WO2008038458A1 - Spherical bearing and process for manufacturing the same - Google Patents

Spherical bearing and process for manufacturing the same Download PDF

Info

Publication number
WO2008038458A1
WO2008038458A1 PCT/JP2007/064977 JP2007064977W WO2008038458A1 WO 2008038458 A1 WO2008038458 A1 WO 2008038458A1 JP 2007064977 W JP2007064977 W JP 2007064977W WO 2008038458 A1 WO2008038458 A1 WO 2008038458A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin liner
ball portion
ball
inner member
spherical bearing
Prior art date
Application number
PCT/JP2007/064977
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuhiro Nishide
Akira Morokuma
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2008536293A priority Critical patent/JP5225093B2/en
Priority to DE112007002148.9T priority patent/DE112007002148B4/en
Priority to CN2007800359205A priority patent/CN101542141B/en
Priority to US12/442,230 priority patent/US8281490B2/en
Publication of WO2008038458A1 publication Critical patent/WO2008038458A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0628Construction or details of the socket member with linings
    • F16C11/0633Construction or details of the socket member with linings the linings being made of plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/05Making machine elements cages for bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0685Manufacture of ball-joints and parts thereof, e.g. assembly of ball-joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49647Plain bearing
    • Y10T29/49648Self-adjusting or self-aligning, including ball and socket type, bearing and component making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49647Plain bearing
    • Y10T29/49648Self-adjusting or self-aligning, including ball and socket type, bearing and component making
    • Y10T29/49655Self-adjusting or self-aligning, including ball and socket type, bearing and component making having liner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49647Plain bearing
    • Y10T29/49648Self-adjusting or self-aligning, including ball and socket type, bearing and component making
    • Y10T29/49657Socket making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49647Plain bearing
    • Y10T29/49648Self-adjusting or self-aligning, including ball and socket type, bearing and component making
    • Y10T29/49657Socket making
    • Y10T29/49659Socket making by molding or casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/4971Nonmetallic bearing element

Definitions

  • an inner member provided with a ball portion serving as a swing center of a link mechanism and an outer member that encloses the ball member are coupled so as to be swingable or rotatable.
  • the present invention relates to a spherical bearing used in a link motion mechanism such as a tie rod end of a steering mechanism and a cutting blade drive unit of a combine.
  • One of the structures of spherical bearings that have also adopted conventional force is a structure in which the outer member is forged by using the ball part as a core, so that the force and the ball part are directly enclosed in the outer member S It is known (WO2004 / 092598).
  • a bearing steel ball to be a ball portion is covered with a resin liner by injection molding, the ball portion is set together with the resin liner in a mold, and then the outer member is made of a zinc alloy or an aluminum alloy. The die-casting is done. The resin liner seizes against the fabricated outer member, and the two are integrated.
  • the forged outer member tightens the resin liner against the ball part of the inner member, the rotation of the ball part with respect to the resin liner becomes heavy. If the resin liner is reheated after the outer member is forged, While maintaining the contact state of the resin liner, the contact surface pressure between the two is reduced, and the ball portion can be brought into sliding contact with the resin liner with extremely light force.
  • the ball portion of the inner member is used for the ball portion of the inner member. While the outer bearing member is covered, the outer member is provided with a receiving portion to which the bearing seat is fitted, and the ball portion of the inner member is fitted together with the bearing seat with respect to the receiving portion. (See JP 2000-110826, JP 2004-278736, JP 2002-161911).
  • the opening edge of the housing portion is subjected to caulking to prevent the bearing seat from being detached from the outer member. Seal the part together with the bearing sheet in the housing part of the outer member!
  • Patent Document 1 WO2004 / 092598
  • Patent Document 2 JP 2000-110826
  • Patent Document 3 JP 2004-278736
  • Patent Document 4 JP 2002-161911
  • the bearing seat covered on the ball portion is fitted into the housing portion of the outer member and the bearing seat is used by caulking. Because it is only fixed in the storage part, the forged outer member has a smaller rated load than the above-mentioned spherical bearing that contains the ball part of the inner member. There was a problem. Also, because the bearing seat is fixed to the housing part of the outer member, the force, force S applied to the opening edge of the housing part, S, force, and the bearing sheet elastically deformed during the working process.
  • the present invention has been made in view of such problems, and the object of the present invention is to be able to contain the ball portion of the inner member inside the outer member without using m structure, It is an object of the present invention to provide a spherical bearing and a method for manufacturing the same, which can reduce the size of the outer member and the inner member with high compressive force.
  • a spherical bearing according to the present invention includes an inner member having a metal ball portion, a resin liner that covers the ball portion of the inner member and is in sliding contact with the ball portion, and the resin.
  • An outer member is formed by forging on the outer side of the liner and tightly contacts the entire outer peripheral surface of the resin liner without contacting the inner member so as to detachably hold the resin liner. ! / Speak.
  • the outer member is formed by forging on the outer side of the resin liner that is in sliding contact with the ball portion of the inner member.
  • the outer member is formed by die forging, and the ball portion of the inner member is enclosed in the outer member together with the resin liner at the time of forming.
  • a metal element body that is an outer member is placed in the mold, and the outer member is formed by compressing or striking the force or the element body.
  • the gap between the molded outer member and the resin liner is completely eliminated, and the two are in close contact and integrated.
  • the ball portion of the inner member covered with the resin liner can be firmly enclosed in the outer member.
  • the resin liner exists between the outer member and the ball portion of the inner member, and functions as a cushioning material that reduces the pressing force acting on the ball portion from the outer member. If the resin liner is crushed and divided by the outer member during the forging process, the outer member comes into direct contact with the ball portion of the inner member, and the spherical surface of the ball portion is damaged. For this reason, it is important that the resin material constituting the resin liner is excellent in compressive strength!
  • the material of the outer member is appropriately selected according to the mechanical properties required for the outer member, such as aluminum alloy, zinc alloy, magnesium alloy, carbon steel, alloy steel, and stainless steel. You can choose. When forging a body made of these materials, cold forging, warm forging, and hot forging are performed according to the surface finish, mechanical strength, dimensional accuracy, etc. required for the outer member. It can be arbitrarily selected. However, when the outer member is forged, there is an inner member covered with a resin liner in the hollow portion of the element body, and therefore it is necessary to perform forging in a temperature range that does not impair the performance of the resin liner. .
  • the forged outer member and the resin liner are integrated, and the ball portion of the inner member is in sliding contact with the resin liner.
  • the outer member since the outer member only tightens the resin liner toward the ball part, if the frictional force acting between the resin liner and the ball part of the inner member is large, the resin liner is against the outer member. There is a concern that rotation will occur. For this reason, from the viewpoint of reliably preventing the rotation of the resin liner with respect to the outer member, a protrusion as a detent is provided on the outer side of the resin liner so that the outer member after forging is in contact with the protrusion. It is preferable to configure.
  • the resin liner may be fitted into a ring-shaped resin liner that is well formed as long as the resin liner covers the ball portion of the inner member before the forging process of the outer member.
  • the resin liner may be injection-molded outside the ball portion as a core. From the viewpoint of eliminating the gap between the spherical surface of the ball portion and the resin liner, the latter method is preferable.
  • the resin liner is formed with a substantially constant thickness, and the outer peripheral surface thereof is It is preferably formed in a convex spherical shape that follows the spherical surface of the ball portion. If the resin liner is formed in such a shape, a uniform pressing force is applied from the outer member forged to the resin liner and the ball portion of the inner member, and the gap between these three parts is eliminated. While being able to eliminate reliably, the rated load of an inner member can also be raised.
  • the mechanical strength such as the bending elastic modulus of the resin liner gradually decreases. If the resin liner cools after this heating, the pressing force exerted on the ball portion by the outer member via the resin liner is reduced. In addition, since the heated ball portion expands, the force and the ball portion also exert the effect of expanding the resin liner. This also reduces the pressure contact state between the resin liner and the ball portion after the ball portion is cooled. Tend to. Therefore, if the resin liner is heated through the ball portion of the inner member after forging the outer member in this way, the pressure contact state between the resin liner and the ball portion can be relaxed, and the ball portion can be smoothly moved against the resin liner. It can be rotated.
  • the outer member, the resin liner, and the ball portion of the inner member can be brought into contact without gaps by utilizing the forging process of the outer member. It is possible to completely eliminate the backlash of the ball against the long-term use! / Even though it is highly effective in transferring load and motion between the outer member and the inner member. It can be done with precision.
  • the outer member formed by the forging process encloses the inner member inside, and the outer member, the resin liner, and the ball part of the inner member are in close contact with each other without any gaps. Even if the ball part size is the same, the rated load can be set large, and the spherical bearing can be miniaturized under the same load condition.
  • FIG. 1 is a front sectional view showing a first embodiment of a spherical bearing to which the present invention is applied.
  • FIG. 2 is a front view showing a state in which a resin liner is attached to a ball portion in the method of manufacturing a spherical bearing according to the first embodiment.
  • FIG. 3 is a front cross-sectional view showing a state in which a ball portion and a resin liner are accommodated in an element body made of an aluminum alloy in the method of manufacturing a spherical bearing according to the first embodiment.
  • the ball portion is a die forging die. It is front sectional drawing which shows a mode that it set in the inside.
  • FIG. 5 is a front cross-sectional view showing a forged holder in the method of manufacturing a spherical bearing according to the first embodiment.
  • FIG. 6 is a front sectional view showing a holder formed by forging in the method of manufacturing a spherical bearing according to the first embodiment.
  • FIG. 7 is a front sectional view showing a state in which a shank is welded to a ball portion held by a holder in the method for manufacturing a spherical bearing according to the first embodiment.
  • FIG. 8 is a front sectional view showing a second embodiment of a spherical bearing to which the present invention is applied.
  • FIG. 9 is a front sectional view showing a process of heating the inner ring after forging the outer ring in the method of manufacturing a spherical bearing according to the second embodiment.
  • FIG. 10 is a front view showing another example of a resin liner attached to a ball portion.
  • FIG. 1 shows a first embodiment of a spherical bearing to which the present invention is applied.
  • the spherical bearing is composed of a ball shank 1 as an inner member having a ball portion at the tip, and a holder 2 as an outer member for holding the ball portion 10 of the ball shank 1, and the ball shank 1 and the holder 2 are connected to freely swing or rotate!
  • the ball shank 1 is formed by welding a rod-shaped shank 11 to a steel ball for a bearing having a high sphericity that becomes the ball portion 10, and a link or the like is attached to the base of the shank 11.
  • a hexagonal seating surface 12 for fixing the body is formed.
  • a male screw 13 is formed at the tip of the shank 11, and a mounting body can be clamped and fixed between the hexagonal seat surface 12 by screwing a nut into the male screw 13. Yes.
  • the holder 2 is formed in a substantially cylindrical shape by die forging an aluminum alloy, and is configured to be used by being fitted into a through-hole of an attached body such as a link.
  • the holder 2 is filled with an annular resin liner 3 so as to hold the spherical surface of the ball portion 10.
  • the ball portion 10 of the ball shank 1 is in contact with the resin liner 3 only.
  • the resin liner 3 has a thickness of about lmm, and covers about 2/3 of the spherical surface including the equator of the ball portion 10 so that the ball portion 10 is not detached.
  • a concave spherical sliding contact surface 30 that substantially matches the spherical surface of the ball portion 10 is formed.
  • the outer peripheral surface of the resin liner 3 is formed in a convex spherical shape that follows the spherical surface of the ball portion 10, and is in close contact with the holder 2 and is held by the holder so as not to rotate.
  • the ball shank 1 can swing or rotate freely with respect to the resin liner 3 integrated with the holder 2 with the ball portion 10 as the swing center.
  • a pair of openings 22 and 23 for exposing the ball portion 10 are formed in the force and holder 2 in opposite directions, and the shank 11 is interposed through the one opening 22.
  • a lid member 24 is attached to the other opening 23 while being joined to the ball portion 10, and an oil reservoir 25 is formed inside the lid member 24.
  • a part of the resin liner 3 is exposed between the peripheral edges of the openings 22 and 23 and the ball part 10, and the alloy constituting the holder 2 is in direct contact with the ball part 10. Absent.
  • the periphery of each opening 22, 23 covers the end surface of the resin liner 3, and the holder 2 firmly holds the resin liner 3.
  • the inner diameters of the openings 22 and 23 formed in the holder 2 are slightly smaller than the diameter of the ball portion 10 of the ball shank 1. Since the resin liner 3 as described above covers approximately 2/3 of the spherical surface including the equator of the ball portion 10 and the resin liner 3 is held by the holder 2, the ball portion 10 is originally removed from the holder 2. There should be no withdrawal. However, when the axial load is excessively applied to the ball shank 1, a trouble is also assumed in which the ball portion 10 is detached from the holder 2 by crushing the resin liner 3. For this reason, the inner diameters of the openings 22 and 23 are made slightly smaller than the diameter of the ball portion 10 so that the ball portion 10 does not come off the holder 2 even if the custom resin liner 3 is crushed. is there.
  • a boot seal 4 is attached between the outer peripheral edge of the holder 2 and the shank 11 of the ball shank 1, and is formed in a gap between the ball portion 10 of the ball shank 1 and the opening 22 of the holder 2. In addition to preventing dust and dirt from entering! / And other lubricants such as grease.
  • a sealing pocket 40 is formed.
  • the end 41 on the ball shank 1 side of the boot seal 4 is in close contact with the shank 11 due to its elasticity, while the end 42 on the holder 2 side is between the outer peripheral edge of the holder 2 by a locking ring. The ball shank 1 with the rocking swaying pinch cannot be disengaged even by rotational movement!
  • the spherical bearing holder 2 of this embodiment is formed by die forging of an aluminum alloy as described above.
  • the steel ball and the resin liner 3 that will become the ball portion 10 of the ball shank 1 are housed in an aluminum alloy element body, and the holder 2 is formed by hitting the element body from this state. Therefore, first, it is necessary to attach the resin liner 3 to a bearing steel ball that becomes the ball portion 10.
  • FIG. 2 is a front view showing a state in which the resin liner 3 is attached to the steel ball.
  • the resin liner 3 is formed in a ring shape having an inner diameter that matches the outer diameter of the ball portion 10, and is attached to the ball portion 10 so as to cover the equator of the ball portion 10.
  • This resin liner 3 is made of polyether ether ketone (product name: PEEK) having a glass transition point of 151 ° C and a melting point of 343 ° C, and has a thickness of about 1.0 mm. .
  • Such a resin liner 3 is manufactured by injection molding in which a ball portion 10 is inserted into a mold with the ball portion 10 as a core, and is directly attached to the ball portion. That is, synthetic resin injection molding is performed in a state where the steel ball to be the ball portion 10 is inserted into the mold, and the molding of the resin liner 3 and the mounting to the ball portion 10 are performed in one process. If the resin liner 3 is molded in this way, the labor required for mounting on the ball portion 10 is eliminated, and the inner surface of the resin liner 3 is a concave spherical surface that substantially matches the spherical surface of a ball for bearings having a high roundness. The resin liner 3 can be attached to the ball portion 10 without a gap.
  • the shape of the resin liner 3 is not limited to that shown in FIG. 2.
  • the protrusion 31 is formed on the outer peripheral surface of the resin liner 3 in this way, the protrusion 31 of the resin liner 3 bites into the holder 2 when the holder 2 is formed by forging in the next step. Therefore, the rotation of the resin liner 3 with respect to the holder 2 can be locked, and the holder 2 and the resin liner 3 can be more firmly integrated.
  • an aluminum alloy body to be formed on the holder 2 by die forging is prepared.
  • the element body 20 has a hollow portion 21 and is formed in a substantially cylindrical shape, and the ball portion 10 to which the resin liner 3 is mounted is accommodated in the hollow portion 21. It has become.
  • the hollow portion 21 has a force formed by penetrating the element body 20 and the ball portion 10 is held in the hollow portion 21, so that the step portion 22 that locks the resin liner 3 has an inner peripheral surface of the hollow portion 21. Protruding. This step is in contact only with the resin liner 3 and is kept out of contact with the ball 10.
  • the inner peripheral surface of the hollow portion 21 draws a gentle arc that continues to the stepped portion 22 and approximates the shape of the outer peripheral surface of the resin liner 3.
  • Force S which takes into account the flow of the element body 20 during die forging, and the shape of the hollow portion 21 is not limited to this.
  • the element body 20 is set in a mold and forged.
  • Fig. 4 shows the element 20 set in the mold.
  • This mold is composed of an upper mold 5 and a lower mold 6, and the element body 20 is set in the lower mold 6.
  • the upper die 5 and the lower die 6 are provided with slide pins 50 and 60 that preliminarily cover the spherical surface of the ball portion 10 during forging, and the holder 2 formed by forging is formed on the spherical surface of the ball portion 10. Preventing contact.
  • a concave spherical surface that covers the spherical surface of the ball portion 10 is formed at the tip of these slide pins 50, 60, while a flat surface that contacts the resin liner 3 is formed on the periphery of the concave spherical surface.
  • the slide pins 50 and 60 are advanced to move the ball part 10 and the resin liner 3 up and down in the hollow part 21 of the force element body 20. (See Fig. 4). From this state, the upper die 5 is lowered toward the lower die 6 to strike the element body 20, and the upper die 5 and the lower die 6 are clamped as shown in FIG. Form 2 Lowering the upper mold 5 and hitting the element body 20 will crush the element body 20 In this way, it expands, fills the cavity formed by the upper mold 5 and the lower mold 6, and is formed into the shape of the holder 2.
  • the element body 20 flows in the cavity and adheres to the outer peripheral surface of the resin liner 3, and presses the resin liner 3 toward the ball portion 10 to form the molded holder 2, resin liner 3, and ball.
  • the gap in part 10 is completely eliminated.
  • the slide pins 50 and 60 are in contact with the ball portion 10 and the resin liner 3 as described above, the molded holder 2 does not cover the spherical surface of the ball portion 10.
  • the excess body 20 overflowing from the cavity is cut off after the force S generated as a flash on the abutting surfaces of the upper die 5 and the lower die 6 and forging calorie finish.
  • the holder 2 in which the ball portion 10 and the resin liner 3 are wrapped with the aluminum alloy is formed.
  • the openings 22 and 23 are formed at portions corresponding to the slide bins 50 and 60, and the ball portion 10 is exposed only from the openings 22 and 23.
  • the resin liner 3 attached to the ball portion 10 is embedded in the holder 2 formed by forging, and is firmly fixed to the holder 2. Since the slide pins 50 and 60 sandwich the resin liner in the vertical direction, the forged holder 2 is not in contact with the ball portion 10. Further, the forged holder 2 covers a part of the end face of the resin liner 3, and the holder 2 that holds the force holds the resin liner 3. As a result, the resin liner 3 is firmly integrated with the holder 2.
  • the shank 11 is welded to the ball portion 10 held by the holder 2.
  • Projection welding is used for such welding, and as shown in FIG. 7, the end surface of the shank 11 is exposed to the spherical surface of the ball portion 10 exposed through the opening 22 of the holder 2 with a predetermined force F.
  • the electrode 8 is brought into contact with the spherical surface of the ball portion 10 exposed through the opening 23, and a welding current is applied to the shank 11 and the electrode 8 while being pressed. If a large energization resistance exists between the electrode 8 and the ball part 10, the electrode contact part of the ball part 10 will melt, so the force of the electrode 8 is a concave seat along the spherical surface of the ball part 80. Is formed so that the surface of the ball 10 is in close contact with the spherical surface.
  • the welding of the shank 11 to the ball portion 10 also serves to improve the sliding contact state between the ball portion 10 and the resin liner 3. That is, when the forging process is used as described above and the holder 2 is formed, the force and the aluminum alloy that has flowed during the pressing process strongly presses the resin liner 3 toward the ball part 10, so the ball part 10 and the resin liner There is a concern that a large frictional resistance acts on the resin liner 3 and it becomes difficult to rotate the ball portion 10 relative to the resin liner 3. When the holder 2 was actually prototyped by forging, it was not possible to rotate the ball part 10 held by the holder 2 even if it tried to rotate with the finger.
  • the force and the welded portion are heated to 1200 to 1500 ° C, and the resin liner 3 in contact with the ball part 10 also has a glass transition point Tg or less. It is heated to the above temperature. Therefore, when the shank 11 is welded to the ball part 10 after the holder 2 is fabricated, the resin liner 3 that has been tightening the ball part 10 until then is deformed so as to follow the ball part 10, and the resin liner can It is possible to reduce or eliminate the force that 3 is pressing the ball portion 10.
  • boot seal 3 described above is attached between the shank 10 and the outer peripheral edge of the holder 2, and a seal pocket 30 formed by the boot seal 3 is filled with a lubricant such as grease.
  • the lid member 24 described above is attached to the opening 23 of the holder 2. The spherical bearing of this example is completed.
  • FIG. 8 is a sectional view showing a second embodiment of the spherical bearing manufactured by the method of the present invention.
  • This spherical bearing is composed of an outer ring 101 as an outer member, an inner ring 102 as an inner member, and a resin liner 103 interposed between the inner ring 102 and the outer ring 101, and is held by the outer ring 101.
  • the inner ring 102 can freely swing or rotate with respect to the resin liner 103 formed.
  • the inner ring 102 has a through hole 105 for inserting a rod 104 of a link mechanism and is formed in an annular shape, and the outer peripheral surface 106 is finished to a convex spherical surface that is in sliding contact with the resin liner 103.
  • the same polyether ether ketone as that of the first embodiment was used as the resin liner, and the thickness thereof was 1. Omm.
  • the manufacturing method of the spherical bearing of the second embodiment is also substantially the same as the manufacturing method of the spherical bearing of the first embodiment described above.
  • the inner ring 102 is inserted into a mold as a core to perform injection molding of the resin liner 103, and the resin liner 103 is mounted on the spherical surface 106 of the inner ring 102.
  • the inner ring 102 on which the resin liner 103 is mounted is accommodated in an aluminum alloy body, and the outer ring 101 is formed by die forging the body.
  • the outer ring 101 in which the inner ring 102 is wrapped with an aluminum alloy is forged.
  • the resin liner 103 attached to the inner ring 102 is brought into close contact with the outer ring 101 whose outer peripheral surface is forged, and is firmly integrated with the outer ring 101 with force and force.
  • the force with which the resin liner 103 presses the inner ring 102 after completion of the forging process is reduced or reduced. Therefore, it is necessary to heat the resin liner 103 via the inner ring 102 after the outer ring 101 is forged, as in the manufacturing method of the first embodiment.
  • a coil 108 connected to a high-frequency AC power source 107 is inserted into the through-hole 105 of the inner ring 102 to force the inner ring 102 to a high frequency. Heating was performed from the inside of the through hole 105 by heating.
  • the inner ring heating temperature was about 1500 to 1600 ° C, and the heating time was about 0.2 to 0.5 sec.
  • the resin liner 103 in contact with the inner ring 102 is also heated to a temperature equal to or higher than the glass transition point Tg, so that the resin liner 103 that has been pressing the inner ring 102 until then is heated.
  • the inner ring 102 is deformed so as to follow the inner ring 102, and the force that the resin liner 103 presses against the inner ring 102 can be reduced or removed.
  • the inner ring 102 can freely rotate with respect to the resin liner 103 integrated with the outer ring 101, and the rod 104 fixed to the through hole 105 of the inner ring 102 moves the inner ring 102 against the outer ring 101. It becomes possible to perform a swinging motion around the center or a rotational motion around its own axis extremely smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

A spherical bearing that allows enclosing of ball part (10) of inside member (1) in the interior of outside member (2) without employment of casting and excels in the bonding strength between the outside member (2) and the inside member (1), allowing miniaturization thereof; and a process for manufacturing the same. The spherical bearing comprises inside member (1) with metal ball part (10); resin liner (3) provided so as to cover the ball part (10) of the inside member (1) in relationship making slidable contact with the ball part (10); and outside member (2) formed outside the resin liner (3) by forging, the outside member brought into close contact with the whole area of the outer circumferential face of the resin liner (3) without contact with the inside member (1) so as to nondetachably wrap and hold the resin liner (3).

Description

明 細 書  Specification
球面軸受及びその製造方法  Spherical bearing and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、リンク機構の揺動中心となるボール部を備えた内側部材とこれを包持す る外側部材とが揺動あるいは回転運動自在に連結され、主に自動車のスタビライザ コンロッドやステアリング機構のタイロッドエンド、コンバインの切刃駆動部等のリンク モーション機構等に用いられる球面軸受に関する。  In the present invention, an inner member provided with a ball portion serving as a swing center of a link mechanism and an outer member that encloses the ball member are coupled so as to be swingable or rotatable. The present invention relates to a spherical bearing used in a link motion mechanism such as a tie rod end of a steering mechanism and a cutting blade drive unit of a combine.
背景技術  Background art
[0002] 一般的に、この種の球面軸受としては、ボール部を有する内側部材と、この内側部 材のボール部を包持して該内側部材と相対的に揺動あるいは回転運動自在に連結 する外側部材とを備えたものが知られている。前記外側部材は内側部材に対して荷 重が作用した場合であっても、力、かる荷重に抗してボール部を離脱不能に包持する ものでなくてはならない。このため、球面軸受においては、如何なる構造を用いて前 記ボール部を外側部材の内部に封じ込め、且つ、内側部材と外側部材との自由な 揺動及び回転運動を確保するかが問題となる。  [0002] Generally, as this type of spherical bearing, an inner member having a ball portion and a ball portion of the inner member are encased and connected to the inner member so as to be swingable or rotatable. What is provided with the outer member which performs is known. Even when the outer member is subjected to a load on the inner member, the outer member must be able to hold the ball portion against the force and the load so as not to be detached. Therefore, in the spherical bearing, there is a problem in what structure is used to enclose the ball portion inside the outer member and to ensure free swinging and rotational movement between the inner member and the outer member.
[0003] 従来力も採用されている球面軸受の構造の一つとしては、ボール部を中子として外 側部材を铸造することにより、力、かるボール部を外側部材内に直接封じ込めた構造 力 S知られている(WO2004/092598)。この球面軸受では、先ずボール部となるベ アリング用鋼球に対して射出成形を用いて樹脂ライナを被せ、ボール部を樹脂ライナ と共に金型内にセットした後、外側部材を亜鉛合金又はアルミ合金でダイカスト铸造 している。樹脂ライナは铸造された外側部材に対して焼きつき、両者は一体化される 。また、铸造された外側部材が樹脂ライナを内側部材のボール部に対して締め付け るため、樹脂ライナに対するボール部の回転は重くなる力 外側部材の铸造後に樹 脂ライナを再加熱すると、ボール部と樹脂ライナの接触状態は維持したまま、これら 両者の接触面圧は軽減され、樹脂ライナに対してボール部を極めて軽!/、力で摺接さ せることができるようになつている。  [0003] One of the structures of spherical bearings that have also adopted conventional force is a structure in which the outer member is forged by using the ball part as a core, so that the force and the ball part are directly enclosed in the outer member S It is known (WO2004 / 092598). In this spherical bearing, first, a bearing steel ball to be a ball portion is covered with a resin liner by injection molding, the ball portion is set together with the resin liner in a mold, and then the outer member is made of a zinc alloy or an aluminum alloy. The die-casting is done. The resin liner seizes against the fabricated outer member, and the two are integrated. Also, because the forged outer member tightens the resin liner against the ball part of the inner member, the rotation of the ball part with respect to the resin liner becomes heavy.If the resin liner is reheated after the outer member is forged, While maintaining the contact state of the resin liner, the contact surface pressure between the two is reduced, and the ball portion can be brought into sliding contact with the resin liner with extremely light force.
一方、その他の球面軸受の構造としては、内側部材のボール部に対して合成樹脂 製のベアリングシートを被せる一方、外側部材には前記ベアリングシートが嵌合する 収納部を設け、力、かる収納部に対して内側部材のボール部をベアリングシートと共に 嵌合させたものカ失口られてレヽる(特開 2000— 110826、特開 2004— 278736、特開 2002— 161911)。この構造の球面軸受では、ベアリングシートを外側部材の収納 部に嵌合させた後、収納部の開口縁に対してカシメ加工を施して外側部材に対する ベアリングシートの離脱を防止し、内側部材のボール部をベアリングシートと共に外 側部材の収納部に封じ込めて!/、る。 On the other hand, as another spherical bearing structure, synthetic resin is used for the ball portion of the inner member. While the outer bearing member is covered, the outer member is provided with a receiving portion to which the bearing seat is fitted, and the ball portion of the inner member is fitted together with the bearing seat with respect to the receiving portion. (See JP 2000-110826, JP 2004-278736, JP 2002-161911). In the spherical bearing having this structure, after the bearing seat is fitted to the housing portion of the outer member, the opening edge of the housing portion is subjected to caulking to prevent the bearing seat from being detached from the outer member. Seal the part together with the bearing sheet in the housing part of the outer member!
特許文献 1: WO2004/092598  Patent Document 1: WO2004 / 092598
特許文献 2:特開 2000— 110826  Patent Document 2: JP 2000-110826
特許文献 3:特開 2004— 278736  Patent Document 3: JP 2004-278736
特許文献 4:特開 2002— 161911  Patent Document 4: JP 2002-161911
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、これら従来の球面軸受のうち、外側部材を铸造した球面軸受では铸造時に 内部欠陥が発生するのを完全には防止できず、品質の均一化を図るためには生産 品の全数量を検査する必要が生じてしまうといった問題点がある。また、同様の理由 から、例えば自動車のサスペンション部品のような重要保安部品には使用することが できな!/、と!/、つた問題点もあった。  [0004] However, among these conventional spherical bearings, spherical bearings with a forged outer member cannot completely prevent the occurrence of internal defects during fabrication, and in order to achieve uniform quality, There is a problem that it becomes necessary to inspect the quantity. For the same reason, there are also other problems that cannot be used for important safety parts such as automobile suspension parts! /, And! /.
[0005] 一方、特開 2000— 110826等に開示される従来の球面軸受では、ボール部に被 せたベアリングシートを外側部材の収納部に嵌合させると共に、カシメ加工を用いて 前記ベアリングシートを収納部内に固定しているのみなので、铸造された外側部材が 内側部材のボール部を封じ込めている前述の球面軸受に比べて定格荷重が小さぐ 同一の荷重条件に対して球面軸受が大型化し易いとレ、つた問題点があった。また、 ベアリングシートを外側部材の収納部に固定するため、力、かる収納部の開口縁に力 シメ加工を施している力 S、力、かる加工の際にベアリングシートが弾性変形してしまうと 、ボール部に対するベアリングシートの接触面圧が高くなり、外側部材に対する内側 部材の揺動又は回転運動が重くなつてしまうといった問題点もあった。従って、外側 部材に対するベアリングシートの固定強度が不足しがちであり、固定強度の確保の 観点からも、球面軸受が大型化し易いといった問題点があった。 [0005] On the other hand, in the conventional spherical bearing disclosed in Japanese Patent Application Laid-Open No. 2000-110826, etc., the bearing seat covered on the ball portion is fitted into the housing portion of the outer member and the bearing seat is used by caulking. Because it is only fixed in the storage part, the forged outer member has a smaller rated load than the above-mentioned spherical bearing that contains the ball part of the inner member. There was a problem. Also, because the bearing seat is fixed to the housing part of the outer member, the force, force S applied to the opening edge of the housing part, S, force, and the bearing sheet elastically deformed during the working process. Further, there is a problem that the contact surface pressure of the bearing seat with respect to the ball portion increases, and the swinging or rotating motion of the inner member with respect to the outer member becomes heavy. Therefore, the fixing strength of the bearing seat to the outer member tends to be insufficient. From the viewpoint, there is a problem that the spherical bearing is easily increased in size.
課題を解決するための手段  Means for solving the problem
[0006] 本発明はこのような問題点に鑑みなされたものであり、その目的とするところは、 m 造を用いることなく内側部材のボール部を外側部材の内部に封じ込めることが可能 であり、し力、も外側部材と内側部材の結合強度が高ぐ小型化を図ることが可能な球 面軸受及びその製造方法を提供することにある。  [0006] The present invention has been made in view of such problems, and the object of the present invention is to be able to contain the ball portion of the inner member inside the outer member without using m structure, It is an object of the present invention to provide a spherical bearing and a method for manufacturing the same, which can reduce the size of the outer member and the inner member with high compressive force.
[0007] 上記目的を達成するために、本発明の球面軸受は、金属ボール部を有する内側部 材と、この内側部材のボール部を覆うと共に該ボール部と摺接する樹脂ライナと、こ の樹脂ライナの外側に鍛造加工によって成形され、前記内側部材に接触することな く前記樹脂ライナの外周面の全域と緊密に接触して該樹脂ライナを離脱不能に包持 する外側部材とから構成されて!/ヽる。  In order to achieve the above object, a spherical bearing according to the present invention includes an inner member having a metal ball portion, a resin liner that covers the ball portion of the inner member and is in sliding contact with the ball portion, and the resin. An outer member is formed by forging on the outer side of the liner and tightly contacts the entire outer peripheral surface of the resin liner without contacting the inner member so as to detachably hold the resin liner. ! / Speak.
[0008] このように構成された本発明の球面軸受では、内側部材のボール部と摺接する樹 脂ライナの外側に鍛造加工によって外側部材を成形している。具体的には、外側部 材を型鍛造によって成形し、この成形時に内側部材のボール部を樹脂ライナと共に 外側部材の内部に封じ込めてレ、る。前記型鍛造では外側部材となる金属製の素体 を型内に配置し、力、かる素体を圧縮又は打撃することにより外側部材の成形が行わ れるカ、素体は打撃の際に型内を流動して樹脂ライナの外周面の全域に密着する。 このため、成形された外側部材と樹脂ライナの隙間は完全に排除されて、これら両者 は密着して一体化される。これにより、樹脂ライナが被せられた内側部材のボール部 を外側部材の内部に強固に封じ込めることが可能となる。  In the spherical bearing of the present invention configured as described above, the outer member is formed by forging on the outer side of the resin liner that is in sliding contact with the ball portion of the inner member. Specifically, the outer member is formed by die forging, and the ball portion of the inner member is enclosed in the outer member together with the resin liner at the time of forming. In the die forging, a metal element body that is an outer member is placed in the mold, and the outer member is formed by compressing or striking the force or the element body. To adhere to the entire outer peripheral surface of the resin liner. For this reason, the gap between the molded outer member and the resin liner is completely eliminated, and the two are in close contact and integrated. As a result, the ball portion of the inner member covered with the resin liner can be firmly enclosed in the outer member.
[0009] 前記鍛造加工の際に、前記樹脂ライナは外側部材と内側部材のボール部との間に 存在して、外側部材からボール部に作用する押圧力を軽減する緩衝材として機能す る。仮に樹脂ライナが鍛造加工中に外側部材によって押しつぶされて分断されると、 外側部材が内側部材のボール部に対して直接接触することになり、ボール部の球面 に傷が発生してしまう。このため、前記樹脂ライナを構成する樹脂材料は圧縮強度に 優れて!/、ることが重要である。  [0009] During the forging process, the resin liner exists between the outer member and the ball portion of the inner member, and functions as a cushioning material that reduces the pressing force acting on the ball portion from the outer member. If the resin liner is crushed and divided by the outer member during the forging process, the outer member comes into direct contact with the ball portion of the inner member, and the spherical surface of the ball portion is damaged. For this reason, it is important that the resin material constituting the resin liner is excellent in compressive strength!
[0010] 外側部材の材料としては、アルミニウム合金、亜鉛合金、マグネシウム合金、炭素 鋼、合金鋼、ステンレス鋼等、外側部材に必要とされる機械的特性に応じて適宜選 択して差し支えない。また、これらの材料からなる素体を鍛造加工する際には、外側 部材に必要とされる表面仕上がり状態、機械的強度、寸法精度等に応じ、冷間鍛造 、温間鍛造、熱間鍛造を任意に選択して差し支えない。但し、外側部材を鍛造加工 する際には、素体の中空部内に樹脂ライナを被せた内側部材が存在することから、 樹脂ライナの性能を損なわない温度範囲で鍛造加工を行うことが必要である。 [0010] The material of the outer member is appropriately selected according to the mechanical properties required for the outer member, such as aluminum alloy, zinc alloy, magnesium alloy, carbon steel, alloy steel, and stainless steel. You can choose. When forging a body made of these materials, cold forging, warm forging, and hot forging are performed according to the surface finish, mechanical strength, dimensional accuracy, etc. required for the outer member. It can be arbitrarily selected. However, when the outer member is forged, there is an inner member covered with a resin liner in the hollow portion of the element body, and therefore it is necessary to perform forging in a temperature range that does not impair the performance of the resin liner. .
[0011] また、本発明の球面軸受では、鍛造加工された外側部材と樹脂ライナが一体化し、 この樹脂ライナに対して内側部材のボール部が摺接する。しかし、外側部材は樹脂 ライナをボール部に向けて締め付けているのみなので、樹脂ライナと内側部材のボ ール部との間に作用する摩擦力が大きい場合には、樹脂ライナが外側部材に対して 回転を生じてしまう懸念がある。このため、外側部材に対する樹脂ライナの回転を確 実に防止するという観点からすれば、樹脂ライナの外側に周り止めとしての突起を設 け、鍛造加工後の外側部材が前記突起と嚙み合うように構成するのが好ましい。 In the spherical bearing of the present invention, the forged outer member and the resin liner are integrated, and the ball portion of the inner member is in sliding contact with the resin liner. However, since the outer member only tightens the resin liner toward the ball part, if the frictional force acting between the resin liner and the ball part of the inner member is large, the resin liner is against the outer member. There is a concern that rotation will occur. For this reason, from the viewpoint of reliably preventing the rotation of the resin liner with respect to the outer member, a protrusion as a detent is provided on the outer side of the resin liner so that the outer member after forging is in contact with the protrusion. It is preferable to configure.
[0012] 更に、前記樹脂ライナは外側部材の鍛造加工前に内側部材のボール部に被せら れるものであれば良ぐ成形されたリング状の樹脂ライナに対してボール部を嵌め込 むようにしても良いし、ボール部を中子としてその外側に樹脂ライナを射出成形しても 良い。ボール部の球面と樹脂ライナの隙間を排除するという観点からすれば、後者の 方法が好ましい。  [0012] Furthermore, the resin liner may be fitted into a ring-shaped resin liner that is well formed as long as the resin liner covers the ball portion of the inner member before the forging process of the outer member. The resin liner may be injection-molded outside the ball portion as a core. From the viewpoint of eliminating the gap between the spherical surface of the ball portion and the resin liner, the latter method is preferable.
[0013] また更に、外側部材の鍛造加工時に該外側部材が内側部材のボール部を均一に 包持するといつた観点からすれば、樹脂ライナは略一定の厚みに形成され、その外 周面はボール部の球面に倣った凸球面状に形成されているのが好ましい。このよう な形状に樹脂ライナを形成すれば、樹脂ライナ及び内側部材のボール部に対して鍛 造加工された外側部材から均一な押圧力が作用することになり、これら三者間の隙 間を確実に排除することができると共に、内側部材の定格荷重も高めることができる。  [0013] Furthermore, from the viewpoint of when the outer member uniformly holds the ball portion of the inner member during the forging process of the outer member, the resin liner is formed with a substantially constant thickness, and the outer peripheral surface thereof is It is preferably formed in a convex spherical shape that follows the spherical surface of the ball portion. If the resin liner is formed in such a shape, a uniform pressing force is applied from the outer member forged to the resin liner and the ball portion of the inner member, and the gap between these three parts is eliminated. While being able to eliminate reliably, the rated load of an inner member can also be raised.
[0014] 一方、外側部材を鍛造し、この鍛造時に外側部材を樹脂ライナに密着させると、外 側部材が樹脂ライナを内側部材に向けて押圧する結果となり、外側部材の鍛造直後 は樹脂ライナに対するボール部の回転が重くなり、外側部材に対する内側部材の軽 快な運動が困難になってしまう。外側部材の鍛造加工後に内側部材の軽快な運動を 得るためには、内側部材のボール部を介して該ボール部を覆っている樹脂ライナを 加熱する方法が有効である。樹脂ライナはボール部を包持し、これに緊密に接触し ていること力、ら、ボール部を加熱すれば、その熱エネルギが樹脂ライナに伝達され、 樹脂ライナもある程度の温度にまで加熱されることになる。このとき、樹脂ライナが昇 温し、ガラス転移点 Tg付近にまで加熱されれば、かかる樹脂ライナの曲げ弾性率等 の機械的強度が徐々に低下することから、樹脂ライナはボール部の大きさに倣った 形状に変形し易くなり、この加熱後に樹脂ライナが冷えれば、外側部材が樹脂ライナ を介してボール部に及ぼしている押圧力が軽減される。また、加熱されたボール部は 膨張するので、力、かるボール部が樹脂ライナを押し拡げる効果も発揮され、これによ つてもボール部の冷却後は樹脂ライナとボール部の圧接状態が軽減される傾向にあ る。従って、このように外側部材の鍛造後に内側部材のボール部を介して樹脂ライナ を加熱してやれば、樹脂ライナとボール部の圧接状態を緩和させることができ、樹脂 ライナに対してボール部を円滑に回転させることが可能となる。 On the other hand, when the outer member is forged and the outer member is brought into close contact with the resin liner during the forging, the outer member presses the resin liner toward the inner member. The rotation of the ball becomes heavy, and the light movement of the inner member relative to the outer member becomes difficult. In order to obtain a light movement of the inner member after forging of the outer member, a resin liner covering the ball portion via the ball portion of the inner member is used. A heating method is effective. The resin liner encloses the ball portion and is in close contact with the ball portion. If the ball portion is heated, the thermal energy is transmitted to the resin liner, and the resin liner is heated to a certain temperature. Will be. At this time, if the resin liner is heated and heated to near the glass transition point Tg, the mechanical strength such as the bending elastic modulus of the resin liner gradually decreases. If the resin liner cools after this heating, the pressing force exerted on the ball portion by the outer member via the resin liner is reduced. In addition, since the heated ball portion expands, the force and the ball portion also exert the effect of expanding the resin liner. This also reduces the pressure contact state between the resin liner and the ball portion after the ball portion is cooled. Tend to. Therefore, if the resin liner is heated through the ball portion of the inner member after forging the outer member in this way, the pressure contact state between the resin liner and the ball portion can be relaxed, and the ball portion can be smoothly moved against the resin liner. It can be rotated.
[0015] そして、このような本発明の球面軸受によれば、外側部材の鍛造加工を利用して該 外側部材、樹脂ライナ及び内側部材のボール部を隙間なく接触させることができ、外 側部材に対するボール部のガタつきを完全に排除することが可能となるので、長期 にわたる経時的な使用にお!/、ても、外側部材と内側部材との間で荷重の伝達及び 運動の伝達を高精度に行い得るものである。なによりも、鍛造加工によって成形され た外側部材が内部に内側部材を封じ込めており、外側部材、樹脂ライナ及び内側部 材のボール部が隙間なく密着して!/、るので、従来の球面軸受とボール部のサイズが 同一であっても定格荷重を大きく設定することができ、同一の荷重条件に対して球面 軸受の小型化を図ることが可能となる。  [0015] According to the spherical bearing of the present invention as described above, the outer member, the resin liner, and the ball portion of the inner member can be brought into contact without gaps by utilizing the forging process of the outer member. It is possible to completely eliminate the backlash of the ball against the long-term use! / Even though it is highly effective in transferring load and motion between the outer member and the inner member. It can be done with precision. Above all, the outer member formed by the forging process encloses the inner member inside, and the outer member, the resin liner, and the ball part of the inner member are in close contact with each other without any gaps. Even if the ball part size is the same, the rated load can be set large, and the spherical bearing can be miniaturized under the same load condition.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明が適用された球面軸受の第 1の実施形態を示す正面断面図である。  FIG. 1 is a front sectional view showing a first embodiment of a spherical bearing to which the present invention is applied.
[図 2]第 1の実施形態に係る球面軸受の製造方法において、ボール部に樹脂ライナ を装着した状態を示す正面図である。  FIG. 2 is a front view showing a state in which a resin liner is attached to a ball portion in the method of manufacturing a spherical bearing according to the first embodiment.
[図 3]第 1の実施形態に係る球面軸受の製造方法において、ボール部及び樹脂ライ ナをアルミニウム合金製の素体に収容した様子を示す正面断面図である。  FIG. 3 is a front cross-sectional view showing a state in which a ball portion and a resin liner are accommodated in an element body made of an aluminum alloy in the method of manufacturing a spherical bearing according to the first embodiment.
[図 4]第 1の実施形態に係る球面軸受の製造方法において、ボール部を型鍛造の型 内にセットした様子を示す正面断面図である。 [FIG. 4] In the method of manufacturing a spherical bearing according to the first embodiment, the ball portion is a die forging die. It is front sectional drawing which shows a mode that it set in the inside.
[図 5]第 1の実施形態に係る球面軸受の製造方法において、ホルダを鍛造している様 子を示す正面断面図である。  FIG. 5 is a front cross-sectional view showing a forged holder in the method of manufacturing a spherical bearing according to the first embodiment.
[図 6]第 1の実施形態に係る球面軸受の製造方法において、鍛造加工により成形さ れたホルダを示す正面断面図である。  FIG. 6 is a front sectional view showing a holder formed by forging in the method of manufacturing a spherical bearing according to the first embodiment.
[図 7]第 1の実施形態に係る球面軸受の製造方法において、ホルダに包持されたボ ール部に対してシャンクを溶接する様子を示す正面断面図である。  FIG. 7 is a front sectional view showing a state in which a shank is welded to a ball portion held by a holder in the method for manufacturing a spherical bearing according to the first embodiment.
[図 8]本発明が適用された球面軸受の第 2の実施形態を示す正面断面図である。  FIG. 8 is a front sectional view showing a second embodiment of a spherical bearing to which the present invention is applied.
[図 9]第 2の実施形態に係る球面軸受の製造方法において、外輪の鍛造後に内輪を 加熱する工程を示す正面断面図である。  FIG. 9 is a front sectional view showing a process of heating the inner ring after forging the outer ring in the method of manufacturing a spherical bearing according to the second embodiment.
[図 10]ボール部に装着される樹脂ライナの他の例を示す正面図である。  FIG. 10 is a front view showing another example of a resin liner attached to a ball portion.
符号の説明  Explanation of symbols
[0017] 1 · · ·ボールシャンク(内側部材)、 2· · ·ホルダ(外側部材)、 3· · ·樹脂ライナ、 10· · ·ボ 一ノレ部  [0017] 1 · · · Ball shank (inner member), 2 · · · Holder (outer member), 3 · · · Resin liner, 10 · · · Bore
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、添付図面を用いながら本発明の球面軸受を詳細に説明する。  Hereinafter, the spherical bearing of the present invention will be described in detail with reference to the accompanying drawings.
[0019] 図 1は本発明を適用した球面軸受の第 1実施例を示すものである。この球面軸受は 、先端にボール部を備えた内側部材としてのボールシャンク 1と、このボールシャンク 1のボール部 10を包持する外側部材としてのホルダ 2とから構成され、前記ボールシ ヤンク 1及びホルダ 2が揺動又は回転運動自在に連結して!/、る。  FIG. 1 shows a first embodiment of a spherical bearing to which the present invention is applied. The spherical bearing is composed of a ball shank 1 as an inner member having a ball portion at the tip, and a holder 2 as an outer member for holding the ball portion 10 of the ball shank 1, and the ball shank 1 and the holder 2 are connected to freely swing or rotate!
[0020] 前記ボールシャンク 1はボール部 10となる真球度の高いベアリング用鋼球に対して 棒状のシャンク 11を溶接して形成されており、このシャンク 11の根元にはリンク等の 被取付体を固定するための六角座面 12が形成されている。また、このシャンク 11の 先端には雄ねじ 13が形成されており、この雄ねじ 13にナットを螺合させることで、被 取付体を前記六角座面 12との間で挟持固定し得るようになつている。  [0020] The ball shank 1 is formed by welding a rod-shaped shank 11 to a steel ball for a bearing having a high sphericity that becomes the ball portion 10, and a link or the like is attached to the base of the shank 11. A hexagonal seating surface 12 for fixing the body is formed. Further, a male screw 13 is formed at the tip of the shank 11, and a mounting body can be clamped and fixed between the hexagonal seat surface 12 by screwing a nut into the male screw 13. Yes.
[0021] 一方、前記ホルダ 2はアルミニウム合金を型鍛造することにより略円筒状に形成され ており、リンクなどの被取付体の貫通孔に嵌合して使用されるように構成されている。 このホルダ 2にはボール部 10の球面を包持するようにして環状の樹脂ライナ 3が埋め 込まれており、ボールシャンク 1のボール部 10はこの樹脂ライナ 3とのみ接している。 樹脂ライナ 3は厚さ lmm程度であり、ボール部 10が離脱することがないよう、かかる ボール部 10の赤道を含む略 2/3程度の球面を覆っており、この樹脂ライナ 3の内側 にはボール部 10の球面に略合致した凹球面状の摺接面 30が形成されている。また 、樹脂ライナ 3の外周面はボール部 10の球面に倣った凸球面状に形成されており、 ホルダ 2と密着して該ホルダによって回転不能に包持されている。これにより、ボール シャンク 1はボール部 10を揺動中心とし、ホルダ 2と一体化された樹脂ライナ 3に対し て自在に揺動又は回転運動をなし得るようになつている。 On the other hand, the holder 2 is formed in a substantially cylindrical shape by die forging an aluminum alloy, and is configured to be used by being fitted into a through-hole of an attached body such as a link. The holder 2 is filled with an annular resin liner 3 so as to hold the spherical surface of the ball portion 10. The ball portion 10 of the ball shank 1 is in contact with the resin liner 3 only. The resin liner 3 has a thickness of about lmm, and covers about 2/3 of the spherical surface including the equator of the ball portion 10 so that the ball portion 10 is not detached. A concave spherical sliding contact surface 30 that substantially matches the spherical surface of the ball portion 10 is formed. Further, the outer peripheral surface of the resin liner 3 is formed in a convex spherical shape that follows the spherical surface of the ball portion 10, and is in close contact with the holder 2 and is held by the holder so as not to rotate. As a result, the ball shank 1 can swing or rotate freely with respect to the resin liner 3 integrated with the holder 2 with the ball portion 10 as the swing center.
[0022] また、力、かるホルダ 2にはボール部 10を露出させる一対の開口部 22, 23が相反す る方向に向かって形成されており、一方の開口部 22を介して前記シャンク 11がボー ル部 10と接合される一方、他方の開口部 23には蓋部材 24が取り付けられ、この蓋 部材 24の内側が油溜まり 25となっている。これら開口部 22, 23の周縁とボール部 1 0との間には前記樹脂ライナ 3の一部が露呈しており、ホルダ 2を構成する合金はボ ール部 10に対して直接接触していない。また、各開口部 22, 23の周縁は樹脂ライ ナ 3の端面に被さっており、ホルダ 2が樹脂ライナ 3を強固に抱え込む構造となってい [0022] Further, a pair of openings 22 and 23 for exposing the ball portion 10 are formed in the force and holder 2 in opposite directions, and the shank 11 is interposed through the one opening 22. A lid member 24 is attached to the other opening 23 while being joined to the ball portion 10, and an oil reservoir 25 is formed inside the lid member 24. A part of the resin liner 3 is exposed between the peripheral edges of the openings 22 and 23 and the ball part 10, and the alloy constituting the holder 2 is in direct contact with the ball part 10. Absent. In addition, the periphery of each opening 22, 23 covers the end surface of the resin liner 3, and the holder 2 firmly holds the resin liner 3.
[0023] ホルダ 2に形成された各開口部 22, 23の内径は、ボールシャンク 1のボール部 10 の直径よりも僅かに小さく形成されている。前述の如ぐ樹脂ライナ 3がボール部 10の 赤道を含む略 2/3程度の球面を覆うと共に、かかる樹脂ライナ 3はホルダ 2によって 抱え込まれていることから、本来、ボール部 10がホルダ 2から離脱してしまうことは無 いはずである。しかし、ボールシャンク 1に対して軸方向の荷重が過大に作用した場 合に、樹脂ライナ 3を押し潰すようにしてボール部 10がホルダ 2から離脱してしまうトラ ブルも想定される。このため、譬え樹脂ライナ 3が押し潰されてもボール部 10がホル ダ 2から離脱することがないよう、各開口部 22, 23の内径をボール部 10の直径よりも 僅かに小さく形成してある。 The inner diameters of the openings 22 and 23 formed in the holder 2 are slightly smaller than the diameter of the ball portion 10 of the ball shank 1. Since the resin liner 3 as described above covers approximately 2/3 of the spherical surface including the equator of the ball portion 10 and the resin liner 3 is held by the holder 2, the ball portion 10 is originally removed from the holder 2. There should be no withdrawal. However, when the axial load is excessively applied to the ball shank 1, a trouble is also assumed in which the ball portion 10 is detached from the holder 2 by crushing the resin liner 3. For this reason, the inner diameters of the openings 22 and 23 are made slightly smaller than the diameter of the ball portion 10 so that the ball portion 10 does not come off the holder 2 even if the custom resin liner 3 is crushed. is there.
[0024] 更に、前記ホルダ 2の外周縁とボールシャンク 1のシャンク 11との間にはブーツシー ル 4が取り付けられており、ボールシャンク 1のボール部 10とホルダ 2の開口部 22との 隙間に対して埃やごみ等が侵入するのを防止して!/、る他、グリース等の潤滑剤を収 容するシールポケット 40を形成している。ここで、前記ブーツシール 4のボールシャン ク 1側の端部 41はその弾性によってシャンク 11に密着する一方、ホルダ 2側の端部 4 2は係止リングによってホルダ 2の外周縁との間に挟み込まれており、ボールシャンク 1の揺動あるレ、は回転運動によっても外れることがな!/、ようになって!/、る。 Further, a boot seal 4 is attached between the outer peripheral edge of the holder 2 and the shank 11 of the ball shank 1, and is formed in a gap between the ball portion 10 of the ball shank 1 and the opening 22 of the holder 2. In addition to preventing dust and dirt from entering! / And other lubricants such as grease. A sealing pocket 40 is formed. Here, the end 41 on the ball shank 1 side of the boot seal 4 is in close contact with the shank 11 due to its elasticity, while the end 42 on the holder 2 side is between the outer peripheral edge of the holder 2 by a locking ring. The ball shank 1 with the rocking swaying pinch cannot be disengaged even by rotational movement!
[0025] 次に、この実施例の球面軸受の具体的製造方法について説明する。  Next, a specific method for manufacturing the spherical bearing of this embodiment will be described.
[0026] この実施例の球面軸受のホルダ 2は前述の如くアルミニウム合金の型鍛造によって 形成される。この型鍛造では、ボールシャンク 1のボール部 10となる鋼球及び樹脂ラ イナ 3をアルミニウム合金製の素体の内部に収容し、その状態から素体を打撃してホ ルダ 2を成形する。従って、先ずは前記樹脂ライナ 3をボール部 10となるベアリング 用鋼球に対して装着する必要がある。図 2は鋼球に対して樹脂ライナ 3を装着した状 態を示す正面図である。この樹脂ライナ 3はボール部 10の外径に適合する内径を具 備したリング状に成形され、ボール部 10の赤道を覆うように該ボール部 10に対して 装着されている。この樹脂ライナ 3にはガラス転移点 151°C、融点 343°Cのポリエー テルエーテルケトン (ビタトレックス社製/商品名: PEEK)が用いられており、厚さ約 1. 0mmに形成されている。  [0026] The spherical bearing holder 2 of this embodiment is formed by die forging of an aluminum alloy as described above. In this die forging, the steel ball and the resin liner 3 that will become the ball portion 10 of the ball shank 1 are housed in an aluminum alloy element body, and the holder 2 is formed by hitting the element body from this state. Therefore, first, it is necessary to attach the resin liner 3 to a bearing steel ball that becomes the ball portion 10. FIG. 2 is a front view showing a state in which the resin liner 3 is attached to the steel ball. The resin liner 3 is formed in a ring shape having an inner diameter that matches the outer diameter of the ball portion 10, and is attached to the ball portion 10 so as to cover the equator of the ball portion 10. This resin liner 3 is made of polyether ether ketone (product name: PEEK) having a glass transition point of 151 ° C and a melting point of 343 ° C, and has a thickness of about 1.0 mm. .
[0027] このような樹脂ライナ 3はボール部 10をコアとして型内にインサートした射出成形に よって製作され、そのままボール部に装着される。すなわち、ボール部 10となる鋼球 を金型内にインサートした状態で合成樹脂の射出成形を行い、樹脂ライナ 3の成形と ボール部 10への装着を一つの工程で行うのである。このように樹脂ライナ 3の成形を 行えば、ボール部 10への装着手間が省略される他、樹脂ライナ 3の内周面が真円度 の高いベアリング用鋼球の球面に略合致した凹球面状に形成され、かかる樹脂ライ ナ 3をボール部 10に対して隙間なく装着してやることができる。  Such a resin liner 3 is manufactured by injection molding in which a ball portion 10 is inserted into a mold with the ball portion 10 as a core, and is directly attached to the ball portion. That is, synthetic resin injection molding is performed in a state where the steel ball to be the ball portion 10 is inserted into the mold, and the molding of the resin liner 3 and the mounting to the ball portion 10 are performed in one process. If the resin liner 3 is molded in this way, the labor required for mounting on the ball portion 10 is eliminated, and the inner surface of the resin liner 3 is a concave spherical surface that substantially matches the spherical surface of a ball for bearings having a high roundness. The resin liner 3 can be attached to the ball portion 10 without a gap.
[0028] 前記樹脂ライナ 3の形状は図 2に示したものに限られず、例えば図 10に示すように 、樹脂ライナ 3の外周面の数か所に突起 31が形成されたものであっても良い。このよ うに樹脂ライナ 3の外周面に突起 31を形成しておくと、次の工程で鍛造加工を用い てホルダ 2を成形する際に、樹脂ライナ 3の突起 31がホルダ 2に食い込むことになる ので、ホルダ 2に対する樹脂ライナ 3の回転を係止することができ、ホルダ 2と樹脂ライ ナ 3をより強固に一体化することが可能となる。 [0029] 次に、このようにしてボール部 10となるベアリング用鋼球に対する樹脂ライナ 3の装 着が完了したら、次に前記ホルダ 2を型鍛造する。この型鍛造に際しては、先ず、型 鍛造によってホルダ 2に成形されるアルミニウム合金製の素体を準備する。図 3に示 すように、この素体 20は中空部 21を有して略円筒状に形成されており、かかる中空 部 21内に前記樹脂ライナ 3を装着したボール部 10が収容されるようになっている。前 記中空部 21は素体 20を貫通して形成されている力 ボール部 10を中空部 21内に 保持するため、前記樹脂ライナ 3を係止する段部 22が中空部 21の内周面に突出し ている。この段部は樹脂ライナ 3とのみ接触しており、ボール部 10とは非接触に保た れている。 The shape of the resin liner 3 is not limited to that shown in FIG. 2. For example, as shown in FIG. 10, even if protrusions 31 are formed at several locations on the outer peripheral surface of the resin liner 3. good. If the protrusion 31 is formed on the outer peripheral surface of the resin liner 3 in this way, the protrusion 31 of the resin liner 3 bites into the holder 2 when the holder 2 is formed by forging in the next step. Therefore, the rotation of the resin liner 3 with respect to the holder 2 can be locked, and the holder 2 and the resin liner 3 can be more firmly integrated. [0029] Next, when the mounting of the resin liner 3 to the bearing steel balls to be the ball portion 10 is completed in this way, the holder 2 is then die-forged. In this die forging, first, an aluminum alloy body to be formed on the holder 2 by die forging is prepared. As shown in FIG. 3, the element body 20 has a hollow portion 21 and is formed in a substantially cylindrical shape, and the ball portion 10 to which the resin liner 3 is mounted is accommodated in the hollow portion 21. It has become. The hollow portion 21 has a force formed by penetrating the element body 20 and the ball portion 10 is held in the hollow portion 21, so that the step portion 22 that locks the resin liner 3 has an inner peripheral surface of the hollow portion 21. Protruding. This step is in contact only with the resin liner 3 and is kept out of contact with the ball 10.
[0030] 尚、図 3に示す例では、中空部 21の内周面が段部 22に連続する緩やかな円弧を 描いており、樹脂ライナ 3の外周面の形状に近似したものとなっている力 S、これは型鍛 造の際の素体 20の流れを考慮したものであり、中空部 21の形状はこれに限ったもの ではない。  In the example shown in FIG. 3, the inner peripheral surface of the hollow portion 21 draws a gentle arc that continues to the stepped portion 22 and approximates the shape of the outer peripheral surface of the resin liner 3. Force S, which takes into account the flow of the element body 20 during die forging, and the shape of the hollow portion 21 is not limited to this.
[0031] 前記素体 20の中空部 21内にボール部 10及び樹脂ライナ 3を収容したら、かかる 素体 20を型内にセットして鍛造加工を行う。図 4は素体 20を型内にセットした状態を 示すものである。この型は上型 5及び下型 6とから構成されており、素体 20は下型 6 にセットされる。また、上型 5及び下型 6には鍛造加工時にボール部 10の球面を予め 覆うスライドピン 50, 60が設けられており、鍛造加工によって成形されたホルダ 2がボ ール部 10の球面に接触するのを防止している。これらスライドピン 50, 60の先端に はボール部 10の球面を覆う凹球面が形成される一方、力、かる凹球面の周縁には前 記樹脂ライナ 3に接触する平坦面が形成されており、これらのスライドピン 50, 60で ボール部 10及び樹脂ライナ 3を上下から挟み込むことにより、鍛造加工により成形さ れたホルダ 2がボール部 10に接触するのを防止することができるようになつている。  [0031] When the ball portion 10 and the resin liner 3 are accommodated in the hollow portion 21 of the element body 20, the element body 20 is set in a mold and forged. Fig. 4 shows the element 20 set in the mold. This mold is composed of an upper mold 5 and a lower mold 6, and the element body 20 is set in the lower mold 6. Further, the upper die 5 and the lower die 6 are provided with slide pins 50 and 60 that preliminarily cover the spherical surface of the ball portion 10 during forging, and the holder 2 formed by forging is formed on the spherical surface of the ball portion 10. Preventing contact. A concave spherical surface that covers the spherical surface of the ball portion 10 is formed at the tip of these slide pins 50, 60, while a flat surface that contacts the resin liner 3 is formed on the periphery of the concave spherical surface. By sandwiching the ball part 10 and the resin liner 3 from above and below with these slide pins 50, 60, it is possible to prevent the holder 2 formed by forging from contacting the ball part 10. .
[0032] 前記下型 6に素体 20をセットしたら、次に、前記スライドピン 50, 60を進出させ、力、 かる素体 20の中空部 21の中でボール部 10及び樹脂ライナ 3を上下から挟持する( 図 4参照)。そして、この状態から上型 5を下型 6に向けて下降させ、素体 20を打撃す ると共に、図 5に示すように上型 5と下型 6とを型締めし、型鍛造によってホルダ 2の成 形を行う。上型 5を下降させて素体 20を打撃すると、かかる素体 20は押し潰されるよ うにして拡がり、上型 5と下型 6とが形成するキヤビティ内に満たされ、ホルダ 2の形状 に成形される。このとき、素体 20はキヤビティ内を流動して樹脂ライナ 3の外周面に密 着すると共に、樹脂ライナ 3をボール部 10に向けて押圧し、成形されたホルダ 2、樹 脂ライナ 3及びボール部 10の隙間が完全に排除される。また、前述の如くボール部 1 0と樹脂ライナ 3にはスライドピン 50, 60が当接しているので、成形されたホルダ 2が ボール部 10の球面に被さってしまうことはない。尚、キヤビティから溢れ出た素体 20 の余肉は、上型 5及び下型 6の突き合わせ面にフラッシュとして発生する力 S、鍛造カロ ェの終了後に切り落とされる。 [0032] After the element body 20 is set in the lower mold 6, the slide pins 50 and 60 are advanced to move the ball part 10 and the resin liner 3 up and down in the hollow part 21 of the force element body 20. (See Fig. 4). From this state, the upper die 5 is lowered toward the lower die 6 to strike the element body 20, and the upper die 5 and the lower die 6 are clamped as shown in FIG. Form 2 Lowering the upper mold 5 and hitting the element body 20 will crush the element body 20 In this way, it expands, fills the cavity formed by the upper mold 5 and the lower mold 6, and is formed into the shape of the holder 2. At this time, the element body 20 flows in the cavity and adheres to the outer peripheral surface of the resin liner 3, and presses the resin liner 3 toward the ball portion 10 to form the molded holder 2, resin liner 3, and ball. The gap in part 10 is completely eliminated. Further, since the slide pins 50 and 60 are in contact with the ball portion 10 and the resin liner 3 as described above, the molded holder 2 does not cover the spherical surface of the ball portion 10. The excess body 20 overflowing from the cavity is cut off after the force S generated as a flash on the abutting surfaces of the upper die 5 and the lower die 6 and forging calorie finish.
[0033] これにより、図 6に示すように、ボール部 10及び樹脂ライナ 3を前記アルミニウム合 金でくるんだホルダ 2が成形される。このようにして鍛造加工されたホルダ 2にはスライ ドビン 50, 60に対応した部位に開口部 22, 23が形成され、ボール部 10はこれら開 口部 22, 23からのみ露呈している。また、ボール部 10に装着されていた樹脂ライナ 3は鍛造加工により成形されたホルダ 2に埋め込まれた状態となり、かかるホルダ 2に 強固に固定される。前記スライドピン 50, 60が樹脂ライナを上下力 挟み込んでいた ので、鍛造加工されたホルダ 2はボール部 10に接触していない。更に、鍛造加工さ れたホルダ 2は樹脂ライナ 3の端面の一部に被さっており、力、かるホルダ 2は樹脂ライ ナ 3を抱え込んでいる。これにより、樹脂ライナ 3はホルダ 2と強固に一体化されている As a result, as shown in FIG. 6, the holder 2 in which the ball portion 10 and the resin liner 3 are wrapped with the aluminum alloy is formed. In the forged holder 2, the openings 22 and 23 are formed at portions corresponding to the slide bins 50 and 60, and the ball portion 10 is exposed only from the openings 22 and 23. Further, the resin liner 3 attached to the ball portion 10 is embedded in the holder 2 formed by forging, and is firmly fixed to the holder 2. Since the slide pins 50 and 60 sandwich the resin liner in the vertical direction, the forged holder 2 is not in contact with the ball portion 10. Further, the forged holder 2 covers a part of the end face of the resin liner 3, and the holder 2 that holds the force holds the resin liner 3. As a result, the resin liner 3 is firmly integrated with the holder 2.
[0034] 次に、ホルダ 2に包持されたボール部 10に対してシャンク 11を溶接する。かかる溶 接にはプロジェクシヨン溶接が用いられ、図 7に示すように、ホルダ 2の開口部 22を介 してから露呈するボール部 10の球面に対してシャンク 11の端面を所定の力 Fで圧接 させる一方、開口部 23を介して露呈するボール部 10の球面に対して電極 8を当接さ せ、これらシャンク 11及び電極 8に溶接電流を通電して行われる。電極 8とボール部 10との間に大きな通電抵抗が存在すると、ボール部 10の電極当接箇所が溶融して しまうので、力、かる電極 8にはボール部 10の球面に沿った凹面座 80が形成され、ボ ール部 10の球面に対して緊密に面接触を生じるようになつている。 Next, the shank 11 is welded to the ball portion 10 held by the holder 2. Projection welding is used for such welding, and as shown in FIG. 7, the end surface of the shank 11 is exposed to the spherical surface of the ball portion 10 exposed through the opening 22 of the holder 2 with a predetermined force F. On the other hand, the electrode 8 is brought into contact with the spherical surface of the ball portion 10 exposed through the opening 23, and a welding current is applied to the shank 11 and the electrode 8 while being pressed. If a large energization resistance exists between the electrode 8 and the ball part 10, the electrode contact part of the ball part 10 will melt, so the force of the electrode 8 is a concave seat along the spherical surface of the ball part 80. Is formed so that the surface of the ball 10 is in close contact with the spherical surface.
[0035] そして、このようにしてプロジェクシヨン溶接が終了すると、図 1に示すように、ボール 部 10がホルダ 2に包持されたボールシャンク 1が完成する。 [0036] 一方、このようなボール部 10に対するシャンク 11の溶接は、ボール部 10と樹脂ライ ナ 3の摺接状態を改善する操作もかねている。すなわち、前述の如く鍛造加工を用 V、てホルダ 2を成形すると、力、かる加工時に流動したアルミニウム合金が樹脂ライナ 3 をボール部 10に向けて強く押圧することから、ボール部 10と樹脂ライナ 3との間に大 きな摩擦抵抗が作用し、樹脂ライナ 3に対してボール部 10を回転させることが困難に なってしまう懸念がある。実際に鍛造加工でホルダ 2を試作したところ、ホルダ 2によつ て包持されたボール部 10を指で回転させようとしても、回転させることはできなかった Then, when projection welding is completed in this manner, a ball shank 1 in which the ball portion 10 is held by the holder 2 is completed as shown in FIG. On the other hand, the welding of the shank 11 to the ball portion 10 also serves to improve the sliding contact state between the ball portion 10 and the resin liner 3. That is, when the forging process is used as described above and the holder 2 is formed, the force and the aluminum alloy that has flowed during the pressing process strongly presses the resin liner 3 toward the ball part 10, so the ball part 10 and the resin liner There is a concern that a large frictional resistance acts on the resin liner 3 and it becomes difficult to rotate the ball portion 10 relative to the resin liner 3. When the holder 2 was actually prototyped by forging, it was not possible to rotate the ball part 10 held by the holder 2 even if it tried to rotate with the finger.
[0037] し力、し、前述の如ぐシャンク 11をボール部 10に溶接すると、溶接時の熱がボール 部を介して樹脂ライナに伝熱し、樹脂ライナ 3からボール部 10に作用して!/、る押圧力 を軽減することができ、シャンク 11の溶接後にはボールシャンクをホルダに対して軽 い力で揺動させることが可能となる。この点は WO2004/092598に開示されている 技術と同一である。 [0037] When the shank 11 is welded to the ball part 10 as described above, the heat at the time of welding is transferred to the resin liner through the ball part and acts on the ball part 10 from the resin liner 3! / The pressing force can be reduced, and after the shank 11 is welded, the ball shank can be swung with a light force with respect to the holder. This point is the same as the technique disclosed in WO2004 / 092598.
[0038] すなわち、ホルダ 2の鍛造後にボール部 10を加熱することで、かかるボール部 10と 接する樹脂ライナ 3の温度がガラス転移点 Tg以上にまで上昇すると、樹脂ライナ 3を 形成する樹脂材料そのものの物性値が変化し始め、曲げ弾性率やせん断弾性率が 徐々に低下するので、力、かる樹脂ライナ 3をボール部 10の大きさに倣って変形させる こと力 Sでさる。このとき、ボール部 10それ自身も熱膨張を生じ、常温下よりも直径が僅 かに大きくなることから、ボール部 10が僅かに膨らんで樹脂ライナ 3を押し拡げること になる。これにより、ボール部 10に対する樹脂ライナ 3の押圧力が軽減又は除去され 、樹脂ライナ 3に対するボール部 10の自由な回転が可能となる。  [0038] That is, when the temperature of the resin liner 3 in contact with the ball portion 10 rises to the glass transition point Tg or higher by heating the ball portion 10 after forging the holder 2, the resin material itself forming the resin liner 3 Since the flexural modulus and shear modulus gradually decrease, the force, the force that deforms the resin liner 3 according to the size of the ball portion 10, is controlled by the force S. At this time, the ball part 10 itself also undergoes thermal expansion, and its diameter becomes slightly larger than that at room temperature. Therefore, the ball part 10 slightly swells to expand the resin liner 3. Thereby, the pressing force of the resin liner 3 against the ball portion 10 is reduced or eliminated, and the ball portion 10 can be freely rotated with respect to the resin liner 3.
[0039] シャンク 11をボール部 10に溶接する際には、力、かる溶接部位は 1200〜; 1500°C 程度にまで加熱されており、ボール部 10に接する樹脂ライナ 3もガラス転移点 Tg以 上の温度にまで加熱されている。従って、ホルダ 2の铸造後にシャンク 11をボール部 10に対して溶接すると、それまではボール部 10を締め付けていた樹脂ライナ 3が該 ボール部 10に倣うようにして変形し、力、かる樹脂ライナ 3がボール部 10を押圧してい た力を軽減させ又は取り除くことができる。  [0039] When the shank 11 is welded to the ball part 10, the force and the welded portion are heated to 1200 to 1500 ° C, and the resin liner 3 in contact with the ball part 10 also has a glass transition point Tg or less. It is heated to the above temperature. Therefore, when the shank 11 is welded to the ball part 10 after the holder 2 is fabricated, the resin liner 3 that has been tightening the ball part 10 until then is deformed so as to follow the ball part 10, and the resin liner can It is possible to reduce or eliminate the force that 3 is pressing the ball portion 10.
[0040] このとき、ボール部 10と樹脂ライナ 3は隙間なく接触してはいるものの、何ら応力が 発生してない理想的な接触状態となることから、ボールシャンク 1はホルダ 2に対して ボール部 10を中心とした揺動運動又はシャンク 11の軸周りの回転運動を極めて円 滑に行うことが可能となる。しかも、樹脂ライナ 3とボール部 10との間の隙間は完全に 排除されていることから、ボールシャンク 1がホルダ 2に対してガタ付きを生じることも なぐ長期にわたる経時的な使用においても充分にその性能を維持することができる [0040] At this time, although the ball portion 10 and the resin liner 3 are in contact with each other with no gap, no stress is applied. Since the ideal contact state is not generated, the ball shank 1 can perform a swinging motion around the ball portion 10 or a rotational motion around the shaft of the shank 11 with respect to the holder 2 extremely smoothly. It becomes possible. In addition, since the gap between the resin liner 3 and the ball portion 10 is completely eliminated, the ball shank 1 will not be loose with respect to the holder 2. Its performance can be maintained
[0041] そして、最後にシャンク 10とホルダ 2の外周縁との間に前述したブーツシール 3を取 付け、このブーツシール 3が形成するシールポケット 30にグリース等の潤滑剤を充填 する。また、ホルダ 2の開口部 23には前述した蓋部材 24が取り付けられる。本実施 例の球面軸受は完成する。 [0041] Finally, the boot seal 3 described above is attached between the shank 10 and the outer peripheral edge of the holder 2, and a seal pocket 30 formed by the boot seal 3 is filled with a lubricant such as grease. The lid member 24 described above is attached to the opening 23 of the holder 2. The spherical bearing of this example is completed.
[0042] 次に、図 8は本発明方法によって製造される球面軸受の第 2の実施形態を示す断 面図である。  Next, FIG. 8 is a sectional view showing a second embodiment of the spherical bearing manufactured by the method of the present invention.
[0043] この球面軸受は、外側部材としての外輪 101と、内側部材としての内輪 102と、これ ら内輪 102と外輪 101の間に介装された樹脂ライナ 103とから構成され、外輪 101に 保持された樹脂ライナ 103に対して内輪 102が自在に揺動運動又は回転運動をなし 得るようになつている。前記内輪 102はリンク機構のロッド 104を揷入するための貫通 孔 105を有して環状に形成されており、外周面 106は前記樹脂ライナ 103と摺接す る凸状球面に仕上げられている。また、前記樹脂ライナとしては第 1の実施形態と同 じポリエーテルエーテルケトンを使用し、その厚さは 1. Ommとした。  [0043] This spherical bearing is composed of an outer ring 101 as an outer member, an inner ring 102 as an inner member, and a resin liner 103 interposed between the inner ring 102 and the outer ring 101, and is held by the outer ring 101. The inner ring 102 can freely swing or rotate with respect to the resin liner 103 formed. The inner ring 102 has a through hole 105 for inserting a rod 104 of a link mechanism and is formed in an annular shape, and the outer peripheral surface 106 is finished to a convex spherical surface that is in sliding contact with the resin liner 103. . In addition, the same polyether ether ketone as that of the first embodiment was used as the resin liner, and the thickness thereof was 1. Omm.
この第 2の実施形態の球面軸受の製造方法も前述した第 1の実施形態の球面軸受 の製造方法と略同じである。先ずは、内輪 102をコアとしてモールド型内にインサート して樹脂ライナ 103の射出成形を行い、かかる樹脂ライナ 103を内輪 102の球面 10 6に装着する。次に、樹脂ライナ 103を装着した内輪 102をアルミユウム合金製の素 体に収容し、この素体に対して型鍛造を施して前記外輪 101の成形を行う。これによ り、内輪 102をアルミニウム合金でくるんだ外輪 101が鍛造される。このとき、内輪 10 2に装着されていた樹脂ライナ 103はその外周面が鍛造された外輪 101密着し、力、 力、る外輪 101と強固に一体化される。  The manufacturing method of the spherical bearing of the second embodiment is also substantially the same as the manufacturing method of the spherical bearing of the first embodiment described above. First, the inner ring 102 is inserted into a mold as a core to perform injection molding of the resin liner 103, and the resin liner 103 is mounted on the spherical surface 106 of the inner ring 102. Next, the inner ring 102 on which the resin liner 103 is mounted is accommodated in an aluminum alloy body, and the outer ring 101 is formed by die forging the body. As a result, the outer ring 101 in which the inner ring 102 is wrapped with an aluminum alloy is forged. At this time, the resin liner 103 attached to the inner ring 102 is brought into close contact with the outer ring 101 whose outer peripheral surface is forged, and is firmly integrated with the outer ring 101 with force and force.
[0044] また、樹脂ライナ 103が鍛造加工の終了後に内輪 102を押圧している力を軽減又 は除去するため、第 1の実施形態の製造方法と同様、外輪 101の鍛造後に内輪 102 を介して樹脂ライナ 103を加熱することが必要となる。この第 2の実施形態の球面軸 受では、図 9に示すように、内輪 102の貫通孔 105に対して高周波交流電源 107に 接続されたコイル 108を揷入し、力、かる内輪 102を高周波加熱によって貫通孔 105 の内部から加熱するようにした。内輪の加熱温度は約 1500〜; 1600°C、加熱時間は 約 0. 2〜0. 5secとした。 [0044] Further, the force with which the resin liner 103 presses the inner ring 102 after completion of the forging process is reduced or reduced. Therefore, it is necessary to heat the resin liner 103 via the inner ring 102 after the outer ring 101 is forged, as in the manufacturing method of the first embodiment. In the spherical bearing of the second embodiment, as shown in FIG. 9, a coil 108 connected to a high-frequency AC power source 107 is inserted into the through-hole 105 of the inner ring 102 to force the inner ring 102 to a high frequency. Heating was performed from the inside of the through hole 105 by heating. The inner ring heating temperature was about 1500 to 1600 ° C, and the heating time was about 0.2 to 0.5 sec.
そして、このように内輪 102を加熱すると、内輪 102に接触している樹脂ライナ 103 もガラス転移点 Tg以上の温度にまで加熱されるので、それまでは内輪 102を押圧し ていた樹脂ライナ 103が該内輪 102に倣うようにして変形し、力、かる樹脂ライナ 103 が内輪 102を押圧していた力を軽減させ又は取り除くことができる。これにより、内輪 102が外輪 101と一体化された樹脂ライナ 103に対して自在に回転することが可能と なり、内輪 102の貫通孔 105に固定されたロッド 104は外輪 101に対し、内輪 102を 中心とした揺動運動又は自身の軸周りの回転運動を極めて円滑に行うことが可能と なる。  When the inner ring 102 is heated in this way, the resin liner 103 in contact with the inner ring 102 is also heated to a temperature equal to or higher than the glass transition point Tg, so that the resin liner 103 that has been pressing the inner ring 102 until then is heated. The inner ring 102 is deformed so as to follow the inner ring 102, and the force that the resin liner 103 presses against the inner ring 102 can be reduced or removed. As a result, the inner ring 102 can freely rotate with respect to the resin liner 103 integrated with the outer ring 101, and the rod 104 fixed to the through hole 105 of the inner ring 102 moves the inner ring 102 against the outer ring 101. It becomes possible to perform a swinging motion around the center or a rotational motion around its own axis extremely smoothly.

Claims

請求の範囲 The scope of the claims
[1] 金属ボール部 (10)を有する内側部材 (1)と、この内側部材 (1)のボール部 (10)を覆うと 共に該ボール部 (10)と摺接する樹脂ライナ (3)と、鍛造加工によって形成され、前記内 側部材 (1)に接触することなく前記樹脂ライナ (3)の外周面の全域と緊密に接触して該 樹脂ライナ (3)を離脱不能に包持する外側部材 (2)とから構成されることを特徴とする 球面軸受。  [1] An inner member (1) having a metal ball portion (10), a resin liner (3) that covers the ball portion (10) of the inner member (1) and is in sliding contact with the ball portion (10), An outer member that is formed by forging and tightly contacts the entire outer peripheral surface of the resin liner (3) without contacting the inner member (1) so that the resin liner (3) is detachably held. A spherical bearing characterized by comprising (2).
[2] 前記樹脂ライナ (3)は略一定の厚みに形成され、その外周面は凸球面状に形成され て!/、ることを特徴とする請求項 1記載の球面軸受。  2. The spherical bearing according to claim 1, wherein the resin liner (3) is formed to have a substantially constant thickness, and an outer peripheral surface thereof is formed into a convex spherical shape.
[3] 前記内側部材 (1)はシャンク (11)の先端に前記ボール部 (10)が形成されたボールシャ ンク (1)であることを特徴とする請求項 1記載の球面軸受。 [3] The spherical bearing according to claim 1, wherein the inner member (1) is a ball shank (1) in which the ball portion (10) is formed at a tip of a shank (11).
[4] 前記シャンク (11)は前記ボール部 (10)に溶接されていることを特徴とする請求項 3記 載の球面軸受。 [4] The spherical bearing according to claim 3, wherein the shank (11) is welded to the ball portion (10).
[5] 金属ボール部 (10)を有する内側部材 (1)と、この内側部材 (1)のボール部 (10)を覆うと 共に該ボール部 (10)と摺接する樹脂ライナ (3)と、前記内側部材 (1)に接触することなく 前記樹脂ライナ (3)を離脱不能に包持する外側部材 (2)とから構成される球面軸受の 製造方法であって、  [5] An inner member (1) having a metal ball portion (10), a resin liner (3) that covers the ball portion (10) of the inner member (1) and is in sliding contact with the ball portion (10), A method of manufacturing a spherical bearing comprising an outer member (2) that detachably holds the resin liner (3) without contacting the inner member (1),
前記内側部材 (1)のボール部 (10)をコアとして型内にインサートした状態で射出成形 を行い、力、かるボール部 (10)を覆う樹脂ライナ (3)を成形し、  Injection molding is performed with the ball portion (10) of the inner member (1) inserted into the mold as a core, and a resin liner (3) covering the ball portion (10) is formed.
中空部 (21)を有する金属製の素体 (20)を型内にセットすると共に、前記中空部 (21) 内に前記樹脂ライナ (3)と一体化した内側部材 (1)を収容し、鍛造加工によって前記樹 脂ライナ (3)の外周面の全域と緊密に接触する外側部材 (2)を成形し、  A metal element body (20) having a hollow portion (21) is set in a mold, and an inner member (1) integrated with the resin liner (3) is accommodated in the hollow portion (21). Forming the outer member (2) in close contact with the entire outer peripheral surface of the resin liner (3) by forging;
前記鍛造加工の終了後に、内側部材 (1)のボール部 (10)を介して該ボール部 (10)を 覆っている樹脂ライナ (3)を加熱することを特徴とする球面軸受の製造方法。  A method of manufacturing a spherical bearing, comprising: heating the resin liner (3) covering the ball part (10) through the ball part (10) of the inner member (1) after the forging process is completed.
[6] 前記鍛造加工後であって、前記樹脂ライナ (3)の加熱前は、前記樹脂ライナ (3)に対 する内側部材 (1)の回転が拘束されていることを特徴とする請求項 5記載の球面軸受 の製造方法。 [6] The rotation of the inner member (1) with respect to the resin liner (3) is restricted after the forging process and before the heating of the resin liner (3). 5. A method for producing a spherical bearing according to 5.
[7] 樹脂ライナ (3)に接触する一対のスライドピン (50,60)によってボール部 (10)の球面を上 下から覆った状態で、前記外側部材 (2)の鍛造加工を行うことを特徴とする請求項 5 記載の球面軸受の製造方法。 [7] The outer member (2) is forged in a state where the spherical surface of the ball portion (10) is covered from above and below by a pair of slide pins (50, 60) contacting the resin liner (3). Characteristic claim 5 A method of manufacturing the spherical bearing described.
PCT/JP2007/064977 2006-09-27 2007-07-31 Spherical bearing and process for manufacturing the same WO2008038458A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008536293A JP5225093B2 (en) 2006-09-27 2007-07-31 Spherical bearing and manufacturing method thereof
DE112007002148.9T DE112007002148B4 (en) 2006-09-27 2007-07-31 Manufacturing process for a ball joint bearing
CN2007800359205A CN101542141B (en) 2006-09-27 2007-07-31 Spherical bearing and process for manufacturing the same
US12/442,230 US8281490B2 (en) 2006-09-27 2007-07-31 Spherical bearing and process for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006262208 2006-09-27
JP2006-262208 2006-09-27

Publications (1)

Publication Number Publication Date
WO2008038458A1 true WO2008038458A1 (en) 2008-04-03

Family

ID=39229898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064977 WO2008038458A1 (en) 2006-09-27 2007-07-31 Spherical bearing and process for manufacturing the same

Country Status (5)

Country Link
US (1) US8281490B2 (en)
JP (1) JP5225093B2 (en)
CN (1) CN101542141B (en)
DE (1) DE112007002148B4 (en)
WO (1) WO2008038458A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179672A (en) * 2010-03-04 2011-09-15 Somic Ishikawa Inc Method for manufacturing ball joint
CN103459864A (en) * 2011-03-31 2013-12-18 武藏精密工业株式会社 Method for manufacturing ball joint
JP2017129195A (en) * 2016-01-20 2017-07-27 日本発條株式会社 Ball joint, caulking method, and caulking mold
WO2020129429A1 (en) * 2018-12-19 2020-06-25 日本発條株式会社 Ball joint manufacturing method
CN113232470A (en) * 2021-07-12 2021-08-10 莱州市精密锻造有限公司 Ball seat matched with thrust rod of automobile transmission system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084163A1 (en) * 2011-10-07 2013-04-11 Zf Friedrichshafen Ag Connecting arrangement for a vehicle
DE102011117691A1 (en) * 2011-11-04 2013-05-08 Presswerk Krefeld Gmbh & Co.Kg Wheel joint component of vehicle chassis, has housing that is made by cold massive forming of slug, and provided with air passage
WO2013099659A1 (en) * 2011-12-28 2013-07-04 Thk株式会社 Ball joint and manufacturing method therefor
US10066661B2 (en) * 2013-07-17 2018-09-04 Central Corporation Ball joint and method for manufacturing same
US10851838B2 (en) * 2014-01-28 2020-12-01 Triton Systems, Inc. Liner-as-seal bearings
DE102014222576B4 (en) * 2014-11-05 2022-05-19 Ford Global Technologies, Llc Wishbone with ball joint in press-in connection
DE102014225313B4 (en) 2014-12-09 2017-11-16 Zf Friedrichshafen Ag Method for heating a bearing shell of a joint
US10247228B2 (en) 2015-06-16 2019-04-02 Honda Motor Co., Ltd. Ball joint assembly having friction coated components and methods of assembling a ball joint assembly having defined gaps
JP6300772B2 (en) * 2015-10-02 2018-03-28 日本発條株式会社 Ball joint
JP6832206B2 (en) * 2017-03-29 2021-02-24 日本発條株式会社 Ball joint and stabilizer link using it
JP6768584B2 (en) * 2017-03-31 2020-10-14 日本発條株式会社 Ball joint manufacturing method and stabilizer link manufacturing method
DE102017206706B4 (en) * 2017-04-20 2019-03-14 Zf Friedrichshafen Ag Method for producing a ball joint
EP3669092B1 (en) * 2017-08-16 2022-06-22 Multimatic, Inc. Ball joint with injection molded bearing
JP7185293B2 (en) * 2019-10-29 2022-12-07 株式会社ソミックマネージメントホールディングス ball joint

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235109A (en) * 1985-08-07 1987-02-16 Tokai Rubber Ind Ltd Rod with ball joint
JPS62288715A (en) * 1986-06-03 1987-12-15 Hiroshi Teramachi Ball joint and its manufacture
JPH1034276A (en) * 1996-07-18 1998-02-10 Musashi Seimitsu Ind Co Ltd Housing for joint member and its forging method
JP2000074040A (en) * 1998-08-31 2000-03-07 Somic Ishikawa:Kk Housing of ball joint, manufacture thereof, device therefor and ball joint
JP2004316771A (en) * 2003-04-16 2004-11-11 Thk Co Ltd Method of manufacture of spherical cap bearing

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831244A (en) * 1973-03-01 1974-08-27 Columbus Auto Parts Method of producing ball joints
US4079490A (en) * 1975-07-08 1978-03-21 The Heim Universal Corporation Method of manufacturing bearings
JPS59218236A (en) * 1983-05-24 1984-12-08 Mitsubishi Electric Corp Manufacture of spherical bearing
JPH0768993B2 (en) * 1989-11-20 1995-07-26 株式会社三之橋製作所 Anti-vibration weighted bolt and its manufacturing method
JP3179296B2 (en) * 1994-08-11 2001-06-25 株式会社ゼクセルヴァレオクライメートコントロール Hinge ball of variable displacement rocking plate compressor
JP3273891B2 (en) * 1996-06-28 2002-04-15 株式会社三協精機製作所 Disk drive motor, rotor thereof, and method of manufacturing rotor
JP2000110826A (en) 1998-09-30 2000-04-18 Rhythm Corp Ball joint
JP2000120653A (en) 1998-10-12 2000-04-25 Somic Ishikawa:Kk Ball joint and its manufacture
TW470818B (en) * 2000-05-18 2002-01-01 Thk Co Ltd Spherical bearing and method for manufacturing the same
JP4514937B2 (en) 2000-11-24 2010-07-28 株式会社ソミック石川 Ball joint
JP2002266840A (en) 2001-03-08 2002-09-18 Musashi Seimitsu Ind Co Ltd Ball joint and caulking device therefor
JP4073809B2 (en) 2003-03-18 2008-04-09 本田技研工業株式会社 Ball joint
GB2406148B (en) * 2003-03-31 2005-08-17 Minebea Co Ltd A spherical bearing arrangement
CN1480655A (en) * 2003-06-24 2004-03-10 吴德炳 Two pieces set of spherical bearing
JP2006144990A (en) * 2004-11-24 2006-06-08 Jtekt Corp Rolling bearing device
JP4059268B2 (en) * 2005-12-19 2008-03-12 日本精工株式会社 Rolling bearing unit for wheel support and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235109A (en) * 1985-08-07 1987-02-16 Tokai Rubber Ind Ltd Rod with ball joint
JPS62288715A (en) * 1986-06-03 1987-12-15 Hiroshi Teramachi Ball joint and its manufacture
JPH1034276A (en) * 1996-07-18 1998-02-10 Musashi Seimitsu Ind Co Ltd Housing for joint member and its forging method
JP2000074040A (en) * 1998-08-31 2000-03-07 Somic Ishikawa:Kk Housing of ball joint, manufacture thereof, device therefor and ball joint
JP2004316771A (en) * 2003-04-16 2004-11-11 Thk Co Ltd Method of manufacture of spherical cap bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179672A (en) * 2010-03-04 2011-09-15 Somic Ishikawa Inc Method for manufacturing ball joint
CN103459864A (en) * 2011-03-31 2013-12-18 武藏精密工业株式会社 Method for manufacturing ball joint
JP5975531B2 (en) * 2011-03-31 2016-08-23 武蔵精密工業株式会社 Ball joint manufacturing method
JP2017129195A (en) * 2016-01-20 2017-07-27 日本発條株式会社 Ball joint, caulking method, and caulking mold
WO2020129429A1 (en) * 2018-12-19 2020-06-25 日本発條株式会社 Ball joint manufacturing method
CN113232470A (en) * 2021-07-12 2021-08-10 莱州市精密锻造有限公司 Ball seat matched with thrust rod of automobile transmission system

Also Published As

Publication number Publication date
DE112007002148B4 (en) 2020-07-02
JP5225093B2 (en) 2013-07-03
DE112007002148T5 (en) 2009-10-29
JPWO2008038458A1 (en) 2010-01-28
US8281490B2 (en) 2012-10-09
US20090279820A1 (en) 2009-11-12
CN101542141B (en) 2012-10-24
CN101542141A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2008038458A1 (en) Spherical bearing and process for manufacturing the same
JP3862669B2 (en) Manufacturing method of spherical bearing
KR101948372B1 (en) Ball joint and manufacturing method therefor
US4846590A (en) Spherical bearing and production method thereof
JPH0518412A (en) Spherical surface slide bearing and its manufacture
WO2014192533A1 (en) Ball joint
US20020184768A1 (en) Spherical bearing and method for manufacturing the same
JP4737862B2 (en) Spherical bearing and manufacturing method thereof
JP5885547B2 (en) Ball joint manufacturing method
JP2002242934A (en) Manufacturing method for slide bearing
JP2003336623A (en) Ball joint and manufacturing method therefor
JP5349577B2 (en) Ball joint and manufacturing method thereof
JP4319070B2 (en) Ball joint manufacturing method
JP4073797B2 (en) Manufacturing method of spherical bearing
JP5988636B2 (en) Ball joint and manufacturing method thereof
JP2009299725A (en) Method of manufacturing ball joint

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780035920.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791662

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008536293

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120070021489

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12442230

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07791662

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112007002148

Country of ref document: DE

Date of ref document: 20091029

Kind code of ref document: P

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)