WO2008046789A2 - Image recorder with an organic photodiode and method for the production thereof - Google Patents

Image recorder with an organic photodiode and method for the production thereof Download PDF

Info

Publication number
WO2008046789A2
WO2008046789A2 PCT/EP2007/060891 EP2007060891W WO2008046789A2 WO 2008046789 A2 WO2008046789 A2 WO 2008046789A2 EP 2007060891 W EP2007060891 W EP 2007060891W WO 2008046789 A2 WO2008046789 A2 WO 2008046789A2
Authority
WO
WIPO (PCT)
Prior art keywords
organic
switching matrix
electrode
photoactive layer
layer
Prior art date
Application number
PCT/EP2007/060891
Other languages
German (de)
French (fr)
Other versions
WO2008046789A3 (en
Inventor
Jens FÜRST
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP07821258A priority Critical patent/EP2082428A2/en
Publication of WO2008046789A2 publication Critical patent/WO2008046789A2/en
Publication of WO2008046789A3 publication Critical patent/WO2008046789A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM

Definitions

  • the invention relates to an image recorder, such as a digital camera and / or a video camera, which can be used for different spectral ranges, as well as, for example, for the infrared spectral range.
  • an image recorder such as a digital camera and / or a video camera, which can be used for different spectral ranges, as well as, for example, for the infrared spectral range.
  • CCDs or CMOS Complementary Metal Oxide Semiconductor chips with a resolution of several megapixels are used as readout chips.
  • CMOS chips are more and more opposed to CCD
  • CMOS chips have already integrated a lot of logic in the chip.
  • CMOS chips In addition to the active surface, a variety of other functions such as white balance, exposure control, etc. already integrated in the chip.
  • analog-to-digital conversion also takes place in the chip, so that all external signals are already available digitally.
  • image recorders have a typical size of a few mm 2 with a pixel size between 2 and 10 ⁇ m.
  • the chips are made of silicon using conventional semiconductor technology.
  • Each pixel has at least one thin film transistor (TFT) as a switch and a photodiode for detecting the incident light. This is called active matrix control.
  • TFT thin film transistor
  • CMOS imagers A disadvantage of the previously known CMOS imagers is that it is not possible to create an image sensor for a broadband range with the silicon-based photodiode because the silicon photodiodes are fixed in their sensitivity range (about 350 to 100 nm).
  • a further disadvantage is the fact that the ratio of active area to the area of the thin-film transistors is very small. This ratio, called the fill factor, is often less than 50% for the CMOS chips, which means half the light quantum can not be detected. Although micro lens arrays are used, this again leads to a complication of the device and to an increase in costs.
  • the object of the invention is therefore to provide large-area photodiodes with high quantum efficiency and an easily adjustable bandwidth.
  • the invention relates to an image sensor, a switching matrix comprising at least one substrate, a silicon-based readout chip and an electrode contact, wherein on the electrode contact a lower electrode is applied, on which at least one organic based photoactive layer and thereon an upper transparent electrode is applied.
  • Photodiodes based on organic semiconductor materials offer the possibility of producing large-area photodiodes with high quantum efficiencies.
  • the thin organic layer systems used in this case can be produced inexpensively by known production methods such as spin coating, doctor blades or printing methods and thus enable a price advantage, especially for larger-area image sensors.
  • semiconductor materials are used which absorb in the IR (infrared) region, so that an image sensor for the IR region is created.
  • imagers can be made with a sensitivity curve adapted to the human eye.
  • the organic material is much better suited than the silicon-based one, since silicon is particularly sensitive in the invisible to the human eye NIR range> 700nm, ie this area must be consuming filtered away in a silicon-based image sensor.
  • the switching matrix used is a CMOS switching matrix, for example as known from the company Omnivision.
  • the block diagram of a CMOS imager of the company Omnivision shows that here in addition to the actual active area of the chip, a variety of other functions is integrated.
  • FIG 1 shows the structure of an organic photodiode
  • FIG. 2 shows an embodiment of the invention, namely the combination of a conventional CMOS imager switching matrix with an organic-based photoactive layer.
  • the organic photodiodes consist e.g. from a vertical layer system: Below is a substrate 1 above an anode 2, which is for example of indium tin oxide (ITO) or a metal. In the embodiment shown, an organic hole-conducting layer 3 is located above this layer.
  • the layer system consists, for example, of a gold electrode as the anode 2, a so-called bulk heterojunction as active layers 3 and 4, which comprises, for example, the two components P3HT (absorber and hole transport component) and PCBM (electron acceptor and transport component).
  • P3HT aborber and hole transport component
  • PCBM electron acceptor and transport component
  • CMOS imager CMOS image recorder
  • This combination of materials is much better suited than silicon, which is particularly sensitive in the invisible to the human eye NIR range (wavelength of light> 700nm). Therefore, with a corresponding silicon imager, this area would have to be filtered out consuming.
  • the spectral sensitivity of the detector can be easily adjusted. Furthermore, the addition of carbon nanotubes or inorganic nanocrystals such as HgTe, CdSe, PbS, etc. can expand the spectral range up to 4 ⁇ m.
  • CMOS imager with an organic photodiode, for example, proceed as follows:
  • a finished switching matrix such as that of a CMOS imager in which the photodiode is not yet applied, is obtained commercially.
  • This CMOS imager preferably has a lower, for example, structured electrode for each photodiode.
  • the organic photoactive layer (bulk heterojunction) is applied over this entire surface to this lower electrode.
  • the upper electrode can then be applied thereon, also over the entire surface and unstructured.
  • the whole-surface layers can be applied extremely cost-effectively by spin coating, spraying, doctoring, etc.
  • crosstalk which also at least partially activates the adjacent pixels when generating a voltage at one pixel
  • a crosstalk which also at least partially activates the adjacent pixels when generating a voltage at one pixel
  • 5% pixel size about 150 ⁇ m
  • FIG. 2 shows the combination of a conventional CMOS imager switching matrix with an organic photoactive layer.
  • the CMOS Imager switching matrix can be seen below with a first Substrate 1, on which an electrode contact 6 is embedded in a passivation layer 7. On the passivation layer is the lower electrode 2, which is also structured.
  • the layer structure up to this point is commercially available, for example, a switching matrix of a CMOS image sensor from Omnivision can be used here.
  • an unstructured photoactive layer for example, a bulk heterojunction layer 4, as described above applied.
  • a hole transport layer 3 also over a large area, can be applied inexpensively and unstructured.
  • the bulk heterojunction layer 4 generally comprises two components and may, for example, be a blend of a hole-transporting polythiophene and an electron-transporting fullerene derivative, for example a P3HT-PCBM blend.
  • the upper electrode 5 can be applied to this layer 4.
  • the upper electrode passivation layer 8 and an encapsulation (not shown here).
  • the CMOS-like organic based image sensors can be produced.
  • the image sensors are produced simply by coating methods by first applying one or more photoactive layers and then an unpatterned electrode layer to a finished CMOS switching matrix by coating such as doctoring, spraying, coating, dipcoating, spincoating, etc.
  • organic-based photoactive semiconductor layers are applied over the entire surface and without structuring, these layers extend over 100% of the area and thus the filling factor is increased enormously in CMOS-type image sensors and is approximately 100%.
  • CMOS switching matrix is the same for all detectors. At the end of the process, only the suitable organic semiconductor is applied over a large area, avoiding expensive lithography processes.
  • CMOS switching matrix of an image sensor is combined with an organic photoactive layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

The invention relates to an image recorder, such as a digital camera and/or video camera, which can be used for different spectral regions as well as, for example, the infrared spectral region. ((1) Substrate, (2) Anode, (3) organic hole conducting layer, (4) organic photoactive layer, (5) transparent top electrode, (6) electrode contact, (7), (8) passivation layer).

Description

Beschreibungdescription
Bildaufnehmer mit organisch basierter Photodiode und Verfahren zur Herstellung davonAn organic photodiode imager and method of making the same
Die Erfindung betrifft einen Bildaufnehmer, wie eine Digitalkamera und/oder eine Videokamera, die für verschiedene Spektralbereiche, wie auch beispielsweise für den Infrarot- Spektralbereich, einsetzbar ist.The invention relates to an image recorder, such as a digital camera and / or a video camera, which can be used for different spectral ranges, as well as, for example, for the infrared spectral range.
In digitalen Bildaufnehmern werden als Auslesechips CCD oder CMOS (Complementary Metal Oxide Semiconductor) Chips mit mehreren Megapixeln Auflösung eingesetzt.In digital imagers, CCDs or CMOS (Complementary Metal Oxide Semiconductor) chips with a resolution of several megapixels are used as readout chips.
Speziell CMOS Chips setzen sich immer mehr gegenüber CCDEspecially CMOS chips are more and more opposed to CCD
Chips durch, da diese CMOS Chips bereits sehr viel Logik in dem Chip integriert haben. Neben der aktiven Fläche ist eine Vielzahl weiterer Funktionen wie Weißabgleich, Belichtungskontrolle, etc. bereits im Chip integriert. Weiterhin erfolgt die Analog-Digital-Wandlung ebenfalls im Chip, so dass alle externen Signale bereits digital vorhanden sind. Diese Bildaufnehmer haben eine typische Baugröße von einigen mm2 bei einer Pixelgröße zwischen 2 und lOμm. Die Chips werden in herkömmlicher Halbleitertechnologie aus Silizium gefertigt. Jeder Bildpunkt hat mindestens einen Dünnfilmtransistor (TFT) als Schalter und einer Photodiode zur Detektion des einfallenden Lichts. Dies nennt man auch Aktiv-Matrix-Ansteuerung.Chips through, since these CMOS chips have already integrated a lot of logic in the chip. In addition to the active surface, a variety of other functions such as white balance, exposure control, etc. already integrated in the chip. Furthermore, the analog-to-digital conversion also takes place in the chip, so that all external signals are already available digitally. These image recorders have a typical size of a few mm 2 with a pixel size between 2 and 10 μm. The chips are made of silicon using conventional semiconductor technology. Each pixel has at least one thin film transistor (TFT) as a switch and a photodiode for detecting the incident light. This is called active matrix control.
Nachteilig an den bisher bekannten CMOS Bildaufnehmern ist, dass es nicht möglich ist, mit der auf Silizium basierenden Photodiode einen Bildaufnehmer für einen breitbandigen Bereich zu schaffen, weil die Silizium-Photodioden in ihrem Empfindlichkeitsbereich festgelegt sind (ca. 350 bis lOOOnm) .A disadvantage of the previously known CMOS imagers is that it is not possible to create an image sensor for a broadband range with the silicon-based photodiode because the silicon photodiodes are fixed in their sensitivity range (about 350 to 100 nm).
Ein weiterer Nachteil ist darin zu sehen, dass das Verhältnis von aktiver Fläche zur Fläche der Dünnfilmtransistoren sehr klein ist. Dieses als Füllfaktor bezeichnete Verhältnis liegt bei den CMOS Chips oft unter 50%, das heißt, dass die Hälfte der Lichtquanten nicht detektiert werden. Zwar werden Mikro- linsenarrays eingesetzt, jedoch führt dies wieder zu einer Komplikation des Gerätes und zur Kostensteigerung.A further disadvantage is the fact that the ratio of active area to the area of the thin-film transistors is very small. This ratio, called the fill factor, is often less than 50% for the CMOS chips, which means half the light quantum can not be detected. Although micro lens arrays are used, this again leads to a complication of the device and to an increase in costs.
Aufgabe der Erfindung ist es daher, großflächige Photodioden mit hoher Quanteneffizienz und einer einfach einstellbaren Bandbreite zur Verfügung zu stellen.The object of the invention is therefore to provide large-area photodiodes with high quantum efficiency and an easily adjustable bandwidth.
Gegenstand der Erfindung ist ein Bildaufnehmer, eine Schalt- matrix mit zumindest ein Substrat, einen Silizium-basierten Auslesechip und einen Elektrodenkontakt umfassend, wobei auf dem Elektrodenkontakt eine untere Elektrode aufgebracht ist, auf der zumindest eine organisch basierte photoaktive Schicht und darauf eine obere transparente Elektrode aufgebracht ist.The invention relates to an image sensor, a switching matrix comprising at least one substrate, a silicon-based readout chip and an electrode contact, wherein on the electrode contact a lower electrode is applied, on which at least one organic based photoactive layer and thereon an upper transparent electrode is applied.
Photodioden auf der Basis von organischen Halbleitermaterialien bieten die Möglichkeit, großflächige Photodioden mit hohen Quanteneffizienzen herzustellen. Die hierbei eingesetzten dünnen organischen Schichtsysteme können mit bekannten Her- stellungsverfahren wie Spin-Coating, Rakeln oder Druckverfahren kostengünstig hergestellt werden und ermöglichen so einen Preisvorteil, vor allem für größerflächige Bildaufnehmer.Photodiodes based on organic semiconductor materials offer the possibility of producing large-area photodiodes with high quantum efficiencies. The thin organic layer systems used in this case can be produced inexpensively by known production methods such as spin coating, doctor blades or printing methods and thus enable a price advantage, especially for larger-area image sensors.
Nach einer vorteilhaften Ausführungsform der Erfindung werden Halbleitermaterialien eingesetzt, die im IR (infraroten) Bereich absorbieren, so dass ein Bildaufnehmer für den IR- Bereich geschaffen wird.According to an advantageous embodiment of the invention, semiconductor materials are used which absorb in the IR (infrared) region, so that an image sensor for the IR region is created.
Nach einer weiteren Ausführungsform können Bildaufnehmer mit einer an das menschliche Auge angepassten Empfindlichkeitskurve hergestellt werden. Dafür ist das organische Material viel besser geeignet als das auf Silizium basierende, da Silizium in dem für das menschliche Auge unsichtbaren NIR Bereich >700nm besonders empfindlich ist, d.h. dieser Bereich muss bei einem Silizium basierten Bildaufnehmer aufwendig weggefiltert werden. Nach einer anderen Ausführungsform wird als Schaltmatrix eine CMOS-Schaltmatrix, beispielsweise wie sie von der Firma Omni- vision bekannt ist, eingesetzt. Das Blockdiagramm eines CMOS- Bildaufnehmers der Firma Omnivision zeigt, dass hier neben der tatsächlich aktiven Fläche des Chips eine Vielzahl weiterer Funktionen integriert ist.In another embodiment, imagers can be made with a sensitivity curve adapted to the human eye. For this, the organic material is much better suited than the silicon-based one, since silicon is particularly sensitive in the invisible to the human eye NIR range> 700nm, ie this area must be consuming filtered away in a silicon-based image sensor. According to another embodiment, the switching matrix used is a CMOS switching matrix, for example as known from the company Omnivision. The block diagram of a CMOS imager of the company Omnivision shows that here in addition to the actual active area of the chip, a variety of other functions is integrated.
Im Folgenden wird die Erfindung noch anhand zweier Figuren näher erläutert:The invention will be explained in more detail below with reference to two figures:
Figur 1 zeigt den Aufbau einer organischen Photodiode undFigure 1 shows the structure of an organic photodiode and
Figur 2 zeigt eine Ausführungsform der Erfindung, nämlich die Kombination einer herkömmlichen CMOS-Imager Schaltmatrix mit einer organisch basierten photoaktiven Schicht.FIG. 2 shows an embodiment of the invention, namely the combination of a conventional CMOS imager switching matrix with an organic-based photoactive layer.
Zu Figur 1: Die organischen Photodioden bestehen z.B. aus einem vertikalen Schichtsystem: Unten befindet sich ein Sub- strat 1 darüber eine Anode 2, die beispielsweise aus Indium Zinn Oxid (ITO) oder einem Metall ist. Darüber befindet sich gemäß der gezeigten Ausführungsform eine organische Lochleitschicht 3. Auf diese Schicht folgt die eigentlich aktive Schicht, die organische photoaktive Schicht 4 über der sich die transparente Topelektrode 5 befindet. Das Schichtsystem besteht beispielsweise aus einer Gold-Elektrode als Anode 2, einer so genannten Bulk-Heterjunction als aktive Schichten 3 und 4, die beispielsweise die beiden Komponenten P3HT (Absorber- und Lochtransportkomponente) und PCBM (Elektronenakzep- tor und -transportkomponente) umfasst. Die Wirkung als „Bulk- Heterojunction" ist, dass an den Grenzflächen der beiden Materialien eine Trennung der Ladungsträger erfolgt, die sich innerhalb des gesamten Schichtsystems ausbilden.With reference to Figure 1: The organic photodiodes consist e.g. from a vertical layer system: Below is a substrate 1 above an anode 2, which is for example of indium tin oxide (ITO) or a metal. In the embodiment shown, an organic hole-conducting layer 3 is located above this layer. The actually active layer, the organic photoactive layer 4, above which the transparent top electrode 5 is located, follows this layer. The layer system consists, for example, of a gold electrode as the anode 2, a so-called bulk heterojunction as active layers 3 and 4, which comprises, for example, the two components P3HT (absorber and hole transport component) and PCBM (electron acceptor and transport component). The effect as a "bulk heterojunction" is that at the interfaces of the two materials a separation of the charge carriers occurs, which form within the entire layer system.
Das im Beispiel und in der Figur 1 gezeigte Halbleitersystem zeigt hohe Quanteneffizienz in einem Spektralbereich von 350 bis 650 nm. Möchte man einen CMOS Bildaufnehmer („CMOS- Imager") mit einer an das menschliche Auge angepassten Emp- findlichkeitskurve herstellen, ist diese Materialkombination viel besser geeignet als Silizium, das in dem für das menschliche Auge unsichtbaren NIR Bereich (Wellenlänge des Lichts >700nm) besonders empfindlich ist. Deshalb müsste bei einem entsprechenden Silizium Imager dieser Bereich aufwendig weggefiltert werden.The semiconductor system shown in the example and in FIG. 1 shows high quantum efficiency in a spectral range of 350 to 650 nm. If a CMOS image recorder ("CMOS imager") with a human-adapted sense is to be used. This combination of materials is much better suited than silicon, which is particularly sensitive in the invisible to the human eye NIR range (wavelength of light> 700nm). Therefore, with a corresponding silicon imager, this area would have to be filtered out consuming.
Durch Verwendung anderer organischer Halbleiterkombinationen kann die spektrale Empfindlichkeit des Detektors leicht ange- passt werden. Weiterhin kann durch den Zusatz von Kohlen- stoff-Nanoröhrchen oder anorganischer Nanokristalle wie HgTe, CdSe, PbS, etc. der Spektralbereich bis zu 4μm erweitert werden .By using other organic semiconductor combinations, the spectral sensitivity of the detector can be easily adjusted. Furthermore, the addition of carbon nanotubes or inorganic nanocrystals such as HgTe, CdSe, PbS, etc. can expand the spectral range up to 4μm.
Zur Herstellung eines CMOS Imagers mit organischer Photodiode kann beispielsweise wie folgt vorgegangen werden:To produce a CMOS imager with an organic photodiode, for example, proceed as follows:
Eine fertige Schaltmatrix, wie beispielsweise die eines CMOS- Imagers, bei dem die Photodiode noch nicht aufgebracht ist, wird handelsüblich erhalten. Dieser CMOS Imager hat bevorzugt noch eine untere beispielsweise strukturierte Elektrode für jede Photodiode. Auf diese untere Elektrode wird ganzflächig die organische photoaktive Schicht (Bulk-heterojunction) aufgebracht. Darauf kann, ebenfalls ganzflächig und unstruktu- riert, die obere Elektrode aufgebracht werden.A finished switching matrix, such as that of a CMOS imager in which the photodiode is not yet applied, is obtained commercially. This CMOS imager preferably has a lower, for example, structured electrode for each photodiode. The organic photoactive layer (bulk heterojunction) is applied over this entire surface to this lower electrode. The upper electrode can then be applied thereon, also over the entire surface and unstructured.
Die ganzflächigen Schichten können extrem kostengünstig durch Spin Coating, Sprühen, Rakeln etc. aufgebracht werden.The whole-surface layers can be applied extremely cost-effectively by spin coating, spraying, doctoring, etc.
Trotz durchgängiger photoaktiver Schicht wurde ein Crosstalk (Übersprechen, das bei Erzeugen einer Spannung an einem Pixel die benachbarten Pixel auch zumindest teilweise aktiviert) zwischen den Pixeln von unter 5% gemessen werden (Pixelgröße ca . 150μm) .Despite a continuous photoactive layer, a crosstalk (crosstalk, which also at least partially activates the adjacent pixels when generating a voltage at one pixel) between the pixels of less than 5% (pixel size about 150 μm) was measured.
Figur 2 zeigt die Kombination einer herkömmlichen CMOS-Imager Schaltmatrix mit einer organischen photoaktiven Schicht. Die CMOS Imager Schaltmatrix sieht man unten zunächst mit einem Substrat 1, auf dem ein Elektrodenkontakt 6 in einer Passi- vierungsschicht 7 eingebettet ist. Auf der Passivierungs- schicht befindet sich die untere Elektrode 2, die ebenfalls strukturiert ist. Der Schichtaufbau bis zu diesem Punkt ist im Handel erhältlich, beispielsweise kann eine Schaltmatrix eines CMOS Bildaufnehmers der Firma Omnivision hier eingesetzt werden.Figure 2 shows the combination of a conventional CMOS imager switching matrix with an organic photoactive layer. The CMOS Imager switching matrix can be seen below with a first Substrate 1, on which an electrode contact 6 is embedded in a passivation layer 7. On the passivation layer is the lower electrode 2, which is also structured. The layer structure up to this point is commercially available, for example, a switching matrix of a CMOS image sensor from Omnivision can be used here.
Auf diesen, wie gesagt auch einfach eingekauften oder selbst hergestellten Aufbau wird nun großflächig mit einem kostengünstigen Verfahren eine unstrukturierte photoaktive Schicht, beispielsweise eine Bulk-heterojunction Schicht 4, wie oben beschrieben, aufgebracht. Optional kann davor noch eine Lochtransporterschicht 3, ebenfalls großflächig, kostengünstig und unstrukturiert aufgebracht werden.In this, as I said also simply purchased or self-made construction is now over a large area with a cost-effective method, an unstructured photoactive layer, for example, a bulk heterojunction layer 4, as described above applied. Optionally, before that, a hole transport layer 3, also over a large area, can be applied inexpensively and unstructured.
Die Bulk-Heterojunction Schicht 4 umfasst in der Regel zwei Komponenten und kann beispielsweise ein Blend aus einem lochtransportierenden Polythiophen und einem Elektronen transpor- tierenden Fulleren-Derivat, wie beispielsweise einem P3HT- PCBM-Blend, sein.The bulk heterojunction layer 4 generally comprises two components and may, for example, be a blend of a hole-transporting polythiophene and an electron-transporting fullerene derivative, for example a P3HT-PCBM blend.
Auf diese Schicht 4 kann wiederum unstrukturiert und durch billige Herstellungsmethoden realisierbar, die obere Elektro- de 5 aufgebracht werden. Auf die obere Elektrode kommen noch eine Passivierungsschicht 8 und eine Verkapselung (hier nicht gezeigt) . So lassen sich nach der Erfindung die CMOS-artigen organisch basierten Bildaufnehmer herstellen.In turn, unstructured and implementable by cheap production methods, the upper electrode 5 can be applied to this layer 4. On top of the upper electrode passivation layer 8 and an encapsulation (not shown here). Thus, according to the invention, the CMOS-like organic based image sensors can be produced.
Nach einer Ausführungsform der Erfindung werden die Bildaufnehmer einfach durch Beschichtungsverfahren hergestellt indem auf eine fertige CMOS-Schaltmatrix durch Beschichten wie Rakeln, Sprühen, coating, dipcoating, spincoating etc. zunächst eine oder mehrere photoaktive Schichten und dann eine un- strukturierte Elektrodenschicht aufgebracht werden.According to one embodiment of the invention, the image sensors are produced simply by coating methods by first applying one or more photoactive layers and then an unpatterned electrode layer to a finished CMOS switching matrix by coating such as doctoring, spraying, coating, dipcoating, spincoating, etc.
Da die organisch basierte photoaktiven Halbleiterschichten ganzflächig und ohne Strukturierung aufgebracht werden, erstrecken sich diese Schichten über 100% der Fläche und damit wird der Füllfaktor bei CMOS-artigen Bildaufnehmern enorm gesteigert und beträgt ungefähr 100%.Since the organic-based photoactive semiconductor layers are applied over the entire surface and without structuring, these layers extend over 100% of the area and thus the filling factor is increased enormously in CMOS-type image sensors and is approximately 100%.
Durch Verwendung passender organischer Halbleitersysteme kann auf einfache Weise ein schmalbandiger Photodetektor realisiert werden. Selbst der infrarote Spektralbereich ist durch diesen einfachen Ansatz mit sehr niedrigen Prozesskosten abgedeckt. Die CMOS-Schaltmatrix ist für alle Detektoren gleich. Es wird am Ende des Prozesses lediglich der passende organische Halbleiter großflächig, unter Vermeidung teurer Lithographieprozesse, aufgebracht .By using suitable organic semiconductor systems, a narrowband photodetector can be realized in a simple manner. Even the infrared spectral range is covered by this simple approach with very low process costs. The CMOS switching matrix is the same for all detectors. At the end of the process, only the suitable organic semiconductor is applied over a large area, avoiding expensive lithography processes.
In der vorliegenden Erfindung wird erstmals eine CMOS- Schaltmatrix eines Bildaufnehmers mit einer organischen photoaktiven Schicht kombiniert. Dadurch können schmalbandige Detektoren und Detektoren für unterschiedliche Spektralbereiche kostengünstig hergestellt werden. In the present invention, for the first time, a CMOS switching matrix of an image sensor is combined with an organic photoactive layer. As a result, narrowband detectors and detectors for different spectral ranges can be produced inexpensively.

Claims

Patentansprüche claims
1. Bildaufnehmer, eine Schaltmatrix mit zumindest ein Substrat, einen Silizium-basierten Auslesechip und einen Elekt- rodenkontakt umfassend, wobei auf dem Elektrodenkontakt eine unteren Elektrode aufgebracht ist, auf der zumindest eine organisch basierte photoaktive Schicht und darauf eine obere transparente Elektrode aufgebracht ist.An image sensor comprising a switching matrix with at least one substrate, a silicon-based readout chip and a contact with electrodes, wherein a lower electrode is applied to the electrode contact, on which at least one organic-based photoactive layer and thereupon an upper transparent electrode is applied.
2. Bildaufnehmer nach Anspruch 1, der im Infrarotbereich Bilder aufnimmt.2. Imager according to claim 1, which receives images in the infrared range.
3. Bildaufnehmer nach Anspruch 1 oder 2, bei dem die Schaltmatrix eine CMOS - Schaltmatrix ist.The imager according to claim 1 or 2, wherein the switching matrix is a CMOS switching matrix.
4. Bildaufnehmer nach einem der Ansprüche 1,2 oder 3, bei dem die untere Elektrode noch Bestandteil der Schaltmatrix ist .4. Imager according to one of claims 1,2 or 3, wherein the lower electrode is still part of the switching matrix.
5. Bildaufnehmer nach einem der vorstehenden Ansprüche, bei dem durch die Wahl und/oder Dotierung des Materials der organisch basierten photoaktiven Schicht der Wellenlängenbereich der aufzunehmenden Lichtquanten einstellbar ist.5. Imager according to one of the preceding claims, wherein the wavelength range of the light quantum to be recorded is adjustable by the choice and / or doping of the material of the organic-based photoactive layer.
6. Bildaufnehmer nach einem der vorstehenden Ansprüche, wobei in der organisch basierten photoaktiven Schicht eine Kombination mehrerer Materialien in Form eines Blends und/oder einer „Bulk-heterojunction" vorliegen.6. Imager according to one of the preceding claims, wherein present in the organic-based photoactive layer, a combination of several materials in the form of a blend and / or a "bulk heterojunction".
7. Bildaufnehmer nach einem der vorstehenden Ansprüche, wobei der Silizium basierte Auslesechip noch logische Funktionen wie Weissabgleich, Zoom, Belichtungskontrolle, Uhrzeit und/oder Datum integriert hat.7. Image recorder according to one of the preceding claims, wherein the silicon-based read-out chip still logical functions such as white balance, zoom, exposure control, time and / or date has been integrated.
8. Verfahren zur Herstellung eines Bildaufnehmers nach einem der vorstehenden Ansprüche, bei dem auf eine Schaltmatrix eine organisch basierte photoaktive Schicht und eine transpa- rent Elektrode unstrukturiert durch einfache Beschichtungsme- thoden aufgebracht werden. 8. A method for producing an image sensor according to one of the preceding claims, wherein on a switching matrix, an organically based photoactive layer and a transparent rent electrode can be applied unstructured by simple coating methods.
PCT/EP2007/060891 2006-10-18 2007-10-12 Image recorder with an organic photodiode and method for the production thereof WO2008046789A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07821258A EP2082428A2 (en) 2006-10-18 2007-10-12 Image recorder with an organic photodiode and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006049120.3 2006-10-18
DE102006049120A DE102006049120A1 (en) 2006-10-18 2006-10-18 An organic photodiode imager and method of making the same

Publications (2)

Publication Number Publication Date
WO2008046789A2 true WO2008046789A2 (en) 2008-04-24
WO2008046789A3 WO2008046789A3 (en) 2008-08-21

Family

ID=38830399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060891 WO2008046789A2 (en) 2006-10-18 2007-10-12 Image recorder with an organic photodiode and method for the production thereof

Country Status (3)

Country Link
EP (1) EP2082428A2 (en)
DE (1) DE102006049120A1 (en)
WO (1) WO2008046789A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797109B2 (en) 2016-10-14 2020-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Micro-structured organic sensor device and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3126546A1 (en) * 2021-09-01 2023-03-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for manufacturing an optoelectronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300612B1 (en) * 1998-02-02 2001-10-09 Uniax Corporation Image sensors made from organic semiconductors
GB0024804D0 (en) * 2000-10-10 2000-11-22 Microemissive Displays Ltd An optoelectronic device
JP2004134933A (en) * 2002-10-09 2004-04-30 Konica Minolta Holdings Inc Digital still camera and manufacturing method thereof
CA2519608A1 (en) * 2005-01-07 2006-07-07 Edward Sargent Quantum dot-polymer nanocomposite photodetectors and photovoltaics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797109B2 (en) 2016-10-14 2020-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Micro-structured organic sensor device and method for manufacturing same

Also Published As

Publication number Publication date
DE102006049120A1 (en) 2008-04-24
EP2082428A2 (en) 2009-07-29
WO2008046789A3 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US9515106B2 (en) Radiation imaging device with metal-insulator-semiconductor photodetector and thin film transistor
EP2188855B1 (en) Organic photodetector for the detection of infrared radiation, method for the production thereof, and use thereof
EP1344392B1 (en) Image sensor device comprising central locking
DE69935895T2 (en) ARCHITECTURE OF AN ACTIVE PIXEL SENSOR WITH THREE TRANSISTORS AND CORRELATED DOUBLE-PATTERNING
DE69737705T2 (en) Active picture element sensor matrix
DE69911932T2 (en) ACTIVE LINEAR SENSOR
DE2903651C2 (en) Solid state image sensing device
EP1949444A1 (en) Organic pixeled flat detector having increased sensitivity
WO2009156419A1 (en) Photodetector and method for the production thereof
US20080273104A1 (en) Image sensor pixel with gain control
EP1913638A1 (en) Photodetector, flat x-ray detector and method for producing the same
WO2007017475A1 (en) Organic photodetector with an increased sensitivity and use of a triaryl amine-fluorene polymer as an intermediate layer in a photodetector
US10735652B2 (en) Method for controlling imaging device, and imaging device
DE102011107844A1 (en) Complementary metal oxide semiconductor (CMOS) image sensor for use in e.g. video camera, has matrix of physical pixel cells whose interconnections are realized through fixed electrical interconnections of physical pixel cells
DE60120099T2 (en) ACTIVE PIXEL IMAGE SENSOR WITH IMPROVED LINEARITY
WO2008119766A1 (en) Ambient light sensor
EP2082428A2 (en) Image recorder with an organic photodiode and method for the production thereof
WO2023203995A1 (en) Photoelectric conversion element and imaging device
DE102006046210A1 (en) Organic photo-detector i.e. organic photodiode, has bulk-heterojunction-blend, whose components concentrations are changed, such that high concentrations of hole and electrodes transporting components exists close to anode and cathode
EP1344259A1 (en) Optoelectronic component for conversion of electromagnetic radiation into an intensity-dependent photocurrent
DE112014000624T5 (en) Photodiode array with a charge-absorbing doped zone
DE112022002176T5 (en) Pixel array, image sensor and method for operating a pixel array
EP3905664B1 (en) Image sensor
US20210225939A1 (en) Imaging device and method for driving imaging device
WO2009024467A1 (en) Organically based optical position sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07821258

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007821258

Country of ref document: EP