 (GABA)を増加させるとともに、食品衛生上許 容できる範囲内に菌数の増加を抑制できる豆乳の製造方法に関する。  [0001] The present invention relates to a method for producing soymilk that increases γ-aminobutyric acid (GABA) in soymilk and can suppress an increase in the number of bacteria within a range acceptable for food hygiene.
背景技術  Background art
[0002] 豆乳に含まれている成分の一種である Ίーァミノ酪酸は、脊椎動物の脳内等で神 経伝達物質として作用する生理活性アミノ酸の一種であり、近年、 Ίーァミノ酪酸を 摂取することによる健康への効果が注目されている。すなわち、 γ—ァミノ酪酸は、 血圧上昇抑制作用、脳代謝促進作用、脳血管障害の諸症状改善作用、頭部外傷に 伴う諸症状の改善作用、筋萎縮性疾患の改善作用、糖尿病の改善作用等の諸種の 作用を有しており、食品から摂取しても、安全性の面からも問題がないことが確認さ れている。 [0002] The kind Ί Amino acid is a component contained in the soy milk is a type of bioactive amino acid that acts as a nerve transmitter in the brain of a vertebrate such as, recently, ingesting Ί Amino acid The effect on health due to is attracting attention. That is, γ-aminobutyric acid suppresses blood pressure rise, promotes cerebral metabolism, improves symptoms of cerebrovascular disorders, improves symptoms associated with head trauma, improves muscle atrophy disease, improves diabetes It has been confirmed that there is no problem in terms of safety even if ingested from food.
[0003] このため、豆乳からより多くの γ —アミノ酪酸を摂取するための方策が検討されてい る。例えば、下記の特許文献 1には、水に浸漬し、磨砕した大豆を、蛋白質分解酵素 の存在下で 20〜60°Cで、 2〜; 12時間保持する保持工程を含む、 γ—ァミノ酪酸高 含有量の豆乳の製造方法が開示されている。この保持工程により、 γーァミノ酪酸が 効率よく生成する。ここで、 Ίーァミノ酪酸は、アミノ酸の一種であるグルタミン酸 (Glu )にグルタミン酸脱炭酸酵素(GAD)が作用して、グルタミン酸の α —カルボキシル基 が脱離されることにより生成される。  [0003] For this reason, measures for taking more γ-aminobutyric acid from soy milk are being investigated. For example, the following Patent Document 1 includes a holding step of holding soybeans soaked and ground in water at 20 to 60 ° C. for 2 to 12 hours in the presence of a proteolytic enzyme, γ-amino A method for producing soymilk with a high butyric acid content is disclosed. By this holding step, γ-aminobutyric acid is efficiently produced. Here, aminoaminobutyric acid is produced by glutamate decarboxylase (GAD) acting on glutamic acid (Glu), which is a kind of amino acid, and the α-carboxyl group of glutamic acid is eliminated.
特許文献 1 :特開 2002— 45138号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-45138
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 特許文献 1の豆乳の製造方法においては、比較的高温、短時間の 20〜60°C、 2 〜; 12時間という高温保持工程を行う。これは、通常、酵素反応により生成物を増やそ うとする場合には、基質が十分な反応系において、その酵素である GADに適した反 応温度、反応時間、 pH等を選択するという観点からは一般的な考えである。 [0005] しかしながら、蛋白質等を多く含む豆乳の工業的な大量生産を前提とした場合には 、上記のような γ—アミノ酪酸量の増加とともに、豆乳そのもの保存性、すなわち、微 生物学的な観点からの制限も必須である。すなわち、豆乳中の γ—ァミノ酪酸を増 カロさせるとともに、食品衛生上許容できる範囲内に菌数の増加を抑制できなければ、 量産化は不可能となり、工業的スケールで微生物的に安全な豆乳を提供することが できない。 [0004] In the method for producing soymilk of Patent Document 1, a high temperature holding step of 20 to 60 ° C for 2 to 12 hours is performed at a relatively high temperature for a short time. This is because, from the viewpoint of selecting reaction temperature, reaction time, pH, etc. suitable for GAD, which is the enzyme, in a reaction system with sufficient substrate, usually, when the product is increased by enzymatic reaction. This is a general idea. [0005] However, on the premise of industrial mass production of soy milk containing a large amount of protein and the like, with the increase in the amount of γ-aminobutyric acid as described above, soy milk itself is preserved, that is, microbiological. Restrictions from a viewpoint are also essential. In other words, if γ-aminobutyric acid in soy milk is increased and the increase in the number of bacteria within the range acceptable for food hygiene cannot be controlled, mass production is impossible, and microbially safe soy milk on an industrial scale. Can not provide.
[0006] このような観点からすると、特許文献 1の製造方法においては、得られる豆乳自身 の微生物的な衛生性は全く考慮されていない。すなわち、 20〜60°C、 2〜; 12時間と いう高温短時間の保持条件では、豆乳中の微生物による菌数の増加が著しい。この ため、上記範囲内において保持時間を長くすれば豆乳の腐敗が進んでしまい、流通 可能な製品とならない。また、菌数を抑えるために、上記範囲内において保持時間を 短くすれば、必要な γ —アミノ酪酸が増加しない。このように、特許文献 1のような高 温短時間の保持というアプローチでは、実際の流通に耐えられるだけの微生物管理 ができないか、又は、微生物的な制限により γ—ァミノ酪酸の増加が不十分な豆乳し か得られな!/、と!/、う問題点があった。  [0006] From this point of view, the production method of Patent Document 1 does not consider the microbial hygiene of the obtained soymilk itself. That is, the increase in the number of bacteria due to microorganisms in soy milk is remarkable under the high temperature and short time holding conditions of 20 to 60 ° C., 2 to 12 hours. For this reason, if the holding time is increased within the above range, the soy milk will rot and the product will not be circulated. If the retention time is shortened within the above range to reduce the number of bacteria, the required γ-aminobutyric acid will not increase. As described above, the approach of maintaining the temperature for a short time as in Patent Document 1 cannot manage microorganisms enough to withstand actual distribution, or the increase in γ-aminobutyric acid is insufficient due to microbial restrictions. Only soy milk could be obtained!
[0007] 上記問題点を鑑み、本発明の目的は、栄養価としての γ—ァミノ酪酸を一定量以 上含有し、加えて、食品衛生上許容できる範囲内に菌数の増加も抑制できる豆乳の 製造方法を提供することにある。  [0007] In view of the above problems, an object of the present invention is to contain soy milk that contains a certain amount or more of γ-aminobutyric acid as a nutritional value and can also suppress an increase in the number of bacteria within an acceptable range for food hygiene. It is to provide a manufacturing method.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者等は、上記の課題の解決のために鋭意研究した結果、特許文献 1のよう な高温/短時間の保持条件ではなぐこれとは全く逆の低温/長時間の保持条件と することで、菌数の増加を抑制できるのみならず、その γ—ァミノ酪酸量においても 顕著な増加が可能となることを新たに見出した。そして、この結果として、食品衛生上 許容できる菌数範囲を維持しつつ、特許文献 1よりも γ—ァミノ酪酸量を多くできるこ とを見出し、本発明を完成するに至った。  [0008] As a result of diligent research for solving the above-mentioned problems, the present inventors have found that the holding conditions for low temperature / long time are completely opposite to the high temperature / short time holding conditions as in Patent Document 1. Thus, it was newly found that not only the increase in the number of bacteria can be suppressed, but also the amount of γ-aminobutyric acid can be significantly increased. As a result, the inventors have found that the amount of γ-aminobutyric acid can be increased more than that of Patent Document 1 while maintaining the range of bacterial counts acceptable in food hygiene, and the present invention has been completed.
[0009] より具体的には、本発明は以下のようなものを提供する。  More specifically, the present invention provides the following.
[0010] (1) 大豆の粉砕物と水との混合液、又は該混合液から水不溶性成分を除去した 溶液、を作る液状化工程 (Α)、 横軸を保持温度 X (°C)、縦軸を保持時間 Y (hr)、とした場合に、 [0010] (1) A liquefaction step (ii) for producing a mixture of pulverized soybean and water, or a solution obtained by removing water-insoluble components from the mixture. When the horizontal axis is holding temperature X (° C) and the vertical axis is holding time Y (hr),
Y≤24000 X X つ、 X力 4〜; 15°C  Y≤24000 X X, X force 4 ~; 15 ° C
の条件を満たす範囲で前記混合液又は前記溶液を保持する低温保持工程 (B ) 酵素失活処理工程 (C)、  A low temperature holding step for holding the mixed solution or the solution within a range satisfying the condition (B) an enzyme deactivation treatment step (C),
を有する豆乳の製造方法。  A method for producing soymilk.
[0011] 本発明によれば、豆乳中におけるグルタミン酸を酵素である GADにより γ—ァミノ 酪酸に変換する反応では、 GADに適した温度(例えば 20 30°C)で短時間(例え ば 3時間以内)反応して生成した γ —アミノ酪酸量よりも、 GADに適した温度より低い 温度(例えば 4〜; 15°C)で長時間(例えば 15°Cで 7. 5時間以上、 10°Cで 9時間以上 5°Cで 16時間以上)反応させて生じた γ —アミノ酪酸量の方が多いことが判明した[0011] According to the present invention, in the reaction in which glutamic acid in soy milk is converted to γ-aminobutyric acid by the enzyme GAD, the reaction is performed at a temperature suitable for GAD (eg, 20 30 ° C) for a short time (eg, within 3 hours). ) The amount of γ-aminobutyric acid produced by the reaction is lower than the temperature suitable for GAD (eg 4 to 15 ° C) for a long time (eg, 7.5 ° C at 15 ° C for more than 7.5 hours, at 10 ° C) It was found that the amount of γ-aminobutyric acid produced by the reaction was greater than 9 hours and more than 5 hours at 16 ° C.
Yes
[0012] このような低温/長時間の保持による Ίーァミノ酪酸の量が増加すること、特に 10 °C以下にお!/、ても酵素が十分に活性を示すことは予想できな力 たものである。そし て、この発見を上記の低温保持工程 (B )に適用することにより、食品衛生的に適し、 かつ γ—ァミノ酪酸量を増やした豆乳を製造できることを見出したところに本発明の 特徴がある。 [0012] things such that the amount of Ί Amino acid by low-temperature / long retention increases, our! / In particular below 10 ° C, the enzyme was unpredictable forces are to exhibit sufficient activity even It is. Then, by applying this discovery to the above-described low temperature holding step (B), it has been found that soy milk suitable for food hygiene and having an increased amount of γ-aminobutyric acid can be produced. .
[0013] ここで、低温保持工程(Β )における、 Υ≤24000Χ— 2· 7、かつ、 Xが 4〜; 15°C、の条 件は、後述する実施例より、腐敗臭がしない条件を、 X軸に温度、 Y軸に保持時間の グラフを作り、ここから近似曲線を引いて求めたものである。詳細は実施例にて後述 する。 [0013] Here, in the low temperature holding step (Β), Υ≤24000Χ— 2 · 7 and X is 4 to; 15 ° C. The graph shows the temperature on the X-axis and the retention time on the Y-axis, and the approximate curve is drawn from this graph. Details will be described later in Examples.
[0014] (2) 大豆の粉砕物と水との混合液、又は該混合液から水不溶性成分を除去した 溶液、を作る液状化工程 (A)、  [0014] (2) A liquefaction step (A) for producing a mixed solution of pulverized soybean and water, or a solution obtained by removing water-insoluble components from the mixed solution,
横軸を保持温度 X (°C)、縦軸を前記混合液又は前記溶液と菌との接触強度 Z、とし た場合に、  When the horizontal axis is the holding temperature X (° C) and the vertical axis is the contact strength Z between the mixed solution or the solution and the fungus,
Z≤3. 7 X 1010 X X— 3 6、かつ、 Xが 4〜; 15。C Z≤3.7 X 10 10 XX— 3 6 , and X is 4 to 15; C
の条件を満たす範囲で前記混合液又は前記溶液を保持する低温保持工程 (B )  A low temperature holding step (B) for holding the mixed solution or the solution within a range satisfying the condition of
2 2
(ここで、接触強度 Zは、横軸を保持時間 Y (hr)、縦軸を菌数 (個)とした場合に、保 持温度 Xにおける菌の増殖曲線の、保持時間 0から Yまでの積分値である。 ) 酵素失活処理工程 (c)、 (Here, the contact strength Z is the retention time Y (hr) on the horizontal axis and the number of bacteria (vertical) on the vertical axis. Integral value.) Enzyme deactivation process (c),
を有する豆乳の製造方法。  A method for producing soymilk.
[0015] この発明は、更に、大豆成分を含む混合液等に菌がどの程度接触したか、を考慮 した低温保持工程 (B )を備えることを特徴とする。この接触強度 Zを用いることにより  [0015] The present invention is further characterized by comprising a low-temperature holding step (B) in consideration of how much the bacteria have come into contact with the mixed solution containing the soybean component. By using this contact strength Z
2  2
、増殖速度や低温保持工程前の初期の菌数に関わらず、所定の範囲内に菌数を抑 える保持条件を得ることができる点が上記の低温保持工程 (B )と異なっている。  Unlike the above-described low-temperature holding step (B), it is possible to obtain a holding condition for suppressing the number of bacteria within a predetermined range regardless of the growth rate and the initial number of bacteria before the low-temperature holding step.
[0016] ここで、低温保持工程(B )における、 Ζ≤3· Y X IC^ X X— 3 6、かつ、 Xが 4〜; 15°C [0016] Here, in the low temperature holding step (B), Ζ≤3 · YX IC ^ XX— 3 6 , and X is 4 to 15 ° C
2  2
、の条件は、後述する実施例より、腐敗臭がしない条件を、 X軸に保持温度、 Y軸に 接触強度のグラフを作り、ここから近似曲線を引いて求めたものである。接触強度の 定義を含め、詳細は実施例にて後述する。  The conditions of and were obtained from the examples described later by creating a graph of the holding temperature on the X-axis and the contact strength on the Y-axis, and drawing an approximated curve from this, on the condition that there was no rot odor. Details including the definition of contact strength will be described later in Examples.
[0017] (3) 前記低温保持工程が、更に以下の条件を満たす範囲である(1)又は(2)記 載の豆乳の製造方法。  [0017] (3) The method for producing soymilk according to (1) or (2), wherein the low temperature holding step further satisfies the following conditions.
Y≥50 X X—。■ '2 Y≥50 XX—. ■ ' 2
[0018] この態様によれば、腐敗を防止しつつ、 20°C以上の保持で生成される γ —アミノ酪 酸量の最大値よりも、更に γ —ァミノ酪酸量が多い豆乳を得ることができる。 20°C以 上の保持で生成される γ—ァミノ酪酸量の最大値は、例えば、後述する実施例に示 されるように、 72. lmgである。上記の近似曲線は、後述する実施例により、温度ごと に γ —ァミノ酪酸量 72. lmgを超える時間を算出してグラフに示し、これを近似して 得られたものである。具体的に例示すれば、この時間は、おおよそ、 15°Cで 7. 5時 間以上、 10°Cで 9時間以上、 5°Cで 16時間以上である。上記の菌数増加による腐敗 を考慮すれば、特許文献 1の高温/短時間の保持条件では、 20°C以上の保持で生 成される γ—ァミノ酪酸量の最大値以上の γ—ァミノ酪酸量は得られない。この点に ついても後述の実施例にて詳述する。  [0018] According to this aspect, it is possible to obtain soy milk having a larger amount of γ-aminobutyric acid than the maximum amount of γ-aminobutyric acid produced by maintaining at 20 ° C or higher while preventing spoilage. it can. The maximum value of the amount of γ-aminobutyric acid produced by holding at 20 ° C. or higher is, for example, 72.lmg as shown in the examples described later. The above approximate curve is obtained by calculating the time over which the amount of γ-aminobutyric acid exceeds 72.lmg for each temperature and approximating this according to the examples described later. To illustrate, this time is approximately 7.5 hours or more at 15 ° C, 9 hours or more at 10 ° C, and 16 hours or more at 5 ° C. Considering the above-mentioned spoilage due to the increase in the number of bacteria, under the high temperature / short time holding conditions described in Patent Document 1, γ-aminobutyric acid exceeding the maximum amount of γ-aminobutyric acid produced by holding at 20 ° C or higher The amount is not available. This point will also be described in detail in the examples below.
[0019] (4) 前記液状化工程と同時に、又は前記液状化工程と前記低温保持工程との間 に、 50〜75°Cの加熱で前記低温保持工程前の菌数を 1/100以下にする力、、又は 50〜75°Cの加熱で前記低温保持工程前の菌数を 1 X 106未満にする低温殺菌ェ 程 (D)、を有する(1)から (3) V、ずれか記載の豆乳の製造方法。 (4) The number of bacteria before the low temperature holding step is reduced to 1/100 or less by heating at 50 to 75 ° C. simultaneously with the liquefaction step or between the liquefaction step and the low temperature holding step. Or a pasteurization process (D) that reduces the number of bacteria before the low temperature holding step to less than 1 × 10 6 by heating at 50 to 75 ° C. (1) to (3) V The manufacturing method of the described soymilk.
[0020] ここで、低温殺菌工程とは、 GADの活性を失活させず、かつ菌数を一定以上減ら す加熱工程をいう。この態様によれば、低温保持工程前の初期菌数を減らすことが できるので、加熱による GAD活性の低下に起因する γ—ァミノ酪酸の減少を考慮し ても、衛生性を更に向上できる。例えば、通常の豆乳の製造工程においては、充分 なライン洗浄を行ったときでも、小スケール(ビーカースケール)ほど菌数が減少しな い場合がしばしばある。このような場合においても、この実施態様によれば低温保持 工程前の菌数を一定値以下とすることができ、液状化工程後の初期菌数にかかわら ず、より安定的に豆乳の製造工程における菌数を管理することができるようになる。 [0020] Here, the pasteurization step means that the activity of GAD is not inactivated and the number of bacteria is reduced by a certain amount or more. This refers to the heating process. According to this aspect, since the initial number of bacteria before the low-temperature holding step can be reduced, hygiene can be further improved even in consideration of a decrease in γ-aminobutyric acid due to a decrease in GAD activity due to heating. For example, in a normal soymilk manufacturing process, even when sufficient line washing is performed, the number of bacteria is often not reduced as much as a small scale (beaker scale). Even in such a case, according to this embodiment, the number of bacteria before the low-temperature holding step can be kept below a certain value, and the soymilk production process can be performed more stably regardless of the initial number of bacteria after the liquefaction step. It will be possible to manage the number of bacteria in.
[0021] なお、後述する実施例に示すように、低温殺菌工程は、液状化工程と同時に行つ てもよい。この態様によれば、低温保持工程前の菌数を一定値以下とすることができ るとともに、工程数を減らすことで効率的に製造することができる点において好ましい[0021] As shown in the examples described later, the pasteurization process may be performed simultaneously with the liquefaction process. According to this aspect, the number of bacteria before the low-temperature holding step can be reduced to a certain value or less, and it is preferable in that it can be efficiently produced by reducing the number of steps.
Yes
[0022] (5) 前記液状化工程と前記低温保持工程との間であって、前記低温殺菌工程の 前に、 25°C〜35°C、 3時間以内保持する高温保持工程 (E)、を有する(4)記載の豆 乳の製造方法。  [0022] (5) A high temperature holding step (E) between the liquefaction step and the low temperature holding step, which is held at 25 ° C to 35 ° C for 3 hours before the pasteurization step. (4) The method for producing soymilk according to (4).
[0023] この態様は、上記 (4)の低温殺菌工程の前に、更に高温保持工程 (E)を設けたも のである。ここで、高温保持工程(E)とは、 GADの活性を一旦向上させて γ —アミノ 酪酸を増やす工程をいう。この態様によれば、高温保持工程を設けない場合(上記( 4) )よりも、更に γ—アミノ酪酸を増やすことができる。  In this embodiment, a high temperature holding step (E) is further provided before the pasteurization step (4). Here, the high temperature holding step (E) refers to a step of once increasing the activity of GAD to increase γ-aminobutyric acid. According to this aspect, γ-aminobutyric acid can be further increased as compared with the case where the high temperature holding step is not provided ((4) above).
[0024] なお、高温保持工程 (Ε)で γ —アミノ酪酸量を増やすことができる力 この工程の みでは γ—アミノ酪酸のみならず菌数も増加してしまう恐れがある。しかし、この態様 によれば、その後に低温殺菌工程を設けて菌数を減少させることができる。すなわち 、この態様によれば、低温殺菌工程 (D)の導入による γ —アミノ酪酸量の減少を、高 温保持工程 (Ε)の導入により補うことができ、 γ—ァミノ酪酸量を更に増やすことがで きる。  [0024] It should be noted that the ability to increase the amount of γ-aminobutyric acid in the high-temperature holding step (ii) may increase not only γ-aminobutyric acid but also the number of bacteria. However, according to this aspect, a pasteurization step can be provided thereafter to reduce the number of bacteria. That is, according to this aspect, the decrease in the amount of γ-aminobutyric acid due to the introduction of the pasteurization step (D) can be compensated for by the introduction of the high temperature holding step (Ε), and the amount of γ-aminobutyric acid can be further increased. I can do it.
[0025] (6) 前記液状化工程で作られる前記混合液又は前記溶液が、更に、外部から添 カロしたグルタミン酸を含む(1)から (5) V、ずれか記載の豆乳の製造方法。  [0025] (6) The method for producing soymilk according to any one of (1) to (5) V, wherein the mixed solution or the solution produced in the liquefaction step further contains glutamic acid added from the outside.
[0026] この態様によれば、基質としてグルタミン酸を外部から添加するので、より γ—ァミノ 酪酸を増やすことができる。 [0027] (7) 前記液状化工程で作られる前記混合液又は前記溶液が、更に、 GAD又は 該酵素を含む素材を含む(1)から(6) V、ずれか記載の豆乳の製造方法。 According to this aspect, since glutamic acid is added from the outside as a substrate, γ-aminobutyric acid can be further increased. [0027] (7) The method for producing soymilk according to any one of (1) to (6) V, wherein the mixed solution or the solution produced in the liquefaction step further contains GAD or a material containing the enzyme.
[0028] この場合、前記 GAD又は該酵素を含む素材は、酵素活性の強さや豆乳に入れる 場合の処理の容易さと!/、つた観点から、未熟豆又は該未熟豆の莢の細胞壁を破壊 処理してなる細胞壁破壊処理物であることが好ましい。  [0028] In this case, the GAD or the material containing the enzyme destroys the cell walls of the immature beans or the straw of the immature beans from the viewpoint of the strength of the enzyme activity and the ease of treatment when put in soy milk! It is preferable that it is a cell wall destruction processed product.
[0029] この態様によれば、 GAD又は該酵素を含む素材 (好ましくは枝豆等)の細胞壁破 壊処理物を、 GADのリソースとして添加することで、更に γ —アミノ酪酸を増やすこと 力できる。特に、未熟豆又はその莢の細胞壁破壊処理物は、カボチヤ、トマト、キユウ リ、ニンジン等の野菜類に比べて非常に高い GAD活性を有する。また、未熟豆又は その莢の細胞壁破壊処理物を用いると、カボチヤ等の野菜類に比べて、温度、時間 、 pH等の反応条件を特に厳しく管理することなぐ比較的短時間で効率的に、しかも 高い割合でグルタミン酸を γ—ァミノ酪酸に変換できるので、特に好ましい。  [0029] According to this embodiment, γ-aminobutyric acid can be further increased by adding GAD or a cell wall disrupted product of a material containing the enzyme (preferably green soybeans) as a GAD resource. In particular, immature beans or processed product of cell pods thereof have a very high GAD activity compared to vegetables such as cabotya, tomato, cucumber and carrot. In addition, using immature beans or their cell wall-disrupted products, compared to vegetables such as kabotiya, the reaction conditions such as temperature, time, and pH can be controlled efficiently in a relatively short period of time. Moreover, glutamic acid can be converted to γ-aminobutyric acid at a high rate, which is particularly preferable.
[0030] (8) (1)から(7)いずれか記載の豆乳の製造方法により得られる豆乳に、乾燥処 理を行う、又は乾燥処理と粉砕処理とを行う、豆乳粉末の製造方法。  [0030] (8) A method for producing soymilk powder, wherein the soymilk obtained by the method for producing soymilk according to any one of (1) to (7) is subjected to a drying treatment, or a drying treatment and a grinding treatment.
[0031] 本発明によれば、上記製造方法により得られる豆乳は、乾燥処理により、乾燥物と すること力 Sできる。ここでいう乾燥処理とは、豆乳を乾燥できるものであれば、特に限 定はされない。また、この豆乳の乾燥物は、粉砕処理により、粉末状にすることができ る。このように粉末状にすることで、ケーキやパン等の食品原料として簡便に用いるこ とができる。ここでいう粉砕処理とは、豆乳の乾燥物を粉砕できるものであれば、特に 限定はされない。なお、スプレードライヤー(噴霧乾燥)で乾燥させた場合は、通常、 適度な粒子径の粉末となるため、粉砕処理を行う必要はな!/、。  [0031] According to the present invention, the soy milk obtained by the above production method can be made into a dry product by drying treatment. The drying treatment here is not particularly limited as long as it can dry soymilk. The dried soymilk can be pulverized by pulverization. Thus, it can use simply as food raw materials, such as a cake and bread, by making it into a powder form. The pulverization treatment here is not particularly limited as long as it can pulverize dried soybean milk. When dried with a spray dryer (spray drying), the powder usually has an appropriate particle size, so there is no need to grind!
[0032] (9) 大豆の粉砕物と水とを原料とする豆乳であり、原料を含む混合液又は溶液を 、 4〜; 15°C、所定の時間で保持する低温保持工程を行い、豆乳中の大豆固形分 13 . 75g当たりの豆乳由来の γ —アミノ酪酸含量が 20mg以上である豆乳。  [0032] (9) Soy milk made from soybean ground material and water as raw materials, a mixed solution or solution containing the raw materials is kept at 4 to 15 ° C for a predetermined time, soy milk Soy milk with a γ-aminobutyric acid content of at least 20 mg per 13.75 g of soy solid content.
[0033] (10) 前記原料が、更に、外部から添加したグルタミン酸を含むものであり、豆乳 中の大豆固形分 13. 75g当たりの前記豆乳由来の γ —アミノ酪酸含量が 50mg以上 、かつ、グルタミン酸含量力 Omg以下である請求項 9記載の豆乳。  [0033] (10) The raw material further includes glutamic acid added from the outside, and the soymilk-derived γ-aminobutyric acid content per 13.75 g of soybean solid content in soymilk is 50 mg or more, and glutamic acid The soymilk according to claim 9, which has a content power of Omg or less.
[0034] (11) 前記原料が、更に、 GAD又は該酵素を含む素材を含むものであり、豆乳中 の大豆固形分 13. 75g当たりの前記豆乳由来の γ —アミノ酪酸含量が 70mg以上、 かつ、グルタミン酸含量力 0mg以下である請求項 10記載の豆乳。 [0034] (11) The raw material further contains GAD or a material containing the enzyme, and is contained in soy milk. 11. The soymilk according to claim 10, wherein the soymilk-derived γ-aminobutyric acid content per 75 g of soybean solid content is 70 mg or more and the glutamic acid content is 0 mg or less.
[0035] (12) 前記大豆が、発芽処理大豆であり、豆乳中の大豆固形分 13. 75g当たりの 前記豆乳由来の γ —ァミノ酪酸含量が 25mg以上、かつ、グルタミン酸含量が 15mg 以下である請求項 9記載の豆乳。 [0035] (12) The soybean is a germinated soybean, wherein the soymilk-derived γ-aminobutyric acid content per 13.75 g of soybean solid content in the soymilk is 25 mg or more and the glutamic acid content is 15 mg or less. Item 10. Soy milk according to item 9.
[0036] 本発明の豆乳は、大豆の粉砕物と水とを原料とする豆乳であり、原料を含む混合液 又は溶液を、 4〜; 15°C、所定の時間で保持する低温保持工程 (B )又は (B )を行い [0036] The soy milk of the present invention is a soy milk made from pulverized soybean and water as raw materials, and a low temperature holding step of holding a mixed solution or solution containing the raw materials at 4 to 15 ° C for a predetermined time ( B) or (B)
1 2 1 2
、豆乳中の大豆固形分 13. 75g当たりの豆乳由来の γ —アミノ酪酸含量が 20mg以 上であることを特徴とする。前記原料が、外部から添加したグルタミン酸を含んでいる 場合には、豆乳中の大豆固形分 13. 75g当たりの前記豆乳由来の γ —アミノ酪酸含 量が 50mg以上、かつ、グルタミン酸含量が 40mg以下であることが好ましい。また、 前記原料が、更に、グルタミン酸脱炭酸酵素又は該酵素を含む素材を含んでいる場 合には、豆乳中の大豆固形分 13. 75g当たりの前記豆乳由来の γ —アミノ酪酸含量 力 S70mg以上、かつ、グルタミン酸含量が 40mg以下であることが好ましい。更に、前 記大豆は、発芽処理大豆の場合には、豆乳中の大豆固形分 13. 75g当たりの前記 豆乳由来の γ —ァミノ酪酸含量が 25mg以上、かつ、グルタミン酸含量が 15mg以下 であることが好ましい。 The content of γ-aminobutyric acid derived from soy milk per 13.75 g of soy solid content in soy milk is 20 mg or more. When the raw material contains glutamic acid added from the outside, the soymilk-derived γ-aminobutyric acid content per 13.75 g of soybean solid content in the soymilk is 50 mg or more and the glutamic acid content is 40 mg or less. Preferably there is. In addition, when the raw material further contains glutamic acid decarboxylase or a material containing the enzyme, the content of γ-aminobutyric acid derived from the soy milk per 13.75 g of soybean solid content in the soy milk is not less than 70 mg. In addition, the glutamic acid content is preferably 40 mg or less. Further, in the case of germinated soybeans, the soybeans should have a γ-aminobutyric acid content of 25 mg or more and a glutamic acid content of 15 mg or less per 13.75 g of soybean solids in soy milk. preferable.
[0037] (9)から(12)の発明によれば、従来にない、高い含量の豆乳由来の γ —アミノ酪 酸力 S得られるとともに、味覚に大きな影響を及ぼすグノレタミン酸含量を 40mg以下、 好ましくは 15mg以下とすることができる。この豆乳は、上記(1)から(7)の豆乳の製 造方法によって得られる(後述の実施例参照)。すなわち、上記(1)から(7)の豆乳の 製造方法において、上記の低温保持工程 (B )又は(B )を設けることにより、食品衛  [0037] According to the inventions of (9) to (12), an unprecedented high content of γ-aminobutyric acid S derived from soy milk is obtained, and the content of gnoretamic acid that has a great influence on taste is 40 mg or less, Preferably it can be 15 mg or less. This soy milk is obtained by the method for producing soy milk described in (1) to (7) above (see Examples described later). That is, in the method for producing soymilk of (1) to (7) above, by providing the low-temperature holding step (B) or (B),
1 2  1 2
生的に優れた、かつ、 Ίーァミノ酪酸を増カロさせること力 Sできる。よって、本発明によ れば、基質としてのグルタミン酸の外部からの添カロ、又は、 GADのリソースとしての枝 豆等の外部からの添加、の有無に関わらず、 γ—ァミノ酪酸含量が高ぐ味覚的に良 好で、更に、食品衛生上好適な豆乳を得ることができる。 Excellent raw manner and can be force S is increased Caro the Ί Amino acid. Therefore, according to the present invention, the content of γ-aminobutyric acid is high regardless of the presence or absence of external addition of glutamic acid as a substrate or external addition of green soybeans as a GAD resource. It is possible to obtain a soy milk that is tasteful and suitable for food hygiene.
[0038] なお、本発明は、原料を含む混合液又は溶液を、 20°C以上 (例えば、 25°C〜35 °C、 30°C)、一定時間(例えば、 100分以上、 2時間以上、 3時間以上)で保持し、か つ、酵素失活処理工程以前に、加熱により菌数 1/100にする力、、又は菌数を 1 X 1 06未満にする殺菌を行わな!/、豆乳及びその豆乳の製造方法、を含まな!/、ものである ことが好ましい。これによれば、菌数が多い状態で長時間保持することにより、食品衛 生上、飲料に適さなレ、豆乳ができる場合があるからである。 [0038] In the present invention, the mixture or solution containing the raw material is kept at 20 ° C or higher (for example, 25 ° C to 35 ° C, 30 ° C) for a fixed time (for example, 100 minutes or longer, 2 hours or longer). Hold for more than 3 hours) One, prior to enzymatic inactivation treatment step, a force ,, or bacterial count to bacteria number 1/100 Do perform sterilization be less than 1 X 1 0 6 by heating! /, Soy milk and a method for manufacturing the soymilk, the It is preferable not to contain! According to this, by holding for a long time in a state where the number of bacteria is large, there may be a case where the food is suitable for beverages and soy milk in terms of food hygiene.
[0039] (13) 液状化工程と、グルタミン酸添加工程と、低温殺菌工程と、低温保持工程と 、酵素失活処理工程とを有する豆乳の製造方法であり、大豆の粉砕物と水との混合 液、又は該混合液から水不溶性成分を除去した溶液、を得る液状化工程、前記混合 液、又は前記溶液に、グルタミン酸を添加するグルタミン酸添加工程、前記液状化工 程と同時に、又は前記液状化工程と前記低温保持工程との間に、 50〜75°Cの加熱 で前記低温保持工程前の菌数を 1/100以下にする力、、又は 50〜75°Cの加熱で前 記低温保持工程前の菌数を 1 X 106未満にする低温殺菌工程、 4〜; 15°Cで、 γ—ァ ミノ酪酸含量が 50mg以上となる時間まで、前記混合液又は前記溶液を保持する低 温保持工程、酵素失活処理工程、を有する豆乳の製造方法。 [0039] (13) A method for producing soymilk, comprising a liquefaction step, a glutamic acid addition step, a pasteurization step, a low-temperature holding step, and an enzyme deactivation treatment step, wherein a mixture of soybean grind and water A liquefaction step for obtaining a liquid or a solution obtained by removing water-insoluble components from the mixed solution, a glutamic acid addition step for adding glutamic acid to the mixed solution or the solution, or simultaneously with the liquefaction step, or the liquefaction step Between the temperature and the low temperature holding step, the power to reduce the number of bacteria before the low temperature holding step to 1/100 or less by heating at 50 to 75 ° C, or the low temperature holding step by heating at 50 to 75 ° C. Pasteurization process to reduce the previous number of bacteria to less than 1 X 10 6 , 4 ~; at 15 ° C, keep the mixture or solution at a low temperature until the γ-aminobutyric acid content reaches 50mg or more The manufacturing method of the soymilk which has a process and an enzyme deactivation process.
[0040] 本発明の一態様を示したものである。この態様によれば、工業的スケールにおいて 、 7ーァミノ酪酸含量が高ぐ味覚的に良好で、更に、食品衛生上好適な豆乳を得る ことができる(後述の実施例参照)。  [0040] One embodiment of the present invention is shown. According to this embodiment, on the industrial scale, a 7-aminobutyric acid content is high and taste is good, and soymilk suitable for food hygiene can be obtained (see Examples described later).
発明の効果  The invention's effect
[0041] 本発明によれば、低温/長時間の低温保持工程を設けることで、 γ—ァミノ酪酸含 有量が高ぐかつ、食品衛生上許容できる範囲内に菌数の増加を抑制できる豆乳の 製造方法を提供できる。  [0041] According to the present invention, by providing a low-temperature / long-time low-temperature holding step, the soymilk has a high γ-aminobutyric acid content and can suppress an increase in the number of bacteria within a range acceptable for food hygiene. A manufacturing method can be provided.
[0042] また、低温殺菌工程 (D)や高温保持工程 (Ε)を組み合わせることで、菌数的により 安定した製造を行うことができ、大量生産の際にも微生物的に問題のない、安定した 品質の豆乳を製造することができる。 [0042] Further, by combining the pasteurization process (D) and the high temperature holding process (Ε), it is possible to produce more stable bacteria, and there is no microbial problem even in mass production. Can produce quality soy milk.
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1]実施例における、保持時間と γ—ァミノ酪酸量との関係を示す図である。  [0043] FIG. 1 is a graph showing the relationship between retention time and amount of γ-aminobutyric acid in Examples.
[図 2]実施例における、保持温度と保持時間との関係を示す図である。  FIG. 2 is a graph showing the relationship between holding temperature and holding time in Examples.
[図 3]実施例における、保持温度と接触強度との関係を示す図である。  FIG. 3 is a graph showing the relationship between holding temperature and contact strength in Examples.
[図 4]実施例における、保持温度と保持時間との関係を示す図である。 [図 5a]実施例における、保持時間と菌数との関係を示す図である。 FIG. 4 is a diagram showing the relationship between holding temperature and holding time in Examples. FIG. 5a is a graph showing the relationship between retention time and the number of bacteria in Examples.
[図 5b]実施例における、保持時間と菌数との関係を示す図であって、接触強度の定 義を説明するための図である。  FIG. 5b is a diagram showing the relationship between the retention time and the number of bacteria in Examples, and is a diagram for explaining the definition of contact strength.
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本実施形態に係る豆乳製造方法は、大豆の粉砕物と水との混合液 (以下、単に「混 合液」とレ、うことがある)又は、この混合液から水不溶性成分を除去した溶液(以下、 単に「溶液」とレ、うことがある)を作製する液状化工程 (A)と、前記混合液又は前記溶 液を所定の温度、時間で一定時間保持する低温保持工程 (B 、 B )と、混合液、又  The method for producing soymilk according to the present embodiment includes a mixed solution of pulverized soybean and water (hereinafter sometimes simply referred to as “mixed solution”) or a solution obtained by removing water-insoluble components from this mixed solution. (Hereinafter referred to simply as “solution”) and a liquefaction step (A), and a low-temperature holding step (B, which holds the mixed solution or the solution at a predetermined temperature for a predetermined time) B) and a mixture or
1 2  1 2
は溶液の酵素を失活させる酵素失活処理工程 (C)と、を少なくとも含む。  Includes at least an enzyme deactivation treatment step (C) for deactivating the enzyme in the solution.
[0045] [大豆] [0045] [Soybean]
本発明に用いる大豆としては、どのようなものを用いてもよぐ特に限定はされない。 例えば、国産大豆、 IOM等の米国産大豆、遺伝子組み換え大豆、又は遺伝子非組 換え大豆のいずれも用いることができる。また、青大豆、黒大豆、青豆等も用いること ができる。枝豆は、大豆の未熟種子であるから、大雑把に大豆として极うこともできる No particular limitation is imposed on the soybean used in the present invention. For example, domestic soybean, US soybean such as IOM, genetically modified soybean, or non-genetically modified soybean can be used. Green soybeans, black soybeans, green beans and the like can also be used. Since green soybeans are immature seeds of soybeans, they can roughly be used as soybeans.
Yes
[0046] [発芽処理大豆の製造]  [0046] [Production of germinated soybean]
本発明においては、大豆になんらの処理も施さずに、液状化工程で大豆の粉砕物 と水との混合液、又は該混合液力 水不溶性成分を除去した溶液を製造することが できる。また、大豆としては、大豆由来のグルタミン酸量を増やすという点から発芽処 理大豆を用いることが好ましレ、。  In the present invention, it is possible to produce a mixed solution of soybean ground material and water in the liquefaction step or a solution from which the water-insoluble components are removed without any treatment on the soybean. As soybeans, it is preferable to use germinated soybeans from the viewpoint of increasing the amount of glutamic acid derived from soybeans.
[0047] (発芽処理大豆)  [0047] (Sprouted soybean)
発芽処理大豆とは、水による浸漬等により発芽反応に必要な水を含む大豆を、水 切り後又は浸漬等の工程中に空気又は酸素に接触させ、温度、湿度を保ちながら発 芽反応を促進させた大豆を意味し、実際に芽や根が目視で確認できるか否かは問 わない。具体的には、例えば、水切りした大豆を発芽床に移して間欠的に散水する、 あるいは湿らせた布で包むことにより、発芽反応を進行させる。なお、本発明に用い る発芽装置としては、一般的に用いられている発芽床を使用することができる力 こ れに限定されない。 Germinated soy beans are soaked in water, etc. so that the soybeans containing water necessary for the germination reaction are brought into contact with air or oxygen after draining or during the steps of soaking, etc., and the germination reaction is accelerated while maintaining temperature and humidity. It does not matter whether the shoots and roots can be visually confirmed. Specifically, for example, the drained soybeans are transferred to a germination bed and sprayed intermittently or wrapped with a damp cloth to advance the germination reaction. Note that the germination apparatus used in the present invention is capable of using a commonly used germination bed. It is not limited to this.
[0048] 具体的な発芽処理の方法としては、特に限定はしないが、例えば、 25〜45°C、より 好ましくは 25〜35°Cで、好ましくは 12〜72時間、より好ましくは 12〜36時間放置し ておく方法が挙げられる。  [0048] The specific germination treatment method is not particularly limited, but is, for example, 25 to 45 ° C, more preferably 25 to 35 ° C, preferably 12 to 72 hours, more preferably 12 to 36. One method is to leave it for a while.
[0049] また、 10〜45°C、好ましくは 20〜45°C、より好ましくは 30〜42°Cの水又は温水に 、 0. 5〜36時間、好ましくは 1〜; 10時間、より好ましくは 1〜5時間浸漬させ、この浸 漬工程中、又は浸漬工程後に、大豆を空気又は酸素中に 12〜36時間、好ましくは 12〜30時間、より好ましくは 12〜24時間さらす気体接触工程を行う方法も挙げるこ と力 Sできる。なお、この浸漬工程中に気体接触工程を行う方法としては、浸漬水の中 に酸素を入れてパブリングを行う方法等が挙げられる。  [0049] Further, in water or warm water at 10 to 45 ° C, preferably 20 to 45 ° C, more preferably 30 to 42 ° C, 0.5 to 36 hours, preferably 1 to 10 hours, more preferably Is a gas contact step in which the soybean is exposed to air or oxygen for 12 to 36 hours, preferably 12 to 30 hours, more preferably 12 to 24 hours during or after the soaking step. You can also list how to do it. In addition, as a method of performing a gas contact process during this immersion process, the method of putting publishing by putting oxygen in immersion water, etc. are mentioned.
[0050] このような発芽処理大豆としては、例えば、 WO2005/004633号国際公開ノ ンフ レットに記載のものが好ましく利用できる。  [0050] As such germinated soybeans, for example, those described in International Publication No. WO2005 / 004633 can be preferably used.
[0051] [液状化工程 (A) ]  [0051] [Liquefaction process (A)]
液状化工程は、後述する混合液又は溶液を得ることができる工程であれば、特に 限定されない。例えば、大豆に水を吸水させる吸水工程と、吸水した大豆に水をカロえ て粉砕する粉砕工程と、必要に応じて粉砕工程にお!/ヽて得られた大豆の粉砕物と水 との混合液から水不溶性成分を除去する除去工程と、を含む。また、液状化工程は、 乾燥した大豆を粉末化して、これを水に溶力もて混合液又は溶液とするものであって もよい。なお、発芽処理大豆の場合は、発芽処理大豆中に十分な水分が含まれてい れば、吸水工程を省略してもよい。  The liquefaction process is not particularly limited as long as it is a process capable of obtaining a mixed liquid or solution described later. For example, a water absorption process in which water is absorbed by soybeans, a pulverization process in which water is absorbed into the absorbed soybeans and pulverized, and, if necessary, a pulverized soybean product and water obtained in the pulverization process. Removing the water-insoluble component from the mixed solution. In the liquefaction step, dried soybeans may be pulverized and then mixed with water to form a mixed solution or solution. In the case of germinated soybeans, the water absorption step may be omitted if the germinated soybeans contain sufficient moisture.
[0052] (吸水工程)  [0052] (Water absorption process)
吸水工程は、粉砕工程を容易にするために、大豆を十分軟ら力べできる工程であれ ば特に限定されない。吸水工程は、常法により、適宜調整して行うこと力 Sできる。吸水 工程に用いる水としては、水道水、地下水等、特に限定されないが、豆乳に含まれる 大豆タンパク質の沈殿を防ぐという点から、軟水等、金属イオンを少量しか含まない 水を用いることが好ましい。  The water absorption process is not particularly limited as long as it is a process in which soybeans can be sufficiently softened to facilitate the grinding process. The water absorption process can be carried out by adjusting the water absorption process as appropriate. The water used in the water absorption step is not particularly limited, such as tap water and groundwater, but it is preferable to use water containing only a small amount of metal ions such as soft water from the viewpoint of preventing precipitation of soy protein contained in soy milk.
[0053] (粉砕工程)  [0053] (Crushing process)
粉砕工程は、混合液状にできる工程であれば、特に限定されない。粉砕工程は、 常法により適宜調整して行うことができる。粉砕工程に用いられる粉砕装置としては、 特に限定されず、例えば、ミキサー、臼であってもよい。粉砕工程で粉砕装置に投入 する水としては、水道水、地下水等、特に限定されないが、豆乳に含まれる大豆タン ノ ク質の沈殿を防ぐという点から、軟水等、金属イオンを少量し力、含まない水を用い ることが好ましい。 The pulverization process is not particularly limited as long as it is a process that can be mixed liquid. The grinding process It can adjust suitably by a conventional method. The pulverizer used in the pulverization step is not particularly limited, and may be a mixer or a mortar, for example. The water to be input into the pulverizing apparatus in the pulverization process is not particularly limited, such as tap water and groundwater, but from the viewpoint of preventing the precipitation of soy protein contained in soy milk, a small amount of metal ions such as soft water can be used. It is preferable to use water which does not contain.
[0054] (除去工程)  [0054] (Removal step)
除去工程においては、除去装置(又は分離装置)により、大豆の粉砕物と水との混 合液から水不溶性成分 (例えば、おから)を除去して、該混合液から水不溶性成分を 除去した溶液を得る。除去工程に用いられる除去装置 (又は分離装置)としては、例 えば、スクリュープレス、スクリューデカンターを用いることができる。  In the removal step, a water-insoluble component (for example, okara) is removed from the mixture of soybean ground material and water by a removal device (or separation device), and the water-insoluble component is removed from the liquid mixture. Obtain a solution. For example, a screw press or a screw decanter can be used as the removal device (or separation device) used in the removal step.
[0055] なお、本実施形態において、「大豆の粉砕物と水との混合液」とは、結果として、大 豆を粉砕又は磨砕等の手段により細かくしたものと水とが混合しているものであれば よぐ特に製造方法は問わない。例えば、大豆に水を加えながら磨砕することで製造 してもよい。これらは、呉又は生呉と呼ばれる場合がある。混合液中の粉砕物の濃度 は、豆乳が製造できるものであれば、特に限定されない。  [0055] In the present embodiment, the "mixed liquid of soybean pulverized product and water" results in a mixture of soybeans ground by means of pulverization or grinding and water. Any manufacturing method may be used as long as it is a product. For example, it may be produced by grinding soybeans while adding water. These are sometimes called Kure or Namago. The concentration of the pulverized product in the mixed solution is not particularly limited as long as soymilk can be produced.
[0056] また、「該混合液から水不溶性成分を除去した溶液」とは、該混合液から、 V、わゆる おからを除去する一般的な工程により、おからを除いた溶液をいう。よって、水不溶 性成分は、おからと呼ばれる場合がある。また、溶液は、いわゆるおからを除去する 一般的な工程により得られる豆乳部と呼ばれる場合がある。この溶液は、水不溶性成 分を除いたものである力 除去されずに少量の水不溶性成分を含んでいる場合があ る。よって、本発明においても、溶液中の水不溶性成分の含量は問わず、水不溶性 成分の除去処理がなされた溶液を指す。  [0056] The "solution from which the water-insoluble component has been removed from the mixed solution" refers to a solution obtained by removing okara from the mixed solution by a general process of removing V and soy sauce. Therefore, the water-insoluble component is sometimes called okara. Further, the solution may be called a soy milk part obtained by a general process of removing so-called okara. This solution may contain small amounts of water-insoluble components without the removal of forces that are excluding water-insoluble components. Therefore, even in the present invention, the content of the water-insoluble component in the solution is used regardless of the content of the water-insoluble component.
[0057] また、上記混合液又は上記溶液は、水不溶性成分が存在することによる喉越しの 悪さを改善するため、攪拌機等により水不溶性成分を細力べする処理を行うこともでき る。上記混合液に当該処理を行ったものは、全粒豆乳と呼ばれる場合があり、これは 、上記混合液の一種として扱われる。  [0057] In addition, the mixed solution or the solution may be subjected to a treatment for squeezing the water-insoluble component with a stirrer or the like in order to improve poor throat penetration due to the presence of the water-insoluble component. What performed the said process to the said liquid mixture may be called whole grain soymilk, and this is handled as a kind of said liquid mixture.
[0058] なお、本願でいう豆乳は、 JAS規格に含まれるものはもちろんのこと、 JAS規格に限 定されず、大豆を原料として豆乳状にしたものを全ていう。例えば、おからを除去しな いものや、大豆を乾燥させて、一度粉末にした後、その粉を水に溶力もたものも含ま れる。また、大豆固形分の含有量も問わない。 [0058] The soy milk referred to in the present application is not limited to the JAS standard, as well as those included in the JAS standard, and refers to all soybeans made from soy milk. For example, do not remove okara Japanese potatoes and soybeans that have been dried and powdered once, and then the powder has water-solubility are also included. Moreover, content of soybean solid content is not ask | required, either.
[0059] (グルタミン酸の添加) [0059] (Addition of glutamic acid)
本発明では、液状化工程で作られる混合液又は溶液として、更に外部から添加し たグルタミン酸を含むものを用いることができる。基質としてグルタミン酸を外部から添 加することで、更に γ—ァミノ酪酸を増やすことができる。本発明のグルタミン酸とは、 グルタミン酸とその塩 (例えば、グルタミン酸ナトリウム)を指す。具体的には、豆乳中 の固形分 13. 75g当たりの、前記豆乳由来の γ—アミノ酪酸含量が 50mg以上、力、 つ、グルタミン酸含量が 40mg以下である豆乳が得られる。「豆乳由来の γ アミノ酪 酸含量」とは、 yーァミノ酪酸を添加しない場合、又は γ—ァミノ酪酸そのものの量を 増やすことを目的とする素材を外部より添加しない場合の γ—ァミノ酪酸含量を意味 する。なお、従来のグルタミン酸を添加しない方法で豆乳を製造した場合、通常、 Ί —ァミノ酪酸は 10mg程度である力 本発明では、 50mg以上を達成することができる In the present invention, as the mixed solution or solution produced in the liquefaction step, a solution containing glutamic acid added from the outside can be used. By adding glutamic acid as a substrate from the outside, γ-aminobutyric acid can be further increased. The glutamic acid of the present invention refers to glutamic acid and a salt thereof (for example, sodium glutamate). Specifically, soy milk having a γ-aminobutyric acid content of 50 mg or more, strength, and a glutamic acid content of 40 mg or less per 13.75 g of solid content in soy milk is obtained. “Soymilk-derived γ-aminobutyric acid content” refers to the content of γ-aminobutyric acid when y-aminobutyric acid is not added or when a material intended to increase the amount of γ-aminobutyric acid itself is not added from the outside. means. In addition, when soybean milk is produced by a conventional method without adding glutamic acid, normally -aminobutyric acid is about 10 mg. In the present invention, 50 mg or more can be achieved.
[0060] グルタミン酸の添加量は、特に限定されない。グルタミン酸を少しでも添加した場合 、それに応じて γ アミノ酪酸は増加するので、下限を一概に規定することはできな い。また、反応が阻害されない範囲であれば、グルタミン酸を高濃度に添加しても、 γーァミノ酪酸は増加するので、上限を一概に規定することはできない。 [0060] The amount of glutamic acid added is not particularly limited. When glutamic acid is added even a little, γ-aminobutyric acid increases accordingly, so the lower limit cannot be defined unconditionally. If the reaction is not inhibited, γ-aminobutyric acid will increase even if glutamic acid is added at a high concentration. Therefore, the upper limit cannot be defined unconditionally.
[0061] グルタミン酸の添加量については、製造に用いる機械や製造スケールの違いによ る抽出効率の違いにより、一概に規定することはできない。グルタミン酸の量は、保持 工程前の混合液又は溶液中のグルタミン酸濃度として表記することができる。  [0061] The amount of glutamic acid to be added cannot be generally defined due to differences in extraction efficiency due to differences in the machines used for production and production scales. The amount of glutamic acid can be expressed as the glutamic acid concentration in the mixed solution or solution before the holding step.
[0062] グルタミン酸含量は、保持工程前の混合液又は溶液中の大豆固形分 13. 75g (大 豆固形分 11 %に換算した混合液又は溶液 125mLに相当)当たり 50mg以上 (好ま しくは 70mg以上)になるように添加することが好ましい。この量は、添加したダルタミ ン酸と大豆成分に内在するグルタミン酸との総濃度を示す。これにより、 y アミノ酪 酸 50mg以上の豆乳を得ることが可能となるからである。  [0062] The glutamic acid content is 50 mg or more (preferably 70 mg or more) per 13.75 g of soybean solids in the mixed solution or solution before the holding step (corresponding to 125 mL of mixed solution or solution converted to 11% soybean solids). It is preferable to add so that it may become. This amount indicates the total concentration of added dartamic acid and glutamic acid inherent in the soybean component. This is because it is possible to obtain soy milk with 50 mg or more of y-aminobutyric acid.
[0063] また、グルタミン酸含量は、保持工程前の混合液又は溶液中の大豆固形分 13. 75 g (大豆固形分 11 %に換算した混合液又は溶液 125mLに相当)当たり 11 Omg以下 になるように添加することが好ましい。この量は、添加したグルタミン酸と大豆成分に 内在するグルタミン酸との総濃度を示す。これにより、グルタミン酸の残存量力 Omg 以下の豆乳を得ることが可能となるからである。 [0063] The glutamic acid content is 11 Omg or less per 13.75 g of soybean solid in the mixed solution or solution before the holding step (corresponding to 125 mL of the mixed solution or solution converted to 11% soybean solid). It is preferable to add so that it becomes. This amount indicates the total concentration of glutamic acid added and glutamic acid inherent in the soybean component. This is because it is possible to obtain soy milk having a residual amount of glutamic acid of Omg or less.
[0064] グルタミン酸含量は、保持工程前の混合液又は溶液中の大豆固形分 13. 75g (大 豆固形分 11 %に換算した混合液又は溶液 125mLに相当)当たり 50〜; 1 lOmg (好 ましくは 70〜; UOmg)になるように添加することが更に好ましい。  [0064] The glutamic acid content is 50 to 1 lOmg (preferably 125 ml of the mixture or solution converted to 11% soybean solid) in 13.75 g of soybean solid in the mixture or solution before the holding step. More preferably 70 to UOmg).
[0065] 大豆固形分 13. 75g当たり 50mg以上(又は l lOmg以下)存在する混合液又は溶 液を調製する方法は問わない。例えば、(a)おからを除去した溶液に対してダルタミ ン酸を添加する方法や、(b)混合液を作る際に、前もってグルタミン酸を過剰量入れ ておき、その後、一部のグルタミン酸を含むおからを除去し、おからを除去した溶液と して調製すること力 Sできる。 (b)の場合に、グルタミン酸を過剰量入れる理由は、おか らの除去と同時に一部のグルタミン酸も一緒に除去されるため、これを見越した量を あらかじめ入れる必要があるからである。グルタミン酸は酸性を示す物質であるため、 蛋白質の変性や風味の観点からは、(b)の方が好ましい。  [0065] Soybean solids 13. Any method of preparing a mixed solution or solution present in an amount of 50 mg or more (or lO mg or less) per 75 g is acceptable. For example, (a) a method in which dartamic acid is added to a solution from which okara has been removed, or (b) when making a mixture, an excess amount of glutamic acid is added in advance, and then a part of glutamic acid is included. Can remove okara and prepare it as a solution from which okara has been removed. In the case of (b), the reason why an excessive amount of glutamic acid is added is that a part of glutamic acid is also removed at the same time as the removal of the glutamic acid. Since glutamic acid is an acidic substance, (b) is preferred from the viewpoint of protein denaturation and flavor.
[0066] また、後述する GAD又は GADを含む素材を用いる場合は、更に γ—ァミノ酪酸を 増カロさせること力 Sできること力、ら、これを添加しない場合と比較して、更にグルタミン酸 を添カロすること力 Sできる。  [0066] In addition, when using GAD or a material containing GAD, which will be described later, the ability to further increase γ-aminobutyric acid can be increased. Compared to the case where this is not added, glutamic acid is further added. The power to do S.
[0067] GAD又は GADを含む素材を添加した場合、グルタミン酸の添加量は、添加した G ADの活性又は素材に含まれる GAD活性に大きく影響を受けるため、その量をー概 に決めることはできない。 GAD又は GADを含む素材を多く入れれば、グルタミン酸 を多く添加しても、その分、グルタミン酸を γ —ァミノ酪酸に変換できるからである。こ の場合であっても、製造される豆乳の Ί—ァミノ酪酸量が 50mg以上 (好ましくは 70 mg以上)で、かつ、残存するグルタミン酸含量が 40mg以下となる範囲でグルタミン 酸を添加することが好ましい。これらの添加量は、上記記載を参考にすれば、当業者 は適宜調整して選択することができる。 [0067] When GAD or a material containing GAD is added, the amount of glutamic acid is greatly influenced by the activity of the added GAD or the GAD activity contained in the material, so the amount cannot be roughly determined. . This is because if a large amount of GAD or a material containing GAD is added, even if a large amount of glutamic acid is added, glutamic acid can be converted to γ-aminobutyric acid. Even in this case, it is possible to add glutamic acid in the range where the amount of aminobutyric acid in the produced soymilk is 50 mg or more (preferably 70 mg or more) and the residual glutamic acid content is 40 mg or less. preferable. These addition amounts can be appropriately adjusted and selected by those skilled in the art with reference to the above description.
[0068] (GAD又は GADを含む素材の添加)  [0068] (Addition of materials containing GAD or GAD)
本発明においては、液状化工程で作られる混合液又は溶液が、更に、 GAD又は 該酵素を含む素材、を含むものを用いることができる。 GAD又は GAD含む素材を添 加することで、更に γ—ァミノ酪酸を増やすことができる。具体的には、豆乳中の固 形分 13. 75g当たりの、前記豆乳由来の γ —アミノ酪酸含量が 70mg以上、かつ、グ ルタミン酸含量が 40mg以下である豆乳が得られる。「豆乳由来の γ —アミノ酪酸含 量」の意味は、上記と同様である。 In the present invention, the liquid mixture or solution produced in the liquefaction step may further contain GAD or a material containing the enzyme. GAD or material containing GAD In addition, γ-aminobutyric acid can be further increased. Specifically, soymilk having a γ-aminobutyric acid content of 70 mg or more and a glutamic acid content of 40 mg or less per 13.75 g of solid content in soymilk is obtained. The meaning of “content of γ-aminobutyric acid derived from soy milk” is the same as above.
[0069] GAD又は GADを含む素材は、保持工程前に添加(含有)されていればよぐ混合 液又は溶液を調製する工程で添加(含有)されて!/、ればよ!/、。保持工程の途中で添 加しても効果はあるが、当初から添加した場合に比べて、劣る。  [0069] GAD or a material containing GAD may be added (contained) in the step of preparing a mixed solution or solution as long as it is added (contained) before the holding step. Even if added in the middle of the holding process, there is an effect, but it is inferior to the case of adding from the beginning.
[0070] GAD又は GADを含む素材を用いる場合は、更に γ —アミノ酪酸を増加させること 力 Sできること力、ら、これを添加しない場合と比較して、更にグルタミン酸を添加すること ができる。  [0070] When GAD or a material containing GAD is used, the ability to further increase γ-aminobutyric acid can be increased. Compared to the case where this is not added, glutamic acid can be further added.
[0071] 添加の一態様として、 GADそのものを添加することができる。しかし、単離された酵 素は、高価なので安価な豆乳の原料としては使いづらい。添加の別の態様として、 G ADを含む素材を添加することもできる。 GADを含む素材とは、 GADを含有するもの を広く指し、野菜や果物等を含む食品、これらを加工したもの、これらの一部を取り出 したもの又は食品に添加して用いることができるもの、等をいう。これらの一部を取り 出したものとしては、例えば、野菜や豆類等から何らかの方法により抽出した、 GAD を高濃度に含む抽出物(蛋白画分)が挙げられる。よって、 GAD濃度が少ない素材 であっても、これを加工、抽出等すれば、本発明に用いることができる。  [0071] As one mode of addition, GAD itself can be added. However, the isolated enzyme is expensive and difficult to use as an inexpensive raw material for soy milk. As another mode of addition, a material containing GAD can be added. Materials containing GAD broadly refer to materials containing GAD, foods containing vegetables, fruits, etc., processed products, parts of these removed, or those that can be added to foods , Etc. As an extract of some of these, for example, an extract (protein fraction) containing GAD at a high concentration extracted from vegetables or beans by some method. Therefore, even a material having a low GAD concentration can be used in the present invention if it is processed, extracted, or the like.
[0072] 本発明は、豆乳の製造方法において、更に γ —アミノ酪酸を増やすことが目的の 一つである。具体的には、 GADを含む素材として、大豆よりも GAD活性が高い素材 を用いることにより、更に γ—ァミノ酪酸を増やすことができる。例えば、後述の実施 例のように、完熟大豆を用いた豆乳では、この原料大豆よりも GAD活性が高い素材 を用いること力 Sでさる。  [0072] One object of the present invention is to further increase γ-aminobutyric acid in the method for producing soymilk. Specifically, γ-aminobutyric acid can be further increased by using a material having higher GAD activity than soybean as a material containing GAD. For example, as in the examples described later, for soy milk using fully-ripened soybeans, it is possible to use a material S having a higher GAD activity than this raw soybean.
[0073] 大豆と GADを含む素材との GAD活性の比較は、種々の方法により行うことができ 、例えば以下の方法がある。  [0073] Comparison of GAD activity between soybean and a material containing GAD can be performed by various methods, for example, the following methods.
[0074] 十分量のグルタミン酸が入った水溶液に、一定量の大豆又は GADを含む素材の 水溶液又は水懸濁液を入れ、十分に攪拌する。これを 10°Cで保持して、 y—ァミノ 酪酸の生成量がプラトーに達するまで、反応を進める。反応が終わったら、殺菌して 、 γ—ァミノ酪酸量を測定する。これと反応開始前の γ—ァミノ酪酸量との差が、 Ί ーァミノ酪酸の増加量である。この反応は、必要に応じて、 ρΗ調整を行うことができる 。この γ —アミノ酪酸の増加量が大豆よりも多いものは、「大豆よりも GAD活性が高い GAD素材」と言える。「十分な量のグルタミン酸」とは、反応終了後にグルタミン酸が 適量(例えば、 10〜40mg/125mU残存するくらいの量を意味する。 GADを含む 素材の固形分は、特に限定されない。この理由は、大豆と比較して、 GAD活性が高 ければ、「大豆よりも GAD活性が高い GAD素材」として用いることができるからである[0074] An aqueous solution or water suspension of a material containing a certain amount of soybean or GAD is added to an aqueous solution containing a sufficient amount of glutamic acid, and sufficiently stirred. Hold this at 10 ° C and continue the reaction until the yield of y-aminobutyric acid reaches a plateau. When the reaction is over, sterilize Measure the amount of γ-aminobutyric acid. The difference between this and the amount of γ-aminobutyric acid before the start of the reaction is the increased amount of α-aminobutyric acid. This reaction can be adjusted as necessary. This γ-aminobutyric acid increase is higher than that of soybeans, which can be said to be “a GAD material with higher GAD activity than soybeans”. “Sufficient amount of glutamic acid” means an appropriate amount of glutamic acid (for example, 10 to 40 mg / 125 mU) after the reaction is completed. The solid content of the material containing GAD is not particularly limited. This is because if GAD activity is higher than that of soybean, it can be used as a GAD material with higher GAD activity than soybean.
Yes
[0075] 上述したとおり、例えば、野菜や豆類等から、何らかの方法により、 GADを高濃度 に含む抽出物(蛋白画分)を用いることができるため、「大豆よりも GAD活性が高!/、G AD素材」を一概に規定することはできない。例えば、野菜としては、かぼちゃ、キユウ リ、トマト、ニンジン、又はこれらの抽出物を挙げること力 Sできる。また、豆類としては、 未熟豆又は未熟豆の莢、又はこれらの抽出物を挙げること力 Sできる。更に具体的に は、枝豆又はその莢、そらまめ又は該そらまめの莢、さやいんげん、さやえんどう、等 が挙げられる。  [0075] As described above, for example, an extract (protein fraction) containing GAD at a high concentration can be used from vegetables, beans, or the like by any method, and therefore, "GAD activity is higher than soybean! /, “G AD material” cannot be defined in general. For example, vegetables can include pumpkins, cucumbers, tomatoes, carrots, or extracts thereof. In addition, as beans, immature beans, immature bean straw, or extracts thereof can be cited. More specifically, edamame or its pods, broad bean or broad bean pods, pods, peas, etc.
[0076] かぼちゃの場合、その種類は限定されず、西洋かぼちゃや日本かぼちゃを用いる こと力 Sできる。例えば、かぼちゃの抽出液としては、かぼちゃを水中で粉砕した力ポチ ャ粉砕溶液の繊維質を、遠心分離やろ過等により除去した溶液を用いることができる 。かぼちゃ粉砕液溶液としては、例えば、かぼちゃに、かぼちゃの 2倍量以上の水を 加え、ジューサー等で十分に粉砕し、ジュース状にしたものを用いることができる。原 料のかぼちゃとしては、好ましくは、種を除いた全ての部分を用いる。  [0076] In the case of pumpkin, the type is not limited, and it is possible to use Western pumpkin or Japanese pumpkin. For example, as the pumpkin extract, a solution obtained by removing fibers of a force-powder pulverized solution obtained by pulverizing pumpkin in water by centrifugation, filtration, or the like can be used. As the pumpkin pulverized liquid solution, for example, a pumpkin can be used that has been added to water at least twice the amount of the pumpkin, pulverized sufficiently with a juicer or the like, and made into a juice. As the raw material pumpkin, preferably all parts except the seed are used.
[0077] GADを含む素材として、未熟豆又は未熟豆の莢の細胞壁を破壊処理してなる細 胞壁破壊処理物を用いることができる。ここで、未熟豆又は未熟豆の莢とは、未熟な うちに収穫する青果用豆類又はその莢をいう。また、細胞壁破壊処理物とは、豆又は 豆莢の細胞壁が破壊される程度に破砕、磨砕等の処理が行われたものをいう。未熟 豆又は該未熟豆の莢は、枝豆又はその莢、そらまめ又は該そらまめの莢、さやいん げん、さやえんどう、力 なる群より選ばれる 1種以上であることが好ましぐ枝豆又は その莢であることがより好ましい。上記の豆又は豆莢は、 GAD活性に優れるので、 γ ーァミノ酪酸への変換能が高ぐグルタミン酸から効率的に γ—ァミノ酪酸を製造す ること力 Sでさる。 [0077] As a material containing GAD, a cell wall disrupted product obtained by disrupting immature beans or cell walls of immature bean straw can be used. Here, immature beans or immature bean straw refers to fruits and vegetables that are harvested while still immature or their straw. The cell wall disrupted product refers to a product that has been subjected to processing such as crushing and grinding to such an extent that the cell wall of the bean or bean koji is destroyed. The immature bean or the pod of the immature bean is an edamame or its pod, a broad bean or a pod of the broad bean, a green beans, a green pea, or an edamame or a cocoon that is preferably selected from the group of power. It is more preferable. Since the above beans or bean pods are excellent in GAD activity, γ -The ability to efficiently produce γ-aminobutyric acid from glutamic acid, which has a high ability to convert to aminoaminobutyric acid, is calculated with S.
[0078] 細胞壁破壊処理物は、未熟豆又は該未熟豆の莢を破砕した破砕物、該破砕物を 含む水懸濁液、該水懸濁液の分離処理物、のいずれかであることが好ましい。これら の処理を施した理由は、豆又は莢の GADは、細胞に内在しているので、 GADを有 効に利用するためには、破砕や磨砕等の処理が必要だからである。  [0078] The cell wall disruption-treated product is any one of immature beans or a crushed product obtained by crushing the straw of the immature beans, an aqueous suspension containing the crushed product, and a separation-treated product of the aqueous suspension. preferable. The reason for applying these treatments is that beans or straw GAD are inherent in cells, and in order to effectively use GAD, treatment such as crushing and grinding is necessary.
[0079] 本発明においては、上述したとおり、未熟豆又は未熟豆の莢は、保持工程前に添 加(含有)されて!/、ればよく、混合液又は溶液を製する工程で添加(含有)されて!/、れ ばよい。例えば、上記のような前処理を施し、混合液又は溶液に添加(含有)させても よぐまた、大豆原料を水存在下で磨砕するときに、未熟豆又は未熟豆の莢を入れて おき、この磨砕処理により細胞壁を破壊してもよい。保持工程の途中で添加しても効 果はある力 当初から添加した場合に比べて、劣る。  [0079] In the present invention, as described above, immature beans or immature bean pods may be added (contained) before the holding step! /, And may be added in the step of producing a mixed solution or solution ( Contained)! / For example, the pretreatment as described above may be performed and added (containing) to the mixed solution or solution. Also, when the soybean raw material is ground in the presence of water, immature beans or immature bean straw is added. Alternatively, the cell wall may be destroyed by this grinding treatment. Even if it is added in the middle of the holding process, the effect is inferior compared to the case where it is added from the beginning.
[0080] この態様によれば、上記!/、ずれの形態であっても、効率的に、高割合でグルタミン 酸を γ アミノ酪酸に変換することができる。未熟豆又は該未熟豆の莢の細胞壁破 壊処理物を γ—ァミノ酪酸の変換反応に使用する場合の具体的形態としては、未熟 豆又は該未熟豆の莢を細胞壁が破壊される程度に破砕、磨砕等の処理した破砕物 であってもよい。また、この破砕等の処理をしたものを水等に分散させた水懸濁液で あってもよい。また、この水懸濁液の分離処理物であってもよい。ここで、分離処理物 としては、水懸濁液をろ過して不溶物を分別、除去した溶液、又は、未熟豆又はその 莢の破砕物を水等で抽出した抽出液、未熟豆の莢の破砕物溶液を塩析し、これを脱 塩し、カラム精製した溶液等が挙げられる。  [0080] According to this embodiment, glutamic acid can be efficiently converted to γ-aminobutyric acid at a high rate even in the above-mentioned! /, Misalignment form. A specific form of using immature beans or cell walls of the immature beans that have been subjected to cell wall disruption in the conversion reaction of γ-aminobutyric acid is to crush the immature beans or the immature beans to such an extent that the cell wall is destroyed. It may also be a crushed material treated by grinding or the like. Further, it may be a water suspension obtained by dispersing the crushed material in water or the like. Moreover, the separation processed material of this water suspension may be sufficient. Here, as the separation-treated product, a solution obtained by filtering an aqueous suspension to separate and remove insoluble matters, an extract obtained by extracting immature beans or crushed potatoes with water, or the like, Examples include a solution obtained by salting out the crushed product solution, desalting it, and purifying the column.
[0081] また、細胞壁破壊処理物は、未熟豆の莢を破砕した破砕物又は該破砕物を含む 水懸濁液であって、該破砕物又は該水懸濁液を水不溶性成分の除去を行うことなく 用いることが好ましい。この態様によれば、水懸濁液をろ過したものに比べて、より高 効率で γ アミノ酪酸への変換を行うことができる。すなわち、未熟豆の莢の細胞質 破壊処理物においては、水溶性成分のみならず、水不溶性成分においても Ί アミ ノ酪酸への変換反応を進めることができる。  [0081] The cell wall disrupted product is a crushed product obtained by crushing immature bean straw or a water suspension containing the crushed product, and the crushed product or the aqueous suspension is used to remove water-insoluble components. It is preferable to use without performing. According to this aspect, conversion to γ-aminobutyric acid can be performed with higher efficiency than that obtained by filtering an aqueous suspension. That is, in the processed product of immature bean pods with cytoplasmic destruction, not only water-soluble components but also water-insoluble components can be converted to Ίaminobutyric acid.
[0082] GADを含む素材として、枝豆の例を挙げる。枝豆を用いた場合には、枝豆は未熟 大豆であるので大豆との味のマッチングもよぐ味覚的にも優れる。枝豆は、(a)混合 液等を作る際に添加して、大豆と同時に磨砕してもよぐ(b)枝豆の乾燥粉末を混合 液等に添加してもよい。 [0082] An example of green soybeans is given as a material containing GAD. When using green soybeans, green soybeans are immature Since it is soy, it has excellent taste matching with soy. Green soybeans may be added when (a) a mixed solution is made and ground simultaneously with soybeans. (B) A dry powder of green soybeans may be added to the mixed solution.
[0083] 枝豆を添加する量は、特に制限はない。枝豆の添加量が多いほど、 γ—アミノ酪酸 量は増加する。この場合、例えば、大豆の乾燥質量と枝豆の乾燥質量との総和に対 する枝豆の乾燥質量の割合が 1質量%以上であると、無添加の場合と比較して有意 に γ—ァミノ酪酸が増加するので好ましい。好ましくは 2質量%以上、更に好ましくは 5質量%以上である。すなわち、本発明の好ましい態様は、大豆の乾燥質量と枝豆 の乾燥質量との総和に対する枝豆の乾燥質量の割合が、 1質量%以上である前記( 1)から(6) V、ずれか記載の豆乳の製造方法である。  [0083] The amount of green soybean added is not particularly limited. The more edamame is added, the more γ-aminobutyric acid is added. In this case, for example, when the ratio of the dry weight of soybeans to the total of the dry weight of soybeans and dry weight of soybeans is 1% by mass or more, γ-aminobutyric acid is significantly increased compared to the case of no addition. Since it increases, it is preferable. Preferably it is 2 mass% or more, More preferably, it is 5 mass% or more. That is, in a preferred embodiment of the present invention, the ratio of the dry weight of green soybeans to the total of the dry weight of soybeans and dry weight of green soybeans is 1% by mass or more. This is a method for producing soymilk.
[0084] また、外部から添加するグルタミン酸と枝豆の比率も、特に制限はない。この場合、 例えば、外部から添加したグルタミン酸の質量 lgに対する枝豆の乾燥質量が、 5g以 上 (好ましくは 17g以上)であると、 γ —アミノ酪酸生成の反応が速やかに進み、 γ— ァミノ酪酸が増加するので好ましい。すなわち、本発明の好ましい態様は、外部から 添加したグルタミン酸の質量 lgに対する枝豆の乾燥質量が、 5g以上である前記(1) から(6) V、ずれか記載の豆乳の製造方法である。  [0084] The ratio of glutamic acid and green soybeans added from the outside is not particularly limited. In this case, for example, if the dry mass of green soybeans with respect to the mass lg of glutamic acid added from the outside is 5 g or more (preferably 17 g or more), the reaction of γ-aminobutyric acid production proceeds rapidly, and γ-aminobutyric acid Since it increases, it is preferable. That is, a preferred embodiment of the present invention is the method for producing soymilk according to any one of (1) to (6) V above, wherein the dry mass of green soybeans is 5 g or more with respect to the mass lg of glutamic acid added from the outside.
[0085] なお、本発明の製造方法において、上記のグルタミン酸や枝豆等の細胞壁破壊処 理物等の GADを含む素材を添加せず、発芽処理大豆の粉砕物と水との混合液を原 料とした場合には、豆乳中の固形分 13. 75g当たりの、前記豆乳由来の γ —アミノ酪 酸含量が 25mg以上、かつ、グルタミン酸含量が 15mg以下である豆乳が得られる。「 豆乳由来の γ—ァミノ酪酸含量」の意味は、上記と同様である。  [0085] It should be noted that in the production method of the present invention, a mixture of a ground product of germinated soybeans and water is used without adding a GAD-containing material such as the above-mentioned cell wall disruption products such as glutamic acid and green soybeans. In this case, soy milk having a γ-aminobutyric acid content of 25 mg or more and a glutamic acid content of 15 mg or less per 13.75 g of the solid content in the soy milk is obtained. The meaning of “content of γ-aminobutyric acid derived from soy milk” is the same as described above.
[0086] なお、本発明においては、上記のグルタミン酸や、 GADを含む素材を添加せずに 、通常の大豆を用いて豆乳であっても、 γ—ァミノ酪酸を増加させる作用はあると推 察できる。  [0086] In the present invention, it is presumed that there is an effect of increasing γ-aminobutyric acid even in soy milk using normal soybeans without adding the above-mentioned glutamic acid or a material containing GAD. it can.
[0087] [低温保持工程 (Β、 Β ) ]  [0087] [Low temperature holding process (Β, Β)]
1 2  1 2
次に、本発明においては、前記混合液又は前記溶液を保持する低温保持工程を 行う。具体的には、下記の Β又は Βのいずれかの工程である。  Next, in the present invention, a low temperature holding step for holding the mixed solution or the solution is performed. Specifically, it is one of the following steps Β or Β.
1 2  1 2
[0088] 横軸を保持温度 X (°C)、縦軸を保持時間 Y (hr)、とした場合に、 Y≤24000 X X つ、 X力 4〜; 15°C、 [0088] When the horizontal axis is holding temperature X (° C) and the vertical axis is holding time Y (hr), Y≤24000 XX, X force 4 ~; 15 ° C,
の条件を満たす範囲で前記混合液又は前記溶液を保持する低温保持工程 (B )。  A low-temperature holding step (B) for holding the mixed solution or the solution within a range satisfying the above condition.
[0089] 横軸を保持温度 X (°C)、縦軸を前記混合液又は前記溶液と菌との接触強度 Z、とし た場合に、 [0089] When the horizontal axis is the holding temperature X (° C) and the vertical axis is the contact strength Z between the mixed solution or the solution and the fungus,
Z≤3. 7 X 1010 X X— 3 6、かつ、 Xが 4〜; 15。C、 Z≤3.7 X 10 10 XX— 3 6 , and X is 4 to 15; C,
の条件を満たす範囲で前記混合液又は前記溶液を保持する低温保持工程 (B )。  A low-temperature holding step (B) for holding the mixed solution or the solution within a range satisfying the above condition.
2 2
(ここで、接触強度 Zは、横軸を保持時間 Y (hr)、縦軸を菌数 (個)とした場合に、保 持温度 Xにおける菌の増殖曲線の、保持時間 0から Yまでの積分値である。 ) (Here, the contact strength Z is the retention time Y (hr) on the horizontal axis and the number of bacteria (vertical) on the vertical axis. Integral value.)
[0090] (低温保持工程 (B ) )  [0090] (Low temperature holding process (B))
低温保持工程(B )にぉける、丫≤24000 —2 7、カ、っ、 カ 〜15°じ、の条件は 、後述する実施例より求められる。すなわち、腐敗臭がしない場合の保持温度、保持 時間の条件を実験的に定めて、 X軸に保持温度、 Y軸に保持時間のグラフを作り(図 2参照)、ここから Υ = 24000Χ_2· 7の近似曲線を引いて求めたものである(図 2にお ける斜線部分)。更に好ましくは、 Xが 4〜; 10°Cである。 The conditions of 丫 ≤24000-2 7 , 、, 、, 〜-15 ° in the low temperature holding step (B) can be obtained from the examples described later. That is, experimentally determine the holding temperature and holding time conditions when there is no rot odor, and create a graph of holding temperature on the X-axis and holding time on the Y-axis (see Fig. 2), from here Υ = 24000Χ_ 2 · It is obtained by drawing the approximate curve of 7 (the shaded area in Fig. 2). More preferably, X is 4 to 10 ° C.
[0091] 上記の特許文献 1に記載されている範囲である高温/短時間の保持条件では、菌 数の増加が早いので、 γ—ァミノ酪酸が増える前に豆乳は腐敗臭レベルに到達して しまい、流通製品は製造することができない。逆に言えば、菌数の増加を抑制できる 範囲においては、 γ—ァミノ酪酸の増加が不十分である。  [0091] Under the high-temperature / short-time holding conditions that are in the range described in Patent Document 1 above, the number of bacteria increases rapidly, so that the soy milk reaches the rotten odor level before γ-aminobutyric acid increases. As a result, distribution products cannot be manufactured. In other words, the increase in γ-aminobutyric acid is insufficient in a range where the increase in the number of bacteria can be suppressed.
[0092] 一方、保持条件が、図 2における斜線部分である本発明の低温保持工程 (Β )の範 囲内であれば、菌数の増加を抑制して腐敗を防止できるとともに、 γーァミノ酪酸も 更に増加させることができる(図 1参照)。すなわち、保持条件を本発明の低温保持ェ 程 (Β )のように低温/長時間とすることで、特許文献 1に記載されている範囲である 保持温度、保持時間では得られない量の γ —アミノ酪酸を腐敗させずに得ることが できるのである。  On the other hand, if the holding conditions are within the range of the low temperature holding step (保持) of the present invention, which is the hatched portion in FIG. 2, the increase in the number of bacteria can be suppressed to prevent spoilage, and γ-aminobutyric acid can also be used. It can be further increased (see Figure 1). That is, by setting the holding conditions at a low temperature / long time as in the low temperature holding step (Β) of the present invention, an amount of γ that cannot be obtained at the holding temperature and holding time that are in the range described in Patent Document 1. —Aminobutyric acid can be obtained without spoilage.
[0093] なお、菌数増加による腐敗の進行は、液状化工程後、低温保持工程前の混合液又 は溶液の初期菌数によって影響を受ける。本発明において、菌数 (個)は「豆乳 lg中 に存在する菌の個数」をいい、単に「個」と表記する。例えば豆乳 lg中に X個の菌が 存在する場合 (すなわち「X個/ g豆乳」)は、単に「X個」と表記する。 [0094] この初期菌数は一概に規定することはできないが、 105個未満であれば充分適用 可能であり、 5 X 105個未満、又は 106個未満でも適用可能であると推測する。市販 の大豆を用いて、それを常法により水洗して、本発明の豆乳の製造方法に用いた場 合、初期菌数は、一般には、 106個未満である。初期菌数が 106個以上の場合、腐敗 が比較的早く生じる可能性があることから好ましくないが、この場合には、前処理とし て、後述する低温殺菌工程を行えば、本発明は充分に適用可能である。なお、この 初期菌数の多い少ないに関わらず、大豆成分と菌との接触強度により規定した保持 条件が、下記の低温保持工程 (B )である。 [0093] The progress of decay due to the increase in the number of bacteria is affected by the initial number of bacteria in the mixed solution or solution after the liquefaction step and before the low temperature holding step. In the present invention, the number of bacteria (number) means “the number of bacteria present in soy milk lg”, and is simply expressed as “number”. For example, when there are X bacteria in soy milk lg (ie, “X / g soy milk”), it is simply written as “X”. [0094] Although this initial number of bacteria cannot be specified in general, it is assumed that it is sufficiently applicable if it is less than 10 5 , and is applicable even if it is less than 5 X 10 5 or 10 6 . When commercially available soybeans are used, washed with water by a conventional method, and used in the method for producing soymilk of the present invention, the initial bacterial count is generally less than 10 6 . When the initial number of bacteria is 10 6 or more, it is not preferable because decay may occur relatively quickly. However, in this case, if the pasteurization step described below is performed as a pretreatment, the present invention is sufficient. It is applicable to. Regardless of whether the initial number of bacteria is large or small, the holding condition defined by the contact strength between the soybean component and the bacteria is the following low temperature holding step (B).
2  2
[0095] [低温保持工程 (B ) ]  [0095] [Low temperature holding step (B)]
2  2
低温保持工程(B )における、 Ζ≤3· 7 101° _3 6、かっ、 が4〜15° の条 In the low temperature holding process (B), 3≤3 · 7 10 1 ° _ 3 6
2  2
件は、後述する実施例により、腐敗臭がしない条件を、 X軸に保持温度、 Υ軸に接触 強度のグラフを作り、ここから Z = 3. 7 X 101Q X X_3 6の近似曲線を引いて求めたも のである。更に好ましくは、 X力 〜; 10°Cである。その詳細は実施例にて後述するが 、低温保持工程中における菌数増加の挙動は、上記の初期菌数にも依存する。この ため、保持条件は、単に保持温度と保持時間のみではなぐ温度による菌数増加の 挙動 (腐敗の進行)をも考慮したものである。具体的には、横軸を保持時間 Y (hr)、 縦軸を菌数 (個)とした場合に、保持温度 Xにおける菌の増殖曲線の、保持時間 0か ら Yまでの積分値を算出して、これを接触強度 Zとして定義した。すなわち、この接触 強度 Zを菌全体の活性の尺度とし、接触強度 Zが高ければ腐敗が進行し易いと考え ること力 Sできる。そして、低温保持工程 (B )は、この接触強度 Zによって保持条件を According to the examples described later, a graph of the holding temperature on the X-axis and the contact strength on the heel axis was created under the conditions where there was no rot odor, and from this an approximate curve of Z = 3.7 X 10 1Q X X_ 3 6 It is the one obtained by subtraction. More preferably, the X force is approximately 10 ° C. Although the details will be described later in Examples, the behavior of the increase in the number of bacteria during the low-temperature holding step also depends on the initial number of bacteria. For this reason, the holding conditions also take into account the behavior of the increase in the number of bacteria due to the temperature (progress of spoilage), not just the holding temperature and holding time. Specifically, when the horizontal axis is the retention time Y (hr) and the vertical axis is the number of bacteria (cells), the integrated value of the bacterial growth curve at the retention temperature X from the retention time 0 to Y is calculated. This was defined as the contact strength Z. In other words, this contact strength Z can be used as a measure of the activity of the whole bacterium, and if the contact strength Z is high, it can be considered that the spoilage is likely to proceed. In the low temperature holding step (B), the holding condition is determined by the contact strength Z.
2  2
規定したものである。  It is specified.
[0096] 上記の低温保持工程は、 B又は Bの範囲内の条件を満たしていればよぐ低温保  [0096] The low-temperature holding step described above may be performed at a low temperature as long as the conditions in B or B are satisfied.
1 2  1 2
持以外の他の単位操作処理 (低温保持以外の他の製造プロセス)を兼ねてもよ!/、。 例えば、低温保持工程は、静止状態のみをさすものではなぐ所定の温度に保たれ ていれば、粉砕、攪拌、ホモジナイズ等の工程を兼ねていても低温保持工程に含ま れる場合がある。言い換えれば、低温保持手段は、保温密封機能を備えた粉砕装置 、除去装置等であってもよい。したがって、本発明における保持時間は、大豆の粉砕 物と水との混合液の状態で保持する時間、又は、該混合液から水不溶性成分を除去 した溶液の状態で保持する時間、あるレ、は混合液と溶液との両方の状態で保持する 時間のレ、ずれであってもよレ、。 Can also be used for unit operation other than holding (other manufacturing processes other than holding at low temperature)! /. For example, the low temperature holding process may be included in the low temperature holding process even if it is combined with processes such as pulverization, stirring, and homogenization as long as it is maintained at a predetermined temperature that does not indicate only a stationary state. In other words, the low temperature holding means may be a pulverizing device, a removing device or the like having a heat insulating sealing function. Therefore, the holding time in the present invention is the time for holding in the state of a mixed solution of soybean ground material and water, or removing water-insoluble components from the mixed solution. The time to hold the solution in the state of the solution, which is a certain time, is the time to hold in the state of both the mixed solution and the solution, even if there is a deviation.
[0097] 上記の低温保持工程は、 B又は Bの範囲にあるか否かに関わらず、 4〜10°Cか [0097] The low temperature holding step is performed at 4 to 10 ° C regardless of whether it is in the range of B or B.
1 2  1 2
つ 48時間以内であれば、本発明の効果を示すため有効である。  Within 48 hours, the effect of the present invention is effective.
[0098] [低温殺菌工程 (D) ] [0098] [Pasteurization process (D)]
本発明においては、液状化工程 (A)と同時に、又は液状化工程 (A)と低温保持ェ 程 (B又は B )との間に、 50〜75°Cの加熱で、前記低温保持工程前の菌数を 1/1  In the present invention, at the same time as the liquefaction step (A) or between the liquefaction step (A) and the low temperature holding step (B or B), heating at 50 to 75 ° C. before the low temperature holding step. 1/1 of the number of bacteria
1 2  1 2
00以下にするか、又は 50〜75°Cの加熱で前記低温保持工程前の菌数を 1 X 106 未満にする低温殺菌工程 (D)を有してレ、てもよレ、。 There may be a pasteurization step (D) that reduces the number of bacteria to less than 1 or less than 1 × 10 6 by heating at 50 to 75 ° C. or less than 1 × 10 6 .
[0099] ここで、低温殺菌工程とは、 GADの活性を失活させず、かつ菌数を一定以上減ら す加熱工程をいう。この態様によれば、低温保持工程前の菌数を一定以下とできる ので、加熱による GAD活性の低下による γ—ァミノ酪酸の減少を考慮しても、衛生 性を向上できる。すなわち、製品の大量生産ラインにおいても低温保持工程前の菌 数を一定範囲内にすることができ、初期菌数にかかわらず大量生産時においても安 定的に豆乳製品の菌数を管理することができる。  Here, the pasteurization step refers to a heating step that does not deactivate the GAD activity and reduces the number of bacteria more than a certain level. According to this aspect, since the number of bacteria before the low-temperature holding step can be kept below a certain level, hygiene can be improved even in consideration of a decrease in γ-aminobutyric acid due to a decrease in GAD activity due to heating. In other words, the number of bacteria before the low-temperature holding process can be kept within a certain range even in the mass production line of products, and the number of bacteria in soy milk products can be controlled stably even during mass production regardless of the initial number of bacteria. Can do.
[0100] なお、後述する実施例に示すように、低温殺菌工程は、液状化工程と同時に行うこ ともできる。この態様によれば、低温保持工程前の菌数を一定値以下にすることがで きるだけでなぐ工程数を一つ減らすことができ、効率的に製造できる点において好 ましい。  [0100] As shown in the examples described later, the pasteurization step can be performed simultaneously with the liquefaction step. According to this aspect, it is preferable in that the number of processes can be reduced by one as long as the number of bacteria before the low temperature holding process can be reduced to a certain value or less, and the production can be efficiently performed.
[0101] 加熱温度は、豆乳中の菌数を減少させることができるので 50°C以上が好ましい。ま た、加熱温度は、 GADの活性の低下を一定以下にとどめるので 75°C以下が好まし い。また、低温保持工程前の菌数を 1/100以下にすれば、充分に初期菌数を下げ ることができ、その後の低温保持工程における菌数の管理が可能となるので好ましい 。具体的には、低温保持工程前の菌数が I X 106未満であれば最終的に衛生的に 好ましい豆乳を得ることができるので、この低温殺菌工程後の菌数が 106未満 (好ま しくは 5 X 105未満、更に好ましくは 105未満)になるように殺菌することが好ましい。 [0101] The heating temperature is preferably 50 ° C or higher because the number of bacteria in the soymilk can be reduced. In addition, the heating temperature is preferably 75 ° C or less because it keeps the decrease in GAD activity below a certain level. Further, it is preferable to reduce the number of bacteria before the low temperature holding step to 1/100 or less because the initial number of bacteria can be sufficiently reduced and the number of bacteria in the subsequent low temperature holding step can be managed. Specifically, if the number of bacteria before the low-temperature holding step is less than IX 10 6, it is possible to finally obtain a sanitary favorable soy milk, so the number of bacteria after this pasteurization step is less than 10 6 (preferably Is preferably sterilized to be less than 5 × 10 5 , more preferably less than 10 5 .
[0102] [高温保持工程 (E) ]  [0102] [High temperature holding process (E)]
しかしながら、上記の低温殺菌工程 (D)が行われる場合には、それによつて γ—ァ ミノ酪酸の増加も若干抑制される。このため、 Ίーァミノ酪酸をより増加させる目的でHowever, when the pasteurization step (D) is performed, γ- The increase in minobutyric acid is also slightly suppressed. In Therefore, purpose of increasing further the Ί Amino acid
、低温殺菌工程 (D)の前に 25°C〜35°C、 3時間以内保持する高温保持工程 (E)を 設けること力 Sできる。 γ—ァミノ酪酸生成、菌数の増加、風味の低下等を考慮すれば 、 30°C付近の保持が有効である。 30°C付近の保持は、 γ—ァミノ酪酸生成の初速 が速く有効であり、短時間であれば菌数の増加も一定の範囲に抑えることが可能で ある。 Furthermore, it is possible to provide a high temperature holding step (E) for holding within 25 hours at 25 ° C to 35 ° C before the pasteurization step (D). Taking into account the production of γ-aminobutyric acid, an increase in the number of bacteria, a decrease in flavor, etc., holding around 30 ° C is effective. Holding around 30 ° C is effective because the initial rate of γ-aminobutyric acid production is fast and effective, and the increase in the number of bacteria can be suppressed to a certain range for a short time.
[0103] 温度が 25°C以上であると、 γーァミノ酪酸生成の初速が早ぐ短時間の保持であつ ても γ—ァミノ酪酸の生産が期待できるため好ましぐ 35°C以下であると熱履歴によ る風味劣化を一定以下に抑えることができるため好ましい。また、保持が 3時間以内 であると、菌数の増加も一定範囲内に抑えることが可能であるため好ましい。  [0103] When the temperature is 25 ° C or higher, the initial rate of γ-aminobutyric acid production is fast, and even if it is held for a short time, production of γ-aminobutyric acid can be expected. It is preferable because flavor deterioration due to heat history can be suppressed to a certain level or less. In addition, it is preferable that the retention is within 3 hours because the increase in the number of bacteria can be suppressed within a certain range.
[0104] [酵素失活処理工程 (C) ]  [0104] [Enzyme deactivation process (C)]
上記低温保持工程の後、加熱による酵素失活処理を行って、酵素反応を停止させ る。豆乳では、通常、酵素失活処理が行なわれるが、これは、酵素の活性により生じ る大豆特有の好ましくない風味や、えぐ味感の発生を止めるためである。この酵素失 活処理は、例えば、 75〜; 100°Cで、 2〜; 15分の加熱処理で行えばよい。その後、必 要に応じて加熱殺菌を常法により行なう。尚、直接蒸気吹き込み式瞬間加熱装置で 、酵素失活処理と加熱殺菌とを同時に行ってもよい。この場合、例えば、 145°Cで 5 秒間程度の加熱処理を行えばよい。また、加熱殺菌する前に飲み易くするために糖 類や果実の搾汁等を加えて、豆乳の味を調整してもよ!/、。  After the low temperature holding step, enzyme deactivation treatment by heating is performed to stop the enzyme reaction. In soy milk, enzyme deactivation treatment is usually carried out in order to stop the unfavorable flavor unique to soybeans caused by the enzyme activity and the savory taste. This enzyme deactivation treatment may be performed, for example, by heat treatment at 75 to 100 ° C for 2 to 15 minutes. Then, heat sterilization is carried out by a conventional method as necessary. It should be noted that the enzyme deactivation treatment and the heat sterilization may be performed simultaneously with a direct steam blowing type instantaneous heating apparatus. In this case, for example, heat treatment may be performed at 145 ° C. for about 5 seconds. You can also adjust the taste of soy milk by adding sugar or fruit juice to make it easier to drink before heat sterilization!
[0105] [保持工程終了時のグルタミン酸の残存量]  [Remaining amount of glutamic acid at the end of the holding step]
本発明においては、保持工程終了時にグルタミン酸が残る程度(酵素があれば、ま だ反応が進む程度)に、グルタミン酸を添加することが好ましい。このようにすることに より、 γーァミノ酪酸への変換反応がプラトーに達しないようにして、本発明で実現さ れた GAD活性の増強方法を十分に活かすことができるからである。  In the present invention, it is preferable to add glutamic acid to such an extent that glutamic acid remains at the end of the holding step (if there is an enzyme, the reaction will still proceed). By doing so, the conversion reaction to γ-aminobutyric acid does not reach a plateau, and the method for enhancing GAD activity realized in the present invention can be fully utilized.
[0106] 保持工程終了時のグルタミン酸の残存量は、例えば、反応液中に大豆固形分 13.  [0106] The residual amount of glutamic acid at the end of the holding step is, for example, soybean solids in the reaction solution 13.
75g当たり 40mg以下、好ましくは 35mg以下、更に好ましくは 25mg以下が好ましぐ 45mg以上は風味の観点から好ましくない。よって、グルタミン酸の添加量としては、 例えば、反応終了時のグルタミン酸の残存量力 反応液中に大豆固形分 13. 75g当 たり 40mg以下、好ましくは 35mg以下、更に好ましくは 25mg以下であって、酵素が あれば、まだ反応が進む程度の量である。 40 mg or less per 75 g, preferably 35 mg or less, more preferably 25 mg or less is preferred. 45 mg or more is not preferred from the viewpoint of flavor. Therefore, the amount of glutamic acid added is, for example, the residual amount of glutamic acid at the end of the reaction. The amount is 40 mg or less, preferably 35 mg or less, more preferably 25 mg or less.
[0107] [豆乳に残存するグルタミン酸量]  [0107] [Amount of glutamic acid remaining in soy milk]
本発明の豆乳は、原料のグルタミン酸が残存する。グルタミン酸が豆乳に残存する くらい十分量を入れておくのは、十分に酵素を働かせ、 Ίーァミノ酪酸を増やすため である。酵素活性が残っているのにグルタミン酸が枯渴すると、 γーァミノ酪酸を十分 に増やすことはできない。しかし、グルタミン酸が多い食品は、独特の強い呈味を有 し、風味が好ましくない場合や、グルタミン酸ナトリウムを多量に摂取すると、顔が赤く なったり、興奮状態になったり、発汗作用を引き起こすアレルギー(チャイニーズレス トランシンドローム)を生じる場合があることが知られて!/、る。 In the soymilk of the present invention, glutamic acid as a raw material remains. The reason for adding enough amount of glutamic acid to remain in soy milk is to increase the amount of caminobutyric acid by allowing the enzyme to work sufficiently. If glutamic acid witheres while enzyme activity remains, γ-aminobutyric acid cannot be increased sufficiently. However, foods rich in glutamic acid have a unique and strong taste, and if the flavor is unfavorable or if a large amount of sodium glutamate is consumed, the face becomes reddish, excited, or allergic to sweating ( (Chinese-less trans syndrome) is known to occur!
[0108] 本発明の豆乳に残存するグルタミン酸量は特に限定はない。風味の観点から、好 ましくは 40mg以下、好ましくは 35mg以下、更に好ましくは 25mg以下である。風味 の観点からは、 45mg以上では好ましくない。  [0108] The amount of glutamic acid remaining in the soymilk of the present invention is not particularly limited. From the viewpoint of flavor, it is preferably 40 mg or less, preferably 35 mg or less, more preferably 25 mg or less. From the viewpoint of flavor, 45 mg or more is not preferable.
[0109] [豆乳粉末の製造方法]  [0109] [Production Method of Soymilk Powder]
(豆乳の乾燥処理)  (Dry processing of soy milk)
上記の製造方法により得られる豆乳は、乾燥して、乾燥物とすること力 Sできる。乾燥 処理の方法は、常法により適宜調整して行うことができ、特に限定されない。例えば、 スプレードライヤー(噴霧乾燥)、真空式ドラムドライヤー、凍結乾燥、等により行うこと ができる。  The soy milk obtained by the above production method can be dried to obtain a dried product. The method for the drying treatment can be appropriately adjusted by a conventional method and is not particularly limited. For example, it can be carried out by spray dryer (spray drying), vacuum drum dryer, freeze drying, or the like.
[0110] (豆乳の乾燥物の粉砕処理)  [0110] (Crushing of dried soybean milk)
上記の乾燥処理により得られる豆乳の乾燥物は、粉砕して、粉末状にすることがで きる。粉砕の方法は、常法により適宜調整して行うことができ、特に限定されない。例 えば、ミキサーや臼であってもよい。具体例としては、真空式ドラムドライヤーで乾燥 させた乾燥物を、ピンミル (粉砕機の種類)にかけて粉末にする例が挙げられる。なお 、スプレードライヤー(噴霧乾燥)で乾燥させた場合、通常、適度な粒子径の粉末とな るため、粉砕処理は行わない。また、粉末の粒子径も特に限定されない。  The dried soybean milk obtained by the above drying treatment can be pulverized into a powder. The pulverization method can be appropriately adjusted by a conventional method and is not particularly limited. For example, a mixer or a mortar may be used. As a specific example, a dried product dried with a vacuum drum dryer is applied to a pin mill (type of pulverizer) to form a powder. In addition, when dried with a spray dryer (spray drying), a powder with an appropriate particle size is usually obtained, so that pulverization is not performed. Further, the particle diameter of the powder is not particularly limited.
[0111] (豆乳又は豆乳粉末を用いた食品)  [0111] (Soy milk or food using soy milk powder)
上記の製造方法により得られる豆乳は、糖質の配合、ホモジナイズ、濃縮、脱水、 乾燥、粉末化のいずれかの加工処理を施し、必要に応じて、凍結、加熱、希釈、成 型、圧縮、蒸煮、発酵等の加工処理を施すことにより、更に別の加工物とした上で、こ れを禾 lj用することもできる。 The soy milk obtained by the above production method is composed of sugar, homogenized, concentrated, dehydrated, After processing either drying or pulverization, if necessary, processing such as freezing, heating, dilution, molding, compression, steaming, fermentation, etc., to make another processed product This can also be used for lj.
[0112] 以上のような加工処理は、一般的な加工食品の製造において通常利用される方法 にしたがって行うことができる。例えば、本発明による豆乳に関しては、これに糖質や それ以外の成分、例えば、酸味料、調味料、甘味料、着色料、着香料、強化剤、保 存料、酸化防止剤、乳化剤、品質改良剤、基剤、賦形剤等の一般的な食品添加物 を目的に応じて適宜配合して呈味を調整した液体としたり、当該豆乳を濃縮し、必要 に応じて糖質、賦形剤、基剤等を配合してペーストとしたり、更に乾燥、粉末化の処 理を施して粉末とすること等が有利に実施できる。  [0112] The processing as described above can be performed according to a method usually used in the production of general processed foods. For example, regarding the soy milk according to the present invention, there are saccharides and other ingredients such as acidulant, seasoning, sweetener, colorant, flavoring agent, strengthening agent, preservative, antioxidant, emulsifier, quality. General food additives such as improvers, bases, excipients, etc. are blended appropriately according to the purpose to make the liquid taste adjusted, or the soy milk is concentrated, if necessary, sugars, excipients An agent, base, etc. can be blended into a paste, or further dried and pulverized to form a powder.
[0113] 上記の製造方法により得られる豆乳又は豆乳粉末を用いた食品も、上記豆乳の成 分のほとんどを含んでいるので、同様の効果を発揮する。例えば、豆腐や豆腐プリン 、ゼリー状豆腐、等である。また、上記豆乳又は豆乳粉末が、他の食品にその効果を 発揮し得る量を含んでいれば当然同様の効果を発揮する。例えば、上記豆乳は、パ ン、ピザ、うどん、そば、そうめん等の麵類、アイスクリーム、プリン、ヨーグルト等の乳 製品、パウンドケーキ、クッキー、ビスケット、せんべい、おかき、あられ、和菓子等の 菓子類等とレ、つた豆類を加工原料としな!/、食品にも使用すること力 Sできる。  [0113] The food using the soymilk or the soymilk powder obtained by the above production method also contains most of the components of the soymilk, and thus exhibits the same effect. For example, tofu, tofu pudding, jelly-like tofu, etc. Moreover, if the said soymilk or soymilk powder contains the quantity which can exhibit the effect in another foodstuff, naturally the same effect will be exhibited. For example, the above-mentioned soy milk includes pancakes such as pan, pizza, udon, buckwheat, and somen, dairy products such as ice cream, pudding, and yogurt, confectionery such as pound cake, cookies, biscuits, rice crackers, rice crackers, hail, Japanese confectionery, etc. It can be used as a raw material for food processing!
[0114] (豆乳の製造規模)  [0114] (Production scale of soy milk)
上記の本発明の豆乳の製造方法は、 1回の製造で、乾燥大豆を 20kg以上用いる 規模である前記(1)から (6) V、ずれか記載の豆乳の製造方法であることが好まし!/、。 また、 1回の製造で、大豆固形分 11 %以上の豆乳が、 80L以上製造できる規模であ る前記(1)から (6) V、ずれか記載の豆乳の製造方法であることが好まし!/、。  The above-described method for producing soymilk of the present invention is preferably the method for producing soymilk described in (1) to (6) V above, which is a scale in which 20 kg or more of dried soybeans is used in one production. ! / In addition, it is preferable that the soybean milk production method according to any one of the above (1) to (6) V, which is a scale capable of producing 80 L or more of soybean milk having a soybean solid content of 11% or more in one production. ! /
[0115] この態様は、豆乳製造の製造規模を規定したものである。豆乳製造において、通常 、スケールアップすると衛生状態が悪くなる。これは、スケールが大きくなればなるほ ど、製造する機械が大きくなり、作業が複雑になるので、常に雑菌が少ない状態を保 つのが難しくなるためである。したがって、このような大量生産レベルの製造において は、前記 (4)や(5)の態様のように、高温保持工程 (E)や低温殺菌工程 (D)と組み 合わせることで、より菌数の増殖を管理して製造を行うことができる。 実施例 [0115] This embodiment defines the production scale of soymilk production. In the production of soy milk, hygiene is usually poor when scaled up. This is because the larger the scale, the larger the machine to be manufactured and the more complicated the work becomes, making it difficult to always maintain a state with few germs. Therefore, in manufacturing at such a mass production level, the number of bacteria can be further increased by combining with the high temperature holding process (E) and the pasteurization process (D) as in the above aspects (4) and (5). Manufacture can be performed while controlling the growth. Example
[0116] 次に、実施例及び比較例を挙げ、本発明を更に詳しく説明するが、本発明はこれら に何ら制限されるものではない。  [0116] Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0117] 製造した豆乳の大豆固形分は一定ではないので、以下の実施例においては γ— ァミノ酪酸量は、大豆固形分を 11 %に換算して比較した。したがって、大豆固形分 1 1 %の豆乳 125ml中に含まれる含量は、大豆固形分 13. 75g当たりの含量と同義で ある。以下、特別な説明なぐ 7ーァミノ酪酸量 Xmgと表記した場合には、大豆固形 分 11 %の豆乳 125ml中に Xmg存在することであり、大豆固形分 13. 75g当たりの X mg存在することを示す。  [0117] Since the soybean solid content of the produced soymilk is not constant, the amount of γ-aminobutyric acid was compared in terms of the soybean solid content of 11% in the following examples. Therefore, the content in 125 ml of soy milk with a soy solid content of 11% is synonymous with the content per 13.75 g of soy solid content. In the following, when there is a special description, 7-aminobutyric acid amount Xmg indicates that Xmg is present in 125ml of soy milk with a soy solid content of 11%, and that X mg per 13.75g of soy solid content is present. .
[0118] < γーァミノ酪酸量及びグルタミン酸量の測定方法〉  [0118] <Method for measuring amount of γ-aminobutyric acid and glutamic acid>
実施例の γ—ァミノ酪酸量及びグルタミン酸量は、下記の方法で測定した。  The amount of γ-aminobutyric acid and the amount of glutamic acid in the examples were measured by the following methods.
豆乳 2mlと 5%トリクロール酢酸 2mlを混ぜ、攪拌、遠心分離により除蛋白した後、 その上清を 0. 2 mのフィルターを用いてろ過した。得られたろ液をサンプルとし、 日 立高速アミノ酸分析計「L— 8800A」 (日立製作所社製)を用いてアミノ酸含量の測 定を行った。  After mixing 2 ml of soymilk and 2 ml of 5% trichloracetic acid, the protein was deproteinized by stirring and centrifuging, and the supernatant was filtered using a 0.2 m filter. The obtained filtrate was used as a sample, and the amino acid content was measured using a Hitachi high-speed amino acid analyzer “L-8800A” (manufactured by Hitachi, Ltd.).
[0119] 豆乳粉末の場合には、豆乳粉末 2gを秤量して、水 20mlを加え、ホモジナイザーで  [0119] In the case of soy milk powder, weigh 2 g of soy milk powder, add 20 ml of water, and use a homogenizer.
3分間攪拌し、得られた溶液 2mlを豆乳 2mlの代わりに用いた。  After stirring for 3 minutes, 2 ml of the resulting solution was used instead of 2 ml of soy milk.
[0120] <大豆固形分の測定方法〉 [0120] <Measurement method of soybean solid content>
実施例の大豆固形分は、下記の方法で測定した。  The soybean solid content in the examples was measured by the following method.
豆乳 3gを、 105°C、 4時間で乾燥して豆乳中の水の重量を測定し、固形分の割合 を算出した。  3 g of soy milk was dried at 105 ° C. for 4 hours, the weight of water in the soy milk was measured, and the ratio of the solid content was calculated.
[0121] <菌数の測定方法〉 [0121] <Method for measuring the number of bacteria>
実施例の菌数は、下記の方法で測定した。  The number of bacteria in the examples was measured by the following method.
豆乳 5gに 45gの滅菌済みリン酸緩衝液を加えて、十分攪拌した(10倍希釈)。得ら れた溶液のうち lgを、更に滅菌済みリン酸緩衝液で任意に希釈した (A倍希釈)。そ の希釈液のうち lgを LB培地にて 35°C、 48時間増殖させ、生じたコロニー数を測定 した。そして、そのコロニー数に希釈倍率を乗じて菌数とした(コロニー数 X 10 (倍) XA (倍))。この測定方法により得られた菌数は、豆乳 lgあたりに存在する菌の個数 を示す。 45 g of sterilized phosphate buffer was added to 5 g of soy milk, and stirred well (diluted 10 times). Of the resulting solution, lg was further optionally diluted with a sterilized phosphate buffer (A-fold dilution). Of the diluted solution, lg was grown in LB medium at 35 ° C. for 48 hours, and the number of colonies formed was measured. Then, the number of colonies was multiplied by the dilution factor to obtain the number of bacteria (colony number X 10 (times) XA (times)). The number of bacteria obtained by this measurement method is the number of bacteria present per lg of soy milk. Indicates.
[0122] 〔実験例 1〕 [腐敗臭がしない範囲の特定]  [0122] [Experimental example 1] [Identification of the range without rot odor]
ビーカースケールで実験をして、飲料として適する豆乳が得られる保持温度と保持 時間の範囲を規定した。  Experiments were conducted on a beaker scale to define the range of holding temperature and holding time at which soy milk suitable for beverages was obtained.
[0123] <豆乳の製造方法〉  [0123] <Method for producing soymilk>
市販の乾燥大豆(品種;アミーゴ、カナダ産) 200gを 25〜30°C、 1Lの温水に約 12 時間浸漬させた後、水切りをして、浸漬大豆 460gを得た。次に、得られた浸漬大豆 4 60gに対し、グルタミン酸 1. 2gを水 800gに溶力、した溶液(表 1の保持温度の対応し た温度; 4〜30°C)で磨砕して、呉(浸漬大豆と水との懸濁液)を作製し、おからを分 離して、おからを除去した液を得た。そして、表 1に示す保持時間(3〜48時間)及び 保持温度(4〜30°C)で保持した。その後、プレート加熱にて 80°Cで 5分間加熱後、 5°Cに冷却し豆乳を得た。  200 g of commercially available dried soybean (variety; Amigo, Canada) was immersed in 25 to 30 ° C, 1 L of warm water for about 12 hours, and then drained to obtain 460 g of immersed soybean. Next, 60 g of the soaked soybeans obtained were ground with a solution obtained by dissolving 1.2 g of glutamic acid in 800 g of water (temperature corresponding to the holding temperature in Table 1; 4 to 30 ° C.). Kure (a suspension of soaked soybeans and water) was prepared, and okara was separated to obtain a liquid from which okara was removed. And it hold | maintained with the holding time (3-48 hours) and holding temperature (4-30 degreeC) which are shown in Table 1. Thereafter, the plate was heated at 80 ° C. for 5 minutes, and then cooled to 5 ° C. to obtain soy milk.
[0124] プレート加熱前に、腐敗臭の有無、酸性沈殿の発生 (腐敗)の有無、菌数を確認し た。また、得られた豆乳について、上記の方法により γ—ァミノ酪酸量を測定した。そ の結果を表 1に示した。腐敗の程度は、腐敗臭がない場合に〇、腐敗臭がした場合 に X、明らかに沈殿が生じている場合に X Xとした。 「腐食臭」とは、豆乳として好ま しくない異臭を指し、初期腐敗を示す。そして、腐敗臭が生じない範囲における Ί ァミノ酪酸の増加曲線を図 1に示した(図 1には、評価〇の場合のみをプロットした)。 [0124] Prior to heating the plate, the presence or absence of a spoiled odor, the presence or absence of acid precipitation (rot) and the number of bacteria were confirmed. Moreover, about the obtained soymilk, the amount of (gamma) -aminobutyric acid was measured by said method. The results are shown in Table 1. The degree of spoilage was defined as 〇 when there was no spoilage odor, X when there was a spoilage odor, and XX when there was apparent precipitation. “Corrosive odor” refers to an unpleasant odor that is undesirable for soy milk, and indicates initial rot. Then, the growth curve of Ί Amino acid in the range of rancidity does not occur as shown in FIG. 1 (in FIG. 1 was plotted only for evaluation 〇).
[0125] [表 1] [0125] [Table 1]
Figure imgf000028_0001
Figure imgf000028_0001
表 1及び図 1に示すとおり、腐敗臭が生じない範囲において、 1 5°C以下で保持した 豆乳の γ —アミノ酪酸量は、 20°C以上で保持した豆乳の γ —アミノ酪酸量を超える ことがわ力 た。これにより、豆乳の γ —アミノ酪酸量を多くするためには、酵素が働 き易い 20°C保持と比べて、低温(15°C以下)で長時間保持することが有効であること 力 sわ力、る。 As shown in Table 1 and Figure 1, the amount of γ-aminobutyric acid in soy milk kept at 15 ° C or less exceeds the amount of γ-aminobutyric acid in soymilk held at 20 ° C or higher within the range where no rot odor occurs I couldn't help it. As a result, the enzyme works to increase the amount of γ-aminobutyric acid in soymilk. Compared with easy 20 ° C holding come, that force s I force is effective to hold a long time at a low temperature (15 ° C or less), Ru.
[0127] 図 5aは、表 1の値を、保持時間を横軸、菌数を縦軸としてプロットした図であり、豆 乳中の菌の増殖曲線を示している。図 5aに示すとおり、 30°Cは、菌の増殖速度が非 常に早かった。 20°Cは、 30°Cに対して 10°Cの差があるにもかかわらず、 30°Cと似た ような傾きを示し、増殖速度が早い。一方、 15°Cは、 20°Cに対して 5°Cの差しかない にもかかわらず、その増殖速度は、かなり緩やかになった。  [0127] Fig. 5a is a graph in which the values in Table 1 are plotted with the retention time as the horizontal axis and the number of bacteria as the vertical axis, and shows a growth curve of the bacteria in soy milk. As shown in Fig. 5a, the growth rate of the bacteria was very fast at 30 ° C. At 20 ° C, despite the difference of 10 ° C from 30 ° C, it shows a slope similar to 30 ° C and has a high growth rate. On the other hand, at 15 ° C, the growth rate was considerably slow, even though 5 ° C was different from 20 ° C.
[0128] これは、長時間保持を考慮した場合、 20°C以上の保持は、菌の増殖速度が早!/、た め、衛生状態を悪くすることを示す。一方、 15°C以下の保持は、 20°C以上の保持と 比較して、増殖速度が緩やかであり、長時間保持を行っても、菌数を一定以下に管 理すること力 Sでさること力 Sゎカゝる。  [0128] This indicates that, when long-term holding is considered, holding at 20 ° C or higher deteriorates the hygiene condition because the growth rate of bacteria is fast! On the other hand, holding at 15 ° C or lower has a slower growth rate compared to holding at 20 ° C or higher, and even with long-term holding, the force S can be controlled to keep the number of bacteria below a certain level. That power S.
[0129] (低温保持工程 Bの決定)  [0129] (Determination of low temperature holding process B)
表 2は、表 1から、腐敗臭が生じる時間及び、腐敗臭が生じない時間を抜き出したも のである。また、図 2は、表 2の値を、保持温度 Xを横軸、保持時間 Yを縦軸としてプロ ットしたものである。なお、図 2は、腐敗臭が生じない時間をプロットして近似曲線 (B )を求めたものである。  Table 2 shows the time when rotting odor is generated and the time when no rotting odor is generated. Figure 2 plots the values in Table 2 with the holding temperature X as the horizontal axis and the holding time Y as the vertical axis. In addition, FIG. 2 is a plot of the approximate curve (B) by plotting the time when no rot odor occurs.
[0130] [表 2]  [0130] [Table 2]
Figure imgf000029_0001
Figure imgf000029_0001
[0131] 表 2及び図 2に示すとおり、腐敗臭が生じない範囲としては、  [0131] As shown in Table 2 and Figure 2,
Y= 24000 X X— 2' 7〔Y:保持時間(時間)、 X:保持温度 (°C)〕 Y = 24000 XX- 2 '7 [Y: retention time (time), X: holding temperature (° C)]
の曲線 B (式 B )で仕切られる範囲の下の条件、と表すことができる。  It can be expressed as a condition below the range partitioned by curve B (formula B).
[0132] そして、図 1、図 5及び図 2の結果を合わせて考慮すれば、 γ—ァミノ酪酸が増加し 、かつ、腐敗臭が生じない範囲として、図 2の網掛け部分に示される下記の範囲を決 定すること力 Sでさる。 [0132] If the results of FIGS. 1, 5 and 2 are taken into consideration, the following is shown in the shaded portion of FIG. 2 as a range in which γ-aminobutyric acid increases and no rot odor occurs. The force S is used to determine the range.
Υ≤24000 Χ Χ— 2 7、 つ、 X力 4〜; 15°C Υ≤24000 Χ Χ- 2 7, two, X force 4~; 15 ° C
[0133] 上記の式 Bの Xに主な保持時間(X)を入れて、その温度における保持時間(Y)を 算出したとき、例えば、 15°Cの場合は 15時間 45分以内となる。 [0133] The main holding time (X) is put into X in the above formula B, and the holding time (Y) at that temperature is calculated. When calculated, for example, at 15 ° C, it will be within 15 hours and 45 minutes.
[0134] なお、より好ましい範囲としては、 4〜; 10°Cの範囲では 48時間以内の保持時間、 1 0°Cを超えて 15°C以下の場合には、上記の曲線 B (式 B )で仕切られる範囲の下の 条件である。すなわち、本発明のより好ましい態様は、大豆の粉砕物と水との混合液 、又は該混合液から水不溶性成分を除去した溶液、を得る液状化工程 (A)、 横軸を保持温度 X (°C)、縦軸を保持時間 Y (hr)、とした場合に、 [0134] It should be noted that a more preferable range is 4 to; a holding time within 48 hours in the range of 10 ° C, and in the case of exceeding 10 ° C and not exceeding 15 ° C, the curve B (formula B ) Is the condition below the range partitioned by. That is, a more preferred embodiment of the present invention is a liquefaction step (A) for obtaining a mixed solution of pulverized soybean and water, or a solution obtained by removing water-insoluble components from the mixed solution, and the horizontal axis represents the holding temperature X ( ° C) and the vertical axis is holding time Y (hr),
1) Y≤48,かつ、 Xが 4〜; 10°C以下、  1) Y≤48 and X is 4 ~; 10 ° C or less,
2) Y≤24000 X X— 2 7、 つ、 X力 S10°Cを超免て 15°C以下、 2) Y≤24000 XX— 2 7 , X force exceeding S10 ° C, 15 ° C or less,
のいずれかの条件を満たす範囲で前記混合液又は前記溶液を保持する低温保持 工程 (B )、  A low temperature holding step (B) for holding the mixed solution or the solution within a range satisfying any one of the following conditions:
3  Three
酵素失活処理工程 (c)、  Enzyme deactivation process (c),
を有する豆乳の製造方法、である。  A method for producing soymilk having
[0135] (低温保持工程 Bの決定)  [0135] (Determination of low temperature holding process B)
2  2
次に、下記の表 3及び図 5aを用い、適宜図 5bを参照しながら、低温保持工程 Bの  Next, using Table 3 and FIG. 5a below, refer to FIG.
2 求め方の一例について説明する。表 3は、図 5aおける一定時間の曲線下面積及び、 その累積値を示したものである。これらの値は積分値である。この累積値が、本発明 における混合液又は溶液と菌との「接触強度」を指すことになる。ここで、曲線下面積 とは、単位時間における、時間軸(図 5aにおける X軸 (横軸))と、図 5aにおける保持 温度毎の増殖曲線、とで囲まれた部分の面積を指す (詳細後述)。  2 An example of how to find it will be explained. Table 3 shows the area under the curve for a certain time in Figure 5a and the cumulative value. These values are integral values. This cumulative value indicates the “contact strength” between the mixed solution or solution and the bacteria in the present invention. Here, the area under the curve refers to the area of the portion surrounded by the time axis (X-axis (horizontal axis) in Fig. 5a) and the growth curve for each holding temperature in Fig. 5a in unit time (Details) (See below).
[0136] また、表 4は、表 3から、腐敗臭が生じる時間までの曲線下面積(累積値)及び、腐 敗臭が生じない時間までの曲線下面積(累積値)を抜き出したものである。これらの 値は、豆乳成分と菌との接触強度を指す。また、図 3は、表 4の値を、保持温度 Xを横 軸、菌との接触強度 Zを縦軸としてプロットしたものである。なお、図 3は、腐敗臭が生 じない時間をプロットして近似曲線 (B )を求めたものである。 [0136] Table 4 is an extraction of the area under the curve (cumulative value) until the time when the rotten odor occurs and the area under the curve (cumulative value) until the time when the rotten odor does not occur. is there. These values refer to the contact strength between soymilk components and bacteria. FIG. 3 is a plot of the values in Table 4 with the retention temperature X as the horizontal axis and the contact strength Z with bacteria as the vertical axis. Note that FIG. 3 shows the approximate curve (B) obtained by plotting the time when the rot odor does not occur.
2  2
[0137] [表 3] 表 3 [0137] [Table 3] Table 3
壊娜 : ^け 累簡直  Gangrene: ^
単御夺間 維臭の有無  Single Gozen
る曲線」 積 (接難度)  Curve "product (working difficulty)
30—C 0〜3B綱 172, 50) 172,500 ο  30—C 0-3B rope 172, 50) 172,500 ο
30JC :ト 6B¾fl 2, 067, 000 2, 23¾ 500 X 30 J C: G 6B¾fl 2, 067, 000 2, 23¾ 500 X
20て: 0〜3B網 156, 000 156, 000 〇  20: 0-3B network 156, 000 156, 000 〇
20=C :ト 6Kfffl 520, 5(Χ) 676, 500 〇 20 = C: G 6Kfffl 520, 5 (Χ) 676, 500 ○
2 OX: 6〜9B調 1, 380, 000 2, 056, 500 X  2 OX: 6-9B style 1, 380, 000 2, 056, 500 X
15°C 0〜; 3Β Ί 156, 000 156, 000 〇  15 ° C 0〜; 3Β Ί 156, 000 156, 000 ○
15°C 213, 000 369,000 ο  15 ° C 213, 000 369,000 ο
15で 6〜9ϋ調 382, 500 '751, 500 〇  15 to 6-9 tone 382, 500 '751, 500 〇
15°C 9〜12B¾fl 825, 000 1,576,500 〇  15 ° C 9-12B¾fl 825, 000 1,576,500 〇
15€ 12~24B#Tfl 30, 420, 000 31, 996, 500 X  15 € 12 ~ 24B # Tfl 30, 420, 000 31, 996, 500 X
1 OC 0〜3B網 124, 500 124, 500 〇  1 OC 0-3B network 124, 500 124, 500 〇
1 o°c 3〜6B調 189, 0∞ 313,500 ο  1 o ° c 3-6B 189, 0∞ 313,500 ο
1 o°c 6〜9B綱 235, 500 549, 000 〇  1 o ° c 6-9B rope 235, 500 549, 000 〇
1 o°c 9〜1 調 355, 500 904500 〇  1 o ° c 9 to 1 355, 500 904 500 〇
1 o°c 12〜24Β¾¾ 2, S20, 000 3, 724, 500 ο  1 o ° c 12-24Β¾¾ 2, S20, 000 3, 724, 500 ο
1 OC 24〜48Η網 6, 120, 000 9, 844, 500 〇 [表 4]  1 OC 24-48Η net 6, 120, 000 9, 844, 500 〇 [Table 4]
Figure imgf000031_0001
Figure imgf000031_0001
「接触強度 Z」の具体的な算出方法について、表 3の 30°Cの場合について、図 5bを 参照しながら説明する。個々の時間における菌数は、表 1に記載している。ここで、 0 〜3時間における曲線下面積は、図 5bにおける(a)と(b)との和で表すことができ、 1 72, 500(時間(h) X菌数 (個))である(図 5bの左側斜線部)。  A specific method for calculating “contact strength Z” will be explained for the case of 30 ° C in Table 3 with reference to FIG. 5b. The number of bacteria at each time is listed in Table 1. Here, the area under the curve from 0 to 3 hours can be expressed as the sum of (a) and (b) in FIG. 5b, and is 1 72,500 (time (h) X number of bacteria (cells)) (The shaded area on the left in Figure 5b).
(a) 37, 000〔0時間の菌数〕 X 3〔時間〕 =111, 000  (a) 37, 000 [Number of bacteria at 0 hour] X 3 [Time] = 111, 000
(b) (78, 000— 37, 000)〔0日寺間の菌数と 3日寺間との菌数の差〕 X 3〔日寺間〕 ÷2 = 6 1, 500  (b) (78, 000—37, 000) [Difference in number of bacteria between day 0 and 3 days] X 3 [between days and temples] ÷ 2 = 6 1, 500
また、 3〜6時間における曲線下面積は、以下の(c)と(d)との和で表すことができ、 2, 067, 000 (時間(h) X菌数 (個))である(図 5bの右側斜線部)。 Moreover, the area under the curve in 3-6 hours can be represented by the sum of the following (c) and (d), 2, 067,000 (time (h) X number of bacteria (cells)) (shaded area on the right side of FIG. 5b).
(c) 78, 000〔3時間の菌数〕 X 3〔時間〕 = 234, 000  (c) 78, 000 [Number of bacteria in 3 hours] X 3 [Time] = 234, 000
(d) (1 , 300, 000— 78, 000)〔3日寺間の菌数と 6日寺間との菌数の差〕 X 3〔日寺間〕 ÷ 2 = 1 , 833, 500  (d) (1, 300, 000— 78, 000) [Difference in number of bacteria between 3 days temple and between 6 days temple] X 3 [between days temple] ÷ 2 = 1, 833, 500
そして、 6時間までの累積値は、「0〜3時間における曲線下面積(172, 500)」と「 3〜6日寺間における曲泉下面積(2, 067, 000)」との和で表すことカでき、 2, 239, 5 00 (時間(h) X菌数 (個) )である(図 5bの全斜線部)。  And the cumulative value up to 6 hours is the sum of “area under the curve from 0 to 3 hours (172, 500)” and “area under the fountain between 3 and 6 days temple (2, 067, 000)” 2, 239, 500 (time (h) X number of bacteria (cells)) (all shaded area in Fig. 5b).
なお、図 5bでは、便宜上、片対数のグラフを用いて説明をしているが、接触強度の 計算は、菌数 0 (Y軸)からの値を算出している。  In FIG. 5b, for the sake of convenience, a semi-logarithmic graph is used for explanation, but the calculation of the contact strength is a value from the bacterial count 0 (Y axis).
[0140] この表 3、表 4及び図 3より、腐敗臭が生じない範囲として、 [0140] From Table 3, Table 4, and Figure 3,
Ζ = 3. 7 Χ 1010 Χ Χ— 3 6 Ζ = 3. 7 Χ 10 10 Χ Χ— 3 6
〔ζ:接触強度、 X:保持温度 (°c)〕  [Ζ: Contact strength, X: Holding temperature (° c)]
の曲線 (式 B )で仕切られる範囲の下の条件、と表すことができる。  It can be expressed as the condition below the range partitioned by the curve (formula B).
2  2
[0141] そして、図 1、図 5及び図 3の結果を合わせて考慮すれば、 Ίーァミノ酪酸が増加し 、かつ、腐敗臭が生じない範囲として、図 3の網掛け部分に示される下記の範囲が決 定できる。 [0141] Then, considering the results of FIGS. 1, 5 and 3 together, the following is shown in the shaded portion of FIG. 3 as a range in which ノ aminobutyric acid increases and no rot odor occurs. The range can be determined.
Ζ≤3. 7 Χ 101() Χ Χ— 3 6、かつ、 Xが 4〜; 15。C Ζ≤3.7. 7 Χ 10 1 () Χ Χ— 3 6 and X is 4 to 15; C
[0142] なお、接触強度 Zは、上記のように累積値をそれぞれ求めて算出してもよぐ保持温 度 Xにおける菌数の増殖曲線を f (t)として関数化できる場合には、これを数学的に 積分して (積分範囲は低温保持工程前の初期時間 t = tから保持終了時間 t=Yま [0142] It should be noted that the contact strength Z can be calculated by f (t) as a function of the growth curve of the number of bacteria at the retention temperature X, which can be calculated by calculating the cumulative values as described above. (The integration range is from the initial time t = t before the low temperature holding process to the holding end time t = Y.
0  0
で)求めてもよい。  In)
[0143] このように、図 2、図 3において、腐敗臭が生じる境は、上記図 2及び図 3の腐敗臭 が生じない曲線と生じる曲線の間に存在すると考えられる力、食品としての衛生性を 担保するため、上記で示した腐敗臭が生じないことが明らかな範囲で製造することが 必要となる。よって、上記で示した曲線で仕切られる範囲の下の条件で製造し、かつ 7—ァミノ酪酸を多くすることができる温度帯 (低温(15°C以下))で保持することによ り、食品衛生上飲料に適する、 γーァミノ酪酸が多い豆乳を得ることができることがわ かる。 [0144] (式 Bの決定) [0143] In this way, in Figs. 2 and 3, the boundary where rot odor occurs is between the curves shown in Figs. 2 and 3 where the rot odor does not occur and the generated curve. In order to guarantee the properties, it is necessary to manufacture the product within the range where it is clear that the above-mentioned rot odor does not occur. Therefore, it is possible to produce food by producing it under the conditions below the range demarcated by the curve shown above and maintaining it in a temperature range (low temperature (15 ° C or lower)) where 7-aminobutyric acid can be increased. It can be seen that a soy milk rich in γ-aminobutyric acid, which is suitable for hygienic beverages, can be obtained. [0144] (Determination of formula B)
3  Three
表 5は、腐敗しない範囲かつ 20°C以上の保持で生成される γ —アミノ酪酸量の最 大値 (例えば、本実施例の場合、 20°C、 6時間保持で生成される γ —アミノ酪酸量; 72. lmg)、と同程度の量を製造できる条件を算出したものである。いずれの値も、 表 1の値から算出される。また、図 4は、表 5の値を、保持温度 Xを横軸、腐敗しない 範囲かつ 20°C以上の保持で生成される Ίーァミノ酪酸量の最大値を超える保持時 間 Υを縦軸としてプロットしたものである。なお、図 4は、各温度における時間をプロッ トして近似曲線 (Β )を求めたものである。 Table 5 shows the maximum amount of γ-aminobutyric acid produced in a range that does not rot and at 20 ° C or higher (for example, in this example, γ-aminobuty produced at 20 ° C for 6 hours. Butyric acid amount: 72. lmg), and the conditions under which an amount equivalent to that can be produced was calculated. Both values are calculated from the values in Table 1. Further, FIG. 4, the values in Table 5, the horizontal axis a holding temperature X, the vertical axis of the holding time between Υ exceeding the maximum value of rot does not range and Ί Amino acid amount produced by 20 ° C or more retention It is a plot. Fig. 4 plots the approximate curve (Β) by plotting the time at each temperature.
3  Three
[0145] [表 5]  [0145] [Table 5]
Figure imgf000033_0001
Figure imgf000033_0001
[0146] 表 5の 15°Cの場合について説明する。  [0146] The case of 15 ° C in Table 5 will be described.
15°Cの場合、表 1及び図 1に示すとおり、「γ—ァミノ酪酸 72. lmgを超える範囲」 は、 6時間と 9時間との間である。時間(X)を横軸、 Ί—ァミノ酪酸 (Υ)を縦軸として 図(図 1参考)において、この 2点(6時間と 9時間)を結ぶ直線を求めると、「y= 2. 7x + 51. 8」となる。そして、この式の「Yに 72· 1を入れた場合の Xの値」は、 7. 52とな り、これを時間に換算すると、 7時間 31分となる。これと同様に、 10°C及び 5°Cの場合 も算出した。 In the case of 15 ° C, as shown in Table 1 and FIG. 1, the “range exceeding γ-aminobutyric acid 72. lmg” is between 6 hours and 9 hours. Using the time (X) as the horizontal axis and Ί -aminobutyric acid (Υ) as the vertical axis, the straight line connecting these two points (6 hours and 9 hours) in the figure (see Figure 1) is “y = 2.7x + 51.8 ”. And the “value of X when 72.1 is added to Y” in this equation is 7.52, which is 7 hours and 31 minutes when converted to time. In the same way, calculations were made for 10 ° C and 5 ° C.
[0147] 表 5及び図 4に示すとおり、  [0147] As shown in Table 5 and Figure 4,
Y= 50 X X— °' 72 [Υ:保持時間(時間)、 X;保持温度 (°C)〕 Y = 50 XX— ° '72 [Υ: Holding time (hours), X; Holding temperature (° C)]
の曲線 (式 B )で仕切られる範囲の上の条件で保持することにより、腐敗しない範囲 かつ 20°C以上の保持で生成される γ —アミノ酪酸量の最大値よりも、更に γ —アミノ 酪酸量が多い豆乳を得ることができることがわかる。 A range that does not rot by being held under the conditions above the range divided by the curve (formula B) It can also be seen that soy milk can be obtained in which the amount of γ-aminobutyric acid is higher than the maximum amount of γ-aminobutyric acid produced by holding at 20 ° C or higher.
[0148] 〔実験例 2〕 [低温保持工程の有効性の確認] [Experiment 2] [Confirmation of effectiveness of low temperature holding process]
パイロットスケールで、低温保持工程(例えば、 10°C、約 20〜22時間)の有効性を 確認した。  The effectiveness of the low temperature holding process (eg, 10 ° C, about 20-22 hours) was confirmed on a pilot scale.
[0149] (豆乳の製造方法) [0149] (Soy milk production method)
市販の乾燥大豆(品種;アミーゴ、カナダ産) 20kgを 25〜30°C、 100Lの温水に 12 時間浸漬させた後、水切りして、浸漬大豆 46kg (水分含量; 60. 8%)を得た。次に、 浸漬大豆 43. 8kg (水分含量; 60. 8%)及び枝豆 2. 2kg (水分含量; 60. 5%) [枝 豆; 5%]を、グルタミン酸 76gを水 46kgに溶力もた溶液を加えながら磨砕し、おから を分離して、おからを除去した液を得た。  Commercially-dried soybean (variety: Amigo, Canada) 20kg was immersed in 25-30 ° C, 100L warm water for 12 hours, then drained to obtain 46kg of immersed soybean (water content; 60.8%) . Next, 43.8 kg of soaked soybeans (water content; 60.8%) and 2.2 kg of green soybeans (water content; 60.5%) [green soybeans; 5%], a solution of 76 g of glutamic acid in 46 kg of water The mixture was ground while adding okara, and okara was separated to obtain a liquid from which okara was removed.
[0150] (試験例 32) [0150] (Test Example 32)
上記おからを除去した液に、必要に応じて、水酸化カリウム溶液を添加して、 pHを 約 0. 2上昇させた。次に、 60°C、 1分間加熱した。次に 10°C、 21. 5時間保持した。  A potassium hydroxide solution was added to the liquid from which the okara had been removed as necessary to raise the pH by about 0.2. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C for 21.5 hours.
[0151] (試験例 33) [0151] (Test Example 33)
上記おからを除去した液に、必要に応じて、水酸化カリウム溶液を添加して、 pHを 約 0. 2上昇させた。次に、 30°C、 100分間保持した。次に、 60°C、 1分間加熱した。 次に 10°C、 20時間保持した。  A potassium hydroxide solution was added to the liquid from which the okara had been removed as necessary to raise the pH by about 0.2. Next, it was kept at 30 ° C. for 100 minutes. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C for 20 hours.
[0152] その後、直接蒸気吹き込み式瞬間加熱装置にて 145°Cで 5秒間加熱後、 5°Cに冷 却し豆乳を得た。この加熱は、高温殺菌及び酵素失活処理を目的としている。この高 温殺菌及び酵素失活処理としての加熱の前に、腐敗臭の有無を確認した。また、得 られた豆乳について、上記の方法により γ —アミノ酪酸量を測定した。その結果を表[0152] Thereafter, the mixture was heated at 145 ° C for 5 seconds with a direct steam blow-type instantaneous heating device, and then cooled to 5 ° C to obtain soymilk. This heating is intended for high-temperature sterilization and enzyme deactivation treatment. Before this high-temperature sterilization and enzyme deactivation treatment, the presence or absence of a rotten odor was confirmed. In addition, the amount of γ-aminobutyric acid was measured for the obtained soymilk by the above method. The results are shown in the table
6に示した。 Shown in 6.
[0153] [表 6] 表 6 [0153] [Table 6] Table 6
低温 y—アミノ 嫩の键  Low temperature y-amino
i. 寺 殺荷 保持 m  i.
ζί呈 工程 (mg/1 5ml) ζί presentation process (mg / 1 5ml)
ms 2 60で、 10°C 8 1  ms 2 60, 10 ° C 8 1
1分  1 minute
試翻 3 3 30CC 6() C 10°C 9 5 1 0 5 n Trial 3 3 30 C C 6 () C 10 ° C 9 5 1 0 5 n
100分 1分 20 B綱  100 minutes 1 minute 20
[0154] 表 6に示すとおり、低温保持工程を用いることにより、高 γ—ァミノ酪酸含有の豆乳 を得ることができた (試験例 32)。 γーァミノ酪酸含量は、保持工程前の豆乳の γ— ァミノ酪酸含量 (例えば、後述試験例 34参考)と比べて、有意に増加したことがわか [0154] As shown in Table 6, soy milk containing high γ-aminobutyric acid could be obtained by using the low temperature holding step (Test Example 32). It can be seen that the content of γ-aminobutyric acid increased significantly compared to the content of γ-aminobutyric acid in soymilk before the holding step (for example, see Test Example 34 below).
[0155] また、低温保持工程の前に、高温保持工程 (例えば、 30°C 100分)を施した試験 例 33は、試験例 32と比較して、更に高 γ —アミノ酪酸含有の豆乳を得ることができた [0155] In Test Example 33, which was subjected to a high temperature holding process (for example, 30 ° C for 100 minutes) before the low temperature holding process, compared to Test Example 32, soy milk containing a higher γ-aminobutyric acid was further obtained. Could get
[0156] 〔実験例 3〕 [低温保持工程と高温保持工程との組み合わせの評価] [Experiment 3] [Evaluation of combination of low temperature holding process and high temperature holding process]
[0157] (豆乳の製造方法) [0157] (Method for producing soy milk)
(試験例 34)  (Test Example 34)
市販の乾燥大豆(品種;アミーゴ、カナダ産) 20kgを 25 30°C 100Lの温水に 12 時間浸漬させた後、水切りして、浸漬大豆 46kg (水分含量; 60. 8%)を得た。次に、 得られた浸漬大豆 46kgを、グルタミン酸 76gを水 46kgに溶力もた溶液を加えながら 磨砕し、おからを分離して、おからを除去した液を得た。  20 kg of commercially available dry soybean (variety: Amigo, Canada) was immersed in 25 L of 30 ° C 100 L of hot water for 12 hours and then drained to obtain 46 kg of immersed soybean (water content: 60.8%). Next, 46 kg of the soaked soybean obtained was ground while adding a solution of 76 g of glutamic acid to 46 kg of water, and separated from okara to obtain a liquid from which okara was removed.
(試験例 35)  (Test Example 35)
試験例 34で得られた液に、必要に応じて、水酸化カリウム溶液を添加して、 pHを 約 0. 2上昇させた。この液を、 30°C 100分間保持した。  A potassium hydroxide solution was added to the liquid obtained in Test Example 34 as necessary to raise the pH by about 0.2. This solution was kept at 30 ° C. for 100 minutes.
(試験例 36)  (Test Example 36)
試験例 35で得られた液を、更に 10°C 24時間保持した。  The liquid obtained in Test Example 35 was further maintained at 10 ° C. for 24 hours.
[0158] 試験例 34 36で得られた液を、直接蒸気吹き込み式瞬間加熱装置にて 145°Cで 5秒間加熱後、 5°Cに冷却し豆乳を得た。この高温殺菌及び酵素失活処理としての 加熱の前に、腐敗臭の有無、菌数を確認した。また、得られた豆乳について、上記の 方法により Ί—ァミノ酪酸量、 ρΗを測定した。その結果を表 7に示した。 [0158] The liquid obtained in Test Example 34 36 was heated at 145 ° C for 5 seconds with a direct steam blow-type instantaneous heating apparatus and then cooled to 5 ° C to obtain soy milk. Prior to this high-temperature sterilization and enzyme deactivation treatment, the presence or absence of spoiled odor and the number of bacteria were confirmed. In addition, about the obtained soymilk, Ί the method - Amino acid amount was measured Roita. The results are shown in Table 7.
[0159] [表 7] [0159] [Table 7]
Figure imgf000036_0001
Figure imgf000036_0001
[0160] 表 7に示すとおり、単に高温保持工程と低温保持工程との組み合わせただけでは、  [0160] As shown in Table 7, simply combining the high temperature holding process and the low temperature holding process,
7ーァミノ酪酸量は増加したが、腐敗した (試験例 36)。よって、食品衛生上、飲料に 適する豆乳を得ることはできな力、つた。  Although the amount of 7-aminobutyric acid increased, it decayed (Test Example 36). Therefore, it was impossible to obtain soy milk suitable for beverages for food hygiene.
[0161] 〔実験例 4〕 [低温保持工程おける保持時間の検討]  [0161] [Experimental Example 4] [Examination of holding time in low temperature holding process]
[0162] (豆乳の製造方法)  [0162] (Soy milk production method)
市販の乾燥大豆(品種;アミーゴ、カナダ産) 20kgを 25〜30°C、 100Lの温水に 12 時間浸漬させた後、水切りして、浸漬大豆 46kg (水分含量; 60. 8%)を得た。次に、 得られた浸漬大豆 46kgを、グルタミン酸 76gを水 46kgに溶力もた溶液を加えながら 磨砕し、おからを分離して、おからを除去した液を得た。必要に応じて、水酸化力リウ ム溶液を添加して、 pHを約 0. 2上昇させた。次に、 30°C、 100分間保持した。次に、 60°C、 1分間加熱した。次に 10°C、表 8に示す時間(6〜48時間)で保持した。その 後、直接蒸気吹き込み式瞬間加熱装置にて 145°Cで 5秒間加熱後、 5°Cに冷却し豆 乳を得た。この高温殺菌及び酵素失活処理としての加熱の前に、腐敗臭の有無、菌 数を確認した。また、得られた豆乳について、上記の方法により Ί—ァミノ酪酸量を 測定した。得られた豆乳の pHは、常法により pHメーターを用いて測定した。その結 果を表 8に示した。 Commercially-dried soybean (variety: Amigo, Canada) 20kg was immersed in 25-30 ° C, 100L warm water for 12 hours, then drained to obtain 46kg of immersed soybean (water content; 60.8%) . Next, 46 kg of the soaked soybean obtained was ground while adding a solution of 76 g of glutamic acid to 46 kg of water, and separated from okara to obtain a liquid from which okara was removed. If necessary, the pH was increased by about 0.2 by adding a solution of hydrous lithium hydroxide. Next, it was kept at 30 ° C. for 100 minutes. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C. for the time shown in Table 8 (6 to 48 hours). After that, it was heated at 145 ° C for 5 seconds with a direct steam blowing type instantaneous heating device and then cooled to 5 ° C to obtain soy milk. Prior to this high-temperature sterilization and enzyme deactivation treatment, the presence or absence of spoiled odor and the number of bacteria were confirmed. Further, the obtained soymilk, it by the method described above - was measured Amino acid amount. The pH of the obtained soymilk was measured by a conventional method using a pH meter. The results are shown in Table 8.
[0163] [表 8] 表 8 [0163] [Table 8] Table 8
低温 低;' ミノ 菌数 融 H 殺菌 麟 麵鐘 幌  Low temperature; 'Mino bacteria count H H sterilization
工程 工程 工程 (mg) 度  Process Process Process (mg) Degree
赚例 3 7 無 無 2 4 4. 0X 106 广、, 6. 56 羅列; 8 30で M 4 8 4. 0〜: 17 X 106 6. 57 Example 3 7 No No 2 4 4. 0X 10 6 mm,, 6. 56 Enumeration; 8 30 at M 4 8 4.0-: 17 X 10 6 6. 57
100分  100 minutes
翔列 3 9 30°C 60t:、 iot; 5 3 15X 103 し) 6. 63 Sho row 3 9 30 ° C 60t :, iot; 5 3 15X 10 3 ) 6. 63
100分 1分 6 H ffl 100 minutes 1 minute 6 H ffl
mm 0 30°C 60T;、 10°C 6 0〜6 5 5. 7—37 X 103 6. 72 mm 0 30 ° C 60T; 10 ° C 6 0-6 5 5. 7—37 X 10 3 6. 72
100分 1分 24 Bf¾  100 minutes 1 minute 24 Bf¾
翻列 4 1 3()':C 60 C、 10°C 6 3 22 X 103 '、リ 6. 74 Transform 4 1 3 () ' : C 60 C, 10 ° C 6 3 22 X 10 3 ', Re 6. 74
100分 1分 28 if¾  100 minutes 1 minute 28 if¾
纖例 4 2 30' 60Ϊ:、 10°C 6 ,3 25 103 6. 7 ί Example 4 2 30 '60mm: 10 ° C 6, 3 25 10 3 6. 7 ί
100分 1分 48 S¾¾  100 minutes 1 minute 48 S¾¾
[0164] 表 8に示すとおり、高温保持工程及び低温殺菌工程後、更に 10°C、 48時間保持ま で、食品衛生上、飲料に適する豆乳を得ることができた。 [0164] As shown in Table 8, soy milk suitable for beverages in terms of food hygiene could be obtained after the high temperature holding step and the pasteurization step and further holding at 10 ° C for 48 hours.
[0165] γーァミノ酪酸量の増加は、 10°C保持後 24時間まで増加して、その後、頭打ちの 傾向にあった。また、 6時間保持 (試験例 39)及び 24時間保持 (試験例 40)までの γ[0165] The increase in the amount of γ-aminobutyric acid increased until 24 hours after maintaining at 10 ° C, and then tended to peak. In addition, γ until holding for 6 hours (Test Example 39) and holding for 24 hours (Test Example 40)
—ァミノ酪酸量の増加量から考えると、 y—ァミノ酪酸量の増加は、 18〜24時間で 頭打ちすることが推察できる。 -Considering the increase in the amount of aminobutyric acid, it can be inferred that the increase in the amount of y-aminobutyric acid peaked in 18 to 24 hours.
[0166] 〔実験例 5〕 [枝豆添加] [Experiment 5] [Addition of green soybeans]
GADリソースとして枝豆を添加して、低温保持工程の有効性を評価した。  Edamame was added as a GAD resource to evaluate the effectiveness of the low temperature holding process.
[0167] (豆乳の製造方法) [0167] (Soy milk production method)
(試験例 43)  (Test Example 43)
市販の乾燥大豆(品種;アミーゴ、カナダ産) 20kgを 25〜30°C、 100Lの温水に 12 時間浸漬させた後、水切りして、浸漬大豆 46kg (水分含量; 60. 8%)を得た。次に、 得られた浸漬大豆 46kgを、グルタミン酸 76gを水 46kgに溶力もた溶液を加えながら 磨砕し、おからを分離して、おからを除去した液を得た。必要に応じて、水酸化力リウ ム溶液を添加して、 pHを約 0. 2上昇させた。次に、 30°C、 100分間保持した。次に、 60°C、 1分間加熱した。次に 10°C、 20時間保持した。その後、直接蒸気吹き込み式 瞬間加熱装置にて 145°Cで 5秒間加熱後、 5°Cに冷却し豆乳を得た。 [0168] (試験例 44) Commercially-dried soybean (variety: Amigo, Canada) 20kg was immersed in 25-30 ° C, 100L warm water for 12 hours, then drained to obtain 46kg of immersed soybean (water content; 60.8%) . Next, 46 kg of the soaked soybean obtained was ground while adding a solution of 76 g of glutamic acid to 46 kg of water, and separated from okara to obtain a liquid from which okara was removed. If necessary, the pH was increased by about 0.2 by adding a solution of hydrous lithium hydroxide. Next, it was kept at 30 ° C. for 100 minutes. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C for 20 hours. After that, it was heated at 145 ° C for 5 seconds with a direct steam blowing type instantaneous heating device and then cooled to 5 ° C to obtain soy milk. [0168] (Test Example 44)
浸漬大豆 46kgの代わりに、浸漬大豆 45. 1kg (水分含量; 60. 8%)及び枝豆 0. 9 kg (莢なし枝豆、水分含量; 60. 5%)を用いたこと以外は、上記試験例 39と同様の 方法により、豆乳を得た。  The above test example, except that 45.1 kg of soaked soybeans (water content; 60.8%) and 0.9 kg of green soybeans (boiled soybeans, water content; 60.5%) were used instead of 46 kg of soaked soybeans. Soy milk was obtained in the same manner as in 39.
[0169] (枝豆の割合) [0169] (Percentage of green soybeans)
なお、製造に用いた大豆の乾燥重量と枝豆の乾燥重量との総和に対する枝豆の 乾燥重量の比率 (枝豆の添加量 (重量%) )は、約 2%である。また、枝豆の乾燥重量 は、添加したグルタミン酸 lgに対して、約 7. 2gである。  The ratio of the dry weight of green soybeans to the total of the dry weight of soybeans and green beans used for production (addition amount of green beans (% by weight)) is about 2%. The dry weight of green soybeans is about 7.2g with respect to lg of glutamic acid added.
[0170] (試験例 45、 46) [0170] (Test Example 45, 46)
浸漬大豆 46kgの代わりに、浸漬大豆 43. 8kg (水分含量; 60. 8%)及び枝豆(莢 なし枝豆;試験例 45) 2. 2kg (水分含量; 60. 5%)を用いたこと以外は、上記試験例 Instead of using 46 kg of soaked soybeans, 43.8 kg (water content; 60.8%) and soy beans (green soybean without pods; Test Example 45) 2.2 kg (water content; 60.5%) were used. , Test example above
43と同様の方法により、豆乳を得た。なお、莢付き枝豆を添加した試験例 46は、莢 付き枝豆 4kg (莢なし枝豆 2. 2kg、莢 1. 8kgに相当)を用いた。 Soy milk was obtained in the same manner as in 43. In Test Example 46 to which edamame with strawberry was added, 4 kg of edamame with strawberry (corresponding to 2.2 kg of podless edamame, 1.8 kg of strawberry) was used.
[0171] (枝豆の割合) [0171] (Percentage of green soybeans)
なお、製造に用いた大豆の乾燥重量と枝豆の乾燥重量との総和に対する枝豆の 乾燥重量の比率 (枝豆の添加量 (重量%) )は、約 5%である。また、枝豆の乾燥重量 は、添加したグルタミン酸 lgに対して、約 17. 5gである。  The ratio of the dry weight of green soybeans to the total of the dry weight of soybeans and green soybeans used for production (addition amount of green beans (% by weight)) is about 5%. The dry weight of green soybeans is about 17.5 g based on the added lg glutamic acid.
[0172] 上記高温殺菌及び酵素失活処理としての加熱の前に、腐敗臭の有無を確認した。 [0172] Before heating as the high-temperature sterilization and enzyme deactivation treatment, the presence or absence of a rotten odor was confirmed.
また、得られた豆乳について、上記の方法により Ί—ァミノ酪酸量を測定した。その 結果を表 9に示した。 Further, the obtained soymilk, it by the method described above - was measured Amino acid amount. The results are shown in Table 9.
[0173] [表 9] [0173] [Table 9]
Figure imgf000038_0001
Figure imgf000038_0001
表 9に示すとおり、枝豆を添加した場合 (試験例 44〜46)は、枝豆無添加の場合( 試験例 43)と比べて、高 γ —アミノ酪酸含有の豆乳が得られた。また、莢付き枝豆を 用いた場合 (試験例 46)は、莢なし枝豆を用いた場合 (試験例 45)と比べて、高 γ— ァミノ酪酸含有の豆乳が得られた。 As shown in Table 9, when edamame was added (Test Examples 44 to 46), soy milk containing high γ-aminobutyric acid was obtained as compared to the case without edamame (Test Example 43). Also, the edamame with mochi When used (Test Example 46), soymilk containing high γ-aminobutyric acid was obtained as compared to the case using podless edamame (Test Example 45).
[0175] 枝豆の添加量が 2%以上(グルタミン酸に対する枝豆の乾燥重量の比が、 7以上) の場合で効果が認められた。また、枝豆の添加量が 5%以上(グルタミン酸に対する 枝豆の乾燥重量の比が、 17以上)の場合では、更に効果が認められた。 [0175] The effect was observed when the amount of green soybean added was 2% or more (the ratio of the dry weight of green soybean to glutamic acid was 7 or more). In addition, when the amount of green soybean added was 5% or more (the ratio of green soybean weight to glutamic acid was 17 or higher), a further effect was observed.
[0176] 〔実験例 6〕 [発芽豆乳による検討及び、低温殺菌工程の条件検討] [0176] [Experiment 6] [Study with germinated soymilk and conditions of pasteurization process]
[0177] (発芽豆乳の製造方法) [0177] (Method for producing germinated soy milk)
市販の米国産 ΙΟΜ乾燥大豆約 20kgを 40°C、 100Lの温水に 2時間浸漬させた後 After immersing approximately 20 kg of commercially available rice-dried soybeans in the US for 2 hours in 100 L of warm water at 40 ° C
、水中から取り出した。この大豆を他の容器に移して、 24時間、 25°Cの水を 6時間ご とに散布しながら、空気中で発芽を促し、発芽処理大豆約 46kgを得た。上記発芽処 理大豆 46kgに対し、水 46kgを加えながら磨砕し、おからを分離して、おからを除去 した液を得た。 , Removed from the water. This soybean was transferred to another container, and sprinkling was promoted in the air while spraying water at 25 ° C every 24 hours for 24 hours, and about 46 kg of germinated soybeans were obtained. 46 kg of the germinated soybeans were ground while adding 46 kg of water, and the okara was separated to obtain a liquid from which the okara was removed.
[0178] (試験例 47) [0178] (Test Example 47)
上記おからを除去した液を必要に応じて、水酸化カリウム溶液を添加して、 pHを約 If necessary, add potassium hydroxide solution to the solution from which the okara has been removed, and adjust the pH to approx.
0. 2上昇させた。この液を、 30°C、 100分間保持した。 Raised by 0.2. This solution was kept at 30 ° C. for 100 minutes.
[0179] (試験例 48) [0179] (Test Example 48)
上記おからを除去した液を必要に応じて、水酸化カリウム溶液を添加して、 pHを約 If necessary, add potassium hydroxide solution to the solution from which the okara has been removed, and adjust the pH to approx.
0. 2上昇させた。次に、 60°C、 1分間加熱した。次に、 10°C、 20時間保持した。 Raised by 0.2. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C. for 20 hours.
[0180] (試験例 49) [0180] (Test Example 49)
上記おからを除去した液を必要に応じて、水酸化カリウム溶液を添加して、 pHを約 If necessary, add potassium hydroxide solution to the solution from which the okara has been removed, and adjust the pH to approx.
0. 2上昇させた。次に、 70°C、 1分間加熱した。次に、 10°C、 20時間保持した。 Raised by 0.2. Next, it was heated at 70 ° C. for 1 minute. Next, it was kept at 10 ° C. for 20 hours.
[0181] (試験例 50) [0181] (Test Example 50)
上記おからを除去した液を必要に応じて、水酸化カリウム溶液を添加して、 pHを約 If necessary, add potassium hydroxide solution to the solution from which the okara has been removed, and adjust the pH to approx.
0. 2上昇させた。この液を、 30°C、 100分間保持した。次に、 60°C、 1分間加熱したRaised by 0.2. This solution was kept at 30 ° C. for 100 minutes. Next, heated at 60 ° C for 1 minute
。次に、 10°C、 20時間保持した。 . Next, it was kept at 10 ° C. for 20 hours.
[0182] 試験例 47〜50に得られた溶液を、直接蒸気吹き込み式瞬間加熱装置にて 145°C で 5秒間加熱後、 5°Cに冷却し豆乳を得た。この高温殺菌及び酵素失活処理として の加熱の前に、菌数を測定した。得られた豆乳について、上記の方法により γ —アミ ノ酪酸量を測定した。その結果を表 10に示した。 [0182] The solutions obtained in Test Examples 47 to 50 were heated at 145 ° C for 5 seconds with a direct steam blow-type instantaneous heating apparatus and then cooled to 5 ° C to obtain soy milk. Prior to this heat sterilization and enzyme deactivation treatment, the number of bacteria was measured. About the obtained soymilk, The amount of nobutyric acid was measured. The results are shown in Table 10.
[0183] [表 10] [0183] [Table 10]
Figure imgf000040_0001
Figure imgf000040_0001
[0184] ( γ—ァミノ酪酸量)  [0184] (γ-Aminobutyric acid content)
表 10に示すとおり、低温保持工程を行った場合 (試験例 48〜50)は、高温保持単 独 (試験例 47)と比して、 γ—ァミノ酪酸量が増加した。また、高温保持工程と低温保 持工程とを組み合わせた場合 (試験例 50)は、低温保持工程のみの場合 (試験例 48 、 49)と比して、 γ—ァミノ酪酸を多く生成した。これにより、本発明は、発芽豆乳にお いても、 γ—ァミノ酪酸量を増加する効果が得られることがわ力 た。また、グルタミン 酸を添加しない場合においても、 γ—ァミノ酪酸量を増加する効果が得られることが わかった。  As shown in Table 10, the amount of γ-aminobutyric acid increased when the low temperature holding step was performed (Test Examples 48 to 50) as compared to the high temperature holding alone (Test Example 47). In addition, when the high temperature holding process and the low temperature holding process were combined (Test Example 50), more γ-aminobutyric acid was produced as compared to the case of only the low temperature holding process (Test Examples 48 and 49). Thus, the present invention has proved that the effect of increasing the amount of γ-aminobutyric acid can be obtained even in germinated soymilk. It was also found that the effect of increasing the amount of γ-aminobutyric acid can be obtained even when glutamic acid is not added.
[0185] (低温殺菌工程の条件) [0185] (Conditions for pasteurization process)
60°C1分 (試験例 48)及び 70°C1分 (試験例 49)で行ったところ、ともに食品衛生 上問題のない豆乳が得られた。 60°C1分で行った豆乳 (試験例 48)の方が、 70°C1 分で行った豆乳 (試験例 49)に比べ、 γ—ァミノ酪酸がより多力、つた。  When it was carried out at 60 ° C for 1 minute (Test Example 48) and 70 ° C for 1 minute (Test Example 49), soy milk with no food hygiene problems was obtained. The soy milk (Test Example 48) conducted at 60 ° C for 1 minute was more effective in γ-aminobutyric acid than the soy milk (Test Example 49) conducted at 70 ° C for 1 minute.
[0186] 〔実験例 7〕 [低温保持工程の有効性 (4°C及び 10°C) ] [0186] [Experiment 7] [Effectiveness of low-temperature holding process (4 ° C and 10 ° C)]
パイロットスケールにおいて、 4°Cの低温保持工程でも、 10°Cの低温保持工程と同 様の効果が得られるか否かを検討した。  In the pilot scale, we examined whether a low temperature holding process at 4 ° C would have the same effect as a low temperature holding process at 10 ° C.
[0187] (豆乳の製造方法) [0187] (Method for producing soy milk)
市販の乾燥大豆(品種;アミーゴ、カナダ産) 20kgを 25〜30°C、 100Lの温水に 12 時間浸漬させた後、水切りして、浸漬大豆 46kg (水分含量; 60. 8%)を得た。次に、 浸漬大豆 43. 8kg (水分含量; 60. 8%)及び枝豆 2. 2kg (水分含量; 60. 5%) [枝 豆; 5%]を、グルタミン酸 76gを水 46kgに溶力もた溶液を加えながら磨砕し、おから を分離して、おからを除去した液を得た。必要に応じて、水酸化カリウム溶液を添加し て、 pHを約 0. 2上昇させた。この液を、 30°C、 100分間保持した。次に、 60°C、 1分 間加熱した。次に 4, 10°Cの各保持温度で、 20時間保持した。その後、直接蒸気吹 き込み式瞬間加熱装置にて 145°Cで 5秒間加熱後、 5°Cに冷却し豆乳を得た。 Commercial dry soybean (variety: Amigo, Canada) 20kg in 25-30 ° C, 100L hot water 12 After soaking for a period of time, draining was performed to obtain 46 kg of soaked soybeans (water content: 60.8%). Next, 43.8 kg of soaked soybeans (water content; 60.8%) and 2.2 kg of green soybeans (water content; 60.5%) [green soybeans; 5%], a solution of 76 g of glutamic acid in 46 kg of water The mixture was ground while adding okara, and okara was separated to obtain a liquid from which okara was removed. If necessary, potassium hydroxide solution was added to raise the pH by about 0.2. This solution was kept at 30 ° C. for 100 minutes. Next, it was heated at 60 ° C for 1 minute. Next, it was held at each holding temperature of 4, 10 ° C for 20 hours. After that, it was heated at 145 ° C for 5 seconds with a direct steam blowing type instantaneous heating device and then cooled to 5 ° C to obtain soy milk.
[0188] この高温殺菌及び酵素失活処理としての加熱の前に、腐敗臭の有無、菌数を確認 した。また、得られた豆乳について、上記の方法により Ίーァミノ酪酸量、 pHを測定 した。その結果を表 11に示した。 [0188] Prior to this high-temperature sterilization and enzyme deactivation treatment, the presence or absence of spoiled odor and the number of bacteria were confirmed. Further, the obtained soymilk was Ί Amino acid amount by the above method, the pH was measured. The results are shown in Table 11.
[0189] [表 11]  [0189] [Table 11]
Figure imgf000041_0001
Figure imgf000041_0001
[0190] 表 11に示すとおり、低温保持温度として 10°C (試験例 53)と同様に、 4°C (試験例 5 [0190] As shown in Table 11, the low temperature holding temperature was 4 ° C (Test Example 5) as well as 10 ° C (Test Example 53).
2)においても、高 γ—ァミノ酪酸含有の豆乳が得られた。 In 2), soymilk containing high γ-aminobutyric acid was obtained.
[0191] 〔実験例 8〕(残存 Glu量による風味の違い) [0191] [Experiment 8] (Difference in flavor depending on the amount of residual Glu)
グノレタミン酸が多い食品は風味が落ちることが知られている。そこで、グルタミン酸 を添加して保持することにより高 γ —アミノ酪酸含有の豆乳において、グルタミン酸が どの程度残存すると、豆乳の風味に好ましくな!/、影響を及ぼすのかを検討した。  It is known that foods rich in gnoretamic acid lose their flavor. Therefore, we examined how much glutamic acid remained in soymilk containing high γ-aminobutyric acid by adding and retaining glutamic acid had a favorable effect on the flavor of soymilk.
[0192] (実験方法) [0192] (Experimental method)
(試験例 54)  (Test Example 54)
市販の乾燥大豆(品種;アミーゴ、カナダ産) 20kgを 25〜30°C、 100Lの温水に 12 時間浸漬させた後、水切りして、浸漬大豆 46kg (水分含量; 60. 8%)を得た。次に、 得られた浸漬大豆 43. 8kg (水分含量; 60. 8%)及び枝豆 2. 2kg (水分含量; 60. 5 %)〔枝豆; 5%〕を、グルタミン酸 76gを水 46kgに溶力もた溶液を加えながら磨砕し、 おからを分離して、おからを除去した液を得た。必要に応じて、水酸化カリウム溶液を 添加して、 pHを約 0. 2上昇させた。この液を、 30°C、 100分間保持した。次に、 60 °C、 1分間加熱した。次に 10°C、 20時間保持した。その後、直接蒸気吹き込み式瞬 間加熱装置にて 145°Cで 5秒間加熱後、 5°Cに冷却し豆乳を得た。 Commercially-dried soybean (variety: Amigo, Canada) 20kg was immersed in 25-30 ° C, 100L warm water for 12 hours, then drained to obtain 46kg of immersed soybean (water content; 60.8%) . next, The obtained soaked soybean 43.8 kg (water content; 60.8%) and green soybeans 2.2 kg (water content; 60.5%) [green soybeans; 5%], a solution of 76 g glutamic acid in 46 kg water and a solution. Grinding while adding, separated the okara to obtain a liquid from which okara was removed. If necessary, potassium hydroxide solution was added to raise the pH by about 0.2. This solution was kept at 30 ° C. for 100 minutes. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C for 20 hours. Then, after heating at 145 ° C for 5 seconds with a direct steam blowing type instantaneous heating device, it was cooled to 5 ° C to obtain soy milk.
[0193] (試験例 55)  [0193] (Test Example 55)
グルタミン酸 76gに代えて、グルタミン酸 100gを添加した以外は、実施例 35と同様 の方法により、豆乳を製造した。  Soy milk was produced in the same manner as in Example 35 except that 100 g of glutamic acid was added instead of 76 g of glutamic acid.
[0194] (試験例 56)  [0194] (Test Example 56)
グルタミン酸 76gに代えて、グルタミン酸 120gを添加した以外は、実施例 35と同様 の方法により、豆乳を製造した。  Soy milk was produced in the same manner as in Example 35 except that 120 g of glutamic acid was added instead of 76 g of glutamic acid.
[0195] 得られた豆乳について、上記の方法により γ—ァミノ酪酸量を測定した。また、以下 の方法により風味評価を行った。その結果を表 12に示した。  [0195] With respect to the obtained soymilk, the amount of γ-aminobutyric acid was measured by the above method. The flavor was evaluated by the following method. The results are shown in Table 12.
[0196] [風味評価]  [0196] [Taste evaluation]
得られた豆乳 30mlを、 10名のパネラーが食したときの風味について、以下の基準 に基づく点数で評価をしてもらい、パネラー全員の評価点数の平均値を算出した。  The taste of the soymilk 30 ml obtained was evaluated by the score based on the following criteria for the flavor when 10 panelists ate, and the average score of all panelists was calculated.
3点;コクがあり、さっぱりして飲み易い。  3 points; it is rich and easy to drink.
2点;風味のバランスが取れて!/、る。  2 points; the flavor is balanced!
1点;雑味があり、豆乳として不適である。  1 point; there is a miscellaneous taste and is not suitable as soy milk.
[0197] [表 12]  [0197] [Table 12]
Figure imgf000042_0001
Figure imgf000042_0001
[0198] 表 12に示すとおり、残存するグルタミン酸量が 45mg以上 (試験例 56)の場合、豆 乳の風味が損なわれた力 残存するグルタミン酸量が 35mg以下(試験例 54, 55)の 場合、豆乳として好適であった。また、 35mg (試験例 55)の豆乳よりも、 25mg (試験 例 54)の豆乳の方が、豆乳として風味が良好であった。 [0198] As shown in Table 12, when the amount of residual glutamic acid is 45 mg or more (Test Example 56), the strength of the soy milk flavor is impaired. The amount of residual glutamic acid is 35 mg or less (Test Examples 54 and 55). In this case, it was suitable as soy milk. In addition, the soy milk of 25 mg (Test Example 54) had a better flavor as soy milk than the 35 mg (Test Example 55) of soy milk.
[0199] 〔実験例 9〕 [Experiment 9]
(実験方法)  (experimental method)
(試験例 57)  (Test Example 57)
市販の乾燥大豆(品種;アミーゴ、カナダ産) 20kgを 25〜30°C、 100Lの温水に 12 時間浸漬させた後、水切りして、浸漬大豆 44kg (水分含量; 61 %)を得た。次に得ら れた浸漬大豆 44kgに、グルタミン酸 40gを水 44kgに溶力もた溶液を加えながら磨 砕し、おからを分離して、おからを除去した液を得た。上記おからを除去した液に、必 要に応じて、水酸化カリウム溶液を添加して、 pHを約 0. 2上昇させた。次に、 60°C、 1分間加熱した。次に 10°C、 20時間保持した。その後、直接蒸気吹き込み式瞬間加 熱装置にて 145°Cで 5秒間加熱後、 5°Cに冷却し豆乳を得た。得られた豆乳につい て、 Ί—ァミノ酪酸量及びグルタミン酸量を測定した。その結果を表 13に示した。表 中の「一」は検出限界以下を示す。  20 kg of commercially available dried soybean (variety: Amigo, Canada) was immersed in 25 to 30 ° C, 100 L of warm water for 12 hours, and then drained to obtain 44 kg of immersed soybean (water content: 61%). Next, 44 kg of the soaked soybeans obtained were ground while adding a solution of 40 g of glutamic acid to 44 kg of water, and separated from okara to obtain a liquid from which okara was removed. Potassium hydroxide solution was added to the solution from which the okara had been removed as necessary to raise the pH by about 0.2. Next, it was heated at 60 ° C. for 1 minute. Next, it was kept at 10 ° C for 20 hours. After that, it was heated at 145 ° C for 5 seconds with a direct steam blowing type instantaneous heating device and then cooled to 5 ° C to obtain soy milk. About the obtained soy milk, the amount of aminoamino butyric acid and the amount of glutamic acid were measured. The results are shown in Table 13. “1” in the table indicates below the detection limit.
[0200] [表 13] [0200] [Table 13]
Figure imgf000043_0001
Figure imgf000043_0001
[0201] (試験例 58)  [0201] (Test Example 58)
この豆乳をスプレードライヤー(吸気温度 180°C、排気温度 70°C)を用いて粉末化 し、豆乳粉末を得た。得られた豆乳粉末の γ ァミノ酪酸量は、 560mg/100g固 形分、であった。  This soy milk was pulverized using a spray dryer (intake air temperature 180 ° C, exhaust temperature 70 ° C) to obtain soymilk powder. The amount of γ-aminobutyric acid in the obtained soymilk powder was 560 mg / 100 g solid.
[0202] (試験例 59) [0202] (Test Example 59)
この豆乳を用いた食品の例として、以下の方法により、ゼリー状豆腐を製造した。 試験例 57の豆乳 85. 5質量部、植物油 3. 6質量部、糖類(デキストリン、ゲル化剤 等) 5質量部、水 5. 9質量部を混合して、ホモジナイズ後に 145°Cで滅菌加熱した後 、冷却しながら、容器に充填し、ゼリー状豆腐を作った。 As an example of food using this soymilk, jelly-like tofu was produced by the following method. Test example 57 soy milk 85. 5 parts by weight, vegetable oil 3.6 parts by weight, sugars (dextrin, gelling agent, etc.) 5 parts by weight, water 5.9 parts by weight, sterilized and heated at 145 ° C after homogenization After While cooling, the container was filled to make jelly-like tofu.
[0203] (試験例 60)  [0203] (Test Example 60)
この豆乳粉末を用いた食品の例として、以下の方法により、パウンドケーキを製造し た。室温に戻した無塩バター 100質量部と砂糖 100質量部をクリーム状になるまで混 合した。次に、攪拌しながら、卵 100質量部を少量ずつ加えた。次に、試験例 58の 豆乳粉末 10〜20質量部、薄力粉 80〜90質量部(豆乳粉末と薄力粉を合わせて 10 0質量部)及びベーキングパウダー 2質量部を混合してふるいにかけた粉末を加えて 、攪拌した。これを容器に移し、 170°C、 40分間焼成し、 20cm型のパウンドケーキを 作った。  As an example of food using this soymilk powder, a pound cake was produced by the following method. 100 parts by weight of unsalted butter that had been returned to room temperature and 100 parts by weight of sugar were mixed until creamed. Next, 100 parts by mass of eggs were added little by little while stirring. Next, add 10-20 parts by weight of soymilk powder from Test Example 58, 80-90 parts by weight of flour (100 parts by weight of soymilk powder and flour) and 2 parts by weight of baking powder, and add the sifted powder. And stirred. This was transferred to a container and baked at 170 ° C for 40 minutes to make a 20cm-type pound cake.
[0204] 〔実験例 10〕  [0204] [Experiment 10]
(実験方法)  (experimental method)
(試験例 61)  (Test Example 61)
市販の乾燥大豆(品種;ツルムス人国産) 900kgを 15°C、 2500Kgの水に 14時間 浸漬させた後、水切りして、浸漬大豆 2000kg (水分含量; 60%)を得た。次に得られ た浸漬大豆 2000kgに、グルタミン酸ナトリウム 3. 8kgを水 3400kgに溶力もた溶液 を加えながら磨砕し、 50°C、 5分間加熱し、おからを分離して、おからを除去した液を 得た。この液を 10°C、 20時間保持した。その後、インフュージョン式瞬間加熱装置に て 150°Cで 3秒間加熱後、 5°Cに冷却し豆乳を得た。得られた豆乳及び、低温保持 工程前の溶液について、 Ίーァミノ酪酸量及びグルタミン酸量を測定した。また、低 温殺菌工程後の菌数を測定した。その結果を表 14、表 15に示した。  After immersing 900 kg of commercially available dried soybean (variety: Thurmus domestic product) in water at 15 ° C and 2500 kg for 14 hours, it was drained to obtain 2000 kg of immersed soybean (water content: 60%). Next, 2000 kg of the soaked soybeans were ground and 3.8 kg of sodium glutamate was added to a solution of 3400 kg of water with a solution, and heated at 50 ° C for 5 minutes to separate the okara and remove the okara. The obtained liquid was obtained. This solution was kept at 10 ° C. for 20 hours. Thereafter, the mixture was heated at 150 ° C. for 3 seconds using an infusion type instantaneous heating device, and then cooled to 5 ° C. to obtain soy milk. With respect to the obtained soy milk and the solution before the low-temperature holding step, the amounts of aminobutyric acid and glutamic acid were measured. In addition, the number of bacteria after the low temperature sterilization process was measured. The results are shown in Tables 14 and 15.
[0205] 表 14に示した低温保持工程前の γ—ァミノ酪酸量及びグルタミン酸量は、磨砕し、 低温殺菌工程を終えた後、約 5〜; 10分を経過した溶液の数値である。この溶液は、 磨砕後一定時間経過しており、かつ、加熱による低温殺菌工程を行っていることから 、 7ーァミノ酪酸変換反応が少し進行している。よって、理論的には、低温保持工程 前のグルタミン酸量は 70mg以上であると推察できる。なお、正確なタイミングでサン プル採取できなかった原因は、実製造機の構造によるものである。  [0205] The amount of γ-aminobutyric acid and glutamic acid before the low-temperature holding step shown in Table 14 is a numerical value of the solution after about 5 to 10 minutes after grinding and finishing the pasteurization step. Since this solution has been subjected to a pasteurization process by heating for a certain period of time after grinding, the 7-aminobutyric acid conversion reaction has progressed a little. Therefore, theoretically, it can be inferred that the amount of glutamic acid before the low-temperature holding step is 70 mg or more. The reason why samples could not be collected at the correct timing is due to the structure of the actual manufacturing machine.
[0206] [表 14] 表 1 4 γ—アミノ麵 ¾a グルタミ itft 猶 [0206] [Table 14] Table 1 4 γ-Amino 麵 a Glutami itft
(mg7"125ml) (mg/125ml)  (mg7 "125ml) (mg / 125ml)
麵例 6 1 5 0°C, 2 0, 9 6 4 , 5 1 . 7 X 1 04 Example 6 1 5 0 ° C, 2 0, 9 6 4, 5 1 .7 X 1 0 4
5  Five
[0207] [表 15] [0207] [Table 15]
Figure imgf000045_0001
Figure imgf000045_0001
[0208] (試験例 62)  [0208] (Test Example 62)
この豆乳を、スプレードライヤーを用いて粉末化し、豆乳粉末を得た。得られた豆乳 粉末の γ —アミノ酪酸量は、 557mg/l00g固形分、であった。  This soy milk was pulverized using a spray dryer to obtain a soy milk powder. The amount of γ-aminobutyric acid in the obtained soymilk powder was 557 mg / l00 g solids.
[0209] (試験例 63) [0209] (Test Example 63)
低温殺菌工程を 55°C、 5分間の条件で行ったこと以外は、試験例 61と同様の方法 により行った。試験例 61と同様の豆乳が得られた。  The test was performed in the same manner as in Test Example 61 except that the pasteurization process was performed at 55 ° C for 5 minutes. The same soy milk as in Test Example 61 was obtained.
産業上の利用可能性  Industrial applicability
[0210] 本発明の製造方法によれば、豆乳中の γ—ァミノ酪酸を増加させるとともに、食品 衛生上許容できる範囲内に菌数の増加を抑制できる豆乳の製造方法を提供できる。 [0210] According to the production method of the present invention, it is possible to provide a method for producing soymilk that increases γ-aminobutyric acid in soymilk and can suppress an increase in the number of bacteria within an acceptable range for food hygiene.

Claims

請求の範囲 The scope of the claims
[1] 大豆の粉砕物と水との混合液、又は該混合液から水不溶性成分を除去した溶液、 を得る液状化工程 (A)、  [1] A liquefaction step (A) for obtaining a mixed solution of pulverized soybean and water, or a solution obtained by removing water-insoluble components from the mixed solution,
横軸を保持温度 X (°C)、縦軸を保持時間 Y (hr)、とした場合に、  When the horizontal axis is holding temperature X (° C) and the vertical axis is holding time Y (hr),
Y≤24000 X X つ、 X力 4〜; 15°C  Y≤24000 X X, X force 4 ~; 15 ° C
の条件を満たす範囲で前記混合液又は前記溶液を保持する低温保持工程 (B ) 酵素失活処理工程 (C)、  A low temperature holding step for holding the mixed solution or the solution within a range satisfying the condition (B) an enzyme deactivation treatment step (C),
を有する豆乳の製造方法。  A method for producing soymilk.
[2] 大豆の粉砕物と水との混合液、又は該混合液から水不溶性成分を除去した溶液、 を得る液状化工程 (A)、 [2] A liquefaction step (A) for obtaining a mixed solution of pulverized soybean and water, or a solution obtained by removing water-insoluble components from the mixed solution,
横軸を保持温度 X (°C)、縦軸を前記混合液又は前記溶液と菌との接触強度 Z、とし た場合に、  When the horizontal axis is the holding temperature X (° C) and the vertical axis is the contact strength Z between the mixed solution or the solution and the fungus,
Z≤3. 7 X 1010 X X— 3 6、かつ、 Xが 4〜; 15。C Z≤3.7 X 10 10 XX— 3 6 , and X is 4 to 15; C
の条件を満たす範囲で前記混合液又は前記溶液を保持する低温保持工程 (B )  A low temperature holding step (B) for holding the mixed solution or the solution within a range satisfying the condition of
2 2
(ここで、接触強度 Zは、横軸を保持時間 Y (hr)、縦軸を菌数 (個)とした場合に、保 持温度 Xにおける菌の増殖曲線の、保持時間 0から Yまでの積分値である。 ) 酵素失活処理工程 (C)、 (Here, the contact strength Z is the retention time Y (hr) on the horizontal axis and the number of bacteria (vertical) on the vertical axis. Integral deactivation process (C),
を有する豆乳の製造方法。  A method for producing soymilk.
[3] 前記低温保持工程が、更に以下の条件を満たす範囲である請求項 1又は 2記載の 豆乳の製造方法。 [3] The method for producing soymilk according to claim 1 or 2, wherein the low temperature holding step further satisfies the following conditions.
Y≥50 X X—。■ '2 Y≥50 XX—. ■ ' 2
[4] 前記液状化工程と同時に、又は前記液状化工程と前記低温保持工程との間に、  [4] Simultaneously with the liquefaction step or between the liquefaction step and the low temperature holding step,
50 75°Cの加熱で前記低温保持工程前の菌数を 1/100以下にする力、、又は 50 75°Cの加熱で前記低温保持工程前の菌数を 1 X 106未満にする低温殺菌ェ 程 (D)、 Power to reduce the number of bacteria before the low-temperature holding process to 1/100 or less by heating at 50 ° C, or low temperature to reduce the number of bacteria before the low-temperature holding process to less than 1 X 10 6 by heating at 50 75 ° C Sterilization process (D),
を有する請求項 1から 3いずれか記載の豆乳の製造方法。  The method for producing soymilk according to any one of claims 1 to 3.
[5] 前記液状化工程と前記低温保持工程との間であって、前記低温殺菌工程の前に、 [5] Between the liquefaction step and the low temperature holding step, and before the pasteurization step,
25°C 35°C 3時間以内保持する高温保持工程 (E) を有する請求項 4記載の豆乳の製造方法。 25 ° C 35 ° C High temperature holding process for 3 hours (E) The method for producing soymilk according to claim 4, comprising:
[6] 前記液状化工程で作られる前記混合液又は前記溶液が、更に、外部から添加した グルタミン酸を含む請求項 1から 5いずれか記載の豆乳の製造方法。 6. The method for producing soymilk according to any one of claims 1 to 5, wherein the mixed solution or the solution produced in the liquefaction step further contains glutamic acid added from the outside.
[7] 前記液状化工程で作られる前記混合液又は前記溶液が、更に、グルタミン酸脱炭 酸酵素又は該酵素を含む素材を含む請求項 1から 6いずれか記載の豆乳の製造方 法。 [7] The method for producing soymilk according to any one of [1] to [6], wherein the mixed solution or the solution produced in the liquefaction step further contains a glutamic acid decarburizing enzyme or a material containing the enzyme.
[8] 請求項 1から 7いずれか記載の豆乳の製造方法により得られる豆乳に、乾燥処理を 行う、又は乾燥処理と粉砕処理を行う、豆乳粉末の製造方法。  [8] A method for producing soymilk powder, wherein the soymilk obtained by the method for producing soymilk according to any one of claims 1 to 7 is subjected to a drying treatment, or a drying treatment and a grinding treatment.
[9] 大豆の粉砕物と水とを原料とする豆乳であり、  [9] Soymilk made from crushed soybeans and water,
原料を含む混合液又は溶液を、 4〜; 15°C、所定の時間で保持する低温保持工程 を行い、  Perform a low temperature holding process to hold the mixed solution or solution containing the raw materials at 4 to 15 ° C for a predetermined time,
豆乳中の大豆固形分 13. 75g当たりの、豆乳由来の γ —アミノ酪酸含量が 20mg 以上である豆乳。  Soymilk with a soymilk-derived γ-aminobutyric acid content of at least 20 mg per 13.75 g of soy solids in soymilk.
[10] 前記原料が、更に、外部から添加したグルタミン酸を含むものであり、  [10] The raw material further contains glutamic acid added from the outside,
豆乳中の大豆固形分 13. 75g当たりの、前記豆乳由来の γ —アミノ酪酸含量が 50 mg以上、かつ、グノレタミン酸含量力 0mg以下である請求項 9記載の豆乳。  10. The soymilk according to claim 9, wherein the content of γ-aminobutyric acid derived from the soymilk per 13.75 g of soy solids in the soymilk is 50 mg or more and the gnoretamic acid content is 0 mg or less.
[11] 前記原料が、更に、グルタミン酸脱炭酸酵素又は該酵素を含む素材を含むもので あり、 [11] The raw material further includes glutamic acid decarboxylase or a material containing the enzyme,
豆乳中の大豆固形分 13. 75g当たりの、前記豆乳由来の γ —アミノ酪酸含量が 70 mg以上、かつ、グルタミン酸含量力 0mg以下である請求項 10記載の豆乳。  The soymilk according to claim 10, wherein the content of γ-aminobutyric acid derived from the soymilk per 7075 soybean solids in the soymilk is 70 mg or more and the glutamic acid content is 0 mg or less.
[12] 前記大豆が発芽処理大豆であり、 [12] The soybean is a germinated soybean,
豆乳中の大豆固形分 13. 75g当たりの、前記豆乳由来の γ —アミノ酪酸含量が 25 mg以上、かつ、グルタミン酸含量が 15mg以下である請求項 9記載の豆乳。  10. The soymilk according to claim 9, wherein the content of γ-aminobutyric acid derived from the soymilk per 13.75 g of soy solids in the soymilk is 25 mg or more and the glutamic acid content is 15 mg or less.
[13] 液状化工程と、グルタミン酸添加工程と、低温殺菌工程と、低温保持工程と、酵素 失活処理工程とを有する豆乳の製造方法であり、 [13] A method for producing soymilk comprising a liquefaction step, a glutamic acid addition step, a pasteurization step, a low temperature holding step, and an enzyme deactivation treatment step,
大豆の粉砕物と水との混合液、又は該混合液から水不溶性成分を除去した溶液、 を得る液状化工程、  A liquefaction step for obtaining a mixed solution of pulverized soybean and water, or a solution obtained by removing water-insoluble components from the mixed solution,
前記混合液、又は前記溶液に、グルタミン酸を添加するグルタミン酸添加工程、 前記液状化工程と同時に、又は前記液状化工程と前記低温保持工程との間に、 50〜75°Cの加熱で前記低温保持工程前の菌数を 1/100以下にする力、、又は 50〜75°Cの加熱で前記低温保持工程前の菌数を 1 X 106未満にする低温殺菌ェ 程、 A glutamic acid addition step of adding glutamic acid to the mixed solution or the solution; At the same time as the liquefaction step or between the liquefaction step and the low-temperature holding step, a force that reduces the number of bacteria before the low-temperature holding step to 1/100 or less by heating at 50 to 75 ° C, or 50 Pasteurization process to reduce the number of bacteria before the low temperature holding step to less than 1 X 10 6 by heating at ~ 75 ° C,
4〜; 15°Cで、 Ί—ァミノ酪酸含量が 50mg以上となる時間まで、前記混合液又は前 記溶液を保持する低温保持工程、 4; in 15 ° C, Ί - Amino acid content until time equal to or greater than 50mg, low temperature holding step of holding the mixture or pre-SL solution,
酵素失活処理工程、  Enzyme deactivation treatment process,
を有する豆乳の製造方法。 A method for producing soymilk.
PCT/JP2007/070753 2006-10-31 2007-10-24 Method for producing soymilk WO2008053766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542064A JPWO2008053766A1 (en) 2006-10-31 2007-10-24 Method for producing soymilk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-296396 2006-10-31
JP2006296396 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008053766A1 true WO2008053766A1 (en) 2008-05-08

Family

ID=39344108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070753 WO2008053766A1 (en) 2006-10-31 2007-10-24 Method for producing soymilk

Country Status (5)

Country Link
JP (1) JPWO2008053766A1 (en)
KR (1) KR20090075817A (en)
CN (2) CN101522049A (en)
TW (1) TW200826853A (en)
WO (1) WO2008053766A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103462505A (en) * 2013-09-17 2013-12-25 代龙 Novel soybean milk maker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102613578A (en) * 2012-04-20 2012-08-01 上海天天商务实业有限公司 Method for preparing food functional products containing high-concentration Gamma-aminobutyric acid
CN110881527A (en) * 2018-09-11 2020-03-17 南京农业大学 Production method of germ soybean milk rich in gamma-aminobutyric acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267298A (en) * 1987-04-24 1988-11-04 Tosoh Corp Polypeptide derived from corpuscular globin
JPH06125759A (en) * 1992-10-19 1994-05-10 Hiyouon:Kk Aging of vegetable food and animal food
JPH09206029A (en) * 1996-01-31 1997-08-12 Tateo Moriwaki Salted mackerel and its production
JP2002045138A (en) * 2000-05-25 2002-02-12 Hayashibara Biochem Lab Inc SOYBEAN PROCESSED FOOD RICHLY CONTAINING gamma-AMINOBUTYRIC ACID

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267298A (en) * 1987-04-24 1988-11-04 Tosoh Corp Polypeptide derived from corpuscular globin
JPH06125759A (en) * 1992-10-19 1994-05-10 Hiyouon:Kk Aging of vegetable food and animal food
JPH09206029A (en) * 1996-01-31 1997-08-12 Tateo Moriwaki Salted mackerel and its production
JP2002045138A (en) * 2000-05-25 2002-02-12 Hayashibara Biochem Lab Inc SOYBEAN PROCESSED FOOD RICHLY CONTAINING gamma-AMINOBUTYRIC ACID

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOEDA K. ET AL.: "gamma-amido Rakusan Kogan'yu Komenuka no Seizoho", BULLETIN OF THE AKITA RESEARCH INSTITUTE OF FOOD AND BREWING, no. 4, 1 July 2002 (2002-07-01), pages 25 - 29 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103462505A (en) * 2013-09-17 2013-12-25 代龙 Novel soybean milk maker
CN103462505B (en) * 2013-09-17 2017-09-01 山东禹泽医药科技有限公司 A kind of novel soy milk maker

Also Published As

Publication number Publication date
KR20090075817A (en) 2009-07-09
CN101522049A (en) 2009-09-02
JPWO2008053766A1 (en) 2010-02-25
CN101522048A (en) 2009-09-02
TW200826853A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
Ravani et al. Mango and it’s by product utilization–a review
KR20050023778A (en) Process for the preparation of whole soybean milk and curd comprising multiple steps of ultra high-pressure homogenization of soybean
KR20170095678A (en) Prodution mether of fermented and germinated coffee using mixed microorganisms.
KR20190102729A (en) Sauces containing plum processing composition, and manufacturing method thereof
KR100300188B1 (en) How to make herbal apple jam
JP2008136391A (en) Young leaf composition
WO2008053766A1 (en) Method for producing soymilk
KR20170064817A (en) A manufacturing method of fermented liquor using aronia melanocarpa
JP6016628B2 (en) Processed soybean with reduced urease content and method for producing the same
KR101509356B1 (en) Manufacturing methods of fermented milk comprising diced apple
KR101587589B1 (en) The manufacturing method of lotus root jam
KR20120064875A (en) Manufacturing method for mesil chojang
KR101771432B1 (en) Soy milk with increased dietary fiber and low sugar, and its fabrication method
KR20180121201A (en) Composition for Pear Juice Sikhye Using Korean Wheat Flour Malt Sterilized by Plazma and Manufacturing Method Thereof
CN113812463A (en) Natto natural health beverage
El-Dardiry Study of the chemical, rheological, functional, microstructure, microbial, and sensory properties of Kareish cheese fortified with germinated quinoa seeds and processed using ultrasound technology.
KR101513580B1 (en) Manufacturing method of yogurt ice cream containing cheonhyehyang
KR102642807B1 (en) Manufacturing method of functional health drink containing peach juice
Mbaeyi-Nwaoha et al. Evaluation of the effects of pectin extracted from jackfruit (Artocarpus heterohyllus) and passion fruit (Passiflora edulis var flavicarpa Deg.) peels on the quality attributes of yoghurt from skimmed milk
KR102611783B1 (en) Processed food containing edible porous quince peel/pulp and method for preparing the same
KR20140118292A (en) Method of producing ripe persimmon-jam containing component of red ginseng
JP4288357B2 (en) Method for producing γ-aminobutyric acid, method for producing food or food material, food or food material
CN109275680B (en) Preparation method of whole-bean cookies
Shivaswamy et al. Optimization of guava squash incorporated with peanut milk
JPWO2008053767A1 (en) Method for producing γ-aminobutyric acid-containing composition, food containing γ-aminobutyric acid-containing composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037552.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097006971

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830487

Country of ref document: EP

Kind code of ref document: A1