WO2007148538A1 - Stripping composition, tft substrate manufacturing method, and stripping composition recycling method - Google Patents

Stripping composition, tft substrate manufacturing method, and stripping composition recycling method Download PDF

Info

Publication number
WO2007148538A1
WO2007148538A1 PCT/JP2007/061508 JP2007061508W WO2007148538A1 WO 2007148538 A1 WO2007148538 A1 WO 2007148538A1 JP 2007061508 W JP2007061508 W JP 2007061508W WO 2007148538 A1 WO2007148538 A1 WO 2007148538A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
stripping composition
stripping
substrate
conductive film
Prior art date
Application number
PCT/JP2007/061508
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Inoue
Masato Matsubara
Yasushi Shiraki
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2008522380A priority Critical patent/JP5143731B2/en
Priority to CN2007800233902A priority patent/CN101473420B/en
Publication of WO2007148538A1 publication Critical patent/WO2007148538A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Definitions

  • Stripping composition manufacturing method of TFT substrate, and recycling method of stripping composition
  • the present invention relates to a stripping composition, a method for producing a TFT substrate, and a recycling method for the stripping composition.
  • LCD liquid crystal display device
  • PDP plasma display panel device
  • organic EL display devices are widely used for reasons such as display performance and energy saving.
  • display devices such as mobile phones, personal digital assistants (PDAs), laptop computers, laptop computers, and televisions have become the mainstream.
  • PDAs personal digital assistants
  • laptop computers laptop computers
  • televisions have become the mainstream.
  • TFT substrate is generally used.
  • a display material such as liquid crystal is filled between a TFT substrate and a counter substrate.
  • the liquid crystal display device selectively applies a voltage to the display material for each pixel.
  • the TFT substrate refers to a substrate on which a thin TFT (thin film transistor) having a force such as a semiconductor thin film (also referred to as a semiconductor film) is disposed.
  • a TFT substrate is also called a “TFT array substrate” because TFTs are arranged in an array.
  • a TFT substrate used in a liquid crystal display device or the like has a set of TFT and one pixel of a screen of the liquid crystal display device (referred to as one unit) arranged vertically and horizontally on a glass substrate. .
  • gate wirings are arranged at regular intervals in the vertical direction on a glass substrate, and source wirings or drain wirings are arranged at regular intervals in the horizontal direction.
  • the gate electrode, the source electrode, and the drain electrode force are provided in each of the units constituting each pixel.
  • Patent Document 1 describes a manufacturing method of a thin film transistor substrate and a stripping composition technique.
  • the stripping composition is reused by heating and dissolving the conductive film present in the stripping composition in the storage tank during storage.
  • a thiol compound such as thiobenzoic acid or thiolic acid is mixed in the stripping composition to dissolve the conductive film.
  • the stripping composition containing the thiol compound dissolves the conductive film together with the resist. For this reason, the first time ⁇ the second time between the first time required to peel off the unnecessary conductive film from the substrate and the second time when the required pixel electrode is completely dissolved. Is necessary.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-74039
  • Patent Document 1 includes a stripping composition force, a stripping additive for a conductive film, and, for example, indium oxide and zinc oxide (IZO) must also be used.
  • IZO indium oxide and zinc oxide
  • the conductive film is dissolved. For this reason, when stripping an unnecessary conductive film, the necessary conductive film such as a pixel electrode is dissolved in a small amount. For this reason, there was a problem of including an element that reduces the manufacturing yield.
  • the conductive film also has strength such as crystallized indium oxide 'tin oxide (ITO), the rate of dissolution in the stripping composition (weak acid) is slow, and the actual production line is practically slow. There was a problem that application was difficult. In addition, it was difficult to ensure that the conductive film was completely dissolved, and there was a problem that it contained elements that lowered the manufacturing yield.
  • ITO crystallized indium oxide 'tin oxide
  • the thiol compound also dissolves the conductive film during the first time and damages the pixel electrode. Therefore, there is a problem that the viewpoint power for improving the manufacturing yield and reliability is not preferable.
  • sulfur-containing compounds such as thioglycolic acid degrade the working environment, which often produces malodors. For this reason, the load on the surrounding environment is large, and it is very risky to use industrially.
  • the present invention has been made in view of such problems, and can improve the quality and productivity, and can improve the working environment, a stripping composition, a method for manufacturing a TFT substrate, and It aims at providing the recycling method of a stripping composition.
  • the stripping composition of the present invention is used in the manufacture of a semiconductor device, and dissolves the resist to strip the conductor film laminated on the resist. It is a thing.
  • the stripping composition comprises 20 to 79.5% by weight of an amine compound, 20 to 79.5% by weight of an aprotic polar compound, and 0.5 to 5% by weight of a carboxylic compound. Including.
  • the conductor film is hardly dissolved when the resist is dissolved as compared with the case where a thiol compound is included.
  • a carboxylic compound is included.
  • the amine compound power monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and these It is good to include at least one selected compound as well as the group power.
  • the aprotic polar compound power N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl sulfoxide, and the combination power thereof Group power Contains at least one selected compound.
  • the stripping composition of the present invention is used in the manufacture of a semiconductor device, dissolves the resist, and peels off the conductor film laminated on the resist. Stripping composition.
  • the stripping composition contains an ethylene strength carbonate and 0.5 to 5% by weight of a carboxylic compound.
  • ethylene carbonate may be used in place of the amine compound and the aprotic polar compound. In this way, the manufacturing yield and reliability can be improved, and the working environment can be improved.
  • the stripping composition of the present invention is used for manufacturing a semiconductor device, dissolves a resist, and peels off a conductor film laminated on the resist. Stripping composition.
  • the stripping composition contains an alkoxy acrylamide compound and 0.5 to 5% by weight of a carboxylic compound.
  • an alkoxyacrylamide compound may be used in place of the amine compound and the aprotic polar compound. In this way, the manufacturing yield and reliability can be improved, and the working environment can be improved.
  • the alkoxyacrylamide compound may include at least one compound selected from the compound represented by the following general formula 1 and a group force that combines these compounds.
  • R 1 O—CH 2 CH 2 —C—NR 2 R 3 (—general formula 1)
  • R 1, R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms.
  • the carboxylic compound power may include at least one compound selected from the carboxylic acids represented by the following general formulas 2 and 3 and the group power that can be combined.
  • R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • the pKa (acid dissociation constant) of the carboxylic compound is 4.0 or more and 5.2 or less. Yes.
  • a manufacturing method of a TFT substrate of the present invention includes a step of forming a thin film transistor on a substrate, a step of laminating a protective insulating film on the substrate and the thin film transistor, A step of laminating a resist on the protective insulating film; a step of forming the resist in a predetermined shape; and forming an undercut portion at a lower peripheral edge of the resist; and a conductive material on the protective insulating film and the resist And a step of forming a pixel electrode and a conductive film on the resist separated from each other by the undercut portion, and on the substrate, according to any one of claims 1 to 8.
  • the manufacturing process can be reduced and productivity can be improved.
  • the conductive film is hardly dissolved when the resist is dissolved, as compared with the case of including a thiol compound, so that the necessary conductive film such as a pixel electrode is damaged. There is nothing. As a result, the manufacturing yield and reliability can be improved. In addition, the working environment can be improved without ever stinking.
  • the used stripping composition containing the conductive film on the resist peeled off from the substrate cover is collected. Furthermore, it is preferable to have a recycling step of dissolving the conductive film on the resist in the used stripping composition and reusing the used stripping composition.
  • the temperature of the stripping composition supplied to the substrate is 30 ° C or more and less than 60 ° C
  • the temperature of the collected used stripping composition is 60 ° C or more and less than 100 ° C. Let's do it. In this way, the manufacturing yield and reliability can be improved, and the used stripping composition can be reused efficiently.
  • the conductive film force on the pixel electrode and the resist indium oxide zinc oxide (IZO), indium oxide 'tin oxide' zinc oxide (ITZO), tin oxide 'zinc oxide (ZTO), and
  • the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on a substrate, a step of laminating a protective insulating film on the substrate and the thin film transistor, A step of laminating a resist on the protective insulating film; a step of forming the resist in a predetermined shape; and forming an undercut portion at a lower peripheral edge of the resist; and a conductive material on the protective insulating film and the resist And forming a pixel electrode and a conductive film on the resist separated from each other by the undercut portion, and supplying a stripping composition on the substrate to conduct the conductive on the resist.
  • the number of masks can be reduced.
  • productivity can be improved.
  • the used stripping composition force can be almost completely separated from the conductive film on the resist peeled from the substrate. This allows the spent stripping composition to be reused without reducing yield.
  • the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on the substrate, and a step of stacking a protective insulating film on the substrate and the thin film transistor. Laminating a resist on the protective insulating film;
  • a patterned pixel electrode and a conductive film on the resist A stripping step of supplying a stripping composition onto the substrate and stripping off the substrate film of the conductive film on the resist, wherein the stripping composition force 20 It is a method comprising -80% by weight of an amin compound and 20-80% by weight of an aprotic polar compound.
  • Such rubbing dissolves only the resist and does not damage the pixel electrode. As a result, yield and reliability can be improved.
  • the stripping composition should be added with a solvent that suppresses foaming during the supply and a diluent for reducing the viscosity within a range that does not adversely affect the performance of the stripping composition.
  • the amine compound power monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and these It is good to include at least one selected compound as well as the group power.
  • the aprotic polar compound power N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl sulfoxide, and a combination power thereof
  • Group power Contains at least one selected compound.
  • the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on the substrate, and a step of stacking a protective insulating film on the substrate and the thin film transistor. Laminating a resist on the protective insulating film;
  • TFT substrate having a step of forming a patterned pixel electrode and a conductive film on the resist, and a stripping step of supplying a stripping composition onto the substrate and peeling the conductive film on the resist to the substrate force
  • the stripping composition comprises an alkoxyacrylamide compound represented by the following general formula 1.
  • R 1 O—CH 2 CH 2 —C—NR 2 R 3 (—general formula 1)
  • R 1, R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms. Such rubbing dissolves only the resist and does not damage the pixel electrode. As a result, yield and reliability can be improved. Further, the alkoxyacrylamide compound has water solubility, and can provide a safe stripping composition that is not flammable.
  • the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on the substrate, and a step of stacking a protective insulating film on the substrate and the thin film transistor. Laminating a resist on the protective insulating film;
  • TFT substrate having a step of forming a patterned pixel electrode and a conductive film on the resist, and a stripping step of supplying a stripping composition onto the substrate and peeling the conductive film on the resist to the substrate force
  • the stripping composition strength is a method including ethylene carbonate.
  • Such rubbing dissolves only the resist and does not damage the pixel electrode. As a result, yield and reliability can be improved.
  • the conductive film on the resist is separated from the used stripping composition containing the conductive film on the resist peeled off from the substrate, and the used stripping composition is separated. It is good to have a recycling process that reuses.
  • the conductor film on the resist is separated from the used stripping composition by sedimentation-type separation, centrifugal separation, and Z or filtration-type separation. In this way, the conductor film on the resist can be separated easily and reliably.
  • the conductor film is made of indium oxide / zinc oxide (IZO), indium oxide 'tin oxide (ITO), amorphous indium oxide' tin oxide (a-ITO), titanium oxide 'oxidized. Niobium, tin oxide 'zinc oxide, tin oxide' antimony oxide, fluorine-doped oxide oxide, and the combined force of these may contain at least one selected material.
  • the stripping composition may be supplied onto the substrate by the stripping composition force spray method during the stripping step.
  • the stripping yarn and the composition can easily enter the undercut portion, so that the conductive film on the resist can also be effectively peeled off.
  • productivity can be improved.
  • the lower layer portion of the resist is more soluble in the developer than the upper layer portion of the resist.
  • the recycling method of the stripping composition of the present invention includes a step of forming a thin film transistor on a substrate, and a step of laminating a protective insulating film on the substrate and the thin film transistor.
  • Evaporate A step of forming a pixel electrode and a conductive film on the resist separated into a ridge, and supplying the stripping composition according to any one of claims 1 to 8 on the substrate; A stripping process for peeling the conductive film on the resist from the substrate, and a used stripping composition including the conductive film on the resist peeled from the substrate is collected, and the conductive film on the resist is recovered. Membrane the used strip And a recycling step of reusing the used stripping composition.
  • a method for recycling the stripping composition of the present invention includes a step of forming a thin film transistor on a substrate, a step of laminating a protective insulating film on the substrate and the thin film transistor, A step of laminating a resist on the protective insulating film; a step of forming the resist in a predetermined shape; and forming an undercut portion at a lower peripheral edge of the resist; and a conductive layer on the protective insulating film and the resist.
  • FIG. 1 shows a structural formula for explaining examples of amine compounds contained in a stripping composition in a stripping yarn and composition that is useful in the first embodiment of the present invention. Yes.
  • FIG. 2 shows a structural formula for explaining an example of an amine-based compound contained in the stripping composition in the stripping composition according to the first embodiment of the present invention.
  • FIG. 3 shows a structural formula for explaining examples of aprotic polar compounds contained in the stripping composition in the stripping composition useful for the first embodiment of the present invention. is doing.
  • FIG. 4 is a schematic flowchart for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention.
  • FIG. 5 is a schematic view for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention.
  • FIG. 5 (a) shows a gate wiring and a gate electrode formed, and a gate A plan view in which insulating films are stacked is shown, and (b) shows an AA enlarged sectional view.
  • FIG. 6 is a schematic view for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention.
  • FIG. 6 (a) shows a thin film transistor formed and a protective insulating film. A laminated plan view is shown, and (b) shows an enlarged cross-sectional view of BB.
  • FIG. 7 is a schematic view for explaining a manufacturing method of a TFT substrate according to the first embodiment of the present invention.
  • (A) shows a case where a resist on a protective insulating film is a predetermined one.
  • a plan view formed in a shape is shown, and
  • (b) shows an enlarged CC cross-sectional view.
  • FIG. 8 is a schematic view for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention.
  • A is an enlarged cross-sectional view in which contact holes are formed.
  • B is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and
  • c is a detailed view of the D portion.
  • FIG. 9 shows a schematic view with a conductor film formed for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention, and (a) is an enlarged cross-sectional view.
  • Figure (b) shows a detailed view of part E.
  • FIG. 10 shows a stripping process for stripping the conductive film on the resist and a used stripping composition in the TFT substrate manufacturing method according to the first embodiment of the present invention.
  • the schematic sectional drawing for demonstrating the recycling process to reuse is shown.
  • FIG. 11 is a schematic view for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention.
  • FIG. 11 (a) is a plan view in which pixel electrodes are formed.
  • (B) shows an enlarged FF sectional view.
  • FIG. 12 shows a photograph of the conductor film on the resist that remains undissolved in the stripping compositions of Examples 1 to 3.
  • FIG. 13 is a schematic flowchart for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention.
  • FIG. 14 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention.
  • (A) shows a gate wiring and a gate electrode formed.
  • a plan view in which a gate insulating film is stacked is shown, and
  • (b) shows an enlarged cross-sectional view.
  • FIG. 15 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention.
  • A shows a protective insulating film in which a thin film transistor is formed.
  • B shows an enlarged cross-sectional view.
  • FIG. 16 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention.
  • A shows a case where a resist on a protective insulating film is predetermined.
  • B is an enlarged cross-sectional view.
  • FIG. 17 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention.
  • A is an enlarged sectional view in which contact holes are formed.
  • B is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and
  • c is a detailed view of the ⁇ portion.
  • FIG. 18 shows a schematic view in which a conductor film is formed for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention, and (a) is an enlarged view. A cross-sectional view is shown, and (b) is a detailed view of the part.
  • FIG. 19 shows a stripping process for stripping a conductive film on a resist and a used stripping composition in a TFT substrate manufacturing method according to the second embodiment of the present invention.
  • the schematic sectional drawing for demonstrating the recycling process to reuse is shown.
  • FIG. 20 shows a structural formula for explaining an example of an amine compound contained in the stripping composition in the TFT substrate manufacturing method according to the second embodiment of the present invention.
  • FIG. 21 shows a structural formula for explaining an example of an amine compound contained in the stripping composition in the TFT substrate manufacturing method according to the second embodiment of the present invention.
  • FIG. 22 is a structural formula for explaining an example of an aprotic polar compound contained in a stripping composition in the TFT substrate manufacturing method according to the second embodiment of the present invention. Is shown.
  • FIG. 23 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention.
  • FIG. 23 (a) is a plan view in which pixel electrodes are formed.
  • (B) shows an enlarged cross-sectional view of F ′.
  • FIG. 24 shows a photograph of the conductor film on the resist that remained undissolved in the stripping composition of Example 4.
  • the stripping composition of the present invention is a stripping composition used for manufacturing a semiconductor device.
  • This stripping yarn composition is used for a resist in which an undercut portion described later is formed and a conductor film laminated on the resist. Further, this stripping composition dissolves the resist to peel off unnecessary conductor films from the substrate. In this manner, the unnecessary conductor film is also peeled off from the substrate force, whereby a necessary conductor film having a predetermined shape (for example, a pixel electrode in the TFT substrate) is formed on the substrate.
  • the semiconductor device means a device including a substrate such as a wafer or a glass plate, an electric element using a semiconductor such as a transistor or a light receiving element, and a Z or optical element.
  • the stripping composition of the present embodiment comprises 20 to 79.5% by weight of an amin compound, 20 to 79.5% by weight of an aprotic polar compound, and 0.5 to 5% by weight of carvone. System compounds.
  • the amine compound and the aprotic polar compound function as a resist stripping agent for dissolving the resist. Further, the carboxylic compound functions as a dissolving additive for the conductor film for dissolving the conductor film.
  • Examples of amine compounds include monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and the like. (See Figures 1 and 2). Each of the above amine compounds may be used alone or in combination of two or more.
  • aprotic polar compounds examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl Examples thereof include sulfoxide (see FIG. 3). Further, the aprotic polar compound may be used alone or in combination of two or more.
  • the resist stripping agent contains about 20 to 79.5% by weight of an amine-based compound, and about 20 to 79.5% by weight of an aprotic polar compound. %.
  • the [0039] stripping composition approximately the amine compound 20 to 79.5 reasons to include weight 0/0, the content of ⁇ amine-based compound is less than about 20 wt%, within a short time to resist This is because it cannot be dissolved sufficiently. Also, if the content of the amine compound exceeds about 79.5% by weight, the required conductor film is rapidly corroded while the resist is dissolved, causing damage. Also, if the amine compound exceeds about 79.5% by weight, the volatilization amount of the stripping composition increases, and there is a concern that the component ratio of the stripping composition may change. Therefore, in the stripping composition of the present invention, the content of the amine compound is preferably about 20 to 79.5% by weight, more preferably 30 to 70% by weight.
  • the stripping composition contains about 20 to 79.5% by weight of the aprotic polar compound is that the content of the aprotic polar compound is less than about 20% by weight. If so, the resist stripping time may increase, or the liquid life when reused may be shortened. In addition, if the content of the aprotic polar compound exceeds about 79.5% by weight, there is a concern that the required conductor film may be corroded when stripping the resist. Accordingly, the content of the aprotic polar compound in the stripping composition of the present invention is preferably about 20 to 79.5% by weight, more preferably about 30 to 70% by weight. In addition, the stripping composition should be added with a solvent that suppresses foaming during supply and a diluent for reducing the viscosity within a range that does not adversely affect the performance of the stripping composition.
  • the carboxylic compound may include at least one compound selected from the group consisting of carboxylic acids represented by the following general formulas 2 and 3 and combinations thereof.
  • R-COOH (General formula 2)
  • R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • each said carboxylic acid individually or in combination of 2 or more.
  • the stripping composition contains about 0.5 to 5% by weight of a carboxylic compound. In this way, in the stripping step, only the resist is dissolved, the necessary conductor film is not dissolved, and the conductor film is not damaged. As a result, yield and reliability can be improved. Further, in the recycling process, the conductive film is dissolved in the used stripping composition, and the used stripping composition can be reused.
  • the used stripping composition refers to a stripping composition containing a conductive film on a resist peeled from a substrate.
  • the reason why the stripping composition contains about 0.5 to 5% by weight of the carboxylic compound is that the content of the carboxylic compound is less than about 0.5% by weight in the recycling process. This is because the time required for dissolving the conductor film in the stripping composition may increase, and the liquid life when reused may be shortened. Also, if the content of the carboxylic compound exceeds about 5% by weight, there is a concern that the required conductor film may be corroded when stripping the resist. Therefore, the content of the carboxylic compound in the stripping composition of the present invention is preferably about 0.5 to 5% by weight, more preferably about 2 to 4% by weight.
  • the pKa (acid dissociation constant) of the carboxylic compound is 4.0 or more and 5.2 or less.
  • the necessary conductor film is not damaged in the stripping step.
  • the used stripping composition can be dissolved efficiently.
  • the carboxylic acid shows a larger value than thioglycolic acid, and the carboxylic acid is weaker than thioglycolic acid.
  • the reason why the pKa is about 4.0 or more and about 5.2 or less is that if the pKa is less than 4.0, there is a high possibility that the necessary conductor film is dissolved and the quality is adversely affected. It is the power to become. Further, if p Ka exceeds 5.2, the time required for dissolving the peeled unnecessary conductor film becomes long, and the efficiency is lowered.
  • the stripping composition that is effective in the present embodiment includes a carboxylic compound, and therefore, when the resist is dissolved, compared with the case where the thiol compound of the conventional example is included, the conductor film is almost completely removed. Since it is not dissolved, the necessary conductor film such as the pixel electrode is not damaged. As a result, manufacturing yield and reliability can be improved. Moreover, it is possible to improve the working environment where a bad smell is emitted.
  • the stripping composition of this embodiment is configured to include ethylene carbonate and 0.5 to 5% by weight of a carboxylic compound. That is, as compared with the first embodiment, the difference is that ethylene carbonate is contained instead of the amine compound and the aprotic polar compound.
  • the stripping composition of the present embodiment has substantially the same effect as the stripping composition of the first embodiment, and can improve the production yield and reliability.
  • the stripping composition of this embodiment is configured to include an alkoxyacrylamide compound and 0.5 to 5% by weight of a carboxylic compound. That is, the first embodiment described above The difference is that, instead of the amine-based compound and the aprotic polar compound, an alkoxyatyramide compound is included instead of the amine-based compound and the aprotic polar compound.
  • the alkoxyacrylamide compound may include a compound represented by the following general formula 1 and at least one compound selected as a group force that also has a combination force thereof.
  • R 1 O—CH 2 CH 2 —C—NR 2 R 3 (General Formula 1)
  • R 1, R 2, and R 3 are each independently an alkyl group having 1 to 10 carbon atoms.
  • examples of the alkoxyacrylamide compound include N, N-dimethyl-n-butoxyacrylamide, N, N-jetyl-n-butoxyacrylamide, and the like. Moreover, you may use each said alkoxyacrylamide compound individually or in combination of 2 or more.
  • the stripping composition of the present embodiment has substantially the same effect as the stripping composition of the first embodiment, and can improve the manufacturing yield and reliability.
  • the alkoxyacrylamide compound has water solubility, and the stripping composition of this embodiment can be used as an aqueous solution.
  • the water content is less than about 50% by weight, preferably about 10-40% by weight, more preferably about 20-30% by weight. By doing so, the stripping composition of the present embodiment is not flammable, so safety is improved.
  • FIG. 4 is a schematic flowchart for explaining a manufacturing method of a TFT substrate according to the first embodiment of the present invention.
  • a thin film transistor 1050 is formed on a substrate 1010 (step S 1001).
  • FIG. 5 is a schematic diagram for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention.
  • FIG. 5A shows a gate insulating film formed with a gate wiring and a gate electrode.
  • (B) shows an A-A enlarged cross-sectional view.
  • a glass substrate 1010 is prepared, and a gate wiring 1021 and a gate electrode 1022 made of a conductive thin film such as Al (aluminum) are formed by a photolithography method. Subsequently, a gate insulating film 1023 is stacked over the exposed glass substrate 1010, the gate wiring 1021, and the gate electrode 1022.
  • a gate insulating film 1023 is stacked over the exposed glass substrate 1010, the gate wiring 1021, and the gate electrode 1022.
  • a first mask is used to form the gate wiring 1021 and the gate electrode 1022.
  • FIG. 6 is a schematic view for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention.
  • FIG. 6A shows a thin film transistor formed and a protective insulating film laminated.
  • (B) shows an enlarged cross-sectional view of BB.
  • a source wiring 1031, a source electrode 1032, a channel portion 1051, and a drain electrode 1042 are formed over the gate insulating film 1023.
  • the thin film transistor 1050 is formed on the glass substrate 1010 (step S1001).
  • a protective insulating film 1054 is stacked over the glass substrate 1010 and the thin film transistor 1050 (step S 1002).
  • a half-tone exposure technique (and a second half-tone mask (not shown)) is used when forming the source wiring 1031, the source electrode 1032, the channel portion 1051, and the drain electrode 1042.
  • a half-tone exposure technique (and a second half-tone mask (not shown)) is used when forming the source wiring 1031, the source electrode 1032, the channel portion 1051, and the drain electrode 1042.
  • an amorphous silicon thin film 1052, an n-type amorphous silicon thin film 1053, a conductor thin film 1033 such as molybdenum Z aluminum Z molybdenum thin film, and a resist (not shown) are sequentially formed on the gate insulating film 1023. Stack up.
  • a resist is formed using a halftone exposure technique, and a source wiring 1031 is formed by first etching.
  • portions to be the source electrode 1032, the channel portion 1051, and the drain electrode 1042 are formed. Subsequently, the resist is re-formed, and the conductive thin film 1033 and the n-type amorphous silicon thin film 1053 above the channel portion 1051 are etched by the second selective etching, so that the channel portion 1051, the source electrode 1032, and the drain electrode are etched. 1042 is formed. Next, source wiring 1031, thin film transistor A protective insulating film 1054 is stacked on the register 1050 and the gate insulating film 1023 (step S 1002).
  • a resist 1055 is laminated on the protective insulating film 1054 (step S1003). Subsequently, using a halftone exposure technique (and a third halftone mask (not shown)), the laminated resist 1055 is formed into a predetermined shape and etched. Further, the resist 1055 is re-formed, and an undercut portion 1554 is formed at the lower peripheral edge of the re-formed resist (re-formed resist 1553) (step S 1004).
  • FIG. 7 is a schematic diagram for explaining a method for manufacturing a TFT substrate, which is useful for the first embodiment of the present invention.
  • FIG. 7 (a) shows that the resist on the protective insulating film has a predetermined shape. The formed plan view is shown, and (b) shows the CC enlarged cross-sectional view.
  • a resist 1055 is stacked on the protective insulating film 1054 (step S1003).
  • a resist 1055 is formed into a predetermined shape by a halftone exposure technique. That is, in the resist 1055, an opening 1056 for forming the contact hole 1 541 is formed above the drain electrode 1042. Furthermore, a thin halftone exposure resist 1552 is formed on the portion where the pixel electrode 1612 is formed (see FIG. 11), and a thick full exposure resist is formed on the portion where the pixel electrode 1612 is not formed. 1551 is formed.
  • FIG. 8 shows a schematic diagram for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention, and (a) shows an enlarged cross-sectional view in which contact holes are formed. (B) is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and (c) is a detailed view of the D portion.
  • etching (usually dry etching) is performed on the protective insulating film 1054 using a resist 1055 formed by a halftone exposure technique. Further, a contact hole 1541 for connecting the pixel electrode 1612 and the drain electrode 1042 is formed.
  • the resist 1055 is re-formed. That is, Regis G 1055 is gradually removed by oxygen plasma ashing to remove all of the halftone exposure resist 1 552.
  • the all-exposure resist 1551 has a thickness for functioning as a force resist that is gradually removed from above and becomes a re-formed resist 1553 with a reduced thickness.
  • the upper surface of the re-formed resist 1553 maintains a predetermined shape.
  • an undercut portion 1554 is formed in the lower portion of the periphery of the predetermined shape by re-developing with a developer (step S1004).
  • the re-formed resist 1553 has a two-layer structure in which an upper resist layer 155la and a lower resist layer 1551b are used.
  • the upper resist 1551a and the lower resist 1551b have different solubility in the developer.
  • the lower resist 1551b is set to be more easily dissolved than the upper resist 1551a. As a result, the undercut portion 1554 can be more reliably formed, and the yield can be improved.
  • the components are adjusted by blending two or more resist resins.
  • the photoreaction can be used to provide a difference in solubility by providing a difference in the degree of cure.
  • a transparent conductive material is deposited above the glass substrate 1010 to form pixel electrodes 1612 and a conductive film 1611 on the resist that are separated from each other (step) S 1005).
  • FIG. 9 shows a schematic view with a conductor film formed for explaining a manufacturing method of a TFT substrate according to the first embodiment of the present invention, and (a) is an enlarged sectional view. (B) shows a detailed view of part E.
  • a transparent conductive material is vapor-deposited above the glass substrate 1010 to form a conductor film 1061 (pixel electrode 1612 separated from each other and conductor film 1611 on the resist) (step S1005).
  • a conductor film 1611 on the resist is formed on the re-formed resist 1553.
  • the pixel An electrode 1612 is formed on the exposed drain electrode 1042 and the protective insulating film 1054.
  • the pixel electrode 1612 is separated from the conductive film 1611 on the resist by an undercut portion 1554 and is not electrically connected.
  • the pixel electrode 1612 is electrically connected to the drain electrode 1042 through a contact hole 1541.
  • the conductive material usually a group consisting of indium oxide / zinc oxide (IZO), indium oxide / tin oxide 'zinc oxide (ITZO), zinc oxide' tin oxide (ZTO), and combinations thereof.
  • IZO indium oxide / zinc oxide
  • ITZO indium oxide / tin oxide 'zinc oxide
  • ZTO zinc oxide' tin oxide
  • the thing containing is used. In this way, when the stripping composition is heated during the recycling process, the carboxylic compound can easily dissolve the conductor film. Thereby, productivity can be improved.
  • the conductive materials are preferably those described above, but are not limited thereto.
  • the stripping composition in the stripping process, the stripping composition is hardly dissolved by the stripping composition, and the stripping composition is used in the recycling process. It only needs to be dissolved in the product.
  • ITO Indium oxide 'tin oxide
  • amorphous indium oxide' tin oxide a—
  • These conductive films selected from the group consisting of (ITO), titanium oxide 'niobium oxide, tin oxide' dumbbell oxide, tin oxide 'antimony oxide, fluorine-doped tin oxide, and combinations thereof are used in the present invention. It does not dissolve at all in such stripping compositions.
  • a stripping composition is supplied to the glass substrate 1010, and the conductive film 1611 on the resist is peeled from the glass substrate 1010 (step S1006). Subsequently, the conductive film 1611 on the resist is dissolved in the used stripping composition and reused (step S 1007).
  • the conductive film 1611 on the resist is peeled from the glass substrate 1010, and the conductive film 1611 on the resist is dissolved in the used stripping composition, and then the used stripping yarn and the composition are re-used.
  • a method to be used will be described with reference to the drawings.
  • FIG. 10 shows a stripping process for stripping a conductor film on a resist and reuses a used stripping composition in the TFT substrate manufacturing method according to the first embodiment of the present invention.
  • the schematic sectional drawing for demonstrating a recycling process is shown.
  • the glass substrate 1010 on which the conductor film 1061 is laminated has a re-resisting resist 1553 dissolved by a stripping device 1007 as a stripping process.
  • the upper conductive film 1611 is peeled off (step S 1006).
  • the stripping apparatus 1007 stores a stripping liquid 1070 containing a stripping composition, and a storage tank 1071a, 1071b, and a glass substrate 1010 spraying the stripping liquid 1070 in a spray form, spray 1072, pump 1073, suction
  • the pipe 1074, the recovery tank 1075 for recovering the sprayed stripping liquid 1070, and the recovery pipe 1076 are in force.
  • One end of the recovery pipe 1076 is connected to the recovery tank 1075, and the other end is connected to the storage tanks 1071a and 1071b via two branch pipes provided with electromagnetic valves 1761 and 1762, respectively. Yes.
  • the stripping solution 1070 in the collection tank 1075 flows down to the storage tank 1071b.
  • one end of the suction pipe 74 is connected to the pump 73, and the other end is connected to the storage tanks 1071a and 1071b via two branch pipes provided with electromagnetic valves 1711 and 1712, respectively. Therefore, for example, when the electromagnetic valve 1712 is closed and the electromagnetic valve 1711 is opened, the stripping solution 1070 in the storage tank 1071a is sucked into the pump 1073.
  • the stripping apparatus 1007 uses any one of the stripping compositions of the above-described embodiments as the stripping composition. As a result, when the re-formed resist 1553 is dissolved, the pixel electrode 1612 is hardly dissolved, so that the pixel electrode 1612 is not damaged. Thereby, the manufacturing yield and reliability can be improved. Moreover, it is possible to improve the working environment where a bad smell is emitted.
  • a low temperature (usually less than about 50 ° C) stripping solution 1070 is stored in the storage tank 1071a. Further, the electromagnetic valve 1711 is open, the electromagnetic valve 1761 is closed, the electromagnetic valve 1762 is open, and the electromagnetic valve 1712 is closed.
  • the conductor film 1611 on the resist is completely dissolved in the stripping composition.
  • the peeling liquid 1070 force in the storage tank 1071a is sucked into the pump 1073 via the electromagnetic valve 1711 and the suction pipe 1074, and is sprayed from the spray nozzle 1072 onto the glass substrate 1010.
  • the stripping solution 1070 is removed from the spray nozzle 1072. It is injected in a play shape. As a result, the stripping solution 1070 enters the undercut portion 155 4 through a minute gap. As a result, the conductor film 1611 on the resist can be effectively peeled off from the glass substrate 1010 (step S1006).
  • the stripping solution 1070 sprayed on the glass substrate 1010 has a problem in that the necessary pixel electrode 1612 is dissolved because the carboxylic compound of the stripping composition is a weak acid and the temperature is low. To prevent.
  • FIG. 10 shows a state during stripping, and the re-formed resist 1553 and the conductor film 1611 on the resist partially remain.
  • the stripping composition can dissolve the re-formed resist 1553 and separate all the conductor film 1611 on the resist formed on the upper surface of the re-formed resist 1553 from the glass substrate 1010. it can.
  • the stripping composition does not dissolve the conductor film 1061. Therefore, the optimum stripping conditions (spray pressure, spraying time, etc.) can be selected. Generally, when using the stripping composition of this embodiment, the spraying time is about 0.5-5 minutes, preferably about 1-3 minutes. Further, it is preferable that the re-forming resist 1553 is dissolved in a temperature range of about 30 ° C. to less than 60 ° C. The temperature force of the stripping composition is preferably about 40 ° C. to 50 ° C. .
  • the reason for setting the temperature of the stripping composition in the stripping step to about 30 ° C or more and less than 60 ° C is that when the temperature is lower than about 30 ° C, the time for dissolving the re-formed resist 1553 becomes longer. This is because production efficiency decreases. Further, when the temperature is higher than about 60 ° C., the dissolution rate of the carboxylic compound is increased, so that there is a concern that the pixel electrode 1612 is dissolved and the manufacturing yield is lowered.
  • the stripping solution 1070 sprayed onto the glass substrate 1010 dissolves the reshaped resist 1553 of the glass substrate 1010, and includes the conductor film 1611 on the stripped resist, Then, it flows down to the storage tank 171b through the recovery pipe 1076 and the electromagnetic valve 1762. At this time, the conductor film 1611 on the stripped resist is mixed in the stripping solution 1070 as microscopic pieces such as particles and strings. Then, a stripping solution 1070 (referred to as a used stripping composition as appropriate) containing the conductor film 1611 on the resist is stored in the storage tank 10. When flowing into 71b, the conductive film 1611 on the resist settles in the storage tank 1071b, and the dissolution of the conductive film 1611 on the carboxylic compound force resist starts.
  • the temperature of the stripping solution 1070 is increased by providing temperature control means and stirring means (not shown) in the storage tank 1071b. That is, the dissolution of the conductive film 16 11 on the resist is preferably performed in a temperature range of about 60 ° C. or more and less than 100 ° C. C or less is preferable. Generally, when the stripping composition of the above embodiment is used, the time required for dissolving the conductor film 1611 on the resist is about 10 to 30 minutes.
  • the reason for setting the temperature of the stripping composition in the recycling process to be about 60 ° C or higher and lower than 100 ° C is that when the temperature is lower than about 60 ° C, the carboxylic compound is a weak acid. This is because the conductive film 1611 cannot be dissolved. In addition, when the temperature is higher than about 100 ° C, the components in the stripping composition may evaporate, and the composition may change.
  • the conductor film 1611 on the resist can be dissolved in a shorter time.
  • the temperature force of the stripping composition is about 70 ° C or higher, the activity of the acid in the carboxylic compound is improved and the behavior is almost equal to that of the strong acid. As a result, the conductor film 1611 on the resist is easily dissolved.
  • the conductive film 1611 on the resist is completely dissolved in the storage tank 1071b, and the conductive film 1611 on the resist.
  • the stripping solution 1070 that does not contain is stored in the storage tank 1071b.
  • the regenerated stripping solution 1070 is sucked from the suction pipe 1074 by the pump 1073 after the electromagnetic valve 1071 is closed, the electromagnetic valve 1761 is opened, the electromagnetic valve 1762 is closed, and the electromagnetic valve 1762 is opened.
  • the glass substrate 1010 is sprayed from 1072. That is, the conductive film 1611 on the resist is dissolved from the used stripping composition and reused (step S 1007).
  • FIG. 11 is a schematic diagram for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention, and (a) is a plan view in which pixel electrodes are formed. , (B) is F— F An enlarged sectional view is shown.
  • the manufacturing method of the TFT substrate 1001 of the present embodiment uses three masks: a first mask, a second halftone mask, and a third halftone mask. As a result, the manufacturing method of the TFT substrate 1001 of the present embodiment is excellent in productivity because the manufacturing process is reduced.
  • the number of masks can be reduced. As a result, manufacturing steps can be reduced and productivity can be improved.
  • the conductor film 1061 is hardly dissolved when the resist is dissolved as compared with the case where the thiol compound is included. As a result, the manufacturing yield and reliability without damaging the pixel electrode 1612 can be improved. Moreover, it is possible to improve the working environment where a bad smell is emitted. Furthermore, quality and productivity can be improved by reliably and efficiently recycling the used stripping composition used in the stripping process.
  • Example 1 Example 1
  • the stripping composition useful for the first embodiment the stripping solutions a, b, c, d, e shown in Table 1 are prepared.
  • a square glass substrate of about 100 mm ⁇ 100 mm ⁇ 0.7 mm was prepared, washed with a pure water shower, and then a resist was applied and formed with a spin coater.
  • the resist used was a negative resist ZTN2464-27 manufactured by ZEON. Subsequently, after heating in an oven at about 80 ° C. for about 15 minutes, exposure was performed at an exposure intensity of 300 mjZcm 2 .
  • a mask to be used a stripe mask in which about 20 ⁇ m lines and about 90 ⁇ m spaces were arranged in order was used.
  • a thin film having a thickness of about lOOnm was formed by sputtering.
  • the glass substrate obtained above is immersed in the stripping solution for 2 minutes to strip the resist and clean with pure water. After air blowing, it was dried with a dryer. As a result, a glass substrate having a thin film (width of about m) having an IZO force and a space of about 20 m was obtained.
  • the contents of the used stripping solutions a, b, c, d, e were observed with an optical microscope, it was confirmed that there was a stripped coiled soot film with a width of about 20 ⁇ m (see Fig. 12). ).
  • stripping solutions f and g shown in Table 2 were prepared as stripping compositions that are effective in the second embodiment.
  • Example 2 After heating the stripping solutions f and g to about 40 ° C., the same glass substrate as in Example 1 was immersed in the stripping solution for 2 minutes to perform resist stripping, After washing and air blowing, it was dried with a dryer. As a result, a glass substrate having a thin film (width of about 90 / z m) having an IZO force and a space of about 20 ⁇ m was obtained.
  • ITZO In O: SnO: ZnO
  • the composition of IZO is about 60 to 95 wt% In O and about 5 to 40 wt% ZnO.
  • InO is about 70 to 95 wt% and ZnO is about 5 to 30 wt%. Yes.
  • composition of ITZO is about 20-90 wt% In O, about 5-40 wt% SnO, Zn
  • O is preferably about 5 to 40 wt%. More preferably, InO is about 40-80 wt%, SnO
  • the composition of ZTO is preferably about 50 to 90 wt% for ZnO and about 10 to 50 wt% for SnO.
  • ZnO is about 55-80 wt% and SnO is about 20-45 wt%.
  • the present invention is also effective as a method for recycling the stripping composition.
  • the recycling method of the stripping composition that works in this embodiment is almost the same as the method for manufacturing the TFT substrate of the first embodiment described above.
  • the thin film transistor 1050 is formed over the substrate 1010 (step S1001).
  • a protective insulating film 1054 is stacked on the glass substrate 1010 and the thin film transistor 1050 (step S1002).
  • a resist 1055 is stacked on the protective insulating film 1054 (step S 1003).
  • the laminated resist 1055 is formed into a predetermined shape and etched, and further, the resist 1055 is re-formed.
  • Reformed resist Reformed resist 1553
  • An undercut portion 1554 is formed at the lower peripheral edge (step S1004).
  • a transparent conductive material is deposited on the glass substrate 1010 to form pixel electrodes 1612 and a conductive film 1611 on resist that are separated from each other (step S1005).
  • a stripping composition is supplied to the glass substrate 10 10 to peel off the conductive film 1611 on the resist also in the glass substrate 1010 force (step S1006), and then the used stripping composition is applied to the conductor on the resist.
  • the membrane 1611 is dissolved and reused (step S1007).
  • FIG. 13 is a schematic flowchart for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention.
  • a thin film transistor 2050 is formed on a substrate 2010 (step S200 j).
  • FIG. 14 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention.
  • FIG. 14 (a) shows a gate insulating film formed with a gate wiring and a gate electrode.
  • a glass substrate 2010 is prepared, and a gate wiring 2021 and a gate electrode 2022 made of a conductive thin film such as Al (aluminum) are formed by a photolithography method, and then an exposed glass substrate 2010 is formed.
  • a gate insulating film 2023 is stacked over the gate wiring 2021 and the gate electrode 2022.
  • a first mask is used to form the gate wiring 2021 and the gate electrode 2022.
  • FIG. 15 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention.
  • FIG. 15A shows a thin film transistor formed by laminating a protective insulating film.
  • (B) shows an enlarged cross-sectional view.
  • the source substrate 2031, the source electrode 2032, the channel portion 2051, and the drain electrode 2042 are formed.
  • a thin film transistor 2050 is formed thereon (step S2001), and then a protective insulating film 2054 is stacked on the glass substrate 2010 and the thin film transistor 2050 (step S). 2002).
  • a halftone exposure technique (second halftone mask (not shown)) is used. That is, first, an amorphous silicon thin film 2052, an n-type amorphous silicon thin film 2053, a conductive thin film 2033 such as molybdenum Z aluminum Z molybdenum thin film, and a resist (not shown) are sequentially stacked on the gate insulating film 2023. .
  • a resist is formed by using a halftone exposure technique, and the source wiring 2031 is formed by the first etching, and the source electrode 2032, the channel portion 2051, and the drain electrode 2042 are formed. Forming part. Subsequently, the resist is reformed, and the conductive thin film 2033 and the n-type amorphous silicon thin film 2053 above the channel portion 2051 are etched by the second selective etching, so that the channel portion 2051, the source electrode 2032, and the drain are etched. An electrode 2042 is formed. Next, a protective insulating film 2054 is stacked over the source wiring 2031, the thin film transistor 2050, and the gate insulating film 2023 (step S2002).
  • a resist 2055 is laminated on the protective insulating film 2054 (step S2003), and then halftone exposure technology (third halftone mask (not shown)) is formed. ) Is used to form a laminated resist 2055 into a predetermined shape and then etched, and further, the resist 2055 is re-formed, and the undercut portion 2554 is formed at the bottom of the periphery of the re-formed resist (re-formed resist 2553). (Step S2004).
  • FIG. 16 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention, and (a) shows that the resist on the protective insulating film has a predetermined shape. The formed plan view is shown, (b) shows an enlarged cross-sectional view.
  • a resist 2055 is stacked on the protective insulating film 2054 (step S2003). Subsequently, a resist 2055 is formed into a predetermined shape by a halftone exposure technique. That is, the resist 2055 is formed above the drain electrode 2042, an opening 2056 for forming the contact hole 2541 is formed, and the pixel electrode 2612 is formed further. A thin halftone exposure resist 2552 is formed in the portion (see FIG. 23), and a thick full exposure resist 2551 is formed in the portion where the pixel electrode 2612 is not formed.
  • FIG. 17 is a schematic view for explaining a manufacturing method of a TFT substrate according to the second embodiment of the present invention, and (a) shows an enlarged sectional view in which contact holes are formed. (B) is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and (c) is a detailed view of the ⁇ portion.
  • the protective insulating film 2054 is etched (usually dry etching) using a resist 2055 formed by a halftone exposure technique, and the pixel electrode 2612 and the drain electrode 2042 are connected. A contact hole 2541 for connection is formed.
  • the resist 2055 is re-formed. That is, the resist 2055 is gradually removed by oxygen plasma ashing, and all the halftone exposure resist 2552 is removed. At this time, the total exposure resist 2551 has a thickness for functioning as a force resist that is gradually removed from the upward force and becomes a re-formed resist 2553 with a reduced thickness. Further, the upper surface of the re-formed resist 2553 maintains a predetermined shape. Subsequently, by re-developing with a developer, an undercut portion 2554 is formed at the lower portion of the periphery of the predetermined shape (step S2004).
  • the re-formed resist 2553 may have a two-layer structure in which an upper layer resist 2551a and a lower layer resist 2551b also have a force.
  • the upper resist 2551a and the lower resist 2551b have different solubility in the developer, and are set so that the lower resist 2551b has higher solubility in the developer than the upper resist 2551a.
  • the undercut portion 2554 can be more reliably formed, and the yield can be improved.
  • the ingredients can be adjusted by blending two or more resist resins, or a photoreaction can be used.
  • a difference in solubility by providing a difference in the degree of curing.
  • a transparent conductive material is vapor-deposited above the glass substrate 2010. Then, the pixel electrode 2612 and the conductive film 2611 on the resist that are separated from each other are formed (step S2005).
  • FIG. 18 shows a schematic diagram with a conductor film formed for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention, and (a) is an enlarged sectional view. (B) is a detailed view of the part.
  • a transparent conductive material is deposited above the glass substrate 2010 to form a conductive film 2061 (pixel electrodes 2612 separated from each other and a conductive film 2611 on the resist) (step S2005). That is, as a transparent conductive material is deposited above the glass substrate 2010, a conductor film 2611 on the resist is formed on the re-formed resist 2553. A pixel electrode 2612 is formed on the exposed drain electrode 2042 and protective insulating film 2054. The pixel electrode 2612 is separated from the conductor film 2611 on the resist by an undercut portion 2554 and is not electrically connected. The pixel electrode 2612 is electrically connected to the drain electrode 2042 through a contact hole 2541.
  • the conductive material usually indium oxide / zinc oxide (IZO), indium oxide / tin oxide (ITO), amorphous indium oxide 'tin oxide (a-ITO), titanium oxide' niobium oxide, tin oxide “Zinc oxide, tin oxide”, antimony oxide, fluorine-doped tin oxide, and those containing the group consisting of combinations thereof are used. Since these conductor films are not dissolved at all in the stripping composition, it is possible to eliminate the concern that the required yield of the pixel electrode 2612 is dissolved in a small amount, which lowers the manufacturing yield. Furthermore, since the specific gravity of the conductive film is about 5 times or more than the specific gravity of the stripping composition, sedimentation-type separation and centrifugal separation can be performed easily and accurately.
  • IZO indium oxide / zinc oxide
  • ITO indium oxide / tin oxide
  • a-ITO amorphous indium oxide 'tin oxide
  • titanium oxide' niobium oxide titanium
  • a stripping composition is supplied to the glass substrate 2010, and the conductive film 2611 on the resist is peeled off from the glass substrate 2010 (step S2006), and then used.
  • the conductive film 2611 on the resist is separated from the stripping composition and reused (step S 2007).
  • a method of peeling the conductive film 2611 on the resist from the glass substrate 2010, and separating the conductive film 2611 on the peeled resist from the used stripping composition, the used stripping composition A method of reusing objects will be described with reference to the drawings.
  • FIG. 19 shows a stripping process for stripping a conductive film on a resist and reuses a used stripping composition in a TFT substrate manufacturing method according to the second embodiment of the present invention.
  • the schematic sectional drawing for demonstrating a recycling process is shown.
  • the glass substrate 2010 on which the conductor film 2061 is laminated is subjected to a stripping process in which the re-forming resist 2553 is dissolved by the stripping apparatus 2007, and the conductor film 2611 on the resist is peeled off (step S2006).
  • the stripping device 2007 has a force in combination with a storage tank 2071 for storing a stripping solution 2070 containing a stripping composition, a spray nozzle 2072 for spraying the stripping solution 2070 onto a glass substrate 2010, a pump 2073 and a suction pipe 2074. ! /
  • the stripping solution 2070 is sprayed from the spray nozzle 2072 in a spray form, and in this case, the stripping solution 2070 enters the undercut portion 2 554 through a minute gap.
  • the upper conductive film 2611 can be effectively peeled off the glass substrate.
  • FIG. 19 shows the state during stripping, and the re-formed resist 2553 and the conductive film 2611 on the resist partially remain.
  • the stripping composition contained in the stripping solution 2070 is made of a photoresist stripping agent for stripping the re-formed resist 2553.
  • the photoresist stripping agent contains an amine compound and an aprotic polar compound.
  • amine compounds include monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine and the like (FIG. 20). , 21). Each of the above amine compounds may be used alone or in combination of two or more.
  • aprotic polar compounds examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl Examples thereof include sulfoxide (see FIG. 22). Further, the aprotic polar compound may be used alone or in combination of two or more.
  • the resist stripping agent about 20 to 80 weight amine compound comprises 0/0, and an aprotic polar I ⁇ product may comprise from about 20 to 80 wt%. In this way, only the re-formed resist 2553 is dissolved, and the necessary pixel electrode 2612 is not damaged, so that the yield and reliability can be improved.
  • the resist stripping agent the reason to include about 20 to 80 weight 0/0 amine-based compound, the content of the amine compound is less than about 20 wt%, within a short period of time to re-form the resist 2553
  • the amine compound content exceeds about 80% by weight, the conductor film forming the pixel electrode 2612 is formed while the re-forming resist 2553 is dissolved. This is because the pixel electrode 2612 is damaged due to rapid corrosion.
  • the amine compound exceeds about 80% by weight, the volatilization amount of the stripping composition increases, and there is a concern that the component ratio of the stripping composition may change. Therefore, in the stripping composition of the present invention, the content of the amine compound is preferably about 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the content of the aprotic polar compound exceeds about 80% by weight, the pixel electrode 2612 may be corroded when the re-formed resist 2553 is stripped. Accordingly, in the stripping composition of the present invention, the content of the aprotic polar compound is preferably about 20 to 80% by weight, more preferably about 30 to 70% by weight.
  • the stripping yarn is not limited to the above-mentioned yarn and includes, for example, an alkoxyacrylamide compound represented by the following general formula 1 or ethylene carbonate as a resist stripping agent. Good.
  • R 1 O—CH 2 CH 2 —C—NR 2 R 3 (—general formula 1)
  • R 1, R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms.
  • the alkoxy atta amide compound has water solubility, is not flammable, and can provide a safe stripping composition.
  • the stripping composition can dissolve the re-formed resist 2553 and separate all of the conductor film 2611 on the resist formed on the upper surface of the re-formed resist 2553 from the glass substrate 2010. it can.
  • the stripping composition does not dissolve the conductor film 2061, it is possible to eliminate the worry when the pixel electrode 2612 is dissolved. That is, since the pixel electrode 2612 is not damaged by the stripping composition, an optimum stripping condition can be selected.
  • the spray duration is about 0.5-5 minutes, preferably about 1-3 minutes.
  • the etching of the re-formed resist 2553 and the dissolution of the conductive film are preferably performed in a temperature range of about 30 ° C. to 60 ° C. Further, about 40 to 50 ° C. is preferable.
  • the conductor film 2611 on the resist separated from the glass substrate 2010 flows into the storage tank 2071 together with the stripping solution 2070.
  • the conductor film 2611 on the peeled resist is mixed in the stripping solution 2070 as fine pieces such as particles and string-like bodies.
  • the stripping solution 2070 containing the conductive film 2611 on the resist (referred to as a used stripping composition as appropriate) flows into the storage tank 2071, the conductive film 2611 on the resist is stored in the storage tank 2071. Settles.
  • the fine pieces have a higher density. That is, the specific gravity of the fine pieces present in the used stripping composition is much larger than the specific gravity of the stripping composition, so that it can easily settle and separate in the storage tank 2071. It is possible to easily and efficiently reuse the stripping solution 2070 that does not contain any of the above.
  • the guide plate 2711 that guides the used stripping composition to one end of the storage tank 2071 and the minute piece (the conductive material on the resist) on the other end where the suction pipe 74 is located. By providing a partition plate 2712 that prevents the body film 2611) from moving, the suction pipe 2074 more reliably prevents the conductor film 2611 on the resist from being sucked.
  • the method for separating the conductive film 2611 on the resist contained in the used stripping composition is not limited to the above method.
  • the conductive film 2611 is allowed to stand in a dedicated precipitation tank for about 10 to 30 minutes and then decane. It is good also as a method of collecting a supernatant liquid by a tasting.
  • the conductive film 2611 on the resist is completely settled in the storage tank 2071, and the stripping solution 2070 that does not include the conductive film 2611 on the resist is removed from the suction pipe 2074 by the pump 2073. It is sucked and sprayed again on the glass substrate 2010 from the spray nozzle 2072. That is, the conductive film 2611 on the resist is separated from the used stripping composition and reused (step S2007).
  • FIG. 23 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention.
  • FIG. 23 (a) is a plan view in which a pixel electrode is formed.
  • (B) shows an enlarged cross-sectional view!
  • the manufacturing method of the TFT substrate 2001 of this embodiment uses three masks: a first mask, a second half-tone mask, and a third half-tone mask, which reduces the manufacturing process and increases the productivity. Is excellent.
  • stripping composition about 30 wt% of an amino compound and about 70 wt% of a non-product
  • a stripping solution I consisting of an oral polar solvent and a stripping solution consisting of about 70 wt% amino compound and about 30 wt% aprotic polar solvent were prepared (see Table 4).
  • a glass substrate a square glass substrate of about 100 mm X 100 mm X O. 7 mm was prepared, washed with a pure water shower, and then a resist was applied and formed by a spin coater.
  • the resist used was a negative resist made by Nippon Zeon: ZTN2464-27. Subsequently, after heating in an oven at about 80 ° C. for about 15 minutes, exposure was performed at an exposure intensity of 300 mjZcm 2 .
  • a mask to be used a stripe mask in which about 20 ⁇ m lines and about 90 ⁇ m spaces were arranged in order was used.
  • a thin film having a thickness of about lOOnm was formed by sputtering.
  • the glass substrate obtained above was immersed in the stripping solution for 2 minutes to perform resist stripping, washed with pure water, and air blown. Thereafter, the glass substrate was dried in a drier to obtain a glass substrate having a thin film (width of about m) having an IZO force and a space of about 20 m.
  • the above-mentioned used stripping solution I and used stripping solution II were separated into individual liquids using a centrifuge.
  • the resist was peeled off from the new glass substrate using the regenerated stripping solution I and the separated stripping solution II, it was confirmed that the resist could be removed normally. Further, no coiled IZO or powdered IZO was observed on the peeled glass substrate.
  • the stripping operation can be performed by using ethylene carbonate instead of the stripping solution I in the same manner.
  • this used stripping solution was allowed to stand for about 10 minutes, it was confirmed that a coiled IZO thin film settled and settled to the bottom. Furthermore, no coiled IZO thin film was observed in the supernatant.
  • IZO is an amorphous conductive film having an indium oxide / acid / zinc strength, and an indium oxide power having about 10% added zinc oxide.
  • the amount of zinc oxide added is appropriately selected, but good results are obtained when about 5 to 40 wt% of zinc oxide is added.
  • ITO indium oxide 'tin oxide
  • a-ITO Tin oxide
  • tin oxide zinc oxide oxide
  • the conductor film in the stripper I and II is allowed to settle, and the resist can be stripped without any problem even if the stripper I or II is reused. In addition, no conductive film particles were observed on the substrate.
  • indium oxide / tin oxide is indium oxide containing about 5 to 15 wt% of tin oxide.
  • Amorphous indium oxide 'Tin oxide is an amorphous ITO film.
  • Acid-titanium acid-niobium is a titanium oxide to which about 0.1 to 5% of niobium oxide is added.
  • Tin oxide 'Zinc oxide is a complex oxide composed of tin oxide: about 60 to 95 wt%, and zinc oxide: about 5 to 40 wt%.
  • Tin oxide 'antimony oxide is tin oxide containing about 0.5 to 5 wt% of antimony oxide.
  • Fluorine-doped tin oxide is tin oxide added with about 0.01 to 1% of fluorine. These tin oxide-based conductive films are difficult to pattern by etching with a weak acid such as oxalic acid, and the patterning force due to lift-off is effective as in this example.
  • the liquid crystal panel is completed after the subsequent alignment film application, alignment treatment, liquid crystal injection, and sealing process.
  • the deposits may diffuse into the alignment film or into the liquid crystal in the subsequent process. This causes display defects and display defects.
  • the present invention is also effective as a method for recycling the stripping composition.
  • the recycling method of the stripping composition that works in this embodiment is almost the same method as the TFT substrate manufacturing method of the second embodiment described above.
  • a thin film transistor 2050 is formed on the substrate 2010 (step S2001). Then, the protective insulating film 2054 is laminated on the glass substrate 2010 and the thin film transistor 2050 (step S2002). Next, a resist 2055 is stacked on the protective insulating film 2054 (step S2003), and then the stacked resist 2055 is formed using a halftone exposure technique (third halftone mask (not shown)). A predetermined shape is formed and etching is performed. Further, a resist 2055 is formed again, and an undercut portion 2554 is formed at the lower peripheral portion of the re-formed resist (reformed resist 2553) (step S2004).
  • a transparent conductive material is deposited on the glass substrate 2010 to form pixel electrodes 2612 and a conductive film 2611 on the resist, which are separated from each other (step S 2005). Further, the stripping composition is supplied to the glass substrate 2010, and the conductive film 2611 on the resist is peeled off from the glass substrate 2010 (Step S 2006). Subsequently, the conductive material on the resist is removed from the used stripping composition. The body membrane 2611 is separated and reused (step S 2007).
  • the used stripping composition force is almost completely separated from the conductive film 2611 on the resist peeled off from the glass substrate 2010.
  • the used stripping composition can be reused without reducing the yield.
  • stripping composition As described above, the stripping composition, the TFT substrate manufacturing method, and the stripping composition recycling method of the present invention have been described with reference to preferred embodiments.
  • the stripping composition according to the present invention and the TFT substrate manufacturing It goes without saying that the method and the recycling method of the stripping composition are not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
  • a solvent that suppresses foaming when supplying the stripping composition in a range that does not adversely affect the performance of the stripping composition and a viscosity reducing agent. You can add diluents.
  • the force separation method adopting the sedimentation-type separation method in which the conductive film 2611 on the peeled resist is settled and separated in the storage tank 2071 is
  • the present invention is not limited to this.
  • a centrifugal separation method using a centrifugal separator or a filter-type separation method using a filter may be employed.
  • any one of the sedimentation separation method, the centrifugal separation method, and the filtration separation method is not limited to the method of adopting one.
  • a combination of the above separation methods may be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are a stripping composition capable of improving quality and productivity and improving a working environment, a TFT substrate manufacturing method, and a stripping composition recycling method. The TFT substrate manufacturing method comprises the step of forming a thin film transistor (1050), a protective insulating film (1054) and a resist (1055) over a glass substrate (1010) thereby to form an undercut portion (1554), the step of forming a conductor film (1611) and a pixel electrode (1612) separated from each other, the stripping step of feeding a stripping composition and melting a reformed resist (1553) thereby to strip a conductor film (1611), and the recycle step of melting the conductor film (1611) over the resist into the used stripping composition containing the conductor film (1611), thereby to reuse the used stripping composition.

Description

明 細 書  Specification
ストリッピング組成物、 TFT基板の製造方法及びストリッピング組成物のリ サイクル方法  Stripping composition, manufacturing method of TFT substrate, and recycling method of stripping composition
技術分野  Technical field
[0001] 本発明は、ストリッピング組成物、 TFT基板の製造方法及びストリッピング組成物のリ サイクル方法に関する。  The present invention relates to a stripping composition, a method for producing a TFT substrate, and a recycling method for the stripping composition.
背景技術  Background art
[0002] LCD (液晶表示装置)、プラズマ表示パネル装置 (PDP)や有機 EL表示装置は、表 示性能、省エネルギー等の理由力も広く利用されている。特に、携帯電話や PDA( 個人向け携帯情報端末)、ノ ソコンゃラップトップパソコン、テレビ等の表示装置とし て、ほぼ主流を占めるに至っている。これらの表示装置には、一般に、 TFT基板が用 いられている。  [0002] LCD (liquid crystal display device), plasma display panel device (PDP) and organic EL display devices are widely used for reasons such as display performance and energy saving. In particular, display devices such as mobile phones, personal digital assistants (PDAs), laptop computers, laptop computers, and televisions have become the mainstream. In these display devices, a TFT substrate is generally used.
[0003] 例えば、液晶表示装置は、 TFT基板と対向基板との間に液晶などの表示材料を充 填している。また、液晶表示装置は、この表示材料に対して画素ごとに選択的に電圧 を印加する。ここで、 TFT基板とは、半導体薄膜 (半導体膜とも呼ばれる)など力もな る TFT (薄膜トランジスタ)が配置されている基板をいう。一般に、 TFT基板は、アレイ 状に TFTが配置されているので、「TFTアレイ基板」とも呼ばれる。  [0003] For example, in a liquid crystal display device, a display material such as liquid crystal is filled between a TFT substrate and a counter substrate. The liquid crystal display device selectively applies a voltage to the display material for each pixel. Here, the TFT substrate refers to a substrate on which a thin TFT (thin film transistor) having a force such as a semiconductor thin film (also referred to as a semiconductor film) is disposed. In general, a TFT substrate is also called a “TFT array substrate” because TFTs are arranged in an array.
[0004] なお、液晶表示装置などに用いられる TFT基板は、 TFTと液晶表示装置の画面の 1画素との組 (これを 1ユニットと呼ぶ)が、ガラス基板上に縦横に配設されている。 TF T基板は、ガラス基板上に、ゲート配線が例えば縦方向に等間隔で配置されており、 ソース配線又はドレイン配線が横方向に等間隔で配置されている。また、ゲート電極 ,ソース電極及びドレイン電極力 各画素を構成する上記ユニット中にそれぞれ設け られている。  [0004] A TFT substrate used in a liquid crystal display device or the like has a set of TFT and one pixel of a screen of the liquid crystal display device (referred to as one unit) arranged vertically and horizontally on a glass substrate. . In the TFT substrate, gate wirings are arranged at regular intervals in the vertical direction on a glass substrate, and source wirings or drain wirings are arranged at regular intervals in the horizontal direction. The gate electrode, the source electrode, and the drain electrode force are provided in each of the units constituting each pixel.
[0005] ところで、この TFT基板の製造方法としては、通常、複数のマスクを使用する。この ことから、その製造プロセスは工程数が多くなりがちである。このように工程数が多くな ると、製造歩留りが低下する恐れがある。また、工程数が多いと工程が複雑となりがち であり、製造費用が増大する恐れもある。 このため、最近では、 TFT基板を製造するのに必要な工程数を大幅に減少させて 、製造費用を低減させるための様々な技術開発が行われている。 By the way, as a manufacturing method of this TFT substrate, a plurality of masks are usually used. For this reason, the manufacturing process tends to have many steps. If the number of processes increases in this way, the manufacturing yield may decrease. In addition, if the number of processes is large, the process tends to be complicated, and the manufacturing cost may increase. For this reason, recently, various technological developments have been carried out to significantly reduce the number of processes necessary for manufacturing a TFT substrate and to reduce manufacturing costs.
[0006] (従来例) [0006] (Conventional example)
たとえば、特許文献 1には、薄膜トランジスタ基板の製造方法及びストリッピング組 成物の技術が記載されている。この技術によれば、ストリッピング組成物中に存在す る導電膜を、貯蔵タンク内に貯蔵中に加熱溶解させることにより、ストリッピング組成 物を再使用している。具体的には、上記加熱溶解を行うために、チォ安息香酸、チォ ール酸等のチオール系化合物をストリッピング組成物中に混在させ、導電膜を溶解 している。また、上記チオール系化合物を含むストリッピング組成物は、レジストととも に導電膜をも溶解させる。このため、不要な導電膜を基板カゝら剥離させるのに必要な 第 1時間と、必要な画素電極が完全に溶解してしまう第 2時間との間には、第 1時間 <第 2時間の関係が必要である。  For example, Patent Document 1 describes a manufacturing method of a thin film transistor substrate and a stripping composition technique. According to this technique, the stripping composition is reused by heating and dissolving the conductive film present in the stripping composition in the storage tank during storage. Specifically, in order to perform the above-described heat dissolution, a thiol compound such as thiobenzoic acid or thiolic acid is mixed in the stripping composition to dissolve the conductive film. Further, the stripping composition containing the thiol compound dissolves the conductive film together with the resist. For this reason, the first time <the second time between the first time required to peel off the unnecessary conductive film from the substrate and the second time when the required pixel electrode is completely dissolved. Is necessary.
特許文献 1:特開 2006— 74039号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-74039
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上記特許文献 1に記載された技術は、ストリッピング組成物力 導電 膜用ストリツビング添加剤を含んでおり、たとえば、酸化インジウム'酸ィ匕亜鉛 (IZO) など力もなる必要な導電膜を溶解する。このため、不要な導電膜をストリツビングする 際、画素電極などの必要な導電膜をも微量ながら溶解させてしまう。このことから、製 造歩留りを低下させる要素を含んでいるといった問題があった。 [0007] However, the technique described in Patent Document 1 includes a stripping composition force, a stripping additive for a conductive film, and, for example, indium oxide and zinc oxide (IZO) must also be used. The conductive film is dissolved. For this reason, when stripping an unnecessary conductive film, the necessary conductive film such as a pixel electrode is dissolved in a small amount. For this reason, there was a problem of including an element that reduces the manufacturing yield.
また、導電膜が、たとえば、結晶化した酸化インジウム '酸化スズ (ITO)など力もな る場合には、ストリッピング組成物(弱酸)への溶解速度が遅ぐ実質的に実際の製造 ラインへの適用は困難なものであるといった問題があった。また、導電膜が、完全に 溶解したことを保証することが困難であり、製造歩留りを低下させる要素を含んでいる といった問題があった。  In addition, when the conductive film also has strength such as crystallized indium oxide 'tin oxide (ITO), the rate of dissolution in the stripping composition (weak acid) is slow, and the actual production line is practically slow. There was a problem that application was difficult. In addition, it was difficult to ensure that the conductive film was completely dissolved, and there was a problem that it contained elements that lowered the manufacturing yield.
また、上記特許文献 1に記載された技術は、チオール系化合物が、第 1時間中に 導電膜をも溶解し、画素電極へダメージを与える。このことから、製造歩留り及び信頼 性を向上させる観点力 好ましくないといった問題があった。 さらに、チォグリコール酸などの硫黄を含む化合物は、悪臭を放つことが多ぐ作業 環境を劣悪なものにする。そのため、周辺環境への負荷も大きく工業的に使用する には、非常に大きなリスクを伴うものであった。 In the technique described in Patent Document 1, the thiol compound also dissolves the conductive film during the first time and damages the pixel electrode. Therefore, there is a problem that the viewpoint power for improving the manufacturing yield and reliability is not preferable. In addition, sulfur-containing compounds such as thioglycolic acid degrade the working environment, which often produces malodors. For this reason, the load on the surrounding environment is large, and it is very risky to use industrially.
さらに、ストリッピング組成物をリサイクルすることにより、製造原価のコストダウンを図 れる。また、ストリッピング工程における作業効率を改善し、生産性を向上させることが 要望されている。  Furthermore, the cost of manufacturing can be reduced by recycling the stripping composition. There is also a need to improve work efficiency and improve productivity in the stripping process.
[0008] 本発明は、係る課題に鑑みなされたものであり、品質及び生産性を向上させること ができ、また、作業環境を改善することのできる、ストリッピング組成物、 TFT基板の 製造方法及びストリッピング組成物のリサイクル方法の提供を目的とする。  [0008] The present invention has been made in view of such problems, and can improve the quality and productivity, and can improve the working environment, a stripping composition, a method for manufacturing a TFT substrate, and It aims at providing the recycling method of a stripping composition.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するために、本発明のストリッピング組成物は、半導体装置の製造 に用いられ、レジストを溶解して、前記レジスト上に積層された導電体膜を剥離させる ストリッピング組成物である。また、前記ストリッピング組成物は、 20〜79. 5重量%の アミン系化合物と、 20-79. 5重量%の非プロトン性極性化合物と、 0. 5〜5重量% のカルボン系化合物とを含んで 、る。  [0009] In order to achieve the above object, the stripping composition of the present invention is used in the manufacture of a semiconductor device, and dissolves the resist to strip the conductor film laminated on the resist. It is a thing. The stripping composition comprises 20 to 79.5% by weight of an amine compound, 20 to 79.5% by weight of an aprotic polar compound, and 0.5 to 5% by weight of a carboxylic compound. Including.
このように、カルボン系化合物を含むことにより、チオール系化合物を含む場合と比 ベて、レジストを溶解する際、ほとんど導電体膜が溶解されない。これによつて、画素 電極などの必要な導電体膜へダメージを与えることもなぐ製造歩留り及び信頼性を 向上させることができる。また、悪臭を放っといつたこともなぐ作業環境を改善できる  Thus, by including a carboxylic compound, the conductor film is hardly dissolved when the resist is dissolved as compared with the case where a thiol compound is included. As a result, it is possible to improve the manufacturing yield and reliability without damaging necessary conductor films such as pixel electrodes. In addition, it can improve the working environment that never has a bad smell.
[0010] また、前記アミン系化合物力 モノエタノールァミン、モノイソプロパノールァミン、メ チルメタノールァミン、ェチルエタノールァミン、ジメタノールァミン、アミノエトキシエタ ノールァミン、ジエタノールァミン、及び、これらの組合せ力もなる群力も選択された少 なくとも一つの化合物を含むとよい。 [0010] Further, the amine compound power monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and these It is good to include at least one selected compound as well as the group power.
[0011] また、前記非プロトン性極性化合物力 N—メチルー 2—ピロリドン、 N, N—ジメチ ルァセトアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルイミダゾール、ジメチル スルホキシド、及び、これらの組合せ力 なる群力 選択された少なくとも一つの化合 物を含むとよい。 [0012] また、上記目的を達成するために、本発明のストリッピング組成物は、半導体装置 の製造に用いられ、レジストを溶解して、前記レジスト上に積層された導電体膜を剥 離させるストリッピング組成物である。また、前記ストリッピング組成物は、エチレン力 ーボネートと、 0. 5〜5重量%のカルボン系化合物とを含んでいる。 [0011] In addition, the aprotic polar compound power N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl sulfoxide, and the combination power thereof Group power Contains at least one selected compound. [0012] In order to achieve the above object, the stripping composition of the present invention is used in the manufacture of a semiconductor device, dissolves the resist, and peels off the conductor film laminated on the resist. Stripping composition. In addition, the stripping composition contains an ethylene strength carbonate and 0.5 to 5% by weight of a carboxylic compound.
このように、アミン系化合物と非プロトン性極性ィ匕合物の代わりにエチレンカーボネ ートを用いてもよい。このようにすると、製造歩留り及び信頼性を向上させるとともに、 作業環境を改善することができる。  Thus, ethylene carbonate may be used in place of the amine compound and the aprotic polar compound. In this way, the manufacturing yield and reliability can be improved, and the working environment can be improved.
[0013] また、上記目的を達成するために、本発明のストリッピング組成物は、半導体装置 の製造に用いられ、レジストを溶解して、前記レジスト上に積層された導電体膜を剥 離させるストリッピング組成物である。また、前記ストリッピング組成物は、アルコキシァ クリルアミド化合物と、 0. 5〜5重量%のカルボン系化合物とを含んでいる。  [0013] In order to achieve the above object, the stripping composition of the present invention is used for manufacturing a semiconductor device, dissolves a resist, and peels off a conductor film laminated on the resist. Stripping composition. The stripping composition contains an alkoxy acrylamide compound and 0.5 to 5% by weight of a carboxylic compound.
このように、アミン系化合物と非プロトン性極性ィ匕合物の代わりにアルコキシアクリル アミド化合物を用いてもよい。このようにすると、製造歩留り及び信頼性を向上させる とともに、作業環境を改善することができる。  Thus, an alkoxyacrylamide compound may be used in place of the amine compound and the aprotic polar compound. In this way, the manufacturing yield and reliability can be improved, and the working environment can be improved.
[0014] また、前記アルコキシアクリルアミド化合物が、下記一般式 1で表される化合物、及 びこれらの組合せ力もなる群力も選択された少なくとも一つの化合物を含むとよい。  [0014] In addition, the alkoxyacrylamide compound may include at least one compound selected from the compound represented by the following general formula 1 and a group force that combines these compounds.
[化 1] o  [Chemical 1] o
II  II
R 1 - O - CH2CH2 - C - NR2R3 (—般式 1) ここで、 Rl、 R2、 R3は、それぞれ独立に、炭素数 1から 10のアルキル基とする。  R 1 —O—CH 2 CH 2 —C—NR 2 R 3 (—general formula 1) Here, R 1, R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms.
[0015] また、前記カルボン系化合物力 下記一般式 2, 3で表されるカルボン酸、及び、こ れらの組合せ力もなる群力も選択された少なくとも一つの化合物を含むとよい。 [0015] In addition, the carboxylic compound power may include at least one compound selected from the carboxylic acids represented by the following general formulas 2 and 3 and the group power that can be combined.
R-COOH (一般式 2)  R-COOH (General formula 2)
ここで、 Rは炭素数 1から 10のアルキル基、ァリール基とする。  Here, R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
HOCO-R-COOH (一般式 3)  HOCO-R-COOH (general formula 3)
ここで、 Rは炭素数 1から 10のアルキル基、ァリール基とする。  Here, R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
[0016] また、前記カルボン系化合物の pKa (酸解離定数)を、 4. 0以上 5. 2以下とするとよ い。 [0016] The pKa (acid dissociation constant) of the carboxylic compound is 4.0 or more and 5.2 or less. Yes.
このようにすると、必要な導電体膜へダメージを与えることもなぐかつ、使用済みス トリッピング組成物を効率よく溶解させることができる。  In this way, the necessary conductor film is not damaged, and the used stripping composition can be efficiently dissolved.
[0017] 上記目的を達成するために、本発明の TFT基板の製造方法は、基板上に薄膜トラ ンジスタを形成する工程と、前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層 する工程と、前記保護用絶縁膜上にレジストを積層する工程と、前記レジストを所定 の形状に形成し、該レジストの周縁下部にアンダーカット部を形成する工程と、前記 保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部によつ て互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、前記基 板上に、上記請求項 1〜8の 、ずれか一項に記載されたストリッピング組成物を供給 し、前記レジスト上の導電体膜を前記基板力 剥離させるストリッピング工程とを有す る方法としてある。 [0017] In order to achieve the above object, a manufacturing method of a TFT substrate of the present invention includes a step of forming a thin film transistor on a substrate, a step of laminating a protective insulating film on the substrate and the thin film transistor, A step of laminating a resist on the protective insulating film; a step of forming the resist in a predetermined shape; and forming an undercut portion at a lower peripheral edge of the resist; and a conductive material on the protective insulating film and the resist And a step of forming a pixel electrode and a conductive film on the resist separated from each other by the undercut portion, and on the substrate, according to any one of claims 1 to 8. A stripping step of supplying the described stripping composition and peeling the conductor film on the resist by the substrate force.
このようにすると、マスク数を削減することができる。これによつて、製造工程が削減 され、生産性を向上させることができる。また、カルボン系化合物を含むことにより、チ オール系化合物を含む場合と比べて、レジストを溶解する際、ほとんど導電体膜が溶 解されないので、画素電極などの必要な導電体膜へダメージを与えることもない。こ れによって、製造歩留り及び信頼性を向上させることができる。また、悪臭を放っとい つたこともなぐ作業環境を改善できる。  In this way, the number of masks can be reduced. As a result, the manufacturing process can be reduced and productivity can be improved. In addition, by including a carboxylic compound, the conductive film is hardly dissolved when the resist is dissolved, as compared with the case of including a thiol compound, so that the necessary conductive film such as a pixel electrode is damaged. There is nothing. As a result, the manufacturing yield and reliability can be improved. In addition, the working environment can be improved without ever stinking.
[0018] また、前記基板カゝら剥離されたレジスト上の導電体膜が含まれた使用済みストリッピ ング組成物を回収する。さらに、前記レジスト上の導電体膜を前記使用済みストリッピ ング組成物内に溶解させ、該使用済みストリッピング組成物を再利用するリサイクル 工程を有するとよい。 [0018] Further, the used stripping composition containing the conductive film on the resist peeled off from the substrate cover is collected. Furthermore, it is preferable to have a recycling step of dissolving the conductive film on the resist in the used stripping composition and reusing the used stripping composition.
このようにすると、製造歩留り及び信頼性を向上させることができるとともに、使用済 みストリッピング組成物を再利用することができる。これによつて、製造原価のコストダ ゥンを図ることができる。  In this way, the production yield and reliability can be improved, and the used stripping composition can be reused. This makes it possible to reduce the manufacturing cost.
[0019] また、前記基板に供給されるストリッピング組成物の温度を 30°C以上 60°C未満とし 、前記回収された使用済みストリッピング組成物の温度を 60°C以上 100°C未満とす るとよ 、。 このようにすると、製造歩留り及び信頼性を向上させるとともに、使用済みストリッピ ング組成物を効率よく再利用することができる。 [0019] Further, the temperature of the stripping composition supplied to the substrate is 30 ° C or more and less than 60 ° C, and the temperature of the collected used stripping composition is 60 ° C or more and less than 100 ° C. Let's do it. In this way, the manufacturing yield and reliability can be improved, and the used stripping composition can be reused efficiently.
[0020] また、前記画素電極及びレジスト上の導電体膜力 酸化インジウム ·酸化亜鉛 (IZO )、酸化インジウム '酸化スズ'酸化亜鉛 (ITZO)、酸化スズ'酸化亜鉛 (ZTO)、及び [0020] Further, the conductive film force on the pixel electrode and the resist indium oxide zinc oxide (IZO), indium oxide 'tin oxide' zinc oxide (ITZO), tin oxide 'zinc oxide (ZTO), and
、これらの組合せ力もなる群力も選択された少なくとも一つの物質を含むとよ!/、。 このようにすると、カルボン系化合物が導電体膜を容易に溶解することができる。こ れによって、生産性を向上させることができる。 , These combined forces also include at least one selected substance! /, If it does in this way, a carboxylic compound can dissolve a conductor film easily. This can improve productivity.
[0021] 上記目的を達成するために、本発明の TFT基板の製造方法は、基板上に薄膜トラ ンジスタを形成する工程と、前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層 する工程と、前記保護用絶縁膜上にレジストを積層する工程と、前記レジストを所定 の形状に形成し、該レジストの周縁下部にアンダーカット部を形成する工程と、前記 保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部によつ て互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、前記基 板上にストリッピング組成物を供給して、前記レジスト上の導電体膜を前記基板から 剥離させるストリッピング工程と、前記基板から剥離されたレジスト上の導電体膜が含 まれた使用済みストリッピング組成物から、前記レジスト上の導電体膜を分離し、該使 用済みストリッピング組成物を再利用するリサイクル工程とを有する方法としてある。 このようにすると、マスク数を削減することができる。これによつて、製造工程が削減 され、生産性を向上させることができる。また、基板から剥離したレジスト上の導電体 膜を、使用済みストリッピング組成物力 ほぼ完全に分離することができる。これによ つて、歩留まりを低下させることなぐ使用済みストリッピング組成物を再利用すること ができる。  [0021] In order to achieve the above object, the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on a substrate, a step of laminating a protective insulating film on the substrate and the thin film transistor, A step of laminating a resist on the protective insulating film; a step of forming the resist in a predetermined shape; and forming an undercut portion at a lower peripheral edge of the resist; and a conductive material on the protective insulating film and the resist And forming a pixel electrode and a conductive film on the resist separated from each other by the undercut portion, and supplying a stripping composition on the substrate to conduct the conductive on the resist. A stripping step for peeling the body film from the substrate, and a spent stripping composition including a conductive film on the resist peeled from the substrate, on the resist. And a recycling step of reusing the used stripping composition. In this way, the number of masks can be reduced. As a result, the manufacturing process can be reduced and productivity can be improved. Also, the used stripping composition force can be almost completely separated from the conductive film on the resist peeled from the substrate. This allows the spent stripping composition to be reused without reducing yield.
[0022] また、上記目的を達成するために、本発明の TFT基板の製造方法は、基板上に薄 膜トランジスタを形成する工程と、前記基板及び薄膜トランジスタ上に保護用絶縁膜 を積層する工程と、前記保護用絶縁膜上にレジストを積層する工程と、  In order to achieve the above object, the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on the substrate, and a step of stacking a protective insulating film on the substrate and the thin film transistor. Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記ァ ンダーカット部によって互いに分離された画素電極及びレジスト上の導電体膜を形成 する工程と、前記基板上にストリッピング組成物を供給し、前記レジスト上の導電体膜 を前記基板力 剥離させるストリッピング工程とを有する TFT基板の製造方法であつ て、前記ストリッピング組成物力 20〜80重量%のァミン系化合物と、 20〜80重量 %の非プロトン性極性ィ匕合物とを含む方法としてある。 Forming the resist in a predetermined shape and forming an undercut portion at a lower peripheral edge of the resist; and depositing a conductive material on the protective insulating film and the resist, and separating each other by the undercut portion. A patterned pixel electrode and a conductive film on the resist A stripping step of supplying a stripping composition onto the substrate and stripping off the substrate film of the conductive film on the resist, wherein the stripping composition force 20 It is a method comprising -80% by weight of an amin compound and 20-80% by weight of an aprotic polar compound.
このよう〖こすると、レジストだけを溶解し、画素電極にダメージを与えない。これによ つて、歩留り及び信頼性を向上させることができる。  Such rubbing dissolves only the resist and does not damage the pixel electrode. As a result, yield and reliability can be improved.
なお、ストリッピング組成物に、該ストリッピング組成物の性能に悪影響を与えない 範囲で、供給する際の泡立ちを抑える溶剤や、粘度を低減するための希釈剤などを 添カロしてちょい。  In addition, the stripping composition should be added with a solvent that suppresses foaming during the supply and a diluent for reducing the viscosity within a range that does not adversely affect the performance of the stripping composition.
[0023] また、前記アミン系化合物力 モノエタノールァミン、モノイソプロパノールァミン、メ チルメタノールァミン、ェチルエタノールァミン、ジメタノールァミン、アミノエトキシエタ ノールァミン、ジエタノールァミン、及び、これらの組合せ力もなる群力も選択された少 なくとも一つの化合物を含むとよい。  [0023] Further, the amine compound power monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and these It is good to include at least one selected compound as well as the group power.
[0024] また、前記非プロトン性極性化合物力 N—メチルー 2—ピロリドン、 N, N—ジメチ ルァセトアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルイミダゾール、ジメチル スルホキシド、及び、これらの組合せ力 なる群力 選択された少なくとも一つの化合 物を含むとよい。  [0024] Also, the aprotic polar compound power N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl sulfoxide, and a combination power thereof Group power Contains at least one selected compound.
[0025] また、上記目的を達成するために、本発明の TFT基板の製造方法は、基板上に薄 膜トランジスタを形成する工程と、前記基板及び薄膜トランジスタ上に保護用絶縁膜 を積層する工程と、前記保護用絶縁膜上にレジストを積層する工程と、  [0025] In order to achieve the above object, the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on the substrate, and a step of stacking a protective insulating film on the substrate and the thin film transistor. Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記ァ ンダーカット部によって互いに分離された画素電極及びレジスト上の導電体膜を形成 する工程と、前記基板上にストリッピング組成物を供給し、前記レジスト上の導電体膜 を前記基板力 剥離させるストリッピング工程とを有する TFT基板の製造方法であつ て、前記ストリッピング組成物が、下記一般式 1で表されるアルコキシアクリルアミドィ匕 合物を含む方法としてある。  Forming the resist in a predetermined shape and forming an undercut portion at a lower peripheral edge of the resist; and depositing a conductive material on the protective insulating film and the resist, and separating each other by the undercut portion. TFT substrate having a step of forming a patterned pixel electrode and a conductive film on the resist, and a stripping step of supplying a stripping composition onto the substrate and peeling the conductive film on the resist to the substrate force The stripping composition comprises an alkoxyacrylamide compound represented by the following general formula 1.
[化 2] O [Chemical 2] O
II  II
R 1 - O - CH2CH2 - C - NR2R3 (—般式 1) ここで、 Rl、 R2、 R3は、それぞれ独立に、炭素数 1から 10のアルキル基とする。 このよう〖こすると、レジストだけを溶解し、画素電極にダメージを与えない。これによ つて、歩留り及び信頼性を向上させることができる。また、アルコキシアクリルアミドィ匕 合物は水溶性を有しており、引火性のな 、安全なストリッピング組成物を提供すること ができる。  R 1 —O—CH 2 CH 2 —C—NR 2 R 3 (—general formula 1) Here, R 1, R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms. Such rubbing dissolves only the resist and does not damage the pixel electrode. As a result, yield and reliability can be improved. Further, the alkoxyacrylamide compound has water solubility, and can provide a safe stripping composition that is not flammable.
[0026] また、上記目的を達成するために、本発明の TFT基板の製造方法は、基板上に薄 膜トランジスタを形成する工程と、前記基板及び薄膜トランジスタ上に保護用絶縁膜 を積層する工程と、前記保護用絶縁膜上にレジストを積層する工程と、  In order to achieve the above object, the TFT substrate manufacturing method of the present invention includes a step of forming a thin film transistor on the substrate, and a step of stacking a protective insulating film on the substrate and the thin film transistor. Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記ァ ンダーカット部によって互いに分離された画素電極及びレジスト上の導電体膜を形成 する工程と、前記基板上にストリッピング組成物を供給し、前記レジスト上の導電体膜 を前記基板力 剥離させるストリッピング工程とを有する TFT基板の製造方法であつ て、前記ストリッピング組成物力 エチレンカーボネートを含む方法としてある。  Forming the resist in a predetermined shape and forming an undercut portion at a lower peripheral edge of the resist; and depositing a conductive material on the protective insulating film and the resist, and separating each other by the undercut portion. TFT substrate having a step of forming a patterned pixel electrode and a conductive film on the resist, and a stripping step of supplying a stripping composition onto the substrate and peeling the conductive film on the resist to the substrate force The stripping composition strength is a method including ethylene carbonate.
このよう〖こすると、レジストだけを溶解し、画素電極にダメージを与えない。これによ つて、歩留り及び信頼性を向上させることができる。  Such rubbing dissolves only the resist and does not damage the pixel electrode. As a result, yield and reliability can be improved.
[0027] また、好ましくは、前記基板から剥離されたレジスト上の導電体膜が含まれた使用 済みストリッピング組成物から、前記レジスト上の導電体膜を分離し、該使用済みスト リッピング組成物を再利用するリサイクル工程を有するとよい。 [0027] Preferably, the conductive film on the resist is separated from the used stripping composition containing the conductive film on the resist peeled off from the substrate, and the used stripping composition is separated. It is good to have a recycling process that reuses.
このよう〖こすると、基板から剥離したレジスト上の導電体膜を、使用済みストリツピン グ組成物からほぼ完全に分離することができる。したがって、歩留まりを低下させるこ となぐ使用済みストリッピング組成物を再利用することができる。  By rubbing in this way, the conductive film on the resist peeled off from the substrate can be almost completely separated from the used stripping composition. Therefore, it is possible to reuse the used stripping composition that will reduce the yield.
[0028] また、好ましくは、沈降式分離、遠心式分離、及び Z又は、ろ過式分離によって、前 記使用済みストリッピング組成物から、前記レジスト上の導電体膜を分離するとよい。 このようにすると、容易かつ確実にレジスト上の導電体膜を分離することができる。 [0029] また、好ましくは、前記導電体膜が、酸化インジウム ·酸化亜鉛 (IZO)、酸化インジ ゥム '酸化スズ (ITO)、アモルファス酸化インジウム '酸化スズ(a— ITO)、酸化チタン '酸化ニオブ、酸化スズ'酸化亜鉛、酸化スズ'酸化アンチモン、フッ素ドープ酸化ス ズ、及び、これらの組合せ力 なる群力 選択された少なくとも一つの物質を含むとよ い。 [0028] Preferably, the conductor film on the resist is separated from the used stripping composition by sedimentation-type separation, centrifugal separation, and Z or filtration-type separation. In this way, the conductor film on the resist can be separated easily and reliably. [0029] Preferably, the conductor film is made of indium oxide / zinc oxide (IZO), indium oxide 'tin oxide (ITO), amorphous indium oxide' tin oxide (a-ITO), titanium oxide 'oxidized. Niobium, tin oxide 'zinc oxide, tin oxide' antimony oxide, fluorine-doped oxide oxide, and the combined force of these may contain at least one selected material.
これらの導電体膜は、ストリッピング組成物に全く溶解しないので、必要な画素電極 を微量ながら溶解させてしまうといった、製造歩留りを低下させる心配を排除すること ができる。さらに、導電体膜の比重は、ストリッピング組成物の比重より約 5倍以上ある ため、容易かつ精度よく沈降式分離や遠心式分離を行うことができる。  Since these conductor films are not dissolved in the stripping composition at all, it is possible to eliminate the concern of lowering the manufacturing yield, such as dissolving a necessary amount of pixel electrodes. Furthermore, since the specific gravity of the conductive film is about 5 times or more than the specific gravity of the stripping composition, sedimentation-type separation and centrifugal separation can be performed easily and accurately.
[0030] また、前記ストリッピング工程にぉ 、て、前記ストリッピング組成物力 スプレー方式 により、前記基板上に供給されるとよい。  [0030] In addition, the stripping composition may be supplied onto the substrate by the stripping composition force spray method during the stripping step.
このようにすると、ストリツピング糸且成物がアンダーカット部に入り込みやすくなるので 、レジスト上の導電体膜を基板力も効果的に剥離させることができる。また、スプレー 時間を短縮することができるので、生産性を向上させることができる。  In this way, the stripping yarn and the composition can easily enter the undercut portion, so that the conductive film on the resist can also be effectively peeled off. In addition, since the spray time can be shortened, productivity can be improved.
[0031] また、好ましくは、前記レジストの下層部が、該レジストの上層部より、現像液に対し て溶解性が高いとよい。  [0031] Preferably, the lower layer portion of the resist is more soluble in the developer than the upper layer portion of the resist.
このようにすると、アンダーカット部がより確実に形成できる。これによつて、歩留りを 向上させることができる。  If it does in this way, an undercut part can be formed more reliably. As a result, the yield can be improved.
[0032] また、上記目的を達成するために、本発明のストリッピング組成物のリサイクル方法 は、基板上に薄膜トランジスタを形成する工程と、前記基板及び薄膜トランジスタ上 に保護用絶縁膜を積層する工程と、前記保護用絶縁膜上にレジストを積層する工程 と、前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を 形成する工程と、前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記
Figure imgf000011_0001
ヽに分離された画素電極及びレジスト上の導電体膜を形 成する工程と、前記基板上に、上記請求項 1〜8のいずれか一項に記載されたストリ ッビング組成物を供給し、前記レジスト上の導電体膜を前記基板から剥離させるストリ ッビング工程と、前記基板から剥離されたレジスト上の導電体膜が含まれた使用済み ストリッピング組成物を回収して、前記レジスト上の導電体膜を前記使用済みストリツ ビング組成物内に溶解させ、該使用済みストリッピング組成物を再利用するリサイク ル工程とを有する方法としてある。
[0032] In order to achieve the above object, the recycling method of the stripping composition of the present invention includes a step of forming a thin film transistor on a substrate, and a step of laminating a protective insulating film on the substrate and the thin film transistor. A step of laminating a resist on the protective insulating film; a step of forming the resist in a predetermined shape; and forming an undercut portion at a lower peripheral edge of the resist; and a conductive layer on the protective insulating film and the resist. Evaporate
Figure imgf000011_0001
A step of forming a pixel electrode and a conductive film on the resist separated into a ridge, and supplying the stripping composition according to any one of claims 1 to 8 on the substrate; A stripping process for peeling the conductive film on the resist from the substrate, and a used stripping composition including the conductive film on the resist peeled from the substrate is collected, and the conductive film on the resist is recovered. Membrane the used strip And a recycling step of reusing the used stripping composition.
このよう〖こすると、レジストを溶解する際、ほとんど導電体膜が溶解されないので、画 素電極などの必要な導電体膜へダメージを与えることもない。これによつて、歩留まり を低下させることなぐ使用済みストリッピング組成物を再利用することができる。また 、悪臭を放っといつたこともなぐ作業環境を改善できる。  By rubbing in this manner, when the resist is dissolved, the conductor film is hardly dissolved, so that the necessary conductor film such as the pixel electrode is not damaged. This allows the spent stripping composition to be reused without reducing yield. In addition, the working environment can be improved in which a bad smell is never given.
[0033] 上記目的を達成するために、本発明のストリッピング組成物のリサイクル方法は、基 板上に薄膜トランジスタを形成する工程と、前記基板及び薄膜トランジスタ上に保護 用絶縁膜を積層する工程と、前記保護用絶縁膜上にレジストを積層する工程と、前 記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形成 する工程と、前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アン ダーカット部によって互いに分離された画素電極及びレジスト上の導電体膜を形成 する工程と、前記基板上にストリッピング組成物を供給して、前記レジスト上の導電体 膜を前記基板力 剥離させるストリッピング工程と、前記基板力 剥離されたレジスト 上の導電体膜が含まれた使用済みストリッピング組成物から、前記レジスト上の導電 体膜を分離し、該使用済みストリッピング組成物を再利用するリサイクル工程とを有す る方法としてある。  [0033] In order to achieve the above object, a method for recycling the stripping composition of the present invention includes a step of forming a thin film transistor on a substrate, a step of laminating a protective insulating film on the substrate and the thin film transistor, A step of laminating a resist on the protective insulating film; a step of forming the resist in a predetermined shape; and forming an undercut portion at a lower peripheral edge of the resist; and a conductive layer on the protective insulating film and the resist. Forming a pixel electrode and a conductive film on the resist separated from each other by the undercut portion; and supplying a stripping composition on the substrate to form a conductive film on the resist A stripping step for stripping the substrate force and a used stripping composition containing a conductor film on the substrate-stretched resist? , Separating the conductive film on the resist, some as how having a a recycling process to reuse the spent stripping composition.
このよう〖こすると、基板から剥離したレジスト上の導電体膜を、使用済みストリツピン グ組成物からほぼ完全に分離することができる。これによつて、歩留まりを低下させる ことなぐ使用済みストリッピング組成物を再利用することができる。  By rubbing in this way, the conductive film on the resist peeled off from the substrate can be almost completely separated from the used stripping composition. This allows the spent stripping composition to be reused without reducing yield.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]図 1は、本発明の第一実施形態に力かるストリツピング糸且成物において、ストリツ ビング組成物に含まれるアミン系化合物の例を説明するための構造式を示している。  [0034] [FIG. 1] FIG. 1 shows a structural formula for explaining examples of amine compounds contained in a stripping composition in a stripping yarn and composition that is useful in the first embodiment of the present invention. Yes.
[図 2]図 2は、本発明の第一実施形態に力かるストリッピング組成物において、ストリツ ビング組成物に含まれるアミン系化合物の例を説明するための構造式を示している。  FIG. 2 shows a structural formula for explaining an example of an amine-based compound contained in the stripping composition in the stripping composition according to the first embodiment of the present invention.
[図 3]図 3は、本発明の第一実施形態に力かるストリッピング組成物において、ストリツ ビング組成物に含まれる非プロトン性極性ィ匕合物の例を説明するための構造式を示 している。 [図 4]図 4は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するため の概略フローチャート図を示して 、る。 FIG. 3 shows a structural formula for explaining examples of aprotic polar compounds contained in the stripping composition in the stripping composition useful for the first embodiment of the present invention. is doing. FIG. 4 is a schematic flowchart for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention.
[図 5]図 5は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するため の概略図を示しており、(a)はゲート配線及びゲート電極が形成され、ゲート絶縁膜 が積層された平面図を示しており、 (b)は A— A拡大断面図を示している。  FIG. 5 is a schematic view for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention. FIG. 5 (a) shows a gate wiring and a gate electrode formed, and a gate A plan view in which insulating films are stacked is shown, and (b) shows an AA enlarged sectional view.
[図 6]図 6は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するため の概略図を示しており、(a)は薄膜トランジスタが形成され、保護用絶縁膜が積層さ れた平面図を示しており、 (b)は B— B拡大断面図を示している。  FIG. 6 is a schematic view for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention. FIG. 6 (a) shows a thin film transistor formed and a protective insulating film. A laminated plan view is shown, and (b) shows an enlarged cross-sectional view of BB.
[図 7]図 7は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するため の概略図を示しており、 (a)は保護用絶縁膜上のレジストが所定の形状に形成された 平面図を示しており、 (b)は C C拡大断面図を示している。  [FIG. 7] FIG. 7 is a schematic view for explaining a manufacturing method of a TFT substrate according to the first embodiment of the present invention. (A) shows a case where a resist on a protective insulating film is a predetermined one. A plan view formed in a shape is shown, and (b) shows an enlarged CC cross-sectional view.
[図 8]図 8は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するため の概略図を示しており、 (a)はコンタクトホールの形成された拡大断面図を示しており 、 (b)はレジストが再形成され、アンダーカット部の形成された拡大断面図を示してお り、(c)は D部詳細図を示している。  [FIG. 8] FIG. 8 is a schematic view for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention. (A) is an enlarged cross-sectional view in which contact holes are formed. (B) is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and (c) is a detailed view of the D portion.
[図 9]図 9は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するため の、導電体膜の形成された概略図を示しており、(a)は拡大断面図を示しており、 (b) は E部詳細図を示している。  [FIG. 9] FIG. 9 shows a schematic view with a conductor film formed for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention, and (a) is an enlarged cross-sectional view. Figure (b) shows a detailed view of part E.
[図 10]図 10は、本発明の第一実施形態にカゝかる TFT基板の製造方法において、レ ジスト上の導電体膜を剥離させるストリッピング工程、及び、使用済みストリッピング組 成物を再利用するリサイクル工程を説明するための概略断面図を示している。  [FIG. 10] FIG. 10 shows a stripping process for stripping the conductive film on the resist and a used stripping composition in the TFT substrate manufacturing method according to the first embodiment of the present invention. The schematic sectional drawing for demonstrating the recycling process to reuse is shown.
[図 11]図 11は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するた めの概略図を示しており、(a)は画素電極の形成された平面図を示しており、(b)は F F拡大断面図を示して 、る。 FIG. 11 is a schematic view for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention. FIG. 11 (a) is a plan view in which pixel electrodes are formed. (B) shows an enlarged FF sectional view.
[図 12]図 12は、実施例 1〜 3のストリッピング組成物に溶解せずに残つて 、たレジスト 上の導電体膜の写真を示して 、る。  [FIG. 12] FIG. 12 shows a photograph of the conductor film on the resist that remains undissolved in the stripping compositions of Examples 1 to 3.
[図 13]図 13は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するた めの概略フローチャート図を示して 、る。 [図 14]図 14は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するた めの概略図を示しており、(a)はゲート配線及びゲート電極が形成され、ゲート絶縁 膜が積層された平面図を示しており、(b)は Α'— 拡大断面図を示している。 FIG. 13 is a schematic flowchart for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention. [FIG. 14] FIG. 14 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention. (A) shows a gate wiring and a gate electrode formed. A plan view in which a gate insulating film is stacked is shown, and (b) shows an enlarged cross-sectional view.
[図 15]図 15は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するた めの概略図を示しており、(a)は薄膜トランジスタが形成され、保護用絶縁膜が積層 された平面図を示しており、(b)は — 拡大断面図を示している。  FIG. 15 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention. (A) shows a protective insulating film in which a thin film transistor is formed. (B) shows an enlarged cross-sectional view.
[図 16]図 16は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するた めの概略図を示しており、 (a)は保護用絶縁膜上のレジストが所定の形状に形成され た平面図を示しており、(b)は ― 拡大断面図を示している。  [FIG. 16] FIG. 16 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention. (A) shows a case where a resist on a protective insulating film is predetermined. (B) is an enlarged cross-sectional view.
[図 17]図 17は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するた めの概略図を示しており、 (a)はコンタクトホールの形成された拡大断面図を示して おり、(b)はレジストが再形成され、アンダーカット部の形成された拡大断面図を示し ており、(c)は ΕΓ部詳細図を示している。  [FIG. 17] FIG. 17 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention. (A) is an enlarged sectional view in which contact holes are formed. (B) is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and (c) is a detailed view of the ΕΓ portion.
[図 18]図 18は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するた めの、導電体膜の形成された概略図を示しており、(a)は拡大断面図を示しており、 ( b)は 部詳細図を示している。  [FIG. 18] FIG. 18 shows a schematic view in which a conductor film is formed for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention, and (a) is an enlarged view. A cross-sectional view is shown, and (b) is a detailed view of the part.
[図 19]図 19は、本発明の第二実施形態にカゝかる TFT基板の製造方法において、レ ジスト上の導電体膜を剥離させるストリッピング工程、及び、使用済みストリッピング組 成物を再利用するリサイクル工程を説明するための概略断面図を示している。  [FIG. 19] FIG. 19 shows a stripping process for stripping a conductive film on a resist and a used stripping composition in a TFT substrate manufacturing method according to the second embodiment of the present invention. The schematic sectional drawing for demonstrating the recycling process to reuse is shown.
[図 20]図 20は、本発明の第二実施形態にカゝかる TFT基板の製造方法において、ス トリッピング組成物に含まれるアミン系化合物の例を説明するための構造式を示して いる。 FIG. 20 shows a structural formula for explaining an example of an amine compound contained in the stripping composition in the TFT substrate manufacturing method according to the second embodiment of the present invention.
[図 21]図 21は、本発明の第二実施形態にカゝかる TFT基板の製造方法において、ス トリッピング組成物に含まれるアミン系化合物の例を説明するための構造式を示して いる。  FIG. 21 shows a structural formula for explaining an example of an amine compound contained in the stripping composition in the TFT substrate manufacturing method according to the second embodiment of the present invention.
[図 22]図 22は、本発明の第二実施形態にカゝかる TFT基板の製造方法において、ス トリッピング組成物に含まれる非プロトン性極性ィ匕合物の例を説明するための構造式 を示している。 [図 23]図 23は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するた めの概略図を示しており、(a)は画素電極の形成された平面図を示しており、(b)は F ' 拡大断面図を示して 、る。 FIG. 22 is a structural formula for explaining an example of an aprotic polar compound contained in a stripping composition in the TFT substrate manufacturing method according to the second embodiment of the present invention. Is shown. FIG. 23 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention. FIG. 23 (a) is a plan view in which pixel electrodes are formed. (B) shows an enlarged cross-sectional view of F ′.
[図 24]図 24は、実施例 4のストリッピング組成物に溶解せずに残っていたレジスト上 の導電体膜の写真を示して ヽる。  [FIG. 24] FIG. 24 shows a photograph of the conductor film on the resist that remained undissolved in the stripping composition of Example 4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] [ストリッピング組成物の第一実施形態] [0035] [First embodiment of stripping composition]
本発明のストリッピング組成物は、半導体装置の製造に用いられるストリッピング組 成物である。このストリツピング糸且成物は、後述するアンダーカット部の形成されたレジ ストと、このレジスト上に積層された導電体膜に対して用いられる。また、このストリッピ ング組成物は、レジストを溶解することによって、不必要な導電体膜を基板から剥離 させる。このように、不必要な導電体膜が基板力も剥離されることによって、所定の形 状を有する必要な導電体膜 (たとえば、 TFT基板における画素電極)が基板に形成さ れる。  The stripping composition of the present invention is a stripping composition used for manufacturing a semiconductor device. This stripping yarn composition is used for a resist in which an undercut portion described later is formed and a conductor film laminated on the resist. Further, this stripping composition dissolves the resist to peel off unnecessary conductor films from the substrate. In this manner, the unnecessary conductor film is also peeled off from the substrate force, whereby a necessary conductor film having a predetermined shape (for example, a pixel electrode in the TFT substrate) is formed on the substrate.
なお、半導体装置とは、ウェハやガラス板などの基板と、トランジスタゃ受光素子な どの半導体を用いた電気素子及び Z又は光学素子とを備えた装置をいう。  The semiconductor device means a device including a substrate such as a wafer or a glass plate, an electric element using a semiconductor such as a transistor or a light receiving element, and a Z or optical element.
[0036] 本実施形態のストリッピング組成物は、 20〜79. 5重量%のァミン系化合物と、 20 〜79. 5重量%の非プロトン性極性化合物と、 0. 5〜5重量%のカルボン系化合物と を含んでいる。 [0036] The stripping composition of the present embodiment comprises 20 to 79.5% by weight of an amin compound, 20 to 79.5% by weight of an aprotic polar compound, and 0.5 to 5% by weight of carvone. System compounds.
上記アミン系化合物と非プロトン性極性ィ匕合物は、レジストを溶解するためのレジス ト用ストリツビング剤として機能する。また、カルボン系化合物は、導電体膜を溶解す るための導電体膜用溶解添加剤として機能する。  The amine compound and the aprotic polar compound function as a resist stripping agent for dissolving the resist. Further, the carboxylic compound functions as a dissolving additive for the conductor film for dissolving the conductor film.
[0037] アミン系化合物の例としては、モノエタノールァミン、モノイソプロパノールァミン、メ チルメタノールァミン、ェチルエタノールァミン、ジメタノールァミン、アミノエトキシエタ ノールァミン、ジエタノールァミン、等が挙げられる(図 1, 2参照)。また、上記各ァミン 系化合物は、単独又は二つ以上の組合せで使用してもよい。 [0037] Examples of amine compounds include monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and the like. (See Figures 1 and 2). Each of the above amine compounds may be used alone or in combination of two or more.
非プロトン性極性化合物の例としては、 N—メチル—2—ピロリドン、 N, N—ジメチ ルァセトアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルイミダゾール、ジメチル スルホキシド等が挙げられる(図 3参照)。また、上記非プロトン性極性ィ匕合物は、単 独又は二つ以上の組合せで使用してもよ 、。 Examples of aprotic polar compounds include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl Examples thereof include sulfoxide (see FIG. 3). Further, the aprotic polar compound may be used alone or in combination of two or more.
[0038] また、ストリッピング組成物は、レジスト用ストリッピング剤が、アミン系化合物を約 20 〜79. 5重量%含み、かつ、非プロトン性極性ィ匕合物を約 20〜79. 5重量%含む構 成としてある。このよう〖こすると、レジストだけを溶解し、必要とする導電体膜を溶解せ ず、この導電体膜にダメージを与えない。これによつて、歩留り及び信頼性を向上さ せることができる。 [0038] In the stripping composition, the resist stripping agent contains about 20 to 79.5% by weight of an amine-based compound, and about 20 to 79.5% by weight of an aprotic polar compound. %. By rubbing in this way, only the resist is dissolved, the necessary conductor film is not dissolved, and the conductor film is not damaged. As a result, yield and reliability can be improved.
[0039] ストリッピング組成物に、アミン系化合物を約 20〜79. 5重量0 /0含ませる理由は、ァ ミン系化合物の含量が約 20重量%未満であると、レジストを短時間内に充分に溶解 することができないからである。また、アミン系化合物の含量が約 79. 5重量%を超過 すると、レジストが溶解されている間に、必要とする導電体膜が急激に腐食され損傷 を誘発するからである。また、アミン系化合物が約 79. 5重量%を超過すると、ストリツ ビング組成物の揮発量が増加して、ストリッピング組成物の成分比が変化する心配も ある。したがって、本発明のストリッピング組成物において、アミン系化合物の含量は 約 20〜79. 5重量%が好ましぐより好ましくは 30〜70重量%とするとよい。 The [0039] stripping composition, approximately the amine compound 20 to 79.5 reasons to include weight 0/0, the content of § amine-based compound is less than about 20 wt%, within a short time to resist This is because it cannot be dissolved sufficiently. Also, if the content of the amine compound exceeds about 79.5% by weight, the required conductor film is rapidly corroded while the resist is dissolved, causing damage. Also, if the amine compound exceeds about 79.5% by weight, the volatilization amount of the stripping composition increases, and there is a concern that the component ratio of the stripping composition may change. Therefore, in the stripping composition of the present invention, the content of the amine compound is preferably about 20 to 79.5% by weight, more preferably 30 to 70% by weight.
[0040] また、ストリッピング組成物に、非プロトン性極性ィ匕合物を約 20〜79. 5重量%含ま せる理由は、非プロトン性極性ィ匕合物の含量が約 20重量%未満であると、レジストの ストリツビング時間が増加したり、再利用する場合の液寿命が短くなる場合があるから である。また、非プロトン性極性ィ匕合物の含量が約 79. 5重量%を超過すると、レジス トをストリツビングするときに、必要とする導電体膜を腐食する心配があるからである。 したがって、本発明のストリッピング組成物において、非プロトン性極性化合物の含量 は約 20〜79. 5重量%が好ましぐより好ましくは約 30〜70重量%とするとよい。 なお、ストリッピング組成物に、該ストリッピング組成物の性能に悪影響を与えない 範囲で、供給する際の泡立ちを抑える溶剤や、粘度を低減するための希釈剤などを 添カロしてちょい。  [0040] The reason why the stripping composition contains about 20 to 79.5% by weight of the aprotic polar compound is that the content of the aprotic polar compound is less than about 20% by weight. If so, the resist stripping time may increase, or the liquid life when reused may be shortened. In addition, if the content of the aprotic polar compound exceeds about 79.5% by weight, there is a concern that the required conductor film may be corroded when stripping the resist. Accordingly, the content of the aprotic polar compound in the stripping composition of the present invention is preferably about 20 to 79.5% by weight, more preferably about 30 to 70% by weight. In addition, the stripping composition should be added with a solvent that suppresses foaming during supply and a diluent for reducing the viscosity within a range that does not adversely affect the performance of the stripping composition.
[0041] また、カルボン系化合物として、下記一般式 2, 3で表されるカルボン酸、及び、これ らの組合せカゝらなる群カゝら選択された少なくとも一つの化合物を含むとよい。  [0041] Further, the carboxylic compound may include at least one compound selected from the group consisting of carboxylic acids represented by the following general formulas 2 and 3 and combinations thereof.
R-COOH (一般式 2) ここで、 Rは炭素数 1から 10のアルキル基、ァリール基とする。 R-COOH (General formula 2) Here, R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
HOCO-R-COOH (一般式 3)  HOCO-R-COOH (general formula 3)
ここで、 Rは炭素数 1から 10のアルキル基、ァリール基とする。  Here, R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
[0042] たとえば、カルボン酸の例としては、酢酸 (CH COOH、 pKa (解離定数) =4. 74)、 [0042] For example, as an example of carboxylic acid, acetic acid (CH COOH, pKa (dissociation constant) = 4.74),
3  Three
プロピオン酸 (CH CH COOHゝ pKa = 4. 88)、イソ酪酸 ((CH ) CHCOOHゝ pKa  Propionic acid (CH CH COOH ゝ pKa = 4. 88), Isobutyric acid ((CH) CHCOOH ゝ pKa
3 2 3 2  3 2 3 2
=4. 86)、ジメチルプロピオン酸 ((CH ) CCOOH、 pKa = 5. 05)、酪酸 (CH (CH )  = 4.86), dimethylpropionic acid ((CH) CCOOH, pKa = 5. 05), butyric acid (CH (CH))
3 3 3 2 3 3 3 2
COOH, pKa=4. 82)、吉草酸 (CH (CH ) COOH, pKa=4. 86)等が挙げられCOOH, pKa = 4.82), valeric acid (CH (CH) COOH, pKa = 4.86), etc.
2 3 2 3 2 3 2 3
る。また、上記各カルボン酸は、単独又は二つ以上の組合せで使用してもよい。  The Moreover, you may use each said carboxylic acid individually or in combination of 2 or more.
[0043] また、ストリッピング組成物は、カルボン系化合物を約 0. 5〜5重量%含む構成とし てある。このようにすると、ストリッピング工程において、レジストだけを溶解し、必要と する導電体膜を溶解せず、この導電体膜にダメージを与えない。これによつて、歩留 り及び信頼性を向上させることができる。また、リサイクル工程において、使用済みス トリッピング組成物に導電体膜を溶解させ、使用済みストリッピング組成物を再利用す ることがでさる。  [0043] The stripping composition contains about 0.5 to 5% by weight of a carboxylic compound. In this way, in the stripping step, only the resist is dissolved, the necessary conductor film is not dissolved, and the conductor film is not damaged. As a result, yield and reliability can be improved. Further, in the recycling process, the conductive film is dissolved in the used stripping composition, and the used stripping composition can be reused.
なお、使用済みストリッピング組成物とは、基板から剥離されたレジスト上の導電体 膜が含まれたストリッピング組成物を!、う。  The used stripping composition refers to a stripping composition containing a conductive film on a resist peeled from a substrate.
[0044] また、ストリッピング組成物に、カルボン系化合物を約 0. 5〜5重量%含ませる理由 は、カルボン系化合物の含量が約 0. 5重量%未満であると、リサイクル工程において 、使用済みストリッピング組成物に導電体膜を溶解させるための時間が増カロしたり、 再利用する場合の液寿命が短くなる場合があるからである。また、カルボン系化合物 の含量が約 5重量%を超過すると、レジストをストリッピングするときに、必要とする導 電体膜を腐食する心配があるからである。したがって、本発明のストリッピング組成物 において、カルボン系化合物の含量は約 0. 5〜5重量%が好ましぐより好ましくは 約 2〜4重量%とするとよい。  [0044] The reason why the stripping composition contains about 0.5 to 5% by weight of the carboxylic compound is that the content of the carboxylic compound is less than about 0.5% by weight in the recycling process. This is because the time required for dissolving the conductor film in the stripping composition may increase, and the liquid life when reused may be shortened. Also, if the content of the carboxylic compound exceeds about 5% by weight, there is a concern that the required conductor film may be corroded when stripping the resist. Therefore, the content of the carboxylic compound in the stripping composition of the present invention is preferably about 0.5 to 5% by weight, more preferably about 2 to 4% by weight.
[0045] ここで、好ましくは、上記カルボン系化合物の pKa (酸解離定数)を、 4. 0以上 5. 2 以下とするとよい。このようにすると、ストリッピング工程において、必要な導電体膜へ ダメージを与えることがない。また、使用済みストリッピング組成物を効率よく溶解させ ることがでさる。 たとえば、従来例において、導電体膜用溶解添加剤として使用されるチォグリコー ル酸が、 pKa = 3. 82であるの対して、上記酢酸、プロピオン酸、イソ酪酸、ジメチル プロピオン酸、酪酸、吉草酸等は、 pKa (酸解離定数)が、約 4. 0以上約 5. 2以下と なっている。すなわち、上記カルボン酸は、チォグリコール酸に比べて、大きな値を 示しており、カルボン酸の方がチォグリコール酸より弱酸である。これにより、ストリッピ ング工程において、ストリッピング組成物がレジストを溶解しているとき、必要な導電 体膜が溶解するといつた不具合を回避することができる。 Here, preferably, the pKa (acid dissociation constant) of the carboxylic compound is 4.0 or more and 5.2 or less. In this way, the necessary conductor film is not damaged in the stripping step. In addition, the used stripping composition can be dissolved efficiently. For example, in the conventional example, thioglycolic acid used as a dissolution additive for conductive film is pKa = 3.82, whereas the above-mentioned acetic acid, propionic acid, isobutyric acid, dimethyl propionic acid, butyric acid, valeric acid. Have a pKa (acid dissociation constant) of about 4.0 or more and about 5.2 or less. That is, the carboxylic acid shows a larger value than thioglycolic acid, and the carboxylic acid is weaker than thioglycolic acid. Thereby, in the stripping step, when the stripping composition dissolves the resist, it is possible to avoid a problem when the necessary conductor film dissolves.
[0046] また、 pKaを約 4. 0以上約 5. 2以下とする理由は、 pKaが 4. 0未満であると、必要 な導電体膜を溶解し、品質に悪影響を及ぼす可能性が高くなる力もである。また、 p Kaが 5. 2を超えると、剥離させた不要な導電体膜を溶解させるための時間が長くな り、効率が低下するからである。  [0046] Also, the reason why the pKa is about 4.0 or more and about 5.2 or less is that if the pKa is less than 4.0, there is a high possibility that the necessary conductor film is dissolved and the quality is adversely affected. It is the power to become. Further, if p Ka exceeds 5.2, the time required for dissolving the peeled unnecessary conductor film becomes long, and the efficiency is lowered.
[0047] このように本実施形態に力かるストリッピング組成物は、カルボン系化合物を含むこ とにより、従来例のチオール系化合物を含む場合と比べて、レジストを溶解する際、 ほとんど導電体膜が溶解されな ヽので、画素電極などの必要な導電体膜へダメージ を与えることがない。これによつて、製造歩留り及び信頼性を向上させることができる 。また、悪臭を放っといつたこともなぐ作業環境を改善できる。  [0047] As described above, the stripping composition that is effective in the present embodiment includes a carboxylic compound, and therefore, when the resist is dissolved, compared with the case where the thiol compound of the conventional example is included, the conductor film is almost completely removed. Since it is not dissolved, the necessary conductor film such as the pixel electrode is not damaged. As a result, manufacturing yield and reliability can be improved. Moreover, it is possible to improve the working environment where a bad smell is emitted.
[0048] [ストリッピング組成物の第二実施形態]  [0048] [Second embodiment of stripping composition]
本実施形態のストリッピング組成物は、エチレンカーボネートと、 0. 5〜5重量%の カルボン系化合物とを含む構成としてある。すなわち、上記第一実施形態と比べて、 アミン系化合物及び非プロトン性極性ィ匕合物の代わりに、エチレンカーボネートを含 んでいる点が相違する。  The stripping composition of this embodiment is configured to include ethylene carbonate and 0.5 to 5% by weight of a carboxylic compound. That is, as compared with the first embodiment, the difference is that ethylene carbonate is contained instead of the amine compound and the aprotic polar compound.
なお、その他の構成は、ほぼ第一実施形態のストリッピング組成物とほぼ同様として ある。  The rest of the configuration is almost the same as the stripping composition of the first embodiment.
[0049] 本実施形態のストリッピング組成物は、ほぼ第一実施形態のストリッピング組成物と 同様の効果を有しており、製造歩留り及び信頼性を向上させることができる。  [0049] The stripping composition of the present embodiment has substantially the same effect as the stripping composition of the first embodiment, and can improve the production yield and reliability.
[0050] [ストリッピング組成物の第三実施形態]  [0050] [Third embodiment of stripping composition]
本実施形態のストリッピング組成物は、アルコキシアクリルアミドィ匕合物と、 0. 5〜5 重量%のカルボン系化合物とを含む構成としてある。すなわち、上記第一実施形態 と比べて、アミン系化合物及び非プロトン性極性ィ匕合物の代わりに、アルコキシアタリ ルアミド化合物を含んで 、る点が相違する。 The stripping composition of this embodiment is configured to include an alkoxyacrylamide compound and 0.5 to 5% by weight of a carboxylic compound. That is, the first embodiment described above The difference is that, instead of the amine-based compound and the aprotic polar compound, an alkoxyatyramide compound is included instead of the amine-based compound and the aprotic polar compound.
なお、その他の構成は、ほぼ第一実施形態のストリッピング組成物と同様としてある  The rest of the configuration is almost the same as the stripping composition of the first embodiment.
[0051] また、アルコキシアクリルアミド化合物が、下記一般式 1で表される化合物、及びこ れらの組合せ力もなる群力も選択された少なくとも一つの化合物を含むとよい。 [0051] In addition, the alkoxyacrylamide compound may include a compound represented by the following general formula 1 and at least one compound selected as a group force that also has a combination force thereof.
[化 3] o  [Chemical 3] o
11  11
R 1 - O - CH2CH2 - C - NR2R3 (一般式 1) ここで、 Rl、 R2、 R3は、それぞれ独立に、炭素数 1から 10のアルキル基とする。  R 1 —O—CH 2 CH 2 —C—NR 2 R 3 (General Formula 1) Here, R 1, R 2, and R 3 are each independently an alkyl group having 1 to 10 carbon atoms.
[0052] たとえば、アルコキシアクリルアミド化合物の例としては、 N, N-ジメチル— n-ブトキ シアクリルアミド、 N, N-ジェチル— n-ブトキシアクリルアミド等が挙げられる。また、 上記各アルコキシアクリルアミド化合物は、単独又は二つ以上の組合せで使用しても よい。 [0052] For example, examples of the alkoxyacrylamide compound include N, N-dimethyl-n-butoxyacrylamide, N, N-jetyl-n-butoxyacrylamide, and the like. Moreover, you may use each said alkoxyacrylamide compound individually or in combination of 2 or more.
[0053] 本実施形態のストリッピング組成物は、ほぼ第一実施形態のストリッピング組成物と 同様の効果を有しており、製造歩留り及び信頼性を向上させることができる。また、ァ ルコキシアクリルアミドィ匕合物は水溶性を有しており、本実施形態のストリッピング組 成物は、水溶液としても使用可能である。この場合、水の含有量は、約 50重量%未 満、好ましくは、約 10〜40重量%、より好ましくは、約 20〜30重量%である。このよう にすることにより、本実施形態のストリッピング組成物は、引火性がないので安全性が 向上する。  [0053] The stripping composition of the present embodiment has substantially the same effect as the stripping composition of the first embodiment, and can improve the manufacturing yield and reliability. In addition, the alkoxyacrylamide compound has water solubility, and the stripping composition of this embodiment can be used as an aqueous solution. In this case, the water content is less than about 50% by weight, preferably about 10-40% by weight, more preferably about 20-30% by weight. By doing so, the stripping composition of the present embodiment is not flammable, so safety is improved.
[0054] [TFT基板の製造方法における第一実施形態]  [First Embodiment of TFT Substrate Manufacturing Method]
図 4は、本発明の第一実施形態にカゝかる TFT基板の製造方法を説明するための 概略フローチャート図を示して 、る。  FIG. 4 is a schematic flowchart for explaining a manufacturing method of a TFT substrate according to the first embodiment of the present invention.
図 4において、まず、基板 1010上に、薄膜トランジスタ 1050を形成する (ステップ S 1001)。  In FIG. 4, first, a thin film transistor 1050 is formed on a substrate 1010 (step S 1001).
次に、薄膜トランジスタ 1050の形成方法について、図面を参照して説明する。 [0055] 図 5は、本発明の第一実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)はゲート配線及びゲート電極が形成され、ゲート絶縁膜が 積層された平面図を示しており、 (b)は A— A拡大断面図を示している。 Next, a method for forming the thin film transistor 1050 will be described with reference to the drawings. FIG. 5 is a schematic diagram for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention. FIG. 5A shows a gate insulating film formed with a gate wiring and a gate electrode. (B) shows an A-A enlarged cross-sectional view.
図 5において、まず、ガラス基板 1010が用意され、ホトリソグラフィ一法により、 Al ( アルミニウム)などの導電体薄膜からなるゲート配線 1021及びゲート電極 1022を形 成する。続いて、露出したガラス基板 1010、ゲート配線 1021及びゲート電極 1022 上に、ゲート絶縁膜 1023が積層される。  In FIG. 5, first, a glass substrate 1010 is prepared, and a gate wiring 1021 and a gate electrode 1022 made of a conductive thin film such as Al (aluminum) are formed by a photolithography method. Subsequently, a gate insulating film 1023 is stacked over the exposed glass substrate 1010, the gate wiring 1021, and the gate electrode 1022.
なお、図示してないが、ゲート配線 1021及びゲート電極 1022を形成するために、 第一のマスクが使用される。  Although not shown, a first mask is used to form the gate wiring 1021 and the gate electrode 1022.
[0056] 図 6は、本発明の第一実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)は薄膜トランジスタが形成され、保護用絶縁膜が積層され た平面図を示しており、 (b)は B— B拡大断面図を示している。 FIG. 6 is a schematic view for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention. FIG. 6A shows a thin film transistor formed and a protective insulating film laminated. (B) shows an enlarged cross-sectional view of BB.
図 6において、まず、ゲート絶縁膜 1023上に、ソース配線 1031、ソース電極 1032 、チャンネル部 1051、及び、ドレイン電極 1042が形成される。これによつて、ガラス 基板 1010上に薄膜トランジスタ 1050が形成される (ステップ S1001)。次に、ガラス 基板 1010及び薄膜トランジスタ 1050上に、保護用絶縁膜 1054が積層されている( ステップ S 1002)。  In FIG. 6, first, a source wiring 1031, a source electrode 1032, a channel portion 1051, and a drain electrode 1042 are formed over the gate insulating film 1023. Thereby, the thin film transistor 1050 is formed on the glass substrate 1010 (step S1001). Next, a protective insulating film 1054 is stacked over the glass substrate 1010 and the thin film transistor 1050 (step S 1002).
[0057] 本実施形態では、ソース配線 1031、ソース電極 1032、チャンネル部 1051、及び 、ドレイン電極 1042を形成する際、ハーフトーン露光技術 (及び第二のハーフトーン マスク(図示せず))を用いている。すなわち、まず、ゲート絶縁膜 1023上に、ァモル ファスシリコン薄膜 1052、 n型アモルファスシリコン薄膜 1053、モリブデン Zアルミ- ゥム Zモリブデン薄膜などの導電体薄膜 1033、及び、レジスト(図示せず)を順次積 層する。次に、図示してないが、ハーフトーン露光技術を用いて、レジストを形成し、 第一のエッチングにより、ソース配線 1031を形成する。さらに、ソース電極 1032、チ ヤンネル部 1051及びドレイン電極 1042となる部分を形成する。続いて、レジストを再 形成し、第二の選択的エッチングにより、チャンネル部 1051の上方の導電体薄膜 10 33及び n型アモルファスシリコン薄膜 1053をエッチングし、チャンネル部 1051、ソー ス電極 1032及びドレイン電極 1042を形成する。次に、ソース配線 1031、薄膜トラン ジスタ 1050及びゲート絶縁膜 1023上に、保護用絶縁膜 1054が積層される (ステツ プ S 1002)。 In this embodiment, a half-tone exposure technique (and a second half-tone mask (not shown)) is used when forming the source wiring 1031, the source electrode 1032, the channel portion 1051, and the drain electrode 1042. ing. That is, first, an amorphous silicon thin film 1052, an n-type amorphous silicon thin film 1053, a conductor thin film 1033 such as molybdenum Z aluminum Z molybdenum thin film, and a resist (not shown) are sequentially formed on the gate insulating film 1023. Stack up. Next, although not shown, a resist is formed using a halftone exposure technique, and a source wiring 1031 is formed by first etching. Further, portions to be the source electrode 1032, the channel portion 1051, and the drain electrode 1042 are formed. Subsequently, the resist is re-formed, and the conductive thin film 1033 and the n-type amorphous silicon thin film 1053 above the channel portion 1051 are etched by the second selective etching, so that the channel portion 1051, the source electrode 1032, and the drain electrode are etched. 1042 is formed. Next, source wiring 1031, thin film transistor A protective insulating film 1054 is stacked on the register 1050 and the gate insulating film 1023 (step S 1002).
[0058] 次に、図 4に示すように、保護用絶縁膜 1054上にレジスト 1055を積層する (ステツ プ S1003)。続いて、ハーフトーン露光技術 (及び第三のハーフトーンマスク(図示せ ず))を用いて、積層したレジスト 1055を所定の形状に形成しエッチングを行う。さら に、レジスト 1055を再形成し、再形成されたレジスト(再形成レジスト 1553)の周縁下 部にアンダーカット部 1554を形成する(ステップ S 1004)。  Next, as shown in FIG. 4, a resist 1055 is laminated on the protective insulating film 1054 (step S1003). Subsequently, using a halftone exposure technique (and a third halftone mask (not shown)), the laminated resist 1055 is formed into a predetermined shape and etched. Further, the resist 1055 is re-formed, and an undercut portion 1554 is formed at the lower peripheral edge of the re-formed resist (re-formed resist 1553) (step S 1004).
次に、レジスト 1055及びアンダーカット部 1554の形成方法について、図面を参照 して説明する。  Next, a method for forming the resist 1055 and the undercut portion 1554 will be described with reference to the drawings.
[0059] 図 7は、本発明の第一実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、 (a)は保護用絶縁膜上のレジストが所定の形状に形成された平 面図を示しており、(b)は C C拡大断面図を示している。  FIG. 7 is a schematic diagram for explaining a method for manufacturing a TFT substrate, which is useful for the first embodiment of the present invention. FIG. 7 (a) shows that the resist on the protective insulating film has a predetermined shape. The formed plan view is shown, and (b) shows the CC enlarged cross-sectional view.
図 7において、まず、保護用絶縁膜 1054上にレジスト 1055が積層される (ステップ S1003)。続いて、ハーフトーン露光技術により、レジスト 1055が所定の形状に形成 される。すなわち、レジスト 1055は、ドレイン電極 1042の上方に、コンタクトホール 1 541を形成するための開口部 1056が形成される。さら〖こ、画素電極 1612が形成さ れる部分(図 11参照)に、厚さの薄いハーフトーン露光レジスト 1552が形成され、画 素電極 1612が形成されない部分には、厚さの厚い全露光レジスト 1551が形成され る。  In FIG. 7, first, a resist 1055 is stacked on the protective insulating film 1054 (step S1003). Subsequently, a resist 1055 is formed into a predetermined shape by a halftone exposure technique. That is, in the resist 1055, an opening 1056 for forming the contact hole 1 541 is formed above the drain electrode 1042. Furthermore, a thin halftone exposure resist 1552 is formed on the portion where the pixel electrode 1612 is formed (see FIG. 11), and a thick full exposure resist is formed on the portion where the pixel electrode 1612 is not formed. 1551 is formed.
[0060] 図 8は、本発明の第一実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)はコンタクトホールの形成された拡大断面図を示しており、 ( b)はレジストが再形成され、アンダーカット部の形成された拡大断面図を示しており、 (c)は D部詳細図を示している。  FIG. 8 shows a schematic diagram for explaining a method of manufacturing a TFT substrate according to the first embodiment of the present invention, and (a) shows an enlarged cross-sectional view in which contact holes are formed. (B) is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and (c) is a detailed view of the D portion.
図 8 (a)において、まず、ハーフトーン露光技術により形成されたレジスト 1055を用 いて、保護用絶縁膜 1054に対してエッチング (通常、ドライエッチング)を行う。さらに 、画素電極 1612とドレイン電極 1042を接続させるためのコンタクトホール 1541を形 成する。  In FIG. 8A, first, etching (usually dry etching) is performed on the protective insulating film 1054 using a resist 1055 formed by a halftone exposure technique. Further, a contact hole 1541 for connecting the pixel electrode 1612 and the drain electrode 1042 is formed.
[0061] 次に、図 8 (b)に示すように、レジスト 1055に対して再形成を行う。すなわち、レジス ト 1055を酸素プラズマアツシングによって徐々に除去し、ハーフトーン露光レジスト 1 552を全て除去する。このとき、全露光レジスト 1551は、上方から徐々に除去され、 厚さが薄くなつた再形成レジスト 1553となる力 レジストとして機能するための厚さを 有している。また、再形成レジスト 1553の上面は、所定の形状を維持している。続い て、現像液にて、再現像することにより、上記所定形状の周縁下部にアンダーカット 部 1554が形成される(ステップ S1004)。 Next, as shown in FIG. 8B, the resist 1055 is re-formed. That is, Regis G 1055 is gradually removed by oxygen plasma ashing to remove all of the halftone exposure resist 1 552. At this time, the all-exposure resist 1551 has a thickness for functioning as a force resist that is gradually removed from above and becomes a re-formed resist 1553 with a reduced thickness. Further, the upper surface of the re-formed resist 1553 maintains a predetermined shape. Subsequently, an undercut portion 1554 is formed in the lower portion of the periphery of the predetermined shape by re-developing with a developer (step S1004).
[0062] ここで、好ましくは、図 8 (c)に示すよう〖こ、再形成レジスト 1553を、上層レジスト 155 laと下層レジスト 1551bと力 なる二層構造とするとよい。上層レジスト 1551aと下層 レジスト 1551bは、それぞれ現像液に対する溶解性が異なる。また、上層レジスト 15 51aに比べて下層レジスト 1551bの方が溶解しやすくなるよう設定されている。これ により、アンダーカット部 1554をより確実に形成することができ、歩留りを向上させる ことができる。 Here, preferably, as shown in FIG. 8 (c), the re-formed resist 1553 has a two-layer structure in which an upper resist layer 155la and a lower resist layer 1551b are used. The upper resist 1551a and the lower resist 1551b have different solubility in the developer. Further, the lower resist 1551b is set to be more easily dissolved than the upper resist 1551a. As a result, the undercut portion 1554 can be more reliably formed, and the yield can be improved.
また、上層レジスト 1551aと下層レジスト 1551bに溶解性の差を付けるためには、た とえば、 2種類以上のレジスト榭脂をブレンドするなどして成分を調整する。あるいは 、光反応を利用して、硬化度に差を設けて溶解性に差を付けることができる。  In order to make a difference in solubility between the upper resist 1551a and the lower resist 1551b, for example, the components are adjusted by blending two or more resist resins. Alternatively, the photoreaction can be used to provide a difference in solubility by providing a difference in the degree of cure.
[0063] 次に、図 4に示すように、ガラス基板 1010の上方に、透明な導電性物質を蒸着され 、互いに分離された画素電極 1612及びレジスト上の導電体膜 1611を形成する(ス テツプ S 1005)。 Next, as shown in FIG. 4, a transparent conductive material is deposited above the glass substrate 1010 to form pixel electrodes 1612 and a conductive film 1611 on the resist that are separated from each other (step) S 1005).
次に、画素電極 1612及びレジスト上の導電体膜 1611の形成方法について、図面 を参照して説明する。  Next, a method for forming the pixel electrode 1612 and the conductor film 1611 on the resist will be described with reference to the drawings.
[0064] 図 9は、本発明の第一実施形態に力かる TFT基板の製造方法を説明するための、 導電体膜の形成された概略図を示しており、(a)は拡大断面図を示しており、(b)は E部詳細図を示している。  FIG. 9 shows a schematic view with a conductor film formed for explaining a manufacturing method of a TFT substrate according to the first embodiment of the present invention, and (a) is an enlarged sectional view. (B) shows a detailed view of part E.
図 9において、ガラス基板 1010の上方に、透明な導電性物質が蒸着され、導電体 膜 1061 (互いに分離された画素電極 1612及びレジスト上の導電体膜 1611)が形 成される (ステップ S1005)。すなわち、ガラス基板 1010の上方に透明な導電性物 質が蒸着されるにつれて、再形成レジスト 1553上に、レジスト上の導電体膜 1611が 形成される。また、露出したドレイン電極 1042及び保護用絶縁膜 1054上に、画素 電極 1612が形成される。画素電極 1612は、アンダーカット部 1554によって、レジス ト上の導電体膜 1611から離れており、電気的に接続されていない。この画素電極 16 12は、コンタクトホール 1541を介してドレイン電極 1042と電気的に接続されている。 In FIG. 9, a transparent conductive material is vapor-deposited above the glass substrate 1010 to form a conductor film 1061 (pixel electrode 1612 separated from each other and conductor film 1611 on the resist) (step S1005). . That is, as a transparent conductive material is deposited above the glass substrate 1010, a conductor film 1611 on the resist is formed on the re-formed resist 1553. Further, on the exposed drain electrode 1042 and the protective insulating film 1054, the pixel An electrode 1612 is formed. The pixel electrode 1612 is separated from the conductive film 1611 on the resist by an undercut portion 1554 and is not electrically connected. The pixel electrode 1612 is electrically connected to the drain electrode 1042 through a contact hole 1541.
[0065] 上記導電性物質として、通常、酸化インジウム ·酸化亜鉛 (IZO)、酸化インジウム · 酸化スズ'酸化亜鉛 (ITZO)、酸化亜鉛'酸化スズ (ZTO)、及び、これらの組合せか らなる群を含むものが用いられる。このよう〖こすると、ストリッピング組成物がリサイクル 工程にお!ヽて昇温されると、カルボン系化合物が導電体膜を容易に溶解することが できる。これによつて、生産性を向上させることができる。 [0065] As the conductive material, usually a group consisting of indium oxide / zinc oxide (IZO), indium oxide / tin oxide 'zinc oxide (ITZO), zinc oxide' tin oxide (ZTO), and combinations thereof. The thing containing is used. In this way, when the stripping composition is heated during the recycling process, the carboxylic compound can easily dissolve the conductor film. Thereby, productivity can be improved.
なお、導電性物質としては、上記のものが好ましいが、これらに限定されるものでは なぐたとえば、ストリッピング工程において、ストリッピング組成物によってほとんど溶 解されず、かつ、リサイクル工程において、ストリッピング組成物に溶解されるものであ ればよい。  The conductive materials are preferably those described above, but are not limited thereto. For example, in the stripping process, the stripping composition is hardly dissolved by the stripping composition, and the stripping composition is used in the recycling process. It only needs to be dissolved in the product.
また、酸化インジウム '酸化スズ (ITO)、アモルファス酸化インジウム '酸化スズ (a— Indium oxide 'tin oxide (ITO), amorphous indium oxide' tin oxide (a—
ITO)、酸化チタン'酸化ニオブ、酸化スズ'酸化亜鈴、酸化スズ'酸化アンチモン、フ ッ素ドープ酸化スズ、及びこれらの組合せからなる群から選択された、これらの導電 体膜は、本発明にかかるストリッピング組成物には全く溶解しない。 These conductive films selected from the group consisting of (ITO), titanium oxide 'niobium oxide, tin oxide' dumbbell oxide, tin oxide 'antimony oxide, fluorine-doped tin oxide, and combinations thereof are used in the present invention. It does not dissolve at all in such stripping compositions.
[0066] 次に、図 10に示すように、ガラス基板 1010にストリツビング組成物を供給し、レジス ト上の導電体膜 1611をガラス基板 1010から剥離させる(ステップ S 1006)。続いて、 使用済みストリッピング組成物に、レジスト上の導電体膜 1611を溶解させ、再利用す る(ステップ S 1007)。  Next, as shown in FIG. 10, a stripping composition is supplied to the glass substrate 1010, and the conductive film 1611 on the resist is peeled from the glass substrate 1010 (step S1006). Subsequently, the conductive film 1611 on the resist is dissolved in the used stripping composition and reused (step S 1007).
次に、レジスト上の導電体膜 1611をガラス基板 1010から剥離させる方法、及び、 使用済みストリッピング組成物にレジスト上の導電体膜 1611を溶解させ、その後使 用済みストリツピング糸且成物を再利用する方法について、図面を参照して説明する。  Next, the conductive film 1611 on the resist is peeled from the glass substrate 1010, and the conductive film 1611 on the resist is dissolved in the used stripping composition, and then the used stripping yarn and the composition are re-used. A method to be used will be described with reference to the drawings.
[0067] 図 10は、本発明の第一実施形態にカゝかる TFT基板の製造方法において、レジスト 上の導電体膜を剥離させるストリッピング工程、及び、使用済みストリッピング組成物 を再利用するリサイクル工程を説明するための概略断面図を示している。  [0067] FIG. 10 shows a stripping process for stripping a conductor film on a resist and reuses a used stripping composition in the TFT substrate manufacturing method according to the first embodiment of the present invention. The schematic sectional drawing for demonstrating a recycling process is shown.
図 10において、導電体膜 1061が積層されたガラス基板 1010は、ストリッピング工 程として、ストリツビング装置 1007によって再形成レジスト 1553が溶解され、レジスト 上の導電体膜 1611が剥離される (ステップ S 1006)。 In FIG. 10, the glass substrate 1010 on which the conductor film 1061 is laminated has a re-resisting resist 1553 dissolved by a stripping device 1007 as a stripping process. The upper conductive film 1611 is peeled off (step S 1006).
[0068] ストリツビング装置 1007は、ストリッピング組成物を含む剥離液 1070が貯留される 貯留槽 1071a, 1071b,ガラス基板 1010に剥離液 1070をスプレー状に噴射するス プレーノス、ノレ 1072、ポンプ 1073、吸込みパイプ 1074、噴射された剥離液 1070を 回収する回収槽 1075及び回収パイプ 1076と力 なっている。また、回収パイプ 107 6は、一端が回収槽 1075に接続されており、電磁バルブ 1761, 1762がそれぞれ設 けられた 2本の分岐管を介して、他端が貯留槽 1071a, 1071bにつながっている。し たがって、たとえば、電磁バルブ 1761が閉じられ電磁バルブ 1762が開かれると、回 収槽 1075の剥離液 1070は、貯留槽 1071bに流れ落ちる。さらに、吸込みパイプ 7 4は、一端がポンプ 73に接続されており、電磁バルブ 1711, 1712がそれぞれ設け られた 2本の分岐管を介して、他端が貯留槽 1071a, 1071bにつながっている。した がって、たとえば、電磁バルブ 1712が閉じられ電磁バルブ 1711が開かれると、貯留 槽 1071aの剥離液 1070がポンプ 1073に吸い込まれる。  [0068] The stripping apparatus 1007 stores a stripping liquid 1070 containing a stripping composition, and a storage tank 1071a, 1071b, and a glass substrate 1010 spraying the stripping liquid 1070 in a spray form, spray 1072, pump 1073, suction The pipe 1074, the recovery tank 1075 for recovering the sprayed stripping liquid 1070, and the recovery pipe 1076 are in force. One end of the recovery pipe 1076 is connected to the recovery tank 1075, and the other end is connected to the storage tanks 1071a and 1071b via two branch pipes provided with electromagnetic valves 1761 and 1762, respectively. Yes. Therefore, for example, when the electromagnetic valve 1761 is closed and the electromagnetic valve 1762 is opened, the stripping solution 1070 in the collection tank 1075 flows down to the storage tank 1071b. Further, one end of the suction pipe 74 is connected to the pump 73, and the other end is connected to the storage tanks 1071a and 1071b via two branch pipes provided with electromagnetic valves 1711 and 1712, respectively. Therefore, for example, when the electromagnetic valve 1712 is closed and the electromagnetic valve 1711 is opened, the stripping solution 1070 in the storage tank 1071a is sucked into the pump 1073.
[0069] ストリツビング装置 1007は、ストリッピング組成物として、上述した各実施形態のスト リッピング組成物のいずれか一つを使用する。これにより、再形成レジスト 1553を溶 解する際、ほとんど画素電極 1612が溶解されないので、画素電極 1612へダメージ を与えることもない。これによつて、製造歩留り及び信頼性を向上させることができる。 また、悪臭を放っといつたこともなぐ作業環境を改善できる。  [0069] The stripping apparatus 1007 uses any one of the stripping compositions of the above-described embodiments as the stripping composition. As a result, when the re-formed resist 1553 is dissolved, the pixel electrode 1612 is hardly dissolved, so that the pixel electrode 1612 is not damaged. Thereby, the manufacturing yield and reliability can be improved. Moreover, it is possible to improve the working environment where a bad smell is emitted.
[0070] 次に、上記構成のストリツビング装置 1007の動作について、説明する。  Next, the operation of the stripping device 1007 having the above configuration will be described.
まず、ストリツビング装置 1007は、貯留槽 1071aに低温 (通常、約 50°C未満)の剥 離液 1070が蓄えられる。さらに、電磁バルブ 1711が開、電磁バルブ 1761が閉、電 磁バルブ 1762が開、電磁バルブ 1712が閉の状態にある。ここで、貯留槽 1071aに 蓄えられた剥離液 1070は、レジスト上の導電体膜 1611が全てストリッピング組成物 に溶解している。  First, in the stripping apparatus 1007, a low temperature (usually less than about 50 ° C) stripping solution 1070 is stored in the storage tank 1071a. Further, the electromagnetic valve 1711 is open, the electromagnetic valve 1761 is closed, the electromagnetic valve 1762 is open, and the electromagnetic valve 1712 is closed. Here, in the stripping solution 1070 stored in the storage tank 1071a, the conductor film 1611 on the resist is completely dissolved in the stripping composition.
[0071] 次に、ポンプ 1073が作動すると、貯留槽 1071aの剥離液 1070力 電磁バルブ 17 11及び吸込みパイプ 1074を介してポンプ 1073に吸い込まれ、スプレーノズル 107 2からガラス基板 1010に吹き付けられる。  Next, when the pump 1073 is activated, the peeling liquid 1070 force in the storage tank 1071a is sucked into the pump 1073 via the electromagnetic valve 1711 and the suction pipe 1074, and is sprayed from the spray nozzle 1072 onto the glass substrate 1010.
本実施形態のストリツビング工程では、剥離液 1070がスプレーノズル 1072からス プレー状に噴射される。このようにすると、微小な隙間を通ってアンダーカット部 155 4に剥離液 1070が入り込む。これによつて、レジスト上の導電体膜 1611をガラス基 板 1010から効果的に剥離させることができる (ステップ S1006)。ここで、ガラス基板 1010に吹き付けられた剥離液 1070は、ストリッピング組成物のカルボン系化合物が 弱酸であること、さらに、低温であることによって、必要な画素電極 1612を溶解させ てしまうといった不具合を防止する。 In the stripping process of the present embodiment, the stripping solution 1070 is removed from the spray nozzle 1072. It is injected in a play shape. As a result, the stripping solution 1070 enters the undercut portion 155 4 through a minute gap. As a result, the conductor film 1611 on the resist can be effectively peeled off from the glass substrate 1010 (step S1006). Here, the stripping solution 1070 sprayed on the glass substrate 1010 has a problem in that the necessary pixel electrode 1612 is dissolved because the carboxylic compound of the stripping composition is a weak acid and the temperature is low. To prevent.
なお、図 10は、ストリツビング中の状態を示しており、再形成レジスト 1553及びレジ スト上の導電体膜 1611が部分的に残って ヽる。  FIG. 10 shows a state during stripping, and the re-formed resist 1553 and the conductor film 1611 on the resist partially remain.
[0072] このように、上記ストリッピング組成物は、再形成レジスト 1553を溶解し、再形成レ ジスト 1553の上面に形成されたレジスト上の導電体膜 1611を全てガラス基板 1010 より分離させることができる。  As described above, the stripping composition can dissolve the re-formed resist 1553 and separate all the conductor film 1611 on the resist formed on the upper surface of the re-formed resist 1553 from the glass substrate 1010. it can.
また、ストリッピング組成物は、導電体膜 1061を溶解しない。したがって、最適なス トリッピング条件 (スプレー圧力やスプレー噴射時間など)を選ぶことができる。一般的 に、本実施形態のストリッピング組成物を使用する場合、スプレー噴射時間は、約 0. 5〜5分であり、好ましくは、約 1〜3分である。また、再形成レジスト 1553の溶解は、 ストリッピング組成物の温度力 約 30°C以上 60°C未満の温度範囲で行われることが 好ましぐさらに、約 40°C以上 50°C以下が好ましい。  Further, the stripping composition does not dissolve the conductor film 1061. Therefore, the optimum stripping conditions (spray pressure, spraying time, etc.) can be selected. Generally, when using the stripping composition of this embodiment, the spraying time is about 0.5-5 minutes, preferably about 1-3 minutes. Further, it is preferable that the re-forming resist 1553 is dissolved in a temperature range of about 30 ° C. to less than 60 ° C. The temperature force of the stripping composition is preferably about 40 ° C. to 50 ° C. .
[0073] ストリッピング工程におけるストリッピング組成物の温度を、約 30°C以上 60°C未満と する理由は、約 30°Cより低温の場合、再形成レジスト 1553を溶解する時間が長くな り、生産効率が低下するからである。また、約 60°C以上の高温の場合、カルボン系化 合物の溶解速度が上昇し、画素電極 1612を溶解し、製造歩留りを低下させる心配 があるからである。  [0073] The reason for setting the temperature of the stripping composition in the stripping step to about 30 ° C or more and less than 60 ° C is that when the temperature is lower than about 30 ° C, the time for dissolving the re-formed resist 1553 becomes longer. This is because production efficiency decreases. Further, when the temperature is higher than about 60 ° C., the dissolution rate of the carboxylic compound is increased, so that there is a concern that the pixel electrode 1612 is dissolved and the manufacturing yield is lowered.
[0074] 次に、ガラス基板 1010に吹き付けられた剥離液 1070は、ガラス基板 1010の再形 成レジスト 1553を溶解し、剥離されたレジスト上の導電体膜 1611を含んだ状態で、 回収槽 1075、回収パイプ 1076及び電磁バルブ 1762を介して、貯留槽 171bに流 れ落ちる。この際、剥離されたレジスト上の導電体膜 1611は、剥離液 1070中に粒 子やひも状体などの微小片として混入している。そして、レジスト上の導電体膜 1611 を含む剥離液 1070 (適宜、使用済みストリツビング組成物と呼称する。)が貯留槽 10 71bに流入すると、貯留槽 1071bにおいて、レジスト上の導電体膜 1611が沈降し、 カルボン系化合物力 レジスト上の導電体膜 1611の溶解を開始する。 [0074] Next, the stripping solution 1070 sprayed onto the glass substrate 1010 dissolves the reshaped resist 1553 of the glass substrate 1010, and includes the conductor film 1611 on the stripped resist, Then, it flows down to the storage tank 171b through the recovery pipe 1076 and the electromagnetic valve 1762. At this time, the conductor film 1611 on the stripped resist is mixed in the stripping solution 1070 as microscopic pieces such as particles and strings. Then, a stripping solution 1070 (referred to as a used stripping composition as appropriate) containing the conductor film 1611 on the resist is stored in the storage tank 10. When flowing into 71b, the conductive film 1611 on the resist settles in the storage tank 1071b, and the dissolution of the conductive film 1611 on the carboxylic compound force resist starts.
[0075] ここで、好ましくは、貯留槽 1071bに温度制御手段及び撹拌手段(図示せず)を設 けて、剥離液 1070の温度を高温にするとよい。すなわち、レジスト上の導電体膜 16 11の溶解は、ストリッピング組成物の温度力 約 60°C以上 100°C未満の温度範囲で 行われることが好ましぐさらに、約 70°C以上 80°C以下が好ましい。一般的に、上記 実施形態のストリッピング組成物を使用する場合、レジスト上の導電体膜 1611を溶 解させるのに要する時間は、約 10〜30分である。  [0075] Here, preferably, the temperature of the stripping solution 1070 is increased by providing temperature control means and stirring means (not shown) in the storage tank 1071b. That is, the dissolution of the conductive film 16 11 on the resist is preferably performed in a temperature range of about 60 ° C. or more and less than 100 ° C. C or less is preferable. Generally, when the stripping composition of the above embodiment is used, the time required for dissolving the conductor film 1611 on the resist is about 10 to 30 minutes.
[0076] リサイクル工程におけるストリッピング組成物の温度を、約 60°C以上 100°C未満と する理由は、約 60°Cより低温の場合、カルボン系化合物が弱酸であるために、レジス ト上の導電体膜 1611を溶解することができないからである。また、約 100°C以上の高 温の場合、ストリッピング組成物中の成分が蒸発し、組成の変動をきたす場合がある 力 である。  [0076] The reason for setting the temperature of the stripping composition in the recycling process to be about 60 ° C or higher and lower than 100 ° C is that when the temperature is lower than about 60 ° C, the carboxylic compound is a weak acid. This is because the conductive film 1611 cannot be dissolved. In addition, when the temperature is higher than about 100 ° C, the components in the stripping composition may evaporate, and the composition may change.
このように、リサイクル工程において、ストリッピング組成物を昇温させると、溶解速 度が速くなる。したがって、レジスト上の導電体膜 1611をより短時間で溶解させること ができる。特に、ストリッピング組成物の温度力 約 70°C以上となると、カルボン系化 合物における酸の活性が向上し、強酸にほぼ等しい挙動を示す。これによつて、レジ スト上の導電体膜 1611を容易に溶解する。  Thus, when the stripping composition is heated in the recycling process, the dissolution rate increases. Therefore, the conductor film 1611 on the resist can be dissolved in a shorter time. In particular, when the temperature force of the stripping composition is about 70 ° C or higher, the activity of the acid in the carboxylic compound is improved and the behavior is almost equal to that of the strong acid. As a result, the conductor film 1611 on the resist is easily dissolved.
[0077] 次に、ポンプ 1073が停止し電磁バルブ 1762が閉じられ、所定時間が経過すると、 貯留槽 1071b内でレジスト上の導電体膜 1611が完全に溶解され、レジスト上の導 電体膜 1611を含んでいない剥離液 1070が、貯留槽 1071bに蓄えられる。この再生 された剥離液 1070は、電磁バルブ 1071が閉、電磁バルブ 1761が開、電磁バルブ 1762力閉、電磁バルブ 1762が開とされた後、ポンプ 1073によって、吸込みパイプ 1074から吸い込まれ、スプレーノズル 1072からガラス基板 1010に吹き付けられる。 すなわち、使用済みストリッピング組成物から、レジスト上の導電体膜 1611を溶解さ せ、再利用する (ステップ S 1007)。  [0077] Next, when the pump 1073 is stopped and the electromagnetic valve 1762 is closed and a predetermined time elapses, the conductive film 1611 on the resist is completely dissolved in the storage tank 1071b, and the conductive film 1611 on the resist. The stripping solution 1070 that does not contain is stored in the storage tank 1071b. The regenerated stripping solution 1070 is sucked from the suction pipe 1074 by the pump 1073 after the electromagnetic valve 1071 is closed, the electromagnetic valve 1761 is opened, the electromagnetic valve 1762 is closed, and the electromagnetic valve 1762 is opened. The glass substrate 1010 is sprayed from 1072. That is, the conductive film 1611 on the resist is dissolved from the used stripping composition and reused (step S 1007).
[0078] 図 11は、本発明の第一実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)は画素電極の形成された平面図を示しており、(b)は F— F 拡大断面図を示している。 FIG. 11 is a schematic diagram for explaining a method for manufacturing a TFT substrate according to the first embodiment of the present invention, and (a) is a plan view in which pixel electrodes are formed. , (B) is F— F An enlarged sectional view is shown.
図 1 Uこお!/ヽて、 TFT基板 ΙΟΟΙίま、ス卜リッピング工程【こより、再形成レジス卜 1553 及びレジスト上の導電体膜 1611が除去され、画素電極 1612及び保護用絶縁膜 10 54が露出している。  Figure 1 U Koo! / TFT, TFT substrate, slipping process 【From here, the re-forming resist 1553 and the conductive film 1611 on the resist are removed, and the pixel electrode 1612 and the protective insulating film 10 54 are removed. Exposed.
なお、本実施形態の TFT基板 1001の製造方法は、第一のマスク、第二のハーフト ーンマスク及び第三のハーフトーンマスクの三枚のマスクを使用している。これによつ て、本実施形態の TFT基板 1001の製造方法は、製造工程が削減され、生産性に 優れている。  Note that the manufacturing method of the TFT substrate 1001 of the present embodiment uses three masks: a first mask, a second halftone mask, and a third halftone mask. As a result, the manufacturing method of the TFT substrate 1001 of the present embodiment is excellent in productivity because the manufacturing process is reduced.
[0079] このように本実施形態の TFT基板 1001の製造方法によれば、マスク数を削減する ことができる。これによつて、製造工程が削減され、生産性を向上させることができる。 また、カルボン系化合物を含むことにより、チオール系化合物を含む場合と比べて、 レジストを溶解する際、ほとんど導電体膜 1061が溶解されない。これによつて、画素 電極 1612へダメージを与えることもなぐ製造歩留り及び信頼性を向上させることが できる。また、悪臭を放っといつたこともなぐ作業環境を改善できる。さらに、ストリツ ビング工程において使用された、使用済みストリッピング組成物のリサイクルを、確実 かつ効率よく行うことによって、品質及び生産性を向上させることができる。  As described above, according to the manufacturing method of the TFT substrate 1001 of this embodiment, the number of masks can be reduced. As a result, manufacturing steps can be reduced and productivity can be improved. In addition, by including the carboxylic compound, the conductor film 1061 is hardly dissolved when the resist is dissolved as compared with the case where the thiol compound is included. As a result, the manufacturing yield and reliability without damaging the pixel electrode 1612 can be improved. Moreover, it is possible to improve the working environment where a bad smell is emitted. Furthermore, quality and productivity can be improved by reliably and efficiently recycling the used stripping composition used in the stripping process.
次に、上記 TFT基板の製造方法の実施例及び比較例について説明する。 実施例 1  Next, examples and comparative examples of the TFT substrate manufacturing method will be described. Example 1
[0080] まず、上記第一実施形態に力かるストリッピング組成物として、表 1に示す剥離液 a, b, c, d, eを用意し 7こ。  [0080] First, as the stripping composition useful for the first embodiment, the stripping solutions a, b, c, d, e shown in Table 1 are prepared.
[表 1] [table 1]
剥離液組成 Stripping solution composition
実施例 1 アミノ化合物 非プロトン性極性溶媒 カルボン酸化合物 化合物 w t % 化合物 w t % 化合物 w t % モノエタノ N _ メ チル  Example 1 Amino compound Aprotic polar solvent Carboxylic acid compound Compound w t% Compound w t% Compound w t% Monoethano N_methyl
剥離液 a 3 0 6 6 酔酸 4  Stripping solution a 3 0 6 6 Drunk acid 4
ールァミン ピロリ ドン  Luamin Pylori Don
モノイソプ N, N—ジメ  Monoisop N, N—Dime
剥離液 b ロパノール 3 0 チルァセト 6 6 酢酸 4  Stripper b Lopanol 3 0 Tylaceto 6 6 Acetic acid 4
ァミン アミ ド  Ammin Amid
メチルメタ N, N—ジメ  Methylmeta N, N-dimethyl
剥離液 c ノールアミ 3 0 チルホルム 6 6 酢酸 4  Stripping solution c Nolamy 3 0 Tilform 6 6 Acetic acid 4
ン アミ ド  Amide
ェチルエタ N, N—ジメ  Ethileta N, N—Dime
剥離液 d ノールアミ 6 6 チルイミダ 3 0 齚酸 4  Stripping solution d Nolamy 6 6 Tyrimida 3 0 Oxalic acid 4
ン ゾール  Sol
ジメ夕ノー ジメチルス  Dime Yuno Dimethyls
剥離液 e 6 6 3 0 ァクリル酸 4  Stripping solution e 6 6 3 0 Acrylic acid 4
ルァミン ルホキシド  Ruamine Ruxoxide
[0081] ガラス基板として、約 100mm X 100mm X 0. 7mmの正方形状のガラス基板を用 意し、純水シャワーにて洗浄した後、レジストをスピンコーターにて塗布形成した。レ ジストは日本ゼオン製ネガ型レジスト: ZTN2464— 27を用いた。続いて、約 80°Cに て、約 15分間オーブンで加熱した後、露光強度 300mjZcm2にて露光した。使用す るマスクとしては、約 20 μ mのラインと約 90 μ mのスペースを順に配設したストライプ マスクを用いた。 As a glass substrate, a square glass substrate of about 100 mm × 100 mm × 0.7 mm was prepared, washed with a pure water shower, and then a resist was applied and formed with a spin coater. The resist used was a negative resist ZTN2464-27 manufactured by ZEON. Subsequently, after heating in an oven at about 80 ° C. for about 15 minutes, exposure was performed at an exposure intensity of 300 mjZcm 2 . As a mask to be used, a stripe mask in which about 20 μm lines and about 90 μm spaces were arranged in order was used.
次に、テトラメチルアンモ -ゥムハイド口オキサイドの約 2. 8wt%の水溶液にて、現像 し、上記ライン'スペースのストライプパターンを得た。現像後、純水シャワー洗浄、ェ ァーブローにより洗净水を飛ばした後、約 130°Cにて、約 15分オーブンにて加熱し た。  Next, development was carried out with an aqueous solution of about 2.8 wt% of tetramethyl ammonium hydride mouth oxide to obtain the stripe pattern of the above-mentioned line space. After development, after washing with pure water shower and air blow, it was heated in an oven at about 130 ° C for about 15 minutes.
[0082] 次に、上記ガラス基板上に、 IZO (In O : ZnO=約 90 : 10wt%)のターゲットを用い  Next, a target of IZO (In 2 O 3: ZnO = about 90:10 wt%) was used on the glass substrate.
2 3  twenty three
て、厚さ約 lOOnmの薄膜をスパッタ法にて成膜した。  Thus, a thin film having a thickness of about lOOnm was formed by sputtering.
剥離液 a, b, c, d, eを約 40°Cに加温した後に、上記で得られたガラス基板を、上 記剥離液中に 2分間浸漬し、レジスト剥離を行い、純水洗浄、エアーブローした後、 乾燥器にて乾燥させた。これにより、 IZO力もなる薄膜 (幅約 m)、及び、約 20 mのスペースの形成されたガラス基板を得た。 使用済み剥離液 a, b, c, d, eの内容物を光学顕微鏡にて観察すると、剥離された 幅約 20 μ mのコイル状の ΙΖΟ薄膜が存在することが確認された(図 12参照)。 After heating the stripping solutions a, b, c, d, and e to about 40 ° C, the glass substrate obtained above is immersed in the stripping solution for 2 minutes to strip the resist and clean with pure water. After air blowing, it was dried with a dryer. As a result, a glass substrate having a thin film (width of about m) having an IZO force and a space of about 20 m was obtained. When the contents of the used stripping solutions a, b, c, d, e were observed with an optical microscope, it was confirmed that there was a stripped coiled soot film with a width of about 20 μm (see Fig. 12). ).
上記使用済み剥離液 a, b, c, d, eを、約 70°Cにて、約 10分間攪拌すると、上記コ ィル状の IZO薄膜は、溶解し、コイル状の IZO薄膜は観察されな力つた。この剥離液 a, b, c, d, eにて、再度レジスト剥離を行い、レジスト剥離できることを確認した。また 、剥離された基板上には、コイル状 IZOや、粉末状 IZOは観察されな力つた。  When the used stripping solutions a, b, c, d, e are stirred at about 70 ° C for about 10 minutes, the coiled IZO thin film dissolves and the coiled IZO thin film is observed. I helped. With this stripping solution a, b, c, d, e, the resist was stripped again to confirm that the resist could be stripped. Further, no coiled IZO or powdered IZO was observed on the peeled substrate.
実施例 2  Example 2
[0083] まず、上記第二実施形態に力かるストリッピング組成物として、表 2に示す剥離液 f, gを用意した。  [0083] First, stripping solutions f and g shown in Table 2 were prepared as stripping compositions that are effective in the second embodiment.
[表 2]  [Table 2]
Figure imgf000029_0001
Figure imgf000029_0001
[0084] 次に、剥離液 f, gを約 40°Cに加温した後に、上記実施例 1と同様のガラス基板を、 上記剥離液中に 2分間浸漬し、レジスト剥離を行い、純水洗浄、エアーブローした後 、乾燥器にて乾燥させた。これにより、 IZO力もなる薄膜 (幅約 90 /z m)、及び、約 20 μ mのスペースの形成されたガラス基板を得た。 Next, after heating the stripping solutions f and g to about 40 ° C., the same glass substrate as in Example 1 was immersed in the stripping solution for 2 minutes to perform resist stripping, After washing and air blowing, it was dried with a dryer. As a result, a glass substrate having a thin film (width of about 90 / z m) having an IZO force and a space of about 20 μm was obtained.
使用済み剥離液 f, gの内容物を光学顕微鏡にて観察すると、剥離された幅約 20 μ mのコイル状の IZO薄膜が存在することが確認された(図 12参照)。  When the contents of the used stripping solutions f and g were observed with an optical microscope, it was confirmed that there was a stripped coiled IZO thin film with a width of about 20 μm (see Fig. 12).
上記使用済み剥離液 f, gを、約 70°Cにて、約 10分間攪拌すると、上記コイル状の I ZO薄膜は、溶解し、コイル状の IZO薄膜は観察されなカゝつた。この剥離液 f, gにて、 再度レジスト剥離を行い、レジスト剥離できることを確認した。また、剥離された基板 上には、コイル状 IZOや、粉末状 IZOは観察されな力つた。  When the used stripping solution f, g was stirred at about 70 ° C. for about 10 minutes, the coiled IZO thin film was dissolved and no coiled IZO thin film was observed. With this stripping solution f, g, the resist was peeled again to confirm that the resist could be stripped. In addition, coiled IZO and powdered IZO were not observed on the peeled substrate.
実施例 3  Example 3
[0085] まず、上記第三実施形態に力かるストリッピング組成物として、表 3に示す剥離液 h , i, jを用意した。 [表 3] [0085] First, stripping solutions h, i, and j shown in Table 3 were prepared as stripping compositions that can be used in the third embodiment. [Table 3]
Figure imgf000030_0001
Figure imgf000030_0001
[0086] 次に、剥離液 h, i, jを約 40°Cに加温した後に、上記実施例 1と同様のガラス基板を 、上記剥離液中に 2分間浸漬し、レジスト剥離を行い、純水洗浄、エアーブローした 後、乾燥器にて乾燥させた。これにより、 IZO力もなる薄膜 (幅約 m)、及び、約 2 0 μ mのスペースの形成されたガラス基板を得た。 [0086] Next, after heating the stripping solution h, i, j to about 40 ° C, the same glass substrate as in Example 1 was immersed in the stripping solution for 2 minutes to perform resist stripping, After washing with pure water and air blowing, it was dried with a dryer. As a result, a glass substrate having a thin film (width of about m) having an IZO force and a space of about 20 μm was obtained.
使用済み剥離液 h, i, jの内容物を光学顕微鏡にて観察すると、剥離された幅約 20 mのコイル状の IZO薄膜が存在することが確認された(図 12参照)。  When the contents of the used stripping solution h, i, j were observed with an optical microscope, it was confirmed that there was a stripped coiled IZO thin film with a width of about 20 m (see Fig. 12).
上記使用済み剥離液 h, i, jを、約 70°Cにて、約 10分間攪拌すると、上記コイル状 の IZO薄膜は、溶解し、コイル状の IZO薄膜は観察されな力 た。この剥離液にて、 再度レジスト剥離を行い、レジスト剥離できることを確認した。また、剥離された基板 上には、コイル状 IZOや、粉末状 IZOは観察されな力つた。  When the used stripping solution h, i, j was stirred at about 70 ° C. for about 10 minutes, the coiled IZO thin film was dissolved, and the coiled IZO thin film was not observed. Using this stripper, the resist was peeled again to confirm that the resist could be stripped. In addition, coiled IZO and powdered IZO were not observed on the peeled substrate.
[0087] また、上記 IZO (In O: ZnO=約 90: 10wt%)に代えて、 ITZO (In O: SnO: ZnO  [0087] Further, instead of the above IZO (In O: ZnO = about 90: 10 wt%), ITZO (In O: SnO: ZnO
2 3 2 3 2 2 3 2 3 2
=約60 : 20 : 20 %)ゃ2丁0 !10 : 3110 =約 60 :40wt%)を用いていも、同様に問題 = About 60: 20: 20%) N2 0! 10: 3110 = About 60: 40wt%)
2  2
なく剥離することができた。また、使用済み剥離液 a〜; jを、約 70°Cにて、約 10分間攪 拌すると、上記コイル状の ITZO薄膜や ZTO薄膜は、溶解し、コイル状の ITZO薄膜 や ZTO薄膜は観察されな力 た。この剥離液にて、再度レジスト剥離を行い、レジス ト剥離できることを確認した。また、剥離された基板上には、コイル状の ITZOや ZTO 、及び、粉末状の ITZOや ZTOは観察されな力つた。  It was possible to peel off. In addition, when the used stripper a ~; j is stirred at about 70 ° C for about 10 minutes, the coiled ITZO thin film and ZTO thin film are dissolved, and the coiled ITZO thin film and ZTO thin film are observed. The power that was not. The resist was peeled again with this stripper, and it was confirmed that the resist could be stripped. On the peeled substrate, coiled ITZO and ZTO, and powdered ITZO and ZTO were not observed.
[0088] また、 IZOの組成としては、 In Oを約 60〜95wt%、 ZnOを約 5〜40wt%とするの [0088] The composition of IZO is about 60 to 95 wt% In O and about 5 to 40 wt% ZnO.
2 3  twenty three
が好ましい。より好ましくは、 In Oを約 70〜95wt%、 ZnOを約 5〜30wt%とするとよ い。 Is preferred. More preferably, InO is about 70 to 95 wt% and ZnO is about 5 to 30 wt%. Yes.
さらに、 ITZOの組成としては、 In Oを約 20〜90wt%、 SnOを約 5〜40wt%、 Zn  Furthermore, the composition of ITZO is about 20-90 wt% In O, about 5-40 wt% SnO, Zn
2 3 2  2 3 2
Oを約 5〜40wt%とするのが好ましい。より好ましくは、 In Oを約 40〜80wt%、 SnO  O is preferably about 5 to 40 wt%. More preferably, InO is about 40-80 wt%, SnO
2 3 2 を約 10〜30wt%、 ZnOを約 10〜30wt%とするとよい。  2 3 2 should be about 10-30 wt% and ZnO should be about 10-30 wt%.
また、 ZTOの組成は、 ZnOを約 50〜90wt%、 SnOを約 10〜50wt%とするのが好  The composition of ZTO is preferably about 50 to 90 wt% for ZnO and about 10 to 50 wt% for SnO.
2  2
ましい。より好ましくは、 ZnOを約 55〜80wt%、 SnOを約 20〜45wt%とするとよい。  Good. More preferably, ZnO is about 55-80 wt% and SnO is about 20-45 wt%.
2  2
[0089] 「比較例 1」  [0089] Comparative Example 1
各実施例で使用した IZOターゲットに代えて、 ITO (In Ο : SnO =約 90 : 10wt%)  Instead of the IZO target used in each example, ITO (In :: SnO = about 90: 10 wt%)
2 3 2  2 3 2
ターゲットを用いた以外、上記各実施例と同様の操作を行った。  The same operation as in each of the above examples was performed except that the target was used.
得られた使用済み剥離液 a〜jの内容物を光学顕微鏡にて観察すると、剥離された 20 mのコイル状の ITO薄膜が存在することを確認した。当該使用済み剥離液を、 約 70°Cにて、約 30分間攪拌したが、上記コイル状の ITO薄膜は、溶解せず、コイル 状の ITO薄膜及び微粉ィ匕した ITOが観察された。この剥離液にて、再度レジスト剥 離を行い、レジスト剥離できることを確認したが、剥離された基板上には、微粉末状 I TOが付着して 、るのが観察された。  When the contents of the obtained used stripping solutions a to j were observed with an optical microscope, it was confirmed that there was a stripped 20 m coiled ITO thin film. The used stripping solution was stirred at about 70 ° C. for about 30 minutes. However, the coiled ITO thin film did not dissolve, and the coiled ITO thin film and finely powdered ITO were observed. The resist was stripped again with this stripper and it was confirmed that the resist could be stripped. However, it was observed that fine powdery ITO adhered to the stripped substrate.
これら、付着物は、後工程の配向膜塗布や配向処理、液晶注入、封止工程を経て 、液晶パネルが完成する。しかし、付着物は、当該後工程中に配向膜中に拡散した り、液晶中に拡散したりし、表示欠陥や表示不良の原因になる。  These deposits are subjected to subsequent alignment film application and alignment treatment, liquid crystal injection, and sealing steps, thereby completing a liquid crystal panel. However, the deposits diffuse into the alignment film during the subsequent process or diffuse into the liquid crystal, causing display defects and display defects.
[0090] [ストリッピング組成物のリサイクル方法における第一実施形態] [0090] [First embodiment of recycling method of stripping composition]
また、本発明は、ストリッピング組成物のリサイクル方法としても有効である。 本実施形態に力かるストリッピング組成物のリサイクル方法は、上述した第一実施 形態の TFT基板の製造方法とほぼ同様な方法としてある。  The present invention is also effective as a method for recycling the stripping composition. The recycling method of the stripping composition that works in this embodiment is almost the same as the method for manufacturing the TFT substrate of the first embodiment described above.
[0091] すなわち、基板 1010上に、薄膜トランジスタ 1050を形成する(ステップ S1001)。 That is, the thin film transistor 1050 is formed over the substrate 1010 (step S1001).
続いて、ガラス基板 1010及び薄膜トランジスタ 1050上に、保護用絶縁膜 1054が積 層される (ステップ S1002)。次に、保護用絶縁膜 1054上にレジスト 1055を積層す る (ステップ S 1003)。続いて、ハーフトーン露光技術 (第三のハーフトーンマスク(図 示せず))を用いて、積層したレジスト 1055を所定の形状に形成しエッチングを行い 、さら〖こ、レジスト 1055を再形成し、再形成されたレジスト(再形成レジスト 1553)の 周縁下部にアンダーカット部 1554を形成する (ステップ S1004)。次に、ガラス基板 1 010の上方に、透明な導電性物質を蒸着され、互いに分離された画素電極 1612及 びレジスト上の導電体膜 1611を形成する (ステップ S1005)。さらに、ガラス基板 10 10にストリッピング組成物を供給し、レジスト上の導電体膜 1611をガラス基板 1010 力も剥離させ (ステップ S1006)、続いて、使用済みストリッピング組成物に、レジスト 上の導電体膜 1611を溶解させ、再利用する (ステップ S1007)。 Subsequently, a protective insulating film 1054 is stacked on the glass substrate 1010 and the thin film transistor 1050 (step S1002). Next, a resist 1055 is stacked on the protective insulating film 1054 (step S 1003). Subsequently, using a half-tone exposure technique (third half-tone mask (not shown)), the laminated resist 1055 is formed into a predetermined shape and etched, and further, the resist 1055 is re-formed. Reformed resist (Reformed resist 1553) An undercut portion 1554 is formed at the lower peripheral edge (step S1004). Next, a transparent conductive material is deposited on the glass substrate 1010 to form pixel electrodes 1612 and a conductive film 1611 on resist that are separated from each other (step S1005). Further, a stripping composition is supplied to the glass substrate 10 10 to peel off the conductive film 1611 on the resist also in the glass substrate 1010 force (step S1006), and then the used stripping composition is applied to the conductor on the resist. The membrane 1611 is dissolved and reused (step S1007).
[0092] [TFT基板の製造方法における第二実施形態] [0092] [Second Embodiment of TFT Substrate Manufacturing Method]
図 13は、本発明の第二実施形態にカゝかる TFT基板の製造方法を説明するための 概略フローチャート図を示して 、る。  FIG. 13 is a schematic flowchart for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention.
図 13において、まず、基板 2010上に、薄膜トランジスタ 2050を形成する (ステップ S200 j。  In FIG. 13, first, a thin film transistor 2050 is formed on a substrate 2010 (step S200 j).
次に、薄膜トランジスタ 2050の形成方法について、図面を参照して説明する。  Next, a method for forming the thin film transistor 2050 will be described with reference to the drawings.
[0093] 図 14は、本発明の第二実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)はゲート配線及びゲート電極が形成され、ゲート絶縁膜が 積層された平面図を示しており、 (b)は — 拡大断面図を示している。 FIG. 14 is a schematic view for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention. FIG. 14 (a) shows a gate insulating film formed with a gate wiring and a gate electrode. (B) shows an enlarged cross-sectional view.
図 14において、まず、ガラス基板 2010が用意され、ホトリソグラフィ一法により、 Al ( アルミニウム)などの導電体薄膜からなるゲート配線 2021及びゲート電極 2022を形 成し、続いて、露出したガラス基板 2010、ゲート配線 2021及びゲート電極 2022上 に、ゲート絶縁膜 2023が積層される。  In FIG. 14, first, a glass substrate 2010 is prepared, and a gate wiring 2021 and a gate electrode 2022 made of a conductive thin film such as Al (aluminum) are formed by a photolithography method, and then an exposed glass substrate 2010 is formed. A gate insulating film 2023 is stacked over the gate wiring 2021 and the gate electrode 2022.
なお、図示してないが、ゲート配線 2021及びゲート電極 2022を形成するために、 第一のマスクが使用される。  Although not shown, a first mask is used to form the gate wiring 2021 and the gate electrode 2022.
[0094] 図 15は、本発明の第二実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)は薄膜トランジスタが形成され、保護用絶縁膜が積層され た平面図を示しており、(b)は — 拡大断面図を示している。 FIG. 15 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention. FIG. 15A shows a thin film transistor formed by laminating a protective insulating film. (B) shows an enlarged cross-sectional view.
図 15【こお!ヽて、まず、ゲート絶縁膜 2023上【こ、ソース酉己線 2031、ソース電極 203 2、チャンネル部 2051、及び、ドレイン電極 2042が形成されることによって、ガラス基 板 2010上に薄膜トランジスタ 2050が形成され (ステップ S2001)、次に、ガラス基板 2010及び薄膜トランジスタ 2050上に、保護用絶縁膜 2054が積層される (ステップ S 2002)。 First, on the gate insulating film 2023, the source substrate 2031, the source electrode 2032, the channel portion 2051, and the drain electrode 2042 are formed. A thin film transistor 2050 is formed thereon (step S2001), and then a protective insulating film 2054 is stacked on the glass substrate 2010 and the thin film transistor 2050 (step S). 2002).
[0095] 本実施形態では、ソース配線 2031、ソース電極 2032、チャンネル部 2051、及び 、ドレイン電極 2042を形成する際、ハーフトーン露光技術 (第二のハーフトーンマス ク(図示せず))を用いている。すなわち、まず、ゲート絶縁膜 2023上に、ァモルファ スシリコン薄膜 2052、 n型アモルファスシリコン薄膜 2053、モリブデン Zアルミニウム Zモリブデン薄膜などの導電体薄膜 2033、及び、レジスト(図示せず)を順次積層す る。次に、図示してないが、ハーフトーン露光技術を用いて、レジストを形成し、第一 のエッチングにより、ソース配線 2031を形成するとともに、ソース電極 2032、チャン ネル部 2051及びドレイン電極 2042となる部分を形成する。続いて、レジストを再形 成し、第二の選択的エッチングにより、チャンネル部 2051の上方の導電体薄膜 203 3及び n型アモルファスシリコン薄膜 2053をエッチングし、チャンネル部 2051、ソー ス電極 2032及びドレイン電極 2042を形成する。次に、ソース配線 2031、薄膜トラン ジスタ 2050及びゲート絶縁膜 2023上に、保護用絶縁膜 2054を積層する (ステップ S2002)。  In this embodiment, when forming the source wiring 2031, the source electrode 2032, the channel portion 2051, and the drain electrode 2042, a halftone exposure technique (second halftone mask (not shown)) is used. ing. That is, first, an amorphous silicon thin film 2052, an n-type amorphous silicon thin film 2053, a conductive thin film 2033 such as molybdenum Z aluminum Z molybdenum thin film, and a resist (not shown) are sequentially stacked on the gate insulating film 2023. . Next, although not shown, a resist is formed by using a halftone exposure technique, and the source wiring 2031 is formed by the first etching, and the source electrode 2032, the channel portion 2051, and the drain electrode 2042 are formed. Forming part. Subsequently, the resist is reformed, and the conductive thin film 2033 and the n-type amorphous silicon thin film 2053 above the channel portion 2051 are etched by the second selective etching, so that the channel portion 2051, the source electrode 2032, and the drain are etched. An electrode 2042 is formed. Next, a protective insulating film 2054 is stacked over the source wiring 2031, the thin film transistor 2050, and the gate insulating film 2023 (step S2002).
[0096] 次に、図 13に示すように、保護用絶縁膜 2054上にレジスト 2055を積層し (ステツ プ S2003)、続いて、ハーフトーン露光技術 (第三のハーフトーンマスク(図示せず)) を用いて、積層したレジスト 2055を所定の形状に形成しエッチングを行い、さら〖こ、 レジスト 2055を再形成し、再形成されたレジスト(再形成レジスト 2553)の周縁下部 にアンダーカット部 2554を形成する(ステップ S2004)。  Next, as shown in FIG. 13, a resist 2055 is laminated on the protective insulating film 2054 (step S2003), and then halftone exposure technology (third halftone mask (not shown)) is formed. ) Is used to form a laminated resist 2055 into a predetermined shape and then etched, and further, the resist 2055 is re-formed, and the undercut portion 2554 is formed at the bottom of the periphery of the re-formed resist (re-formed resist 2553). (Step S2004).
次に、レジスト 2055及びアンダーカット部 2554の形成方法について、図面を参照 して説明する。  Next, a method for forming the resist 2055 and the undercut portion 2554 will be described with reference to the drawings.
[0097] 図 16は、本発明の第二実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、 (a)は保護用絶縁膜上のレジストが所定の形状に形成された平 面図を示しており、(b)は ― 拡大断面図を示している。  FIG. 16 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention, and (a) shows that the resist on the protective insulating film has a predetermined shape. The formed plan view is shown, (b) shows an enlarged cross-sectional view.
図 16において、まず、保護用絶縁膜 2054上にレジスト 2055が積層される (ステツ プ S2003)。続いて、ハーフトーン露光技術により、レジスト 2055が所定の形状に形 成される。すなわち、レジスト 2055は、ドレイン電極 2042の上方〖こ、コンタクトホール 2541を形成するための開口部 2056が形成され、さら〖こ、画素電極 2612が形成さ れる部分(図 23参照)に、厚さの薄いハーフトーン露光レジスト 2552が形成され、画 素電極 2612が形成されない部分には、厚さの厚い全露光レジスト 2551が形成され る。 In FIG. 16, first, a resist 2055 is stacked on the protective insulating film 2054 (step S2003). Subsequently, a resist 2055 is formed into a predetermined shape by a halftone exposure technique. That is, the resist 2055 is formed above the drain electrode 2042, an opening 2056 for forming the contact hole 2541 is formed, and the pixel electrode 2612 is formed further. A thin halftone exposure resist 2552 is formed in the portion (see FIG. 23), and a thick full exposure resist 2551 is formed in the portion where the pixel electrode 2612 is not formed.
[0098] 図 17は、本発明の第二実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)はコンタクトホールの形成された拡大断面図を示しており、 ( b)はレジストが再形成され、アンダーカット部の形成された拡大断面図を示しており、 (c)は ΕΓ部詳細図を示している。  FIG. 17 is a schematic view for explaining a manufacturing method of a TFT substrate according to the second embodiment of the present invention, and (a) shows an enlarged sectional view in which contact holes are formed. (B) is an enlarged cross-sectional view in which the resist is re-formed and an undercut portion is formed, and (c) is a detailed view of the ΕΓ portion.
図 17 (a)において、まず、ハーフトーン露光技術により形成されたレジスト 2055を 用いて、保護用絶縁膜 2054に対してエッチング (通常、ドライエッチング)を行い、画 素電極 2612とドレイン電極 2042を接続させるためのコンタクトホール 2541を形成 する。  In FIG. 17A, first, the protective insulating film 2054 is etched (usually dry etching) using a resist 2055 formed by a halftone exposure technique, and the pixel electrode 2612 and the drain electrode 2042 are connected. A contact hole 2541 for connection is formed.
[0099] 次に、図 17 (b)に示すように、レジスト 2055に対して再形成を行う。すなわち、レジ スト 2055を酸素プラズマアツシングによって徐々に除去し、ハーフトーン露光レジスト 2552を全て除去する。このとき、全露光レジスト 2551は、上方力ら徐々に除去され、 厚さが薄くなつた再形成レジスト 2553となる力 レジストとして機能するための厚さを 有している。また、再形成レジスト 2553の上面は、所定の形状を維持している。続い て、現像液にて、再現像することにより、上記所定形状の周縁下部にアンダーカット 部 2554力形成される(ステップ S2004)。  Next, as shown in FIG. 17B, the resist 2055 is re-formed. That is, the resist 2055 is gradually removed by oxygen plasma ashing, and all the halftone exposure resist 2552 is removed. At this time, the total exposure resist 2551 has a thickness for functioning as a force resist that is gradually removed from the upward force and becomes a re-formed resist 2553 with a reduced thickness. Further, the upper surface of the re-formed resist 2553 maintains a predetermined shape. Subsequently, by re-developing with a developer, an undercut portion 2554 is formed at the lower portion of the periphery of the predetermined shape (step S2004).
[0100] ここで、好ましくは、図 17 (c)に示すように、再形成レジスト 2553を、上層レジスト 25 51aと下層レジスト 2551bと力もなる二層構造とするとよい。上層レジスト 2551aと下 層レジスト 2551bは、それぞれ現像液に対する溶解性が異なり、下層レジスト 2551b 力 上層レジスト 2551aより、現像液に対して溶解性が高くなるように設定されている 。これにより、アンダーカット部 2554をより確実に形成することができ、歩留りを向上さ せることができる。  Here, preferably, as shown in FIG. 17 (c), the re-formed resist 2553 may have a two-layer structure in which an upper layer resist 2551a and a lower layer resist 2551b also have a force. The upper resist 2551a and the lower resist 2551b have different solubility in the developer, and are set so that the lower resist 2551b has higher solubility in the developer than the upper resist 2551a. As a result, the undercut portion 2554 can be more reliably formed, and the yield can be improved.
また、上層レジスト 2551aと下層レジスト 2551bに溶解性の差を付けるためには、た とえば、 2種類以上のレジスト榭脂をブレンドするなどして成分を調整したり、あるいは 、光反応を利用して、硬化度に差を設けて溶解性に差を付けることができる。  In addition, in order to provide a difference in solubility between the upper resist layer 2551a and the lower resist layer 2551b, for example, the ingredients can be adjusted by blending two or more resist resins, or a photoreaction can be used. Thus, it is possible to provide a difference in solubility by providing a difference in the degree of curing.
[0101] 次に、図 13に示すように、ガラス基板 2010の上方に、透明な導電性物質を蒸着さ れ、互いに分離された画素電極 2612及びレジスト上の導電体膜 2611を形成する( ステップ S2005)。 [0101] Next, as shown in FIG. 13, a transparent conductive material is vapor-deposited above the glass substrate 2010. Then, the pixel electrode 2612 and the conductive film 2611 on the resist that are separated from each other are formed (step S2005).
次に、画素電極 2612及びレジスト上の導電体膜 2611の形成方法について、図面 を参照して説明する。  Next, a method for forming the pixel electrode 2612 and the conductor film 2611 on the resist will be described with reference to the drawings.
[0102] 図 18は、本発明の第二実施形態に力かる TFT基板の製造方法を説明するための 、導電体膜の形成された概略図を示しており、(a)は拡大断面図を示しており、 (b) は 部詳細図を示している。  [0102] FIG. 18 shows a schematic diagram with a conductor film formed for explaining a method of manufacturing a TFT substrate according to the second embodiment of the present invention, and (a) is an enlarged sectional view. (B) is a detailed view of the part.
図 18において、ガラス基板 2010の上方に、透明な導電性物質が蒸着され、導電 体膜 2061 (互いに分離された画素電極 2612及びレジスト上の導電体膜 2611)が 形成される (ステップ S2005)。すなわち、ガラス基板 2010の上方に透明な導電性 物質が蒸着されるにつれて、再形成レジスト 2553上に、レジスト上の導電体膜 2611 が形成される。また、露出したドレイン電極 2042及び保護用絶縁膜 2054上に、画 素電極 2612が形成される。画素電極 2612は、アンダーカット部 2554によって、レ ジスト上の導電体膜 2611から離れており、電気的に接続されていない。この画素電 極 2612は、コンタクトホール 2541を介してドレイン電極 2042と電気的に接続されて いる。  In FIG. 18, a transparent conductive material is deposited above the glass substrate 2010 to form a conductive film 2061 (pixel electrodes 2612 separated from each other and a conductive film 2611 on the resist) (step S2005). That is, as a transparent conductive material is deposited above the glass substrate 2010, a conductor film 2611 on the resist is formed on the re-formed resist 2553. A pixel electrode 2612 is formed on the exposed drain electrode 2042 and protective insulating film 2054. The pixel electrode 2612 is separated from the conductor film 2611 on the resist by an undercut portion 2554 and is not electrically connected. The pixel electrode 2612 is electrically connected to the drain electrode 2042 through a contact hole 2541.
[0103] 上記導電性物質として、通常、酸化インジウム ·酸化亜鉛 (IZO)、酸化インジウム · 酸化スズ (ITO)、アモルファス酸化インジウム '酸化スズ (a— ITO)、酸化チタン'酸 化ニオブ、酸化スズ'酸化亜鉛、酸化スズ'酸化アンチモン、フッ素ドープ酸化スズ、 及び、これらの組み合わせ力 なる群を含むものが用いられる。これらの導電体膜は 、ストリッピング組成物に全く溶解しないので、必要な画素電極 2612を微量ながら溶 解させてしまうといった、製造歩留りを低下させる心配を排除することができる。さらに 、導電体膜の比重は、ストリッピング組成物の比重より約 5倍以上あるため、容易かつ 精度よく沈降式分離や遠心式分離を行うことができる。  [0103] As the conductive material, usually indium oxide / zinc oxide (IZO), indium oxide / tin oxide (ITO), amorphous indium oxide 'tin oxide (a-ITO), titanium oxide' niobium oxide, tin oxide “Zinc oxide, tin oxide”, antimony oxide, fluorine-doped tin oxide, and those containing the group consisting of combinations thereof are used. Since these conductor films are not dissolved at all in the stripping composition, it is possible to eliminate the concern that the required yield of the pixel electrode 2612 is dissolved in a small amount, which lowers the manufacturing yield. Furthermore, since the specific gravity of the conductive film is about 5 times or more than the specific gravity of the stripping composition, sedimentation-type separation and centrifugal separation can be performed easily and accurately.
[0104] 次に、図 13に示すように、ガラス基板 2010にストリッピング組成物を供給し、レジス ト上の導電体膜 2611をガラス基板 2010から剥離させ (ステップ S2006)、続いて、 使用済みストリツビング組成物から、レジスト上の導電体膜 2611を分離し、再利用す る(ステップ S 2007)。 次に、レジスト上の導電体膜 2611をガラス基板 2010から剥離させる方法、及び、 剥離されたレジスト上の導電体膜 2611を使用済みストリッピング組成物カゝら分離し、 該使用済みストリッピング組成物を再利用する方法にっ 、て、図面を参照して説明 する。 Next, as shown in FIG. 13, a stripping composition is supplied to the glass substrate 2010, and the conductive film 2611 on the resist is peeled off from the glass substrate 2010 (step S2006), and then used. The conductive film 2611 on the resist is separated from the stripping composition and reused (step S 2007). Next, a method of peeling the conductive film 2611 on the resist from the glass substrate 2010, and separating the conductive film 2611 on the peeled resist from the used stripping composition, the used stripping composition A method of reusing objects will be described with reference to the drawings.
[0105] 図 19は、本発明の第二実施形態にカゝかる TFT基板の製造方法において、レジスト 上の導電体膜を剥離させるストリッピング工程、及び、使用済みストリッピング組成物 を再利用するリサイクル工程を説明するための概略断面図を示している。  FIG. 19 shows a stripping process for stripping a conductive film on a resist and reuses a used stripping composition in a TFT substrate manufacturing method according to the second embodiment of the present invention. The schematic sectional drawing for demonstrating a recycling process is shown.
図 19において、導電体膜 2061が積層されたガラス基板 2010は、ストリッピング工 程として、ストリツビング装置 2007によって再形成レジスト 2553が溶解され、レジスト 上の導電体膜 2611が剥離される(ステップ S2006)。ストリツビング装置 2007は、ス トリッピング組成物を含む剥離液 2070が貯留される貯留槽 2071、ガラス基板 2010 に剥離液 2070をスプレー状に噴射するスプレーノズル 2072、ポンプ 2073及び吸 込みパイプ 2074と力もなつて!/、る。  In FIG. 19, the glass substrate 2010 on which the conductor film 2061 is laminated is subjected to a stripping process in which the re-forming resist 2553 is dissolved by the stripping apparatus 2007, and the conductor film 2611 on the resist is peeled off (step S2006). . The stripping device 2007 has a force in combination with a storage tank 2071 for storing a stripping solution 2070 containing a stripping composition, a spray nozzle 2072 for spraying the stripping solution 2070 onto a glass substrate 2010, a pump 2073 and a suction pipe 2074. ! /
本実施形態のストリツビング工程では、剥離液 2070がスプレーノズル 2072からス プレー状に噴射されており、このようにすると、微小な隙間を通ってアンダーカット部 2 554に剥離液 2070が入り込むので、レジスト上の導電体膜 2611をガラス基板 2010 力 効果的に剥離させることができる。  In the stripping process of the present embodiment, the stripping solution 2070 is sprayed from the spray nozzle 2072 in a spray form, and in this case, the stripping solution 2070 enters the undercut portion 2 554 through a minute gap. The upper conductive film 2611 can be effectively peeled off the glass substrate.
なお、図 19は、ストリツビング中の状態を示しており、再形成レジスト 2553及びレジ スト上の導電体膜 2611が部分的に残って ヽる。  FIG. 19 shows the state during stripping, and the re-formed resist 2553 and the conductive film 2611 on the resist partially remain.
[0106] また、剥離液 2070に含まれるストリッピング組成物は、再形成レジスト 2553をストリ ッビングするためのフォトレジスト用ストリツビング剤よりなる。このフォトレジスト用ストリ ッビング剤は、アミン系化合物及び非プロトン性極性ィ匕合物を含んで 、る。 [0106] The stripping composition contained in the stripping solution 2070 is made of a photoresist stripping agent for stripping the re-formed resist 2553. The photoresist stripping agent contains an amine compound and an aprotic polar compound.
アミン系化合物の例としては、モノエタノールァミン、モノイソプロパノールァミン、メ チルメタノールァミン、ェチルエタノールァミン、ジメタノールァミン、アミノエトキシエタ ノールァミン、ジエタノールァミン等が挙げられる(図 20, 21参照)。また、上記各アミ ン系化合物は、単独又は二つ以上の組合せで使用してもよい。  Examples of amine compounds include monoethanolamine, monoisopropanolamine, methylmethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine and the like (FIG. 20). , 21). Each of the above amine compounds may be used alone or in combination of two or more.
非プロトン性極性化合物の例としては、 N—メチル—2—ピロリドン、 N, N—ジメチ ルァセトアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルイミダゾール、ジメチル スルホキシド等が挙げられる(図 22参照)。また、上記非プロトン性極性ィ匕合物は、単 独又は二つ以上の組合せで使用してもよ 、。 Examples of aprotic polar compounds include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl Examples thereof include sulfoxide (see FIG. 22). Further, the aprotic polar compound may be used alone or in combination of two or more.
[0107] また、レジスト用ストリッピング剤が、アミン系化合物を約 20〜80重量0 /0含み、かつ 、非プロトン性極性ィ匕合物を約 20〜80重量%含むとよい。このようにすると、再形成 レジスト 2553だけを溶解し、必要とする画素電極 2612にダメージを与えないので、 歩留り及び信頼性を向上させることができる。 [0107] The resist stripping agent, about 20 to 80 weight amine compound comprises 0/0, and an aprotic polar I匕合product may comprise from about 20 to 80 wt%. In this way, only the re-formed resist 2553 is dissolved, and the necessary pixel electrode 2612 is not damaged, so that the yield and reliability can be improved.
[0108] レジスト用ストリッピング剤に、アミン系化合物を約 20〜80重量0 /0含ませる理由は、 アミン系化合物の含量が約 20重量%未満であると、再形成レジスト 2553を短時間 内に充分に溶解することができないからであり、また、アミン系化合物の含量が約 80 重量%を超過すると、再形成レジスト 2553が溶解されている間に、画素電極 2612を 形成する導電体膜が急激に腐食され画素電極 2612の損傷を誘発するからである。 また、アミン系化合物が約 80重量%を超過すると、ストリッピング組成物の揮発量が 増加して、ストリッピング組成物の成分比が変化する心配もある。したがって、本発明 のストリッピング組成物において、アミン系化合物の含量は約 20〜80重量%が好ま しぐより好ましくは 30〜70重量%とするとよい。 [0108] the resist stripping agent, the reason to include about 20 to 80 weight 0/0 amine-based compound, the content of the amine compound is less than about 20 wt%, within a short period of time to re-form the resist 2553 In addition, when the amine compound content exceeds about 80% by weight, the conductor film forming the pixel electrode 2612 is formed while the re-forming resist 2553 is dissolved. This is because the pixel electrode 2612 is damaged due to rapid corrosion. If the amine compound exceeds about 80% by weight, the volatilization amount of the stripping composition increases, and there is a concern that the component ratio of the stripping composition may change. Therefore, in the stripping composition of the present invention, the content of the amine compound is preferably about 20 to 80% by weight, more preferably 30 to 70% by weight.
[0109] また、レジスト用ストリッピング剤に、非プロトン性極性ィ匕合物を約 20〜80重量0 /0含 ませる理由は、非プロトン性極性ィ匕合物の含量が約 20重量%未満であると、再形成 レジスト 2553のストリツビング時間が増加したり、再利用する場合の液寿命が短くなる 場合があるからである。また、非プロトン性極性ィ匕合物の含量が約 80重量%を超過 すると、再形成レジスト 2553をストリツビングするときに、画素電極 2612の腐食を招 来する心配があるからである。したがって、本発明のストリッピング組成物において、 非プロトン性極性ィ匕合物の含量は約 20〜80重量%が好ましぐより好ましくは約 30 〜70重量%とするとよい。 [0109] In the resist stripping agent, from about 20 to 80 weight 0/0 containing Maseru reason aprotic polar I匕合product, the content of aprotic polar I匕合contains less than about 20 wt% If so, the stripping time of the re-formed resist 2553 may increase, or the liquid life when reused may be shortened. In addition, if the content of the aprotic polar compound exceeds about 80% by weight, the pixel electrode 2612 may be corroded when the re-formed resist 2553 is stripped. Accordingly, in the stripping composition of the present invention, the content of the aprotic polar compound is preferably about 20 to 80% by weight, more preferably about 30 to 70% by weight.
[0110] また、ストリツピング糸且成物は、上記糸且成に限定されるものではなぐたとえば、レジ スト用ストリツビング剤として、下記一般式 1で表されるアルコキシアクリルアミド化合物 、又は、エチレンカーボネートを含むとよい。  [0110] The stripping yarn is not limited to the above-mentioned yarn and includes, for example, an alkoxyacrylamide compound represented by the following general formula 1 or ethylene carbonate as a resist stripping agent. Good.
[化 4] O [Chemical 4] O
II  II
R 1 - O - CH2CH2 - C - NR2R3 (—般式 1) ここで、 Rl、 R2、 R3は、それぞれ独立に、炭素数 1から 10のアルキル基とする。 このようにすると、再形成レジスト 2553だけを溶解し、画素電極 2612にダメージを 与えないので、歩留り及び信頼性を向上させることができる。また、アルコキシアタリ ルアミド化合物は水溶性を有しており、引火性のな!、安全なストリッピング組成物を提 供することができる。  R 1 —O—CH 2 CH 2 —C—NR 2 R 3 (—general formula 1) Here, R 1, R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms. In this way, only the re-formed resist 2553 is dissolved and the pixel electrode 2612 is not damaged, so that the yield and reliability can be improved. In addition, the alkoxy atta amide compound has water solubility, is not flammable, and can provide a safe stripping composition.
[0111] このように、上記ストリッピング組成物は、再形成レジスト 2553を溶解し、再形成レ ジスト 2553の上面に形成されたレジスト上の導電体膜 2611を全てガラス基板 2010 より分離させることができる。  As described above, the stripping composition can dissolve the re-formed resist 2553 and separate all of the conductor film 2611 on the resist formed on the upper surface of the re-formed resist 2553 from the glass substrate 2010. it can.
また、ストリッピング組成物は、導電体膜 2061を溶解しないので、画素電極 2612 が溶解するといつた心配を排除することができる。すなわち、画素電極 2612がストリ ッビング組成物によって損傷されな 、ので、最適なストリツビング条件を選ぶことがで きる。一般的に、本実施形態のストリッピング組成物を使用する場合、スプレー噴射 時間は、約 0. 5〜5分であり、好ましくは、約 1〜3分である。また、再形成レジスト 25 53のエッチング及び導電膜の溶解は、約 30°C〜60°Cの温度範囲で行われることが 好ましぐさらに、約 40〜50°Cが好ましい。  In addition, since the stripping composition does not dissolve the conductor film 2061, it is possible to eliminate the worry when the pixel electrode 2612 is dissolved. That is, since the pixel electrode 2612 is not damaged by the stripping composition, an optimum stripping condition can be selected. In general, when using the stripping composition of this embodiment, the spray duration is about 0.5-5 minutes, preferably about 1-3 minutes. Further, the etching of the re-formed resist 2553 and the dissolution of the conductive film are preferably performed in a temperature range of about 30 ° C. to 60 ° C. Further, about 40 to 50 ° C. is preferable.
[0112] 次に、ガラス基板 2010から分離されたレジスト上の導電体膜 2611は、剥離液 207 0とともに貯留槽 2071に流入する。この際、剥離されたレジスト上の導電体膜 2611 は、剥離液 2070中に粒子やひも状体などの微小片として混入している。そして、レ ジスト上の導電体膜 2611を含む剥離液 2070 (適宜、使用済みストリッピング組成物 と呼称する。)が貯留槽 2071に流入すると、貯留槽 2071において、レジスト上の導 電体膜 2611が沈降する。  Next, the conductor film 2611 on the resist separated from the glass substrate 2010 flows into the storage tank 2071 together with the stripping solution 2070. At this time, the conductor film 2611 on the peeled resist is mixed in the stripping solution 2070 as fine pieces such as particles and string-like bodies. When the stripping solution 2070 containing the conductive film 2611 on the resist (referred to as a used stripping composition as appropriate) flows into the storage tank 2071, the conductive film 2611 on the resist is stored in the storage tank 2071. Settles.
ここで、上記微小片は、密度が大きい方が好ましい。すなわち、使用済みストリッピ ング組成物中に存在する微小片の比重は、ストリッピング組成物の比重より遥かに大 きいので、貯留槽 2071内で、容易に沈降し、分離することができ、微小片の含まれ ない剥離液 2070を容易かつ効率よく再利用することができる。 [0113] また、本実施形態では、貯留槽 2071に、使用済みストリッピング組成物を一方の端 に導く案内板 2711と、吸込みパイプ 74が位置する他方の端に、微小片(レジスト上 の導電体膜 2611)が移動しな 、ように遮る仕切り板 2712を設けることによって、吸込 みパイプ 2074にレジスト上の導電体膜 2611が吸い込まれることをより確実に防止し ている。 Here, it is preferable that the fine pieces have a higher density. That is, the specific gravity of the fine pieces present in the used stripping composition is much larger than the specific gravity of the stripping composition, so that it can easily settle and separate in the storage tank 2071. It is possible to easily and efficiently reuse the stripping solution 2070 that does not contain any of the above. [0113] Further, in the present embodiment, the guide plate 2711 that guides the used stripping composition to one end of the storage tank 2071 and the minute piece (the conductive material on the resist) on the other end where the suction pipe 74 is located. By providing a partition plate 2712 that prevents the body film 2611) from moving, the suction pipe 2074 more reliably prevents the conductor film 2611 on the resist from being sucked.
なお、使用済みストリッピング組成物に含まれるレジスト上の導電体膜 2611を分離 する方法は、上記方法に限定されるものではなぐたとえば、専用の沈殿槽に約 10 〜30分間静置し、デカンテーシヨンにより上澄み液を集める方法としてもよい。  The method for separating the conductive film 2611 on the resist contained in the used stripping composition is not limited to the above method. For example, the conductive film 2611 is allowed to stand in a dedicated precipitation tank for about 10 to 30 minutes and then decane. It is good also as a method of collecting a supernatant liquid by a tasting.
[0114] 次に、貯留槽 2071内でレジスト上の導電体膜 2611が完全に沈降され、レジスト上 の導電体膜 2611を含んでいない剥離液 2070は、ポンプ 2073によって、吸込みパ ィプ 2074から吸い込まれ、スプレーノズル 2072から再びガラス基板 2010に吹き付 けられる。すなわち、使用済みストリッピング組成物から、レジスト上の導電体膜 2611 を分離し再利用する (ステップ S2007)。  [0114] Next, the conductive film 2611 on the resist is completely settled in the storage tank 2071, and the stripping solution 2070 that does not include the conductive film 2611 on the resist is removed from the suction pipe 2074 by the pump 2073. It is sucked and sprayed again on the glass substrate 2010 from the spray nozzle 2072. That is, the conductive film 2611 on the resist is separated from the used stripping composition and reused (step S2007).
[0115] 図 23は、本発明の第二実施形態に力かる TFT基板の製造方法を説明するための 概略図を示しており、(a)は画素電極の形成された平面図を示しており、(b)は!^ 拡大断面図を示している。  FIG. 23 is a schematic view for explaining a method for manufacturing a TFT substrate according to the second embodiment of the present invention. FIG. 23 (a) is a plan view in which a pixel electrode is formed. , (B) shows an enlarged cross-sectional view!
図 23【こお!ヽて、 TFT基板 2001ίま、ス卜リッピング工程【こより、再形成レジス卜 2553 及びレジスト上の導電体膜 2611が除去され、画素電極 2612及び保護用絶縁膜 20 54が露出している。  Figure 23 [Striping process of TFT substrate 2001], stripping process [From here, re-forming resist 2553 and conductive film 2611 on resist are removed, and pixel electrode 2612 and protective insulating film 20 54 are exposed. is doing.
なお、本実施形態の TFT基板 2001の製造方法は、第一のマスク、第二のハーフト ーンマスク及び第三のハーフトーンマスクの三枚のマスクを使用しており、製造工程 が削減され、生産性に優れている。  Note that the manufacturing method of the TFT substrate 2001 of this embodiment uses three masks: a first mask, a second half-tone mask, and a third half-tone mask, which reduces the manufacturing process and increases the productivity. Is excellent.
[0116] このように本実施形態の TFT基板 2001の製造方法によれば、ストリッピング工程に おいて使用されるストリッピング組成物のリサイクルを、確実かつ効率よく行うことによ つて、品質及び生産性を向上させることができる。 [0116] As described above, according to the manufacturing method of the TFT substrate 2001 of the present embodiment, quality and production can be achieved by reliably and efficiently recycling the stripping composition used in the stripping process. Can be improved.
次に、上記 TFT基板の製造方法の実施例及び比較例について説明する。 実施例 4  Next, examples and comparative examples of the TFT substrate manufacturing method will be described. Example 4
[0117] まず、ストリッピング組成物として、約 30wt%のアミノ化合物及び約 70wt%の非プ 口トン性極性溶媒カゝらなる剥離液 Iと、約 70wt%のアミノ化合物及び約 30wt%の非 プロトン性極性溶媒カゝらなる剥離液 Πを用意した (表 4参照)。 [0117] First, as a stripping composition, about 30 wt% of an amino compound and about 70 wt% of a non-product A stripping solution I consisting of an oral polar solvent and a stripping solution consisting of about 70 wt% amino compound and about 30 wt% aprotic polar solvent were prepared (see Table 4).
[表 4]  [Table 4]
Figure imgf000040_0001
なお、ァミノ化合物として、モノエタノールアミンを使用し、非プロトン性極性溶媒とし て、ジメチルスルホキシド(DMSO)を使用した。
Figure imgf000040_0001
Note that monoethanolamine was used as the amino compound, and dimethyl sulfoxide (DMSO) was used as the aprotic polar solvent.
[0118] ガラス基板として、約 100mm X 100mm X O. 7mmの正方形状のガラス基板を用 意し、純水シャワーにて洗浄した後、レジストをスピンコーターにて塗布形成した。レ ジストは日本ゼオン製ネガ型レジスト: ZTN2464— 27を用いた。続いて、約 80°Cに て、約 15分間オーブンで加熱した後、露光強度 300mjZcm2にて露光した。使用す るマスクとしては、約 20 μ mのラインと約 90 μ mのスペースを順に配設したのストライ プマスクを用いた。 [0118] As a glass substrate, a square glass substrate of about 100 mm X 100 mm X O. 7 mm was prepared, washed with a pure water shower, and then a resist was applied and formed by a spin coater. The resist used was a negative resist made by Nippon Zeon: ZTN2464-27. Subsequently, after heating in an oven at about 80 ° C. for about 15 minutes, exposure was performed at an exposure intensity of 300 mjZcm 2 . As a mask to be used, a stripe mask in which about 20 μm lines and about 90 μm spaces were arranged in order was used.
次に、テトラメチルアンモ -ゥムハイド口オキサイドの約 2. 8wt%の水溶液にて、現像 し、上記ライン'スペースのストライプパターンを得た。現像後、純水シャワー洗浄、ェ ァーブローにより洗净水を飛ばした後、約 130°Cにて、約 15分オーブンにて加熱し た。  Next, development was carried out with an aqueous solution of about 2.8 wt% of tetramethyl ammonium hydride mouth oxide to obtain the stripe pattern of the above-mentioned line space. After development, after washing with pure water shower and air blow, it was heated in an oven at about 130 ° C for about 15 minutes.
[0119] 次に、上記ガラス基板上に、 IZO (In O : ZnO=約 90 : 10wt%)のターゲットを用い  [0119] Next, a target of IZO (InO: ZnO = about 90: 10wt%) was used on the glass substrate.
2 3  twenty three
て、厚さ約 lOOnmの薄膜をスパッタ法にて成膜した。  Thus, a thin film having a thickness of about lOOnm was formed by sputtering.
剥離液 I及び剥離液 IIを約 35°Cに加温した後に、上記で得られたガラス基板を、上 記剥離液中に 2分間浸漬し、レジスト剥離を行い、純水洗浄、エアーブローした後、 乾燥器にて乾燥させ、 IZO力もなる薄膜 (幅約 m)、及び、約 20 mのスペース の形成されたガラス基板を得た。  After heating the stripping solution I and stripping solution II to about 35 ° C, the glass substrate obtained above was immersed in the stripping solution for 2 minutes to perform resist stripping, washed with pure water, and air blown. Thereafter, the glass substrate was dried in a drier to obtain a glass substrate having a thin film (width of about m) having an IZO force and a space of about 20 m.
[0120] 使用済み剥離液 I、及び、使用済み剥離液 IIの内容物を光学顕微鏡にて観察する と、剥離された幅約 20 μ mのコイル状の IZO薄膜が存在することが確認された(図 24 参照)。 [0120] When the contents of the used stripper I and the used stripper II were observed with an optical microscope, it was confirmed that there was a stripped coiled IZO thin film with a width of about 20 μm. (Fig. 24 reference).
また、使用済み剥離液 I、及び、使用済み剥離液 Πを、約 35°Cにて、約 10分間静 置すると、上記コイル状の IZO薄膜は、沈殿し、底部に沈降することが確認され、上 澄み中には、コイル状の IZO薄膜は観察されな力つた。さらに、上記使用済み剥離 液 I、及び、使用済み剥離液 Πの上澄みからなる上澄み剥離液にて、新たなガラス基 板に対してレジスト剥離を行ったところ、正常にレジスト剥離できることを確認した。ま た、剥離されたガラス基板上には、コイル状 IZOや、粉末状 IZOは観察されなカゝつた さらに、上記使用済み剥離液 I及び使用済み剥離液 IIを遠心分離器により、個液分 離し、分離された再生剥離液 I及び再生剥離液 IIにより、新たなガラス基板に対して レジスト剥離を行ったところ、正常にレジスト剥離できることを確認した。また、剥離さ れたガラス基板上には、コイル状 IZOや、粉末状 IZOは観察されなカゝつた。  In addition, when the used stripping solution I and the used stripping solution 静 were allowed to stand at about 35 ° C for about 10 minutes, it was confirmed that the coiled IZO thin film settled and settled to the bottom. In the supernatant, the coiled IZO thin film was not observed. Furthermore, when resist stripping was performed on a new glass substrate with the above-mentioned used stripping solution I and a supernatant stripping solution composed of the supernatant of the used stripping solution soot, it was confirmed that resist stripping can be normally performed. In addition, coiled IZO and powdered IZO were not observed on the peeled glass substrate. Furthermore, the above-mentioned used stripping solution I and used stripping solution II were separated into individual liquids using a centrifuge. When the resist was peeled off from the new glass substrate using the regenerated stripping solution I and the separated stripping solution II, it was confirmed that the resist could be removed normally. Further, no coiled IZO or powdered IZO was observed on the peeled glass substrate.
[0121] また、上記剥離液 Iの代わりに、 n—ブトキシ— N, N—ジメチルアクリルアミドを用い て、同様に操作すると、剥離操作ができることを確認した。この使用済み剥離液を約 10分間静置すると、コイル状の IZO薄膜が沈殿し、底部に沈降することが確認された 。さらに、上澄み中に、コイル状の IZO薄膜は観察されな力つた。 [0121] Further, it was confirmed that a peeling operation can be performed by using n-butoxy-N, N-dimethylacrylamide instead of the above-described peeling liquid I in the same manner. When this used stripping solution was allowed to stand for about 10 minutes, it was confirmed that the coiled IZO thin film settled and settled to the bottom. Furthermore, in the supernatant, a coiled IZO thin film was not observed.
また、上記 n—ブトキシ— N, N—ジメチルアクリルアミドに約 30重量%の水を添カロ して、同様の操作を実施した。水を添加しない場合と比べて、ほぼ同様の剥離効果 が得られ、また、コイル状 IZO薄膜の沈降状態に変化が無いことを確認した。このよう に水を添加した剥離液は、引火性がないので、安全性を向上させることができる。  Further, the same operation was carried out by adding about 30% by weight of water to the above n-butoxy-N, N-dimethylacrylamide. Compared to the case where water was not added, almost the same peeling effect was obtained, and it was confirmed that there was no change in the sedimentation state of the coiled IZO thin film. Since the stripping solution to which water is added in this way has no flammability, safety can be improved.
[0122] また、上記剥離液 Iの代わりに、エチレンカーボネートを用いて、同様に操作すると 、剥離操作ができることを確認した。この使用済み剥離液を約 10分間静置すると、コ ィル状の IZO薄膜が沈殿し、底部に沈降することが確認された。さらに、上澄み中に 、コイル状の IZO薄膜は観察されなかった。 [0122] Further, it was confirmed that the stripping operation can be performed by using ethylene carbonate instead of the stripping solution I in the same manner. When this used stripping solution was allowed to stand for about 10 minutes, it was confirmed that a coiled IZO thin film settled and settled to the bottom. Furthermore, no coiled IZO thin film was observed in the supernatant.
ここで、 IZOは、酸化インジウム'酸ィ匕亜鉛力もなるアモルファスの導電膜であり、酸 化亜鉛を約 10 %添加した酸化インジウム力もなる非晶質の膜である。酸化亜鉛の 添加量は、適宜選択されるが、酸ィ匕亜鉛を約 5〜40wt%添加すると、良好な結果が 得られる。 [0123] また、上記 IZOに代えて、酸化インジウム '酸化スズ (ITO)、アモルファス酸化イン ジゥム.酸化スズ (a— ITO)、酸ィ匕チタン.酸ィ匕ニオブ、酸化スズ'酸化亜鉛、酸化ス ズ'酸ィ匕アンチモン、フッ素ドープ酸化スズを用いていも、同様に問題なく剥離するこ とができた。使用済み剥離液 I, IIを約 10分静置することにより、剥離液 I, II中の導電 体膜を沈降させ、剥離液 I, IIを再使用しても、問題なくレジストを剥離することができ 、かつ、基板上に導電体膜の粒子等は観察されなカゝつた。 Here, IZO is an amorphous conductive film having an indium oxide / acid / zinc strength, and an indium oxide power having about 10% added zinc oxide. The amount of zinc oxide added is appropriately selected, but good results are obtained when about 5 to 40 wt% of zinc oxide is added. [0123] In place of the above IZO, indium oxide 'tin oxide (ITO), amorphous indium oxide. Tin oxide (a-ITO), acid titanium, acid niobium, tin oxide zinc oxide, oxide Even when using Suzu's acid antimony or fluorine-doped tin oxide, it could be peeled off without any problems. By leaving the used stripper I and II for about 10 minutes, the conductor film in the stripper I and II is allowed to settle, and the resist can be stripped without any problem even if the stripper I or II is reused. In addition, no conductive film particles were observed on the substrate.
ここで、酸化インジウム ·酸化スズ (ITO)は、酸化スズを約 5〜15wt%添カ卩した酸 化インジウムである。アモルファス酸化インジウム '酸化スズ(a— ITO)は、ァモルファ ス化した ITO膜である。酸ィ匕チタン'酸ィ匕ニオブは、酸化ニオブを約 0. 1〜5 %添 加した酸化チタンである。酸化スズ '酸化亜鉛は、酸化スズ:約 60〜95wt%、酸ィ匕 亜鉛:約 5〜40wt%からなる複合酸ィ匕物である。酸化スズ'酸化アンチモンは、酸ィ匕 アンチモンを約 0. 5〜5wt%添カ卩した酸化スズである。フッ素ドープ酸化スズは、フッ 素を約 0. 01〜: 1 %添加した酸化スズである。これら酸化スズ系の導電膜は、蓚酸 などの弱酸では、エッチングカ卩ェによるパターユングが困難であり、当該実施例にあ るようにリフトオフによるパターユング力卩ェは有効である。  Here, indium oxide / tin oxide (ITO) is indium oxide containing about 5 to 15 wt% of tin oxide. Amorphous indium oxide 'Tin oxide (a-ITO) is an amorphous ITO film. Acid-titanium acid-niobium is a titanium oxide to which about 0.1 to 5% of niobium oxide is added. Tin oxide 'Zinc oxide is a complex oxide composed of tin oxide: about 60 to 95 wt%, and zinc oxide: about 5 to 40 wt%. Tin oxide 'antimony oxide is tin oxide containing about 0.5 to 5 wt% of antimony oxide. Fluorine-doped tin oxide is tin oxide added with about 0.01 to 1% of fluorine. These tin oxide-based conductive films are difficult to pattern by etching with a weak acid such as oxalic acid, and the patterning force due to lift-off is effective as in this example.
[0124] 「比較例 2」  [0124] "Comparative Example 2"
実施例で使用した使用済み剥離液 I及び使用済み剥離液 IIをそのまま使用して、 新たなガラス基板に対してレジスト剥離を行ったところ、正常にレジスト剥離できること を確認した。ただし、剥離されたガラス基板上に、粉末状 IZOが付着していることが確 f*i¾ れ 。  When the resist stripping was performed on a new glass substrate using the used stripping solution I and the used stripping solution II used in the examples as they were, it was confirmed that the resist stripping can be normally performed. However, it is certain that the powdered IZO has adhered to the peeled glass substrate.
液晶パネルは、後工程の配向膜塗布や配向処理、液晶注入、封止工程を経て、完 成するが、上記付着物は、後工程において配向膜中に拡散したり、液晶中に拡散し たりして、表示欠陥や表示不良の原因となる。  The liquid crystal panel is completed after the subsequent alignment film application, alignment treatment, liquid crystal injection, and sealing process. However, the deposits may diffuse into the alignment film or into the liquid crystal in the subsequent process. This causes display defects and display defects.
[0125] [ストリッピング組成物のリサイクル方法における第二実施形態]  [0125] [Second Embodiment of Stripping Composition Recycling Method]
また、本発明は、ストリッピング組成物のリサイクル方法としても有効である。 本実施形態に力かるストリッピング組成物のリサイクル方法は、上述した第二実施 形態の TFT基板の製造方法とほぼ同様な方法としてある。  The present invention is also effective as a method for recycling the stripping composition. The recycling method of the stripping composition that works in this embodiment is almost the same method as the TFT substrate manufacturing method of the second embodiment described above.
[0126] すなわち、基板 2010上に、薄膜トランジスタ 2050を形成し (ステップ S2001)、続 いて、ガラス基板 2010及び薄膜トランジスタ 2050上に、保護用絶縁膜 2054が積層 される (ステップ S2002)。次に、保護用絶縁膜 2054上にレジスト 2055を積層し (ス テツプ S2003)、続いて、ハーフトーン露光技術(第三のハーフトーンマスク(図示せ ず))を用いて、積層したレジスト 2055を所定の形状に形成しエッチングを行い、さら に、レジスト 2055を再形成し、再形成されたレジスト(再形成レジスト 2553)の周縁下 部にアンダーカット部 2554を形成する(ステップ S2004)。次に、ガラス基板 2010の 上方に、透明な導電性物質を蒸着され、互いに分離された画素電極 2612及びレジ スト上の導電体膜 2611を形成する (ステップ S 2005)。さらに、ガラス基板 2010にス トリッピング組成物を供給し、レジスト上の導電体膜 2611をガラス基板 2010から剥離 させ (ステップ S 2006)、続いて、使用済みストリッピング組成物から、レジスト上の導 電体膜 2611を分離し、再利用する (ステップ S 2007)。 That is, a thin film transistor 2050 is formed on the substrate 2010 (step S2001). Then, the protective insulating film 2054 is laminated on the glass substrate 2010 and the thin film transistor 2050 (step S2002). Next, a resist 2055 is stacked on the protective insulating film 2054 (step S2003), and then the stacked resist 2055 is formed using a halftone exposure technique (third halftone mask (not shown)). A predetermined shape is formed and etching is performed. Further, a resist 2055 is formed again, and an undercut portion 2554 is formed at the lower peripheral portion of the re-formed resist (reformed resist 2553) (step S2004). Next, a transparent conductive material is deposited on the glass substrate 2010 to form pixel electrodes 2612 and a conductive film 2611 on the resist, which are separated from each other (step S 2005). Further, the stripping composition is supplied to the glass substrate 2010, and the conductive film 2611 on the resist is peeled off from the glass substrate 2010 (Step S 2006). Subsequently, the conductive material on the resist is removed from the used stripping composition. The body membrane 2611 is separated and reused (step S 2007).
[0127] このように、本実施形態のストリッピング組成物のリサイクル方法によれば、ガラス基 板 2010から剥離したレジスト上の導電体膜 2611を、使用済みストリッピング組成物 力 ほぼ完全に分離することができるので、歩留まりを低下させることなぐ使用済み ストリッピング組成物を再利用することができる。  As described above, according to the recycling method of the stripping composition of the present embodiment, the used stripping composition force is almost completely separated from the conductive film 2611 on the resist peeled off from the glass substrate 2010. As a result, the used stripping composition can be reused without reducing the yield.
[0128] 以上、本発明のストリッピング組成物、 TFT基板の製造方法及びストリッピング組成 物のリサイクル方法について、好ましい実施形態を示して説明した力 本発明に係る ストリッピング組成物、 TFT基板の製造方法及びストリッピング組成物のリサイクル方 法は、上述した実施形態にのみ限定されるものではなぐ本発明の範囲で種々の変 更実施が可能であることは言うまでもない。  As described above, the stripping composition, the TFT substrate manufacturing method, and the stripping composition recycling method of the present invention have been described with reference to preferred embodiments. The stripping composition according to the present invention and the TFT substrate manufacturing It goes without saying that the method and the recycling method of the stripping composition are not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
例えば、上記ストリッピング組成物の各実施形態では、ストリッピング組成物に、該ス トリッピング組成物の性能に悪影響を与えない範囲で、供給する際の泡立ちを抑える 溶剤や、粘度を低減するための希釈剤などを添加してもよ 、。  For example, in each embodiment of the stripping composition, a solvent that suppresses foaming when supplying the stripping composition in a range that does not adversely affect the performance of the stripping composition, and a viscosity reducing agent. You can add diluents.
また、 TFT基板の製造方法の第二実施形態では、貯留槽 2071において、剥離さ れたレジスト上の導電体膜 2611を沈降させて分離する沈降式分離法を採用してい る力 分離する方法は、これに限定されるものではない。たとえば、遠心分離器ゃサ イク口トンなどによる遠心式分離法や、フィルターなどによるろ過式分離法を採用して もよい。さらに、沈降式分離法、遠心式分離法、及び、ろ過式分離法のいずれか一 つを採用する方法に限定されるものではない。たとえば、上記各分離法を組み合わ せて採用してもよい。 In the second embodiment of the TFT substrate manufacturing method, the force separation method adopting the sedimentation-type separation method in which the conductive film 2611 on the peeled resist is settled and separated in the storage tank 2071 is However, the present invention is not limited to this. For example, a centrifugal separation method using a centrifugal separator or a filter-type separation method using a filter may be employed. Furthermore, any one of the sedimentation separation method, the centrifugal separation method, and the filtration separation method. It is not limited to the method of adopting one. For example, a combination of the above separation methods may be employed.

Claims

請求の範囲 The scope of the claims
[1] 半導体装置の製造に用いられ、レジストを溶解して、前記レジスト上に積層された 導電体膜を剥離させるストリッピング組成物であって、  [1] A stripping composition that is used in the manufacture of a semiconductor device, dissolves a resist, and peels off a conductor film laminated on the resist,
前記ストリッピング組成物力 20〜79. 5重量%のァミン系化合物と、 20〜79. 5重 量%の非プロトン性極性ィ匕合物と、 0. 5〜5重量%のカルボン系化合物とを含むこと を特徴とするストリッピング組成物。  The stripping composition strength 20 to 79.5 wt% amin compound, 20 to 79.5 wt% aprotic polar compound, and 0.5 to 5 wt% carboxylic compound. A stripping composition characterized by comprising.
[2] 前記アミン系化合物力 モノエタノールァミン、モノイソプロパノールァミン、メチルメ タノールァミン、ェチルエタノールァミン、ジメタノールァミン、アミノエトキシエタノール ァミン、ジエタノールァミン、及び、これらの組合せ力もなる群力も選択された少なくと も一つの化合物を含むことを特徴とする請求項 1に記載のストリッピング組成物。  [2] Amine compound power Monoethanolamine, monoisopropanolamine, methylethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and their combined strength 2. A stripping composition according to claim 1 comprising at least one selected compound.
[3] 前記非プロトン性極性ィ匕合物力 N—メチル—2—ピロリドン、 N, N—ジメチルァセ トアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルイミダゾール、ジメチルスルホ キシド、及び、これらの組合せ力 なる群力 選択された少なくとも一つの化合物を含 むことを特徴とする請求項 1又は 2に記載のストリッピング組成物。  [3] The aprotic polar compound strength N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethylsulfoxide, and combinations thereof Powerful group force The stripping composition according to claim 1 or 2, comprising at least one selected compound.
[4] 半導体装置の製造に用いられ、レジストを溶解して、前記レジスト上に積層された 導電体膜を剥離させるストリッピング組成物であって、  [4] A stripping composition that is used in the manufacture of a semiconductor device, dissolves a resist, and peels off a conductor film laminated on the resist,
前記ストリッピング組成物力 エチレンカーボネートと、 0. 5〜5重量0 /0のカルボン 系化合物とを含むことを特徴とするストリッピング組成物。 Wherein the stripping composition forces ethylene carbonate, stripping composition comprising a carboxylic compound of 0.5 to 5 weight 0/0.
[5] 半導体装置の製造に用いられ、レジストを溶解して、前記レジスト上に積層された 導電体膜を剥離させるストリッピング組成物であって、  [5] A stripping composition that is used in the manufacture of a semiconductor device, dissolves a resist, and peels off a conductor film laminated on the resist,
前記ストリッピング組成物力 アルコキシアクリルアミド化合物と、 0. 5〜5重量0 /0の カルボン系化合物とを含むことを特徴とするストリッピング組成物。 It said stripping composition force alkoxyacrylamide compound and stripping composition comprising a carboxylic compound of 0.5 to 5 weight 0/0.
[6] 前記アルコキシアクリルアミドィ匕合物が、下記一般式 1で表される化合物、及びこれ らの組合せカゝらなる群カゝら選択された少なくとも一つの化合物を含むことを特徴とす る請求項 5に記載のストリッピング組成物。  [6] The alkoxyacrylamide compound includes at least one compound selected from a group represented by the following general formula 1 and a combination group thereof: 6. A stripping composition according to claim 5.
[化 5] O [Chemical 5] O
II  II
R 1 - O - CH2CH2 - C - NR2R3 (—般式 1) ここで、 Rl、 R2、 R3は、それぞれ独立に、炭素数 1から 10のアルキル基とする。 前記カルボン系化合物力 下記一般式 2, 3で表されるカルボン酸、及び、これらの 組合せカゝらなる群カゝら選択された少なくとも一つの化合物を含むことを特徴とする請 求項 1〜6のいずれか一項に記載のストリッピング組成物。  R 1 —O—CH 2 CH 2 —C—NR 2 R 3 (—general formula 1) Here, R 1, R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms. The carboxylic compound power includes at least one compound selected from the group consisting of carboxylic acids represented by the following general formulas 2 and 3 and combinations thereof: Claims 1 to The stripping composition according to any one of 6 above.
R-COOH (一般式 2)  R-COOH (General formula 2)
ここで、 Rは炭素数 1から 10のアルキル基、ァリール基とする。  Here, R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
HOCO-R-COOH (一般式 3)  HOCO-R-COOH (general formula 3)
ここで、 Rは炭素数 1から 10のアルキル基、ァリール基とする。  Here, R is an alkyl group having 1 to 10 carbon atoms or an aryl group.
前記カルボン系化合物の pKa (酸解離定数)を、 4. 0以上 5. 2以下としたことを特 徴とする請求項 1〜7のいずれか一項に記載のストリッピング組成物。  The stripping composition according to any one of claims 1 to 7, wherein the pKa (acid dissociation constant) of the carboxylic compound is 4.0 or more and 5.2 or less.
基板上に薄膜トランジスタを形成する工程と、  Forming a thin film transistor on the substrate;
前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層する工程と、  Laminating a protective insulating film on the substrate and the thin film transistor; and
前記保護用絶縁膜上にレジストを積層する工程と、  Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、  Forming the resist in a predetermined shape, and forming an undercut portion at a lower peripheral edge of the resist;
前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部 によって互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、 前記基板上に、上記請求項 1〜8の 、ずれか一項に記載されたストリッピング組成 物を供給し、前記レジスト上の導電体膜を前記基板カゝら剥離させるストリッピング工程 と  Depositing a conductive material on the protective insulating film and the resist to form a pixel electrode and a conductive film on the resist separated from each other by the undercut part; and A stripping step of supplying the stripping composition according to any one of 8 and stripping the conductor film on the resist from the substrate cover;
を有することを特徴とする TFT基板の製造方法。  A method for manufacturing a TFT substrate, comprising:
前記基板から剥離されたレジスト上の導電体膜が含まれた使用済みストリツビング 組成物を回収して、前記レジスト上の導電体膜を前記使用済みストリッピング組成物 内に溶解させ、該使用済みストリッピング組成物を再利用するリサイクル工程を有す ることを特徴とする請求項 9に記載の TFT基板の製造方法。 [11] 前記基板に供給されるストリッピング組成物の温度を 30°C以上 60°C未満とし、前記 回収された使用済みストリッピング組成物の温度を 60°C以上 100°C未満としたことを 特徴とする請求項 10に記載の TFT基板の製造方法。 The used stripping composition including the conductive film on the resist peeled from the substrate is collected, and the conductive film on the resist is dissolved in the used stripping composition, and the used stripping composition is dissolved. 10. The method for manufacturing a TFT substrate according to claim 9, further comprising a recycling step of reusing the ripping composition. [11] The temperature of the stripping composition supplied to the substrate is 30 ° C or higher and lower than 60 ° C, and the temperature of the recovered used stripping composition is 60 ° C or higher and lower than 100 ° C. The method of manufacturing a TFT substrate according to claim 10.
[12] 前記画素電極及びレジスト上の導電体膜が、酸化インジウム '酸化亜鉛 (IZO)、酸 ィ匕インジウム '酸化スズ'酸ィ匕亜鉛 (ITZO)、酸化スズ'酸ィ匕亜鉛 (ZTO)、及び、これ らの組合せカゝらなる群カゝら選択された少なくとも一つの物質を含むことを特徴とする 請求項 9〜11の 、ずれか一項に記載の TFT基板の製造方法。  [12] The conductive film on the pixel electrode and the resist includes indium oxide “zinc oxide (IZO), oxide indium“ tin oxide ”, acid zinc (ITZO), and tin oxide“ acid zinc ”(ZTO). 12. The method for manufacturing a TFT substrate according to claim 9, further comprising at least one substance selected from a group consisting of a combination of these.
[13] 基板上に薄膜トランジスタを形成する工程と、  [13] forming a thin film transistor on the substrate;
前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層する工程と、  Laminating a protective insulating film on the substrate and the thin film transistor; and
前記保護用絶縁膜上にレジストを積層する工程と、  Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、  Forming the resist in a predetermined shape, and forming an undercut portion at a lower peripheral edge of the resist;
前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部 によって互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、 前記基板上にストリッピング組成物を供給して、前記レジスト上の導電体膜を前記 基板力 剥離させるストリッピング工程と、  A step of depositing a conductive material on the protective insulating film and the resist to form a pixel electrode and a conductive film on the resist separated from each other by the undercut; and supplying a stripping composition on the substrate A stripping step of peeling the substrate film on the conductive film on the resist;
前記基板から剥離されたレジスト上の導電体膜が含まれた使用済みストリツビング 組成物から、前記レジスト上の導電体膜を分離し、該使用済みストリッピング組成物を 再利用するリサイクル工程と  A recycling step of separating the conductive film on the resist from the used stripping composition containing the conductive film on the resist peeled from the substrate, and reusing the used stripping composition;
を有することを特徴とする TFT基板の製造方法。  A method for manufacturing a TFT substrate, comprising:
[14] 基板上に薄膜トランジスタを形成する工程と、 [14] forming a thin film transistor on the substrate;
前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層する工程と、  Laminating a protective insulating film on the substrate and the thin film transistor; and
前記保護用絶縁膜上にレジストを積層する工程と、  Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、  Forming the resist in a predetermined shape, and forming an undercut portion at a lower peripheral edge of the resist;
前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部 によって互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、 前記基板上にストリッピング組成物を供給し、前記レジスト上の導電体膜を前記基 板力 剥離させるストリッピング工程と A step of depositing a conductive material on the protective insulating film and the resist to form a pixel electrode and a conductive film on the resist separated from each other by the undercut; and supplying a stripping composition on the substrate A conductive film on the resist. Stripping process for stripping
を有する TFT基板の製造方法であって、  A method of manufacturing a TFT substrate having
前記ストリッピング組成物力 20〜80重量%のァミン系化合物と、 20〜80重量0 /0 の非プロトン性極性ィ匕合物とを含むことを特徴とする TFT基板の製造方法。 Wherein the stripping composition force 20 to 80 wt% of Amin compounds, TFT substrate manufacturing method of which comprises an aprotic polar I匕合of 20 to 80 wt 0/0.
[15] 前記アミン系化合物力 モノエタノールァミン、モノイソプロパノールァミン、メチルメ タノールァミン、ェチルエタノールァミン、ジメタノールァミン、アミノエトキシエタノール ァミン、ジエタノールァミン、及び、これらの組合せ力もなる群力も選択された少なくと も一つの化合物を含むことを特徴とする請求項 14に記載の TFT基板の製造方法。 [15] Amine compound power Monoethanolamine, monoisopropanolamine, methylethanolamine, ethylethanolamine, dimethanolamine, aminoethoxyethanolamine, diethanolamine, and the combined strength of these compounds 15. The method for manufacturing a TFT substrate according to claim 14, comprising at least one selected compound.
[16] 前記非プロトン性極性化合物力 N—メチル—2—ピロリドン、 N, N—ジメチルァセ トアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルイミダゾール、ジメチルスルホ キシド、及び、これらの組合せ力 なる群力 選択された少なくとも一つの化合物を含 むことを特徴とする請求項 14又は 15に記載の TFT基板の製造方法。 [16] Aprotic polar compound power N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylimidazole, dimethyl sulfoxide, and combinations thereof 16. The method for manufacturing a TFT substrate according to claim 14, comprising at least one selected compound.
[17] 基板上に薄膜トランジスタを形成する工程と、 [17] forming a thin film transistor on the substrate;
前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層する工程と、 前記保護用絶縁膜上にレジストを積層する工程と、  Laminating a protective insulating film on the substrate and the thin film transistor; and laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、  Forming the resist in a predetermined shape, and forming an undercut portion at a lower peripheral edge of the resist;
前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部 によって互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、 前記基板上にストリッピング組成物を供給し、前記レジスト上の導電体膜を前記基 板力 剥離させるストリッピング工程と  A step of depositing a conductive material on the protective insulating film and the resist to form a pixel electrode and a conductive film on the resist separated from each other by the undercut; and supplying a stripping composition on the substrate A stripping step of peeling off the conductive film on the resist with the base plate force;
を有する TFT基板の製造方法であって、  A method of manufacturing a TFT substrate having
前記ストリッピング組成物が、下記一般式 1で表されるアルコキシアクリルアミド化合 物を含むことを特徴とする TFT基板の製造方法。  The method for producing a TFT substrate, wherein the stripping composition contains an alkoxyacrylamide compound represented by the following general formula 1.
[化 6] o  [Chemical 6] o
II  II
Rl— O - CH2CH2— C— NR2R3 (—般式 1) ここで、 Rl、 R2、 R3は、それぞれ独立に、炭素数 1から 10のアルキル基とする。 Rl— O-CH2CH2— C— NR2R3 (—General formula 1) Here, Rl, R2, and R3 are each independently an alkyl group having 1 to 10 carbon atoms.
[18] 基板上に薄膜トランジスタを形成する工程と、 [18] forming a thin film transistor on the substrate;
前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層する工程と、  Laminating a protective insulating film on the substrate and the thin film transistor; and
前記保護用絶縁膜上にレジストを積層する工程と、  Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、  Forming the resist in a predetermined shape, and forming an undercut portion at a lower peripheral edge of the resist;
前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部 によって互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、 前記基板上にストリッピング組成物を供給し、前記レジスト上の導電体膜を前記基 板力 剥離させるストリッピング工程と  A step of depositing a conductive material on the protective insulating film and the resist to form a pixel electrode and a conductive film on the resist separated from each other by the undercut; and supplying a stripping composition on the substrate A stripping step of peeling off the conductive film on the resist with the base plate force;
を有する TFT基板の製造方法であって、  A method of manufacturing a TFT substrate having
前記ストリッピング組成物力 エチレンカーボネートを含むことを特徴とする TFT基 板の製造方法。  The stripping composition strength A method for producing a TFT substrate, comprising ethylene carbonate.
[19] 前記基板から剥離されたレジスト上の導電体膜が含まれた使用済みストリツビング 組成物から、前記レジスト上の導電体膜を分離し、該使用済みストリッピング組成物を 再利用するリサイクル工程と  [19] A recycling step of separating the conductive film on the resist from the used stripping composition containing the conductive film on the resist peeled from the substrate, and reusing the used stripping composition When
を有することを特徴とする請求項 14〜18のいずれか一項に記載の TFT基板の製 造方法。  The method for manufacturing a TFT substrate according to claim 14, wherein:
[20] 沈降式分離、遠心式分離、及び Z又は、ろ過式分離によって、前記使用済みストリ ッビング組成物から、前記レジスト上の導電体膜を分離することを特徴とする請求項 1 3又は 19に記載の TFT基板の製造方法。  [20] The conductive film on the resist is separated from the used stripping composition by sedimentation-type separation, centrifugal separation, and Z or filtration-type separation. A manufacturing method of a TFT substrate as described in 1.
[21] 前記導電体膜が、酸化インジウム ·酸化亜鉛 (IZO)、酸化インジウム ·酸化スズ (IT 0)、アモルファス酸化インジウム '酸化スズ (a— ITO)、酸化チタン'酸化ニオブ、酸 ィ匕スズ'酸化亜鉛、酸化スズ'酸化アンチモン、フッ素ドープ酸化スズ、及び、これら の組合せカゝらなる群カゝら選択された少なくとも一つの物質を含むことを特徴とする請 求項 13〜20のいずれか一項に記載の TFT基板の製造方法。  [21] The conductive film is composed of indium oxide / zinc oxide (IZO), indium oxide / tin oxide (IT 0), amorphous indium oxide “tin oxide (a—ITO)”, titanium oxide “niobium oxide”, oxide tin Any one of claims 13 to 20, comprising at least one substance selected from the group consisting of 'zinc oxide, tin oxide' antimony oxide, fluorine-doped tin oxide, and combinations thereof. A method for manufacturing a TFT substrate according to claim 1.
[22] 前記ストリッピング工程にぉ 、て、前記ストリッピング組成物力 スプレー方式により 、前記基板上に供給されることを特徴とする請求項 9〜21のいずれか一項に記載の TFT基板の製造方法。 [22] The method according to any one of [9] to [21], wherein during the stripping step, the stripping composition force is supplied onto the substrate by a spray method. TFT substrate manufacturing method.
[23] 前記レジストの下層部が、該レジストの上層部より、現像液に対して溶解性が高いこ とを特徴とする請求項 9〜22のいずれか一項に記載の TFT基板の製造方法。  [23] The method for producing a TFT substrate according to any one of [9] to [22], wherein the lower layer portion of the resist is more soluble in a developer than the upper layer portion of the resist. .
[24] 基板上に薄膜トランジスタを形成する工程と、 [24] forming a thin film transistor on the substrate;
前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層する工程と、  Laminating a protective insulating film on the substrate and the thin film transistor; and
前記保護用絶縁膜上にレジストを積層する工程と、  Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、  Forming the resist in a predetermined shape, and forming an undercut portion at a lower peripheral edge of the resist;
前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部 によって互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、 前記基板上に、上記請求項 1〜8の 、ずれか一項に記載されたストリッピング組成 物を供給し、前記レジスト上の導電体膜を前記基板カゝら剥離させるストリッピング工程 と、  Depositing a conductive material on the protective insulating film and the resist to form a pixel electrode and a conductive film on the resist separated from each other by the undercut part; and A stripping step of supplying the stripping composition according to any one of 8 and stripping the conductive film on the resist from the substrate cover;
前記基板から剥離されたレジスト上の導電体膜が含まれた使用済みストリツビング 組成物を回収して、前記レジスト上の導電体膜を前記使用済みストリッピング組成物 内に溶解させ、該使用済みストリッピング組成物を再利用するリサイクル工程と を有することを特徴とするストリッピング組成物のリサイクル方法。  The used stripping composition including the conductive film on the resist peeled from the substrate is collected, and the conductive film on the resist is dissolved in the used stripping composition, and the used stripping composition is dissolved. And a recycling step of reusing the ripping composition. A method for recycling the stripping composition.
[25] 基板上に薄膜トランジスタを形成する工程と、 [25] forming a thin film transistor on the substrate;
前記基板及び薄膜トランジスタ上に保護用絶縁膜を積層する工程と、  Laminating a protective insulating film on the substrate and the thin film transistor; and
前記保護用絶縁膜上にレジストを積層する工程と、  Laminating a resist on the protective insulating film;
前記レジストを所定の形状に形成し、該レジストの周縁下部にアンダーカット部を形 成する工程と、  Forming the resist in a predetermined shape, and forming an undercut portion at a lower peripheral edge of the resist;
前記保護用絶縁膜及びレジスト上に導電性物質を蒸着させ、前記アンダーカット部 によって互いに分離された画素電極及びレジスト上の導電体膜を形成する工程と、 前記基板上にストリッピング組成物を供給して、前記レジスト上の導電体膜を前記 基板力 剥離させるストリッピング工程と、  A step of depositing a conductive material on the protective insulating film and the resist to form a pixel electrode and a conductive film on the resist separated from each other by the undercut; and supplying a stripping composition on the substrate A stripping step of peeling the substrate film on the conductive film on the resist;
前記基板から剥離されたレジスト上の導電体膜が含まれた使用済みストリツビング 組成物から、前記レジスト上の導電体膜を分離し、該使用済みストリッピング組成物を 再利用するリサイクル工程と Separating the conductive film on the resist from the used stripping composition containing the conductive film on the resist peeled from the substrate, the used stripping composition Recycling process to be reused
を有することを特徴とするストリッピング組成物のリサイクル方法。  A method for recycling a stripping composition comprising:
PCT/JP2007/061508 2006-06-21 2007-06-07 Stripping composition, tft substrate manufacturing method, and stripping composition recycling method WO2007148538A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008522380A JP5143731B2 (en) 2006-06-21 2007-06-07 Stripping composition, method for producing TFT substrate, and recycling method for stripping composition
CN2007800233902A CN101473420B (en) 2006-06-21 2007-06-07 Mold release composition, method for manufacturing TFT substrate, and method for recycling mold release composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006171818 2006-06-21
JP2006171835 2006-06-21
JP2006-171818 2006-06-21
JP2006-171835 2006-06-21

Publications (1)

Publication Number Publication Date
WO2007148538A1 true WO2007148538A1 (en) 2007-12-27

Family

ID=38833280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061508 WO2007148538A1 (en) 2006-06-21 2007-06-07 Stripping composition, tft substrate manufacturing method, and stripping composition recycling method

Country Status (5)

Country Link
JP (1) JP5143731B2 (en)
KR (1) KR20090023398A (en)
CN (1) CN101473420B (en)
TW (1) TWI427439B (en)
WO (1) WO2007148538A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122182B1 (en) * 2012-03-16 2020-06-12 바스프 에스이 Photoresist stripping and cleaning composition, method of its preparation and its use
CN108269736B (en) * 2018-01-25 2020-09-01 深圳市华星光电技术有限公司 Method for patterning electrode layer by photoresist stripping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413730A (en) * 1987-07-08 1989-01-18 Agency Ind Science Techn Lift-off flatting method
JPH01224017A (en) * 1988-03-03 1989-09-07 Nec Corp Circulating filtration device
JP2004055629A (en) * 2002-07-17 2004-02-19 Nec Kansai Ltd Method and apparatus for removing resist
JP2005183859A (en) * 2003-12-24 2005-07-07 Kazuo Tanabe Lift off method and device
JP2006074039A (en) * 2004-08-30 2006-03-16 Samsung Electronics Co Ltd Manufacturing method for thin-film transistor (tft) substrate and stripping composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432209B2 (en) * 1998-03-03 2002-08-13 Silicon Valley Chemlabs Composition and method for removing resist and etching residues using hydroxylazmmonium carboxylates
JP4405767B2 (en) * 2003-08-28 2010-01-27 ソニー株式会社 Composition for removing photoresist on substrate containing silver and / or silver alloy, method for producing pattern using the same, and display device including the same
JPWO2005040931A1 (en) * 2003-10-29 2007-04-19 ナガセケムテックス株式会社 Composition for stripping photoresist and stripping method
JP4390616B2 (en) * 2004-04-27 2009-12-24 Necエレクトロニクス株式会社 Cleaning liquid and method for manufacturing semiconductor device
KR101129433B1 (en) * 2004-08-30 2012-03-26 삼성전자주식회사 Method of manufacturing thin film transistor substrate and stripping composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413730A (en) * 1987-07-08 1989-01-18 Agency Ind Science Techn Lift-off flatting method
JPH01224017A (en) * 1988-03-03 1989-09-07 Nec Corp Circulating filtration device
JP2004055629A (en) * 2002-07-17 2004-02-19 Nec Kansai Ltd Method and apparatus for removing resist
JP2005183859A (en) * 2003-12-24 2005-07-07 Kazuo Tanabe Lift off method and device
JP2006074039A (en) * 2004-08-30 2006-03-16 Samsung Electronics Co Ltd Manufacturing method for thin-film transistor (tft) substrate and stripping composition

Also Published As

Publication number Publication date
JP5143731B2 (en) 2013-02-13
TWI427439B (en) 2014-02-21
CN101473420B (en) 2010-09-22
KR20090023398A (en) 2009-03-04
CN101473420A (en) 2009-07-01
TW200827949A (en) 2008-07-01
JPWO2007148538A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
TWI396231B (en) Etchant and method for fabricating liquid crystal display using the same
JP5331321B2 (en) Manufacturing method of display device
KR20100070087A (en) Composition for photoresist stripper and method of fabricating thin film transistor array substrate
TW201445264A (en) Photoresist stripping solution
CN103995441A (en) Light resistance stripping method and light resistance stripping device
JP4846301B2 (en) Thin film transistor substrate manufacturing method and stripping composition
JP5143731B2 (en) Stripping composition, method for producing TFT substrate, and recycling method for stripping composition
KR100652044B1 (en) Apparatus For Stripping
JP5809444B2 (en) Stripper for photoresist
US20070034503A1 (en) System and method for recycling organic-inorganic composite sheet
CN106292031A (en) A kind of two-sided lithographic method in TFT LCD manufacturing process
TWI460556B (en) Composition for stripping photoresist, method of stripping photoresist and method of manufacturing display device using the same
WO2019041630A1 (en) Manufacturing method and device for array substrate
KR100690347B1 (en) Stripper composition, stripping method using the same and stripper systems
US20030107690A1 (en) System and method for ozone cleaning a liquid crystal display structure
TWI435190B (en) Photoresist-stripping composition and method of stripping a photoresist film using the same
JP2007187962A (en) Method for manufacturing liquid crystal device
CN1988760A (en) Base plate rear section treating method
KR19980034394A (en) Glass substrate regeneration method of TFT substrate for TFT-LCD (Thin Film Transistor-Liquid Crystal Display)
KR100840678B1 (en) Apparatus for removing of photoresist and method for removing photoresist the using
Pa Nano Fabrication Technology of Selective Removal and Optical Assistance
WO2014208088A1 (en) Remover liquid for photoresists
Pa Design of precision recycle system of colour filter for TFT-LCD
CN106371232A (en) Preparation method of double-sided functional piece in TFT-LCD production technology
CN106324922A (en) Method for quickly manufacturing functional electrode layer with needed shape on substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023390.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522380

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 6752/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087030991

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009101765

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07744841

Country of ref document: EP

Kind code of ref document: A1