JP2008115045A - SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD - Google Patents

SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD Download PDF

Info

Publication number
JP2008115045A
JP2008115045A JP2006300068A JP2006300068A JP2008115045A JP 2008115045 A JP2008115045 A JP 2008115045A JP 2006300068 A JP2006300068 A JP 2006300068A JP 2006300068 A JP2006300068 A JP 2006300068A JP 2008115045 A JP2008115045 A JP 2008115045A
Authority
JP
Japan
Prior art keywords
single crystal
sic
crystal sic
particles
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006300068A
Other languages
Japanese (ja)
Inventor
Masanori Ikari
真憲 碇
Takao Abe
孝夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006300068A priority Critical patent/JP2008115045A/en
Publication of JP2008115045A publication Critical patent/JP2008115045A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved method for producing single crystal SiC with stable and epitaxial growth and the high quality single crystal SiC obtained by the method. <P>SOLUTION: The method for producing the single crystal SiC 9 which includes a step to locate a susceptor 5 where a SiC seed crystal 4 is fixed and a raw material feeding tube 6 to feed raw materials for producing the single crystal SiC 9 in a crucible 2 and a step that the raw materials for producing the single crystal SiC 9 are fed with an inert gas A on the SiC seed crystal 4 in the crucible 2 having a high temperature atmosphere through the raw material feeding tube 6 and then the single crystal SiC 9 is grown and where the raw materials for producing the single crystal SiC 9 are SiO particles and carbon particles and the single crystal SiC 9 obtained by the method are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体デバイス用材料やLED用材料として利用される単結晶SiC及びその製造方法に関する。   The present invention relates to a single crystal SiC used as a semiconductor device material or LED material and a method for manufacturing the same.

単結晶SiCは結晶の結合エネルギーが大きく、絶縁破壊電界が大きく、また熱伝導率も大きいため、耐苛酷環境用デバイスやパワーデバイス用の材料として有用である。またその格子定数がGaNの格子定数と近いため、GaN−LED用の基板材料としても有用である。   Single crystal SiC has a large crystal bond energy, a large dielectric breakdown electric field, and a high thermal conductivity, and thus is useful as a material for a device for harsh environments and power devices. Moreover, since the lattice constant is close to the lattice constant of GaN, it is also useful as a substrate material for GaN-LED.

従来この単結晶SiCの製造には、黒鉛坩堝内でSiC粉末を昇華させ、黒鉛坩堝内壁に単結晶SiCを再結晶化させるレーリー法や、このレーリー法をベースに原料配置や温度分布を最適化し、再結晶化させる部分にSiC種単結晶を配置してエピタキシャルに再結晶成長させる改良レーリー法、ガスソースをキャリアガスによって加熱されたSiC種単結晶上に輸送し結晶表面で化学反応させながらエピタキシャル成長させるCVD法、黒鉛坩堝内でSiC粉末とSiC種単結晶を近接させた状態でSiC粉末をSiC種単結晶上にエピタキシャルに再結晶成長させる昇華近接法などがある(非特許文献1第4章参照)。   Conventionally, for the production of single crystal SiC, the Rayleigh method in which SiC powder is sublimated in a graphite crucible and single crystal SiC is recrystallized on the inner wall of the graphite crucible, and the raw material arrangement and temperature distribution are optimized based on this Rayleigh method. An improved Rayleigh method in which a SiC seed single crystal is placed in the recrystallized portion and epitaxially recrystallized, and the gas source is transported onto the SiC seed single crystal heated by the carrier gas and epitaxially grown while chemically reacting on the crystal surface. CVD method, and sublimation proximity method in which SiC powder is epitaxially recrystallized on the SiC seed single crystal in a state where the SiC powder and the SiC seed single crystal are brought close to each other in a graphite crucible (Chapter 4 of Non-Patent Document 1). reference).

ところで現状では、これらの各単結晶SiC製造方法にはいずれも問題があるとされている。レーリー法では、結晶性の良好な単結晶SiCが製造できるものの、自然発生的な核形成をもとに結晶成長するため、形状制御や結晶面制御が困難であり、且つ大口径ウエハが得られないという問題がある。改良レーリー法では、数100μm/h程度の高速で大口径の単結晶SiCインゴットを得ることができるものの、螺旋状にエピタキシャル成長するため、結晶内に多数のマイクロパイプが発生するという問題がある。CVD法では、高純度で低欠陥密度の良質な単結晶SiCが製造できるものの、希薄なガスソースでのエピタキシャル成長のため、成長速度が〜10μm/h程度と遅く、長尺の単結晶SiCインゴットを得られないという問題がある。昇華近接法では、比較的簡単な構成で高純度のSiCエピタキシャル成長が実現できるが、構成上の制約から長尺の単結晶SiCインゴットを得ることは不可能という問題がある。   By the way, at present, each of these single crystal SiC manufacturing methods is considered to have a problem. Although the Rayleigh method can produce single crystal SiC with good crystallinity, crystal growth is based on spontaneous nucleation, so that shape control and crystal surface control are difficult, and a large-diameter wafer can be obtained. There is no problem. Although the improved Rayleigh method can obtain a large-diameter single crystal SiC ingot at a high speed of about several hundred μm / h, it has a problem that a large number of micropipes are generated in the crystal because of epitaxial growth in a spiral shape. The CVD method can produce high-quality single crystal SiC with high purity and low defect density, but because of epitaxial growth with a dilute gas source, the growth rate is as slow as about 10 μm / h, and a long single crystal SiC ingot is formed. There is a problem that it cannot be obtained. In the sublimation proximity method, high-purity SiC epitaxial growth can be realized with a relatively simple structure, but there is a problem that it is impossible to obtain a long single-crystal SiC ingot due to structural restrictions.

最近、加熱保持されたSiC種単結晶上に、二酸化ケイ素超微粒子と炭素超微粒子とを不活性キャリアガスで供給し、SiC種単結晶上で二酸化ケイ素を炭素で還元することで単結晶SiCをSiC種単結晶上にエピタキシャルに高速成長させる方法が発明された(特許文献1参照)。この製造方法では、マイクロパイプ等の欠陥を抑制した高品質な単結晶SiCを高速で得ることができるとされている。   Recently, ultrafine particles of silicon dioxide and ultrafine particles of carbon are supplied by inert carrier gas onto a heated SiC seed single crystal, and the single crystal SiC is reduced by reducing silicon dioxide with carbon on the SiC seed single crystal. A method of epitaxially growing at a high speed on a SiC seed single crystal has been invented (see Patent Document 1). In this manufacturing method, it is said that high-quality single-crystal SiC that suppresses defects such as micropipes can be obtained at high speed.

上記の特許文献1に開示された単結晶SiCの製造方法では、不活性ガス雰囲気中に過熱状態で保持された炭化珪素種結晶表面に向けて、二酸化珪素超微粒子および炭素超微粒子を供給して付着させ、炭化珪素種結晶表面において二酸化珪素を炭素により還元することにより、炭化珪素単結晶を炭化珪素種結晶上に成長させている。   In the method for producing single-crystal SiC disclosed in Patent Document 1 above, silicon dioxide ultrafine particles and carbon ultrafine particles are supplied toward the surface of the silicon carbide seed crystal held in an overheated state in an inert gas atmosphere. A silicon carbide single crystal is grown on the silicon carbide seed crystal by adhering and reducing silicon dioxide with carbon on the surface of the silicon carbide seed crystal.

特許第3505597号公報Japanese Patent No. 3505597 松波弘之編著、「半導体SiC技術と応用」、日刊工業新聞社(2003年3月初版発行)Edited by Hiroyuki Matsunami, “Semiconductor SiC Technology and Applications”, Nikkan Kogyo Shimbun (published first edition in March 2003)

本発明が解決しようとする課題は、安定して単結晶SiCをエピタキシャルに成長させる改良された単結晶SiC製造方法及びその結果得られる高品質な単結晶SiCを提供することにある。   The problem to be solved by the present invention is to provide an improved single crystal SiC manufacturing method for stably growing single crystal SiC epitaxially and high-quality single crystal SiC obtained as a result.

上記の課題は、以下に記載の手段によって解決された。
本発明の単結晶SiCの製造方法は、SiC種結晶が固定されたサセプタ及び単結晶SiC製造用原料を供給するための原料供給管を坩堝内に配置する工程、並びに、高温雰囲気とした該坩堝内に該単結晶SiC製造用原料を不活性キャリアガスと共に原料供給管を通してSiC種結晶上に供給して単結晶SiCを成長させる工程を含み、原料の内訳が、SiO粒子及びカーボン(C)粒子であることを特徴とする。
The above problems have been solved by the means described below.
The method for producing single-crystal SiC of the present invention includes a step of disposing a susceptor to which a SiC seed crystal is fixed and a raw material supply pipe for supplying a raw material for producing single-crystal SiC in the crucible, and the crucible having a high-temperature atmosphere. Including a step of supplying the single crystal SiC production raw material together with an inert carrier gas onto the SiC seed crystal through a raw material supply pipe to grow the single crystal SiC, and the breakdown of the raw material includes SiO particles and carbon (C) particles It is characterized by being.

すなわち本発明者らは、SiO粒子がSiO2粒子同様に入手可能であるため、反応出発原料の内訳のみ変更し、その他は特許文献1の構成と変わらない単結晶SiCの製造方法を試みたところ、当業者が予期することができない優れた効果が発現することを見いだし本発明を完成した。 That is, since the present inventors have obtained SiO particles in the same manner as the SiO 2 particles, only the breakdown of the reaction starting materials was changed, and the others tried a method for producing single crystal SiC that was not different from the configuration of Patent Document 1. The present invention has been completed by finding out that an excellent effect that cannot be anticipated by those skilled in the art is exhibited.

本発明によれば、単結晶SiCの製造条件が長時間安定し、結果的に高品質な単結晶SiCを提供することができた。この理由としては、後記のように、シリカ粒子及びカーボン粒子からなる原料での2段階化学反応を、SiO粒子及びカーボン粒子からなる原料に切り替えることにより、単純な1段階化学反応に変更することができ、反応プロセスの複雑さに起因する原料濃度の揺らぎを抑えられるためであると推定される。   According to the present invention, the production conditions of single crystal SiC were stable for a long time, and as a result, high quality single crystal SiC could be provided. The reason for this is that, as will be described later, the two-step chemical reaction with the raw material consisting of silica particles and carbon particles is changed to the simple one-step chemical reaction by switching to the raw material consisting of SiO particles and carbon particles. This is presumably because the fluctuation of the raw material concentration due to the complexity of the reaction process can be suppressed.

特許文献1に記載された二酸化珪素を炭素により還元するプロセスは、実際には2段階の化学反応を経ると推定される。すなわち、全体として(1)の還元反応は、(2)及び(3)の2つの還元素反応を経由する可能性が高い。
SiO2 + 3C → SiC + 2CO↑ ・・・ (1)
SiO2 + C → SiO + CO↑ ・・・ (2)
SiO + 2C → SiC + CO↑ ・・・ (3)
It is estimated that the process of reducing silicon dioxide described in Patent Document 1 with carbon actually undergoes a two-step chemical reaction. That is, as a whole, the reduction reaction (1) is likely to go through the two reductive reactions (2) and (3).
SiO 2 + 3C → SiC + 2CO ↑ (1)
SiO 2 + C → SiO + CO ↑ (2)
SiO + 2C → SiC + CO ↑ (3)

本発明の単結晶SiCの製造方法に使用する原料として、SiO粒子及びカーボン粒子の混合物を使用する。好ましくは粒径の揃ったSiO粒子及びカーボン粒子からなる固体粒子の混合物を好適に利用できる。尚、これらSiO粒子及びカーボン粒子の種類、粒径、粒子形状等は特に限定されず、例えばシリカ粉末を不活性雰囲気中で加熱してSiO蒸気を発生させ、該蒸気を冷却して粉末SiO粒子を回収する方法(特開昭63−103815号公報及び特開2001−220123号公報参照)によって得られるSiO粒子が好適に利用できる。
なおカーボン粒子としてはアセチレンブラック粒子が好ましく、高純度アセチレンブラックがより好ましい。また不活性ガスはArガス又はHeガスを使用できるが、Arガスであることが好ましい。
A mixture of SiO particles and carbon particles is used as a raw material used in the method for producing single crystal SiC of the present invention. Preferably, a mixture of solid particles composed of SiO particles and carbon particles having a uniform particle diameter can be suitably used. The type, particle size, particle shape, and the like of these SiO particles and carbon particles are not particularly limited. For example, silica powder is heated in an inert atmosphere to generate SiO vapor, and the vapor is cooled to obtain powdered SiO particles. SiO particles obtained by a method for recovering the above (see JP-A-63-103815 and JP-A-2001-220123) can be suitably used.
The carbon particles are preferably acetylene black particles, and more preferably high purity acetylene black. As the inert gas, Ar gas or He gas can be used, but Ar gas is preferable.

上記SiO粒子は場合により粒子表面が酸化されて薄いSiO2表面層が形成されるが、その部分は前記反応式(1)が起こるだけであってプロセス上は問題とならないし、その正味の分量は極僅かであるため、結晶品質に悪影響は及ぼさない。よってそのまま本特許構成にて利用してよい。 In some cases, the surface of the SiO particles is oxidized to form a thin SiO 2 surface layer. However, this portion only causes the reaction formula (1) and does not cause a problem in the process. Is negligible and does not adversely affect crystal quality. Therefore, it may be used as it is in this patent configuration.

SiO粒子及びカーボン粒子の最適モル比は、SiO粒子が昇華性物質のため、1:2の化学量論よりSiO粒子リッチ側にシフトした比率が好ましい。具体的には1〜1.5:2の範囲であることが好ましく、1.05〜1.5:2の範囲であることがより好ましい。
上記SiO粒子及びカーボン粒子のいずれも2種以上のものを混合して使用してもよい。また上記SiO粒子及びカーボン粒子は、必要に応じて、前処理を施したり、他の成分を微量添加してもよい。
The optimum molar ratio between the SiO particles and the carbon particles is preferably a ratio shifted to the SiO particle rich side from the stoichiometry of 1: 2 because the SiO particles are sublimable substances. Specifically, it is preferably in the range of 1 to 1.5: 2, and more preferably in the range of 1.05 to 1.5: 2.
Two or more kinds of the SiO particles and the carbon particles may be mixed and used. In addition, the SiO particles and carbon particles may be pretreated or a small amount of other components may be added as necessary.

上記SiO粒子及びカーボン粒子のSiC種単結晶上への供給は、途切れることなく連続して供給することができる方法であることが好ましく、その具体的な方法は特に限定されない。例えば市販のパウダフィーダのように連続して粉体輸送できるものが使用できる。但し、当該単結晶SiC製造用原料の供給管及び単結晶SiC製造装置内部は酸素混入を防止するため、アルゴンやヘリウムなどの不活性ガスにより、好ましくはアルゴンガスにより、置換されたハーメチック構造にしておくことが好ましい。   The supply of the SiO particles and the carbon particles onto the SiC seed single crystal is preferably a method that can be continuously supplied without interruption, and the specific method is not particularly limited. For example, a commercially available powder feeder that can continuously transport powder can be used. However, in order to prevent oxygen contamination, the single-crystal SiC production raw material supply pipe and the single-crystal SiC production apparatus have a hermetic structure that is replaced with an inert gas such as argon or helium, preferably with argon gas. It is preferable to keep.

上記シリカ粒子及びカーボン粒子のSiC種単結晶上への供給条件については、これら単結晶SiC製造用原料がSiC種単結晶上に混合された状態で供給されればよく、予め当該単結晶SiC製造用原料を混合しておいても、別個に供給してSiC種単結晶上で混合しても良い。   Regarding the supply conditions of the silica particles and the carbon particles onto the SiC seed single crystal, the single crystal SiC manufacturing raw material may be supplied in a state of being mixed on the SiC seed single crystal. Even if the raw materials are mixed, they may be supplied separately and mixed on the SiC seed single crystal.

また単結晶SiC中にドーピングをおこなう場合は、上記単結晶SiC製造用原料に固体ソースとして混合しても良いし、単結晶SiC製造装置内の雰囲気中にガスソースとして、該ドーピング成分を混合しても良い。   When doping is performed in single crystal SiC, the raw material for manufacturing single crystal SiC may be mixed as a solid source, or the doping component may be mixed as a gas source in the atmosphere in the single crystal SiC manufacturing apparatus. May be.

本発明の製造方法で使用するSiC種結晶は、好ましくはSiC種単結晶ウエハであり、その種類、サイズ、形状は特に限定されず、目的とする単結晶SiCの種類、サイズ、形状によって適宜選択できる。例えば改良レーリー法によって得られたSiC単結晶を必要に応じて前処理したSiC種単結晶ウエハが好適に利用できる。種結晶は、ジャスト基板でもよく、また、オフ角基板でもよい。   The SiC seed crystal used in the production method of the present invention is preferably a SiC seed single crystal wafer, and the type, size, and shape thereof are not particularly limited, and are appropriately selected depending on the type, size, and shape of the target single crystal SiC. it can. For example, an SiC seed single crystal wafer obtained by pretreating an SiC single crystal obtained by the modified Rayleigh method as necessary can be suitably used. The seed crystal may be a just substrate or an off-angle substrate.

単結晶SiC製造温度は特に限定されず、目的とする単結晶SiCのサイズや形状、種類等に応じて適宜設定でき、好ましい製造温度は1,600〜2,400℃の範囲であり、この温度は例えば坩堝外側の温度として測定できる。   The single crystal SiC production temperature is not particularly limited, and can be appropriately set according to the size, shape, type, etc. of the target single crystal SiC, and the preferred production temperature is in the range of 1,600 to 2,400 ° C. Can be measured, for example, as the temperature outside the crucible.

本発明の単結晶SiCの製造方法に使用する単結晶SiC製造装置の構成は、特に限定されない。すなわち種結晶サイズ、坩堝加熱方法、坩堝材質、原料供給方法、雰囲気調整方法、成長圧力、温度制御方法などは、目的とする単結晶SiCのサイズや形状、種類、単結晶SiC製造用原料の種類や量等に応じて適宜選択できる。例えば、温度測定と温度制御にはPID温度制御技術を使用することができる。   The structure of the single crystal SiC manufacturing apparatus used for the single crystal SiC manufacturing method of the present invention is not particularly limited. That is, the seed crystal size, crucible heating method, crucible material, raw material supply method, atmosphere adjustment method, growth pressure, temperature control method, etc. are the target single crystal SiC size, shape, type, type of single crystal SiC production raw material It can be appropriately selected according to the amount and the like. For example, PID temperature control technology can be used for temperature measurement and temperature control.

本発明で使用する坩堝の形状は、外形については特に限定されず、目的とする単結晶SiCのサイズや形状に合わせ適宜選択できる。尚、当該坩堝の材質は使用温度範囲を考慮してグラファイト製であることが好ましい。   The shape of the crucible used in the present invention is not particularly limited as to the outer shape, and can be appropriately selected according to the size and shape of the target single crystal SiC. The material of the crucible is preferably made of graphite in consideration of the operating temperature range.

SiC種単結晶ウエハを保持するサセプタの形状は特に限定されず、目的とする単結晶SiCのサイズや形状に合わせ適宜選択できる。但し当該サセプタの材質は使用温度範囲を考慮してグラファイト製であることが好ましい。   The shape of the susceptor holding the SiC seed single crystal wafer is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal SiC. However, the material of the susceptor is preferably made of graphite in consideration of the operating temperature range.

単結晶SiC製造用原料を連続供給する原料供給管の形状は特に限定されず、目的とする単結晶SiCのサイズや形状に合わせ適宜選択できる。但し当該供給管の材質は使用温度範囲を考慮してグラファイト製であることが好ましい。   The shape of the raw material supply pipe for continuously supplying the raw material for producing single crystal SiC is not particularly limited, and can be appropriately selected according to the size and shape of the target single crystal SiC. However, the material of the supply pipe is preferably made of graphite in consideration of the operating temperature range.

図1は本発明の単結晶SiCを製造するための装置の一例を示す概念的断面図であり、ここでは高周波誘導加熱炉10を用いている。
水冷された密閉チャンバ1内にカーボン製の密閉した円筒坩堝2(直径100mm、高さ150mm)が配置され、前記水冷された密閉チャンバ1の外側に高周波誘導加熱コイル3を配置してある。
前記密閉した円筒坩堝2内の上部には、SiC種単結晶ウエハ4を保持するためのサセプタ5が貫通挿入されている。このサセプタ5は密閉した円筒坩堝の内部まで伸びており、図示しない回転機構により該サセプタの中心軸を回転軸として回転可能である。
FIG. 1 is a conceptual cross-sectional view showing an example of an apparatus for producing single-crystal SiC of the present invention. Here, a high-frequency induction heating furnace 10 is used.
A carbon-made sealed cylindrical crucible 2 (diameter: 100 mm, height: 150 mm) is disposed in a water-cooled sealed chamber 1, and a high-frequency induction heating coil 3 is disposed outside the water-cooled sealed chamber 1.
A susceptor 5 for holding the SiC seed single crystal wafer 4 is inserted through the upper portion of the sealed cylindrical crucible 2. The susceptor 5 extends to the inside of a sealed cylindrical crucible, and can be rotated around the central axis of the susceptor by a rotation mechanism (not shown).

またこのサセプタの図示されない上端には、制御可能な熱交換機能が付与されており、該サセプタ鉛直方向(長手方向)に熱流を発生することができる。また前記熱流量の調整が可能な構成となっている。
尚、サセプタ下端のSiC種結晶を保持する表面の法線方向は、該サセプタの鉛直方向と略平行から最大45°傾斜まで自由に設定することができる。SiC種結晶4の上にSiC単結晶の成長層9を成長させる。
Further, a controllable heat exchange function is provided at the upper end (not shown) of the susceptor, and a heat flow can be generated in the susceptor vertical direction (longitudinal direction). The heat flow rate can be adjusted.
In addition, the normal direction of the surface holding the SiC seed crystal at the lower end of the susceptor can be freely set up to a maximum of 45 ° from substantially parallel to the vertical direction of the susceptor. A SiC single crystal growth layer 9 is grown on the SiC seed crystal 4.

前記密閉坩堝2内の下部には、単結晶SiC製造用原料粉末粒子を供給するための原料供給管6が貫通挿入されている。さらに前記原料供給管6は、前記高周波誘導加熱炉の外側に延設されていて、調節弁8、8’により独立に供給量が調節可能な複数の原料貯蔵槽7、7’と、流量調節可能な不活性キャリアガスAの供給源(図示せず)にそれぞれ連結している。   A raw material supply pipe 6 for supplying raw material powder particles for producing single crystal SiC is inserted through the lower portion of the sealed crucible 2. Further, the raw material supply pipe 6 is extended outside the high-frequency induction heating furnace, and a plurality of raw material storage tanks 7 and 7 ′ whose supply amount can be adjusted independently by the control valves 8 and 8 ′, and the flow rate control. Each is connected to a possible source of inert carrier gas A (not shown).

本発明に従ったSiO粒子とC粒子を混合した原料を供給する実施例1(後記)、及び、SiO2粒子とC粒子を混合した原料を供給する比較例1(後記)において、SiCを製造して単結晶成長の歩留りを比較検討した。SiO粒子とC粒子、及び、SiO2粒子とC粒子は、予め混合した上で1つの貯蔵槽から前記密閉坩堝内部に供給してもよい。また、SiO粒子とC粒子、及び、SiO2粒子とC粒子を別の貯蔵槽に充填し、それぞれの貯蔵槽からの相対的供給量を調節することにより、原料供給管内の不活性キャリアガス中で混合して前記密閉坩堝内部に単結晶SiC製造用原料として連続供給してもよい。 In Example 1 (described later) for supplying a raw material mixed with SiO particles and C particles according to the present invention and Comparative Example 1 (described later) for supplying a raw material mixed with SiO 2 particles and C particles, SiC is produced. The yield of single crystal growth was compared. The SiO particles and C particles, and the SiO 2 particles and C particles may be mixed in advance and then supplied from one storage tank to the inside of the closed crucible. Further, by filling SiO particles and C particles, and SiO 2 particles and C particles in separate storage tanks, and adjusting the relative supply amount from each storage tank, the inert carrier gas in the raw material supply pipe And may be continuously supplied as a raw material for producing single crystal SiC into the sealed crucible.

高周波誘導加熱炉は、図示しない真空排気系及び圧力調節系により圧力制御が可能であり、また図示しない不活性ガス置換機構を備えている。尚、図1の実施例では供給管を坩堝の下側に、サセプタを坩堝の上側に配したが、本発明の作用が変わらない範囲内で、上下逆に配置することも可能であるし、供給管をサセプタに対し斜めや横向きに配置することも可能である。   The high-frequency induction heating furnace can be controlled by a vacuum exhaust system and a pressure control system (not shown), and includes an inert gas replacement mechanism (not shown). In the embodiment of FIG. 1, the supply pipe is arranged on the lower side of the crucible and the susceptor is arranged on the upper side of the crucible. However, it can be arranged upside down as long as the operation of the present invention does not change. It is also possible to arrange the supply pipe obliquely or laterally with respect to the susceptor.

以下に実施例1及び比較例1を説明する。
前記高周波誘導加熱炉を用いて、以下の条件にて単結晶SiCの製造をおこなった。前記サセプタ下端にSiC種単結晶ウエハを固定した。ここで使用したSiC種単結晶ウエハは、レーリー法で製造された単結晶SiCを使用した。実施例用単結晶SiC製造用原料であるカーボンとSiOはそれぞれ、電気化学工業(株)製デンカブラック粉状品(アセチレンブラック)と信越化学工業(株)製SiO(1次粒径400nm)とを用い、比較例用単結晶SiC製造用原料であるカーボンとSiO2はそれぞれ、電気化学工業(株)製デンカブラック粉状品と日本アエロジル(株)製アエロジル380とを用いた。高周波誘導加熱炉内部を真空引きした後、不活性ガス(高純度アルゴン)で該高周波誘導加熱炉内部を置換した。次いで前記高周波誘導加熱コイルにより、前記カーボン製の密閉坩堝を加熱し、前記SiC種単結晶ウエハ表面温度が1,600〜2,400℃の範囲となるように調整した。次いでSiC種単結晶ウエハが固定された前記サセプタを0〜20rpmの回転速度で回転させた。この状態で前記不活性キャリアガス(高純度アルゴン)を流速0.5〜10L/minの範囲に調整して流し、前記単結晶SiC製造用原料を、前記原料供給管内部を通して、前記密閉坩堝内上部に配置された前記SiC種単結晶ウエハ表面上に連続して供給させ、単結晶SiC製造をおこなった。製造結果を表1にまとめた。
Example 1 and Comparative Example 1 will be described below.
Using the high frequency induction heating furnace, single crystal SiC was manufactured under the following conditions. A SiC seed single crystal wafer was fixed to the lower end of the susceptor. As the SiC seed single crystal wafer used here, single crystal SiC manufactured by the Rayleigh method was used. Carbon and SiO, which are raw materials for producing single-crystal SiC for the examples, are Denka Black powder (acetylene black) manufactured by Denki Kagaku Kogyo Co., Ltd. and SiO (primary particle size 400 nm) manufactured by Shin-Etsu Chemical Co., Ltd., respectively. Carbon and SiO 2 which are raw materials for producing single crystal SiC for comparative examples were Denka Black powder manufactured by Denki Kagaku Kogyo Co., Ltd. and Aerosil 380 manufactured by Nippon Aerosil Co., Ltd., respectively. After evacuating the inside of the high frequency induction heating furnace, the inside of the high frequency induction heating furnace was replaced with an inert gas (high purity argon). Next, the carbon sealed crucible was heated by the high-frequency induction heating coil, and the surface temperature of the SiC seed single crystal wafer was adjusted to be in the range of 1,600 to 2,400 ° C. Next, the susceptor on which the SiC seed single crystal wafer was fixed was rotated at a rotation speed of 0 to 20 rpm. In this state, the inert carrier gas (high-purity argon) is adjusted to flow in a range of 0.5 to 10 L / min, and the single crystal SiC production raw material is passed through the raw material supply pipe to the inside of the sealed crucible. Single crystal SiC was manufactured by continuously supplying the SiC seed single crystal wafer surface disposed on the upper surface. The production results are summarized in Table 1.

Figure 2008115045
Figure 2008115045

表1に示すように、原料にSiO粒子とC粒子を使用した条件の方が、より安定に高品質単結晶SiCを製造できた。   As shown in Table 1, high-quality single crystal SiC could be manufactured more stably under the conditions using SiO particles and C particles as raw materials.

本発明の単結晶SiCを製造するための装置の一例を示す概念的断面図である。It is a conceptual sectional view showing an example of an apparatus for manufacturing single crystal SiC of the present invention.

符号の説明Explanation of symbols

1 密閉チャンバ
2 円筒坩堝
3 高周波誘導加熱コイル
4 SiC種結晶
5 サセプタ
6 原料供給管
7、7’ 原料貯蔵槽
8、8’ 調節弁
9 成長層
10 高周波誘導加熱炉
A 不活性キャリアガス
DESCRIPTION OF SYMBOLS 1 Sealed chamber 2 Cylindrical crucible 3 High frequency induction heating coil 4 SiC seed crystal 5 Susceptor 6 Raw material supply pipe 7, 7 'Raw material storage tank 8, 8' Control valve 9 Growth layer 10 High frequency induction heating furnace A Inactive carrier gas

Claims (3)

SiC種結晶が固定されたサセプタ及び単結晶SiC製造用原料を供給するための原料供給管を坩堝内に配置する工程、並びに、高温雰囲気とした該坩堝内に該単結晶SiC製造用原料を不活性ガスと共に原料供給管を通してSiC種結晶上に供給して単結晶SiCを成長させる工程を含み、
該単結晶SiC製造用原料が、SiO粒子及びカーボン(C)粒子であることを特徴とする
単結晶SiCの製造方法。
A step of disposing a susceptor to which a SiC seed crystal is fixed and a raw material supply pipe for supplying a raw material for producing single crystal SiC in the crucible, and the raw material for producing single crystal SiC in the crucible in a high temperature atmosphere. Supplying a single crystal SiC with an active gas through a raw material supply pipe on a SiC seed crystal,
The method for producing single crystal SiC, wherein the raw materials for producing single crystal SiC are SiO particles and carbon (C) particles.
前記不活性ガスがArガスである請求項1に記載の単結晶SiCの製造方法。   The method for producing single crystal SiC according to claim 1, wherein the inert gas is Ar gas. 請求項1又は2に記載の製造方法により製造された単結晶SiC。   Single crystal SiC manufactured by the manufacturing method according to claim 1 or 2.
JP2006300068A 2006-11-06 2006-11-06 SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD Pending JP2008115045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300068A JP2008115045A (en) 2006-11-06 2006-11-06 SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300068A JP2008115045A (en) 2006-11-06 2006-11-06 SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD

Publications (1)

Publication Number Publication Date
JP2008115045A true JP2008115045A (en) 2008-05-22

Family

ID=39501302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300068A Pending JP2008115045A (en) 2006-11-06 2006-11-06 SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD

Country Status (1)

Country Link
JP (1) JP2008115045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073534A1 (en) * 2011-11-17 2013-05-23 イビデン株式会社 Method for producing silicon carbide single crystals
CN115595657A (en) * 2022-10-28 2023-01-13 深圳腾睿微电子科技有限公司(Cn) Growing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248798A (en) * 1987-04-01 1988-10-17 Kawasaki Steel Corp Production of silicon carbide whisker
WO2001021862A1 (en) * 1999-09-22 2001-03-29 Sumitomo Electric Industries, Ltd. Coated diamond, method for preparing the same and composite material comprising the same
JP2002293525A (en) * 2001-03-30 2002-10-09 Bridgestone Corp Silicon carbine powder, its production method and silicon carbine monocrystal
JP3505597B2 (en) * 2000-02-23 2004-03-08 日本ピラー工業株式会社 Silicon carbide single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248798A (en) * 1987-04-01 1988-10-17 Kawasaki Steel Corp Production of silicon carbide whisker
WO2001021862A1 (en) * 1999-09-22 2001-03-29 Sumitomo Electric Industries, Ltd. Coated diamond, method for preparing the same and composite material comprising the same
JP3505597B2 (en) * 2000-02-23 2004-03-08 日本ピラー工業株式会社 Silicon carbide single crystal
JP2002293525A (en) * 2001-03-30 2002-10-09 Bridgestone Corp Silicon carbine powder, its production method and silicon carbine monocrystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073534A1 (en) * 2011-11-17 2013-05-23 イビデン株式会社 Method for producing silicon carbide single crystals
JPWO2013073534A1 (en) * 2011-11-17 2015-04-02 イビデン株式会社 Method for producing silicon carbide single crystal
CN115595657A (en) * 2022-10-28 2023-01-13 深圳腾睿微电子科技有限公司(Cn) Growing apparatus

Similar Documents

Publication Publication Date Title
JP5093974B2 (en) Single crystal manufacturing apparatus and manufacturing method by vapor phase epitaxy
EP1866464B1 (en) Seeded growth process for preparing aluminum nitride single crystals
JP2000302600A (en) Method for growing large-sized single-polytype silicon carbide single crystal
JP2007055881A (en) Ain crystal, method for growing the same, and ain crystal substrate
JP2008001569A (en) SINGLE CRYSTAL SiC AND PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING SINGLE CRYSTAL SiC
JP2006193384A (en) Production method for silicon carbide single crystal
JP4751373B2 (en) Synthesis method of GaN single crystal
JP4513749B2 (en) Method for producing single crystal
JP2008115045A (en) SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
US20020020342A1 (en) Silicon carbide single-crystals
JP2008050174A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCING THE SAME
JP2003300799A (en) Method and apparatus for growing group iii nitride crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP2008308369A (en) SINGLE CRYSTAL SiC, AND METHOD AND APPARATUS FOR PRODUCING THE SAME
JP2006290685A (en) Method for producing silicon carbide single crystal
JP2008037729A (en) Single crystal silicon carbide and method for manufacturing the same
JP2006027976A (en) Method for producing nitride single crystal and producing apparatus therefor
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
JP4691815B2 (en) Method for producing SiC single crystal
JP2009057265A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCTION THEREOF
JP2009073696A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD
JP5182758B2 (en) Method and apparatus for producing nitride single crystal
JP2009029664A (en) SINGLE CRYSTAL SiC AND ITS MANUFACTURING METHOD
JP2008254945A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403