WO2007145231A1 - 熱収縮性ポリエステル系フィルム、およびその製造方法 - Google Patents

熱収縮性ポリエステル系フィルム、およびその製造方法 Download PDF

Info

Publication number
WO2007145231A1
WO2007145231A1 PCT/JP2007/061860 JP2007061860W WO2007145231A1 WO 2007145231 A1 WO2007145231 A1 WO 2007145231A1 JP 2007061860 W JP2007061860 W JP 2007061860W WO 2007145231 A1 WO2007145231 A1 WO 2007145231A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
less
shrinkage
longitudinal direction
Prior art date
Application number
PCT/JP2007/061860
Other languages
English (en)
French (fr)
Inventor
Takurou Endo
Masayuki Haruta
Norimi Tabota
Katsuhiko Nose
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to US12/304,531 priority Critical patent/US7829655B2/en
Priority to CN2007800223544A priority patent/CN101500784B/zh
Priority to AT07745143T priority patent/ATE498484T1/de
Priority to EP07745143A priority patent/EP2042294B1/en
Priority to DE200760012548 priority patent/DE602007012548D1/de
Publication of WO2007145231A1 publication Critical patent/WO2007145231A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/146Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly transversely to the direction of feed and then parallel thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a heat-shrinkable polyester film and a method for producing the same, and more particularly to a heat-shrinkable polyester film suitable for labeling and a method for producing the same.
  • a heat-shrinkable plastic film made of rosin is widely used.
  • stretched films such as polyvinyl chloride resin, polystyrene resin, polyester resin, etc. are used for polyethylene terephthalate (PET) containers, polyethylene containers, glass containers, etc. Used in various containers for labels, cap seals or collective packaging purposes.
  • the polysalt-bulb film has excellent shrinkage properties but low heat resistance. Moreover, it generates salt-hydrogen gas during incineration and causes dioxin. There is.
  • a polysalt-bulb resin film is used as a shrinkable label for PET containers, there is also a problem that the label and the container must be separated when the container is recycled.
  • Polystyrene films on the other hand, have a good finished appearance after shrinkage, but have poor solvent resistance. Therefore, there is a problem that a special composition ink must be used for printing.
  • polystyrene films need to be incinerated at high temperatures, and there is a problem that a large amount of black smoke is generated with an unpleasant odor during incineration.
  • polyester films having high heat resistance, easy incineration, and excellent solvent resistance have come to be widely used as shrink labels. With the increase, usage tends to increase.
  • a wrapping method has been developed in which a container is closed by covering the periphery of a synthetic resin single-open container such as a lunch box with a belt-like film. Also suitable for such packaging applications. Therefore, demand for films that shrink in the longitudinal direction is expected to increase dramatically in the future.
  • a non-stretched film that eliminates the problems of mechanical strength in the direction perpendicular to the main shrinkage direction as described above and develops a function of shrinking in the longitudinal direction is referred to as the longitudinal direction (also referred to as the longitudinal direction).
  • Stretch in the longitudinal direction by stretching 2.0 to 5.0 times each in the width direction (also referred to as the transverse direction) and then re-stretching 1.1 times or more in the longitudinal direction.
  • a heat-shrinkable polyester film is known in which both the Young's modulus and the Young's modulus in the width direction are adjusted to a predetermined value or more (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-244114
  • FIG. 1 is an explanatory view showing the shape of a test piece in the measurement of right-angled tear strength (the unit of length of each part of the test piece in the figure is mm).
  • the heat-shrinkable polyester film obtained by the above-described additional test has a poor tearability (so-called perforation opening) when tearing along a perforation perpendicular to the main shrinkage direction. . It was also found that the shrinkage in the longitudinal direction, which is the main shrinkage direction, is not necessarily sufficient and cannot be applied to a wide range of packaging!
  • An object of the present invention is to solve the problems of the heat-shrinkable polyester film of Patent Document 1 described above, to have high mechanical strength in the width direction orthogonal to the main shrinkage direction, and to produce a roll-shaped film. It is an object of the present invention to provide a heat-shrinkable polyester film having good perforation openability in which no film tightening occurs and the film roll is difficult to get wrinkled. Furthermore, in addition to the above properties, it is an object of the present invention to provide a heat-shrinkable polyester film that can be applied to applications that require a high shrinkage ratio that is highly shrinkable in the longitudinal direction, which is the main shrinkage direction. Means for solving the problem
  • the invention described in claim 1 is characterized in that ethylene terephthalate is a main constituent, and 10 mol% of one or more monomeric components that can be an amorphous component in all polyester resin components. It is a heat-shrinkable polyester-based film that is contained in the above and is formed in a long shape with a constant width and whose main shrinkage direction is the longitudinal direction, and satisfies the following requirements (1) to (4) It is a feature.
  • the hot water thermal contraction rate in the longitudinal direction is 15% or more and 80% or less when treated in 90 ° C hot water for 10 seconds.
  • Hot water thermal shrinkage in the width direction perpendicular to the longitudinal direction is 0% or more and 17% or less when treated in hot water at 90 ° C for 10 seconds.
  • the invention described in claim 2 is the invention described in claim 1, wherein the hot-water heat shrinkage in the longitudinal direction is 15% or more when treated in hot water at 90 ° C for 10 seconds.
  • the refractive index in the longitudinal direction is 1.570 or more and 1.590 or less
  • the refractive index in the width direction is 1.570 or more and 1.620 or less.
  • the invention described in claim 3 is the main component strength of the monomer that can be an amorphous component in all the polyester resin components in the invention described in claim 1 or claim 2. It is one of glycol, 1,4-cyclohexanedimethanol, and isophthalic acid.
  • the invention described in claim 4 is the invention described in any one of claims 1 to 3, wherein the longitudinal direction and width after shrinking 10% in the longitudinal direction in warm water at 80 ° C.
  • the Elmendorf ratio when measuring the direction Elmendorf tear load is 0.15 or more and 1.5 or less.
  • the invention described in claim 5 is the invention described in any one of claims 1 to 4, wherein the per unit thickness after 10% contraction in the longitudinal direction in warm water at 80 ° C. Square tear strength in the width direction is lOONZmm or more and 300NZmm or less
  • the invention described in claim 6 is a manufacturing method for continuously manufacturing the heat-shrinkable polyester film according to any one of claims 1 to 5, wherein an unstretched film is After stretching at a magnification of 2.5 times or more and 6.0 times or less in the width direction at a temperature of Tg + 5 ° C or more and Tg + 40 ° C or less with both ends in the width direction held by clips in the tenter After passing through the intermediate zone without carrying out an aggressive heating operation, at a temperature of 100 ° C to 170 ° C 1 Tg + 5 ° C or more Tg after heat treatment for 0 seconds or more and 10.0 seconds or less, after cooling until the film surface temperature reaches 30 ° C or more and 70 ° C or less + Longitudinal direction at a temperature of 80 ° C or less 2.
  • the surface temperature of the film is reduced at a cooling rate of 30 ° CZ to 70 ° CZ It is characterized by cooling to 45 ° C or higher and 75 ° C or lower.
  • the heat-shrinkable polyester film of the present invention has high mechanical strength in the width direction perpendicular to the main shrinkage direction, and the produced roll-shaped film does not cause winding and the film roll The perforation is easy to open.
  • the shrinkage in the longitudinal direction, which is the main shrinkage direction is high. Therefore, the heat-shrinkable polyester film of the present invention can be suitably used as a label for a container such as a bottle, and can be attached to a container such as a bottle very efficiently within a short time.
  • heat shrinkage is performed after mounting, a good finish with very little shrinkage due to heat shrinkage can be exhibited.
  • the attached label exhibits very good perforation opening.
  • dicarboxylic acid component constituting the polyester used in the present invention examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and orthophthalic acid.
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, and alicyclic dicarboxylic acids.
  • an aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.
  • the content is preferably less than 3 mol%.
  • a heat-shrinkable polyester film obtained by using a polyester containing 3% by mole or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high speed.
  • the diol component constituting the polyester used in the present invention includes aliphatic diols such as ethylene glycol, 13 propane diol, 14 butane diol, neopentyl glycol, and hexane diol, and 1,4-cyclohexane. And alicyclic diols such as sandimethanol and aromatic diols such as bisphenol A.
  • the polyester used for the heat-shrinkable polyester film of the present invention is a cyclic diol such as 1,4-cyclohexanedimethanol, or a diol having 3 to 6 carbon atoms (for example, 1-3 propanediol, Polyester having a glass transition point (Tg) adjusted to 60 to 80 ° C. containing at least one of 1 to 4 butanediol, neopentyl glycol, hexanediol, etc. is preferred! /.
  • Tg glass transition point
  • the polyester used in the heat-shrinkable polyester film of the present invention has a total of at least one monomer component that can be an amorphous component in 100 mol% of the polyhydric alcohol component in the total polyester resin.
  • the amount must be 10 mol% or more, preferably 15 mol% or more, more preferably 17 mol% or more, and particularly preferably 20 mol% or more.
  • examples of the monomer that can be an amorphous component include neopentyl dallicol, 1,4-cyclohexanediol, and isophthalic acid.
  • a diol having 8 or more carbon atoms for example, octanediol
  • a trivalent or more polyvalent alcohol for example, trimethylolpropane, trimethylolpropane.
  • Methylolethane, glycerin, diglycerin and the like are preferably not contained.
  • the heat-shrinkable polyester film of the present invention was calculated by the following formula 1 from the length before and after shrinkage when treated for 10 seconds in 90 ° C warm water under no load.
  • the thermal contraction rate in the longitudinal direction of the film (that is, the thermal contraction rate of hot water at 90 ° C) must be 15% or more and 80% or less.
  • Heat shrinkage rate ⁇ (length before shrinkage-length after shrinkage) Z length before shrinkage ⁇ X 100 (%) ⁇ , Formula 1
  • the hot water thermal shrinkage in the longitudinal direction at 90 ° C is less than 15%, it is used as a label. In contrast, since the amount of shrinkage is small, the thermal shrinkage rate in the longitudinal direction at 90 ° C exceeds 80%. When used as a label, it is not preferable because the shrinkage tends to occur during heat shrinkage, or so-called “jumping” occurs.
  • the lower limit value of the hot water thermal shrinkage in the longitudinal direction at 90 ° C. is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more.
  • the upper limit value of the hot water heat shrinkage in the longitudinal direction at 90 ° C is particularly preferably 75% or less, preferably 70% or less, more preferably 65% or less.
  • the film of the present invention when the film of the present invention is preliminarily formed in a cylindrical label whose main shrinkage direction is the circumferential direction and then fitted into a bottle (attached around a bottle or the like), the film at 90 ° C is used.
  • the hot water heat shrinkage rate in the long direction is preferably 0% or more and 80% or less.
  • the hot water thermal shrinkage in the longitudinal direction at 90 ° C is 40% or less, the shrinkage
  • the amount of hot water heat shrinkage in the longitudinal direction at 90 ° C exceeds 80%, it will be used as a label.
  • the shrinkage tends to be distorted at the time of heat shrinkage or so-called "flying up" occurs.
  • the lower limit value of the hot water heat shrinkage rate in the longitudinal direction at 90 ° C is 45% or more. It is particularly preferably 50% or more and more preferably 55% or more.
  • the upper limit value of the hot water thermal contraction rate in the longitudinal direction at 90 ° C is particularly preferably 75% or less, preferably 70% or less, and more preferably 65% or less.
  • the above-described use such as fitting of a cylindrical body suitable for a film having a hot water thermal contraction rate force in the longitudinal direction at 90 ° C. of 0% or more and 80% or less may be referred to as a high shrinkage use.
  • the hot water heat shrinkage in the longitudinal direction at 90 ° C is 15% or more and less than 40%. Liked to be. When the hot water thermal contraction rate in the longitudinal direction at 90 ° C is less than 15%, the shrinkage amount is small. On the other hand, when the thermal contraction rate of hot water in the long direction at 90 ° C is 40% or more, the label is wound by the body winding method when it is wound by the body winding method. This is not preferable because shrinkage distortion is likely to occur or so-called “jumping” occurs.
  • the lower limit value of the hot water heat shrinkage in the longitudinal direction at 90 ° C is particularly preferably 19% or more, more preferably 21% or more, more preferably 17% or more.
  • the upper limit value of the hot water thermal contraction rate in the longitudinal direction at 90 ° C. is particularly preferably 38% or less, preferably 36% or less, and more preferably 34% or less.
  • the above uses may be referred to as lap round uses.
  • the heat-shrinkable polyester film of the present invention was calculated from the length before and after shrinkage according to the above equation 1 when treated for 10 seconds in a 90 ° C warm water under no load condition.
  • the heat shrinkage force in the width direction of the film must be 0% or more and 17% or less.
  • the hot water thermal shrinkage in the width direction at 90 ° C is less than 0%, a favorable shrinkage appearance cannot be obtained when used as a label on a bottle. If the hot-water heat shrinkage in the width direction exceeds 17%, it is not preferable because it tends to be distorted during heat shrinkage when used as a label.
  • the upper limit value of hot water thermal shrinkage in the width direction at 90 ° C is 15% or less, preferably 14% or less, more preferably 13% or less, and further preferably 12% or less Most preferably, it is 11% or less.
  • the lower limit value of the hot water heat shrinkage in the width direction at 90 ° C. is considered to be about 0%.
  • the heat-shrinkable polyester film of the present invention is obtained by measuring the right-angled tear strength in the width direction per unit thickness by the following method after shrinking 10% in the longitudinal direction in warm water at 80 ° C. It is preferable that the right-angled tear strength in the width direction is between lOONZmm and 300NZmm.
  • the film is shrunk 10% in the longitudinal direction in hot water adjusted to 80 ° C, and then sampled as a test piece of a predetermined size according to JIS-K-7128. After that, grasp both ends of the test piece with a universal tensile tester, and measure the strength at the time of tensile fracture in the width direction of the film under the condition of a tensile speed of 200 mmZ. Then, the unit thickness Calculate the right angle tear strength.
  • the right-angled tear strength after shrinking 10% in the longitudinal direction in warm water at 80 ° C is less than lOONZmm, it can be easily torn by impact such as dropping during transportation when used as a label On the contrary, if the right-angled tear strength exceeds 300 NZmm, the cutability (ease of tearing) at the initial stage of tearing the label becomes unfavorable.
  • the lower limit of the right-angled tear strength is particularly preferably 150 NZmm or more, more preferably 175 NZmm or more, preferably 125 N / mm or more.
  • the upper limit of the right-angled tear strength is preferably 275 NZmm or less, more preferably 250 NZmm or less, and even more preferably 225 NZmm or less.
  • the heat-shrinkable polyester film of the present invention was subjected to 10% shrinkage in the longitudinal direction in warm water at 80 ° C, and then the Elmendorf bow in the longitudinal direction and the width direction by the following method.
  • the Elmendorf ratio which is the ratio of these Elmendorf tear loads, is preferably 0.15 or more and 1.5 or less.
  • the film is mounted on a rectangular frame having a predetermined length in a state where the film has been loosened in advance (that is, both ends of the film are held by the frame). Then, the film is contracted by 10% in the longitudinal direction by immersing it in warm water at 80 ° C for about 5 seconds until the loose film becomes tensioned in the frame (until the slack disappears). Then, measure the Elmendorf tear load in the longitudinal and width directions of the film according to JIS-K-7128, and calculate the Elmendorf ratio using Equation 3 below.
  • the Elmendorf ratio is less than 0.15, it is not preferable because it is difficult to tear straight along the perforation when used as a label. On the other hand, if the Elmendorf ratio is more than 1.5, it is not preferable because it easily breaks at a position shifted from the perforation.
  • the lower limit of the Elmendorf ratio is preferably 0.20 or more, more preferably 0.25 or more. It is especially preferable that it is above.
  • the upper limit of the Elmendorf ratio is preferably 1.4 or less, more preferably 1.3 or less, and particularly preferably 2 or less.
  • the heat-shrinkable polyester film of the present invention may have a natural shrinkage ratio of 0.05% or more and 1.5% or less after aging for 700 hours in an atmosphere of 40 ° C and 65% RH. is necessary.
  • the natural shrinkage rate can be calculated using the following equation 4.
  • Natural shrinkage rate ⁇ (Length before aging) Length after aging Z Length before aging ⁇ X 100 (%) ⁇ Equation 4
  • the natural shrinkage ratio exceeds 1.5%, it is not preferable because winding tightening occurs when the product wound in a roll shape is stored, and the film roll is easily wrinkled.
  • the natural shrinkage rate is preferably as small as possible, but from the viewpoint of measurement accuracy, 0.05% is considered to be the lower limit. Further, the natural shrinkage rate is preferably 1.3% or less, more preferably 1.1% or less, and particularly preferably 1.0% or less.
  • the heat-shrinkable polyester film of the present invention needs to have a refractive index in the longitudinal direction of 1.570 or more and 1.620 or less. If the refractive index in the longitudinal direction exceeds 1.620, the solvent adhesiveness when making a label deteriorates, which is not preferable. On the other hand, if it is less than 1.570, it is not preferable because the cut property when used as a label is deteriorated.
  • the upper limit of the refractive index in the longitudinal direction is preferably 1.600 or less, preferably 1.595 or less, more preferably 1.593 or less, and particularly preferably 1.590. . On the other hand, the lower limit of the refractive index in the longitudinal direction is preferably 1.575 or more.
  • the lower limit of the refractive index in the longitudinal direction is preferably 1.580 or more, more preferably 1.583 or more, and particularly preferably 1.585 or more.
  • the refractive index in the longitudinal direction is preferably 1.570 or more and 1.590 or less.
  • the upper limit of the refractive index in the longitudinal direction for wrap round applications is preferably 1. 587 or less, particularly preferably 1.585 or less.
  • the heat-shrinkable polyester film of the present invention needs to have a refractive index in the width direction of 1.570 or more and 1.620 or less. If the refractive index in the width direction exceeds 1.620, the solvent adhesiveness when labeling is deteriorated, which is not preferable. On the other hand, if it is less than 1.570, it is not preferable because the cut property when used as a label is deteriorated.
  • the upper limit of the refractive index in the width direction The value is preferably 1.610 or less, more preferably 1.600 or less, and even more preferably 1.595 or less. Further, the lower limit of the refractive index in the width direction is preferably 1.575 or more, more preferably 1.580 or more.
  • the upper limit of the refractive index in the longitudinal direction is preferably 1.590 or less, more preferably 1.588 or less, and particularly preferably 1.586 or less.
  • the upper limit of the refractive index in the width direction is preferably 1.610 or less 1. 605 or less Is more preferable.
  • the maximum heat shrinkage stress value in the longitudinal direction of the film is 2.5 (MPa) or more and 20 (MPa) or less. If the film is less than the maximum heat shrinkage stress (MPa) in the longitudinal direction of the film, when the label is attached to a container such as a PET bottle and thermally contracted, the label is attached together with the cap when the PET bottle cap is opened. This is not preferable because it may cause a situation where the cap opens and deteriorates the opening of the cap. If the maximum heat shrinkage stress value in the longitudinal direction of the film is too low, shrinkage is insufficient during heat shrinkage, and a good appearance cannot be obtained.
  • the lower limit of the maximum heat shrinkage stress value in the longitudinal direction of the film is more preferably 3.0 (MPa) or more, and particularly preferably 3.5 (MPa) or more.
  • the upper limit value of the maximum heat shrinkage stress value in the longitudinal direction of the film is particularly preferably 18 (MPa) or less, more preferably 19 (MPa) or less.
  • the lower limit of the maximum heat shrinkage stress value in the longitudinal direction of the film is more preferably 6 (MPa) or more, more preferably 7 (MPa ) Or more, and 8 (MPa) or more is particularly preferred! /.
  • the upper limit of the maximum heat shrinkage stress value in the longitudinal direction of the film is preferably 7 MPa or less because shrinkage distortion is likely to occur during heat shrinkage after body winding. More preferably, it is 6.5 MPa or less, further preferably 6. OMPa or less, and particularly preferably 5.5 MPa or less.
  • the heat-shrinkable polyester film of the present invention preferably has a solvent adhesive strength of 4 (N / 15 mm) or more. If the solvent adhesive strength is less than 4 (NZ 15 mm), the label will be easily peeled off after the heat shrinkage of the label, which is not preferable.
  • solvent adhesion strength The degree is more preferably 4.5 (NZI 5 mm) or more, and particularly preferably 5 (NZ I 5 mm) or more. In particular, in the case of high shrinkage, it is preferable to satisfy the above characteristics.
  • the heat-shrinkable polyester film of the present invention preferably has a thickness variation of 10% or less in the longitudinal direction. If the thickness unevenness in the longitudinal direction is more than 10%, it is not preferable because printed spots are likely to occur during printing at the time of label production or shrinkage spots after heat shrinkage are likely to occur. Note that the thickness unevenness in the longitudinal direction is 8% or less, more preferably 6% or less.
  • the heat-shrinkable polyester film of the present invention does not detect the endothermic curve peak during the melting point measurement in the differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the thickness of the heat-shrinkable polyester film of the present invention is not particularly limited.
  • As the heat-shrinkable film for 1S label 10 to 200 ⁇ m is preferable 20 to: LOO ⁇ m is more preferable.
  • the heat-shrinkable polyester film of the present invention forms the unstretched film by melt-extruding the above-described polyester raw material with an extruder, and the unstretched film is biaxially stretched by the method described below. And can be obtained by heat treatment.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a pad dryer, or a vacuum dryer. After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300 ° C and extruded into a film using an extruder.
  • a dryer such as a hopper dryer or a pad dryer, or a vacuum dryer.
  • any existing method such as T-die method or tubular method can be used.
  • An unstretched film is obtained by quenching the extruded sheet-like molten resin. Obtainable.
  • a method for rapidly cooling the molten resin it is preferable to employ a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and rapidly solidifying it. it can.
  • the obtained unstretched film was stretched in the width direction under a predetermined condition, then heat-treated once, and then stretched in the longitudinal direction under the predetermined condition.
  • the heat-shrinkable polyester film of the present invention can be obtained.
  • the preferred biaxially stretched 'heat treatment method for obtaining the heat-shrinkable polyester film of the present invention will be described in detail while considering the difference from the conventional biaxially stretched heat-shrinkable polyester film' heat treatment method. explain.
  • a normal heat-shrinkable polyester film is produced by stretching an unstretched film in the direction of shrinkage. Although there has been a high demand for heat-shrinkable polyester films that shrink in the longitudinal direction, it is difficult to produce a wide film by simply stretching an unstretched film in the longitudinal direction. Thickness A film with good spots cannot be produced. In addition, if a method in which the film is previously stretched in the width direction and then stretched in the longitudinal direction is employed, the width direction shrinks unnecessarily, or the amount of contraction in the longitudinal direction becomes insufficient.
  • JP-A-8-244114 discloses a method of stretching an unstretched film in the longitudinal, lateral and longitudinal order under predetermined conditions in order to improve the mechanical properties in the longitudinal direction.
  • the film obtained was subjected to longitudinal wrinkles on the film roll produced with a large natural shrinkage rate, and the perforation was opened. The sex was also poor.
  • the reason why it is possible to obtain a film having good perforation cutability and no shrinkage by performing a specific intermediate heat treatment after transverse stretching is not clear, but by performing a specific intermediate heat treatment, We believe that it is possible to reduce the shrinkage stress in the width direction while leaving some molecular orientation in the width direction.
  • the lower limit of the heat treatment temperature is preferably 110 ° C. or higher, more preferably 115 ° C. or higher.
  • the upper limit of the heat treatment temperature is 165 ° C or less.
  • the temperature is preferably 160 ° C. or less.
  • the heat treatment time needs to be appropriately adjusted according to the raw material composition within a range of 1.0 second to 10.0 seconds.
  • the stretching in the width direction of the unstretched film is performed at a temperature of Tg + 5 ° C or more and Tg + 40 ° C or less in a state where both ends in the width direction are held by clips in the tenter. It should be done so that the magnification is 5 times or more and 6.0 times or less. If the stretching temperature is lower than Tg + 5 ° C, breakage is likely to occur during stretching. On the other hand, if it exceeds Tg + 40 ° C, the thickness unevenness in the width direction becomes worse.
  • the lower limit of the transverse stretching temperature is preferably Tg + 10 ° C. or more, more preferably Tg + 15 ° C. or more.
  • the upper limit of the transverse stretching temperature is preferably Tg + 35 ° C. or less, more preferably Tg + 30 ° C. or less.
  • the lower limit of the transverse stretching ratio is preferably 3.0 times or more, more preferably 3.5 times or more.
  • the upper limit of the transverse stretching ratio is preferably 5.5 times or less, more preferably 5.0 times or less.
  • the transverse-longitudinal stretching method of the present invention it is necessary to perform an intermediate heat treatment after the transverse stretching as described above, but 0.5% between the transverse stretching and the intermediate heat treatment. It is necessary to pass through an intermediate zone that does not perform an aggressive heating operation for a time of at least 3 seconds but not more than 3.0 seconds. That is, considering production costs, it is preferable to perform transverse stretching and intermediate heat treatment in the same tenter. However, in the production of the film of the present invention, the transverse stretching zone and heat treatment zone in the tenter are strong. It is preferable to provide an intermediate zone between them.
  • the hot air from the stretching zone and the heat treatment zone is blocked so that the paper piece hangs almost completely in the vertical direction. I prefer to do it.
  • the film after transverse stretching is led to an intermediate zone where force is applied and allowed to pass through the intermediate zone over a predetermined time.
  • the time for passing through the intermediate zone is less than 0.5 seconds, the transverse stretching zone is caused by the accompanying flow of the passing film.
  • the hot air flows into the heat setting zone, which makes it difficult to control the temperature of the intermediate heat treatment in the heat setting zone.
  • the time required to pass through the intermediate zone is sufficient if it is 3.0 seconds, and setting it longer than that is not preferable because it wastes equipment.
  • the lower limit of the time for passing through the intermediate zone is preferably 0.7 seconds or more, and more preferably 0.9 seconds or more.
  • the upper limit of the time for passing through the intermediate zone is preferably 2.5 seconds or less, and more preferably 2.0 seconds or less.
  • the film is not sufficiently stretched at the edge of the film and is not thick (mainly It is preferable to trim the clip gripping portion during transverse stretching. More specifically, the thickness at the edge of the film using a tool such as a cutter at a thickness approximately 1.1 to 1.3 times the thickness of the central portion located at the edge of the left and right edges of the film. It is preferable to cut the portion and remove the thick portion while stretching only the remaining portion in the longitudinal direction.
  • it is preferable to cool the film before trimming so that the surface temperature is 50 ° C. or lower.
  • trimming can be performed without disturbing the cut surface.
  • a round blade having a circumferential cutting edge that can be performed using a normal cutter or the like is used for trimming the film edge, the situation that the edge of the film does not become dull locally does not occur, and the film edge is lengthened. It is preferable because it can continue to cut sharply over a period of time and does not cause a breakage during stretching in the longitudinal direction.
  • the cooling rate is 30 ° CZ seconds or more and 70 ° CZ seconds or less. It is preferred to cool the film until the surface temperature is between 45 ° C and 75 ° C. Thus, the natural shrinkage rate can be reduced only by cooling the film at an appropriate speed. If the cooling rate is lower than 30 ° CZ seconds or the surface temperature after cooling is higher than 75 ° C, a low natural shrinkage rate cannot be obtained. On the other hand, if the cooling rate is abruptly exceeding 70 ° CZ seconds, the degree of film shrinkage in the width direction (, ⁇ neck neck-in '') will increase, and the film surface will be easily damaged. This is preferable.
  • Tables 1 and 2 show the properties of the raw materials used in the examples and comparative examples, compositions, production conditions of the films in the examples and comparative examples (stretching and heat treatment conditions, etc.), respectively.
  • the evaluation method of the film is as follows.
  • the film is cut into a 10cm x 10cm square, heat-shrinked in warm water at a specified temperature of ⁇ 0.5 ° C for 10 seconds under no load condition, and then the vertical and horizontal dimensions of the film are measured. Measured, and the thermal shrinkage rate was calculated according to the above formula 1. The direction in which the heat shrinkage rate is large was defined as the main shrinkage direction.
  • each sample film was left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more, and then measured.
  • ⁇ 9 and Comparative Examples 1 to 3 and 5 were measured for shrinkage in the longitudinal direction and Comparative Example 4 in the width direction), and the natural shrinkage rate was calculated by Equation 4 above.
  • a test piece was prepared by sampling in the shape shown in Fig. 1 according to JIS-K-7128 ( In sampling, the longitudinal direction of the test piece was defined as the main shrinkage direction of the film). After that, hold both ends of the test piece with a universal tensile tester (Autograph manufactured by Shimadzu Corporation), and measure the strength at the time of tensile fracture in the width direction of the film under the condition of a tensile speed of 200 mmZ. The right-angle tear strength per unit thickness was calculated using Equation 2 above.
  • the film was sampled into a long roll of 30 m length x 40 mm width and measured at a speed of 5 (mZ min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd.
  • the length direction of the film sample was set as the main shrinkage direction of the film.
  • the maximum thickness at the time of measurement was Tmax.
  • the minimum thickness was Tmin.
  • the average thickness was Tave.
  • Thickness unevenness ⁇ (Tmax.—Tmin.) ZTave. ⁇ X 100 (%) ⁇ ⁇ Equation 5
  • the stretched film was sealed by applying 1,3-dioxolane and bonding the two together. After that, the seal part is cut to a width of 15 mm in a direction orthogonal to the main shrinkage direction of the film (hereinafter referred to as the orthogonal direction), and it is universally tensioned by Baldwin Co., Ltd.
  • a 180 ° peel test was conducted under the condition of a tensile speed of 200 mmZ with the tester STM-50 set. And the tensile strength at that time was made into solvent adhesive strength.
  • the heat-shrinkable film was preprinted in three colors with Toyo Ink Mfg. Co., Ltd.'s grass gold and white ink. Then, by sticking both ends of the printed film with zoxolan, a cylindrical label (the main shrinkage direction of the heat-shrinkable film is the circumferential direction, and the outer peripheral length is 1.05 times the outer peripheral length of the bottle to be installed. A certain cylindrical label) was created. After pressing, put the cylindrical label on a 500 ml PET bottle (bore diameter 62 mm, minimum neck diameter 25 mm) and use Fuji Astec Inc steam tunnel (model: SH-1500-L) Passing time 2.5 seconds, label was attached by heat shrinking at zone temperature 80 ° C.
  • the neck part was adjusted so that the 40 mm diameter part would be one end of the label.
  • the finish after shrinkage was evaluated visually, and the criteria were as follows. ⁇ : No wrinkles, jumps, or insufficient shrinkage occurred, and no color spots were observed. ⁇ : No wrinkles, jumps, or insufficient shrinkage could be confirmed, but some color spots were observed. : Neither jumping up nor insufficient shrinkage has occurred, but spots on the neck are visible
  • the heat-shrinkable film is printed with Toyo Ink Mfg. Co., Ltd.'s grass “gold” white ink in three colors, and the printed heat-shrinkable film has a length of 230 mm x width 100 so that the lengthwise direction is vertical. Cut out in mm size. And with a 265ml aluminum bottle can (see Fig. 2, barrel diameter 68 mm, neck diameter minimum 25 mm, neck diameter 1 ⁇ 20 mm with a “neck” provided), While winding the film so that one of the long sides of the cut-out film is along the bottom of the feeling, it is manufactured by the following method at the top, bottom, and center of the short side of the film on the bottle can contact surface side.
  • the applied active energy ray (UV) curable adhesive was applied in the form of dots to fix the film to a bottle can.
  • the adhesive layer applied to the other edge was sandwiched.
  • a can was manufactured.
  • the bottle can with a heat-shrinkable label was immediately sent to a steam furnace shrink tunnel 3m long and kept at 92 ° C after passing the label, and allowed to pass for 10 seconds. It was shrunk and stuck to the outer periphery of the bottle can.
  • the neck part was adjusted so that the part with a diameter of 40 mm would be one end of the label. Thereafter, the finish after shrinkage was visually evaluated in the following four stages.
  • the label was attached to the PET bottle under the same conditions as those described above for the shrinkage finish (cylindrical body fitting). If the label and PET bottle are lightly twisted and the label does not move, it is marked as X. If the label slips out or the label and the bottle are misaligned, the label is marked as X. When a film is directly wrapped around a PET bottle, etc., the edge strength of the film is adhered to the SPET bottle, so the label adhesion property will not be a problem.
  • a label with a perforation in advance in a direction perpendicular to the main shrinkage direction was attached to a PET bottle under the same conditions as the above-described measurement conditions for shrinkage finishing (cylindrical fitting).
  • the perforations were formed by inserting holes with a length of 1 mm at intervals of 1 mm, and two perforations with a width of 22 mm and a length of 120 mm were provided in the vertical direction (height direction) of the label.
  • the cylindrical fitting method preliminary circumferential shrinkage After forming a cylindrical label in the direction, it is inserted into a PET bottle etc. and attached) or a wrap round method (film is directly wrapped around a PET bottle etc. so that the main shrinkage direction is the circumferential direction) If it can be used practically as a heat-shrinkable film by any of the above methods, it will be marked as ⁇ , and in both the tubular body fitting method and the wrapping round method, heat will be applied. X was used if it could not be used practically as a shrinkable film.
  • Polyesters used in Examples and Comparative Examples are as follows. [0083] Polyester 1: Ethylene glycol 70 mol 0 I neopentyl glycol 30 mol 0/0 terephthalic acid and force also polyester (IV 0. 72dl / g)
  • Polyester 2 Polyethylene terephthalate (IV 0.775dl / g)
  • Polyester 3 terephthalic acid units as dicarboxylic acid component 82.5 mol 0 I isophthalic acid unit 17.5 mol% Yorinari, consisting of ethylene glycol as the diol component.
  • Polyester 4 polyester composed of ethylene glycol 70 mol 0 I 1, 4 Cyclohexanedicarboxylic methanol 3 to Shikuro 0 mole 0/0 and terephthalic acid (IV 0. 75dl / g)
  • the above polyester 1 and polyester 2 were mixed at a weight ratio of 90:10 and charged into an extruder. After pressing, the mixed resin is melted at 280 ° C, T-die force is also extruded, wound around a rotating metal roll cooled to a surface temperature of 30 ° C, and rapidly cooled, so that the thickness of 360 m A stretched film was obtained. At this time, the bow I removal speed (rotation speed of the metal roll) of the unstretched film was about 20 mZmin. The Tg of the unstretched film was 67 ° C. Then, the unstretched film was guided to a tenter (first tenter) in which a transverse stretching zone, an intermediate zone, and an intermediate heat treatment zone were continuously provided.
  • a tenter first tenter
  • the length of the intermediate zone located between the transverse stretching zone and the intermediate heat treatment zone is set to about 40 cm.
  • the hot air from the stretching zone and the hot air from the heat treatment zone are blown so that the piece of paper hangs almost completely in the vertical direction. Blocked.
  • a plurality of roll groups are continuously arranged in such a film whose edge is trimmed.
  • the film was led to a longitudinal stretching machine, preheated on a preheating roll until the film temperature reached 70 ° C, and then stretched 3 times between stretching rolls set at a surface temperature of 95 ° C. After stretching, the stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C.
  • the surface temperature of the film before cooling was about 75 ° C
  • the surface temperature of the film after cooling was about 25 ° C.
  • the time required for cooling from 70 ° C to 25 ° C was about 1.0 seconds, and the film cooling rate was 45 ° CZ seconds.
  • the cooled film is guided to a tenter (second tenter), heat-treated in an atmosphere of 95 ° C for 2.0 seconds in the second tenter, cooled, and both edges are cut.
  • a biaxially stretched film of about 30 m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film.
  • Table 3 shows the evaluation results.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that polyester 1 and polyester 2 were mixed at a weight ratio of 70:30 and charged into an extruder. The characteristics of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the transverse stretching ratio in the tenter (first tenter) was changed to 5.0 times.
  • the thickness of the biaxially stretched heat-shrinkable polyester film was about 24 ⁇ m.
  • the properties of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the intermediate heat treatment in the tenter (first tenter) was changed to 140 ° C.
  • the thickness of the biaxially stretched heat-shrinkable polyester film was about 24 ⁇ m.
  • the properties of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • a heat-shrinkable film was continuously produced by the same method as in Example 1 except that it was changed to 0 times.
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 18 m.
  • the characteristics of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the stretching roll in the longitudinal stretching machine was changed to 92 ° C and the stretching ratio in the longitudinal direction was changed to 7.0 times. .
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 13 m.
  • the characteristics of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the draw ratio in the longitudinal direction of the machine was changed to 1.5.
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 60 ⁇ m.
  • the properties of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • a heat-shrinkable film was continuously produced by the same method as in Example 1.
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 60 m.
  • the characteristics of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • Example 1 In the same manner as in Example 1, except that the transverse stretch ratio in the tenter (first tenter) was changed to 4.5 times and the longitudinal stretch ratio in the longitudinal stretcher was changed to 1.5 times. A heat shrinkable film was continuously produced. The thickness of the biaxially stretched heat-shrinkable polyester film was about 27 ⁇ m. The properties of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results. [0096] [Comparative Example 1]
  • the above polyester 3 is put into an extruder, melted at 265 ° C, extruded from T Daika, wrapped around a rotating metal roll cooled to a surface temperature of 30 ° C, and rapidly cooled, resulting in a thickness of 360 m
  • An unstretched film was obtained.
  • the take-up speed of the unstretched film was the same as in Example 1.
  • the unstretched film is guided to a longitudinal stretching machine (first longitudinal stretching machine) in which a plurality of roll groups are continuously arranged, preheated on a preheating roll, and then surface temperature of 88 ° C.
  • the film was stretched 2.7 times between the stretching rolls set to 1.
  • the film stretched in the longitudinal direction is led to a tenter (first tenter) in which a transverse stretching zone and a heat treatment zone are continuously provided, and the transverse stretching zone is 97 ° C at a stretching temperature of 97 ° C. After being stretched by 3.5 times, it was heat treated at 125 ° C in a heat treatment zone. Then, the heat-treated film is guided to a longitudinal stretching machine (second longitudinal stretching machine) in which a plurality of roll groups are continuously arranged, preheated on a preheating roll, and then set to a surface temperature of 98 ° C. Stretched again 1.5 times between the drawn rolls.
  • the film stretched again in the longitudinal direction is guided to a tenter (second tenter), heat treated at 85 ° C, cooled, and both edges are cut and removed to give a biaxially stretched film of about 35 / zm.
  • the film was continuously formed over a length of 5 mm to obtain a heat-shrinkable polyester film roll.
  • Cooling rate 25 ° CZ seconds
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that polyester 1 and polyester 2 were mixed at a weight ratio of 40:60 and charged into an extruder.
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 13 m.
  • the properties of the obtained film were evaluated by the same method as in Example 1. The evaluation results are shown in Table 3.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the intermediate heat treatment in the tenter (first tenter) was changed to 70 ° C.
  • the properties of the obtained film were evaluated by the same method as in Example 1. The evaluation results are shown in Table 3. [0099] [Comparative Example 4]
  • a heat-shrinkable film was continuously produced in the same manner as in Comparative Example 1 except that the draw ratio at the time of longitudinal stretching again with the second longitudinal stretching machine was 3.0 times.
  • the characteristics of the obtained film were evaluated by the same method as in Example 1. Table 3 shows the evaluation results.
  • Example 19 As is clear from Table 3, all the films obtained in Example 19 were not shrinkable in the width direction perpendicular to the main shrinkage direction, which is highly shrinkable in the longitudinal direction, which is the main shrinkage direction. Always low.
  • the films obtained in Example 16 all had high solvent adhesive strength, good label adhesion, and good shrinkage finish (cylinder fitting method) with no shrinkage spots.
  • the film obtained in Example 79 was excellent in shrink finish (wrapping round method).
  • the film obtained in Example 7 has a solvent adhesion strength. The degree was strong.
  • the heat-shrinkable polyester films of Examples 1 to 9 had good perforation openability, and did not cause wrinkles on manufactured film rolls with low natural shrinkage. . That is, the heat-shrinkable polyester films obtained in Examples 1 to 9 were all highly practical with high label quality.
  • the heat-shrinkable film obtained in Comparative Example 1 had poor label adhesion and perforation openability.
  • the heat-shrinkable films obtained in Comparative Examples 2 and 3 both had high heat shrinkage in the film width direction and had poor label adhesion, resulting in shrinkage spots.
  • the film obtained in Comparative Example 4 (main shrinkage direction is the width direction) had good shrinkage finish (cylindrical body fitting method), but was poor in perforation openability.
  • the film obtained in Comparative Example 5 (the main shrinkage direction is the width direction) had shrinkage spots with a large thermal shrinkage rate in the direction orthogonal to the main shrinkage direction, and the perforation openability was poor. A wrinkle occurred on a film roll produced with a large natural shrinkage. That is, the heat-condensable polyester films obtained in Comparative Examples 1 to 5 were all inferior in quality as labels and low in practicality.
  • the heat-shrinkable polyester film of the present invention has excellent cache properties as described above, it can be suitably used for labeling bottles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

明 細 書
熱収縮性ポリエステル系フィルム、およびその製造方法
技術分野
[0001] 本発明は、熱収縮性ポリエステル系フィルム、およびその製造方法に関するもので あり、詳しくは、ラベル用途に好適な熱収縮性ポリエステル系フィルム、およびその製 造方法に関するものである。
背景技術
[0002] 近年、包装品の外観向上のための外装、内容物の直接的な衝突を避けるための包 装、ガラス瓶またはプラスチックボトルの保護と商品の表示を兼ねたラベル包装等の 用途に、各種の榭脂からなる熱収縮プラスチックフィルムが広範に使用されている。 それらの熱収縮プラスチックフィルムの内、ポリ塩ィ匕ビ二ル系榭脂、ポリスチレン系榭 脂、ポリエステル系榭脂等力 なる延伸フィルムは、ポリエチレンテレフタレート(PET )容器、ポリエチレン容器、ガラス容器等の各種の容器において、ラベルやキャップシ ールあるいは集積包装の目的で使用される。
[0003] ところが、ポリ塩ィ匕ビュル系フィルムは、収縮特性には優れるものの、耐熱性が低!ヽ 上に、焼却時に塩ィ匕水素ガスを発生したり、ダイォキシンの原因となる等の問題があ る。また、ポリ塩ィ匕ビュル系榭脂フィルムを PET容器等の収縮ラベルとして用いると、 容器をリサイクル利用する際に、ラベルと容器を分離しなければならない、という問題 もある。一方、ポリスチレン系フィルムは、収縮後の仕上がり外観性が良好であるもの の、耐溶剤性に劣るため、印刷の際に特殊な組成のインキを使用しなければならな い、という不具合がある。また、ポリスチレン系フィルムは、高温で焼却する必要がある 上に、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。
[0004] それゆえ、耐熱性が高ぐ焼却が容易であり、耐溶剤性に優れたポリエステル系フィ ルムが、収縮ラベルとして広汎に利用されるようになってきており、 PET容器の流通 量の増大に伴って、使用量が増加して 、る傾向にある。
[0005] また、通常の熱収縮性ポリエステル系フィルムとしては、幅方向に大きく収縮させる ものが広く利用されている。そのように幅方向が主収縮方向である熱収縮性ポリエス テル系フィルムは、幅方向への収縮特性を発現させるために幅方向に高倍率の延伸 が施されているが、主収縮方向と直交する長手方向に関しては、低倍率の延伸が施 されているだけであることが多ぐ延伸されていないものもある。そのように、長手方向 に低倍率の延伸を施したのみのフィルムや、幅方向のみしか延伸されて ヽな 、フィル ムは、長手方向の機械的強度が劣るという欠点がある。
[0006] また、ボトルのラベルは、環状にしてボトルに装着した後に周方向に熱収縮させな ければならな 、ため、幅方向に熱収縮する熱収縮性フィルムをラベルとして装着する 際には、フィルムの幅方向が周方向となるように環状体を形成した上で、その環状体 を所定の長さ毎に切断してボトルに装着しなければならない。したがって、幅方向に 熱収縮する熱収縮性フィルム力 なるラベルを高速でボトルに装着するのは困難で ある。それゆえ、最近では、フィルムロールから直接ボトルの周囲に巻き付けて装着 すること (所謂、ラップ'ラウンド)が可能な長手方向に熱収縮するフィルムが求められ ている。さらに、近年では、お弁当等の合成樹脂製の片開き容器の周囲を帯状のフ イルムで覆うことによって容器を閉じた状態で保持するラッピング方法が開発されて おり、長手方向に収縮するフィルムは、そのような包装用途にも適している。したがつ て、長手方向に収縮するフィルムは、今後、需要が飛躍的に増大するものと見込まれ ている。
[0007] 上記したような主収縮方向と直交する方向における機械的強度の不具合を解消す るとともに、長手方向へ収縮する機能を発現させるベぐ未延伸フィルムを長手方向( 縦方向ともいう)、幅方向(横方向ともいう)にそれぞれ 2. 0〜5. 0倍延伸した後に長 手方向に 1. 1倍以上再延伸することによって、長手方向への収縮性を発現させると ともに、長手方向のヤング率および幅方向のヤング率をともに所定の値以上となるよ うに調整した熱収縮性ポリエステルフィルムが知られて 、る(特許文献 1)。
[0008] 特許文献 1 :特開平 8— 244114号公報
図面の簡単な説明
[0009] [図 1]直角引裂強度の測定における試験片の形状を示す説明図である (なお、図中 における試験片の各部分の長さの単位は mmである)。
符号の説明 [0010] フィルム。
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、上記した特許文献 1の熱収縮性ポリエステルフィルムは、長手方向、 幅方向の機械的強度が良好であるものの、工業的な製品とした場合の諸特性や包 装体として用いた場合の特性が必ずしも十分であるとはいえない。すなわち、本発明 者らが、特許文献 1の熱収縮性ポリエステルフィルムを得るベぐパイロットプラント(フ イルム幅 = 1. 5m)で追試を行ったところ、得られた特許文献 1の熱収縮性ポリエステ ルフィルムは、長手方向、幅方向においてある程度の機械的強度を発現するものの 、常温下で一定の時間に亘つて放置した場合の自然収縮率が大きいため、製造され たロール状のフィルムにおいて巻き締まりが起こり、フィルムロールにシヮが入り易い
、という不具合があることが分力つた。さらに、上記追試により得られた熱収縮性ポリ エステルフィルムは、主収縮方向と直交するミシン目に沿って引き裂く場合の引き裂 き性 (いわゆるミシン目開封性)が悪い、ということも分力つた。また、主収縮方向であ る長手方向への収縮性が必ずしも十分であるとはいえず、幅広い包装に適応できる ものではな!/、ことが分かった。
[0012] 本発明の目的は、上記特許文献 1の熱収縮性ポリエステルフィルムが有する問題 点を解消し、主収縮方向と直交する幅方向における機械的強度が高い上、製造され たロール状のフィルムにおいて巻き締まりが起こらず、フィルムロールにシヮが入りに くぐミシン目開封性が良好な熱収縮性ポリエステルフィルムを提供することにある。さ らに、上記特性に加え、主収縮方向である長手方向への収縮性が高ぐ高収縮率を 要求される用途にも適応できる熱収縮性ポリエステルフィルムを提供することにある。 課題を解決するための手段
[0013] 本発明のうち、請求項 1に記載された発明は、エチレンテレフタレートを主たる構成 成分とし、全ポリエステル榭脂成分中において非晶質成分となりうる 1種以上のモノマ 一成分を 10モル%以上含有しているとともに、一定幅の長尺状に形成されており、 主収縮方向が長手方向である熱収縮性ポリエステル系フィルムであって、下記要件( 1)〜 (4)を満たすことを特徴とするものである。 (1) 90°Cの温水中で 10秒間に亘つて処理した場合における長手方向の湯温熱収 縮率が 15%以上 80%以下であること
(2) 90°Cの温水中で 10秒間に亘つて処理した場合における長手方向と直交する幅 方向の湯温熱収縮率が 0%以上 17%以下であること
(3)長手方向および幅方向の屈折率がいずれも 1. 570以上 1. 620以下であること
(4) 40°C65%RHの雰囲気下で 700時間エージングした後の自然収縮率が 0. 05 %以上 1. 5%以下であること
[0014] 請求項 2に記載された発明は、請求項 1に記載された発明において、 90°Cの温水 中で 10秒間に亘つて処理した場合における長手方向の湯温熱収縮率が 15%以上 40%未満であるとともに、長手方向の屈折率が 1. 570以上 1. 590以下、および幅 方向の屈折率が 1. 570以上 1. 620以下であることを特徴とするものである。
[0015] 請求項 3に記載された発明は、請求項 1、または請求項 2に記載された発明におい て、全ポリステル榭脂成分中における非晶質成分となりうるモノマーの主成分力 ネ ォペンチルグリコール、 1, 4ーシクロへキサンジメタノール、イソフタル酸の内のいず れかであることを特徴とするものである。
[0016] 請求項 4に記載された発明は、請求項 1〜3のいずれか〖こ記載された発明におい て、 80°Cの温水中で長手方向に 10%収縮させた後に長手方向および幅方向のェ ルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が 0. 15以上 1. 5以 下であることを特徴とするものである。
[0017] 請求項 5に記載された発明は、請求項 1〜4のいずれかに記載された発明におい て、 80°Cの温水中で長手方向に 10%収縮させた後の単位厚み当たりの幅方向の直 角引裂強度が lOONZmm以上 300NZmm以下であることを特徴とするものである
[0018] 請求項 6に記載された発明は、請求項 1〜5のいずれかに記載の熱収縮性ポリエス テル系フィルムを連続的に製造するための製造方法であって、未延伸フィルムを、テ ンター内で幅方向の両端際をクリップによって把持した状態で Tg + 5°C以上 Tg+40 °C以下の温度で幅方向に 2. 5倍以上 6. 0倍以下の倍率で延伸した後、積極的な加 熱操作を実行しな 、中間ゾーンを通過させた後に、 100°C以上 170°C以下温度で 1 . 0秒以上 10. 0秒以下の時間に亘つて熱処理し、し力る後、フィルムの表面温度が 3 0°C以上 70°C以下となるまで冷却した後、 Tg + 5°C以上 Tg + 80°C以下の温度で長 手方向に 2. 0倍以上 7倍以下の倍率で延伸し、し力る後、 30°CZ秒以上 70°CZ秒 以下の冷却速度でフィルムの表面温度が 45°C以上 75°C以下となるまで冷却するこ とを特徴とするものである。
発明の効果
[0019] 本発明の熱収縮性ポリエステル系フィルムは、主収縮方向と直交する幅方向にお ける機械的強度も高い上、製造されたロール状のフィルムにおいて巻き締まりが起こ らず、フィルムロールにシヮが入りにくぐミシン目開封性が良好である。加えて主収 縮方向である長手方向への収縮性が高い。したがって、本発明の熱収縮性ポリエス テル系フィルムは、ボトル等の容器のラベルとして好適に用いることができ、ボトル等 の容器に短時間の内に非常に効率良く装着することが可能となる上、装着後に熱収 縮させた場合に、熱収縮によるシヮゃ収縮不足のきわめて少ない良好な仕上がりを 発現させることができる。カロえて、装着されたラベルは、非常に良好なミシン目開封性 を発現するものとなる。
発明を実施するための最良の形態
[0020] 本発明で使用するポリエステルを構成するジカルボン酸成分としては、テレフタル 酸、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸
、アジピン酸、ァゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン 酸、および脂環式ジカルボン酸等を挙げることができる。
[0021] 脂肪族ジカルボン酸(たとえば、アジピン酸、セバシン酸、デカンジカルボン酸等) を含有させる場合、含有率は 3モル%未満であることが好ましい。これらの脂肪族ジ カルボン酸を 3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステ ル系フィルムでは、高速装着時のフィルム腰が不十分となる。
[0022] また、 3価以上の多価カルボン酸 (たとえば、トリメリット酸、ピロメリット酸およびこれら の無水物等)を含有させな 、ことが好まし 、。これらの多価カルボン酸を含有するポリ エステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達 成しにくくなる。 [0023] 本発明で使用するポリエステルを構成するジオール成分としては、エチレングリコー ル、 1 3プロパンジオール、 1 4ブタンジオール、ネオペンチルグリコール、へキサ ンジオール等の脂肪族ジオール、 1, 4ーシクロへキサンジメタノール等の脂環式ジ オール、ビスフエノール A等の芳香族系ジオール等を挙げることができる。
[0024] 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、 1, 4ーシクロ へキサンジメタノール等の環状ジオールや、炭素数 3〜6個を有するジオール (たとえ ば、 1—3プロパンジオール、 1—4ブタンジオール、ネオペンチルグリコール、へキサ ンジオール等)のうちの 1種以上を含有させて、ガラス転移点 (Tg)を 60〜80°Cに調 整したポリエステルが好まし!/、。
[0025] また、本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、全ポリス テル榭脂中における多価アルコール成分 100モル%中の非晶質成分となりうる 1種 以上のモノマー成分の合計が 10モル%以上であることが必要であり、 15モル%以上 であることが好ましぐ 17モル%以上であることがより好ましぐ特に 20モル%以上で あることが好ましい。ここで、非晶質成分となりうるモノマーとしては、たとえば、ネオペ ンチルダリコール、 1, 4ーシクロへキサンジオールやイソフタル酸を挙げることができ る。
[0026] 本発明の熱収縮性ポリエステル系フィルムに用いるポリエステル中には、炭素数 8 個以上のジオール (たとえばオクタンジオール等)、または 3価以上の多価アルコー ル(たとえば、トリメチロールプロパン、トリメチロールェタン、グリセリン、ジグリセリン等 )を、含有させないことが好ましい。これらのジオール、または多価アルコールを含有 するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収 縮率を達成しにくくなる。
[0027] また、本発明の熱収縮性ポリエステル系フィルムは、 90°Cの温水中で無荷重状態 で 10秒間に亘つて処理したときに、収縮前後の長さから、下式 1により算出したフィル ムの長手方向の熱収縮率 (すなわち、 90°Cの湯温熱収縮率)が、 15%以上 80%以 下であることが必要である。
熱収縮率 = { (収縮前の長さ-収縮後の長さ) Z収縮前の長さ } X 100 (%) ·,式 1
[0028] 90°Cにおける長手方向の湯温熱収縮率が 15%未満であると、ラベルとして使用す る場合に、収縮量が小さいために、熱収縮した後のラベルにシヮゃタルミが生じてし まうので好ましくなぐ反対に、 90°Cにおける長手方向の湯温熱収縮率が 80%を上 回ると、ラベルとして用いて場合に熱収縮時に収縮に歪みが生じ易くなつたり、いわ ゆる"飛び上がり"が発生してしまったりするので好ましくない。なお、 90°Cにおける長 手方向の湯温熱収縮率の下限値は、 20%以上であると好ましぐ 25%以上であると より好ましぐ 30%以上であると特に好ましい。また、 90°Cにおける長手方向の湯温 熱収縮率の上限値は、 75%以下であると好ましぐ 70%以下であるとより好ましぐ 6 5%以下であると特に好ま 、。
[0029] また、本発明のフィルムを、予め主収縮方向を円周方向とする筒状のラベルを形成 した後にボトルに嵌め込む (ボトル等の周囲に装着する)場合には、 90°Cにおける長 手方向の湯温熱収縮率力 0%以上 80%以下であると好ましい。上記の如く予め主 収縮方向を円周方向とする筒状のラベルを形成した後にボトルに嵌め込む場合にお いて、 90°Cにおける長手方向の湯温熱収縮率が 40%以下であると、収縮量が小さ いために、熱収縮した後のラベルにシヮゃタルミが生じてしまうので好ましくなぐ反 対に、 90°Cにおける長手方向の湯温熱収縮率が 80%を上回ると、ラベルとして用い て場合に熱収縮時に収縮に歪みが生じ易くなつたり、いわゆる"飛び上がり"が発生 してしまったりするので好ましくない。なお、予め主収縮方向を円周方向とする筒状の ラベルを形成した後にボトルに嵌め込む場合には、 90°Cにおける長手方向の湯温 熱収縮率の下限値は、 45%以上であると好ましぐ 50%以上であるとより好ましぐ 5 5%以上であると特に好ましい。また、 90°Cにおける長手方向の湯温熱収縮率の上 限値は、 75%以下であると好ましぐ 70%以下であるとより好ましぐ 65%以下である と特に好ましい。以下、上記のような、 90°Cにおける長手方向の湯温熱収縮率力 0 %以上 80%以下のフィルムが適する筒状体嵌め込み等の用途を高収縮用途と称す ることがある。
[0030] また、本発明のフィルムをラップ'ラウンド方式により、フィルムロールから直接ボトル の周囲に巻き付けて装着する場合には、 90°Cにおける長手方向の湯温熱収縮率が 15 %以上 40%未満であると好ま 、。 90°Cにおける長手方向の湯温熱収縮率が 1 5%未満であると、収縮量が小さいために、ラベルとして胴巻き方式で巻き付けた後 の熱収縮時にシヮゃタルミが生じてしまうので好ましくなぐ反対に、 90°Cにおける長 手方向の湯温熱収縮率が 40%以上であると、ラベルとして胴巻き方式で巻き付けた 後の熱収縮時に収縮歪みが生じ易くなつたり、いわゆる"飛び上がり"が発生してしま うので好ましくない。なお、 90°Cにおける長手方向の湯温熱収縮率の下限値は、 17 %以上であると好ましぐ 19%以上であるとより好ましぐ 21%以上であると特に好ま しい。また、 90°Cにおける長手方向の湯温熱収縮率の上限値は、 38%以下であると 好ましぐ 36%以下であるとより好ましぐ 34%以下であると特に好ましい。以下、上 記のような用途をラップラウンド用途と称することがある。
[0031] また、本発明の熱収縮性ポリエステル系フィルムは、 90°Cの温水中で無荷重状態 で 10秒間に亘つて処理したときに、収縮前後の長さから、上式 1により算出したフィル ムの幅方向の湯温熱収縮率力 0%以上 17%以下であることが必要である。
[0032] 90°Cにおける幅方向の湯温熱収縮率が 0%未満であると、ボトルのラベルとして使 用する際に良好な収縮外観を得ることができないので好ましくなぐ反対に、 90°Cに おける幅方向の湯温熱収縮率が 17%を上回ると、ラベルとして用いた場合に熱収縮 時に収縮に歪みが生じ易くなるので好ましくない。なお、 90°Cにおける幅方向の湯 温熱収縮率の上限値は、 15%以下であると好ましぐ 14%以下であるとより好ましぐ 13%以下であるとさらに好ましぐ 12%以下であると特に好ましぐ最も好ましくは 11 %以下である。なお、原料であるポリエステル系榭脂の本質的な特性を考慮すると、 90°Cにおける幅方向の温湯熱収縮率の下限値は、 0%程度であると考えている。
[0033] また、本発明の熱収縮性ポリエステル系フィルムは、 80°Cの温水中で長手方向に 1 0%収縮させた後に、以下の方法で単位厚み当たりの幅方向の直角引裂強度を求 めたときに、その幅方向の直角引裂強度が lOONZmm以上 300NZmm以下であ ると好まし ヽ。
[0034] [直角引裂強度の測定方法]
80°Cに調整された湯温中でフィルムを長手方向に 10%収縮させた後に、 JIS— K — 7128に準じて所定の大きさの試験片としてサンプリングする。しかる後に、万能引 張試験機で試験片の両端を掴み、引張速度 200mmZ分の条件にて、フィルムの幅 方向における引張破壊時の強度の測定を行う。そして、下式 2を用いて単位厚み当 たりの直角引裂強度を算出する。
直角引裂強度 =引張破壊時の強度 ÷厚み · ·式 2
[0035] 80°Cの温水中で長手方向に 10%収縮させた後の直角引裂強度が lOONZmm 未満であると、ラベルとして使用した場合に運搬中の落下等の衝撃によって簡単に 破れてしまう事態が生ずる可能性があるので好ましくなぐ反対に、直角引裂強度が 300NZmmを上回ると、ラベルを引き裂く際の初期段階におけるカット性(引き裂き 易さ)が不良となるため好ましくない。なお、直角引裂強度の下限値は、 125N/mm 以上であると好ましぐ 150NZmm以上であるとより好ましぐ 175NZmm以上であ ると特に好ましい。また、直角引裂強度の上限値は、 275NZmm以下であると好ま しぐ 250NZmm以下であるとより好ましぐ 225NZmm以下であると特に好ましい
[0036] また、本発明の熱収縮性ポリエステル系フィルムは、 80°Cの温水中で長手方向に 1 0%収縮させた後に、以下の方法で長手方向および幅方向のエルメンドルフ弓 I裂荷 重を求めたときに、それらのエルメンドルフ引裂荷重の比であるエルメンドルフ比が 0 . 15以上 1. 5以下であると好ましい。
[0037] [エルメンドルフ比の測定方法]
所定の長さを有する矩形状の枠にフィルムを予め弛ませた状態で装着する(すなわ ち、フィルムの両端を枠によって把持させる)。そして、弛んだフィルムが枠内で緊張 状態となるまで (弛みがなくなるまで)、約 5秒間に亘つて 80°Cの温水に浸漬させるこ とによって、フィルムを長手方向に 10%収縮させる。し力る後に、 JIS— K— 7128に 準じて、フィルムの長手方向および幅方向のエルメンドルフ引裂荷重の測定を行い、 下式 3を用いてエルメンドルフ比を算出する。
エルメンドルフ比 =長手方向のエルメンドルフ弓 I裂荷重 ÷幅方向のエルメンドルフ 引裂荷重 · ·式 3
[0038] エルメンドルフ比が 0. 15未満であると、ラベルとして使用した場合にミシン目に沿 つて真っ直ぐに引き裂きにくいので好ましくない。反対にエルメンドルフ比が 1. 5を上 回ると、ミシン目とずれた位置で裂け易くなるので好ましくない。なお、エルメンドルフ 比の下限値は、 0. 20以上であると好ましぐ 0. 25以上であるとより好ましぐ 0. 3以 上であると特に好ましい。また、エルメンドルフ比の上限値は、 1. 4以下であると好ま しく、 1. 3以下であるとより好ましぐ 1. 2以下であると特に好ましい。
[0039] また、本発明の熱収縮性ポリエステル系フィルムは、 40°C65%RHの雰囲気下で 7 00時間エージングした後の自然収縮率が 0. 05%以上 1. 5%以下であることが必要 である。なお、自然収縮率は、下式 4を用いて算出することができる。
自然収縮率 = { (エージング前の長さ エージング後の長さ) Zエージング前の長 さ } X 100 (%) · ·式 4
[0040] 自然収縮率が 1. 5%を上回ると、ロール状に巻き取られた製品を保管しておく場合 に、巻き締まりがおこり、フィルムロールにシヮが入り易いので好ましくない。なお、 自 然収縮率は、小さいほど好ましいが、測定精度の面から、 0. 05%程度が下限である と考えている。また、自然収縮率は、 1. 3%以下であると好ましぐ 1. 1%以下である とより好ましく、 1. 0%以下であると特に好ましい。
[0041] また、本発明の熱収縮性ポリエステル系フィルムは、長手方向の屈折率が 1. 570 以上 1. 620以下であることが必要である。長手方向の屈折率が 1. 620を上回ると、 ラベルとする際の溶剤接着性が悪くなるので好ましくない。反対に、 1. 570未満とな ると、ラベルとした際のカット性が悪くなるので好ましくない。なお、長手方向の屈折率 の上限値は、 1. 600未満であると好ましく、 1. 595以下であると好ましく、 1. 593以 下であるとより好ましぐ 1. 590であると特に好ましい。一方、長手方向の屈折率の下 限値は、 1. 575以上であると好ましい。さらに、高収縮用途では長手方向の屈折率 の下限値は、 1. 580以上であると好ましく、 1. 583以上であるとより好ましく、 1. 585 以上であると特に好ましい。カロえて、本発明のフィルムをラップ'ラウンド方式により、 フィルムロールから直接ボトルの周囲に巻き付けて装着する場合には、長手方向の 屈折率が 1. 570以上 1. 590以下であると好ましい。ラップ'ラウンド用途での長手方 向の屈折率の上限値は、 1. 587以下が好ましぐ 1. 585以下が特に好ましい。
[0042] また、本発明の熱収縮性ポリエステル系フィルムは、幅方向の屈折率が 1. 570以 上 1. 620以下であることが必要である。幅方向の屈折率が 1. 620を上回ると、ラベ ルとする際の溶剤接着性が悪くなるので好ましくない。反対に、 1. 570未満となると、 ラベルとした際のカット性が悪くなるので好ましくない。なお、幅方向の屈折率の上限 値は、 1. 610以下であると好ましぐ 1. 600以下であるとより好ましぐ 1. 595以下で あると一層好ましい。また、幅方向の屈折率の下限値は、 1. 575以上であると好まし く、 1. 580以上であるとより好ましい。さらに、高収縮用途では長手方向の屈折率の 上限値は、 1. 590以下であると好ましぐ 1. 588以下であるとより好ましぐ 1. 586以 下であると特に好ましい。本発明のフィルムをラップ'ラウンド方式により、フィルムロー ルから直接ボトルの周囲に巻き付けて装着する場合には、幅方向の屈折率の上限値 は、 1. 610以下が好ましぐ 1. 605以下がより好ましい。
[0043] 一方、本発明にお!/、てはフィルムの長手方向の最大熱収縮応力値が 2. 5 (MPa) 以上 20 (MPa)以下であることが好ま 、。フィルムの長手方向の最大熱収縮応力値 力 (MPa)未満であると、 PETボトル等の容器にラベルとして装着して熱収縮させた 場合に、 PETボトルのキャップの開放時にキャップと一緒にラベルが回転してキヤッ プの開封性を悪ィ匕させる事態が生じ得るので好ましくない。なお、フィルムの長手方 向の最大熱収縮応力値が低すぎると、熱収縮時に収縮不足を生じて良好な外観を 得ることができなくなる。フィルムの長手方向の最大熱収縮応力値の下限値は、 3. 0 (MPa)以上であるとより好ましぐ 3. 5 (MPa)以上であると特に好ましい。反対に、 最大熱収縮応力値が 20 (MPa)を超えると、収縮速度が速くシヮが入り易くなる。また 、フィルムの長手方向の最大熱収縮応力値の上限値は、 19 (MPa)以下であるとより 好ましぐ 18 (MPa)以下であると特に好ましい。
高収縮用途の場合でキャップの開封性を良好に保っためには、フィルムの長手方 向の最大熱収縮応力値の下限は 6 (MPa)以上であるとより好ましぐさらに好ましく は 7 (MPa)以上であり、 8 (MPa)以上であると特に好まし!/、。
ラップラウンド用途の場合では、胴巻き後の熱収縮時に収縮歪みが発生しやすくな るのでフィルムの長手方向の最大熱収縮応力値の上限は 7MPa以下であることが好 ましい。より好ましくは 6. 5MPa以下、さらに好ましくは 6. OMPa以下、特に好ましく は 5. 5MPa以下である。
[0044] さらに、本発明の熱収縮性ポリエステル系フィルムは、溶剤接着強度が 4 (N/15m m)以上であることが好ましい。溶剤接着強度が 4 (NZ 15mm)未満であると、ラベル が熱収縮した後に溶剤接着部カゝら剥れ易くなるので好ましくない。なお、溶剤接着強 度は、 4. 5 (NZl5mm)以上であるとより好ましぐ 5 (NZ I 5mm)以上であると特に 好ましい。特に高収縮用途の場合、上記特性を満足することが好ましい。
[0045] 力!]えて、本発明の熱収縮性ポリエステル系フィルムは、長手方向の厚み斑が 10% 以下であることが好ましい。長手方向の厚み斑が 10%を超える値であると、ラベル作 成の際の印刷時に印刷斑が発生し易くなつたり、熱収縮後の収縮斑が発生し易くな つたりするので好ましくない。なお、長手方向の厚み斑は、 8%以下であるとより好まし ぐ 6%以下であるとより好ましい。
[0046] 上記の熱収縮フィルムの熱収縮率、最大熱収縮応力値、溶剤接着強度、フィルム の長手方向の厚み斑は、前述の好ましいフィルム組成を用いて、後述の好ましい製 造方法と組み合わせることにより達成することが可能となる。
[0047] さらに、本発明の熱収縮性ポリエステル系フィルムは、示差走査熱量測定 (DSC) にお 、て融点測定時の吸熱曲線のピークが検出されな 、ことが好ま 、。フィルムを 構成するポリエステルを非晶性とすることで、融点測定時の吸熱曲線のピークはより 発現しに《なる。融点測定時の吸熱曲線のピークが発現しない程度まで高度に非 晶化することにより、溶剤接着強度が向上するとともに、熱収縮率や最大熱収縮応力 値を高めて、前述の好ましい範囲内に制御することが容易となる。
[0048] 本発明の熱収縮性ポリエステル系フィルムの厚みは、特に限定されるものではない 1S ラベル用熱収縮性フィルムとして 10〜200 μ mが好ましぐ 20〜: LOO μ mがより 好ましい。
[0049] また、本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押 出機により溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に 示す方法により、二軸延伸して熱処理することによって得ることができる。
[0050] 原料榭脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パド ルドライヤ一等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのよ うにポリエステル原料を乾燥させた後に、押出機を利用して、 200〜300°Cの温度で 溶融しフィルム状に押し出す。力かる押し出しに際しては、 Tダイ法、チューブラー法 等、既存の任意の方法を採用することができる。
[0051] そして、押し出し後のシート状の溶融榭脂を急冷することによって未延伸フィルムを 得ることができる。なお、溶融榭脂を急冷する方法としては、溶融榭脂を口金より回転 ドラム上にキャストして急冷固化することにより実質的に未配向の榭脂シートを得る方 法を好適に採用することができる。
[0052] さらに、得られた未延伸フィルムを、後述するように、所定の条件で幅方向に延伸し た後に、一旦、熱処理し、し力る後に所定の条件で長手方向に延伸し、その縦延伸 後のフィルムを急冷することによって、本発明の熱収縮性ポリエステル系フィルムを得 ることが可能となる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好 ましい二軸延伸'熱処理方法について、従来の熱収縮性ポリエステル系フィルムの二 軸延伸 '熱処理方法との差異を考慮しつつ詳細に説明する。
[0053] [熱収縮性ポリエステル系フィルムの好まし 、延伸'熱処理方法]
通常の熱収縮性ポリエステル系フィルムは、収縮させた 、方向に未延伸フィルムを 延伸することによって製造される。従来から長手方向に収縮する熱収縮性ポリエステ ル系フィルムについての要求は高かったものの、未延伸フィルムを単純に長手方向 に延伸するだけでは、幅の広いフィルムが製造できないため生産性が悪い上、厚み 斑の良好なフィルムを製造することができない。また、予め幅方向に延伸した後に長 手方向に延伸する方法を採用すると、幅方向に不必要に収縮するものとなったり、長 手方向への収縮量が不十分となってしまう。また、上述したように、特開平 8— 24411 4号公報には、長手方向の機械的特性を向上させるために未延伸フィルムを所定の 条件下で縦 横 縦の順に延伸する方法が示されているが、発明者らのパイロット 機での追試によれば、かかる方法では、得られたフィルムは自然収縮率が大きぐ製 造されたフィルムロールに長手方向のシヮが発生し、ミシン目開封性も不良であった 。さらに、
主収縮方向である長手方向への収縮性の高いフィルムを得ることはできないことが判 明した。力!]えて、長手方向への収縮性を上げるべく縦方向の延伸倍率(1段目の縦 延伸倍率あるいは 2段目の縦延伸倍率)を増力!]させると、最終的に長手方向に延伸 する際にフィルムの破断が多発して連続的に安定した製造を行うことが困難であるこ とも判明した。
[0054] 本発明者らは、最終的に長手方向の収縮量を大きくするためには、特開平 8 24 4114号のように長手方向および幅方向に二軸延伸した後に長手方向に延伸する方 法は不利であり、単純に幅方向に延伸した後に長手方向に延伸する方が有利では ないかと考えた。そして、そのような幅方向の延伸後に長手方向に延伸する方法 (以 下、単に、横—縦延伸法という)において、各延伸工程における条件によりフィルムの 長手方向の湯温収縮率、自然収縮率、ミシン目開封性がどのように変化するかにつ いて鋭意検討した。その結果、横-縦延伸法によるフィルム製造の際に、以下の手 段を講じることにより、長手方向の収縮量が高くなり、連続的に安定して製造すること が可能となることを突き止めた。し力も、そればかりではなぐ以下の手段を講じた場 合には、フィルムの自然収縮率が小さくなり、製造後のフィルムロールにシヮが入りに くくなるとともに、フィルムのミシン目開封性が飛躍的に良好なものとなる、という驚くベ き副次的な効果があることが判明した。そして、本発明者らは、それらの知見に基づ いて本発明を案出するに至った。
(1)幅方向への延伸後における収縮応力の制御
(2)幅方向への延伸と中間熱処理との間における加熱の遮断
(3)長手方向へ延伸する前のフィルム端部のトリミング
(4)長手延伸後のフィルムの冷却速度の制御
以下、上記した各手段について順次説明する。
(1)幅方向への延伸後における収縮応力の制御
本発明の横 縦延伸法によるフィルムの製造においては、未延伸フィルムを幅方 向に延伸した後に、 100°C以上 170°C未満の温度で 1. 0秒以上 10. 0秒以下の時 間に亘つて熱処理(以下、中間熱処理という)することが必要である。かかる中間熱処 理を行うことによって、ラベルとした場合にミシン目カット性が良好で収縮斑が生じな V、フィルムを得ることが可能となる。そのように横延伸後に特定の中間熱処理を施す ことによりミシン目カット性が良好で収縮斑が生じないフィルムを得ることが可能となる 理由は明らかではないが、特定の中間熱処理を施すことによって、幅方向への分子 配向をある程度残存させつつ、幅方向の収縮応力を低減させることが可能となるため ではないかと考えている。なお、熱処理の温度の下限は、 110°C以上であると好まし く、 115°C以上であるとより好ましい。また、熱処理の温度の上限は、 165°C以下であ ると好ましく、 160°C以下であるとより好ましい。一方、熱処理の時間は、 1. 0秒以上 10. 0秒以下の範囲内で原料組成に応じて適宜調整する必要がある。
[0056] また、未延伸フィルムの幅方向への延伸は、テンター内で幅方向の両端際をクリツ プによって把持した状態で、 Tg + 5°C以上 Tg+40°C以下の温度で 2. 5倍以上 6. 0 倍以下の倍率となるように行う必要がある。延伸温度が Tg + 5°Cを下回ると、延伸時 に破断を起こし易くなるので好ましくなぐ反対に Tg+40°Cを上回ると、幅方向の厚 み斑が悪くなるので好ましくない。なお、横延伸の温度の下限は、 Tg+ 10°C以上で あると好ましぐ Tg+ 15°C以上であるとより好ましい。また、横延伸の温度の上限は、 Tg + 35°C以下であると好ましぐ Tg + 30°C以下であるとより好ましい。一方、幅方向 の延伸倍率が 2. 5倍を下回ると、生産性が悪いば力りでなく幅方向の厚み斑が悪く なるので好ましくなぐ反対に 6. 0倍を上回ると、延伸時に破断を起こし易くなる上、 緩和させるのに多大なエネルギーと大掛力りな装置が必要となり、生産性が悪くなる ので好ましくない。なお、横延伸の倍率の下限は、 3. 0倍以上であると好ましぐ 3. 5 倍以上であるとより好ましい。また、横延伸の倍率の上限は、 5. 5倍以下であると好ま しぐ 5. 0倍以下であるとより好ましい。
[0057] (2)幅方向への延伸と中間熱処理との間における加熱の遮断
本発明の横—縦延伸法によるフィルムの製造においては、上記の如ぐ横延伸後 に中間熱処理を施す必要があるが、それらの横延伸と中間熱処理との間にお 、て、 0. 5秒以上 3. 0秒以下の時間に亘つて、積極的な加熱操作を実行しない中間ゾー ンを通過させる必要がある。すなわち、製造コストを考慮した場合、同一のテンター内 で横延伸および中間熱処理を実施するのが好ましいが、本発明のフィルムの製造に おいては、力かるテンター内の横延伸ゾーンと熱処理ゾーンとの間に中間ゾーンを 設けることが好ましい。加えて、その中間ゾーンにおいては、フィルムを通過させてい ない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ 下がるように延伸ゾーンおよび熱処理ゾーンからの熱風を遮断するのが好まし 、。そ して、本発明のフィルムの製造においては、横延伸後のフィルムを力かる中間ゾーン へ導き、所定時間をかけてその中間ゾーンを通過させるのが好ましい。中間ゾーンを 通過させる時間が 0. 5秒を下回ると、通過するフィルムの随伴流により横延伸ゾーン の熱風が熱固定ゾーンに流れ込み、熱固定ゾーンにおける中間熱処理の温度コント ロールが困難となるので好ましくない。反対に中間ゾーンを通過させる時間は 3. 0秒 もあれば十分であり、それ以上の長さに設定しても、設備のムダとなるので好ましくな い。なお、中間ゾーンを通過させる時間の下限は、 0. 7秒以上であると好ましぐ 0. 9 秒以上であるとより好ましい。また、中間ゾーンを通過させる時間の上限は、 2. 5秒以 下であると好ましぐ 2. 0秒以下であるとより好ましい。
[0058] (3)長手方向へ延伸する前のフィルム端部のトリミング
本発明の横—縦延伸法によるフィルムの製造においては、中間熱処理を施したフィ ルムを手方向に延伸する前に、フィルム端縁際の十分に横延伸されて 、ない肉厚部 分 (主として横延伸時のクリップ把持部分)をトリミングするのが好ましい。より具体的 には、フィルムの左右の端縁際に位置した中央部分の厚みの約 1. 1〜1. 3倍の厚 みの部分においてカッター等の工具を用いてフィルム端縁際の肉厚部分を切断し、 肉厚部分を除去しつつ、残りの部分のみを長手方向に延伸するのが好ましい。なお 、上記の如くフィルム端部をトリミングする際には、トリミングする前のフィルムを表面温 度が 50°C以下となるように冷却しておくことが好まし 、。そのようにフィルムを冷却す ることにより、切断面を乱すことなくトリミングすることが可能となる。また、フィルム端部 のトリミングは、通常のカッター等を用いて行うことができる力 周状の刃先を有する丸 刃を用いると、局部的に刃先が鈍くなる事態が起こらず、フィルム端部を長期間に亘 つてシャープに切断し続けることができ、長手方向への延伸時における破断を誘発 する事態が生じな 、ので好まし 、。
[0059] かかる如ぐ長手方向への延伸前にフィルムの端部をトリミングすることによって、一 且熱固定したフィルムを均一に長手方向へ延伸することが可能となり、初めて破断の ない安定したフィルムの連続製造が可能となる。カロえて、長手方向(主収縮方向)の 収縮量の大きなフィルムを得ることが可能となる。さらに、フィルムを均一に長手方向 へ延伸することが可能となるため、長手方向の厚み斑の小さなフィルムを得ることが できる。その上、フィルムの端部をトリミングすることによって、長手方向への延伸時に おけるボーイングが回避され、左右の物性差の小さなフィルムを得ることが可能となる 。なお、長手方向への延伸は、複数のロール群を連続的に配置した縦延伸機を利用 する方法 (ロールの速度差を利用して延伸する方法)等により、 Tg + 5°C以上 Tg + 8 0°C以下の温度で 2. 0倍以上 7. 0倍以下の倍率となるように行う必要がある。
[0060] (4)長手延伸後のフィルムの冷却速度の制御
本発明の横—縦延伸法によるフィルムの製造においては、上記の如ぐ横延伸後 に中間熱処理を施してから長手方向に延伸した後に、 30°CZ秒以上 70°CZ秒以下 の冷却速度で表面温度が 45°C以上 75°C以下となるまでフィルムを冷却するのが好 ましい。そのようにフィルムを適度な速さで冷却することによって、初めて自然収縮率 を低減することが可能となる。冷却速度が 30°CZ秒を下回ったり、冷却後の表面温 度が 75°Cを上回ったりするような冷却であると、低い自然収縮率が得られないので好 ましくない。反対に、冷却速度が 70°CZ秒を上回るような急激な冷却であると、フィル ムの幅方向への収縮 ( 、わゆるネックイン)の度合 、が大きくなり、フィルム表面に傷 が付き易くなるので好ましくな 、。
[0061] なお、上記した(1)〜(4)の手段の内の特定の何れかのみ力 フィルムの長手方向 における熱収縮性、ミシン目開封性、低 、自然収縮率、安定した製膜性に有効に寄 与するものではなぐ(1)〜 (4)の手段を組み合わせて用いることにより、非常に効率 的に、長手方向における熱収縮性、ミシン目開封性、低い自然収縮率、安定した製 膜性を発現させることが可能となるものと考えられる。
実施例
[0062] 以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例の 態様に何ら限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、適宜変更 することが可能である。実施例、比較例で使用した原料の性状、組成、実施例、比較 例におけるフィルムの製造条件 (延伸'熱処理条件等)を、それぞれ表 1、表 2に示す
[0063] [表 1] 樹脂原料の組成 ·特性等
非晶成分となる
フィルムの融点 樹脂組成 モノマ-成分の合計
(。c)
Figure imgf000019_0001
実施例 1 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 実施例 2 ホ。リエステル 1 :ホ。リエステル 2 = 70: 30 21 観測されず 実施例 3 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 実施例 4 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 実施例 5 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 実施例 6 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 実施例 7 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 実施例 8 ホ。リエステル 4:ホ。リエステル 2 = 90: 10 27 観測されず 実施例 9 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 比較例 1 ホ。リエステル 3 17.5 217 比較例 2 ホ。リエステル 1 :ホ。リエステル 2 = 40: 60 12 観測されず 比較例 3 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 比較例 4 ホ。リエステル 1 :ホ。リエステル 2 = 90: 10 27 観測されず 比較例 5 ホ。リエステル 3 17.5 217 2]
Figure imgf000020_0001
[0065] また、フィルムの評価方法は下記の通りである。
[0066] [Tg (ガラス転移点)]
セイコー電子工業株式会社製の示差走査熱量計 (型式: DSC220)を用いて、未 延伸フィルム 5mgを、 40°Cから 120°Cまで、昇温速度 10°CZ分で昇温し、得られ た吸熱曲線より求めた。吸熱曲線の変曲点の前後に接線を引き、その交点を Tg (ガ ラス転移点)とした。
[0067] [Tm (融点)]
セイコー電子工業株式会社製の示差走査熱量計 (型式: DSC220)を用いて、未 延伸フィルム 5mgを採取し、室温より昇温速度 10°CZ分で昇温した時の吸熱曲線の ピークの温度より求めた。
[0068] [熱収縮率 (湯温熱収縮率) ]
フィルムを 10cm X 10cmの正方形に裁断し、所定温度 ±0. 5°Cの温水中におい て、無荷重状態で 10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸 法を測定し、上式 1にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大き い方向を主収縮方向とした。
[0069] [最大熱収縮応力値]
延伸したフィルムを、主収縮方向 X主収縮方向と直交する方向 = 200mm X 15m mのサイズにカットした。し力る後、(株)ボールドウィン社製 万能引張試験機 STM —50を温度 90°Cに調整した上で、カットしたフィルムをセットし、 10秒間保持したとき の応力値を測定した。
[0070] [長手方向、幅方向の屈折率]
ァタゴ社製の「アッベ屈折計 4T型」を用いて、各試料フィルムを 23°C、 65%RHの 雰囲気中で 2時間以上放置した後に測定した。
[0071] [自然収縮率]
得られたフィルムを、主収縮方向 X直交方向 = 200mm X 30mmのサイズに切り 取り、 40°C X 65%RHの雰囲気下で 700時間放置(エージング)した後、フィルムの 主収縮方向(実施例 1〜9および比較例 1〜3, 5では長手方向、比較例 4では幅方 向)における収縮量を測定し、上式 4によって自然収縮率を算出した。
[0072] [エルメンドルフ比]
得られたフィルムを矩形状の枠に予め弛ませた状態で装着し (フィルムの両端を枠 によって把持させ)、弛んだフィルムが枠内で緊張状態となるまで (弛みがなくなるま で)、約 5秒間に亘つて 80°Cの温水に浸漬させることによって、フィルムを主収縮方向 に 10%収縮させた (以下、予備収縮という)。し力る後に、 JIS— K— 7128に準じて、 主収縮方向 X直交方向 = 75mm X 63mmのサイズに切り取り、長尺な端縁 (主収縮 方向に沿った端縁)の中央から当該端縁に直交するように 20mmのスリット (切り込み
)を入れることによって試験片を作製した。そして、作製された試験片を用いて直交方 向のエルメンドルフ引裂荷重の測定を行った。また、上記方法と同様な方法でフィル ムを主収縮方向に予備収縮させた後に、フィルムの主収縮方向と直交方向とを入れ 替えて試験片を作製し、主収縮方向のエルメンドルフ引裂荷重の測定を行った。そ して、得られた主収縮方向および主収縮方向と直交する方向のエルメンドルフ弓 I裂 荷重から上式 3を用いてエルメンドルフ比を算出した。
[0073] [直角引裂強度]
80°Cに調整された湯温中にてフィルムを主収縮方向に 10%収縮させた後に、 JIS —K— 7128に準じて、図 1に示す形状にサンプリングすることによって試験片を作製 した(なお、サンプリングにおいては、試験片の長手方向をフィルムの主収縮方向とし た)。しかる後に、万能引張試験機((株)島津製作所製 オートグラフ)で試験片の両 端を掴み、引張速度 200mmZ分の条件にて、フィルムの幅方向における引張破壊 時の強度の測定を行い、上式 2を用いて単位厚み当たりの直角引裂強度を算出した
[0074] [主収縮方向厚み斑]
フィルムを長さ 30m X幅 40mmの長尺なロール状にサンプリングし、ミクロン測定器 株式会社製の連続接触式厚み計を用いて、 5 (mZ分)の速度で測定した。なお、上 記したロール状のフィルム試料のサンプリングにおいては、フィルム試料の長さ方向 をフィルムの主収縮方向とした。測定時の最大厚みを Tmax.、最小厚みを Tmin.、平 均厚みを Tave.とし、下式 5からフィルムの長手方向の厚み斑を算出した。
厚み斑= { (Tmax.—Tmin.) ZTave.} X 100 (%) · ·式 5
[0075] [溶剤接着強度]
延伸したフィルムに 1, 3—ジォキソランを塗布して 2枚を張り合わせることによってシ ールを施した。しかる後、シール部をフィルムの主収縮方向と直交する方向(以下、 直交方向という)に 15mmの幅に切り取り、それを (株)ボールドウィン社製 万能引張 試験機 STM— 50にセットし、引張速度 200mmZ分の条件で 180° ピール試験 を行った。そして、そのときの引張強度を溶剤接着強度とした。
[0076] [収縮仕上り性 (筒状体嵌め込み) ]
熱収縮性フィルムに、予め東洋インキ製造 (株)の草 '金 ·白色のインキで 3色印刷を 施した。そして、印刷したフィルムの両端部をジォキソランで接着することにより、円筒 状のラベル (熱収縮性フィルムの主収縮方向を周方向としており、外周長が装着する ボトルの外周長の 1. 05倍である円筒状のラベル)を作成した。し力る後、その円筒 状のラベルを、 500mlの PETボトル(胴直径 62mm、ネック部の最小直径 25mm)に 被せて、 Fuji Astec Inc製スチームトンネル(型式; SH—1500—L)を用い、通過時 間 2. 5秒、ゾーン温度 80°Cで熱収縮させることにより、ラベルを装着した。なお、装 着の際には、ネック部においては、直径 40mmの部分がラベルの一方の端になるよう に調整した。収縮後の仕上がり性の評価は目視で行い、基準は下記の通りとした。 ◎:シヮ,飛び上り、収縮不足の何れも未発生で、かつ色の斑も見られない 〇:シヮ,飛び上り、または収縮不足が確認できないが、若干、色の斑が見られる △:飛び上り、収縮不足の何れも未発生だが、ネック部の斑が見られる
X:シヮ、飛び上り、収縮不足が発生
[0077] [収縮仕上り性 (ラップ'ラウンド) ]
熱収縮性フィルムに東洋インキ製造 (株)の草 '金'白色のインキで 3色印刷を施し、 当該印刷後の熱収縮性フィルムを、長手方向が縦になるように、縦 230mm X横 100 mmのサイズで切り出した。そして、 265mlアルミニウムボトル缶(図 2参照、胴直径 6 8mm、ネック部の最小直径 25mmで、胴の中央の直径力 ½0mmとなるように"くびれ "が設けてあるもの)を立てた状態で、切り出したフィルムの長辺の一方が感の底部に 沿うようにフィルムを巻き付けながら、フィルムの短辺のボトル缶当接面側の端縁際の 上下および中央の 3箇所に、下記の方法により製造された活性エネルギー線 (UV) 硬化型接着剤を散点状に塗布して、フィルムをボトル缶に固定した。次いで、巻き付 けたフィルムの他端縁際にも、同様な活性エネルギー線硬化型接着剤を塗布し、そ の他端縁を、先にボトル缶に固定した端縁際に 5mmの幅で重ね合わせて、当該他 端縁に塗布された接着剤層を挟み込んだ。しカゝる後、直ちに、その接着部分 (フィル ムの端縁際同士が重なり合った部分)に 3kW(120WZcm) X 1灯空冷式水銀灯で 紫外線を lOOmjZcm2となるように照射して、フィルムの両端を硬化接着させて、熱 収縮性ラベル付きボトル缶を製造した。続いて、熱収縮性ラベル付きボトル缶を、ラ ベル装着後、直ちに、長さ 3mで 92°Cに保温された水蒸気炉シュリンクトンネルに送 入し、 10秒かけて通過させることにより、ラベルを収縮させてボトル缶の外周に密着さ せた。なお、力かるフィルムの装着の際には、ネック部においては、直径 40mmの部 分がラベルの一方の端になるように調整した。しかる後に、収縮後の仕上がり性を目 視により下記の四段階で評価した。
◎:シヮ,飛び上り、収縮不足の何れも未発生で、かつ色の斑も見られない 〇:シヮ,飛び上り、または収縮不足が確認できないが、若干、色の斑が見られる △:飛び上り、収縮不足の何れも未発生だが、ネック部の斑が見られる
X:シヮ、飛び上り、収縮不足が発生
<活性エネルギー線 (UV)硬化型接着剤の製造方法 >
温度計、攪拌機、蒸留塔、コンデンサー、減圧装置を具備した反応容器の中に、ジ メチルテレフタレート 440部、ジメチルイソフタレート 440部、エチレングリコール 412 部、へキサンジオール 393部、及びテトラブトキシチタネート 0. 5部を仕込み、 150〜 230°Cで 120分間加熱してエステル交換反応をさせた。っ ヽで反応系を lOmmHg に減圧し、 30分間で 250°Cまで昇温して反応を行い、共重合ポリエステエルポリオ一 ルを得た。ポリエステルポリオールの分子量は 1600であった。次に、温度計、攪拌機 、還流冷却器を具備した反応容器中に共重合ポリエステルポリオール 100部、フエノ キシェチルアタリレート 120部を仕込み、溶解後、イソホロンジイソシァネート 15部お よびジブチル錫ジラウレート 0. 05部を仕込み、 70〜80°Cで 2時間反応させた後、さ らに 2 ヒドロキシェチルアタリレート 5部をカ卩えて 70〜80°Cで反応を行うことにより、 ウレタンアタリレート榭脂のフエノキシェチルアタリレート溶液を得た。なお、この溶液 1 00部、使用直前に、光重合開始剤として 2—ヒドロキシー2—メチルー 1 フエ-ルー プロパン 1 オン(ダロキュア一(登録商標) 1173 :チノく'スペシャルティ ·ケミカル ズ社製) 3質量部添加し、活性エネルギー線 (UV)硬化型接着剤を得た。ウレタンァ タリレートの分子量は 2000であった。接着剤の組成を表 3にまとめた。なお、上記中 の分子量は数平均分子量であり、テトラヒドロフランを溶離役として GPC150C (ウォー ターズ社製)を用い測定した結果 (ポリスチレン換算)である。測定の際にカラム温度 は 35°C、流量 lmlZ分とした。
[0079] [ラベル密着性]
上記した収縮仕上り性 (筒状体嵌め込み)の測定条件と同一の条件でラベルを PE Tボトルに装着した。そして、装着したラベルと PETボトルとを軽くねじったときに、ラ ベルが動かなければ〇、すり抜けたり、ラベルとボトルとがずれたりした場合には Xと した (なお、ラップ'ラウンド方式により、フィルムを PETボトル等に直接的に巻き付け て装着する場合には、フィルムの端縁力 SPETボトルに接着されるため、当該ラベル密 着'性が問題となることはな ヽ)。
[0080] [ミシン目開封性]
予め主収縮方向とは直向する方向にミシン目を入れておいたラベルを、上記した収 縮仕上り性の測定条件 (筒状体嵌め込み)と同一の条件で PETボトルに装着した。た だし、ミシン目は、長さ lmmの孔を lmm間隔で入れることによって形成し、ラベルの 縦方向(高さ方向)に幅 22mm、長さ 120mmに亘つて 2本設けた。その後、このボト ルに水を 500ml充填し、 5°Cに冷蔵し、冷蔵庫力も取り出した直後のボトルのラベル のミシン目を指先で引裂き、縦方向にミシン目に沿って綺麗に裂け、ラベルをボトル 力も外すことができた本数を数え、全サンプル 50本に対する割合 (%)を算出した。
[0081] [総合評価]
上記のように収縮仕上り性 (筒状体嵌め込み)、収縮仕上り性 (ラップ'ラウンド)、ラ ベル密着性、ミシン目開封性について評価した結果、筒状体嵌め込み方式 (予め、 周方向を主収縮方向とする円筒状のラベルを形成した後に PETボトル等に嵌め込 んで装着する方法)あるいは、ラップ ·ラウンド方式 (フィルムを主収縮方向が周方向と なるように PETボトル等に直接的に巻き付けて装着する方法)のうちのいずれかの方 法により、熱収縮性フィルムとして実用的に使用可能であれば〇とし、筒状体嵌め込 み方式、ラップ'ラウンド方式のいずれの方法においても、熱収縮性フィルムとして実 用的に使用できなければ Xとした。
[0082] また、実施例および比較例に用いたポリエステルは以下の通りである。 [0083] ポリエステル 1 :エチレングリコール 70モル0んネオペンチルグリコール 30モル0 /0と テレフタル酸と力もなるポリエステル (IV 0. 72dl/g)
ポリエステル 2 :ポリエチレンテレフタレート(IV 0. 75dl/g)
ポリエステル 3 :ジカルボン酸成分としてテレフタル酸単位 82. 5モル0んイソフタル 酸単位 17. 5モル%ょりなり、ジオール成分としてエチレングリコールよりなる。
ポリエステル 4 :エチレングリコール 70モル0ん 1, 4ーシクロへキサンジメタノール 3 0モル0 /0とテレフタル酸とからなるポリエステル(IV 0. 75dl/g)
[0084] [実施例 1]
上記したポリエステル 1とポリエステル 2とを重量比 90 : 10で混合して押出機に投入 した。し力る後、その混合榭脂を 280°Cで溶融させて Tダイ力も押出し、表面温度 30 °Cに冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが 360 mの未延伸フィルムを得た。このときの未延伸フィルムの弓 I取速度(金属ロールの回 転速度)は、約 20mZmin.であった。また、未延伸フィルムの Tgは 67°Cであった。 し力る後、その未延伸フィルムを、横延伸ゾーン、中間ゾーン、中間熱処理ゾーンを 連続的に設けたテンター(第 1テンター)に導いた。なお、当該テンターにおいては、 横延伸ゾーンと中間熱処理ゾーンとの中間に位置した中間ゾーンの長さが、約 40cm に設定されている。また、中間ゾーンにおいては、フィルムを通過させていない状態 で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるよ うに、延伸ゾーンからの熱風および熱処理ゾーンからの熱風が遮断されて 、る。
[0085] そして、テンターに導かれた未延伸フィルムを、フィルム温度が 90°Cになるまで予 備加熱した後、横延伸ゾーンで横方向に 75°Cで 4倍に延伸し、中間ゾーンを通過さ せた後に(通過時間 =約 1. 2秒)、中間熱処理ゾーンへ導き、 130°Cの温度で 2. 0 秒間に亘つて熱処理することによって厚み 90 mの横一軸延伸フィルムを得た。し かる後、テンターの後方に設けられた左右一対のトリミング装置 (周状の刃先を有す る丸刃によって構成されたもの)を利用して、横一軸延伸フィルムの端縁際(中央のフ イルム厚みの約 1. 2倍の厚みの部分)を切断し、切断部位の外側に位置したフィル ムの端部を連続的に除去した。
[0086] さらに、そのように端部をトリミングしたフィルムを、複数のロール群を連続的に配置 した縦延伸機へ導き、予熱ロール上でフィルム温度が 70°Cになるまで予備加熱した 後に、表面温度 95°Cに設定された延伸ロール間で 3倍に延伸した。し力る後、縦延 伸したフィルムを、表面温度 25°Cに設定された冷却ロールによって強制的に冷却し た。なお、冷却前のフィルムの表面温度は約 75°Cであり、冷却後のフィルムの表面 温度は約 25°Cであった。また、 70°Cから 25°Cに冷却するまでに要した時間は約 1. 0秒であり、フィルムの冷却速度は、 45°CZ秒であった。
[0087] そして、冷却後のフィルムをテンター(第 2テンター)へ導き、当該第 2テンター内で 95°Cの雰囲気下で 2. 0秒間に亘つて熱処理した後に冷却し、両縁部を裁断除去す ることによって、約 30 mの二軸延伸フィルムを所定の長さに亘つて連続的に製膜し て熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られた フィルムの特性を上記した方法によって評価した。評価結果を表 3に示す。
[0088] [実施例 2]
ポリエステル 1とポリエステル 2を重量比 70: 30で混合して押出機に投入した以外 は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。そして、 得られたフィルムの特性を実施例 1と同様の方法によって評価した。評価結果を表 3 に示す。
[0089] [実施例 3]
テンター (第 1テンター)における横方向の延伸倍率を 5. 0倍に変更した以外は、 実施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。なお、ニ軸延 伸熱収縮性ポリエステル系フィルムの厚みは約 24 μ mであった。そして、得られたフ イルムの特性を実施例 1と同様の方法によって評価した。評価結果を表 3に示す。
[0090] [実施例 4]
テンター(第 1テンター)における中間熱処理の温度を 140°Cに変更した以外は、 実施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。なお、ニ軸延 伸熱収縮性ポリエステル系フィルムの厚みは約 24 μ mであった。そして、得られたフ イルムの特性を実施例 1と同様の方法によって評価した。評価結果を表 3に示す。
[0091] [実施例 5]
縦延伸機における延伸口ールの温度を 92°Cに変更し、長手方向の延伸倍率を 5. 0倍に変更した以外は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に 製造した。なお、二軸延伸熱収縮性ポリエステル系フィルムの厚みは約 18 mであ つた。そして、得られたフィルムの特性を実施例 1と同様の方法によって評価した。評 価結果を表 3に示す。
[0092] [実施例 6]
縦延伸機における延伸ロールの温度を 92°Cに変更し、長手方向の延伸倍率を 7. 0倍に変更した以外は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に 製造した。なお、二軸延伸熱収縮性ポリエステル系フィルムの厚みは約 13 mであ つた。そして、得られたフィルムの特性を実施例 1と同様の方法によって評価した。評 価結果を表 3に示す。
[0093] [実施例 7]
縦延伸機における長手方向の延伸倍率を 1. 5倍に変更した以外は、実施例 1と同 様の方法によって熱収縮性フィルムを連続的に製造した。なお、二軸延伸熱収縮性 ポリエステル系フィルムの厚みは約 60 μ mであった。そして、得られたフィルムの特 性を実施例 1と同様の方法によって評価した。評価結果を表 3に示す。
[0094] [実施例 8]
押出機に投入する原料榭脂を、ポリエステル 4とポリエステル 2を重量比 90 : 10で 混合したものに変更するとともに、縦延伸機における長手方向の延伸倍率を 1. 5倍 に変更した以外は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に製 造した。なお、二軸延伸熱収縮性ポリエステル系フィルムの厚みは約 60 mであつ た。そして、得られたフィルムの特性を実施例 1と同様の方法によって評価した。評価 結果を表 3に示す。
[0095] [実施例 9]
テンター (第一テンター)における横方向の延伸倍率を 4. 5倍に変更するとともに、 縦延伸機における長手方向の延伸倍率を 1. 5倍に変更した以外は、実施例 1と同様 の方法によって熱収縮性フィルムを連続的に製造した。なお、二軸延伸熱収縮性ポ リエステル系フィルムの厚みは約 27 μ mであった。そして、得られたフィルムの特性 を実施例 1と同様の方法によって評価した。評価結果を表 3に示す。 [0096] [比較例 1]
上記したポリエステル 3を押出機に投入し、 265°Cで溶融させて Tダイカゝら押出し、 表面温度 30°Cに冷却された回転する金属ロールに巻き付けて急冷することにより、 厚さが 360 mの未延伸フィルムを得た。なお、未延伸フィルムの引取速度は、実施 例 1と同様にした。し力る後、その未延伸フィルムを、複数のロール群を連続的に配 置した縦延伸機 (第 1縦延伸機)へ導き、予熱ロール上で予備加熱した後に、表面温 度 88°Cに設定された延伸ロール間で 2. 7倍に延伸した。さらに、長手方向に延伸し たフィルムを横延伸ゾーンと熱処理ゾーンとを連続的に設けたテンター(第 1テンター )へ導き、横延伸ゾーンにて 97°Cの延伸温度で横方向に 97°Cで 3. 5倍延伸した後 に、熱処理ゾーンにて 125°Cで熱処理した。し力る後、熱処理後のフィルムを、複数 のロール群を連続的に配置した縦延伸機 (第 2縦延伸機)へ導き、予熱ロール上で 予備加熱した後に、表面温度 98°Cに設定された延伸ロール間で 1. 5倍に再度縦延 伸した。さらに、再度縦延伸したフィルムをテンター(第 2テンター)へ導き、 85°Cの熱 処理した後に冷却し、両縁部を裁断除去することによって、約 35 /z mの二軸延伸フィ ルムを所定の長さに亘つて連続的に製膜して熱収縮性ポリエステル系フィルムロー ルを得た。なお、熱処理後冷却前のフィルムの表面温度は約 75°Cであり、約 2. 0秒 で約 25°Cまで冷却した (冷却速度 = 25°CZ秒)。そして、得られたフィルムの特性を 上記した方法によって評価した。評価結果を表 3に示す。
[0097] [比較例 2]
ポリエステル 1とポリエステル 2とを重量比 40: 60で混合して押出機に投入した以外 は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。なお、二 軸延伸熱収縮性ポリエステル系フィルムの厚みは約 13 mであった。そして、得られ たフィルムの特性を実施例 1と同様の方法によって評価した。評価結果を表 3に示す
[0098] [比較例 3]
テンター(第 1テンター)における中間熱処理の温度を 70°Cに変更した以外は、実 施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。そして、得られ たフィルムの特性を実施例 1と同様の方法によって評価した。評価結果を表 3に示す [0099] [比較例 4]
未延伸フィルムをテンターへ導き、フィルム温度が 90°Cになるまで予備加熱した後 に、 75°Cの延伸温度で横方向に 4. 0倍延伸して冷却し、両縁部を裁断除去すること によって、約 45 mの横一軸延伸フィルムを所定の長さに亘つて連続的に製膜して 熱収縮性ポリエステル系フィルムロールを得た。なお、熱処理後冷却前のフィルムの 表面温度は約 75°Cであり、約 2. 0秒で約 35°Cまで冷却した (冷却速度 = 20°CZ秒 )。そして、得られたフィルムの特性を上記した方法によって評価した。評価結果を表 3に示す。なお、比較例 5のフィルムにおいては、幅方向が主収縮方向になっており 、長手方向が主収縮方向と直交する方向になっている。
[0100] [比較例 5]
第 2縦延伸機で再度縦延伸する際の延伸倍率を 3. 0倍にした以外は、比較例 1と 同様の方法によって熱収縮性フィルムを連続的に製造した。そして、得られたフィル ムの特性を実施例 1と同様の方法によって評価した。評価結果を表 3に示す。
[0101] [表 3]
Figure imgf000031_0001
表 3から明らかなように、実施例 1 9で得られたフィルムは、いずれも、主収縮方向 である長手方向への収縮性が高ぐ主収縮方向と直交する幅方向への収縮性は非 常に低力つた。また、実施例 1 6で得られたフィルムは、いずれも、溶剤接着強度が 高ぐラベル密着性が良好で収縮斑もなぐ収縮仕上がり性 (筒状体嵌め込み方式) が良好であった。一方、実施例 7 9で得られたフィルムは、収縮仕上がり性 (ラップ' ラウンド方式)が良好であった。その上、実施例 7で得られたフィルムは、溶剤接着強 度が高力つた。さらに、実施例 1〜9の熱収縮性ポリエステル系フィルムは、ミシン目 開封性が良好である上、自然収縮率が小さぐ製造されたフィルムロールにシヮが発 生することがなカゝつた。すなわち、実施例 1〜9で得られた熱収縮性ポリエステル系フ イルムは、いずれもラベルとしての品質が高ぐきわめて実用性の高いものであった。
[0103] それに対して、比較例 1で得られた熱収縮性フィルムは、ラベル密着性、ミシン目開 封性が不良であった。また、比較例 2、 3で得られた熱収縮性フィルムは、いずれもフ イルム幅方向の熱収縮率が高ぐラベル密着性が不良で収縮斑が生じた。一方、比 較例 4で得られたフィルム(主収縮方向が幅方向)は、収縮仕上がり性 (筒状体嵌め 込み方式)が良好であるものの、ミシン目開封性が不良であった。また、比較例 5で得 られたフィルム(主収縮方向が幅方向)は、主収縮方向と直交する方向の熱収縮率 が大きぐ収縮斑が生じた上、ミシン目開封性が不良であり、自然収縮率が大きぐ製 造されたフィルムロールにシヮが発生した。すなわち、比較例 1〜5で得られた熱収 縮性ポリエステル系フィルムは、いずれもラベルとしての品質に劣り、実用性の低いも のであった。
産業上の利用可能性
[0104] 本発明の熱収縮性ポリエステル系フィルムは、上記の如く優れたカ卩ェ特性を有して いるので、ボトルのラベル用途に好適に用いることができる。

Claims

請求の範囲
[1] エチレンテレフタレートを主たる構成成分とし、全ポリエステル榭脂成分中にぉ 、て 非晶質成分となりうる 1種以上のモノマー成分を 10モル%以上含有しているとともに
、一定幅の長尺状に形成されており、主収縮方向が長手方向である熱収縮性ポリエ ステル系フィルムであって、
下記要件(1)〜 (4)を満たすことを特徴とする熱収縮性ポリエステル系フィルム。 (1 ) 90°Cの温水中で 10秒間に亘つて処理した場合における長手方向の湯温熱収縮率 力 S 15%以上 80%以下であること
(2) 90°Cの温水中で 10秒間に亘つて処理した場合における長手方向と直交する幅 方向の湯温熱収縮率が 0%以上 17%以下であること
(3)長手方向および幅方向の屈折率がいずれも 1. 570以上 1. 620以下であること
(4) 40°C65%RHの雰囲気下で 700時間エージングした後の自然収縮率が 0. 05 %以上 1. 5%以下であること
[2] 90°Cの温水中で 10秒間に亘つて処理した場合における長手方向の湯温熱収縮 率が 15%以上 40%未満であるとともに、長手方向の屈折率が 1. 570以上 1. 590 以下、および幅方向の屈折率が 1. 570以上 1. 620以下であることを特徴とする請 求項 1に記載の熱収縮性ポリエステル系フィルム。
[3] 全ポリステル榭脂成分中における非晶質成分となりうるモノマーの主成分が、ネオ ペンチルグリコール、 1, 4ーシクロへキサンジメタノール、イソフタル酸の内のいずれ かであることを特徴とする請求項 1、または請求項 2に記載の熱収縮性ポリエステル 系フィルム。
[4] 80°Cの温水中で長手方向に 10%収縮させた後に長手方向および幅方向のエルメ ンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が 0. 15以上 1. 5以下で あることを特徴とする請求項 1〜3のいずれかに記載の熱収縮性ポリエステル系フィ ノレム。
[5] 80°Cの温水中で長手方向に 10%収縮させた後の単位厚み当たりの幅方向の直 角引裂強度が lOONZmm以上 300NZmm以下であることを特徴とする請求項 1〜 4のいずれかに記載の熱収縮性ポリエステル系フィルム。 請求項 1〜5のいずれかに記載の熱収縮性ポリエステル系フィルムを連続的に製 造するための製造方法であって、
未延伸フィルムを、テンター内で幅方向の両端際をクリップによって把持した状態 で Tg + 5°C以上 Tg+40°C以下の温度で幅方向に 2. 5倍以上 6. 0倍以下の倍率で 延伸した後、積極的な加熱操作を実行しない中間ゾーンを通過させた後に、 100°C 以上 170°C以下温度で 1. 0秒以上 10. 0秒以下の時間に亘つて熱処理し、しかる後 、フィルムの表面温度が 30°C以上 70°C以下まで冷却した後、 Tg + 5°C以上 Tg + 80 °C以下の温度で長手方向に 2. 0倍以上 7倍以下の倍率で延伸し、し力る後、 30°C Z秒以上 70°CZ秒以下の冷却速度でフィルムの表面温度が 45°C以上 75°C以下と なるまで冷却することを特徴とする熱収縮性ポリエステル系フィルムの製造方法。
PCT/JP2007/061860 2006-06-14 2007-06-13 熱収縮性ポリエステル系フィルム、およびその製造方法 WO2007145231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/304,531 US7829655B2 (en) 2006-06-14 2007-06-13 Heat-shrinkable polyester film and process for production thereof
CN2007800223544A CN101500784B (zh) 2006-06-14 2007-06-13 热收缩性聚酯系膜及其制造方法
AT07745143T ATE498484T1 (de) 2006-06-14 2007-06-13 Wärmeschrumpfbare polyesterfolie und herstellungsverfahren dafür
EP07745143A EP2042294B1 (en) 2006-06-14 2007-06-13 Heat-shrinkable polyester film and process for production thereof
DE200760012548 DE602007012548D1 (de) 2006-06-14 2007-06-13 Wärmeschrumpfbare polyesterfolie und herstellungsverfahren dafür

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006165212 2006-06-14
JP2006-165212 2006-06-14
JP2006355365 2006-12-28
JP2006-355365 2006-12-28
JP2007154874A JP4411556B2 (ja) 2006-06-14 2007-06-12 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2007-154874 2007-06-12

Publications (1)

Publication Number Publication Date
WO2007145231A1 true WO2007145231A1 (ja) 2007-12-21

Family

ID=38831745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061860 WO2007145231A1 (ja) 2006-06-14 2007-06-13 熱収縮性ポリエステル系フィルム、およびその製造方法

Country Status (9)

Country Link
US (1) US7829655B2 (ja)
EP (1) EP2042294B1 (ja)
JP (1) JP4411556B2 (ja)
KR (1) KR100991638B1 (ja)
CN (1) CN101500784B (ja)
AT (1) ATE498484T1 (ja)
PT (1) PT2042294E (ja)
TW (1) TWI352713B (ja)
WO (1) WO2007145231A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107591A1 (ja) * 2008-02-27 2009-09-03 東洋紡績株式会社 白色熱収縮性ポリエステル系フィルム、白色熱収縮性ポリエステル系フィルムの製造方法、ラベル、及び包装体
JP2009227337A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd ラベル
US8673414B2 (en) 2006-08-30 2014-03-18 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film, process for production thereof, and package
US8685305B2 (en) 2007-09-25 2014-04-01 Toyo Boseki Kabushiki Kaisha Process for production of heat-shrinkable polyester film, heat-shrinkable polyester film and packages
JP2015199909A (ja) * 2014-04-01 2015-11-12 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190348B1 (ko) * 2007-12-11 2012-10-11 코오롱인더스트리 주식회사 열수축성 폴리에스테르계 필름
JP4968034B2 (ja) * 2007-12-12 2012-07-04 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
JP5286829B2 (ja) * 2007-12-13 2013-09-11 東洋紡株式会社 ラベル
JP4809419B2 (ja) * 2007-12-13 2011-11-09 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法
GB0907283D0 (en) * 2009-04-28 2009-06-10 Gr Advanced Materials Ltd Microperforated film
JP5948006B2 (ja) * 2009-12-16 2016-07-06 大日本印刷株式会社 ロールシュリンクラベル、ロールシュリンクラベル付き容器、及びその製造方法。
JP5295161B2 (ja) * 2010-03-30 2013-09-18 富士フイルム株式会社 熱可塑性樹脂フィルムの製造方法
KR101725578B1 (ko) 2010-04-08 2017-04-10 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름, 그의 제조방법, 및 포장체
JP2012062109A (ja) * 2010-09-17 2012-03-29 Daiwa Can Co Ltd 筒状ラベル付き容器の製造方法
US9296867B2 (en) 2012-08-03 2016-03-29 Toyobo Co., Ltd. Heat-shrinkable polyester-based film
TWI576367B (zh) * 2012-08-29 2017-04-01 東洋紡股份有限公司 熱收縮性聚酯系薄膜
TWI454371B (zh) * 2013-01-31 2014-10-01 Far Eastern New Century Corp Preparation of Heat Shrinkable Polyester Films
JP6384324B2 (ja) 2013-04-26 2018-09-05 東洋紡株式会社 シーラント用途のポリエステル系フィルム、積層体及び包装袋
MY164330A (en) 2013-06-11 2017-12-15 Toyo Boseki Heat-shrinkable polyester film and packages
JP6269399B2 (ja) 2014-02-04 2018-01-31 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP6459533B2 (ja) * 2014-04-01 2019-01-30 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
US20150364120A1 (en) * 2014-06-13 2015-12-17 Rachiele Holdings, LLC Variable noise dampening for drums and cymbals
JP6947489B2 (ja) * 2015-02-04 2021-10-13 東洋紡株式会社 包装体、およびその製造方法、包装緩衝材用積層シート、梱包体
JP7460417B2 (ja) * 2015-02-04 2024-04-02 東洋紡株式会社 包装体、およびその製造方法、包装緩衝材用積層シート、梱包体
KR102459356B1 (ko) * 2015-03-20 2022-10-25 도요보 가부시키가이샤 열수축성 폴리에스테르계 필름 및 포장체
JP6519331B2 (ja) * 2015-06-11 2019-05-29 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6600174B2 (ja) * 2015-06-16 2019-10-30 東洋紡株式会社 包装体、およびその製造方法、包装緩衝材用積層シート、梱包体
WO2017029999A1 (ja) 2015-08-19 2017-02-23 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6772590B2 (ja) * 2016-06-30 2020-10-21 東洋紡株式会社 ポリエステル系フィルム、積層体及び包装袋
KR102654779B1 (ko) * 2016-11-24 2024-04-03 에스케이케미칼 주식회사 다층 mdo 내열 열수축성 필름
KR102654778B1 (ko) 2016-11-24 2024-04-03 에스케이케미칼 주식회사 내열성 mdo 열수축 필름
EP3581604A4 (en) 2017-02-13 2020-12-02 Toyobo Co., Ltd. RAW COPOLYESTER MATERIAL FOR AMORPHIC FILM, HEAT-SHRINKABLE POLYESTER-BASED FILM, HEAT-SHRINKABLE LABEL AND PACKAGING
KR102252173B1 (ko) 2017-04-27 2021-05-13 도요보 가부시키가이샤 열수축성 필름용 폴리에스테르 수지, 열수축성 필름, 열수축성 라벨 및 포장체
US10543656B2 (en) 2018-01-11 2020-01-28 Eastman Chemical Company Tough shrinkable films
EP3747628B1 (en) * 2018-01-31 2024-06-19 Toyobo Co., Ltd. Heat-shrinkable polyester-based film roll
KR20210036358A (ko) 2018-08-03 2021-04-02 도요보 가부시키가이샤 비결정성 필름용 공중합 폴리에스테르 원료, 열수축성 폴리에스테르계 필름, 열수축성 라벨, 및 포장체
JP6741184B1 (ja) 2018-10-16 2020-08-19 東洋紡株式会社 熱収縮性フィルム用ポリエステル樹脂、熱収縮性フィルム、熱収縮性ラベル、及び包装体
JPWO2021210512A1 (ja) 2020-04-15 2021-10-21
CN115427216A (zh) * 2020-04-30 2022-12-02 富士胶片株式会社 聚酯膜的制造方法、聚酯膜
TWI836276B (zh) * 2020-10-07 2024-03-21 美商朋瑟美國公司 聚酯系熱收縮膜
TWI833128B (zh) * 2020-11-19 2024-02-21 美商朋瑟美國公司 聚酯系熱收縮膜
CN117239220B (zh) * 2023-11-14 2024-02-23 珠海冠宇电池股份有限公司 一种电芯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244114A (ja) 1995-03-08 1996-09-24 Toray Ind Inc ポリエステル系収縮フィルム
JP2005194466A (ja) * 2004-01-09 2005-07-21 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよび熱収縮性ラベル
JP2006181899A (ja) * 2004-12-28 2006-07-13 Toyobo Co Ltd 多層熱収縮性ポリエステル系フィルム及びラベル
JP2007016120A (ja) * 2005-07-07 2007-01-25 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム及びラベルとその製造方法
JP2007056156A (ja) * 2005-08-25 2007-03-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム及びラベルとその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767511B2 (ja) 2001-04-26 2006-04-19 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール
JP3678186B2 (ja) * 2001-08-01 2005-08-03 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール
KR100949209B1 (ko) * 2002-04-24 2010-03-24 토요 보세키 가부시기가이샤 열수축성 폴리에스테르계 필름
KR100560214B1 (ko) * 2003-08-05 2006-03-10 에스케이씨 주식회사 개봉성이 용이한 포장용 폴리에스테르 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244114A (ja) 1995-03-08 1996-09-24 Toray Ind Inc ポリエステル系収縮フィルム
JP2005194466A (ja) * 2004-01-09 2005-07-21 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよび熱収縮性ラベル
JP2006181899A (ja) * 2004-12-28 2006-07-13 Toyobo Co Ltd 多層熱収縮性ポリエステル系フィルム及びラベル
JP2007016120A (ja) * 2005-07-07 2007-01-25 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム及びラベルとその製造方法
JP2007056156A (ja) * 2005-08-25 2007-03-08 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム及びラベルとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2042294A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673414B2 (en) 2006-08-30 2014-03-18 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film, process for production thereof, and package
US8685305B2 (en) 2007-09-25 2014-04-01 Toyo Boseki Kabushiki Kaisha Process for production of heat-shrinkable polyester film, heat-shrinkable polyester film and packages
WO2009107591A1 (ja) * 2008-02-27 2009-09-03 東洋紡績株式会社 白色熱収縮性ポリエステル系フィルム、白色熱収縮性ポリエステル系フィルムの製造方法、ラベル、及び包装体
US8728594B2 (en) 2008-02-27 2014-05-20 Toyo Boseki Kabushiki Kaisha Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
KR101491876B1 (ko) * 2008-02-27 2015-02-09 도요보 가부시키가이샤 백색 열수축성 폴리에스테르계 필름, 백색 열수축성 폴리에스테르계 필름의 제조방법, 라벨, 및 포장체
JP2009227337A (ja) * 2008-02-29 2009-10-08 Toyobo Co Ltd ラベル
JP2015199909A (ja) * 2014-04-01 2015-11-12 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP2019147954A (ja) * 2014-04-01 2019-09-05 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体

Also Published As

Publication number Publication date
KR100991638B1 (ko) 2010-11-04
EP2042294A1 (en) 2009-04-01
TWI352713B (en) 2011-11-21
ATE498484T1 (de) 2011-03-15
PT2042294E (pt) 2011-02-28
CN101500784B (zh) 2012-01-04
EP2042294B1 (en) 2011-02-16
US7829655B2 (en) 2010-11-09
JP2008179122A (ja) 2008-08-07
US20090270584A1 (en) 2009-10-29
EP2042294A4 (en) 2009-12-30
JP4411556B2 (ja) 2010-02-10
CN101500784A (zh) 2009-08-05
KR20090034336A (ko) 2009-04-07
TW200806721A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
JP4411556B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP4882919B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP6303500B2 (ja) 熱収縮性ポリエステル系フィルム
JP5286829B2 (ja) ラベル
KR101491876B1 (ko) 백색 열수축성 폴리에스테르계 필름, 백색 열수축성 폴리에스테르계 필름의 제조방법, 라벨, 및 포장체
JP5633808B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP4877056B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2007056156A (ja) 熱収縮性ポリエステル系フィルム及びラベルとその製造方法
JP2010000800A (ja) 熱収縮性ポリエステル系フィルム
JP6197333B2 (ja) 熱収縮性ポリエステル系フィルム
WO2008018528A1 (fr) Emballage
JP4968034B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2009202445A (ja) 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体
JP2009114422A (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP5868898B2 (ja) 包装体の製造方法
JP5278821B2 (ja) 熱収縮性ポリエステル系フィルム
JP5895283B2 (ja) ラベル
TW202110970A (zh) 熱收縮性聚酯系膜、標籤、及包裝體
JP5067473B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2009143605A (ja) 包装体
JP2009143044A (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2009161249A (ja) 熱収縮性ラベルおよびその製造方法
JP2009161250A (ja) 熱収縮性ラベルおよびその製造方法
JP2009145649A (ja) ラベル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022354.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007745143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097000609

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12304531

Country of ref document: US