WO2008119766A1 - Ambient light sensor - Google Patents

Ambient light sensor Download PDF

Info

Publication number
WO2008119766A1
WO2008119766A1 PCT/EP2008/053751 EP2008053751W WO2008119766A1 WO 2008119766 A1 WO2008119766 A1 WO 2008119766A1 EP 2008053751 W EP2008053751 W EP 2008053751W WO 2008119766 A1 WO2008119766 A1 WO 2008119766A1
Authority
WO
WIPO (PCT)
Prior art keywords
ambient light
light sensor
sensor according
photodiodes
organic
Prior art date
Application number
PCT/EP2008/053751
Other languages
German (de)
French (fr)
Inventor
Jens FÜRST
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008119766A1 publication Critical patent/WO2008119766A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0266Field-of-view determination; Aiming or pointing of a photometer; Adjusting alignment; Encoding angular position; Size of the measurement area; Position tracking; Photodetection involving different fields of view for a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/029Multi-channel photometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0403Mechanical elements; Supports for optical elements; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/601Assemblies of multiple devices comprising at least one organic radiation-sensitive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to an ambient light sensor for monitoring the intensity of room light in enclosed spaces with at least one photodetector.
  • photodetectors with the largest possible reception angle are required. Such detectors are particularly necessary for so-called “adaptive-light” applications in which the illumination in the room is selectively adaptable elaborate optics is provided to capture the largest possible solid angle.
  • the sensitivity curve of silicon (Si) photodiodes is very poorly matched to that of the human eye.
  • Si photodiode is particularly sensitive in the infrared spectral range around 850 nm, while the human eye best recognizes green light around 530 nm.
  • additional interference filters are therefore necessary which filter away the long-wave light. It should be noted that the blocking of long-wave light is much more complex than of short-wave light.
  • WO 2004/026012 Al a multi-functional housing is already known, which can be used for the above purposes. If necessary, nanoporous fullerene layers according to DE 10 2004 036 793 A1 could also be used in conjunction with organic photovoltaics.
  • the invention relates to an ambient light sensor in which photodiodes based on organic semiconductor materials are present.
  • photodiodes can be formed in a large area in predeterminable geometry and, when used as an ambient light sensor in closed rooms, can be directed to different areas of the room.
  • the invention makes use of the easy handling of the organic semiconductor materials. It is now possible either to provide large-area flexible substrates with planar photodiodes in regions and then to bend them into the appropriate spatial form, or to standardize individual detectors, each having a planar photodiode, to form a suitable spatial form. In the first case, in particular a truncated cone and in the second case, in particular a cube come into question as a three-dimensional form. In both cases, it is possible to cover a specifiable spatial area which depends on the number of planar photodiodes, in particular an area with a nearly 360 ° solid angle.
  • Photodiodes based on organic semiconductor materials offer the possibility of producing large-area photodiodes with high quantum efficiencies, for example 50 to 85%, in the visible region of the spectrum.
  • the thin organic layer systems used in this case can be produced cost-effectively with known production methods such as so-called spin-coating, doctoring or printing methods, thereby enabling a considerable price advantage over known semiconductor components, especially for large-area arrangements (devices).
  • the organic photodiodes consist z. B. from a vertical Layer system: ITO bottom electrode / PEDOT: PSS / P3HT PCBM blend / Ca-Ag top electrode. Selective electrodes are necessary to ensure a diode behavior of the device.
  • the anode should be characterized by a high, the cathode by a low work function.
  • the blend of the two components, namely P3HT (absorber and hole transport component) and PCBM (electron acceptor and transport component) acts as a bulk heterojunction material form within the entire layer volume.
  • the proposed material system has a sensitivity curve very close to that of the human eye. Thus eliminating path filtering of the infrared spectral components as in silicon technology.
  • organic photodetectors can be processed over a large area on flexible substrates such as PET films.
  • a plurality of large-area photodetector elements of a few mm 2 to cm 2 are preferably applied to a flexible substrate, such as a PET film. Subsequently, the detector is bent into a circle or cone and installed in a holder which contains the control electronics. Such a detector has a solid angle sensitivity range of 360 °.
  • rigid substrates for the large-area photodetector elements with several such elements being able to be combined to form a geometrical spatial body. In particular, five elements can form surfaces of a cube and cover the main directions of a room.
  • the described sensor can be advantageously designed as an energy-autonomous sensor by combination with an organic solar cell.
  • the figures show a schematic representation for the production of a cost-effective 360 ° photodetector. In detail shows
  • FIG. 1 shows the production of large area detectors on flexible substrates
  • Figure 2 shows the bending of the substrate with the detectors to a
  • FIG. 3 shows a large-area detector on a rigid substrate and FIG. 4 shows the combination of detectors from FIG. 3 with a room light sensor.
  • Photodetectors based on semiconductors i. Silicon photodiodes are known in the art. For example, they have a detection angle of up to 130 °. Such photodetectors require a housing with precise centering of the actual silicon crystal, for which appropriate holding means are necessary. What is essential here is optics in order to realize a suitable detection angle.
  • Organic photodiodes and their preparation are known from the prior art, for which reference is made, in particular, to the earlier German patent applications of the applicant with file references 10 2005 055 278 and 10 2005 038 123. Apart from that, such a construction is in principle also known from the general state of the art of organic semiconductors. It is essential in each case that a substrate is present, which in particular can be flexible, on which an anode as the first metal electrode, an organic semiconductor with a semiconductor junction and thereon a cathode as a further electrode are arranged. A voltage can be applied between the electrodes. For organic photodiodes is still essential that a protection of the component is present by means of an encapsulation.
  • the photoconductive organic layer can be formed from a so-called "bulk heterojunction" material, which is realized, for example, as a so-called blend of a hole-transporting polythiophene and an electron-transporting fullerene derivative.
  • a flexible substrate is denoted by 1.
  • six large-area detectors 2 X are applied, each having a structure described above.
  • the flexible substrate 1 with the detectors 2 X applied thereto is bent into a circle and, in particular, fitted in a funnel-shaped fitting into an existing housing, which is delimited by covers 3 and 4.
  • the housing thus forms a truncated cone-like sensor.
  • this sensor cone can be fastened to a room ceiling.
  • the inclination of the funnel-shaped housing indicates in each case the focus on certain areas of space.
  • a single large-area detector 12 is applied to a rigid substrate 11. For example, square surfaces are formed.
  • FIG. 3 Elements according to FIG. 3 can be combined to geometric space bodies.
  • four detectors 12i form the circumferential surfaces of a cube and a fifth detector 12i its base, which is illustrated with reference to FIG.
  • FIG. 2 or FIG. be varied very different way. It is common in each case that organic photodetectors, which can be produced areally, are used.
  • the sensors described can be completed by solar cells, so that self-powered sensors are formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Semiconductor-based photo detectors are known for usage as ambient light sensors. Said photo detectors, comprising silicon mono-crystals, need particularly a housing and associated optics. According to the invention, the sensor (6, 10) has a predefined number of photodiodes (2 i,12 i) based on organic semi-conductor materials, wherein the organic photodiodes (2 i,12i) are designed extensively in a given geometry und can be directed at different areas of a room.

Description

Beschreibungdescription
UmgebungsIichtsensorUmgebungsIichtsensor
Die Erfindung bezieht sich auf einen Umgebungslichtsensor zur Überwachung der Intensität von Raumlicht in geschlossenen Räumen mit wenigstens einem Photodetektor.The invention relates to an ambient light sensor for monitoring the intensity of room light in enclosed spaces with at least one photodetector.
Zur Überwachung der Raumlichtintensität werden Photodetekto- ren mit einem möglichst großen Empfangswinkel benötigt. Speziell für sog. „Adaptive-Light"-Anwendungen, bei denen die Beleuchtung im Raum punktuell anpassbar ist, sind solche Detektoren zwingend erforderlich. Ein bekannter Detektor für ,,Adaptive-Light"-Anwendungen hat eine kleine Si-Photodiode, die mit einer aufwändigen Optik versehen ist, um einen möglichst großen Raumwinkel zu erfassen.To monitor the room light intensity, photodetectors with the largest possible reception angle are required. Such detectors are particularly necessary for so-called "adaptive-light" applications in which the illumination in the room is selectively adaptable elaborate optics is provided to capture the largest possible solid angle.
Neben den hohen Kosten letzteren Gerätes ist die Empfindlichkeitskurve von Silizium (Si) -Photodioden sehr schlecht an die des menschlichen Auges angepasst. So ist eine Si-Photodiode besonders im infraroten Spektralbereich um 850 nm besonders empfindlich, während das menschliche Auge grünes Licht um 530 nm am besten erkennt. Um eine Überreaktion des Si-Detek- tors im Infraroten zu unterdrücken sind daher zusätzliche In- terferenzfilter nötig, die das langwellige Licht wegfiltern. Dabei muss beachtet werden, dass das Abblocken von langwelligem Licht wesentlich aufwändiger ist als von kurzwelligem Licht .In addition to the high cost of the latter device, the sensitivity curve of silicon (Si) photodiodes is very poorly matched to that of the human eye. For example, an Si photodiode is particularly sensitive in the infrared spectral range around 850 nm, while the human eye best recognizes green light around 530 nm. In order to suppress an overreaction of the Si detector in the infrared, additional interference filters are therefore necessary which filter away the long-wave light. It should be noted that the blocking of long-wave light is much more complex than of short-wave light.
Aus der WO 2004/026012 Al ist ein multifunktionales Gehäuse vorbekannt, das für obige Zwecke eingesetzt werden kann. Dabei könnten ggf. auch nanoporöse Fullerenschichten entsprechend der DE 10 2004 036 793 Al in Verbindung mit der organischen Photovoltaik Verwendung finden.From WO 2004/026012 Al a multi-functional housing is already known, which can be used for the above purposes. If necessary, nanoporous fullerene layers according to DE 10 2004 036 793 A1 could also be used in conjunction with organic photovoltaics.
Davon ausgehend ist es Aufgabe der Erfindung, einen Umgebungslichtsensor zu schaffen, der kostengünstig ist und einen möglichst großen Raumwinkel überwachen kann.On this basis, it is an object of the invention to provide an ambient light sensor, which is inexpensive and a monitor the largest possible solid angle.
Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen der Er- findung sind in den Unteransprüchen angegeben.The object is achieved by the features of claim 1. Advantageous developments of the invention are specified in the subclaims.
Gegenstand der Erfindung ist ein Umgebungslichtsensor, bei dem Photodioden auf der Basis von organischen Halbleitermaterialien vorhanden sind. Derartige Photodioden sind großflä- chig in vorgebbarer Geometrie ausbildbar und können bei der Verwendung als Umgebungslichtsensor in geschlossenen Räumen auf unterschiedliche Bereiche des Raumes gerichtet sein.The invention relates to an ambient light sensor in which photodiodes based on organic semiconductor materials are present. Such photodiodes can be formed in a large area in predeterminable geometry and, when used as an ambient light sensor in closed rooms, can be directed to different areas of the room.
Die Erfindung macht sich also insbesondere die leichte Hand- habbarkeit der organischen Halbleitermaterialien zunutze. Es können nun entweder großflächige flexible Substrate bereichsweise mit flächenhaften Photodioden versehen und anschließend in die geeignete Raumform gebogen werden oder es werden standardisierte, einzelne Detektoren mit jeweils flächenhafter Photodiode zu einer geeigneten Raumform zusammengefügt. Als Raumform kommen im ersten Fall insbesondere ein Kegelstumpf und im zweiten Fall insbesondere ein Würfel in Frage. Es lässt sich in beiden Fällen ein vorgebbarer, von der Anzahl der flächigen Photodioden abhängiger Raumbereich, insbesonde- re ein Bereich mit nahezu 360° Raumwinkel, abdecken.In particular, the invention makes use of the easy handling of the organic semiconductor materials. It is now possible either to provide large-area flexible substrates with planar photodiodes in regions and then to bend them into the appropriate spatial form, or to standardize individual detectors, each having a planar photodiode, to form a suitable spatial form. In the first case, in particular a truncated cone and in the second case, in particular a cube come into question as a three-dimensional form. In both cases, it is possible to cover a specifiable spatial area which depends on the number of planar photodiodes, in particular an area with a nearly 360 ° solid angle.
Photodioden auf der Basis von organischen Halbleitermaterialien bieten die Möglichkeit, großflächige Photodioden mit hohen Quanteneffizienzen, beispielsweise 50 bis 85 %, im sichtbaren Bereich des Spektrums herzustellen. Die hierbei eingesetzten dünnen organischen Schichtsysteme können mit bekannten Herstellungsverfahren wie sog. Spin-Coating, Rakeln oder Druckverfahren kostengünstig hergestellt werden und ermöglichen dadurch vor allem für großflächige Anordnungen (De- vices) einen beachtlichen Preisvorteil gegenüber bekannten Halbleiterbauelementen .Photodiodes based on organic semiconductor materials offer the possibility of producing large-area photodiodes with high quantum efficiencies, for example 50 to 85%, in the visible region of the spectrum. The thin organic layer systems used in this case can be produced cost-effectively with known production methods such as so-called spin-coating, doctoring or printing methods, thereby enabling a considerable price advantage over known semiconductor components, especially for large-area arrangements (devices).
Die organischen Photodioden bestehen z. B. aus einem verti- kalen Schichtsystem: ITO-Bottom-Elektrode/PEDOT : PSS/P3HT- PCBM-Blend/Ca-Ag-Top-Elektrode. Selektive Elektroden sind nötig, um ein Diodenverhalten des Devices zu gewährleisten. Dabei soll die Anode durch eine hohe, die Kathode durch eine niedrige Austrittsarbeit charakterisiert sein. Der Blend aus den beiden Komponenten und zwar P3HT (Absorber- und Lochtransportkomponente) sowie PCBM (Elektronenakzeptor und -transportkomponente) wirkt hierbei als sog. „Bulk Hetero- junction"-Material . Die Trennung der Ladungsträger erfolgt an den Grenzflächen der beiden Materialien, die sich innerhalb des gesamten Schichtvolumens ausbilden.The organic photodiodes consist z. B. from a vertical Layer system: ITO bottom electrode / PEDOT: PSS / P3HT PCBM blend / Ca-Ag top electrode. Selective electrodes are necessary to ensure a diode behavior of the device. The anode should be characterized by a high, the cathode by a low work function. The blend of the two components, namely P3HT (absorber and hole transport component) and PCBM (electron acceptor and transport component) acts as a bulk heterojunction material form within the entire layer volume.
Das vorgeschlagene Materialsystem weist eine Empfindlichkeitskurve auf, die dem des menschlichen Auges sehr nahe kommt. Somit entfällt ein Wegfiltern der infraroten Spektralkomponenten wie bei Silizium-Technologie. Daneben können organische Photodetektoren großflächig auf flexiblen Substraten wie PET Folien prozessiert werden.The proposed material system has a sensitivity curve very close to that of the human eye. Thus eliminating path filtering of the infrared spectral components as in silicon technology. In addition, organic photodetectors can be processed over a large area on flexible substrates such as PET films.
Mit den vorstehend beschriebenen Merkmalen ist es möglich, kostengünstig 360 °-Umgebungslichtsensoren herzustellen. Dabei werden vorzugsweise auf ein flexibles Substrat, wie eine PET Folie, mehrere großflächige Photodetektorelemente von einigen mm2 bis cm2 aufgebracht. Anschließend wird der Detektor zu einem Kreis bzw. Kegel gebogen und in eine Halterung, die die Ansteuerelektronik enthält, eingebaut. Ein solcher Detektor hat einen Raumwinkel-Empfindlichkeitsbereich von 360°. Alternativ ist es auch möglich, starre Substrate für die großflächigen Photodetektorelemente zu verwenden, wobei mehrere sol- eher Elemente zu einem geometrischen Raumkörper zusammensetzbar sind. Insbesondere fünf Elemente können Flächen eines Würfels bilden und die Hauptrichtungen eines Raumes abdecken.With the features described above, it is possible to inexpensively produce 360 ° ambient light sensors. In this case, a plurality of large-area photodetector elements of a few mm 2 to cm 2 are preferably applied to a flexible substrate, such as a PET film. Subsequently, the detector is bent into a circle or cone and installed in a holder which contains the control electronics. Such a detector has a solid angle sensitivity range of 360 °. Alternatively, it is also possible to use rigid substrates for the large-area photodetector elements, with several such elements being able to be combined to form a geometrical spatial body. In particular, five elements can form surfaces of a cube and cover the main directions of a room.
Der beschriebene Sensor kann durch Kombination mit einer or- ganischen Solarzelle vorteilhafterweise als energieautarker Sensor ausgebildet sein.The described sensor can be advantageously designed as an energy-autonomous sensor by combination with an organic solar cell.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den weiteren Patentansprüchen .Further details and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the drawing in conjunction with the other claims.
Die Figuren zeigen eine schematische Darstellung zur Herstellung eines kostengünstigen 360 °-Photodetektors . Im Einzelnen zeigt dabeiThe figures show a schematic representation for the production of a cost-effective 360 ° photodetector. In detail shows
Figur 1 die Herstellung von großflächigen Detektoren auf fle- xiblen Substraten,FIG. 1 shows the production of large area detectors on flexible substrates,
Figur 2 das Biegen des Substrates mit den Detektoren zu einemFigure 2 shows the bending of the substrate with the detectors to a
Kegel und Einpassung in ein Sensorgehäuse,Cone and fitting into a sensor housing,
Figur 3 einen großflächigen Detektor auf einem starren Substrat und Figur 4 die Kombination von Detektoren aus Figur 3 zu einem Raumlichtsensor .3 shows a large-area detector on a rigid substrate and FIG. 4 shows the combination of detectors from FIG. 3 with a room light sensor.
Photodetektoren auf der Basis von Halbleitern, d.h. Silizium- Photodioden, sind vom Stand der Technik bekannt. Beispiels- weise haben sie einen Erfassungswinkel von bis zu 130°. Derartige Photodetektoren benötigen ein Gehäuse mit genauer Zentrierung des eigentlichen Silizium-Kristalls, wozu entsprechende Haltungsmittel notwendig sind. Wesentlich ist dabei eine Optik, um einen geeigneten Erfassungswinkel zu rea- lisieren.Photodetectors based on semiconductors, i. Silicon photodiodes are known in the art. For example, they have a detection angle of up to 130 °. Such photodetectors require a housing with precise centering of the actual silicon crystal, for which appropriate holding means are necessary. What is essential here is optics in order to realize a suitable detection angle.
Organische Photodioden und deren Herstellung sind vom Stand der Technik bekannt, wozu insbesondere auf die älteren deutschen Patentanmeldungen der Anmelderin mit Aktenzeichen 10 2005 055 278 sowie 10 2005 038 123 verwiesen wird. Davon abgesehen ist ein solcher Aufbau im Prinzip auch vom allgemeinen Stand der Technik der organischen Halbleiter bekannt. Wesentlich ist dabei jeweils, dass ein Substrat vorhanden ist, das insbesondere flexibel sein kann, auf dem eine Anode als erste Metallelektrode, ein organischer Halbleiter mit einem Halbleiterübergang und darauf eine Kathode als weitere Elektrode angeordnet sind. Zwischen den Elektroden ist eine Spannung anlegbar. Für organische Photodioden ist noch wesentlich, dass ein Schutz des Bauteiles mittels einer Verkapselung vorhanden ist. Die photoleitfähige organische Schicht kann dabei aus einem so genannte „Bulk-Heterojunction"-Material gebildet sein. Dies wird beispielsweise als so genanntes Blend aus einem lochtransportierenden Polythiophen und einem elektronentransportierenden Fullerenderivat realisiert.Organic photodiodes and their preparation are known from the prior art, for which reference is made, in particular, to the earlier German patent applications of the applicant with file references 10 2005 055 278 and 10 2005 038 123. Apart from that, such a construction is in principle also known from the general state of the art of organic semiconductors. It is essential in each case that a substrate is present, which in particular can be flexible, on which an anode as the first metal electrode, an organic semiconductor with a semiconductor junction and thereon a cathode as a further electrode are arranged. A voltage can be applied between the electrodes. For organic photodiodes is still essential that a protection of the component is present by means of an encapsulation. The photoconductive organic layer can be formed from a so-called "bulk heterojunction" material, which is realized, for example, as a so-called blend of a hole-transporting polythiophene and an electron-transporting fullerene derivative.
In der Figur 1 ist ein flexibles Substrat mit 1 bezeichnet. Auf dem Substrat sind beispielsweise sechs großflächige Detektoren 2X aufgebracht, die jeweils einen vorstehend beschriebenen Aufbau haben.In FIG. 1, a flexible substrate is denoted by 1. On the substrate, for example, six large-area detectors 2 X are applied, each having a structure described above.
Entsprechend Figur 2 wird das flexible Substrat 1 mit den darauf aufgebrachten Detektoren 2X zu einem Kreis gebogen und insbesondere in trichterförmiger Einpassung in ein vorhandenes Gehäuse eingepasst, das durch Abdeckungen 3 und 4 begrenzt ist. Das Gehäuse bildet also einen kegelstumpfartigen Sensor. Mittels einer Halterung 5 ist dieser Sensorkegel an einer Raumdecke befestigbar. Damit ist ein Umgebungslichtsensor geschaffen, der insbesondere einen 360 °-Erfassungswinkel hat. Die Neigung des trichterförmigen Gehäuses gibt dabei jeweils die Fokussierung auf bestimmte Raumbereiche an.According to FIG. 2, the flexible substrate 1 with the detectors 2 X applied thereto is bent into a circle and, in particular, fitted in a funnel-shaped fitting into an existing housing, which is delimited by covers 3 and 4. The housing thus forms a truncated cone-like sensor. By means of a holder 5, this sensor cone can be fastened to a room ceiling. This creates an ambient light sensor which in particular has a 360 ° detection angle. The inclination of the funnel-shaped housing indicates in each case the focus on certain areas of space.
In Figur 3 ist ein einzelner großflächiger Detektor 12 auf einem starren Substrat 11 aufgebracht. Es werden beispielsweise quadratische Flächen gebildet.In FIG. 3, a single large-area detector 12 is applied to a rigid substrate 11. For example, square surfaces are formed.
Elemente gemäß Figur 3 können zu geometrischen Raumkörpern zusammengefügt werden. Beispielsweise bilden vier Detektoren 12i die Umlaufflächen eines Würfels und ein fünfter Detektor 12i dessen Grundfläche, was anhand Figur 4 verdeutlicht wird.Elements according to FIG. 3 can be combined to geometric space bodies. For example, four detectors 12i form the circumferential surfaces of a cube and a fifth detector 12i its base, which is illustrated with reference to FIG.
Mit einem solchen 'Sensorwürfel' können vier Raumrichtungen und die Richtung nach unten abgedeckt werden.With such a 'sensor cube' four spatial directions and the direction downwards can be covered.
Der Aufbau gemäß Figur 2 oder Figur 4 kann in unterschied- lichster Weise variiert werden. Gemeinsam ist dabei jeweils, dass organische Photodetektoren, die flächenhaft hergestellt werden können, verwendet werden.The construction according to FIG. 2 or FIG. be varied very different way. It is common in each case that organic photodetectors, which can be produced areally, are used.
Die Verwendung der organischen Photodetektoren und Aufbau zu den in Figur 2 und Figur 4 dargestellten Sensoren hat eine Reihe von Vorteilen. Dies sind insbesondere: keine Überempfindlichkeit im infraroten Spektralbereich einfache Herstellung großer Detektorflächen - Prozessierung auf geeigneten Substraten und anschließendes Zusammenfügen in die korrekte Form kostengünstige Realisierung.The use of the organic photodetectors and structure to the sensors shown in Figure 2 and Figure 4 has a number of advantages. These are in particular: no hypersensitivity in the infrared spectral range simple production of large detector surfaces - processing on suitable substrates and subsequent assembly into the correct form cost-effective realization.
Die beschriebenen Sensoren können durch Solarzellen komplet- tiert werden, so dass energieautarke Sensoren gebildet werden . The sensors described can be completed by solar cells, so that self-powered sensors are formed.

Claims

Patentansprüche claims
1. Umgebungslichtsensor zur Überwachung der Intensität von Raumlicht in geschlossenen Räumen, mit wenigstens einem Pho- todetektor (6, 10), wobei der Photodetektor ( 6, 10) eine vorgegebene Anzahl von Photodioden (2lr 12X) auf der Basis von organischen Halbleitermaterialien beinhaltet und die Photodioden (2lr 12X) großflächig in vorgegebener Geometrie ausgebildet sind und auf unterschiedliche Bereiche eines Raumes gerichtet sind.An ambient light sensor for monitoring the intensity of room light in enclosed spaces, comprising at least one photodetector (6, 10), wherein the photodetector (6, 10) a predetermined number of photodiodes (2 lr 12 X ) based on organic semiconductor materials includes and the photodiodes (2 lr 12 X ) are formed over a large area in a predetermined geometry and are directed to different areas of a room.
2. Umgebungslichtsensor nach Anspruch 1, dadurch gekennzeichnet, dass der Photodetektor (6) aus einem flexiblen Substrat2. Ambient light sensor according to claim 1, characterized in that the photodetector (6) consists of a flexible substrate
(1) mit mehreren darauf aufgebrachten flächenhaften Photodio- den (2X) besteht, wobei das Substrat (1) mit den Photodioden(1) with a plurality of planar photodiodes (2 × ) applied thereto, wherein the substrate (1) with the photodiodes
(2) in eine vorgebbare Raumgeometrie biegbar ist.(2) is bendable in a predetermined spatial geometry.
3. Umgebungslichtsensor nach Anspruch 2, dadurch gekennzeichnet, dass das gebogene Substrat (1) einen Kegelabschnitt bil- det.3. Ambient light sensor according to claim 2, characterized in that the curved substrate (1) forms a conical section.
4. Umgebungslichtsensor nach Anspruch 1, dadurch gekennzeichnet, dass ein einzelner Photodetektor aus einem starren Substrat (11) mit daran aufgebrachter flächenhafter Photodiode (12) besteht, wobei mehrere Photodetektoren zu einer vorgebbaren Raumform zusammenbaubar sind.4. Ambient light sensor according to claim 1, characterized in that a single photodetector consists of a rigid substrate (11) with surface-applied photodiode (12) applied thereto, wherein a plurality of photodetectors can be assembled into a predeterminable spatial form.
5. Umgebungslichtsensor nach Anspruch 4, dadurch gekennzeichnet, dass fünf Photodetektoren eine Würfelbasisform bilden.5. Ambient light sensor according to claim 4, characterized in that five photodetectors form a cubic base.
6. Umgebungslichtsensor nach Anspruch 3 oder Anspruch 5, dadurch gekennzeichnet, dass ein Bereich von 360° in der Umgebung des Raumes abgedeckt ist.6. Ambient light sensor according to claim 3 or claim 5, characterized in that a range of 360 ° is covered in the vicinity of the room.
7. Umgebungslichtsensor nach Anspruch 1, dadurch gekennzeichnet, dass die organischen Photodioden (2lr 12X) hohe Quanteneffizienzen im sichtbaren Bereich des Lichtspektrums aufweisen . 7. Ambient light sensor according to claim 1, characterized in that the organic photodiodes (2 lr 12 X ) have high quantum efficiencies in the visible range of the light spectrum.
8. Umgebungslichtsensor nach Anspruch 7, dadurch gekennzeichnet, dass die Quanteneffizienz wenigstens 50 % beträgt.8. Ambient light sensor according to claim 7, characterized in that the quantum efficiency is at least 50%.
9. Umgebungslichtsensor nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die organischen Photodioden (2lr 12X) aus einem vertikalen Schichtsystem bestehen.9. Ambient light sensor according to one of claims 7 or 8, characterized in that the organic photodiodes (2 lr 12 X ) consist of a vertical layer system.
10. Umgebungslichtsensor nach Anspruch 9, dadurch gekenn- zeichnet, dass der Aufbau des Schichtsystems aus einer Anode und einer Kathode mit dazwischen liegendem organischen Halbleiter besteht.10. Ambient light sensor according to claim 9, characterized in that the structure of the layer system consists of an anode and a cathode with intervening organic semiconductor.
11. Umgebungslichtsensor nach Anspruch 10, dadurch gekenn- zeichnet, dass die Anode eine hohe Austrittsarbeit, die Kathode dagegen eine niedrige Austrittsarbeit aufweist.11. Ambient light sensor according to claim 10, characterized in that the anode has a high work function, while the cathode has a low work function.
12. Umgebungslichtsensor nach Anspruch 10, dadurch gekennzeichnet, dass zwischen Kathode und Anode wenigstens eine or- ganische Schicht mit einer Absorber- und einer Lochtransportkomponente und einem Elektronenakzeptor und Elektronentransportkomponente vorhanden ist.12. Ambient light sensor according to claim 10, characterized in that between the cathode and anode at least one organic layer with an absorber and a hole transport component and an electron acceptor and electron transport component is present.
13. Umgebungslichtsensor nach Anspruch 12, dadurch gekenn- zeichnet, dass die organische Schicht ein Blend aus einem lochtransportierenden Polythiopen und einem elektronentransportierenden Fulleren-Derivat ist13. Ambient light sensor according to claim 12, characterized in that the organic layer is a blend of a hole-transporting polythiophene and an electron-transporting fullerene derivative
14. Umgebungslichtsensor nach einem der vorhergehenden An- Sprüche, dadurch gekennzeichnet, dass in Verbindung mit einer Solarzelle ein energieautarker Sensor gebildet ist. 14. Ambient light sensor according to one of the preceding claims, characterized in that an energy-autonomous sensor is formed in connection with a solar cell.
PCT/EP2008/053751 2007-03-30 2008-03-28 Ambient light sensor WO2008119766A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007015471.4 2007-03-30
DE102007015471A DE102007015471B3 (en) 2007-03-30 2007-03-30 Environmental light sensor for monitoring intensity of interior light in closed areas, has light sensor comprises of photodiode, which is made of organic semiconductor material and photodiodes are formed in given geometry of large area

Publications (1)

Publication Number Publication Date
WO2008119766A1 true WO2008119766A1 (en) 2008-10-09

Family

ID=39597815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/053751 WO2008119766A1 (en) 2007-03-30 2008-03-28 Ambient light sensor

Country Status (2)

Country Link
DE (1) DE102007015471B3 (en)
WO (1) WO2008119766A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024467A1 (en) * 2007-08-17 2009-02-26 Siemens Aktiengesellschaft Organically based optical position sensor
CN102338660A (en) * 2010-07-08 2012-02-01 赫拉胡克公司 Sensor arrangement for detecting ambient conditions
CN102569653A (en) * 2011-12-26 2012-07-11 浙江大学 Organic solar cell with conical structure
DE102013109506A1 (en) * 2013-08-30 2015-03-05 CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Directionally sensitive photosensor for detecting the direction of incidence of light
DE102013219011A1 (en) * 2013-09-20 2015-03-26 Osram Gmbh Sensor unit for light control
DE102015201460A1 (en) * 2015-01-28 2016-07-28 Siemens Healthcare Gmbh Position determination of a medical instrument

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011025B3 (en) * 2010-03-11 2011-07-28 Siemens Aktiengesellschaft, 80333 sensor arrangement
DE102011077961A1 (en) 2011-06-22 2012-12-27 Siemens Aktiengesellschaft Low light detection with organic photosensitive component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821743A1 (en) * 1988-06-28 1990-01-11 Bosch Gmbh Robert Sensor for the detection of irradiation
US20030188776A1 (en) * 2002-01-25 2003-10-09 Konarka Technologies, Inc. Photovoltaic powered multimedia greeting cards and smart cards
DE102004053958B3 (en) * 2004-11-09 2005-09-01 Behr Hella Thermocontrol Gmbh Device for detecting electromagnetic radiation, especially sunlight, for use in vehicle, has metal core conducting plate with region(s) inclined to its plane, at least one optoelectronic component arranged in inclined region
WO2007017475A1 (en) * 2005-08-08 2007-02-15 Siemens Aktiengesellschaft Organic photodetector with an increased sensitivity and use of a triaryl amine-fluorene polymer as an intermediate layer in a photodetector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1535500A1 (en) * 2002-09-05 2005-06-01 Siemens Aktiengesellschaft Multifunctional housing
DE102004036793A1 (en) * 2004-07-29 2006-03-23 Konarka Technologies, Inc., Lowell Nanoporous fullerene layers and their use in organic photovoltaics
DE102005055278B4 (en) * 2005-11-17 2010-12-02 Siemens Ag Organic pixelated flat detector with increased sensitivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821743A1 (en) * 1988-06-28 1990-01-11 Bosch Gmbh Robert Sensor for the detection of irradiation
US20030188776A1 (en) * 2002-01-25 2003-10-09 Konarka Technologies, Inc. Photovoltaic powered multimedia greeting cards and smart cards
DE102004053958B3 (en) * 2004-11-09 2005-09-01 Behr Hella Thermocontrol Gmbh Device for detecting electromagnetic radiation, especially sunlight, for use in vehicle, has metal core conducting plate with region(s) inclined to its plane, at least one optoelectronic component arranged in inclined region
WO2007017475A1 (en) * 2005-08-08 2007-02-15 Siemens Aktiengesellschaft Organic photodetector with an increased sensitivity and use of a triaryl amine-fluorene polymer as an intermediate layer in a photodetector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAUCH T ET AL: "Performance of bulk-heterojunction organic photodetectors", NANOTECHNOLOGY, 2004. 4TH IEEE CONFERENCE ON MUNICH, GERMANY 16-19 AUG. 2004, PISCATAWAY, NJ, USA,IEEE, 16 August 2004 (2004-08-16), pages 632 - 634, XP010767372, ISBN: 978-0-7803-8536-8 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024467A1 (en) * 2007-08-17 2009-02-26 Siemens Aktiengesellschaft Organically based optical position sensor
CN102338660A (en) * 2010-07-08 2012-02-01 赫拉胡克公司 Sensor arrangement for detecting ambient conditions
CN102569653A (en) * 2011-12-26 2012-07-11 浙江大学 Organic solar cell with conical structure
DE102013109506A1 (en) * 2013-08-30 2015-03-05 CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Directionally sensitive photosensor for detecting the direction of incidence of light
DE102013219011A1 (en) * 2013-09-20 2015-03-26 Osram Gmbh Sensor unit for light control
US10292240B2 (en) 2013-09-20 2019-05-14 Osram Gmbh Sensor unit for light control
DE102015201460A1 (en) * 2015-01-28 2016-07-28 Siemens Healthcare Gmbh Position determination of a medical instrument
DE102015201460B4 (en) 2015-01-28 2023-05-17 Siemens Healthcare Gmbh Position determination of a medical instrument

Also Published As

Publication number Publication date
DE102007015471B3 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
DE102007015471B3 (en) Environmental light sensor for monitoring intensity of interior light in closed areas, has light sensor comprises of photodiode, which is made of organic semiconductor material and photodiodes are formed in given geometry of large area
EP2188855B1 (en) Organic photodetector for the detection of infrared radiation, method for the production thereof, and use thereof
EP1891681A1 (en) Concentrator photovoltaic device, pv concentrator module formed therefrom and production process therefor
DE102008029782A1 (en) Photodetector and method of manufacture
DE202011104884U1 (en) Concentrated photovoltaic system module using III-V semiconductor solar cells
DE112013002371T5 (en) solar cell module
DE102006035005A1 (en) Photodetector for detecting megavolt radiation comprises a semiconductor conversion layer, electrodes coupled with surfaces of the conversion layer and a substrate coupled with one electrode opposite the conversion layer
WO2007022955A1 (en) Solar cell
WO2009043340A2 (en) Photovoltaic module having at least one solar cell
EP2859587B1 (en) Filter systems for photoactive devices
KR101938830B1 (en) Solar cell with controlled transmittance and manufacturing method thereof
WO2010060421A1 (en) Solar cell having local electrostatic fields in the photoactive region
WO2012055548A4 (en) Linearly concentrating solar collector and method for reflector tracking in such a solar collector
WO2009024467A1 (en) Organically based optical position sensor
DE102006028932A1 (en) Photovoltaic module has photovoltaic element, designed to pass through part of light bundled from convergent lens, where module has reflector, which is spaced and equipped from photovoltaic element
DE112017003300T5 (en) Radiation detector and method for its production
EP2590230A2 (en) Open air photovoltaic assembly
DE102006049120A1 (en) An organic photodiode imager and method of making the same
WO2011018287A2 (en) X-ray detector module
EP2465175A1 (en) Solar cell
DE102007019327A1 (en) Organic drift diode for single photon emission computed tomographic detector, has one electrode layer with type that does not correspond to another type of another electrode layer, and substrate arranged on side of photoactive layer
EP4272258A1 (en) Photovoltaic element with at least one photovoltaic cell and at least one folded busbar
DE102008050335A1 (en) Solar cell e.g. tandem solar cell, has photoactive layers including regions in which mixture of electron donor materials and electron acceptor materials is provided and distinguished by compound portion of donor and acceptor materials
WO2012000968A1 (en) Device for determining the angle of incidence of radiation on a radiation incidence surface
DE102018111156A1 (en) Power supply device for small electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08735576

Country of ref document: EP

Kind code of ref document: A1