WO2008023635A1 - SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME - Google Patents

SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME Download PDF

Info

Publication number
WO2008023635A1
WO2008023635A1 PCT/JP2007/066005 JP2007066005W WO2008023635A1 WO 2008023635 A1 WO2008023635 A1 WO 2008023635A1 JP 2007066005 W JP2007066005 W JP 2007066005W WO 2008023635 A1 WO2008023635 A1 WO 2008023635A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
single crystal
crystal sic
raw material
particles
Prior art date
Application number
PCT/JP2007/066005
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Akiyama
Masanori Ikari
Takao Abe
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2008023635A1 publication Critical patent/WO2008023635A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types

Definitions

  • the present invention relates to a single crystal SiC used as a semiconductor device material or LED material and a method for manufacturing the same.
  • Single-crystal SiC is useful as a material for harsh environment-resistant devices and power devices because of its large crystal bond energy, large dielectric breakdown electric field, and high thermal conductivity. Its lattice constant force is close to the lattice constant of SGaN, so it is useful as a substrate material for GaN LED.
  • this single crystal SiC is manufactured by using the Rayleigh method in which SiC powder is sublimated in a graphite crucible, and the single crystal SiC is recrystallized on the inner wall of the graphite crucible.
  • An improved Rayleigh method in which the SiC seed single crystal is placed at the part to be recrystallized by optimizing the temperature distribution and epitaxially recrystallized, and the gas source is transported onto the SiC seed single crystal heated by the carrier gas and crystallized.
  • Non-Patent Document 1 CVD method for epitaxial growth while chemically reacting on the surface, sublimation proximity method for epitaxially recrystallizing SiC powder on SiC seed single crystal with SiC powder and SiC seed single crystal in proximity in a graphite crucible (Refer to Chapter 4 of Non-Patent Document 1).
  • each of these single crystal SiC manufacturing methods is considered to have problems.
  • the Rayleigh method can produce single-crystal SiC with good crystallinity, crystal growth is based on spontaneous nucleation, so shape control and crystal surface control are difficult, and large-diameter wafers can be obtained. There is no problem.
  • the improved Rayleigh method can obtain a large-diameter single-crystal SiC ingot at a high speed of several lOO ⁇ m / h, it has a problem that a large number of micropipes are generated in the crystal because it grows in a spiral shape. There is.
  • the CVD method can produce high-quality single crystal SiC with high purity and low defect density, but due to the epitaxial growth with a dilute gas source, the growth rate is slow, about 10 ⁇ m / h. There is a problem that a crystalline SiC ingot cannot be obtained. In the sublimation proximity method, The ability to achieve high-purity SiC epitaxial growth with a relatively simple structure There is a problem that it is impossible to obtain a long single-crystal SiC ingot due to structural constraints.
  • Patent Document 1 Japanese Patent No. 3505597
  • Non-patent document 1 edited by Hiroyuki Matsunami, “Semiconductor SiC technology and application”, Nikkan Kogyo Shimbun (published in the first edition in March 2003)
  • the problem to be solved by the present invention is to provide an improved method for growing single crystal SiC epitaxially stably for a long time and to provide a high-quality single crystal SiC obtained as a result.
  • the method for producing single-crystal SiC according to the present invention includes a susceptor to which an SiC seed crystal is fixed, and a raw material supply pipe for supplying SiO particles and carbon (C) particles, which are raw materials for producing single-crystal SiC, in a crucible. And a step of growing the single crystal SiC by supplying the raw material for producing the single crystal SiC together with an inert carrier gas onto the SiC seed crystal through the raw material supply pipe in the crucible having a high temperature atmosphere.
  • Molar specific force of SiO and C SiO: C 1. 05: 3. 0 2. 0: 3.0.
  • the present inventors deliberately shift the ratio of raw material SiO and C from the stoichiometric molar ratio 13 and actually react with C by supplying excessive SiO. It has been found that the composition ratio of SiO or SiOx can be optimized, and the present invention has been completed. Actually, taking into account the amount of evaporation, the molar ratio of SiO raw material to 1.000 mol of C raw material is set to 1.05-2.00, so that a shortage of SiO does not occur during the reaction. It became possible to grow single crystals stably over a wide range.
  • the inert gas at this time is preferably Ar gas.
  • high-quality single crystal SiC can be stabilized for a long time by supplying SiO in excess of the composition ratio based on the simple stoichiometry in the supply composition of the raw material composed of silica particles and carbon particles.
  • the raw material composed of silica particles and carbon particles.
  • FIG. 1 is a conceptual cross-sectional view showing an example of an apparatus for producing single crystal SiC of the present invention.
  • a mixture of silica particles and carbon black particles mixed so as to be in the above molar ratio range is used.
  • a mixture of solid particles composed of silica particles and carbon particles having a uniform particle diameter can be suitably used.
  • the type, particle size, particle shape, etc. of these silica particles and carbon particles are not particularly limited.
  • high-purity silica obtained by flame hydrolysis method or high-purity carbon black is preferably used. it can.
  • any of the above silica particles and carbon particles may be used in admixture of two or more.
  • the silica particles and carbon particles may be pretreated or other components may be added in small amounts as necessary. These raw materials are mixed so that the molar ratio of SiO: C is 1.05: 3.00 to 2.00: 3.00 and supplied to the seed crystal.
  • the supply of the silica particles and the carbon particles onto the SiC seed single crystal wafer is a method that can be continuously supplied without interruption.
  • a method that can be continuously supplied without interruption Is not particularly limited.
  • a commercially available powder feeder that can transport powder continuously can be used.
  • the supply line of the raw material for producing single crystal SiC and the inside of the single crystal SiC production apparatus have a hermetic structure that is replaced with an inert gas such as argon or helium, preferably with argon gas, in order to prevent oxygen contamination. It is preferable to keep it.
  • the raw materials for producing the single crystal SiC are supplied in a mixed state on the SiC seed single crystal wafer.
  • the raw materials for producing the single crystal SiC may be mixed or supplied separately and mixed on the SiC seed single crystal wafer.
  • doping When doping is performed in single crystal SiC, it may be mixed as a solid source with the raw material for manufacturing single crystal SiC, or the doping component may be used as a gas source in the atmosphere in the single crystal SiC manufacturing apparatus. May be mixed.
  • the SiC seed crystal used in the production method of the present invention is preferably a SiC seed single crystal wafer, and the type, size, and shape of the SiC seed crystal are not particularly limited, and the type, size, and shape of the target single crystal SiC are not particularly limited. Can be selected as appropriate.
  • a SiC seed single crystal wafer obtained by pretreating a SiC single crystal obtained by the modified Rayleigh method if necessary can be suitably used.
  • the seed crystal may be a just substrate or an off-angle substrate.
  • the production temperature of the single crystal SiC is not particularly limited, and can be appropriately set according to the size, shape, type, etc. of the target single crystal SiC, and the preferred production temperature is in the range of 1, 600-2, 400 ° C. For example, this temperature can be measured as the temperature outside the crucible.
  • the configuration of the single crystal SiC manufacturing apparatus used in the method for manufacturing single crystal SiC of the present invention is not particularly limited. That is, seed crystal size, crucible heating method, crucible material, raw material supply method, atmosphere adjustment method, growth pressure, temperature control method, etc., target single crystal SiC size, shape, type, type of raw material for single crystal SiC production It can be appropriately selected according to the amount and the like.
  • PID temperature control technology can be used for temperature measurement and temperature control.
  • the shape of the crucible used in the present invention is not particularly limited as to the outer shape, and can be appropriately selected according to the size and shape of the target single crystal SiC.
  • the material of the crucible is preferably made of graphite in consideration of the operating temperature range.
  • the shape of the susceptor holding the SiC seed single crystal wafer is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal SiC. However, the material of the susceptor is preferably made of graphite in consideration of the operating temperature range.
  • the shape of the raw material supply pipe for continuously supplying the raw material for producing single crystal SiC is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal SiC.
  • the material of the supply pipe is preferably made of graphite in consideration of the operating temperature range.
  • FIG. 1 is a conceptual cross-sectional view showing an example of an apparatus for producing the single crystal SiC of the present invention.
  • a high frequency induction furnace 10 is used.
  • a carbon-made cylindrical crucible 2 (diameter: 100 mm, height: 150 mm) is disposed in the water-cooled chamber 1, and a high-frequency induction heating coil 3 is disposed outside the water-cooled chamber 1.
  • a susceptor 5 for holding the SiC seed single crystal wafer 4 is inserted through the upper portion of the cylindrical crucible 2.
  • the susceptor 5 extends to the inside of the cylindrical crucible, and can be rotated about the central axis of the susceptor by a rotation mechanism (not shown).
  • a controllable heat exchanging function is given to the upper end (not shown) of the susceptor, and a heat flow can be generated in the vertical direction (longitudinal direction) of the susceptor. Moreover, the heat flow rate can be adjusted! /.
  • the normal direction of the surface holding the SiC seed single crystal wafer at the lower end of the susceptor can be freely set from approximately parallel to the vertical direction of the susceptor to a maximum inclination of 45 °.
  • a (SiC single crystal) growth layer 9 is grown on the seed crystal 4.
  • a raw material supply pipe 6 for supplying raw material powder particles for producing single crystal SiC is inserted through. Further, the supply pipe 6 is extended outside the high-frequency induction heating furnace in the previous period, and a plurality of raw material storage tanks 7 and 7 ′ whose supply amount can be adjusted independently by the control valves 8 and 8 ′, and the flow rate control. Each is connected to a possible source of inert carrier gas A (not shown).
  • the supplied inert carrier gas A is discharged from a duct (not shown) provided in the chamber 1.
  • Example 1 in which SiO particles and C particles are supplied so as to be within the molar ratio range defined in the present invention.
  • Comparative Example 2 ⁇ .7
  • 2 ⁇ 10: 3.00 SiC was manufactured and the single crystal growth was compared.
  • the SiO particles and C particles may be mixed in advance so as to have a set supply molar ratio, and then supplied from one storage tank to the inside of the cylindrical crucible.
  • SiO particles and C particles are mixed in the inert carrier gas A in the raw material supply pipe and mixed with the cylinder.
  • the ability to continuously supply the material inside the crucible as a raw material for producing single-crystal SiC is S.
  • the high-frequency induction heating furnace can control the pressure by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas replacement mechanism (not shown).
  • a vacuum exhaust system and a pressure control system not shown
  • an inert gas replacement mechanism not shown.
  • FIG. 1 it is possible to arrange the supply pipe upside down within the range in which the action of the present invention does not change, as the supply pipe is arranged on the lower side of the crucible and the susceptor is arranged on the upper side of the crucible. It is also possible to arrange the supply pipe obliquely or laterally with respect to the susceptor.
  • single crystal SiC was manufactured under the following conditions.
  • An SiC seed single crystal wafer was fixed to the lower end of the susceptor.
  • the SiC seed single crystal wafer used here was single crystal SiC manufactured by the Rayleigh method.
  • Carbon and SiO, which are raw materials for producing single-crystal SiC, were carbon black MA600 manufactured by Mitsubishi Chemical Corporation and Aerosil 380 manufactured by Nippon Aerosil Co., Ltd., respectively.
  • the inside of the high frequency induction heating furnace was replaced with an inert gas (high purity argon).
  • the carbon cylindrical crucible was heated by the high-frequency induction heating coil, and the surface temperature of the SiC seed single crystal wafer was adjusted to be in the range of 1600 to 2400 ° C.
  • the susceptor on which the SiC crystal single crystal wafer was fixed was rotated at a rotation speed of 0 to 20 rpm.
  • the inert carrier gas high purity argon
  • the single crystal SiC production raw material is passed through the raw material supply pipe to the cylinder.
  • Single-crystal SiC was manufactured by continuously supplying the surface of the SiC seed single-crystal wafer disposed in the upper part of the crucible. The production results are summarized in Table 1.

Abstract

An improved method for epitaxial growth of single-crystal SiC stably over a prolonged period of time; and a single-crystal SiC of high quality obtained as a consequence thereof. There is provided a process for producing a single-crystal SiC, including the steps of disposing in a crucible a susceptor with SiC seed crystal fixed thereto and a raw material supply pipe for supplying of carbon (C) particles and SiO2 particles as raw materials for production of single-crystal SiC; and feeding the raw materials for production of single-crystal SiC together with inert carrier gas through the raw material supply pipe onto the SiC seed crystal in the crucible with high-temperature atmosphere to thereby attain growth of single-crystal SiC, characterized in that the supply molar ratio of SiO2 to C of the raw material is such that SiO2:C = 1.05:3.0 to 2.0:3.0. Further, there is provided a single-crystal SiC produced by the process.

Description

明 細 書  Specification
単結晶 SiC及びその製造方法  Single crystal SiC and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、半導体デバイス用材料や LED用材料として利用される単結晶 SiC及び その製造方法に関する。  The present invention relates to a single crystal SiC used as a semiconductor device material or LED material and a method for manufacturing the same.
背景技術  Background art
[0002] 単結晶 SiCは結晶の結合エネルギーが大きぐ絶縁破壊電界が大きぐまた熱伝導 率も大きいため、耐苛酷環境用デバイスやパワーデバイス用の材料として有用である 。またその格子定数力 SGaNの格子定数と近いため、 GaN— LED用の基板材料とし ても有用である。  Single-crystal SiC is useful as a material for harsh environment-resistant devices and power devices because of its large crystal bond energy, large dielectric breakdown electric field, and high thermal conductivity. Its lattice constant force is close to the lattice constant of SGaN, so it is useful as a substrate material for GaN LED.
[0003] 従来この単結晶 SiCの製造には、黒鉛坩堝内で SiC粉末を昇華させ、黒鉛坩堝内 壁に単結晶 SiCを再結晶化させるレーリー法や、このレーリー法をベースに原料配 置や温度分布を最適化し、再結晶化させる部分に SiC種単結晶を配置してェピタキ シャルに再結晶成長させる改良レーリー法、ガスソースをキャリアガスによって加熱さ れた SiC種単結晶上に輸送し結晶表面で化学反応させながらェピタキシャル成長さ せる CVD法、黒鉛坩堝内で SiC粉末と SiC種単結晶を近接させた状態で SiC粉末 を SiC種単結晶上にェピタキシャルに再結晶成長させる昇華近接法などがある(非 特許文献 1第 4章参照)。  [0003] Conventionally, this single crystal SiC is manufactured by using the Rayleigh method in which SiC powder is sublimated in a graphite crucible, and the single crystal SiC is recrystallized on the inner wall of the graphite crucible. An improved Rayleigh method in which the SiC seed single crystal is placed at the part to be recrystallized by optimizing the temperature distribution and epitaxially recrystallized, and the gas source is transported onto the SiC seed single crystal heated by the carrier gas and crystallized. CVD method for epitaxial growth while chemically reacting on the surface, sublimation proximity method for epitaxially recrystallizing SiC powder on SiC seed single crystal with SiC powder and SiC seed single crystal in proximity in a graphite crucible (Refer to Chapter 4 of Non-Patent Document 1).
[0004] ところで現状では、これらの各単結晶 SiC製造方法にはいずれも問題があるとされ ている。レーリー法では、結晶性の良好な単結晶 SiCが製造できるものの、自然発生 的な核形成をもとに結晶成長するため、形状制御や結晶面制御が困難であり、且つ 大口径ウェハが得られないという問題がある。改良レーリー法では、数 lOO ^ m/h 程度の高速で大口径の単結晶 SiCインゴットを得ることができるものの、螺旋状にェ ピタキシャル成長するため、結晶内に多数のマイクロパイプが発生するという問題が ある。 CVD法では、高純度で低欠陥密度の良質な単結晶 SiCが製造できるものの、 希薄なガスソースでのェピタキシャル成長のため、成長速度が〜 10 μ m/h程度と 遅ぐ長尺の単結晶 SiCインゴットを得られないという問題がある。昇華近接法では、 比較的簡単な構成で高純度の SiCェピタキシャル成長が実現できる力 構成上の制 約から長尺の単結晶 SiCインゴットを得ることは不可能という問題がある。 [0004] By the way, at present, each of these single crystal SiC manufacturing methods is considered to have problems. Although the Rayleigh method can produce single-crystal SiC with good crystallinity, crystal growth is based on spontaneous nucleation, so shape control and crystal surface control are difficult, and large-diameter wafers can be obtained. There is no problem. Although the improved Rayleigh method can obtain a large-diameter single-crystal SiC ingot at a high speed of several lOO ^ m / h, it has a problem that a large number of micropipes are generated in the crystal because it grows in a spiral shape. There is. The CVD method can produce high-quality single crystal SiC with high purity and low defect density, but due to the epitaxial growth with a dilute gas source, the growth rate is slow, about 10 μm / h. There is a problem that a crystalline SiC ingot cannot be obtained. In the sublimation proximity method, The ability to achieve high-purity SiC epitaxial growth with a relatively simple structure There is a problem that it is impossible to obtain a long single-crystal SiC ingot due to structural constraints.
[0005] 最近、加熱保持された SiC種単結晶上に、二酸化ケイ素超微粒子と炭素超微粒子 とを不活性キャリアガスで供給し、 SiC種単結晶上で二酸化ケイ素を炭素で還元する ことで単結晶 SiCを SiC種単結晶上にェピタキシャルに高速成長させる方法が発明 された(特許文献 1参照)。この製造方法では、マイクロパイプ等の欠陥を抑制した高 品質な単結晶 SiCを高速で得ることができるとされている。  [0005] Recently, ultrafine silicon dioxide particles and ultrafine carbon particles are supplied onto a heated SiC seed single crystal using an inert carrier gas, and the silicon dioxide is reduced with carbon on the SiC seed single crystal. A method of epitaxially growing crystalline SiC on a SiC seed single crystal has been invented (see Patent Document 1). According to this manufacturing method, it is said that high-quality single crystal SiC with suppressed defects such as micropipes can be obtained at high speed.
[0006] 上記の特許文献 1に開示された単結晶 SiCの製造方法では、サイズや加熱方法、 原料供給方法、雰囲気調整方法などの装置の諸構成は特に限定されていない。こ の特許では、下記に示す反応式で単結晶 SiCが成長されると記載されている。  [0006] In the method for producing single crystal SiC disclosed in Patent Document 1 above, various configurations of the apparatus such as size, heating method, raw material supply method, and atmosphere adjustment method are not particularly limited. In this patent, it is described that single crystal SiC is grown by the reaction formula shown below.
SiO + 3C → SiC + 2CO† · · · (1)  SiO + 3C → SiC + 2CO † (1)
この反応式の化学量論によればシリカ 1モルに対してカーボン 3モルが反応するこ とになる。  According to the stoichiometry of this reaction formula, 3 mol of carbon reacts with 1 mol of silica.
[0007] 特許文献 1:特許第 3505597号公報  [0007] Patent Document 1: Japanese Patent No. 3505597
非特許文献 1 :松波弘之編著、「半導体 SiC技術と応用」、 日刊工業新聞社 (2003年 3月初版発行)  Non-patent document 1: edited by Hiroyuki Matsunami, "Semiconductor SiC technology and application", Nikkan Kogyo Shimbun (published in the first edition in March 2003)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明が解決しょうとする課題は、長時間安定して単結晶 SiCをェピタキシャルに 成長させる改良方法及びその結果得られる高品質な単結晶 SiCを提供することにあ 課題を解決するための手段 The problem to be solved by the present invention is to provide an improved method for growing single crystal SiC epitaxially stably for a long time and to provide a high-quality single crystal SiC obtained as a result. Means for
[0009] 上記の課題は、以下に記載の手段によって解決された。 [0009] The above-described problems have been solved by the following means.
本発明の単結晶 SiCの製造方法は、 SiC種結晶が固定されたサセプタ並びに単結 晶 SiC製造用原料である SiO粒子及びカーボン (C)粒子を供給するための原料供 給管を坩堝内に配置する工程、及び、高温雰囲気とした該坩堝内に該単結晶 SiC 製造用原料を不活性キャリアガスと共に原料供給管を通して SiC種結晶上に供給し て単結晶 SiCを成長させる工程を含み、原料の SiOと Cの供給モル比力 SiO : C = 1. 05 : 3. 0 2. 0 : 3. 0であることを特 ί毁とする。 The method for producing single-crystal SiC according to the present invention includes a susceptor to which an SiC seed crystal is fixed, and a raw material supply pipe for supplying SiO particles and carbon (C) particles, which are raw materials for producing single-crystal SiC, in a crucible. And a step of growing the single crystal SiC by supplying the raw material for producing the single crystal SiC together with an inert carrier gas onto the SiC seed crystal through the raw material supply pipe in the crucible having a high temperature atmosphere. Molar specific force of SiO and C SiO: C = 1. 05: 3. 0 2. 0: 3.0.
なおカーボン粒子としてはカーボンブラック粒子が好ましぐ化学式は Cで表記する  The chemical formula for which carbon black particles are preferred as carbon particles is denoted by C.
[0010] すなわち、本発明者らは、原料である SiOと Cの比を化学量論であるモル比 1 3か ら故意にずらして、 SiOを過剰に供給することにより実際に Cと反応する SiOもしくは SiOxの組成比を最適化できることを見いだし本発明を完成するに至った。実際には 、蒸発する分を考慮し、 C原料 3. 00モルに対して SiO原料のモル比を 1. 05-2. 0 0とすることで SiOの不足を反応中に起こすことなぐ長時間にわたり安定に単結晶 の成長をさせることが可能になった。またこのときの不活性ガスは Arガスであることが 好ましい。 [0010] That is, the present inventors deliberately shift the ratio of raw material SiO and C from the stoichiometric molar ratio 13 and actually react with C by supplying excessive SiO. It has been found that the composition ratio of SiO or SiOx can be optimized, and the present invention has been completed. Actually, taking into account the amount of evaporation, the molar ratio of SiO raw material to 1.000 mol of C raw material is set to 1.05-2.00, so that a shortage of SiO does not occur during the reaction. It became possible to grow single crystals stably over a wide range. The inert gas at this time is preferably Ar gas.
発明の効果  The invention's effect
[0011] 本発明によればシリカ粒子及びカーボン粒子からなる原料の供給組成を単純な化 学量論に基づく組成比よりも SiOを過剰に供給することにより良質の単結晶 SiCを、 長時間安定して製造し提供することができた。  [0011] According to the present invention, high-quality single crystal SiC can be stabilized for a long time by supplying SiO in excess of the composition ratio based on the simple stoichiometry in the supply composition of the raw material composed of silica particles and carbon particles. Could be manufactured and provided.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の単結晶 SiCを製造するための装置の一例を示す概念的断面図である 符号の説明  FIG. 1 is a conceptual cross-sectional view showing an example of an apparatus for producing single crystal SiC of the present invention.
[0013] 1 チャンバ  [0013] 1 chamber
2 円筒坩堝  2 Cylindrical crucible
3 高周波誘導加熱コイル  3 High frequency induction heating coil
4 種結晶  4 seed crystals
5 サセプタ  5 Susceptor
6 原料供給管  6 Raw material supply pipe
7 7' 原料貯蔵槽  7 7 'Raw material storage tank
8 8 ' 調節弁  8 8 'Control valve
9 成長層  9 Growth layer
10 高周波誘導加熱炉 A 不活性キャリアガス 10 induction furnace A inert carrier gas
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明に使用する単結晶 SiC製造用原料として、上記のモル比の範囲内になるよ うに混合したシリカ粒子及びカーボンブラック粒子の混合物を使用する。好ましくは 粒径の揃ったシリカ粒子及びカーボン粒子からなる固体粒子の混合物を好適に利用 できる。尚、これらシリカ粒子及びカーボン粒子の種類、粒径、粒子形状等は特に限 定されず、例えば火炎加水分解法で得られる高純度シリカ(いぶしシリカ)や、高純度 カーボンブラックなどが好適に利用できる。  [0014] As a raw material for producing single crystal SiC used in the present invention, a mixture of silica particles and carbon black particles mixed so as to be in the above molar ratio range is used. Preferably, a mixture of solid particles composed of silica particles and carbon particles having a uniform particle diameter can be suitably used. The type, particle size, particle shape, etc. of these silica particles and carbon particles are not particularly limited. For example, high-purity silica obtained by flame hydrolysis method or high-purity carbon black is preferably used. it can.
[0015] 上記シリカ粒子及びカーボン粒子のいずれも 2種以上のものを混合して使用しても よい。また上記シリカ粒子及びカーボン粒子は、必要に応じて、前処理を施したり、他 の成分を微量添加してもよい。これらの原料を SiO: Cのモル比が 1. 05 : 3. 00〜2 . 00 : 3. 00となるように混合して種結晶に供給する。  [0015] Any of the above silica particles and carbon particles may be used in admixture of two or more. The silica particles and carbon particles may be pretreated or other components may be added in small amounts as necessary. These raw materials are mixed so that the molar ratio of SiO: C is 1.05: 3.00 to 2.00: 3.00 and supplied to the seed crystal.
[0016] 上記のようにシリカを化学量論よりも過剰にすることにより良質の SiC単結晶が得ら れる機構は以下のように推定される。  [0016] As described above, the mechanism by which a high-quality SiC single crystal can be obtained by making silica in excess of the stoichiometry is estimated as follows.
SiCが成長する 2, 000°C超の高温下では上記の式(1)に示される SiOは Cと反応 をする前にその一部が蒸発するものと考えられる。これは SiOの融点(1700°C程度) やシリコンの融点(1400°C程度)からも推定できることである。これらの融点から分か るように実際の反応は下記のように進行すると考えられる。  It is considered that a part of SiO shown in the above formula (1) evaporates before reacting with C at a high temperature of over 2,000 ° C where SiC grows. This can be estimated from the melting point of SiO (about 1700 ° C) and the melting point of silicon (about 1400 ° C). As can be seen from these melting points, the actual reaction is thought to proceed as follows.
[0017] SiO → SiO (液相) + SiO (気相)† · · · (2)  [0017] SiO → SiO (liquid phase) + SiO (gas phase) † (2)
SiO (液相) + C → SiC + CO† · · · (3)  SiO (liquid phase) + C → SiC + CO † (3)
[0018] SiOや SiOの xや yは 0〜2の値をとると考えられる。また上記の式(2) , (3)は平衡 状態を表すものではないため、各成分の組成を表す数字は省いてある。この式によ ると Cと実際に反応するのは SiO (液相)と考えられる。反応中に SiOの一部が上記 の式に従い抜け出るため、特許第 3505597号公報中の式(1)に従い SiOと Cの原 料供給比を 1 : 3とすると、 SiCを形成するための Si分が不足となり、成長が止まる、又 は SiCの組成比を保てずに多結晶が発生すると推定される。  [0018] It is considered that x and y of SiO and SiO take values of 0 to 2. Also, since the above formulas (2) and (3) do not represent an equilibrium state, the numbers representing the composition of each component are omitted. According to this equation, it is thought that the substance that actually reacts with C is SiO (liquid phase). During the reaction, a part of SiO escapes according to the above formula. Therefore, if the feed ratio of SiO and C is 1: 3 according to the formula (1) in Japanese Patent No. 3505597, the Si content for forming SiC Therefore, it is estimated that the growth stops and the polycrystal is generated without maintaining the SiC composition ratio.
[0019] 上記シリカ粒子及びカーボン粒子の SiC種単結晶ウェハ上への供給は、途切れる ことなく連続して供給することができる方法であることが好ましぐその具体的な方法 は特に限定されない。例えば市販のパウダフィーダのように連続して粉体輸送できる ものが使用できる。但し、当該単結晶 SiC製造用原料の供給ライン及び単結晶 SiC 製造装置内部は酸素混入を防止するため、アルゴンやヘリウムなどの不活性ガスに より、好ましくはアルゴンガスにより、置換されたハーメチック構造にしておくことが好ま しい。 [0019] It is preferable that the supply of the silica particles and the carbon particles onto the SiC seed single crystal wafer is a method that can be continuously supplied without interruption. Is not particularly limited. For example, a commercially available powder feeder that can transport powder continuously can be used. However, the supply line of the raw material for producing single crystal SiC and the inside of the single crystal SiC production apparatus have a hermetic structure that is replaced with an inert gas such as argon or helium, preferably with argon gas, in order to prevent oxygen contamination. It is preferable to keep it.
[0020] 上記シリカ粒子及びカーボン粒子の SiC種単結晶ウェハ上への供給条件について は、これら単結晶 SiC製造用原料が SiC種単結晶ウェハ上に混合された状態で供給 されればよぐ予め当該単結晶 SiC製造用原料を混合しておいても、別個に供給して SiC種単結晶ウェハ上で混合しても良い。  [0020] With regard to the supply conditions of the silica particles and the carbon particles onto the SiC seed single crystal wafer, it is sufficient if the raw materials for producing the single crystal SiC are supplied in a mixed state on the SiC seed single crystal wafer. The raw materials for producing the single crystal SiC may be mixed or supplied separately and mixed on the SiC seed single crystal wafer.
また単結晶 SiC中にドーピングをおこなう場合は、上記単結晶 SiC製造用原料に固 体ソースとして混合しても良いし、単結晶 SiC製造装置内の雰囲気中にガスソースと して、該ドーピング成分を混合しても良い。  When doping is performed in single crystal SiC, it may be mixed as a solid source with the raw material for manufacturing single crystal SiC, or the doping component may be used as a gas source in the atmosphere in the single crystal SiC manufacturing apparatus. May be mixed.
[0021] 本発明の製造方法で使用する SiC種結晶は、好ましくは SiC種単結晶ウェハであり 、その種類、サイズ、形状は特に限定されず、 目的とする単結晶 SiCの種類、サイズ、 形状によって適宜選択できる。例えば改良レーリー法によって得られた SiC単結晶を 必要に応じて前処理した SiC種単結晶ウェハが好適に利用できる。種結晶は、ジャ スト基板でもよぐまた、オフ角基板でもよい。  [0021] The SiC seed crystal used in the production method of the present invention is preferably a SiC seed single crystal wafer, and the type, size, and shape of the SiC seed crystal are not particularly limited, and the type, size, and shape of the target single crystal SiC are not particularly limited. Can be selected as appropriate. For example, a SiC seed single crystal wafer obtained by pretreating a SiC single crystal obtained by the modified Rayleigh method if necessary can be suitably used. The seed crystal may be a just substrate or an off-angle substrate.
[0022] 単結晶 SiC製造温度は特に限定されず、 目的とする単結晶 SiCのサイズや形状、 種類等に応じて適宜設定でき、好ましい製造温度は 1 , 600-2, 400°Cの範囲であ り、この温度は例えば坩堝外側の温度として測定できる。  [0022] The production temperature of the single crystal SiC is not particularly limited, and can be appropriately set according to the size, shape, type, etc. of the target single crystal SiC, and the preferred production temperature is in the range of 1, 600-2, 400 ° C. For example, this temperature can be measured as the temperature outside the crucible.
[0023] 本発明の単結晶 SiCの製造方法に使用する単結晶 SiC製造装置の構成は、特に 限定されない。すなわち種結晶サイズ、坩堝加熱方法、坩堝材質、原料供給方法、 雰囲気調整方法、成長圧力、温度制御方法などは、 目的とする単結晶 SiCのサイズ や形状、種類、単結晶 SiC製造用原料の種類や量等に応じて適宜選択できる。例え ば、温度測定と温度制御には PID温度制御技術を使用することができる。  [0023] The configuration of the single crystal SiC manufacturing apparatus used in the method for manufacturing single crystal SiC of the present invention is not particularly limited. That is, seed crystal size, crucible heating method, crucible material, raw material supply method, atmosphere adjustment method, growth pressure, temperature control method, etc., target single crystal SiC size, shape, type, type of raw material for single crystal SiC production It can be appropriately selected according to the amount and the like. For example, PID temperature control technology can be used for temperature measurement and temperature control.
[0024] 本発明で使用する坩堝の形状は、外形については特に限定されず、 目的とする単 結晶 SiCのサイズや形状に合わせ適宜選択できる。尚、当該坩堝の材質は使用温 度範囲を考慮してグラフアイト製であることが好ましい。 [0025] SiC種単結晶ウェハを保持するサセプタの形状は特に限定されず、 目的とする単 結晶 SiCのサイズや形状に合わせ適宜選択できる。但し当該サセプタの材質は使用 温度範囲を考慮してグラフアイト製であることが好ましい。 [0024] The shape of the crucible used in the present invention is not particularly limited as to the outer shape, and can be appropriately selected according to the size and shape of the target single crystal SiC. The material of the crucible is preferably made of graphite in consideration of the operating temperature range. [0025] The shape of the susceptor holding the SiC seed single crystal wafer is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal SiC. However, the material of the susceptor is preferably made of graphite in consideration of the operating temperature range.
[0026] 単結晶 SiC製造用原料を連続供給する原料供給管の形状は特に限定されず、 目 的とする単結晶 SiCのサイズや形状に合わせ適宜選択できる。但し当該供給管の材 質は使用温度範囲を考慮してグラフアイト製であることが好ましい。 [0026] The shape of the raw material supply pipe for continuously supplying the raw material for producing single crystal SiC is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal SiC. However, the material of the supply pipe is preferably made of graphite in consideration of the operating temperature range.
[0027] 図 1は本発明の単結晶 SiCを製造するための装置の一例を示す概念的断面図で あり、ここでは高周波誘導加熱炉 10を用いている。 FIG. 1 is a conceptual cross-sectional view showing an example of an apparatus for producing the single crystal SiC of the present invention. Here, a high frequency induction furnace 10 is used.
水冷されたチャンバ 1内にカーボン製の円筒坩堝 2 (直径 100mm、高さ 150mm) が配置され、前記水冷されたチャンバ 1の外側に高周波誘導加熱コイル 3を配置して ある。  A carbon-made cylindrical crucible 2 (diameter: 100 mm, height: 150 mm) is disposed in the water-cooled chamber 1, and a high-frequency induction heating coil 3 is disposed outside the water-cooled chamber 1.
前記円筒坩堝 2内の上部には、 SiC種単結晶ウェハ 4を保持するためのサセプタ 5 が貫通挿入されている。このサセプタ 5は円筒坩堝の内部まで伸びており、図示しな い回転機構により該サセプタの中心軸を回転軸として回転可能である。  A susceptor 5 for holding the SiC seed single crystal wafer 4 is inserted through the upper portion of the cylindrical crucible 2. The susceptor 5 extends to the inside of the cylindrical crucible, and can be rotated about the central axis of the susceptor by a rotation mechanism (not shown).
[0028] またこのサセプタの図示されない上端には、制御可能な熱交換機能が付与されて おり、該サセプタ鉛直方向(長手方向)に熱流を発生することができる。また前記熱流 量の調整が可能な構成となって!/、る。  [0028] Further, a controllable heat exchanging function is given to the upper end (not shown) of the susceptor, and a heat flow can be generated in the vertical direction (longitudinal direction) of the susceptor. Moreover, the heat flow rate can be adjusted! /.
[0029] 尚、サセプタ下端の SiC種単結晶ウェハを保持する表面の法線方向は、該サセプ タの鉛直方向と略平行から最大 45° 傾斜まで自由に設定することができる。種結晶 4の上に(SiC単結晶)成長層 9を成長させる。  [0029] The normal direction of the surface holding the SiC seed single crystal wafer at the lower end of the susceptor can be freely set from approximately parallel to the vertical direction of the susceptor to a maximum inclination of 45 °. A (SiC single crystal) growth layer 9 is grown on the seed crystal 4.
[0030] 前記円筒坩堝 2内の下部には、単結晶 SiC製造用原料粉末粒子を供給するため の原料供給管 6が貫通挿入されている。さらに前記供給管 6は、前期高周波誘導加 熱炉の外側に延設されていて、調節弁 8、 8 'により独立に供給量が調節可能な複数 の原料貯蔵槽 7、 7'と、流量調節可能な不活性キャリアガス Aの供給源(図示せず) にそれぞれ連結している。  [0030] In the lower part of the cylindrical crucible 2, a raw material supply pipe 6 for supplying raw material powder particles for producing single crystal SiC is inserted through. Further, the supply pipe 6 is extended outside the high-frequency induction heating furnace in the previous period, and a plurality of raw material storage tanks 7 and 7 ′ whose supply amount can be adjusted independently by the control valves 8 and 8 ′, and the flow rate control. Each is connected to a possible source of inert carrier gas A (not shown).
なお、供給された不活性キャリアガス Aは、チャンバ 1に設けられたダクト(図示せず )から排出される。  The supplied inert carrier gas A is discharged from a duct (not shown) provided in the chamber 1.
[0031] 本発明で規定したモル比範囲内となるように SiO粒子と C粒子を供給する実施例 1 〜5 (No. 2〜6)、及び、上記モル比範囲外の混合モル比である SiO: C = l . 00 : 3 . 00とした比較例 1 (No. 1)及び前記混合モル比が 2· 10 : 3. 00とした比較例 2 (Νο . 7)において、 SiCを製造して単結晶成長の様子を比較検討した。 SiO粒子と C粒 子は、設定した供給モル比となるように予め混合した上で 1つの貯蔵槽から前記円筒 坩堝内部に供給してもよい。また、 SiO粒子と C粒子を別の貯蔵槽に充填し、それぞ れの貯蔵槽カ の相対的供給量を調節することにより、原料供給管内の不活性キヤ リアガス A中で混合して前記円筒坩堝内部に単結晶 SiC製造用原料として連続供給 すること力 Sでさる。 [0031] Example 1 in which SiO particles and C particles are supplied so as to be within the molar ratio range defined in the present invention. To 5 (No. 2 to 6), and Comparative Example 1 (No. 1) in which the mixing molar ratio outside the above molar ratio range was SiO: C = l.00: 3.00 and the mixing molar ratio was In Comparative Example 2 (Νο .7), 2 · 10: 3.00, SiC was manufactured and the single crystal growth was compared. The SiO particles and C particles may be mixed in advance so as to have a set supply molar ratio, and then supplied from one storage tank to the inside of the cylindrical crucible. In addition, by filling SiO particles and C particles in separate storage tanks and adjusting the relative supply amounts of the respective storage tank capacities, they are mixed in the inert carrier gas A in the raw material supply pipe and mixed with the cylinder. The ability to continuously supply the material inside the crucible as a raw material for producing single-crystal SiC is S.
[0032] 高周波誘導加熱炉は、図示しない真空排気系及び圧力調節系により圧力制御が 可能であり、また図示しない不活性ガス置換機構を備えている。尚、図 1の実施例で は供給管を坩堝の下側に、サセプタを坩堝の上側に配した力 本発明の作用が変わ らない範囲内で、上下逆に配置することも可能であるし、供給管をサセプタに対し斜 めや横向きに配置することも可能である。  [0032] The high-frequency induction heating furnace can control the pressure by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas replacement mechanism (not shown). In the embodiment of FIG. 1, it is possible to arrange the supply pipe upside down within the range in which the action of the present invention does not change, as the supply pipe is arranged on the lower side of the crucible and the susceptor is arranged on the upper side of the crucible. It is also possible to arrange the supply pipe obliquely or laterally with respect to the susceptor.
実施例  Example
[0033] 前記高周波誘導加熱炉を用いて、以下の条件にて単結晶 SiCの製造をおこなった 。前記サセプタ下端に SiC種単結晶ウェハを固定した。ここで使用した SiC種単結晶 ウェハは、レーリー法で製造された単結晶 SiCを使用した。単結晶 SiC製造用原料 であるカーボンと SiOはそれぞれ、三菱化学 (株)製カーボンブラック MA600と日本 ァエロジル (株)製ァエロジル 380とを用いた。高周波誘導加熱炉内部を真空引きし た後、不活性ガス(高純度アルゴン)で該高周波誘導加熱炉内部を置換した。次いで 前記高周波誘導加熱コイルにより、前記カーボン製の円筒坩堝を加熱し、前記 SiC 種単結晶ウェハ表面温度が 1600〜2400°Cの範囲となるように調整した。次いで Si C種単結晶ウェハが固定された前記サセプタを 0〜20rpmの回転速度で回転させた 。この状態で前記不活性キャリアガス(高純度アルゴン)を流速 0. 5〜; 101/minの範 囲に調整して流し、前記単結晶 SiC製造用原料を、前記原料供給管内部を通して、 前記円筒坩堝内上部に配置された前記 SiC種単結晶ウェハ表面上に連続して供給 させ、単結晶 SiC製造をおこなった。製造結果を表 1にまとめた。  [0033] Using the high frequency induction heating furnace, single crystal SiC was manufactured under the following conditions. An SiC seed single crystal wafer was fixed to the lower end of the susceptor. The SiC seed single crystal wafer used here was single crystal SiC manufactured by the Rayleigh method. Carbon and SiO, which are raw materials for producing single-crystal SiC, were carbon black MA600 manufactured by Mitsubishi Chemical Corporation and Aerosil 380 manufactured by Nippon Aerosil Co., Ltd., respectively. After evacuating the inside of the high frequency induction heating furnace, the inside of the high frequency induction heating furnace was replaced with an inert gas (high purity argon). Next, the carbon cylindrical crucible was heated by the high-frequency induction heating coil, and the surface temperature of the SiC seed single crystal wafer was adjusted to be in the range of 1600 to 2400 ° C. Next, the susceptor on which the SiC crystal single crystal wafer was fixed was rotated at a rotation speed of 0 to 20 rpm. In this state, the inert carrier gas (high purity argon) is flowed at a flow rate of 0.5 to 101 / min, and the single crystal SiC production raw material is passed through the raw material supply pipe to the cylinder. Single-crystal SiC was manufactured by continuously supplying the surface of the SiC seed single-crystal wafer disposed in the upper part of the crucible. The production results are summarized in Table 1.
[0034] [表 1] No. Si02:C (モル比) 成長膜観察結果[0034] [Table 1] No. Si0 2 : C (molar ratio) Growth film observation result
1 (比較例 1) 1.00:3.00 成長途中で多結晶発生1 (Comparative Example 1) 1.00: 3.00 Polycrystalline during growth
2 (実施例 1) 1.05:3.00 単結晶成長 2 (Example 1) 1.05: 3.00 Single crystal growth
3 (実施例 2) 単結晶成長  3 (Example 2) Single crystal growth
4 (実施例 3)
Figure imgf000010_0001
単結晶成長
4 (Example 3)
Figure imgf000010_0001
Single crystal growth
5 (実施例 4) 1.75:3.00 単結晶成長  5 (Example 4) 1.75: 3.00 Single crystal growth
6 (実施例 5) 2.00:3.00 単結晶成長  6 (Example 5) 2.00: 3.00 Single crystal growth
7 (比較例 2) 2.10:3.00 成長速度極端に低下 表 1に示すように、 SiO: C (モル比)を 1· 05:3.0〜2· 0:3.0の範囲内で供給し た場合に単結晶 SiCが安定に成長した。 <  7 (Comparative Example 2) 2.10: 3.00 Extremely low growth rate As shown in Table 1, when SiO: C (molar ratio) is supplied within the range of 1 · 05: 3.0 to 2 · 0: 3.0, Crystalline SiC grew stably. <
C  C
O  O
ο  ο

Claims

請求の範囲 The scope of the claims
[1] SiC種結晶が固定されたサセプタ並びに単結晶 SiC製造用原料である si〇2粒子 及びカーボン (C)粒子を供給するための原料供給管を坩堝内に配置する工程、及 び、 [1] Step of placing a raw material supply pipe for supplying the Si_〇 2 particles SiC seed crystal is fixed susceptor and monocrystal SiC raw material for the production and carbon (C) particles in the crucible,及Beauty,
高温雰囲気とした該坩堝内に該単結晶 SiC製造用原料を不活性キャリアガスと共 に原料供給管を通して SiC種結晶上に供給して単結晶 SiCを成長させる工程を含み 原料の SiOと Cの供給モル比力 SiO: C = l . 05 : 3. 0〜2· 0 : 3. 0であることを 特徴とする  In the crucible in a high temperature atmosphere, the raw material for manufacturing single crystal SiC is supplied to the SiC seed crystal through the raw material supply pipe together with the inert carrier gas, and the single crystal SiC is grown. Supply molar specific force SiO: C = l. 05: 3. 0 to 2 · 0: 3.0
単結晶 SiCの製造方法。  Manufacturing method of single crystal SiC.
[2] 前記不活性キャリアガスが Arガスである請求項 1に記載の単結晶 SiCの製造方法[2] The method for producing single-crystal SiC according to claim 1, wherein the inert carrier gas is Ar gas.
Yes
[3] 請求項 1又は 2に記載の製造方法により製造された単結晶 SiC。  [3] Single crystal SiC manufactured by the manufacturing method according to claim 1 or 2.
PCT/JP2007/066005 2006-08-22 2007-08-17 SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME WO2008023635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-224837 2006-08-22
JP2006224837A JP2008050174A (en) 2006-08-22 2006-08-22 SINGLE CRYSTAL SiC AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
WO2008023635A1 true WO2008023635A1 (en) 2008-02-28

Family

ID=39106720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066005 WO2008023635A1 (en) 2006-08-22 2007-08-17 SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME

Country Status (4)

Country Link
JP (1) JP2008050174A (en)
KR (1) KR20090042202A (en)
TW (1) TW200811320A (en)
WO (1) WO2008023635A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012343A (en) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 Silicon carbide and method for manufacturing the same
KR20120012345A (en) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 Silicon carbide and method for manufacturing the same
JPWO2013073534A1 (en) * 2011-11-17 2015-04-02 イビデン株式会社 Method for producing silicon carbide single crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212213A (en) * 1985-10-23 1987-09-18 Bridgestone Corp Production of beta-silicon carbide
JPS63147812A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Production of silicon carbide powder
JPH0380197A (en) * 1989-08-21 1991-04-04 Showa Denko Kk Production of single crystal of semiconductor sic
JP2001233697A (en) * 2000-02-23 2001-08-28 Nippon Pillar Packing Co Ltd Silicon carbide single crystal
JP2005154247A (en) * 2003-10-27 2005-06-16 Ngk Insulators Ltd Method for producing single crystal silicon carbide, and single crystal silicon carbide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212213A (en) * 1985-10-23 1987-09-18 Bridgestone Corp Production of beta-silicon carbide
JPS63147812A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Production of silicon carbide powder
JPH0380197A (en) * 1989-08-21 1991-04-04 Showa Denko Kk Production of single crystal of semiconductor sic
JP2001233697A (en) * 2000-02-23 2001-08-28 Nippon Pillar Packing Co Ltd Silicon carbide single crystal
JP2005154247A (en) * 2003-10-27 2005-06-16 Ngk Insulators Ltd Method for producing single crystal silicon carbide, and single crystal silicon carbide

Also Published As

Publication number Publication date
KR20090042202A (en) 2009-04-29
TW200811320A (en) 2008-03-01
JP2008050174A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5093974B2 (en) Single crystal manufacturing apparatus and manufacturing method by vapor phase epitaxy
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
EP2630278B1 (en) Process for growing silicon carbide single crystal and device for the same
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
JP2008001569A (en) SINGLE CRYSTAL SiC AND PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING SINGLE CRYSTAL SiC
WO2008023635A1 (en) SINGLE-CRYSTAL SiC AND PROCESS FOR PRODUCING THE SAME
JP3505597B2 (en) Silicon carbide single crystal
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4670002B2 (en) Method for producing nitride single crystal
EP1158077A1 (en) Method and apparatus for producing single crystal of silicon carbide
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP2008115045A (en) SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD
WO2008018322A1 (en) Single-crystal silicon carbide and process for producing the same
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
JP2008308369A (en) SINGLE CRYSTAL SiC, AND METHOD AND APPARATUS FOR PRODUCING THE SAME
JP4691815B2 (en) Method for producing SiC single crystal
JP2009057265A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCTION THEREOF
JP2009073696A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD
WO2008018319A1 (en) SINGLE CRYSTAL SiC, ITS FABRICATION METHOD, AND FABRICATION EQUIPMENT FOR SINGLE CRYSTAL SiC
JP2009023846A (en) Method for producing silicon carbide single crystal and apparatus for producing the same
JP2011201756A (en) Method for producing single crystal silicon carbide
JP2009029664A (en) SINGLE CRYSTAL SiC AND ITS MANUFACTURING METHOD
JP2008254945A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD
JP2008273819A (en) Method for manufacturing silicon carbide single crystal and silicon carbide single crystal obtained by the method
JP2009057221A (en) Single crystal silicon carbide, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087023660

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07805943

Country of ref document: EP

Kind code of ref document: A1