WO2008010469A1 - système de traitement laser et procédé de traitement laser - Google Patents

système de traitement laser et procédé de traitement laser Download PDF

Info

Publication number
WO2008010469A1
WO2008010469A1 PCT/JP2007/064044 JP2007064044W WO2008010469A1 WO 2008010469 A1 WO2008010469 A1 WO 2008010469A1 JP 2007064044 W JP2007064044 W JP 2007064044W WO 2008010469 A1 WO2008010469 A1 WO 2008010469A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
processing
visible
gravity
distance
Prior art date
Application number
PCT/JP2007/064044
Other languages
English (en)
French (fr)
Inventor
Akio Sato
Hiroyuki Suzuki
Akihiko Tsuboi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Laserx Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Laserx Co., Ltd. filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN200780001050XA priority Critical patent/CN101351294B/zh
Priority to US11/991,781 priority patent/US8164027B2/en
Priority to EP07768421A priority patent/EP2042258B1/en
Publication of WO2008010469A1 publication Critical patent/WO2008010469A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light

Definitions

  • the present invention relates to a laser processing system and a laser processing method, and more particularly, to a laser processing system and a laser processing method capable of specifying a focus position of a processing laser with a visible laser with high accuracy and efficiency.
  • laser processing there is a so-called remote world method in which laser light is condensed and welded far from the laser oscillator while using a long-focus condenser lens.
  • the laser beam for processing focused by the long focus condensing lens can be processed to the same degree as the processing at the focal position even at a position slightly deviated from the focal position. In other words, since the depth of focus can be increased in the thickness direction of the workpiece, it is not necessary to perform strict focus position management.
  • a laser oscillator with a comparatively high quality is required.
  • a laser oscillator that mainly emits a carbon dioxide laser has been widely used. Since a carbon dioxide laser cannot be guided by an optical fiber, a large number of mirrors must be provided to focus light from a distance, for example, from a laser oscillator outside the vehicle to a welding site inside the vehicle. Absent. For this reason, it took time to adjust the mirror, and there were problems when the cost increased.
  • a technology for guiding an optical fiber was developed for the laser resonator that irradiates the carbon dioxide laser. According to this technology, it is possible to guide the laser using the flexibility of the optical fiber, even when condensing far away, such as to the welded part inside the vehicle, and to adjust the mirror etc. This eliminates the need for cost and further reduces costs.
  • the focus position of the processing laser will be controlled more strictly than before.
  • the need has arisen. This is due to the fact that the beam shape is different between the focal position and its periphery in order to form an optical system that focuses the end face of the outgoing fiber of the optical fiber when condensing the optical fiber guided laser beam. This is considered to be one of the causes.
  • the focus position of the processing laser cannot be visually recognized in either case of applying the carbon dioxide laser light or the optical fiber light guide type laser light described above.
  • the focal positions of a plurality of visible lasers that can be visually recognized are aligned to some extent, and the focal positions of the lasers for processing are simulated by visually focusing the focal points of the respective visible lasers, and laser processing is performed. This is the current situation.
  • Patent Document 1 discloses a technique related to a teaching method and apparatus in a laser processing machine in which the point where the two coincide is the focal position of the main laser beam.
  • Patent Document 2 discloses a technique related to a laser processing apparatus and a distance adjustment method for adjusting the distance between a print surface of a workpiece and a laser beam (printing light) based on an instruction image formed by an intersection of two visible lights. Yes.
  • Patent Document 2
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2 0 0 5-1 3 1 6 6 8 Disclosure of Invention
  • the focus position of the main laser beam on the workpiece surface is more accurate than in the conventional technique in which the focus of the visible laser is focused visually. It is possible to focus well.
  • the method of determining whether or not focusing is possible only with the positional relationship between one auxiliary laser beam (visible laser) and the main laser beam for processing must be compatible with laser processing that requires high focusing accuracy. I can't.
  • the present invention has been made in view of the above-mentioned problems, and a laser processing system capable of efficiently performing an extremely high accuracy without specifying the focal position of a laser for processing by a visible laser. It is another object of the present invention to provide a laser processing method.
  • a laser processing system is a laser processing system that performs laser processing by irradiating a workpiece surface with laser light
  • the laser processing system includes: a laser oscillator for processing; A condensing optical system including a condensing lens, two or more visible laser oscillators, movement adjusting means for adjusting the condensing lens and the visible laser oscillator in advance and retreat, and a visible laser on the surface of the workpiece
  • the workpiece is irradiated to the workpiece, and in the state where each visible laser is focused on the focal position of the machining laser, the condenser lens is moved.
  • calculating means for calculating the center-of-gravity position of each visible laser spot light generated on the surface of the workpiece and the center-to-center distance, which is the distance between these center-of-gravity positions;
  • a control means for controlling the movement adjusting means.
  • the laser processing system of the present invention is a system for performing laser welding processing, laser drilling processing, laser marking processing, etc. on an arbitrary workpiece by applying an appropriate laser.
  • Lasers for processing applied here include YA G lasers and YA G-S H G lasers in addition to carbon dioxide lasers.
  • the condensing optical system is, for example, two or more condensing lenses, a collimating lens and a condensing lens Etc. are arranged at appropriate intervals.
  • two or more visible laser oscillators are provided on the opposite side (processing laser oscillator side) of the condenser lens closest to the workpiece to the workpiece.
  • the condensing lens and the two or more visible laser oscillators are moved and controlled by movement adjusting means so that they can move forward and backward by a predetermined amount of movement in synchronization.
  • both the processing laser and the visible laser are configured to irradiate the workpiece through a condensing lens closest to the workpiece.
  • the focus positions of multiple visible lasers changed by setting the posture of each component so that each visible laser was focused at the focal position of the processing laser. Even in this case, it is possible to specify the focal position of the processing laser by specifying the in-focus position.
  • This initial setting is performed by setting the focal position of the processing lens in advance using, for example, a known focus monitor and the like so that the focal position of each visible laser coincides with the focal position of the processing laser. This is done by separating the visible laser and adjusting the angle of each visible laser.
  • an imaging means for photographing the focus light of the visible laser on the workpiece surface is provided, and the photographed image is displayed on the screen after being subjected to image processing by the image processing means.
  • this imaging means for example, a CCD camera can be applied.
  • the image processing means is composed of a personal computer, for example, and is connected to the CCD camera.
  • the imaging means is configured to be provided on the rear end side of the condensing optical system, that is, on the side opposite to the workpiece, so that it is irradiated through the condenser lens and reflected on the surface of the workpiece. Visible laser (spot light) can be taken.
  • the position of the imaging unit is set so that the imaging screen constituting the imaging unit is orthogonal to the optical axis direction of the reflected light of the visible laser from the workpiece.
  • the center of gravity of the spot light of each visible laser that can be formed on the surface of the workpiece according to the movement of the condenser lens and the distance between the centers of gravity are calculated, and the center of gravity is calculated.
  • the calculation means and the control means are incorporated in the personal computer together with the movement adjusting means described above. It is stored.
  • this control means a known CPU that controls the execution of each means can be applied.
  • the shape of the spot light is not limited to a circle, and may be an arbitrary shape such as an ellipse when the surface of the workpiece is inclined.
  • the gravity center position of each spot light is calculated by the calculation means. After the center of gravity of each spot light is calculated, the calculation means calculates the distance between the centers.
  • the current focusing lens for the workpiece (And a visible laser oscillator) are identified as being suitable for laser processing.
  • an arbitrary tolerance can be set for the distance between the centroids, and if the distance between the centroids is within the allowable value range, it is possible to shift to laser processing. If the distance between the centers of gravity is not zero and not within the allowable range, the focusing lens and the visible laser oscillator are synchronized by a predetermined amount by the movement adjustment means in order to make the distance between the centers of gravity close or zero. Moved.
  • Such movement amount control of the movement adjusting means is executed by a control means (for example, CPU) which is built in the computer and sends a movement command signal to the movement adjusting means based on the data on the distance between the centers of gravity from the calculating means.
  • a control means for example, CPU
  • the focus position can be adjusted by moving the condenser lens by a predetermined amount.
  • Position can be set to a predetermined position on the workpiece surface.
  • the position of the center of gravity of the spot light of the visible laser is specified, the distance between the centers of gravity is obtained, and the movement of the condenser lens is controlled so that the distance between the centers of gravity is zero or substantially zero.
  • the focal position of a machining laser can be set on the surface of a workpiece with extremely high error accuracy of less than 0.5 mm. This is because the position of the current condensing lens is obtained by determining the center of gravity of a plurality of spot lights formed on the surface of the work piece in any posture (such as when the work piece is inclined). This is because the deviation between the focal position of the processing laser and the surface of the workpiece is specified objectively and quantitatively.
  • the reason why the distance between the centers of gravity can be adjusted to zero simply by moving the condenser lens is that the visible laser passes through the focal point at a fixed angle and is irradiated onto the workpiece.
  • Laser oscillator This is because the distance between the centers of gravity of spot lights of a plurality of visible lasers is proportional to the amount of movement of the condensing lens when the relative position between the visible laser oscillator and the condensing lens is adjusted. . Therefore, according to the laser processing system of the present invention, the focal position of the processing laser can be set to the laser processing position with high accuracy, and such position setting can be automatically and quickly executed. It also leads to improved yield.
  • the two or more visible laser oscillators are alternately ON controlled.
  • each spot light is formed by irradiating each spot light.
  • the position of the center of gravity is specified, there is no problem that it is difficult to specify the position of the center of gravity because both spot lights overlap. Therefore, the visible laser irradiation of each visible laser oscillator is alternately controlled, and after the position of the center of gravity of one spot light is specified, the spot light is irradiated and the position of the center of gravity is specified. .
  • the processing laser oscillator is ON-controlled when the distance between the center of gravity of each spot light becomes zero or substantially zero.
  • the distance between the center of gravity is calculated by the calculating means, the movement adjusting means is operated based on the distance data between the center of gravity, and the condenser lens and the visible laser oscillator are moved and adjusted by a predetermined amount.
  • an optical fiber for guiding the processing laser beam is interposed between the oscillator and the condensing optical system, and a manipulator equipped with at least the unit comprising the condensing optical system and the imaging means is installed. It is further characterized by comprising.
  • An imaging means consisting of a condensing optical system, a visible laser oscillator, and a CCD camera is used as one unit, and an optical fiber is connected between the processing laser oscillator and the unit, and the processing laser uses the optical fiber. So that the condensing optical system is irradiated through In addition, this system is configured by attaching the unit to a manipulator such as an articulated robot arm.
  • a laser processing method synchronizes a processing laser oscillator, a condensing optical system including a condensing lens, first and second visible laser oscillators, a condensing lens, and a visible laser oscillator.
  • a second step of turning on the first visible laser oscillator to image the spot light of the visible laser on the surface of the workpiece and calculating the position of the center of gravity; and the second visible laser A third step of imaging the visible laser spot light on the surface of the workpiece by turning on the oscillator and calculating the position of the center of gravity; a fourth step of calculating the distance between the center of gravity of both spot lights; A fifth step of synchronously moving the condensing lens and the visible laser oscillator so that the distance between the centers of gravity becomes zero; and a sixth step of turning on the processing laser oscillator when the distance between the centers of gravity becomes an opening.
  • a process comprising:
  • the present invention relates to a laser processing method to which the laser processing system described above is applied.
  • the visible laser oscillator only needs to have two oscillators (first and second visible laser oscillators).
  • a processing system having three or more visible laser oscillators may be used.
  • the irradiation angle of each visible laser and the positioning adjustment of the condenser lens and the visible laser oscillator are adjusted so that each visible laser is focused on the focal position of the processing laser ( First step).
  • this initial setting As a result, the focus position of the processing laser and the focus position of each visible laser are matched, and even if the condenser lens moves, the focus position and the focus position can be moved in a matched state.
  • the distance between the centers of gravity is calculated (fourth step). If the distance between the centers of gravity is not zero (or not within the allowable range), the distance between the centers of gravity is calculated based on the distance data between the centers of gravity.
  • the condenser lens and the visible laser oscillator are synchronously moved by a predetermined amount so that they become zero (fifth step).
  • the processing laser oscillator When the distance between the centers of gravity becomes zero, the processing laser oscillator is turned on and irradiation of the processing laser is executed, and desired laser welding processing, laser drilling processing, laser marking processing, etc. are executed (No. 1). 6 steps).
  • the series of steps consisting of the second to sixth steps described above are repeatedly executed until the distance between the centers of gravity satisfies the target value, thereby responding to subtle changes in the position of the workpiece surface. Fine adjustment of the focal position can be easily performed. Such a flow can be repeated by incorporating a feedback control mechanism in the system.
  • the degree of coincidence between the focal position of the processing laser and the workpiece surface is specified by the distance between the centers of gravity of the spot lights of the two visible lasers. Regardless of the surface shape and posture (inclination), it is possible to set the focal position with extremely high accuracy and efficiency. Therefore, it is possible to set the focus position with high accuracy and efficiency even in the remote welding process, in which setting the focal position of the processing laser is extremely difficult. It is possible to simultaneously improve both the reduction in machining accuracy and the reduction in yield, which were problems.
  • the laser processing system and the laser processing method of the present invention the positions of the respective centers of the spot light on the workpiece surface by the plurality of visible lasers are obtained, and the distance between the centers of gravity. Because the laser for processing is irradiated with zero or almost zero, laser processing is performed with extremely high accuracy, accuracy, and efficiency. be able to
  • FIG. 1 is a schematic diagram of an embodiment of a laser processing system of the present invention.
  • FIG. 2 is a schematic diagram illustrating a situation in which the distance between the centers of gravity of the two visible laser spot lights is adjusted by moving the condenser lens.
  • FIG. 3 (a) is a view taken in the direction of arrows in Fig. 2 and (b) is a diagram in which the distance between the centers of gravity is adjusted to zero.
  • Fig. 4 is a schematic diagram showing an elliptical spotlight.
  • FIG. 5 is a block diagram of the control mechanism of the laser processing system.
  • FIG. 6 is a diagram showing an embodiment of a control flow of the laser processing system.
  • Fig. 7 is a graph illustrating the relationship between the distance between the centers of gravity and the position of the condenser lens.
  • FIG. 8 is a diagram showing another embodiment of the control flow of the laser processing system.
  • Fig. 9 is a graph illustrating the relationship between the distance between the center of gravity and the position of the condenser lens.
  • FIG. 10 is a schematic diagram of another embodiment of the condensing optical system.
  • FIG. 11 is a schematic diagram of another embodiment of a laser processing system.
  • 1 is a processing laser oscillator
  • 2 is an optical fiber
  • 3 a is a condensing optical system
  • 3 1 is a collimating lens
  • 32 is a condensing lens
  • 4 1 and 42 are refractive lenses
  • 5 1, 52 , 53, 54 is a visible laser oscillator
  • 6 is a CCD camera
  • 7 is a personal computer
  • 8 is a moving rail
  • 9 is a housing
  • 10 is an articulated robot
  • 1 00 100
  • L 1 is the processing laser
  • L 2 is the visible laser
  • S la S 2 a, SI 'a, S 2' a indicates the center of gravity.
  • Fig. 1 is a schematic diagram of an embodiment of the laser processing system of the present invention
  • Fig. 2 is a situation in which the distance between the centers of gravity of the spot lights of two visible lasers is adjusted by moving the condenser lens.
  • Schematic diagram explaining Fig. 3a is a view taken along arrows III-III in Fig. 2
  • Fig. 3b is a diagram in which the distance between the centers of gravity is adjusted to zero.
  • Fig. 4 is a schematic diagram showing an elliptical spot light
  • Fig. 5 is a block diagram of the control mechanism of the laser processing system
  • Fig. 6 shows an embodiment of the control flow of the laser processing system.
  • Fig. 1 is a schematic diagram of an embodiment of the laser processing system of the present invention
  • Fig. 2 is a situation in which the distance between the centers of gravity of the spot lights of two visible lasers is adjusted by moving the condenser lens.
  • Schematic diagram explaining Fig. 3a is a view taken along arrows
  • FIG. 7 and Fig. 7 show graphs illustrating the relationship between the distance between the centers of gravity and the condensing lens position.
  • Fig. 8 is a diagram showing another embodiment of the control flow of the laser processing system
  • Fig. 9 is a graph explaining the relationship between the distance between the center of gravity and the condensing lens position
  • Fig. 10 is the condensing lens.
  • FIG. 11 shows a schematic diagram of another embodiment of the optical system
  • FIG. 11 shows a schematic diagram of another embodiment of the laser processing system.
  • FIG. 1 shows a schematic diagram of an embodiment of a laser processing system.
  • the laser processing system 100 includes a processing laser oscillator 1 that irradiates a processing laser L 1 such as a YAG laser or a YAG-SHG laser, an optical fiber 2 that guides the processing laser L 1, and an optical fiber 2.
  • a processing laser L 1 such as a YAG laser or a YAG-SHG laser
  • an optical fiber 2 that guides the processing laser L 1
  • an optical fiber 2 that guides the processing laser L 1
  • Refraction lens 4 1 for refracting the irradiated laser light
  • Condensing optical system 3 for condensing the light refracted by the refractive lens 41
  • Processing laser focused by the condensing optical system 3 L 1 consists of a refraction lens 4 that refracts 1 toward the workpiece, a visible laser oscillator 5 1 and 5 2 that oscillates visible laser L 2, a CCD camera 6 and a personal computer 7 that controls the system.
  • the refraction lens 41, the condensing optical system 3, the visible laser oscillators 51 and 52, and the refraction lens 42 are accommodated in the housing 9, and the optical fiber 2 and the CCD camera 6 are provided in the housing. It is mounted at a predetermined position.
  • the condensing optical system 3 includes a collimating lens 3 1 that collimates the processing laser L 1 refracted through the refractive lens 4 1 and a condensing lens 3 2 that condenses the parallel light. ing. Visible laser oscillators 5 1 and 5 2 are mounted integrally on the collimating lens side of the condenser lens 3 2 via the condenser lens 3 2 and hinges 5 1 a and 5 2 a. The wheel 5 2 b mounted on the lower surface of 2 can move on the moving rail 8 (Y direction). Visible laser oscillators 5 1 and 5 2 are hinges 5 1 a,
  • the angle can be adjusted by 5 2 a (XI direction, X 2 direction) and visible so that the focus position of each visible laser L 2 and L 2 matches the focal position of laser L 1 for processing.
  • the angle of the laser oscillator is adjusted. Images of the spot lights of the visible laser beams L 2 and L 2 formed on the surface of the workpiece W are taken by the CCD camera 6 through the refractive lens 42. The captured image is sent to the personal computer 7, where it is processed, and the distance between the center of gravity of each spot light of the visible lasers L2 and L2 (distance between the centers of gravity) (It will be described later).
  • FIG. 6 is a diagram schematically showing the spot light SI, S 2 of the laser, and the spot light S 0 when the distance between their center of gravity is adjusted to zero.
  • this system When performing laser processing, this system first sets the focal position of the processing lens in advance using a known focus monitor or the like in order to match the focal position of the processing laser with the in-focus position of each visible laser. Then, the distance between the focusing lens and the visible laser is adjusted, and the angle of each visible laser is adjusted so that the focal position of each visible laser coincides with the focal position of the processing laser. Visible lasers L 2 and L 2 irradiated on the surface of an arbitrary workpiece W in such an initial setting are lasers indicated by solid lines in FIG. 2, and the surface of the workpiece W by the visible lasers L 2 and L 2 Two circular spot lights S 1 and S 2 formed in Fig. 3a are shown in the plan view of Fig. 3a.
  • the center of gravity of each spot light is S 1 a and S 2 a, and the distance between the centers of gravity is L 1.
  • the visible laser angle after refraction is uniquely determined according to the position of the condensing lens 32. Therefore, the laser angle and the distance to the workpiece are determined. Accordingly, the distance between the centers of gravity determined is also determined uniquely in the same manner.
  • the distance between the centers of gravity can be made zero by moving the position of the condenser lens 3 2 (for example, moving in the X3 direction to the position of the two-dot chain line in FIG. 2) (FIG. 3 b As shown in the figure, both spot lights move (in the X4 direction), and a spot light S 0 in which the distance between the centers of gravity is zero is formed).
  • the spot light formed on the workpiece surface has an elliptical shape shown in FIG.
  • one spot light may be elliptical and the other spot light may be circular.
  • the position of the center of gravity of each spot light is determined even if the shape of each spot light is arbitrary.
  • Fig. 5 shows a block diagram of the control mechanism of the laser processing system 1 ° 0.
  • a photographed image of the spot light of the visible laser imaged by the imaging unit (CCD camera 6) is transmitted to the I Z F circuit 7 1 a in the single computer 7, and the image processing unit 72 performs image processing.
  • the image after image processing is displayed on the display unit 74 in the manner shown in FIGS. 3a and 3b.
  • data relating to the initial setting value (zero or any allowable value) of the distance between the center of gravity is input from a keyboard or the like, and the input data is stored in the allowable value storage unit 76 via the I Z F circuit 7 1 b.
  • each visible laser oscillator emits a visible laser, and the reflected light (spot light) reflected from the surface of the workpiece is reflected into the refractive lens 4 2, the condensing lens 3 2, and the collimating lens 3.
  • Photographed by the CCD camera 6 through the refractive lens 41, and the photographed data is transmitted to the image processing unit 72 through the IZF circuit 7 1a for image processing.
  • This processed data is sent to the display unit 74 and displayed on the screen in the manner shown in FIG.
  • the processing data is also transmitted to the calculation unit 73, and the calculation unit 73 calculates the position of the center of gravity of each spot light and calculates the distance between the centers of gravity.
  • the calculation result is transmitted to the display unit 7 4 and displayed on the screen.
  • the center-of-gravity distance data calculated by the calculation unit 73 is sent to the determination unit 75.
  • Target value (for example, zero) data relating to the distance between the center of gravity from the allowable value storage unit 76 is transmitted to the determination unit 75, and the target value and the distance between the center of gravity are discriminated. If the distance between the centers of gravity satisfies the target value as a result of the discrimination, it is determined that the focus position of the processing laser is set on the workpiece surface at the current condenser lens position, and the movement adjustment
  • the unit 7 8 receives a signal of the movement amount of the condenser lens 32: zero (no movement is required).
  • a signal related to the amount of movement of the condenser lens 3 2 is sent to the movement adjustment unit 78, and this movement amount signal is sent to 7 1 c is transmitted to the driving unit (not shown) that drives the wheel 5 2 b, and the visible laser oscillators 5 1, 5 2 and the condenser lens 3 2 move on the moving rail 8 while being synchronized. (Y direction).
  • the wheel 5 2 b moves a certain amount in response to a constant movement amount pulse signal transmitted from the movement adjustment unit 78, and then the visible laser oscillators 5 1 and 5 2 are turned on again to detect the spot light.
  • the distance between the center of gravity and the distance between the center of gravity is calculated, and the distance between the center of gravity and the target value are discriminated.
  • feedback control is executed when the driving of the wheel 52b stops at that time.
  • the wheel 5 2 b stops driving the machining laser oscillator is turned on, and the process proceeds to the desired laser machining.
  • FIG. 6 is a diagram illustrating an embodiment of a control flow of the laser processing system
  • FIG. 7 is a graph illustrating the relationship between the distance between the centers of gravity and the position of the condenser lens.
  • step S 2 0 0 the center-of-gravity position (X I, Y 1) of the spot light on the workpiece surface of the visible laser is calculated (step S 2 0 1).
  • step S 2 0 2 the other visible laser oscillator is turned on (step S 2 0 2), and the gravity center position (X 2, Y 2) of the spot light on the workpiece surface of this visible laser is calculated (step S 2 0 3).
  • step S 2 06 is the graph of FIG.
  • FIG. 8 is a diagram showing another embodiment of the control flow of the laser processing system
  • FIG. 9 is a graph illustrating the relationship between the distance between the center of gravity and the condenser lens.
  • step S 304 The distance between the center of gravity: L 1 and the condensing lens position P 1 at that time are calculated from the two center of gravity positions (step S 304).
  • step S 305 After moving the condenser lens 32 by an arbitrary amount (step S 305), similarly, one of the visible laser oscillators is turned on (step S 306), and the spot light center position (XI ′, Y 1 ') is calculated (Step S 30 7), the other visible laser oscillator is turned on (Step S 308), and the barycentric position (X 2', ⁇ 2 ') of the spot light is calculated (Step S 309)
  • step S 3 1 0 The distance between the centers of gravity: L 2 and the condensing lens position ⁇ 2 at that time are calculated (step S 3 1 0).
  • Position of the condenser lens Move the condenser lens to P 0 (step S 3 1 2), and then turn on the laser oscillator for processing and proceed to laser processing (step S 3 1 3). Regardless of the control flow above, the two visible laser oscillators are alternately switched O
  • N control and the configuration that the laser oscillator for machining is turned on when the distance between the center of gravity satisfies the target value makes it easy to identify the position of the center of gravity and realize efficient laser machining. It becomes possible.
  • FIG. 10 is a diagram showing another embodiment of the condensing optical system.
  • Condensing optics shown In the system 3a an embodiment in which the visible laser beams emitted from the two visible laser oscillators 5 3 and 5 4 are angle-adjusted by the folding mirrors 3 3 and 3 4 is shown.
  • the initial setting can be made easier by adjusting the initial angle of each visible laser with its own folding mirror.
  • FIG. 11 is a schematic view showing another embodiment of the laser processing system.
  • This laser processing system 100 A includes a housing 9 and a CD camera 6 attached to the tip of an articulated robot arm 10. According to this laser processing system 100 A, the housing 9 and the CCD camera 6 are transferred by the articulated robot arm 10 to an appropriate laser processing site in the vehicle C shown in the figure, and the position of the visible laser is shifted. After the amount is measured and the focusing lens is moved and adjusted as necessary, laser processing with a visible laser is performed.
  • the length of the optical fiber 2 can accommodate the extension of the articulated robot arm 10, and it is easy even in a vehicle part where workers cannot enter. Therefore, it is possible to provide a system with a wide range of application and high work efficiency, which is suitable for remote welding.
  • the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within the scope not departing from the gist of the present invention. However, they are included in the present invention.
  • the focal positions of two or more visible lasers match the focal position of the processing laser.
  • a correlation graph is prepared in advance in order to accurately match within the range of the allowable deviation amount, and the degree of matching of the focal positions of the respective visible lasers is specified based on this correlation graph. Good.
  • the focal position is adjusted while the visible laser and the condensing lens closest to the workpiece are moved synchronously.
  • the correlation value is 100% when the focal positions of two or more visible lasers are completely coincident, and the correlation value is determined according to the amount of planar displacement of both focal positions.
  • a method for creating a correlation graph that is, as a method for calculating a correlation value
  • a known normalized correlation CC: Correlation Coefficient
  • a selective normal phase that is an extension of the normalized correlation
  • a correlation graph such as
  • a configuration in which two or more visible laser oscillators can radiate visible laser beams having different wavelengths can be employed.
  • the degree of coincidence of the focal positions of two or more visible lasers on an image monitor by applying lasers with different wavelengths to the respective visible lasers, the degree of coincidence of the focal positions becomes different due to the difference in the hue of the focal light. The degree can be specified more clearly. Captures the focus light of visible lasers with different hues. Z-processes, measures the amount of misalignment of both on the screen, and loads them into the created correlation graph. It becomes possible to judge more accurately whether or not.
  • An appropriate mask may be provided on the visible laser oscillator, and the image form when the focused light is image-processed may be a form other than a circle. For example, a mask pattern is prepared so that the focal position of one visible laser is a cross-shaped intersection, and the circular focus light of the other visible laser with a different hue matches the cross-shaped intersection. There is a form when determining whether or not.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Description

明細書 レーザ加ェシステムおよびレーザ加ェ方法 技術分野
本発明は、 レーザ加工システムとレーザ加工方法に係り、 特に、 可視レーザによ る加工用レーザの焦点位置の特定を高精度かつ効率的におこなうことのできるレ 一ザ加工システムおよびレーザ加工方法に関するものである。 背景技術
レーザ加工の中で、 長焦点の集光レンズを使用しながらレーザ発振器から遠方 にレーザ光を集光させて溶接する、 いわゆるリモートウヱルディング法がある。 長焦点の集光レンズで集光された加工用レーザ光は、 焦点位置から多少ずれた位 置でも焦点位置における加工と同程度の加工をおこなうことができる。すなわち、 被加工物の厚み方向において、 焦点深度を長く取ることができるため、 厳格な焦 点位置管理をおこなう必要がない。
ところで、 レーザ発振器から遠方で加工用レーザを集光させるためには、 比較 的品質の高いレーザ発振器が必要であるが、 従来は、 主に炭酸ガスレーザを照射 するレーザ発振器が多用されていた。 炭酸ガスレーザでは、 光ファイバで導光す ることができないので、 例えば車両外部のレーザ発振器から車両内部の溶接部位 までのように遠方で集光させようとすると、 多数のミラーを具備しなければなら ない。 そのため、 ミラーの調整に時間がかかったり、 コス ト増となるといつた問 題があった。 この炭酸ガスレーザを照射するレーザ ¾振器に対し、 光ファイバを 導光する技術が開発された。 この技術によれば、 車両内部の溶接部位までのよう に遠方に集光させる場合であっても、 光ファイバの自由な屈曲性を利用してレー ザを導くことが可能となり、 ミラーなどの調整が不要となり、 さらにはコス トの 削減が可能となる。
この光ファイバ導光型のレーザ光によるリモートウヱルディング法を適用する 過程において、 加工用レーザの焦点位置管理を従来に比してより厳格におこなう 必要が生じてきている。 この原因は、 光ファイバ導光型レーザ光の集光に際し、 光ファイバの出射ファイバ端面を結像ざせる光学系を構成させるために、 焦点位 置とその周辺でビーム形状が異なっていることが原因の一つであると考えられる。
レーザ加工においては、 上記する炭酸ガスレーザ光、 光ファイバ導光型のレー ザ光のいずれを適用する場合においても、 加工用レーザの焦点位置を視認するこ とができないため、 予め加工用レーザの焦点位置に視認可能な複数の可視レーザ の焦点位置を或る程度一致させておき、 それぞれの可視レーザの焦点を目視で合 焦させることによって加工用レーザの焦点位置を模擬し、 レーザ加工がおこなわ れているのが現状である。
上記する目視による可視レーザの合焦操作を改善すべく、 1つの補助レーザビ ーム (可視光レーザ) と加工用のメインレーザビームとを同一の集光レンズを通 してワークに照射させ、 双方が一致する点をメインレーザビームの焦点位置とす るレーザ加工機におけるティーチング方法と装置にかかる技術が特許文献 1に開 示されている。 さらに、 2つの可視光の交点からなる指示像に基づいてワークの 印字面とレーザ光 (印字光) の離間調整をおこなうレーザ加工装置と距離調整方 法にかかる技術が特許文献 2に開示されている。
特許文献 1
特開平 1 0— 5 8 1 6 9号公報
特許文献 2
特開 2 0 0 5— 1 3 1 6 6 8号公報 発明の開示
上記する特許文献 1に開示のレーザ加工機におけるティ一チング方法と装置に よれば、 可視レーザの焦点を目視で合焦させる従来技術に比して、 メインレーザ ビームの焦点位置をワーク表面に精度よく合焦させることが可能となる。し力、し、
1つの補助レーザビーム (可視光レーザ) と加工用のメインレーザビームとの位 置関係のみをもつて合焦の可否を判断する方法では、 高い合焦精度が要求される レーザ加工に対応することはできない。
また、 上記する特許文献 2に開示のレーザ加工装置と距離調整方法によれば、 所望のエネルギー密度のレーザ光をワークに照射することが可能となる。ここで、 作業者は、レーザ光と可視光の照射位置が合焦しているか否かを特定するために、 ワーク表面を撮像したり表示部の画面で確認したりしながら、 必要な場合に可視 光による指示像の調整をおこない、 レーザ光とワーク間の距離調整をおこなう。 したがって、 レーザ光とワーク間の距離調整は、 結局のところ画面を視認する作 業員の官能に依存する域を超えず、 高い精度でレーザ光とワークとの位置調整を おこなうことは依然として困難である。
本発明は、 上記する問題に鑑みてなされたものであり、 可視レーザによる加工 用レーザの焦点位置の特定を官能によることなく、 極めて高い精度で効率的にお こなうことのできるレーザ加工システムおよびレーザ加工方法を提供することを 目的とする。
前記目的を達成すべく、 本発明によるレーザ加工システムは、 被加工物表面に レーザ光を照射してレーザ加工をおこなうレーザ加工システムであって、 前記レ 一ザ加工システムは、 加工用レーザ発振器と、 集光レンズを具備する集光光学系 と、 2以上の可視レーザ発振器と、 集光レンズと可視レーザ発振器とを同期して 進退調整する移動調整手段と、 被加工物表面上の可視レーザのスポッ ト光を撮像 する撮像手段と、 撮像された映像を画像処理するとともに処理後の画像を表示す る画像処理手段と、 を具備するとともに加工用レーザと可視レーザの双方が前記 集光レンズを介して被加工物に照射されるように構成されており、 加工用レーザ の焦点位置にそれぞれの可視レーザが合焦した状態において、 前記集光レンズの 移動に応じて被加工物表面上にできるそれぞれの可視レーザのスポッ小光の重心 位置と、 それらの重心位置間の距離である重心間距離を算出する算出手段と、 該 重心間距離がゼロまたは略ゼロとなるように前記移動調整手段を制御する制御手 段と、 をさらに具備していることを特徴とする。
本発明のレーザ加工システムは、 適宜のレーザを適用して任意の被加工物にレ 一ザ溶接加工やレーザ孔開け加工、 レーザマーキング加工などをおこなうシステ ムである。 ここで適用される加工用レーザは、 炭酸ガスレーザのほか、 Y A Gレ 一ザや Y A G- S H Gレーザなどがある。
集光光学系は、 例えば 2以上の集光レンズや、 コリメートレンズと集光レンズ などが適宜の間隔をおいて配設されることによって構成されている。 本発明のレ 一ザ加工システムでは、 被加工物に最も近接している集光レンズのうち、 被加工 物とは反対側 (加工用レーザ発振器側) に 2以上の可視レーザ発振器が備えてあ る。 この集光レンズと 2以上の可視レーザ発振器とは、 同期して所定の移動量だ け進退移動できるように移動調整手段にて移動制御されている。 また、 加工用レ 一ザと可視レーザの双方が被加工物に最も近接している集光レンズを介して被加 ェ物に照射されるように構成されている。
このレーザ加工システムの使用に際しては、 加工用レーザの焦点位置にそれぞ れの可視レーザが合焦するように各構成機器の姿勢を設定することにより、 複数 の可視レーザの合焦位置が変化した場合でも、 かかる合焦位置を特定することで 加工用レーザの焦点位置を特定することが可能となる。 かかる初期設定は、 例え ば公知のフォーカスモニタ等にて加工用レンズの焦点位置を予め設定しておき、 加工用レーザの焦点位置にそれぞれの可視レーザの焦点位置が一致するように集 光レンズと可視レーザとの離隔や、 それぞれの可視レーザの角度調整をおこなう ことによっておこなわれる。
また、 被加工物表面上の可視レーザの焦点光を撮影するための撮像手段が設け られており、 撮影された映像は、 画像処理手段にて画像処理された後に画面表示 される。 この撮像手段としては、 例えば C C Dカメラを適用できる。 また、 画像 処理手段は、 例えばパーソナルコンピュータからなり、 上記の C C Dカメラに接 続されている。 この撮像手段は、 例えば集光光学系の後端側、 すなわち、 被加工 物と反対側に設けられた構成とすることにより、 集光レンズを通って照射され、 被加工物表面で反射してきた可視レーザ (のスポット光) を撮影することができ る。 すなわち、 この撮像手段の配設位置は、 被加工物からの可視レーザの反射光 の光軸方向に撮像手段を構成する撮像画面が直交するように設定されている。 本発明のレーザ加工システムでは、 集光レンズの移動に応じて被加工物表面上 にできるそれぞれの可視レーザのスポッ ト光の重心位置を算出するとともに重心 間距離を算出する算出手段と、 該重心間距離がゼ口または略ゼ口となるように前 記移動調整手段を制御する制御手段とをさらに具備している。 この算出手段や制 御手段は、 例えば上記する移動調整手段とともにパーソナルコンピュータ内に内 蔵される。 この制御手段としては、 各手段の実行制御をおこなう公知の C P Uを 適用できる。 ここで、 スポッ ト光の形状は、 円形のみならず、 被加工物表面が傾 斜等している場合には楕円形など任意の形状を呈する。 各可視レーザのスポッ ト 光の形状が撮像手段にて読み取られた段階で、 算出手段にて各スポット光の重心 位置が演算される。 各スポッ ト光の重心位置が演算された後に、 算出手段にて重 心間距離の演算が併せて実行される。
重心間距離がゼロの場合には、 各可視レーザは合焦しており、 既にこの合焦点 が加工用レーザの焦点位置に設定されていることから、 被加工物に対して現在の 集光レンズ (および可視レーザ発振器) の位置がレーザ加工に適した位置である ことが特定される。 また、 重心間距離に任意の許容誤差 (目標値) を設定してお き、 重心間距離が許容値範囲内の場合にレーザ加工に移行することもできる。 重心間距離がゼロでなく、 かつ許容範囲内でもない場合には、 重心間距離をゼ 口または略ゼロとするために、 移動調整手段によって集光レンズと可視レーザ発 振器が所定量だけ同期移動される。 かかる移動調整手段の移動量制御は、 コンビ ユータ内に内蔵され、 算出手段からの重心間距離データに基づいて移動指令信号 を移動調整手段へ送る制御手段 (例えば C P U) にて実行される。 既述するよう に、 既に加工用レーザの焦点位置と各可視レーザの合焦位置が一致するように調 整されているため、集光レンズを所定量だけ移動させることにより、焦点位置(合 焦位置) を被加工物表面の所定位置に設定することができる。
発明者等の検証によれば、 かかる可視レーザのスポッ ト光の重心位置を特定す るとともに重心間距離を求め、 重心間距離をゼロまたは略ゼロとするように集光 レンズを移動制御することにより、 例えば 0 . 5 m m未満の極めて高い誤差精度 で加工用レーザの焦点位置を被加工物表面に設定できることが実証されている。 これは、被加工物がいかなる姿勢であっても(被加工物が傾斜している場合等)、 その表面上に形成された複数のスポット光の重心を求めることによって現在の集 光レンズの位置での加工用レーザの焦点位置と被加工物表面とのずれが客観的か つ定量的に特定されるためである。 なお、 集光レンズを移動させるだけで重心間 距離をゼロに調整できる理由は、 可視レーザが一定の角度で合焦点を通過すると ともに被加工物へ照射されることによるものであり、 最初に可視レーザ発振器の 角度ゃ該可視レーザ発振器と集光レンズとの相対位置が調整された段階で、 複数 の可視レーザのスポッ ト光の重心間距離は集光レンズの移動量に応じて比例関係 となるためである。 したがって、 本発明のレーザ加工システムによれば、 加工用 レーザの焦点位置をレーザ加工位置に高い精度で設定することができるとともに、 かかる位置設定を自動でかつ迅速に実行することが可能となり、 製造歩留まりの 向上にも繋がる。
また、 本発明によるレーザ加工システムの好ましい実施の形態は, 前記 2以上 の可視レーザ発振器が交互に O N制御されていることを特徴とする。
被加工物表面上における各可視レーザのスポット光の重心位置を特定するに当 たり、 一度に双方のスポット光を照射するよりも、 各別に照射してスポット光を 形成させ、 各スポッ ト光の重心位置を特定する方が双方のスポット光が重なって 重心位置の特定が困難になるといった問題も生じ得ない。 そこで、 各可視レーザ 発振器の可視レーザの照射を交互にひ N制御しておき、 一方のスポット光の重心 位置が特定された後に他方のスポッ ト光の照射および重心位置の特定をおこなう ものである。
本発明のレーザ加工システムでは、 それぞれのスポッ ト光の重心間距離がゼロ または略ゼロとなった段階で加工用レーザ発振器が O N制御されている実施の形 態が好ましい。 例えば、 算出手段によって重心間距離が算出され、 かかる重心間 距離データに基づいて移動調整手段が作動して集光レンズおよび可視レーザ発振 器を所定量だけ移動調整し、 集光レンズ等が所定量移動した段階で加工用レーザ 発振器が O Nされることにより、 加工用レーザの焦点位置を被加工物表面上に精 度よく設定することができる。
また、 本発明によるレーザ加工システムの他の実施の形態において、 加工用レ
—ザ発振器と集光光学系との間に加工用レーザ光を導光する光ファイバが介装さ れており、 少なく とも前記集光光学系と前記撮像手段からなるユニットを装着し たマニピュレータをさらに備えてなることを特徴とする。
集光光学系と可視レーザ発振器、 および C C Dカメラ等からなる撮像手段を 1 つのュニッ トとし、 加工用レーザ発振器と該ュニットとの間を光ファイバにて接 続し、 加工用レーザが光ファイバを介して集光光学系に照射されるようにし、 さ らに、 該ュニッ トを多関節ロボッ トアーム等のマニピュレータに装着することに より、 本システムが構成される。
本発明のレーザ加工システムによれば、 車両内部の直接視認できない部位のレ 一ザ加工や、 加工空間が狭隘な場合のレーザ加工、 加工部位が製品の奥に位置し ている場合のレーザ加工等に際しても、 高精度のレーザ加工が可能となる。 さらに、 本発明によるレーザ加工方法は、 加工用レーザ発振器と、 集光レンズ を具備する集光光学系と、 第 1、 第 2の可視レーザ発振器と、 集光レンズと可視 レーザ発振器とを同期して進退調整する移動調整手段と、 被加工物表面上の可視 レーザのスポッ ト光を撮像する撮像手段と、 撮像された映像を画像処理するとと もに処理後の画像を表示する画像処理手段と、 を具備するとともに加工用レーザ と可視レーザの双方が前記集光レンズを介して被加工物に照射されるように配設 されてなるレーザ加工システムを用いたレーザ加工方法であって、 加工用レーザ の焦点位置にそれぞれの可視レーザが合焦するように、 各可視レーザの照射角度 の調整と、 前記集光レンズ及び前記可視レーザ発振器の位置決め調整をおこなう 第 1の工程と、 前記第 1の可視レーザ発振器を O Nして被加工物表面上の可視レ 一ザのスポット光を撮像するとともにその重心位置を算出する第 2の工程と、 前 記第 2の可視レーザ発振器を O Nして被加工物表面上の可視レーザのスポット光 を撮像するとともにその重心位置を算出する第 3の工程と、 双方のスポッ ト光の 重心間距離を算出する第 4の工程と、 前記重心間距離がゼロとなるように集光レ ンズと可視レーザ発振器とを同期移動させる第 5の工程と、 前記重心間距離がゼ 口となった段階で加工用レーザ発振器を O Nする第 6の工程と、 からなることを 特徴とする。
本発明は、 既述するレーザ加工システムを適用してなるレーザ加工方法に関す るものである。 ここで使用されるレーザ加工システムにおいて、 可視レーザ発振 器は、 2基の発振器(第 1、第 2の可視レーザ発振器) を具備していればよいが、
3基以上の可視レーザ発振器を具備した加工システムであってもよい。
まず、 初期設定として、 加工用レーザの焦点位置にそれぞれの可視レーザが合 焦するように、 各可視レーザの照射角度の調整と、 集光レンズ及び可視レーザ発 振器の位置決め調整がおこなわれる(第 1の工程)。 既述するように、 この初期設 定によって加工用レーザの焦点位置とそれぞれの可視レーザの合焦位置が一致さ れ、 集光レンズが移動しても焦点位置と合焦位置は一致した状態で移動すること ができる。
次に、 第 2の工程、 第 3の工程において、 各可視レーザ発振器からの可視レー ザの照射とスポット光の重心位置の算出がおこなわれる。 可視レーザ発振器ごと にレーザ照射がおこなわれる理由は既述の通りである。
次いで、 重心間距離の算出がおこなわれ (第 4の工程) 、 重心間距離がゼロで ない場合 (または許容範囲内にない場合) には、 この重心間距離データに基づい て該重心間距離がゼロとなるように集光レンズと可視レーザ発振器とを所定量だ け同期移動させる (第 5の工程) 。
重心間距離がゼロとなった段階で加工用レーザ発振器が O Nされて加工用レ一 ザの照射が実行され、 所望のレーザ溶接加工やレーザ孔開け加工、 レーザマーキ ング加工などが実行される (第 6の工程) 。 なお、 上記する第 2の工程〜第 6の 工程からなる一連の工程は、 重心間距離が目標値を満足するまで繰返して実行さ れることにより、 被加工物表面の微妙な位置変化に応じた焦点位置の微調整も容 易におこなうことができる。 なお、 かかるフローの繰り しは、 システムにフィ 一ドバック制御機構を組み込むことで実行可能となる。
本発明のレーザ加工方法によれば、 加工用レーザの焦点位置と被加工物表面と の一致の程度が 2つの可視レーザのスポッ ト光の重心間距離にて特定されるため、 被加工物の表面形状や姿勢 (傾斜の如何) に関わらず、 極めて高い精度でかつ効 率的に焦点位置の設定をおこなうことが可能となる。 したがって、 特に加工用レ 一ザの焦点位置の設定が極めて困難であったリモートゥヱルディング加工におい ても、 高精度で効率的な焦点位置の設定が実現されることから、 かかるリモート ゥエルディング加工で問題となっていた加工精度の低下と歩留まりの低下の双方 を同時に改善することができる。
以上の説明から理^罕できるように、 本発明のレーザ加工システムおよびレーザ 加工方法によれば、 複数の可視レーザによる被加工物表面上のスポット光の各重 心位置を求め、 その重心間距離がゼロまたは略ゼロとなる状態で加工用レーザの 照射がおこなわれるため、 極めて高レ、精度でかつ効率的にレーザ加工をおこなう ことができる
図面の簡単な説明
図 1は、 本発明のレーザ加工システムの一実施の形態の模式図である。
図 2は、 集光レンズを移動させて 2つの可視レーザのスポット光の重心間距離 を調整している状況を説明した模式図である。
図 3における、 (a) は図 2の I I I— I I I矢視図であり、 (b) は重心間 距離をゼロに調整した図である。
図 4は、 楕円形のスポッ ト光を示した模式図である。
図 5は、 レーザ加工システムの制御機構のブロック図である。
図 6は、 レーザ加工システムの制御フローの一実施の形態を示した図である。 図 7は、 重心間距離と集光レンズ位置の関係を説明したグラフである。
図 8は、レーザ加工システムの制御フローの他の実施の形態を示した図である。 図 9は、 重心間距離と集光レンズ位置の関係を説明したグラフである。
図 1 0は、 集光光学系の他の実施の形態の模式図である。
図 1 1は、 レーザ加工システムの他の実施の形態の模式図である。 図面において、 1は加工用レーザ発振器、 2は光ファイバ、 3, 3 aは集光光 学系、 3 1はコリメートレンズ、 32は集光レンズ、 4 1, 42は屈折レンズ、 5 1, 52, 53, 54は可視レーザ発振器、 6は CCDカメラ、 7はパーソナ ルコンピュータ、 8は移動レール、 9はハウジング、 1 0は多関節ロボッ トァー ム、 1 00, 1 00 Aはレーザ加工システム、 Wは被加工物、 L 1は加工用レー ザ、 L 2は可視レーザ、 S 0、 S l、 S 2、 S O ' 、 S I ' 、 S 2 ' はスポッ ト 光、 S l a、 S 2 a、 S I ' a、 S 2 ' aは重心をそれぞれ示している。
発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。 図 1は、 本発明のレー ザ加工システムの一実施の形態の模式図を、 図 2は、 集光レンズを移動させて 2 つの可視レーザのスポッ ト光の重心間距離を調整している状況を説明した模式図 を、 図 3 aは図 2の I I I— I I I矢視図を、 図 3 bは重心間距離をゼロに調整 した図をそれぞれ示している。 図 4は、 楕円形のスポット光を示した模式図を、 図 5は、 レーザ加工システムの制御機構のブロック図を、 図 6は、 レーザ加工シ ステムの制御フローの一実施の形態を示した図を、 図 7は、 重心間距離と集光レ ンズ位置の関係を説明したグラフをそれぞれ示している。 図 8は、 レーザ加工シ ステムの制御フローの他の実施の形態を示した図を、 図 9は、 重心間距離と集光 レンズ位置の関係を説明したグラフを、 図 1 0は、 集光光学系の他の実施の形態 の模式図を、 図 1 1は、 レーザ加工システムの他の実施の形態の模式図をそれぞ れ示している。
図 1は、 レーザ加工システムの一実施の形態の模式図を示している。 レーザ加 ェシステム 1 0 0は、 Y A Gレーザや Y A G - S H Gレーザなどの加工用レーザ L 1を照射する加工用レーザ発振器 1 と、 加工用レーザ L 1を導光する光ファイバ 2、 光ファイバ 2から照射されたレーザ光を屈折させる屈折レンズ 4 1、 屈折レ ンズ 4 1にて屈折された光を集光させる集光光学系 3、 集光光学系 3にて集光さ れた加工用レーザ L 1を被加工物側へ屈折させる屈折レンズ 4 2、 さらに、 可視 レーザ L 2を発振させる可視レーザ発振器 5 1, 5 2、 C C Dカメラ 6、 システ ムを制御するパーソナルコンピュータ 7とから大略構成されている。 この屈折レ ンズ 4 1、 集光光学系 3、 可視レーザ発振器 5 1 , 5 2、 屈折レンズ 4 2は、 ハ ウジング 9内に収容されており、 光ファイバ 2および C C Dカメラ 6は、 このハ ウジングの所定の位置に装着されている。
集光光学系 3は、 屈折レンズ 4 1を介して屈折された加工用レーザ L 1を平行 光にするコリメ一トレンズ 3 1と、 平行光を集光させる集光レンズ 3 2とから構 成されている。 この集光レンズ 3 2のコリメートレンズ側には可視レーザ発振器 5 1 , 5 2が該集光レンズ 3 2と蝶番 5 1 a, 5 2 aを介して一体に装着されて おり、 可視レーザ発振器 5 2の下面に装着された車輪 5 2 bが移動レール 8上を 移動可能となっている (Y方向) 。 可視レーザ発振器 5 1 , 5 2は、 蝶番 5 1 a ,
5 2 aによって角度の調整が可能となっており (X I方向、 X 2方向) 、 加工用 レーザ L 1の焦点位置にそれぞれの可視レーザ L 2, L 2の合焦位置が一致する ように可視レーザ発振器の角.度調整がおこなわれる。 被加工物 W表面に形成された各可視レーザ光 L 2, L 2のスポット光の映像は、 屈折レンズ 4 2を介して C C Dカメラ 6にて撮影される。 撮影画像は、 パーソナ ルコンピュータ 7に送信され、 その内部で画像処理された後、 それぞれの可視レ —ザ L 2, L 2のスポッ ト光の重心位置間の距離 (重心間距離) がコンピュータ 内部で算出される (後述) 。
図 2は、 最初に設定された加工用レーザ L 1の焦点位置と可視レーザ L 2 , L 2の合焦位置の一致点 Qと、 任意の被加工物 W表面上に形成される 2つの可視レ 一ザのスポット光 S I , S 2 , さらにはそれらの重心間距離がゼロに調整された 際のスポッ ト光 S 0を模式的に示した図である。
レーザ加工を実施するに際し、 本システムではまず加工用レーザの焦点位置と 各可視レーザの合焦位置を一致させるために、 公知のフォーカスモニタ等にて加 ェ用レンズの焦点位置を予め設定しておき、 加工用レーザの焦点位置にそれぞれ の可視レーザの焦点位置が一致するように集光レンズと可視レーザとの離隔や、 それぞれの可視レーザの角度調整をおこなう。 かかる初期設定の状態で任意の被 加工物 W表面に照射された可視レーザ L 2, L 2が図 2の実線で示すレーザであ り、 かかる可視レーザ L 2 , L 2によって被加工物 W表面に形成された 2つの円 形スポット光 S 1 , S 2が図 3 aの平面図に図示されている。
各スポッ ト光の重心は S 1 a, S 2 aであり、 重心間距離は L 1である。 ここ で、 図 2からも明らかなように、 集光レンズ 3 2の位置に応じて屈折後の可視レ 一ザ角度は一義的に決定されるため、 かかるレーザ角度と被加工物までの距離に よって決定される重心間距離も同様に一義的に決まる。 かかる関係を利用して、 集光レンズ 3 2の位置を移動させることにより (例えば図 2の 2点鎖線位置へ X 3方向に移動) 、 重心間距離をゼロとすることができる (図 3 bに示すように双 方のスポッ ト光が移動して (X 4方向) 、 重心間距離がゼロとなるスポット光 S 0が形成される) 。
また、 被加工物 Wが任意に傾斜した姿勢の場合において、.,該被加工物表面に形 成されるスポッ ト光は図 4に示す楕円形を呈する。 また、 図示を省略するが、 一 方のスポッ ト光が楕円形であり、 他方のスポッ ト光が円形の場合もある。 このよ うに、 各スポッ ト光の形状が任意の形状であっても、 各スポッ ト光の重心位置を 算定し、 重心間距離をゼロまたは許容範囲内とするように集光レンズを移動させ ることにより、 被加工物の姿勢如何に関わらず、 被加工物表面に加工用レーザの 焦点位置を設定することが可能となる。 なお、 図 4においては、 2つの楕円形の スポッ ト光 S I ' 、 S 2 ' (重心 S I ' a、 S 2 ' a ) をそれぞれ X 4方向に移 動させることで重心間距離がゼロとなるスポット光 S 0 ' が形成された状況を示 している。
図 5は、 レーザ加工システム 1 ◦ 0の制御機構のブロック図を示している。 ノ、。 一ソナルコンピュータ 7内の I Z F回路 7 1 aには撮像部 (C C Dカメラ 6 ) に よって撮影された可視レーザのスポット光の撮影画像が送信され、 画像処理部 7 2にて画像処理される。 画像処理後の画像は、 図 3 a , bに示すような態様で表 示部 7 4に表示される。 一方、 キーボード等から重心間距離の初期設定値 (ゼロ または任意の許容値) に関するデータが入力され、 入力データは I Z F回路 7 1 bを介して許容値格納部 7 6に格納される。
既述する初期設定の後、 各可視レーザ発振器から可視レーザを照射し、 被加工 物表面で反射した反射光 (スポッ ト光) を屈折レンズ 4 2、 集光レンズ 3 2、 コ リメ一トレンズ 3 1、 屈折レンズ 4 1を介して C C Dカメラ 6にて撮影し、 撮影 データが I Z F回路 7 1 aを介して画像処理部 7 2に送信されて画像処理される。 この処理データは表示部 7 4に送られて例えば図 3 aに示す態様で画面表示され る。 一方、 処理データは算出部 7 3にも送信され、 この算出部 7 3にて、 各スポ ット光の重心位置が算出され、 重心間距離が算出される。 算出結果は表示部 7 4 に送信されて画面表示される。
算出部 7 3にて算出された重心間距離データは判定部 7 5に送られる。 この判 定部 7 5には許容値格納部 7 6からの重心間距離に関する目標値 (例えばゼロ) データが送信されており、 この目標値と重心間距離との判別がおこなわれる。 判別の結果、 重心間距離が目標値を満足する場合には、 現在の集光レンズの位 置にて加工用レーザの焦点位置が被加工物表面上に設定ざれていると特定され、 移動調整部 7 8には集光レンズ 3 2の移動量:ゼロ (移動の必要なし) の信号が 送られる。 一方、 重心間距離が目標値を満足しない場合には、 移動調整部 7 8に 集光レンズ 3 2の移動量に関する信号が送られ、 かかる移動量信号は I Z F回路 7 1 cを介して車輪 5 2 bを駆動する不図示の駆動部に送信され、 可視レーザ発 振器 5 1 , 5 2と集光レンズ 3 2とが同期しながら移動レール 8上を移動するこ ととなる (Y方向) 。 例えば、 移動調整部 7 8から送信される一定の移動量パル ス信号に応じて車輪 5 2 bがー定量移動し、 次いで可視レーザ発振器 5 1, 5 2 が再度 O Nされて各スポッ ト光の重心と重心間距離が算出され、 重心間距離と目 標値との判別がおこなわれ、 目標値を満足する場合にはその時点で車輪 5 2 bの 駆動が停止するといつたフィードバック制御が実行される。 車輪 5 2 bの駆動停 止後、 加工用レーザ発振器が O Nされ、 所望のレーザ加工に移行する。
なお、 上記する表示部 7 4、 判定部 7 5、 算出部 7 3、 移動調整部 7 8、 画像 処理部 7 2の各作動は、中央制御部である C P U 7 8によって制御される。また、 可視レーザ発振器 5 1, 5 2と集光レンズ 3 2の同期移動は、 サーボモータなど のァクチユエータを具備する送りねじ機構からなる実施の形態であってもよい。 図 6は、 レーザ加工システムの制御フローの一実施の形態を示した図であり、 図 7は、 重心間距離と集光レンズ位置の関係を説明したグラフである。
まず、 既述する初期設定の後に、 一方の可視レーザ発振器を O Nする (ステツ プ S 2 0 0 ) 。 次いで、 この可視レーザの被加工物表面上のスポッ ト光の重心位 置 (X I , Y 1 ) を算出する (ステップ S 2 0 1 ) 。 同様に他方の可視レーザ発 振器を O Nし (ステップ S 2 0 2 ) 、 この可視レーザの被加工物表面上のスポッ ト光の重心位置 (X 2, Y 2 ) を算出する (ステップ S 2 0 3 ) 。
2つの重心位置より重心間距離: Lを算出し (ステップ S 2 0 4 ) 、 Lが目標 値を満足する、すなわち、 L = 0または許容値範囲内か否かの判定をおこなう (ス テツプ S 2 0 5 ) 。 重心間距離が目標値を満足する場合は、 そのまま加工用レー ザ発振器が O Nされてレーザ加工に移行する (ステップ S 2 0 7 ) 。 一方、 重心 間距離が目標値を満足しない場合は、 集光レンズを所定量移動させ (ステップ S 2 0 6 ) 、 再度ステップ S 2 0 0〜S 2 0 5を実行し (フィードバック制御) 、 ステップ S 2 0 5で目標値を満足した段階でレーザ加工に移行する (ステップ S 2 0 7 )
上記フローのうち、 ステップ S 2 0 6を説明した図が図 7のグラフである。 既 述するように、重心間距離: Lは集光レンズ位置: Pに応じた任意の一次関数(L =k P) を満足する。 したがって、 求められた集光レンズ位置が P, 重心間距離 が Lの場合には、 集光レンズを所定量移動させることにより (集光レンズ位置が P 0) 、 重心間距離をゼロとすることができる。
また、 図 8は、 レーザ加工システムの制御フローの他の実施の形態を示した図 であり、図 9は、重心間距離と集光レンズの関係を説明したグラフである。まず、 既述する初期設定の後に、 一方の可視レーザ発振器を ONする (ステップ S 30 0)。次いで、 この可視レーザの被加工物表面上のスポット光の重心位置(X I , Y 1) を算出する (ステップ S 30 1) 。 同様に他方の可視レーザ発振器を ON し (ステップ S 302) 、 この可視レーザの被加工物表面上のスポット光の重心 位置 (X 2, Y 2) を算出する (ステップ S 303) 。 2つの重心位置より重心 間距離: L 1 とその時の集光レンズ位置 P 1を算出する (ステップ S 304) 。 次いで、 集光レンズ 3 2を任意量だけ移動させた後 (ステップ S 305) 、 同 様に、 一方の可視レーザ発振器を ONし (ステップ S 306) 、 スポッ ト光の重 心位置 (X I ' , Y 1 ' ) を算出し (ステップ S 30 7) 、 他方の可視レーザ発 振器を ONし (ステップ S 308) 、 スポット光の重心位置 (X 2 ' , Υ 2 ' ) を算出し (ステップ S 309) 、 重心間距離: L 2とその時の集光レンズ位置 Ρ 2を算出する (ステップ S 3 1 0) 。
2点 (P I , L l ) 、 (P 2, L 2) より、 重心間距離: Lがゼロとなる集光 レンズの位置: P 0を特定する。 この特定方法は、 図 9に示すグラフより明らか となる。 すなわち、 重心間距離: Lは集光レンズ位置: Pに応じた任意の一次関 数 (L = k P) を満足することから、 2点が決定されれば、 自動的にかかる 2点 から重心間距離がゼロとなる集光レンズ位置: P 0が特定できる。
集光レンズの位置 : P 0まで集光レンズを移動させ (ステップ S 3 1 2) 、 そ の後に加工用レーザ発振器を ONしてレーザ加工に移行する(ステップ S 3 1 3)。 上記いずれの制御フローによる場合でも、 2つの可視レーザ発振器を交互に O
N制御するとともに、 重心間距離が目標値を満足した段階で加工用レーザ発振器 を ON制御した構成とすることで、 重心位置の特定が容易となり、 効率的なレ一 ザ加工を実現することが可能となる。
図 1 0は、 集光光学系の他の実施の形態を示した図である。 図示する集光光学 系 3 aでは、 2基の可視レーザ発振器 5 3 , 5 4から照射された可視レーザが、 それぞれ折り返しミラー 3 3, 3 4にて角度調整される実施の形態を示している。 各可視レーザがそれぞれに固有の折り返しミラーによって初期の角度調整がおこ なわれることで、 初期設定をより容易とすることができる。
図 1 1は、 レーザ加工システムの他の実施の形態を示した模式図である。 この レーザ加工システム 1 0 0 Aは、 ハウジング 9と C C Dカメラ 6とが多関節ロボ ットアーム 1 0の先端に取り付けられて構成されている。 このレーザ加工システ ム 1 0 0 Aによれば、 図示する車両 C内の適宜のレーザ加工部位まで多関節ロボ ットアーム 1 0にてハウジング 9と C C Dカメラ 6が移載され、 可視レーザの位 置ずれ量が計測され、 必要に応じて集光レンズ等が移動調整された後に可視レー ザによるレーザ加工が実施される。
レーザ加工システム 1 0 0 Aによれば、 光ファイバ 2の長さで多関節ロボッ ト アーム 1 0の伸張に対応することができ、 また、 作業員が入り込めないような車 両部位においても容易にレーザ加工をおこなうことができるため、 適用範囲が広 く、 作業効率も高いシステムを提供することができ、 リモートゥエルディング加 ェに好適である。
以上、 本発明の実施の形態を図面を用いて詳述してきたが、 具体的な構成はこ の実施形態に限定されるものではなく、 本発明の要旨を逸脱しない範囲における 設計変更等があっても、 それらは本発明に含まれるものである。 例えば、 スポッ ト光の重心位置を特定し、 重心間距離を求めて加工用レーザの焦点位置を特定す る代わりに、 2以上の可視レーザの焦点位置が加工用レーザの焦点位置に一致す る、 もしくは許容ずれ量の範囲内で精度よく一致させるために相関グラフを予め 作成しておき、 この相関グラフに基づいてそれぞれの可視レーザの焦点位置の一 致の程度を特定する方法であってもよい。 この場合、 必要に応じて可視レーザと 被加工物に最も近接する集光レンズとを同期移動させながら焦点位置の調整がお こなわれる。 ここで、 相関グラフの作成に際しては、 2以上の可視レーザの焦点 位置が完全に一致する場合を相関値 1 0 0 %とし、 双方の焦点位置の平面的なず れ量に応じて相関値が減少するような相関グラフを作成する。 この相関グラフで は、 例えば双方の焦点位置が 1 m mずれた場合の相関値が 9 5 %であるといった 具合に相関値とずれ量とが対応しており、 加工に際して要求される許容ずれ量が l mmの場合には、 相関値 9 5%に入る範囲でそれぞれの可視レーザ (および集 光レンズ) が進退調整される。 ここで、 相関グラフの作成手法、 すなわち、 相関 値の算出手法としては、 例えば、 公知の正規化相関 (CC : C o r r e l a t i o n C o e f f i c i e n t) や、 該正規化相関をさらに拡張した選択的正規 ィ匕相 |¾ (Sし し : S e l e c t i v e C o r r e l a t i o n C o e f f i c i e n t ) などによる相関グラフを適用することができる。
また、 2以上の可視レーザ発振器が、 それぞれ波長の異なる可視レーザ光を照 射できる構成とすることもできる。 2以上の可視レーザの焦点位置の一致の程度 を画像モニタにて視認するに際し、 それぞれの可視レーザに波長の異なるレーザ を適用することにより、 焦点光の色相が異なることによって焦点位置の一致の程 度をより明確に特定することができる。 色相の異なる可視レーザの焦点光を撮影 Z画像処理し、 双方の位置ずれ量を画面上で測定し、 作成されている相関グラフ 内に読み込ませることにより、 位置ずれ量が許容ずれ量の範囲内か否かをより精 度よく判定することが可能となる。 なお、 可視レーザ発振器に適宜のマスクを設 けておき、 焦点光を画像処理した際の画像形態を円形以外の形態とすることもで きる。 例えば、 一方の可視レーザには焦点位置が十字状の交点となるようなマス クパターンを用意しておき、 他方の色相の異なる可視レーザの円形焦点光が、 該 十字状の交点と一致するか否かを判定するといつた形態などもある。

Claims

請求の範囲
1 . 被加工物表面にレーザ光を照射してレーザ加工をおこなうレーザ加工システ ムであって、
前記レーザ加工システムは、 加工用レーザ発振器と、 集光レンズを具備する集 光光学系と、 2以上の可視レーザ発振器と、 集光レンズと可視レーザ発振器とを 同期して進退調整する移動調整手段と、 被加工物表面上の可視レーザのスポッ ト 光を撮像する撮像手段と、 撮像された映像を画像処理するとともに処理後の画像 を表示する画像処理手段と、 を具備するとともに加工用レーザと可視レーザの双 方が前記集光レンズを介して被加工物に照射されるように構成されており、 加工用レーザの焦点位置にそれぞれの可視レーザが合焦した状態において、 前 記集光レンズの移動に応じて被加工物表面上にできるそれぞれの可視レーザのス ポット光の重心位置と、 それらの重心位置間の距離である重心間距離を算出する 算出手段と、 該重心間距離がゼロまたは略ゼロとなるように前記移動調整手段を 制御する制御手段と、 をさらに具備していることを特徴とするレーザ加工システ ム。
2 . 前記 2以上の可視レーザ発振器が交互に O N制御されていることを特徴とす る請求項 1 に記載のレーザ加工システム。
3 . 前記それぞれのスポット光の重心間距離がゼロまたは略ゼロとなった段階で 前記加工用レーザ発振器が O N制御されていることを特徴とする請求項 1または
2に記載のレーザ加工システム。
4 . 加工用レーザ発振器と集光光学系との間に加工用レーザ光を導光する光ファ ィバが介装されており、 少なく とも前記集光光学系と前記撮像手段からなるュニ ットを装着したマニピュレ一タをさらに備えてなる請求項 1〜 3のいずれかに記 載のレーザ加工システム。
5 . 加工用レーザ発振器と、 集光レンズを具備する集光光学系と、 第 1、 第 2の 可視レーザ発振器と、 集光レンズと可視レーザ発振器とを同期して進退調整する 移動調整手段と、 被加工物表面上の可視レーザのスポット光を撮像する撮像手段 と、 撮像された映像を画像処理するとともに処理後の画像を表示する画像処理手 段と、 を具備するとともに加工用レーザと可視レーザの双方が前記集光レンズを 介して被加工物に照射されるように配設されてなるレーザ加工システムを用いた レーザ加工方法であつて、
加工用レーザの焦点位置にそれぞれの可視レーザが合焦するように、 各可視レ 一ザの照射角度の調整と、 前記集光レンズ及び前記可視レーザ発振器の位置決め 調整をおこなう第 1の工程と、 .
前記第 1の可視レーザ発振器を O Nして被加工物表面上の可視レーザのスポッ ト光を撮像するとともにその重心位置を算出する第 2の工程と、
前記第 2の可視レーザ発振器を O Nして被加工物表面上の可視レーザのスポッ ト光を撮像するとともにその重心位置を算出する第 3の工程と、
双方のスポット光の重心間距離を算出する第 4の工程と、
前記重心間距離がゼ口となるように集光レンズと可視レーザ発振器とを同期移 動させる第 5の工程と、
前記重心間距離がゼロとなった段階で加工用レーザ発振器を O Nする第 6のェ 程と、 からなることを特徴とするレーザ加工方法。
PCT/JP2007/064044 2006-07-19 2007-07-10 système de traitement laser et procédé de traitement laser WO2008010469A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780001050XA CN101351294B (zh) 2006-07-19 2007-07-10 激光加工***及激光加工方法
US11/991,781 US8164027B2 (en) 2006-07-19 2007-07-10 Laser processing system and laser processing method
EP07768421A EP2042258B1 (en) 2006-07-19 2007-07-10 Laser processing system and laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-196862 2006-07-19
JP2006196862A JP4141485B2 (ja) 2006-07-19 2006-07-19 レーザ加工システムおよびレーザ加工方法

Publications (1)

Publication Number Publication Date
WO2008010469A1 true WO2008010469A1 (fr) 2008-01-24

Family

ID=38956800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064044 WO2008010469A1 (fr) 2006-07-19 2007-07-10 système de traitement laser et procédé de traitement laser

Country Status (5)

Country Link
US (1) US8164027B2 (ja)
EP (1) EP2042258B1 (ja)
JP (1) JP4141485B2 (ja)
CN (1) CN101351294B (ja)
WO (1) WO2008010469A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199789B2 (ja) * 2008-08-25 2013-05-15 株式会社ディスコ レーザー加工装置及びレーザー加工方法
JP2010082663A (ja) * 2008-09-30 2010-04-15 Sunx Ltd レーザ加工機
CN101497149A (zh) * 2009-03-02 2009-08-05 张立国 一种激光飞行聚焦扫描***
US8187983B2 (en) 2009-04-16 2012-05-29 Micron Technology, Inc. Methods for fabricating semiconductor components using thinning and back side laser processing
WO2011009594A1 (de) * 2009-07-20 2011-01-27 Precitec Kg Laserbearbeitungskopf und verfahren zur kompensation der fokuslagenänderung bei einem laserbearbeitungskopf
JP5456510B2 (ja) * 2010-02-23 2014-04-02 株式会社ディスコ レーザ加工装置
CA2796369A1 (en) * 2010-04-13 2011-10-20 National Research Council Of Canada Laser processing control method
CN102380709B (zh) * 2010-09-01 2015-04-15 中国科学院光电研究院 平顶高斯光束皮秒脉冲激光加工***
JP5707079B2 (ja) * 2010-09-30 2015-04-22 パナソニック デバイスSunx株式会社 レーザ加工装置
US11154948B2 (en) 2010-12-16 2021-10-26 Bystronic Laser Ag Laser beam machining device and a process of laser machining comprising a single lens for light focussing
WO2013049813A1 (en) * 2011-10-01 2013-04-04 Ipg Photonics Corporation Head assembly for a laser processing system
KR20130039955A (ko) * 2011-10-13 2013-04-23 현대자동차주식회사 용접용 레이저 장치
US9931712B2 (en) * 2012-01-11 2018-04-03 Pim Snow Leopard Inc. Laser drilling and trepanning device
JP6002391B2 (ja) * 2012-01-20 2016-10-05 パナソニック デバイスSunx株式会社 レーザ加工装置
DE102012001609B3 (de) * 2012-01-26 2013-02-21 Precitec Kg Laserbearbeitungskopf
TWI465311B (zh) * 2012-04-17 2014-12-21 zhuo yang Chen 雷射加工系統及載具
CN103050166B (zh) * 2012-12-20 2015-06-10 江苏大学 一种实现纳米尺度横截面的中性冷原子激光导引的方法
JP6359640B2 (ja) * 2013-04-26 2018-07-18 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 選択的レーザー溶融システム
CN204322753U (zh) * 2014-09-30 2015-05-13 广州创乐激光设备有限公司 一种3d激光打标机
CN104553353B (zh) * 2014-12-18 2016-08-03 广州创乐激光设备有限公司 一种3d激光打标机的可控距离指示方法、打标方法、可控距离指示装置及3d激光打标机
JP6348149B2 (ja) * 2016-07-08 2018-06-27 ファナック株式会社 ロボットを用いてレーザ加工を行うレーザ加工ロボットシステム
CN106624387B (zh) * 2016-12-07 2018-08-10 诺得卡(上海)微电子有限公司 一种用于智能卡模块制造的冲孔装置
JP6464213B2 (ja) * 2017-02-09 2019-02-06 ファナック株式会社 レーザ加工ヘッドおよび撮影装置を備えるレーザ加工システム
KR102120722B1 (ko) * 2018-09-18 2020-06-09 레이저쎌 주식회사 마이크론급의 두께를 갖는 전자부품에 대한 레이저 리플로우 장치
CN114178679B (zh) * 2020-09-15 2024-07-02 台达电子工业股份有限公司 激光加工装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304694A (ja) * 1995-05-12 1996-11-22 Olympus Optical Co Ltd 焦点検出装置
JPH1058169A (ja) 1996-08-26 1998-03-03 Amada Co Ltd レーザ加工機におけるティーチング方法及びその装置
JP2003029130A (ja) * 2001-07-11 2003-01-29 Sony Corp 光学式顕微鏡
JP2005131668A (ja) 2003-10-30 2005-05-26 Sunx Ltd レーザ加工装置及びそのワーク距離調整方法
JP2005316071A (ja) * 2004-04-28 2005-11-10 Olympus Corp レーザ加工装置
JP2005334972A (ja) * 2004-05-28 2005-12-08 Como Spa レーザ光線の合焦方向の簡素化した制御によるロボット補助遠隔レーザ溶接の方法および装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642993B2 (ja) * 1986-10-28 1994-06-08 三菱電機株式会社 距離計測装置
US5011282A (en) * 1989-11-16 1991-04-30 Amada Company, Limited Laser beam path alignment apparatus for laser processing machines
TW207588B (ja) * 1990-09-19 1993-06-11 Hitachi Seisakusyo Kk
JP3060779B2 (ja) 1993-03-24 2000-07-10 日産自動車株式会社 レーザ加工装置
JP2732230B2 (ja) 1994-10-21 1998-03-25 株式会社篠崎製作所 レーザ光加工における同軸観測装置
JP3235389B2 (ja) * 1995-01-31 2001-12-04 三菱電機株式会社 レーザ加工装置および加工方法
JP3746555B2 (ja) 1996-02-06 2006-02-15 株式会社フジクラ レーザ加工装置およびこれを用いたレーザ加工方法
US6163012A (en) * 1996-09-27 2000-12-19 Kabushiki Kaisha Toshiba Laser maintaining and repairing apparatus
JP3352373B2 (ja) 1997-12-01 2002-12-03 本田技研工業株式会社 レーザ加工装置およびレーザ加工装置における集束位置決定方法
DE19852302A1 (de) * 1998-11-12 2000-05-25 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Bearbeiten von Werkstücken mit Hochenergiestrahlung
KR100691924B1 (ko) * 1999-04-27 2007-03-09 지에스아이 루모닉스 인코퍼레이티드 재료 가공 장치 및 방법
US6720567B2 (en) * 2001-01-30 2004-04-13 Gsi Lumonics Corporation Apparatus and method for focal point control for laser machining
DE10352402B4 (de) * 2003-11-10 2015-12-17 Lasertec Gmbh Laserbearbeitungsmaschine und Laserbearbeitungsverfahren
JP4681821B2 (ja) * 2004-04-28 2011-05-11 オリンパス株式会社 レーザ集光光学系及びレーザ加工装置
US7638731B2 (en) * 2005-10-18 2009-12-29 Electro Scientific Industries, Inc. Real time target topography tracking during laser processing
JP4594256B2 (ja) 2006-03-06 2010-12-08 トヨタ自動車株式会社 レーザ加工システムおよびレーザ加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304694A (ja) * 1995-05-12 1996-11-22 Olympus Optical Co Ltd 焦点検出装置
JPH1058169A (ja) 1996-08-26 1998-03-03 Amada Co Ltd レーザ加工機におけるティーチング方法及びその装置
JP2003029130A (ja) * 2001-07-11 2003-01-29 Sony Corp 光学式顕微鏡
JP2005131668A (ja) 2003-10-30 2005-05-26 Sunx Ltd レーザ加工装置及びそのワーク距離調整方法
JP2005316071A (ja) * 2004-04-28 2005-11-10 Olympus Corp レーザ加工装置
JP2005334972A (ja) * 2004-05-28 2005-12-08 Como Spa レーザ光線の合焦方向の簡素化した制御によるロボット補助遠隔レーザ溶接の方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2042258A4 *
TANAKA T. ET AL.: "MD-yo Pick Up", SHARP TECHNICAL JOURNAL, no. 72, 31 December 1998 (1998-12-31), pages 38 - 41, XP008131628 *

Also Published As

Publication number Publication date
EP2042258A1 (en) 2009-04-01
CN101351294B (zh) 2011-07-06
EP2042258A4 (en) 2011-07-13
JP4141485B2 (ja) 2008-08-27
US8164027B2 (en) 2012-04-24
US20100219171A1 (en) 2010-09-02
EP2042258B1 (en) 2012-10-17
CN101351294A (zh) 2009-01-21
JP2008023540A (ja) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4141485B2 (ja) レーザ加工システムおよびレーザ加工方法
US10092977B2 (en) Welding head and method for joining a workpiece
KR100817349B1 (ko) 레이저 조사 상태의 표시 방법 및 레이저 조사 상태 표시시스템
CN108723583B (zh) 具有测量功能的激光加工***
CN112955270B (zh) 层叠造形装置
US9870961B2 (en) Wafer processing method
JP2009525186A (ja) レーザービーム溶接
JP2010042441A (ja) レーザー加工装置及びレーザー加工方法
EP3124163B1 (en) System and method for laser processing
JP4594256B2 (ja) レーザ加工システムおよびレーザ加工方法
US20240116122A1 (en) A method for optimising a machining time of a laser machining process, method for carrying out a laser machining process on a workpiece, and laser machining system designed for carrying out this process
JP2732230B2 (ja) レーザ光加工における同軸観測装置
JP2004243383A (ja) レーザ加工装置及びレーザ加工方法
CN112917003A (zh) 激光束调整机构和激光加工装置
JPH1058169A (ja) レーザ加工機におけるティーチング方法及びその装置
WO2019176786A1 (ja) レーザ光の芯出し方法及びレーザ加工装置
US20210394306A1 (en) Laser machining apparatus
JP3063677B2 (ja) レーザ加工装置及びレーザ加工方法
JP5157089B2 (ja) 補助光照射装置およびレーザ装置
JP3203507B2 (ja) レーザ加工装置
EP1314510B1 (en) Method of welding three-dimensional structure and apparatus for use in such method
JP2817092B2 (ja) レーザ加工装置
JP3836479B2 (ja) ワイヤボンディング装置
JPH08241109A (ja) 物体設定用投光装置およびそれを使用した自動作業装置
JP7303053B2 (ja) 調整補助具及びレーザ溶接装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001050.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11991781

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007768421

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU