WO2008025308A1 - Procédé de production d'un signal d'erreur indiquant une erreur dans un système de condensateur et appareil de protection électrique destiné à la mise en oeuvre de ce procédé - Google Patents

Procédé de production d'un signal d'erreur indiquant une erreur dans un système de condensateur et appareil de protection électrique destiné à la mise en oeuvre de ce procédé Download PDF

Info

Publication number
WO2008025308A1
WO2008025308A1 PCT/DE2006/001542 DE2006001542W WO2008025308A1 WO 2008025308 A1 WO2008025308 A1 WO 2008025308A1 DE 2006001542 W DE2006001542 W DE 2006001542W WO 2008025308 A1 WO2008025308 A1 WO 2008025308A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
value
arrangement
transfer function
Prior art date
Application number
PCT/DE2006/001542
Other languages
German (de)
English (en)
Inventor
Andreas Jurisch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE112006004114T priority Critical patent/DE112006004114A5/de
Priority to PCT/DE2006/001542 priority patent/WO2008025308A1/fr
Publication of WO2008025308A1 publication Critical patent/WO2008025308A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/16Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors

Definitions

  • the invention relates to a method for generating an error signal, which indicates an error in a capacitor arrangement in an electrical energy supply network. Moreover, the invention relates to an electrical protection device for carrying out the method.
  • capacitor arrays are often used in the form of so-called capacitor banks or capacitor banks. These are mostly connected in series and / or parallel circuits individual capacitors, which form the capacitor arrangement in their entirety.
  • capacitor arrays are often used to stabilize the power supply or a required quality of electrical energy.
  • capacitor arrangements are used, for example, for targeted reactive power compensation, wherein the capacitor arrangement counteracts a shift in the phase angle between current and voltage resulting from inductive loads in the energy supply network by controlled connection of the capacitive capacitor arrangement.
  • capacitor arrangements in electrical DC power supply networks are also used for energy storage.
  • the capacitor arrangements represent sensitive elements of the respective energy supply network, so that the individual individual capacitors of the capacitor arrangement against overcurrent and overvoltage, ie currents and voltages that could cause damage or even destruction of the individual capacitors must be protected.
  • a disadvantage of this method is that the capacitors or groups of capacitors on which the voltage is measured, must match as closely as possible in terms of their capacitance values in order to achieve protection of the entire capacitor assembly with sufficient sensitivity can.
  • the individual capacitors often have different capacitance values, so that in practice it is not possible to assume exactly matching capacitance values.
  • Such deviating capacitance values of individual capacitors are also referred to as so-called "asymmetry" of the capacitor arrangement.)
  • the threshold value used in the voltage comparison contactor must be set relatively high comparatively low. The invention is therefore based on the object to provide a method and a corresponding protective device to achieve the most sensitive protection of capacitor assemblies.
  • the invention proposes a method for generating an error signal that indicates a fault in a capacitor arrangement in an electrical energy supply network, in which the following steps are carried out:
  • the method according to the invention has the advantage that due to the mathematical description or simulation of the capacitor arrangement via a transfer function, the error signal can be carried out independently of possible asymmetries of the capacitor arrangement even with high sensitivity.
  • the transfer function in fact, the real conditions of the capacitor arrangement, such as the declaration on the capacitor nameplate due to manufacturing tolerances or Al deviating capacity values.
  • the transfer function can be determined, for example, by measurements on the actual capacitor arrangement. Since a transfer function that describes the real capacitor arrangement with high accuracy is determined, the predetermined threshold value can be set comparatively low, so that the overall sensitivity of the protection method increases.
  • the capacitor current measured value be measured as a complex current vector and the capacitor voltage measured value as a complex voltage vector, and the model voltage value be calculated as a complex voltage vector.
  • the capacitor current reading and the capacitor voltage reading can be considered both in amplitude and in phase, further increasing the accuracy of the method.
  • the predetermined threshold value represents a function which is calculated as a function of the capacitor current measurement value.
  • a characteristic curve for the threshold value can be preset which, for example, provides a correspondingly larger threshold value for high capacitor currents than for low capacitor currents.
  • a further advantageous embodiment of the method according to the invention also proposes that the transfer function is continuously adapted to the state of the capacitor arrangement.
  • the transfer function is continuously adapted to the state of the capacitor arrangement.
  • the adaptation of the transfer function can be monitored, for example, by a logging function of a protective device, and a check can take place which gives the operator of the capacitor arrangement an automatic indication if the overall adjustments made are above a critical limit. From such an indication, the operator of the capacitor arrangement can derive, for example, a maintenance requirement of the individual capacitors.
  • the transfer function is also regarded as an advantageous development of the method according to the invention if at least one parameter of the transfer function containing the electrical capacitance of the capacitor arrangement is determined to adapt the transfer function by means of a parameter estimation method using the detected capacitor current and the detected capacitor voltage, and the transfer function is calculated using the estimated parameter.
  • the parameter estimation method should have the largest possible time constant in order to actually only slow changes in the capacitor arrangement, such as creeping aging processes of the individual capacitors, to be incorporated into the model.
  • the dielectric resistance of the capacitor arrangement is also determined in order to adapt the transfer function by means of the parameter estimation method.
  • the transfer function of the capacitor arrangement can be determined comparatively accurately.
  • G (j ⁇ ) transfer function
  • Capacitor arrangement C: Capacitance of the capacitor arrangement
  • capacitor arrangement derived therefrom eg a time disassembly derived therefrom.
  • crete mathematical representation which is suitable for use with digital filters
  • the proposed transfer function allows with sufficient accuracy a description of the capacitor arrangement using only two parameters to be determined, namely the capacitance C and the dielectric resistance R D of the capacitor arrangement.
  • a further advantageous embodiment of the method according to the invention also provides that the error signal is also generated when the capacitor current measured value exceeds a predetermined maximum current value. In this way, the capacitor arrangement can additionally be safely protected against overflow.
  • the method described can be used both in single-phase and in multiphase systems.
  • the capacitor currents and capacitor voltages would have to be replaced by currents and voltages corresponding to all phases (for example, negative sequence currents and common system voltages or common system currents and positive sequence voltages in a three-phase system).
  • a particularly advantageous embodiment of the method according to the invention provides that, in the case of a multi-phase energy supply network, the method is carried out in each case for each phase.
  • the described method is consequently carried out separately for each of the three phases of the capacitor arrangement.
  • a measured value detecting means for detecting Kondensatorsstrommess pronounce that indicate the current flowing through the capacitor assembly current, and For detecting capacitor voltage measurements that indicate the voltage applied to the capacitor assembly voltage, wherein
  • the electrical protection device has a processing device which calculates a corresponding mode voltage value from each detected capacitor current measured value by means of a transfer function describing the capacitor arrangement and generates an error signal if the difference between the mode voltage value and the detected capacitor voltage measured value exceeds a predetermined threshold value.
  • Figure 1 is a schematic view of a protective device for
  • FIG. 2 shows a schematic block diagram for explaining the mode of operation of an electrical protection device according to a first embodiment
  • FIG. 3 shows an equivalent circuit diagram of a phase of a capacitor arrangement
  • FIG. 4 shows a schematic block diagram for explaining the operation of an electrical protection device according to a second embodiment
  • Figure 5 is a characteristic curve for stabilizing a threshold used in the second embodiment.
  • FIG. 1 shows an electrical protection device 10, which is connected to a section 11 of a three-phase electrical power supply network in terms of measurement and control technology.
  • the section 11 terminates in a capacitor arrangement 12, which is used in the electrical energy supply network, for example, for purposes of reactive power compensation.
  • the electrical protection device 10 is connected by means of current transformers 13a, 13b and 13c and via voltage transformers 14a, 14b and 14c by measurement to the section 11 of the electrical energy supply network.
  • the electrical protection device 10 is connected in terms of control technology with circuit breakers of the individual phases of the section 11 of the electrical energy supply network in order to be able to disconnect the capacitor arrangement 12 in the event of a fault from the energy supply network.
  • this control connection is not shown in FIG. 1 for reasons of clarity; however, they will be discussed later in the description of FIG. 2.
  • the electrical protection device 10 detects current measured values, which are referred to below as capacitor current measured values, since they are the current indicate that flows through the capacitor assembly 12 per phase.
  • the electrical protection device 10 also detects voltage measurement values at the section 11 of the electrical power supply network, which are referred to below as capacitor voltage measurement values, since they indicate the voltage applied to the capacitor arrangement per phase.
  • the three phases of the capacitor arrangement 12 are interconnected in a common star point 15.
  • the capacitor arrangement 12 consists of separate individual capacitors 16. Per phase of the electrical power supply network, at least one capacitor 16 is provided in the capacitor arrangement 12. According to FIG. 1, in each case four individual capacitors 16 are connected in series per phase of the electrical energy supply network in the capacitor arrangement 12. Of course, instead of the series connection of four capacitors, it is possible for any number of capacitors per phase to be connected both in series and in parallel or in a mixed series and parallel connection.
  • a first exemplary embodiment of the electrical protection device 10 (see FIG. 1) will be described with reference to FIG.
  • FIG. 2 also shows a phase conductor 20 of the section 11 of the electrical energy supply network shown in FIG.
  • the phase conductor 20 leads to a phase 21 of the capacitor arrangement 12 (see FIG. 1), which according to FIG. 2 is merely indicated by a single capacitor as a substitute.
  • any number of capacitors can be connected in series and / or in parallel per phase of the capacitor arrangement.
  • the method explained in FIG. 2 for a phase conductor 20 can also be used correspondingly for the further phase conductors.
  • the phase conductor 20 of the electrical energy supply network can be interrupted by the protective device 100 by driving a circuit breaker 22 by means of a trigger signal A, if an error has been detected in the capacitor arrangement for this phase conductor 20.
  • a shutdown of all phases of the capacitor arrangement by correspondingly existing further switch in the other phase conductors is conceivable.
  • the electrical protection device 100 detects the capacitor current I c via the current transformer 13 a and the capacitor voltage U 0 via the voltage converter 14 a.
  • the capacitor current I c and the capacitor voltage U c are applied to a measured value detection device 23 of the electrical protection device 100.
  • the capacitor current I c and can the capacitor voltage U 0 can be reduced in terms of their current or voltage level of an internal instrument transducer means again.
  • Capacitor current I c and the capacitor voltage U c instead.
  • Other preprocessing steps may also be used, such as automatic filtering to smooth the condensate. torstrom I c and the capacitor voltage U c are made.
  • the respective measured values are preferably detected in the complex plane, that is to say in terms of their amplitude and their phase angle. Further processing of the measured values takes place in the complex level.
  • the measured value detection device 23 outputs digitized capacitor current measured values ⁇ and digitized capacitor voltage measured values Ü.
  • the capacitor current measured values I are fed to a processing device 24, which converts the capacitor current measured values ⁇ into model voltage values Ü M using a transfer function G.
  • the processing device 24 uses a transfer function G, which mathematically simulates the relationship between capacitor current and capacitor voltage for the phase 21 of the capacitor arrangement. Consequently, in the case of a fault-free phase 21 of the capacitor arrangement, the capacitor voltage measured values U detected and digitized via the voltage converter 14a must almost coincide with the model voltage values Ü calculated from the capacitor current measured values I detected and digitized via the current transformer 13a.
  • the capacitor voltage measured values Ü and the model voltage values Ü M are then supplied to a comparison device 25 in such a way that the respective pairs of voltage values Ü M and capacitor voltage values Ü are supplied in pairs to the comparison device 25, which are based on capacitor currents I c and capacitor voltages Uc detected at the same instant ,
  • These respective temporally related model voltage values Ü M and capacitor voltage measured values Ü are compared by the comparison device 25 in such a way that the difference between the capacitor voltage measurement value Ü and the model voltage value Ü M is formed. If this difference exceeds a value which can be set in the electrical protection device 100 as a parameter
  • Threshold value an error signal is generated by the comparison device, whereby the electrical protection device 100 detects an error in the phase 21 of the capacitor arrangement.
  • the electrical protection device 100 generates a trigger signal A, which is output via a command output 26 of the electrical protection device 100 to the circuit breaker 22.
  • the trigger signal A the power switch 22 is caused to open its switch contacts, so that the phase 21 of the capacitor assembly is disconnected from the electrical power grid.
  • FIG. 3 shows an equivalent circuit diagram 31 for this purpose.
  • the equivalent circuit diagram 31 shows a capacitor C which combines the capacitive components of all the capacitors connected together in the corresponding phase of the capacitor arrangement.
  • a dielectric resistor R D is shown, which represents the ohmic components of the internal resistances of the interconnected individual capacitors.
  • a loss resistor R v is connected, which represents the ohmic resistance components present, for example, by line resistances in the capacitor arrangement.
  • the capacitor current I c flows through the entire phase of the capacitor arrangement, while the capacitor voltage U c drops at the arrangement.
  • the transfer function G of one phase of the capacitor arrangement that is to say the mathematical relationship between capacitor voltage U c and capacitor current I c, can be represented as follows according to this substitute circuit:
  • G (j ⁇ ): transfer function; j: imaginary unit, where J V-I; ⁇ : angular frequency;
  • Uc (j ⁇ ) complex capacitor voltage
  • Ic (j ⁇ ) complex capacitor current
  • R 0 dielectric resistance of the respective phase of the capacitor array
  • R v loss resistance of the respective phase of the capacitor arrangement
  • C capacity of each phase of the
  • This equation can be used as a transfer function for the processing device 24 (FIG. 2) of the protective device 10 in order to convert the measured and digitized capacitor current measured values into model voltage values.
  • the advantage of the simplified transfer function is that only two parameters, namely the capacitance C and the dielectric resistance R P, must be known for each phase of the capacitor arrangement.
  • the transmission function G (j ⁇ ) arranged in the continuous-time region must be converted into the time-discrete region according to equation (2).
  • the transfer function takes the form:
  • T digitized capacitor voltage measurement
  • digitized capacitor current measurement
  • f A sampling frequency
  • the digitized capacitor current measured values I can be converted into the model voltage values Ü M. If the capacitance C and the dielectric resistance R D are known at a given sampling frequency f A , this results in a connection between a digitized capacitor current measurement value ⁇ and a digitized capacitor voltage measurement value 0 valid for the faultless phase of the capacitor arrangement, such that the voltage in the processing device 24 model voltage value U M calculated from the capacitor current measurement value ⁇ would almost have to match the capacitor voltage measurement value Ü in the error-free case.
  • FIG. 4 shows a second exemplary embodiment of a protective device for protecting a capacitor arrangement.
  • the protective device 110 shown in FIG. 4 has in essential components a functionality corresponding to the protective device 100 according to FIG.
  • a measured value detection device 23 is present, which function according to the description of FIG. 2.
  • the protective device 110 according to FIG. 4 has two additional functionalities which will be explained below. These additional functionalities, as shown in FIG. 4, can be present at the same time in each case, but also different from each, only individually in a protective device.
  • the first additional functionality is that the transfer function in the processing device 24 now requires no fixed values for the capacitance C and the dielectric resistance R 0 .
  • the parameter estimator 41 uses the capacitor current measurements I and the capacitor voltage measurement values U. Knowing the basic form of the transfer function, which indicates the relationship between the capacitor current measurement values ⁇ and the capacitor voltage measurement values U (for example according to equation (3)), the parameter estimator 41 can use the parameter estimation method in a manner known to the person skilled in the art, For example, using the least squares method, estimate the missing parameters C and R D and provide them to the processing means 24 to compute the model voltage values Ü M. If the estimation is according to the transfer function of Equation 3 , the parameters a x and b x are first estimated, from which the values C and R 0 can then be calculated for a given sampling frequency f A.
  • the parameter estimator 41 is fed back the mode voltage values Ü M calculated from the capacitor current measured values ⁇ . For deviations due to inaccurately estimated values of C and R D , the parameter estimator can adjust its estimate.
  • the repeated estimation of the values of C and R D has the great advantage that the transfer function used in the processor 24 is continuously changing the phase of the capacitor array can adapt, for example, by aging of the individual capacitors of the capacitor device occur. Different changes in the individual capacitance values of the capacitors due to aging lead to a so-called asymmetry of the capacitor arrangement and, if the threshold value is set sensitively in the comparison device 25, can lead to an error signal and thus to an unwanted release of a trigger signal A.
  • the time constant with which the parameter estimator 41 estimates the values of C and R D and provides the means 24 for adapting the transfer function to the processing means 24 should be chosen to be comparatively slow to only change the slow changes in capacitance values due to To incorporate aging processes into changes in the values of C and R D. It can be avoided that spontaneously occurring changes in the values C and R D of the capacitor device, which indicate an actual error in the capacitor device, lead to an adaptation of the transfer function.
  • the parameter estimator must not provide the transfer function processing means 24 with adjusted values for C and R D since the deviation between the capacitor voltage readings Ü and the model voltage values Ü M is due to an actual error in the capacitor means and thus represents a desired deviation, which serves the comparison device 25 as the basis for a decision on the delivery of an error signal and thus also a release signal A to the circuit breaker 22.
  • the second introduced additional function of the protective device 100 consists in an automatic adjustment of the Equivalent 25 threshold used to the Kondensatorstrommesswert ⁇ .
  • the deviation between model voltage values Ü M and capacitor voltage measured values U increases.
  • a characteristic block 42 is provided to the comparison device 25 as a function of the respectively present capacitor current measured value ⁇ a correspondingly designed characteristic from a threshold.
  • the comparison device 25 makes a statement as to whether or not the deviation between the model voltage values U M and the capacitor voltage measurement values U indicates an error in the capacitor arrangement.
  • FIG. 5 shows a possible characteristic curve for stabilizing the protection of the capacitor arrangement at high levels
  • Capacitor currents shown. It can be seen that at low capacitor currents a constant threshold SW is fixed. From a definable capacitor current, the characteristic assumes a linearly increasing shape in order to achieve a stabilization of the threshold value SW, even at high capacitor currents.
  • This threshold value SW may not exceed the difference between the model voltage value Ü M and the capacitor voltage measurement value U, so that, for the error - free case, the
  • the comparison device 25 If this inequality (4) is not fulfilled, the comparison device 25 generates an error signal which causes the protective device to emit a trigger signal A to the power switch 22.
  • the characteristic breaks off at a maximum allowable capacitor current I max , so that at all capacitor currents above I max a trigger signal A is delivered to the circuit breaker 22.
  • the hatched area in the characteristic diagram according to FIG. 5 indicates the so-called triggering area; If the difference of a value pair of model voltage value Ü M and capacitor voltage value Ü falls within the range of the hatched triggering field, then a trigger signal A is output from the protective device to the power switch 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

L'invention concerne un procédé permettant de contrôler de façon relativement sensible un système de condensateur en ce qui concerne des erreurs dans un système d'alimentation en énergie électrique. Ledit procédé consiste a) à mesurer une valeur de mesure de courant de condensateur (Î) indiquant le courant parcourant le système de condensateur (12); b) à calculer une valeur de tension modèle (ÛM) appartenant à la valeur de mesure de courant de condensateur (Î) par multiplication de la valeur de mesure de courant de condensateur (Î) par une fonction de transfert décrivant le système de condensateur (12); c) à mesurer une valeur de mesure de tension de condensateur (Û) indiquant la tension appliquée au système de condensateur (12); d) à comparer la valeur de mesure de tension de condensateur (Û) à la valeur de tension modèle (ÛM); et e) à produire le signal d'erreur lorsque la différence entre la valeur de mesure de tension de condensateur (Û) et la valeur de tension modèle (ÛM) est supérieure à une valeur seuil définie.
PCT/DE2006/001542 2006-08-30 2006-08-30 Procédé de production d'un signal d'erreur indiquant une erreur dans un système de condensateur et appareil de protection électrique destiné à la mise en oeuvre de ce procédé WO2008025308A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006004114T DE112006004114A5 (de) 2006-08-30 2006-08-30 Verfahren zum Erzeugen eines Fehlersignals, das einen Fehler in einer Kondensatoranordnung angibt und elektrisches Schutzgerät zur Durchführung des Verfahrens
PCT/DE2006/001542 WO2008025308A1 (fr) 2006-08-30 2006-08-30 Procédé de production d'un signal d'erreur indiquant une erreur dans un système de condensateur et appareil de protection électrique destiné à la mise en oeuvre de ce procédé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2006/001542 WO2008025308A1 (fr) 2006-08-30 2006-08-30 Procédé de production d'un signal d'erreur indiquant une erreur dans un système de condensateur et appareil de protection électrique destiné à la mise en oeuvre de ce procédé

Publications (1)

Publication Number Publication Date
WO2008025308A1 true WO2008025308A1 (fr) 2008-03-06

Family

ID=38001700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/001542 WO2008025308A1 (fr) 2006-08-30 2006-08-30 Procédé de production d'un signal d'erreur indiquant une erreur dans un système de condensateur et appareil de protection électrique destiné à la mise en oeuvre de ce procédé

Country Status (2)

Country Link
DE (1) DE112006004114A5 (fr)
WO (1) WO2008025308A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0040765A1 (fr) * 1980-05-27 1981-12-02 Siemens Aktiengesellschaft Dispositif de surveillance d'une batterie de condensateurs d'un réseau à tension alternative
EP0166813A2 (fr) * 1984-06-29 1986-01-08 Siemens Aktiengesellschaft Equipement de surveillance
US4683417A (en) * 1984-05-10 1987-07-28 Universite De Rennes I Method and apparatus for rapidly testing capacitors and dielectric materials
US20020089802A1 (en) * 2001-01-09 2002-07-11 Beckwith Robert W. Distribution line fault detector and communications module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0040765A1 (fr) * 1980-05-27 1981-12-02 Siemens Aktiengesellschaft Dispositif de surveillance d'une batterie de condensateurs d'un réseau à tension alternative
US4683417A (en) * 1984-05-10 1987-07-28 Universite De Rennes I Method and apparatus for rapidly testing capacitors and dielectric materials
EP0166813A2 (fr) * 1984-06-29 1986-01-08 Siemens Aktiengesellschaft Equipement de surveillance
US20020089802A1 (en) * 2001-01-09 2002-07-11 Beckwith Robert W. Distribution line fault detector and communications module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADOLFSSON M ET AL: "EHV SERIES CAPACITOR BANKS. A NEW APPROACH TO PLATFORM TO GROUND SIGNALLING, RELAY PROTECTION AND SUPERVISION", IEEE TRANSACTIONS ON POWER DELIVERY, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 4, no. 2, 1 April 1989 (1989-04-01), pages 1369 - 1375,1377, XP000110889, ISSN: 0885-8977 *

Also Published As

Publication number Publication date
DE112006004114A5 (de) 2009-08-13

Similar Documents

Publication Publication Date Title
DE102006022686B4 (de) Messanordnung zur Ermittlung des Isolationswiderstandes einer elektrischen Vorrichtung oder einer Anlage
EP3198698B1 (fr) Procédé de protection de différentiel et appareil de protection de différentiel permettant de mettre en oeuvre un procédé de protection de différentiel
DE102009031017B4 (de) Verfahren und Vorrichtung zur Beobachtung eines dreiphasigen Wechselspannungsnetzes sowie Windenergieanlage
EP2372857B1 (fr) Détermination de la partie de courant de fuite d'un courant différentiel
EP2256506B1 (fr) Procédé et dispositif de surveillance de l'isolation de réseaux à courant continu et à courant alternatif non mis à la terre
DE102006031663B3 (de) Verfahren zur Messung des Isolationswiderstands in einem IT-Netz
EP2145367B1 (fr) Procédé pour déterminer une valeur de réglage donnant l'impédance de terre et dispositif de mesure
WO2011029464A1 (fr) Identification de défauts dans des réseaux d'alimentation en énergie présentant un point neutre non relié à la terre ou une disparition du point neutre
EP3259820A1 (fr) Dispositif de détermination de la résistance d'isolation sur un générateur photovoltaïque et une installation photovoltaïque
DE102007017543B4 (de) Verfahren zur Entfernungsortung von Erdschlüssen
WO2009000304A1 (fr) Procédé pour accroître la sensibilité d'un système de protection différentielle
EP2289137A1 (fr) Ensemble et procédé pour produire un signal d erreur
DE102013018294B4 (de) Einrichtung und Verfahren zur Erfassung der elektrischen Energie von ein- oder mehrphasigen elektrischen Verbrauchern
EP2171488A1 (fr) Procédé de localisation d'un défaut à la terre selon le principe de la protection de distance et appareil de protection de distance électrique
EP4252014B1 (fr) Dispositif de surveillance destiné au fonctionnement de réseau de substitution
DE102021112016B3 (de) Verfahren und Vorrichtung zum Ermitteln einer Erdschlussrichtung
DE4026799A1 (de) Verfahren zur selektiven erfassung von fehlern der leiter in hoch- und hoechstspannungsnetzen
DE102019132071B4 (de) Vorrichtung zum Überwachen eines Versorgungsnetzes
EP2870487B1 (fr) Détection d'une direction de défaut dans des réseaux d'alimentation en énergie moyenne tension
WO2008025308A1 (fr) Procédé de production d'un signal d'erreur indiquant une erreur dans un système de condensateur et appareil de protection électrique destiné à la mise en oeuvre de ce procédé
EP2232280A1 (fr) Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d'emplacement de défaillance
DE10146294C1 (de) Abstimmung einer Erdschlusslöschspule auch während des Erdschlusses
EP3913382B1 (fr) Procédé et dispositif de détermination de la localisation d'un défaut non symétrique à trois pôles sur une ligne d'un réseau d'alimentation électrique triphasé
WO1992018872A1 (fr) Procede de detection d'un circuit derive sujet a une perte a la terre dans un reseau d'alimentation ou de distribution electrique
DE102014115779A1 (de) Vorrichtung und verfahren zur lichtbogenerkennung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06791346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1120060041142

Country of ref document: DE

REF Corresponds to

Ref document number: 112006004114

Country of ref document: DE

Date of ref document: 20090813

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06791346

Country of ref document: EP

Kind code of ref document: A1